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During this period, most of the issues pertaining to the Hyperbolic 

Navier-Stokes equations have been sorted out and an Abstract (copies en- 

closed) was submitted to the CFD meeting in Honolulu. 

Work is continuing on incorporating the viscous terms into the re- 

acting flow code. When this is completed and checked, we intend to in- 

corporate a chemistry model based on the complete H -0 reaction. More- 

over, all transport properties will be based on the 12-6 potential. 
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Using ideas from kinetic theory, the Navier-Stokes equations are modified 

in such a way that they can be caat as a set of first order hyperbolic 

equations. 

definition of the streas tensor and the heat flux vectors. 

conditions are then determined from the theory of characteristics. 

the resulting equations reduce to the traditional Navier-Stokes equations when 

the steady state is reached, the present approach provides a straightforward 

scheme for the detemination of inflow and outflow boundary conditions. The 

method im validated by comparing its predictions with known exact solutions of 

the steady Navier-Stokes equations. 

This is achieved by incorporating time dependent terms into the 

The boundary 

Because 
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Introduction and Amroach 

Solutions of the Navier-Stokes equations have not matured to the point 

where one can routinely simulate transition, separation and turbulence. One 

of the major obstacles that prevents us from achieving these goals is our 

inability to formulate accurate inflow and outflow boundary conditions. 

Attempts at formulating such conditions centered around the assumption that, 

in the far field, the governing equations reduce to a simple form. 

may include a wave equation, a Poisson’s equation or, some other simple 

equation. 

used to provide boundary conditions for the Navier-Stokes equations at the 

computational boundaries. 2--8 

Such forms 

Asymptotic solutions of these equations are then constructed and 

Because viscous effects are important in the vicinity of bodies and in 

their wakes, it is not clear that the Euler equationa (or a simpler subset) 

should govern the far field behavior especially in the wake region. 

of this tmd the h i r e  to provide a simple approach to this complicated 

problem, attention is focueed in this work on modifying the physics of the 

problem. 

obtain a uteady state ~~olution, the net result of the approach is to provide a 

different path of convergence to the steady state. 

Because 

The modification i8 such that, if one uaea time marching methoda to 

Using index notation, the conservation of 1(~8s, momentum and energy 

equations can be written ae 

- aP + - a (PUi) = 0 
at axi 

- a (mi) + - a [ puiuj + Pdij + uij ) = 0  

.i at ax 
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[ pu .H + uiui3 + Pi) = 0 b a - ( P a  + - 
at J 

ax3 
(3) 

where p is the density, Ui is the velocity component in the direction of Xi, E 

and H are the total energy and enthalpy per unit m s ,  p is the pressure, Oij 

is the stress tensor, qi is the heat flux vector and 8ij is the Kronecker 

delta. In 

the traditional Navier-Stokes equations, the stress tensor and the heat flux 

vector have the foza 

Expreesione for eij and qi are needed to close the above system. 

where 

with p, h and K being the coefficients of shear viscosity, heat conductivity 

and bulk viscosity. The firat order systerr of equations (1) - (5) cannot be 
hyperbolic because of the absence of time derivatives in equations (4) and 

(6). A necessary (but not sufficient) modification that ray make the sy8tem 

hyperbolic is the addition of time dependent terms to equations (4) and ( 5 ) ,  

i.e., change them to 
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a - + 2 - + - = 0  aoij [:I:] oij 
at c 

# -+[k+yl  at 

where a and # are unknown parameters, It is seen from equations (7) and (8) 

that when the steady state is reached one will recover equations (4) and (5). 

The a and f i  have to be chosen in such a way that the resulting system is 

Rather than reke aribtrary choices, attention w a s  focused on the hyperbolic. 

results of kinetic theory. 

flux vector can be determined from the solution of the Baltmann eq~ation.~ 

The traditional Hilbert or Chapman-Enakog methods yield equations similar to 

equations (4) and (6). 

Grad'' yielda equationa similar to equations (7) and (8). 

equationa (7) and (8) with the results of the thirteen maeent method 

(equationa (7.6-7) and (7.5-8) of Ref. 9), it ia seen that a and # should be 

chosen aa 

Ae is well known, the stress tensor and the heat 

On the other hand, the thirteen moment method of 

By comparing 

a = l/p i = lbPP (9) 

where cp is the specific heat at constant pressure. 
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Using the above choices, the governing system of equations, (1)-(3), (7)- 

(8) can be written as 

F(U) bU au - + c - =  au au - + A - + B  

where 

with A, B and C being appropriate retrim. In the most general case, some of 

the eigenvalues of A, B and C cannot be determined in cloaed form. 

neceasary to use numerical computations to show that all of the eigenvalues 

were real. Thus, the reeulting eylltem is hyperbolic. 

It was 

The presence of source term in the multing formation readers the 

scheme somewhat stiff. 

similar to that of Ref. 11, was employed. A finite voltme, cell-centered, 

formulation d a four-step Runge-Kutte time stepping scheme, siiilar to that 

of Ref. 12, is used to obtain the solution. Local time etepping and residual 

To overcome this problem a semi-i~plicit treatment, 

were employed to accelerate convergence to the steady state. 

Boundary Condit iom 

In order to demonstrate the validity of this approach, it is necessary to 

compare its predictione with 8 0 1 ~  of the well-known exact solutions. 

illustration, the flow past a semi-infinite plate (Blasius problem) is 

considered. Because the normal streseea and the axial heat flux are very 

small, a "thin layer" approximation in which uxx, ow and qx were assumed 

As an 
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negligible was developed. 

expressions for the eigenvalues of the matrices A and B. 

For thie case, it w a s  possible to derive analytical 

It may be recalled that the eigenvalues of A for the two-dimensional 

Euler equations are u, u, uta with v replacing u for the eigenvalues of B. 

the present case, where the thin layer approximation is wed, the eigenvalues 

of A are 

In 

1 
u, u * a, [u * 1.2 + 3] / 2 

where a is the speed of sound. The matrix A can be written aei 

A = P A P-l 

where A ia a diagonal matrix whose element8 are the eigenvalues of A, P is a 

matrix nhocre colums are the eigenvectora of A and P’ is the inverae of P. 

The characteriatic variablee are given by 

w = P-IU 

or 

P2 c” P2 
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- 2a w2, w3 - u f - 
r-1 

w h e r e  S is the entropy. 

At boundaries normal to the x-axis, equation (10) may be approximated by 

dU dU - + A - = P(U) 
8t dX 

Multiplying equation (15) by P-', wing eq. (13), and assuming that P-' ia 

aprpoximetely constent, one abtains 

If a steady state solution is demired, the boundary conditionrr are given by 

Upwind differencing is used to expreaa the derivatives at the boundary. 
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Results and Discussion 

Results for a flow past a flat plate at a Mach number of .3 and a 

Reynolds number of 5,000 are presented. Figure 1 shows a conpariaon of the 

dimensionless velocity in the axial direction, as a function of the Blasius 

coordinate with the Blasiu solution. Similarly, Figure 2 compares the 

calculated Cf, the skin friction coefficient, as a function of Re, with the 

result obtained from the Blasius solution. 

both cases. 

results with those of calculations based on the traditional Navier-Stokes 

equations. Again, good agreement is indicated. 

Good agreement is indicated in 

Figure 3 is taken from Ref. 14 and is intended to compare our 

As a further validation of this approach we hope to include in the final 

paper the calculation of subsonic separated flow past a ~ylinder.'~ The wake 

of the cylinder is dominated by a Karman-Vortex street. 

adequate boundary conditions, the problem proved to be difficult to simulate. 

The pretreat approach, with boundary conditions provided by equation (16), and 

similar relations, is highly auited for the solution of this problem. 

Because of lack of 

In conclusion, we have developed a rather straightforward and general 

approach for determining inflow and outflow boundary conditione for the 

Navier-Stokes equations. It is hoped that this approach will lake it possible 

to tackle more difficlut problema involving transition, separation and 

turbulance. 
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Figure 1. Comparison of the dimensionless velocity 

as a function of the Blasius coordinate. 
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Figure  2 .  Comparison of s k i n - f i r c t i o n  d i s t r i b u t i o n s  

f o r  laminar  f l a t  p l a t e  flow based on the 

Hyperbolic Navier-Stokes equat ions.  
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Figure  3 .  Comparison o f  s k i n - f r i c t i o n  d i s t r i b u t i o n s  

f o r  l a m i n a r  f l a t  p l a t e  flow based on t h e  

t r a d i t i o n a l  Navier-Stokes equa t ions .  


