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STABILITY OF STREAMWISE VORTICES

By
M. R. Khorrami,! C. E. Grosch,2 and R. L.-Ash3

ABSTRACT

A brief overview of some theoretical and computational studies of the
stability of streamwise vortices is given. The local induction model and
classical hydrodynamic vortex stability theories are discussed in some
detail. The importance of the three-dimensionality of the mean velocity
profile to the results of stability calculations is discussed briefly.

In this study the mean velocity profile is provided by employing the
similarity solution of Donaldson and Sullivan. The global method of Bridges
and Morris was chosen for the spatial stability calculations for the non-
linear eigenvalue problem. In order to test the numerical method, a second
order accurate central difference scheme was used to obtain the coefficient
matrices. It was shown that a second order finite difference method lacks
the required accuracy for global eigenvalue calculations. Finally the

problem was formulated using spectral methods and a truncated Chebyshev

series.
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1. INTRODUCTION

The study of the stability of streamwise vortices is an important and
challenging problem. The breakdown of leading edge vortices on delta wings,
which severely reduces 1ift, and the very stable wing tip vortices shed from
large commercial aircraft, which determine the flight frequency at airports,
are two classical examples. Meaningful experimental and computational work
is rare due to the complex nature of the phenomena, and theoretical studies
are incompliete. The complexity stems from the three-dimensional nature of
the problem and hence the necessity of finding three-dimensional mean veloc-
ity profiles which are solutions of the Navier-Stokes equations. Most of
the stability calculations to date have used Lamb's vortex [Lamb, 1945], and
in some cases a Long's vortex [Long, 1958] or solid body rotation super-
imposed on Poiseuille flow in a pipe as the basic unperturbed flow. Here we
give a brief overview of some of the more important theoretical and computa-
tional studies of these flows. This review is by no means exhaustive, but
the cited papers are those which we have judged most relevant to the present
research.

The theory of vortex stability or vortex deformation has progressed
in two distinct directions. In the first case one uses a localized-induc-
tion model for an inviscid incompressible vortex [Hama, 1962]. The second
approach uses the classical hydrodynamic stability theory for rotating
f]uidsiand can be attributed to a paper of Howard and Gupta [1962] which
contains a generalization of a stability criteria put forward by Lord
Rayleigh [1916]. In this summary, we will discuss the development of both
theories starting with the localized-induction model.

The deformation of a curved vortex filament under its own influence was
first calculated by Hama [1962] using a localized-induction model with the

assumptions that the local radius of curvature is much greater than tie



core radius and that the vortex filament is unaffected by the events at
infinity. He used several initial two-dimensional shapes and found that in
every case the region near the vertex of the curve would 1ift off of the
plane of the initial curve causing a three-dimensional helical deformation
to take place. The helical wave, which rotates opposite to the circulatory
motion of the vortex filament propagates away from the vertex and its
amplitude increases as the vortex 1ifts.

Betchov [1965] extended Hama's work and derived two equations describ-
ing the curvature and torsional effect of the vortex filament. After lin-
earizing the equations, he found that the vortex became unstable if the
perturbation wavelength was > 2w#R, with R the local radius of curvature.
This type of perturbation is generally referred to as a long wavelength
instability.

The work of Betchov was extended by Widnall [1972] who considered the
effect of sinusoidal disturbances on a helical vortex filament of finite
core radius and infinite extent. She found that the helical vortex filament
had three distinct modes of instability: a very short wave instability mode
where the local radius of curvature of the helix was the characteristic
length; a low wave number mode which was found to be due to the local-induc-
tion (this instability is the same mode that was identified by Betcnov); and
the mutual inductance mode. The latter mode sets in whenever the successive
turns of the helix get very close to each other. Finally, Widnall found
that increasing the vortex core size: (1) reduced the amplification rate of
the large wave instability; (2) increased the amplification rate of the

mutual-inductance instability; and (3) decreased the wave number of the

short-wave mode.



The hydrodynamic stability of a vortex was first studied by Lord
Rayleigh [1916]. In his classical paper he was able to show that a neces-
sary and sufficient condition for stability of an inviscid vortex without
axial velocity was that the square of circulation must increase outwards.
Much later, Howard and Gupta [1962] were able to give a sufficient condition
for the stability of an inviscid vortex with axial velocity (subject to
axisymmetric disturbances). They found that for stability the local value

2
sy s L@t [y, 1

r3 dr dr 4

everywhere, Here I' is the circulation and W is the axial velocity.

It is obvious from the above criterion tnat axial shear has a destabi-
lizing effect. For non-axisymmetric disturbances, Howard and Gupta found

that a sufficient condition for stability was

2
a2p - 20N y W 1o AW V)%
4

r2 dr dr dr
where
s s 1 d(r2y2)
¥ T dr

and V is the tangential velocity, and o and n are the axial and azimuthal
wave numbers, respectively. They stated that the above criterion is always
violated for sufficiently small «, and while this does not imply instabil-
ity, it has led them to suggest that no general necessary and sufficient

criterion is obtainable.

Using the equation for the radial amplitude of disturbances derived by

Howard and Gupta, Pedley [1968] has shown that for a very small Rossby




W . . .
number (e = 0 _ , where @ is the angular velocity) the flow is unstable to
20ro

non-axisymmetric inviscid disturbances of sufficiently large axial wave-

length. He found that, although both solid body rotation and Poiseuille
flow in a pipe are stable with respect to infinitesimal disturbances, the
superimposed combined flow (which is a helical vortex) is highly unstable
with the negative azimuthal wavenumbers as the dominant unstable modes.
These disturbances are helical in shape, wrap around the helical vortex in
the opposite direction and are either standing waves or are traveling up-
stream. The growth rate of the most rapidly growing disturbance is 2eQ,
where ¢ is the Rossby number and @ is the angular velocity of the pipe wall.
In a follow-up paper, Pedley [1969] has shown that for viscous, rotating
Poiseuille flow the critical Reynolds number, Rec, has a value of 82.9
corresponding to n = 1. The critical Reynolds number increases as the value
of azimuthal wave number, n, increases. The disturbances are stationary
relative to the rotating frame of reference, and as the Reynolds number
increases, the wave number of the most rapidly growing disturbance also
increases.

Maslowe [1974] has studied the same flow field as that of Pedley [1968]
without making an assumption as to the magnitude of the Rossby number. He
has shown that the most unstable modes have negative azimuthal wave numbers.
They spiral in the same direction as the basic flow rotation (note this is
in contradiction to Pedley's finding and is caused by different interpreta-
tions of what direction a wave with negative azimuthal wave number spirals)
but propagate upstream in the axial direction with an axial phase speed
0(e=1). Also, the amplification factor and the axial wave number of the.
fastest growing disturbance peaked at a finite Rossby number ¢ of 0(1) while

the growth rate showed little variation with n for |n|>2 at finite values of

€.



The stability of the mean velocity profile of a trailing line vortex
(Batchelor [1964]) was studied by Lessen, Singh, and Paillet [1974] in a
study of the inviscid stability of swirling flows with respect to infinites-
imal non-axisymmetric disturbances. It was found that negative azimuthal
wave numbers are destabilized by the addition of swirl. Lessen, et al.
discovered that the stability of the vortex is very dependent on the value

of q, where q is given by.EE__, with US and rs the scaling factors for the
Ur
S S

velocity and radial coordinate, respectively and Ty the constant circulation
at large radial distance ro. All wavelengths appear to become damped, and
the flow completely stabilized at a value of q slightly greater thén 1.5.
Using a finite-difference method, Duck and Foster [1980] have solved exactly
the same problem as that of Lessen et al. [1974] and obtained similar
results. However, they found that the number of unstable modes is directly
dependent on the number of grid points, N, so that as N increases the number
of unstable modes increases as well. One has to be skeptical about this
finding since the number of unstable modes should not depend on the grid and
grow without bound.

Following their earlier work, Lessen and Paillet [1974] performed a
viscous stability calculation for a trailing line vortex. They obtained
similar results to those of Pedley [1969] which indicated that the critical
Reynolds number increases as |n| increases. Their calculations of neutral
stability curves showed that the values of the critical wavelength and
critical Reynolds number are not very sensitive to the exact value of q;

and at large q all of the unstable modes are stabilized for any wavelength

and Reynolds number.



Although these calculations are valuable, they do not constitute a

systematic study of the effects of different boundary conditions and mean
velocity profiles on the stability of the vortex. The need for such a Sys-
tematic study is the rationale behind the present research. In this study
the effect of such parameters as mean velocity profile, vortex Reynolds

number z-, and axial pressure gradient Eﬂ on vortex stability will be con-
v dz

sidered. We are going to examine the spatial stability of a rather general

class of laminar incompressible vortices in the context of linear theory.

2. MATHEMATICAL FORMULATION OF THE STABILITY PROBLEM
2.1 Mean Velocity Profile
The similarity solution for porous pipe flow due to Donaldson and
Sullivan [1960] has been selected as the mean velocity profile. Although
one might argue that this similarity solution is for confined flow and its
relation to the unconfined flow of Tongitudinal vortices is not an obvious
one, the wealth of different solutions possible (ranging from a single cell
vortex to multiple cell vortices) make the selection a reasonable choice.
This multiplicity in the core of some vortices has been shown experimental-
ly, (Adams and Gilmore [1972]). These experiments also indicate that in
order for a vortex to become unstable, large gradients in the axial direc-
tion must develop (Graham and Newman [1974], Leuchter and Solignac [1983]).
They have shown that the transition of the axial velocity profile from a
strong jet to a strong wake plays a dominant role in the loss of stability
of these vortices. Therefore any velocity profile selected for study should
show similar behavior.

The mean velocity profiles which we have selected for study are of the

form



U=U(r)
vV =V(r)
W= zW(r)

where, U, V, and W are radial, tangential, and axial velocities, respective-
ly, and r is the distance in the radial direction. Note that the flow
undergoes linear acceleration in the streamwise direction. This interesting
feature, we believe, may strongly effect the spatial stability of vortices.

Figures 1 thru 3 show three sample mean velocity profiles obtained
using Donaldson and Sullivan's similarity solution. The similarity of the
tangential velocity in ngs. lc and 2¢ to that of Lamb's vortex is note-
worthy. Figures 2b and 3b represent the mean velocity profiles of two
multiple cell vortices with jet 1ike and wake like axial velocity, respec-
tively. It is important to note that the transition of a vortex core from a
Jet flow to a wake type can be simulated step by step by changing a few

parameters in the similarity solution.

2.2 Perturbations of the Governing Equations
Cylindrical coordinates (r, 8, z) have been chosen as the coordinate

system. The equations of motion in cylindrical coordinates are:

continuity
a al §
13 puy+L ¥ ™ (1)
r ar r ao 9z
r-moment um
1 ] 1 [} ] 1 2
du' e du vtoaut ey -
ot or r a9 3z r
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lal ] avl
=2 Py S 2RV
p ar r2  r2 3¢
e6-momentum
t ] ] ] ] | NVR ]
oV +y v + v + v L uv
ot ar r 08 9z r
(] ] ]
=-1_ a_p_*-v(Vzv'-.v__i-z__EJ_
pr 98 r2  r2 36
Z-momentum
] 1 ] ‘ 3 [}
WM Vw1t e
at ar r 36 3z p 9z
where
2 2 2
72 = ] + l_ 9 + 1 9 + 9

arZ  r ar rZ 302 322

The perturbed flow variables in these coordinates are assumed

the form:

u' = U(r) + u
vt = V(r) +v
w' = W(r,z) +w
p' = P(r,z) +p

to be of

where u, v, w, and p are the perturbations in the velocities and the pres-

sure. These quantities are assumed to have a helical wave form:

fus vy Wy ph = [iF(r), G(r), H(r), P(r)} ¢'(®Z * M© -ut)

(6)

11



Here, F, G, H, and P are the perturbations amplitudes wnich are func-
tions of radial position only, a is the wave number in the axial direction,
n is the wave number in the azimuthal direction, and w is the frequency of
oscillation. For a single valued solution, n must be an integer. The case
of n equal to zero corresponds to that of axisymmetric disturbances and
positive and negative integers represent different directions of propaga-
tion. For positive n, the helical wave spirals in the same direction as the
circulatory motion of the vortex while a negative value indicates that the
wave spirals opposite to the circulatory motion.

Substituting into the equations of motion and neglecting the second

order terms, we obtain the small disturbance equations

continuity
?_u.+_u_+£_al+i"i=0, (7)
ar r r 90 9z
r-momentum
du oy Buy  dU LY e du 2% 13p
ot ar dr r 20 az r p or
32 3 1 3%y duz u 2 av
ey [Pu lou, T oy w2 Yy (g)
ar2 roar r2 2362 3zZ r2 r2 36
g -momentum
9
AR . L VISP LSO L S
at ar dr r 6 3z r r pr 98
2 2 2
+v[av+££+l_. v +§...V_-V__+g_3_u_] ,  (9)

ar2  roar r2 362  3z2 r2 r2 20

12



z-momentum

PP U B UUE U R B

ot or ar r a0 92 ¥4 p 32

2 2 2
ro [P Low,1 2w 20 (10)

ar2 rar r? 302 az?

The boundary conditions at the outer wall are

u=20
at r = R, v=0 (11)
w=20
p=0
and on the centerlinel
>
1im 29 =0
r+0 36
at r =0 (12)
tim P =g
r>0 99

where a is the total velocity vector.
Substitution of the perturbation Eq. (6) into the linearized momentun
equations results in four equations for the disturbance amplitudes. These

equations in non-dimensional form are:

continuity

F' + (13)

S|
+
+
Q
T
]
o

lye are very grateful to Dr. M. Y. Hussaini of the Institute for Computer
Applications in Science and Engineering for mentioning this simple yet very
powerful way of determining the boundary conditions on the centerline.

13



r-momentum

SEN . 2
- Jf_. +i[U - _l__JF' + [w + 1.29 LU al + l_.(ﬂ_
Re Re r dr v Re r2
vz + 1) Fe 1 __2Wygup =g (14)
r2 Rerz r
6 -moment um
- 2
-l_.G“+[U- L ]G'+[-1‘m+1_"v+1'uw+2+_1_. n
Re Re r r r Re r2
sz + )]s 20 oWV Pl (1)
r2 dr  Rer?2 r r
z-momentum
- 2
LTI (v - - ] H' + [-iw + iaW 10V, W }_.(fl_
Re Re r r 3z Re r2

+a2)]H+i9_‘iF+iaP
ar

[1]
[end
—
—
(=2]
g

where Re is the Reynolds number based on pipe radius Ro and prime denotes

differentiation with respect to the radial coordinate. The boundary con-

ditions at r = R, are:

F(Ro) = G(Ro) = H(Ro) = O.

P'(Ro) = Normal momentum at Ro.

The derivation of conditions on the centerline is not simple or

straight forward and deserves a fuller explanation. In expanding the con-
ditions (12), we need to consider only the perturbation part of the velocity

since the mean velocity profile is independent of the azimuthal direction.

14



Assuming that the total perturbation velocity field is represented by 3, we

have:
>
AR (ue. +ve +we)
20 26 r 6 z
or
> > >
+> de de de
1im i[:iu_'ér+u_l+ﬂ’_’ée+v__e_+3!‘. e;+w—z-
0 a8 de a6 de a8 de

r+0

But in cylindrical coordinates (Appendix 2, Batchelor [1967])

Substituting for the velocities from (6) and evaluating the deriv-

atives, we deduce

lin 2= (-nF-G) @, + (iF + inG) &, + inH &, = 0

In order for the equality to hold, each component of the resultant vector

must be zero. Similarly, the limiting process applied to tnhe pressure leads

to

15



ap

1im — = inP .
r+Q 99
In summary, we have at r = 0,
nF +G =20
+ =
F+nG=20 (17)
nH =20
nP =0

The above conditions depend on the value of the azimuthal wave number, n,

such that

~—
1]
(2}
—
o
~——

=0

) 0

If n=0 H(0) & P(0) are finite (18)
F(0) + G(0) = 0

Ifn=21 H§03 - PEO% -0 (19)

If |n| > 1 ;Eg; - ﬁgg; o9 (20)

Due to the extreme complexity of the Egs. (13)-(16), no attempt was
made to reduce the above system into a single, sixth order ordinary differ-
ential equation. We believe that this would be of no great value in solving

the problem numerically.

2.3 Proposed Numerical Scheme

The system of Egs. (13)-(16) can be represented in a compact vector

16



form as:

La) R =0 (21)
with

p N*
"
e R i p Bin 1 ]

and

L{a) = Doa2 + Dja + D, (22)

Do, D1, and D2 are discretized versions of the differential operator
matrices. This type of operator (where the eigenvalue appears nonlinearly)

is called a Lambda-matrix (Lancaster [1966]).

It was decided to use the method of Bridges and Morris [1984] to solve
this nonlinear matrix eigenvalue problem. The advantages of choosing their
method are threefold. (1) It is a global eigenvalue scheme. This is clear-
1y an advantage because the availability of an initial guess for a shooting
method is not needed. Of course these global eigenvalues can be refined
until a desired accuracy is reached, by any local iterative scheme once they
are obtained. (2) The method is robust. In some cases infinite eigenvalues
are encountered, and in such instances, the remainder of the eigenvalues are
obtained without any difficulty. (3) Most of the subroutines needed are
available in any mathematical software library. In particular this is true
for the complex version of the QZ routine which is the heart of the present

scheme.

The method can be described quite briefly. First the discrete operator

L{a) is factored such that

17



L(e) = [Doa + DoY + D1] [Ie - Y] + DoY2 + D1Y + Da. (23)
where I is the identity matrix and the Y matrix is referred to as the right

solvent (Gantmacher, 1959). Now, in order that (23) be consistent with

(22), one must have

(la-Y]=0 (24)

or

[Dga *+ DoY + D;1 = 0. (25)

Multiplying Eq. (25) by o and subtracting from Eq. (22) yields

aDgY = Ds.

Since a« is an arbitrary scalar multiplication factor, in general

aDoY # D2 (26)

and Eq. (24) must be satisfied. Therefore from the above factorization, it

is obvious that what we must find is the root matrix of the matrix poly-

nomial

DoY2 + 1Y + D2 = 0

This can easily be accomplished through an iterative procedure. Then a
subset of the eigenvalues of L{a) is given by the set of eigenvalues of Y
obtained from (24). A flow chart of the numerical scheme is given in Fig. 4

18




Fig. 4.
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which shows the steps needed to find a single solution. For a further

description of the method and its implementation, the reader is referred to

the paper of Bridges and Morris [1984].

3. TEST PROBLEMS
3.1 Calculation of the Matrices and Testing of the Algorithm

Prior to the implementation of the difference scheme, tne algorithm was
checked using a problem with known eigenvalues as a test case. This problem
was taken from Gregory and Karney [1969], and along with its eigenvalues is
given in Table 1. The correct eigenvalues were obtained and are tabulated
in Table 2. Finding the right values assured us that the coding was free of
logical error.

It is well known that spectral methods are efficient methods for solv-
ing eigenvalue problems. Metcalfe and Orszag [1973] have shown that for
calculation of the linear stability of these types of swirling flows spec-
tral calculations are very accurate. Because there are no results available
with which to compare our results (for the stability of velocity profiles
due to Donaldson and Sullivan), it seemed desirable to solve the above
matrix eigenvalue problem using two independent formulations. It was
decided that in order to obtain an approximate estimate of the eigenvalues,
finite differencing of the operator matrices would be employed. These
approximate values could then be used to cross check the eigenvalues found
by a spectral method. This was done but peripheral problems were encounter-
ed relating to difficulties with convergence (actually, lack of convergence)
of the solution. A new test problem was chosen in order to check the accu-
racy of the finite difference approximation. This problem is that of
Poiseuille flow in concentric cylinders and is described in section 3.2.

After careful examination, we found that the lack of convergence of the

20




Table 1. Matrix used as a test problem.

5+ 9i 5+ 5i -6 - 6i -7 - 7i
3+ 3 6 + 10i -5 - 5i -6 - 6i
2 + 2i 3+ 3 -1+ 3i -5 - 5i
|1+ 2+ 2 -3 - 3 4
Eigenvalues:

A1 =1+ 5i

A, =2 + 6i

A3 =3+ 7i

A, =4+ 8i

Table 2. Calculated eigenvalues using the method of Bridges and Morris.

REAL C IMAG C
2.000000 6.000000
4.000000 8.000000
3.000000 , 7.000000
1.000000 5.000000

21




difference solution was dependent on a number of factors (see Appendix A)
namely, boundary conditions on the centerline, number of grid points, and
second order accuracy. Therefore, a model problem had to be chosen so that
an analysis of some of the above mentioned factors was possible in a short
time and at the same time the problem had to have been solved by other work-

ers to enable a comparison.

The temporal stability of Poiseuille flow in an annulus was picked to

be the nodel problem used for testing.

3.2 Temporal Stability of Poiseuille Flow in Concentric Cylinders

For this problem there are no effects of the centerline boundary con-
ditions because the no-slip condition applies at both boundaries. Further-
more, the continuity equation along with the pressure terms were staggered
and evaluated at the set of points {rj+1/2} while the momentum equations
were evaluated at the set of points {rj}. Here the index j takes on values
between zero and N, where N specifies the total number of nodes. The grid
points were distributed uniformly over the gap distance and no attempt was
made to concentrate or stretch them. Therefore, the only factors influenc-

ing accuracy that we had to deal with were the number of grid points and the

second order central differencing scheme.

3.2a Mean Velocity Profile

The mean velocity profile for Poiseuille flow in an annulus is

=0
V=0
W= Wr)

22




wnere, in non-dimensional form, W is given by

1-r2+ rZ an r?

LI M. S (27)
wM 1 - rM + rM “n rM

The non-dimensionalization has been done with respect to the maximum
velocity and the half gap distance (see equations 9B and 4B in Appendix B).

A detailed derivation of this velocity profile can be found in Appendix

B.

3.2b Governing Equations
It is obvious from the form of the mean velocity profile that the
equivalent of Eqs. (13) - (16) is much simpler due to the absence of both
radial and tangential velocity components. The equations are:
continuity
;+F'+_+aH=o (28)
r-momentum

. - - 2 -
e e Pt et (a2 e L) P41 gapr -0 (20)

Re Re r Re r2 r2 Re r2
6-moment um
2
-_1___G" -__1_. G! +[—‘im+‘iaw+1_.(.r.‘._+a2 +}__)]G
Re Re r Re r2 r2
+ 20 Faeltpag (30)
Re r? r
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Z-momentum

2
Ll o s Tae i+ M v a) Hr i ME s dep = 0. (31)

Re Re r Re r2 dr

Employing a second order accurate central differencing technique for the

derivatives, the discretized equations are

FovFag  Fi=Fiy ; i
+ + (G.+G._1)+_(H.+H._l)
2r. Ar 2r. . J J 2 J
j=1/2 j-1/2
x .
+ Yij =0 (32)
) .., = 2F. + F. . ... = F.
-+ [FJ+1 s FJ‘l] + [FJ+1 FJ'l] + [w - ol
Re ar2 Re rj 2Ar J
*
2 . P - P
™oy e e 120 g w3 1.0 (33
Re rJz J Re rj2 J Ar
. - 2G. + G. G. , - G.
- [GJH °; et [ S A AL R h PN SRR TR T
Re Ar2 Re r ‘ 24r J
2 3 * *
f L ey, s 2, [Poyy* Pl =0 (34)
Re r.2 J Rer,2 J 2p, I
J J J
, - . . ... = H.
i 1—- [HJ+1 ZHJ + HJ-l] , -l [HJ+1 J-l] [~ i+ i oM,
2 J
Re Ar Re rj 24r
1 n2 dW ia , * * .
+ (. + o2 L+ i (). F. 4+ —(P. ,+P.)=0 35

where asterisks denote mid-cell values. The boundary conditions
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G(a) = Gy = 0
H(a) = Hg = 0
No slip 0

G(b) = GN =0

H(b) = HN =0
. F(a) = Fg =0

No penetration
F(b) = Fy =

where a and b are the radius of inner and outer walls, respectively. Note
*

that the term waj has been added in Eq. (32). This makes the coefficient

matrix of omega non-singular. Otherwise it would have N rows with zero

entries. This term is obtained by adding v 32 to the continuity equation,
at

which is why it is called an artificial compressibility factor (Malik and
Po11 [1985]). The parameter, y, is chosen to be a very small number and, in
the present case, a value of 10°!2 was used. This term causes large values
for some of the unimportant eigenvalues; however, its affect on the desired
eigenvalues is negligible. Experimentation with the value of y with the
present code indicated that this was indeed the case.

The above system can be expressed in the following way:

(K-wM] [X] =0

where

== =S v p Rag 3 |

The eigenvalues are then obtained from the requirement:



(! Kkea1] = 0 .
Here we have made sure that M-1 exists by adding the term YwP; (as mentioned
previously) to the continuity equation. The remaining procedure is straight
forward and simple. Any Gauss-Jordan algorithm with pivoting strategy can
be employed to invert matrix, M, and then using a standard QR routine, the

eigenvalues of the matrix ML K can be evaluated.

3.3 Results

The above system of equations and boundary conditions were solved on
the vector processor computer (VPS-32) at NASA Langley Research Center for
the narrow gap case. It is well known that as the gap distance shrinks, for
fixed inner radius, the eigenvalues approach those of plane Poiseuille flow.
Therefore, the narrow gap calculation was performed so that the results
could be compared to the accurate eigenvalues of plane-Poiseuille flow
reported by Orszag [1971]. A1l of the calculations reported here correspond
to the axisymmetric type of disturbances where the azimuthal wavenumber, n,
is zero, and the gap distance is 0.0l. The results of these calculations,
along with Orszag's results, are tabulated in Table 3.

Initially, the calculations were started with 20 grid points and no
satisfactory results were obtained. That suggested that the number of grid
points had to be increased. After increasing the grid points, many of the
eigenvalues found by Orszag were obtained, but with only modest accuracy.
The number of nodes was increased further by fifteen percent from 140 to
160. However, improvement of the accuracy of the eigenvalues was slow with
the side effect of almost doubling the cost of each computer run.

We concluded that a second order accurate finite difference scheme is
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only accurate enough for obtaining rough estimates for this type of global

eigenvalue calculation and, therefore, the method was abandoned. Hence, a

spectral method has been selected.

4. SPECTRAL METHOD
A Chebyshev collocation approach was chosen. Truncated series of
Chebyshev polynomials were employed in expanding the flow variables.
Because the problem is non-periodic, this form of expansion has the advan-
tage of eliminating terminal discontinuities. In addition, the expansion
exhibits a rapid convergence rate as the number of terms increases and clus-
ters the collocation points (see Eq. 43) near the boundaries.2 The

Chebyshev polynomials are defined on an interval of (-1, 1) by

Tk(E) = cos [k cos-1g] (36)

Because the physical range in this problem is (0, 1), a simple transforma-

tion is made from the physical variable r to a transform variable £ by

gE=1-2r (37)

where

-1<¢ < 1.

The mean velocity profile must be transformed similarly in order to be com-

patible. A samnple case is shown in Figs. 5a-5¢ which correspond to Figs.

la-lc.

2For a thorough exposition of Chebyshev approach, the reader is urged to
consult the excellent treatises of Gottlieb and Orszag [1977], Gottlieb,
Hussaini and Orszag [1983], and Hussaini, Streett and Zang [1984].
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Fig. 5. a) Transformed radial velocity, b) Transformed axial velocity,
and c) Transformed tangential velocity.
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Let
£ = cos 9,
then

T (£) = cos ke. (38)

The periodic nature of Chebyshev polynomials is apparent from the above
identity. The governing equations are then satisfied exactly at collocation

points which are the roots of the Nth degree Chebyshev polynomial T, (&). It

A
must be mentioned that it is only at this set of points that one obtains
spectral accuracy (Gottlieb and Orszag [1977]). These points are defined

by

r. = cos - (39)
where

i=0,1,2,..., N

with j = 0 and j = N corresponding to the centerline and wall boundary con-
ditions, respectively.

An interpolant polynomial is constructed in terms of the values of the
variable at the collocation points with the help of truncated Chebyshev
series. Next, the first and second derivative of the variable are explicit-
1y determined using the above interpolant such that (as an example we pre-

sent only variable F(£) since the extension to other variables is very

obvious)
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N

dar = T A, F (40)
e |j k=0 J

N
2
Ll B Fi (41)
de |3 k=0 9

J=0,1,...,N

where Ajk and Bjk are the elements of the derivative matrices and are given

by Gottlieb et al. [1983] as

C k4
Ap = 2 ED " sk (42)
Cy

with C =TCy,, C. =1, (1 <j<N1),

and

B = AA = A2 (43)

It is clear that any higher derivative can be obtained by utilizing relation

(43).
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From our transformation, we obtain

and

2 _d ,d ) - a2 5, 42
€ _d 4 , 4
dr2 dr dr de2 de?

Here S1 and S2 are the scaling factors involved from the transformation.
Writing the governing equations in terms of the new variable and evalu-

ating at the collocation points, we have

Continuity:
N
2 2n
Sy g AL F 4 (T VF.+( T )G+ H. =0 (44)
o 3k Tk (1-6 ) T (1-aj) i T e
r-momentum:
N 2 N
S, kEO Bjk Fo * [TTET - Re Uj] Sy kEO Ajk F + [Rey -
J
du 12Re n Vi a(nze1) 4(2n)
ReSl__.- '( )]FJ"[ +
e |3 1-¢; (1-£.)2 (1-£)2
J J J
2(i2Re Vj) N
___]:;:———J Gj + iReS, o Ajk Py - oiRe wj Fj -
J v
asz =0 (45)
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8 -momentum:

2(iRe V.) N
ires, | 4 2@ o T Sk ks, B 6
de | (1-g;)? (1-£) J k=0 9
2 N 2(iRen V)
+ r - Re Uj] Sl z Ajk Gk + {iRew - J -
1-£. k=0 1-¢,
J - J
2(rel,) 4(n2+1) 2(iRe n)
J . 2] 65 - Sl P, - aiRe Wy G- a2G; = 0 (46)
Z-momentum
i N
-iRe S, Wl or . S T B, H o+ [ 2_ . ReU ]
2t |j d k=0 9 1-; J
N 2(iRe n V.)
S9 I As H + [iRew - — I __ Re L
k=0 J 1-¢; 9z |J
2
A% 1 4. - iaRe W. H., - iaRe Ps - o2 H. = 0 (47)
(1-€.)2 J J J J J
J
with the boundary conditions
at £ = -1 F(-1) = G(-1) = H(-1) =0
for all n Lid = Normal momentum (48)
3 [ = -1 evaluated at £ = -1
at g =1
If n=20 F(1) = G(1) = 0
H(1) & P(1) are finite (49)
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If n= %1 F(1) £ G(1) = 0

H(1) = P(1) = O (50)
If [n| >1 F(1) = 6(1) = 0

H(1) = P(1) = 0 (51)
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APPENDIX A

The three momentum equations plus continuity were discretized using a

second order accurate central differencing. These equations are:

Continuity
1 1 n
—_ . .=F. + _F. + ___G. + . = 1A
(ZM) (Fy41-F51) — Fs ~ 6; + a; =0 (1A)
J J
r-momentum
. F. .- 2F. + F. F. - F.
(el LT B L i S o) S L S SIS
Re Ar2 2rj Ar rJ.2 J
F.., - F. , v,
i (M Il g R ke -0 () - a W
I o i - AR
J
. V. P., - P.
+2 [N -(_J_)]GJ.+L1__J:_1_=0, (2A)
2
Rerj rj 2Ar
6 -moment um
G., .- 2G, + G. 6., - G.
(_-_1 [ Jj+1 J -1 + j+l J-1 - (n2+l + ag) G-]
Re Ar2 2rj Ar rjz J
G. - G. 'S U.
s U (L I e i () * e w + 3] 6
J 2Ar r; ! 5
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] .
s[iv, + 2" JF o+ () F.+ (Y p.=o0, (3A)
I Rer.2c d PR B U
J J J
z-momentum

S N TR SO 1 Hel 0 (R S

(== [ + 2o V97 L (— +a?2) H]

Re Ar? er Ar rjz J

H, , - H, V., .
U (I Iy Ll e i () + (3, + i W] H,
J 24r rs ar’ S

Y L
+ [ S;Jj] Fy+ iaPy = 0. (4A)

The resulting matrices (or system of equations) are 4N x 4N, where N is the
number of grid points involved. It is obvious that even for moderate values
of N the memory requirement becomes very large.

difficulty in ob

taining a con-
verged solution. Results of a sample calculation are given in Table 5.
These results show that despite an initial decrease in the residual, it
grows very fast and diverges quite rapidly. At first it was believed that
the small number of grid points might have caused the problem dut a substan-
tial increase in the number of grid points showed that this was not the
case. Next, attention was given to the accuracy of the method as a possible
cause of the divergence. It was realized that the number of unknown factors

involved (such as the number of grids, second order accuracy, boundary

conditions, etc.) were too many to allow any direct checking of each factor
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Table Al. Sample calculation showing convergence problem (M is the nuuber of
iterations.)

Residual

51.03473794034
15.83350551921
11.31391553601
8.397664066553
5.701436944138
4.314902731136
2.065426550367
1.209095939138
.8214686963228
7912886143684
.6251527839796
.5471210004286
.3662554796695
2757823153175
.1838733412282
.1157389438433
.06495193935236
.05683261464769
.0617858871914
.1043274836963
.3839152251866
.5645749241422
1.967396398417
6.97557243855
10.17577382309
21.72966773107
59.67271919984
151.0126448191
437.9075245724
924.9573854378
1850.30198365
4107.963293855
12777.07307647
40884.39728102
71145.88056394
119477.8852432
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separately. Nevertheless, we knew that it was essential to pinpoint the
exact cause of the difficulty. Therefore, a model problem was chosen so
that a quick analysis of some of the above unknowns was possible in a short
time; and at the same time the problem had been solved by other workers so
that comparison could be made.

The temporal stability of Poiseuille flow in annulus was thought to be

an ideal case for the above purpose.
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APPENDIX B
AXIAL VELOCITY PROFILE IN CONCENTRIC CYLINDERS

The axial velocity for the Poiseuille flow in an annulus is given by

Wt = (P1 - P2) [az- o Lb_z_'_az_) gn ] (1B)

Aul 2n(b/a) a

where Py, P2 are the pressure, L is the length of the pipe, M is the dynamic
viscosity, a and b are the inner and outer radius, respectively and r* is

the dimensional radial distance.

Define a new variable such that

E = __. = (ZB)
a 2
where K = ]
a
and r* = r(b-a) (38B)
2
Therefore
*x
A (48)
(b-a)

then the velocity profile is

transformed to

2
Pa)a® 1. g2+ K21 g g

w* = (Pl -

4ul
or

W*

W= __
Wo

en(K)

"
—
—
]
oy
N
-+

(58)
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Furthermore, it would be advantageous if we normalized the above profile

with respect to the maximum velocity occurring in the annulus. Therefore

L (68)
£

the maximum velocity occurs where

2.
g’i:o:_zEMq-K 1 _];
dg an K EM
with
2.
52M=K1. (78)
Ln K2

Then evaluating the velocity

Wo(gy) =1 - &+ n
M‘"M M an K M
or
2.
wM(sM)-l- £§4+K 1 1,0 sﬁ (88)
an K 2
which results in
K2-1
Waley) =1 - g3+ en £2.
M oM " M
With more simplification we deduce
=1 - g2 2 2
NM 1 EM + EM n EM. (9B)
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Now normalizing the velocity with the above maximum value, we get

W 1-¢82+ sﬁ en g2
—_— w(g) = 5 5 7" (108)
Wy 1= g+ £y an £

Since we want the non-dimensionalization to be with respect to haif of the

gap distance, that is

23 e 2 (118)
(b-a) (b-a)
Then form (2B) we obtain the limits on £ as
1< <K. (12B)
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