o PR e PO o1 T .

SRR R s T

eryunt

0

A T

NASA
Reference
Publication

1181

August 1987

(MASA-LE-1151) SI¥Lldriel CURVE Filo Poo T-ot 305
THE TELSMCDYNAMIC EFCEERTIES Cr BQUILLIEDRLIOUN

21R (NASA) 48 p  Avail: MIS BEC A0/ KMF

aC1 CsCL 20D Unclas

Simplified Curve Fits
for the Thermodynamic
Properties of
Equilibrium Air

S. Srinivasan,

J. C. Tannehill,

and K. J. Weilmuenster

H1/34 00€57C3



T




NASA
Reference

Publication
1181

1987

NASA

National Aeronautics '
and Space Administration

Scientific and Technical
Information Office

Simplitied Curve Fits
for the Thermodynamic
Properties of
Equilibrium Air

S. Srinivasan
and J. C. Tannehill

lTowa State University
Ames, Towa

K. J. Weilmuenster

Langley Research Center
Hampton, Virginia






Contents
Abstract
Introduction
Svinbols
Behavior of Air at High Temperature
Sources of Equilibrium Air Properties
Construction of Curve Fits
Typical Curve Forms
Transition Regtons
Equations of the Curve Fits
p=ple.p)
a = afe,p)
T ="T(e,p)
h=hip.p)
T =T(p, p)

s = sle, p)
p=pp.s)
e =¢(p.s)
a = a(p.s)

Results and Conelusions .
Appendix A Curve Fit Coefficients
p=ple.p)
a = ale, p)
T =T(e,p)
h=h{p,p)
T =T(p.p)
s = s{e, p)
p=p(p, )
e =e(p.s)
a = a(p,s)

Appendix B ‘Master Program

References

* ECEDING PAGE BLANK NQT FILMED

iii

[ SR )

Crw W

<

9
10
10
10
10
11
11

11

26
26
26
26
20
26
26
26
20
26
43
44






Abstract

New, improved curve fits for the thermodynamic
properties of equilibrium air have been developed.
The curve fits are for pressure, speed of sound, tem-
perature, entropy, enthalpy, density, and internal en-
crgy. These curve fits can be readily incorporated
into new or existing computational fluid dynamics
codes if “real-gas” effects are desired. The curve fits
are constructed from Grabau-type transition func-
tions to model the thermodynamic surfaces in a
piecewise manner. The accuracies and continuity of
these curve fits are substantially improved over those
of previous curve fits. These improvements are due
to the incorporation of a small number of additional
terms in the approximating polynomials and care-
ful choices of the transition functions. The ranges
of validity of the new curve fits are temperatures up
to 25000 K and densities from 1077 to 10% amagats.

Introduction

Under subsonic flight conditions, air may be
treated as an ideal gas composed of rigid rotating
diatomic molecules. The thermodynamic propertics
of such a gas are well known. However, under hyper-
sonic flight conditions, air may be raised to tempera-
tures at which the molecules can no longer be treated
as rigid rotators. Thus, there is a very real need for
the thermodynamic and transport properties of equi-
librinm air for the computation of flow fields around
bodies in high-speed flight. The references discussed
below are representative of the various approaches
for obtaining thermodynamic properties, but the list
is by no means complete.

The thermodynamic properties of equilibrium
air were calculated with good confidence as early
as 1950. The earliest approach to compiling these
properties was to present the information in the form
of tables or charts (refs. 1 to 4).

Subsequently, equilibrium air thermodynamic
properties became available in the form of FOR-
TRAN computer programs. These programs can be
broadly divided into two categories. The first cat-
egory consists of programs that compute the equi-
librium composition and thermodynamic properties
using a harmonic-oscillator rigid-rotator model for
the various component species of the gaseous mix-
ture. Programs (refs. 5 to 8) were developed for the
calculation of equilibrium properties of specific gas
mixtures or of arbitrary chemical systems.

The second category of computer programs, which
includes the present work, consists of programs that
determine the thermodynamic properties of equilib-
rium air in a noniterative fashion using either in-
terpolation or polynomial approximation techniques

(refs. 9 to 16). Typically, the sources of data for these
programs are references | to 4. One such program,
NASA RGAS (based on ref. 5), was an improvement
over other sources of thermodynamic properties in
terms of accuracy and range of validity. For this rea-
son it is still widely used. The major shortcoming of
the RGAS program is that the table lookup of coef-
ficients for the cubic interpolation makes it too cum-
bersome and time-consuming to be efficiently used
on an advanced computer.

Tannehill and associates (refs. 10, 15, and 16) de-
veloped simplified curve fits for the thermodynamic
and transport properties of equilibrium air with the
same range of validity as the NASA RGAS program.
The curve fits were constructed through the use of
Grabau-type transition functions in a manner sim-
ilar to that of reference 11. In forming these curve
fits, as many as five Grabau-type transition functions
were joined with the perfect-gas equation of state.

One of the major shortcomings of the curve fits
of references 10, 15, and 16 is the lack of continuity
across the boundaries between the transition func-
tions. As a consequence, numerical difficulties were
sometimes encountered when these curve fits were
employed in iterative flow-field computations. The
primary objective of the present research was to al-
leviate this difficulty. At the same time, an attempt
was made to improve the accuracy of the curve fits
through incorporation of a small number of addi-
tional terms which would not significantly increase
the computation time.

Through careful choice of the Grabau-type tran-
sition functions and use of complete bicubic polyno-
mials, curve fits for pressure, speed of sound, temper-
ature, entropy, enthalpy, density, and internal energy
were developed and are presented herein. These
curve fits are based on the NASA RGAS data and
have the same ranges of validity, namely, tempera-
tures up to 25000 K and densities from 1077 to 103

amagats (p/po)-

Symbols

a speed of sound, m/s

€ specific internal energy, m? / 52
h specific enthalpy, m?/s?

P pressure, N/m?

R gas constant, 287.06 m?/s%-K
s specific entropy, m?/s2-K

T temperature, K

0] =h/e



p density, kg/m?
Subscript:

0 reference conditions at 1 atm and
273.15 K

Behavior of Air at High Temperature

When a gas composed of polvatomic molecules is
heated to high temperatures, its composition changes
as a result of the chemical reactions which take place.
Such a situation exists behind the shock wave which
envelops a vehicle entering the atmosphere of the
carth. As a result of the change in chemical com-
position. the thermodynamic properties of the gas
also change. When the temperature of the gas is
raised appreciably higher than .the temperature at
which dissociation reactions begin to occur, the elec-
trons receive energy quanta because of the collisions
between atoms. If the temperature. and hence the
kinetic energy of the atoms, is high enough so that
clectrons are removed from their orbits, ionization of
the gas takes place. The effects of dissociation and
ionization of the gas on its thermodynanic properties
are often referred to as “real-gas™ effects.

At room temperature, the volumetric composition
of air is about 78 percent diatomic nitrogen, 21 per-
cent diatomic oxygen, and about 1 percent argon
and traces of carbon dioxide. When the temperature
of air is raised above room temperature, deviations
from perfect-gas behavior occur; that is, the vibra-
tional mode of the molecules hecomes excited, disso-
ciation of both oxygen and nitrogen molecules occurs
(although at different temperatures). nitric oxide is
formed. and so forth. The chemical composition of
air for densities lying between 1072 and 10 times nor-
mal air deunsity is approximately divisible into the
following regimes:

1. T < 2500 K. The chemical composition is sub-
stantially that at room temperature.

2. 2500 < T < 4000 K. This is the oxygen disso-
ciation reghme; no significant nitrogen dissocia-
tion occurs; some NO is formed.

3. 4000 < T < 8000 K. This is the nitrogen dis-
sociation regime; oxygen fully dissociates.

4. T > 8000 K. Ionization of the atomic
constituents occurs.

Sources of Equilibrium Air Properties

The following discussion is intended to summarize
the available mechanisms for determining equilib-
rium air properties. The cited references are not in-
tended as a complete compilation but serve only as a
listing typical of the various methods for determining
the properties.
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Prior to 1960. methods for determining equilib-
rinm air properties were available only in summary
form as tables or charts. The sources for information
were the calculations of Gilmore (ref. 1), Hilsenrath
and Beckett (ref. 2), Hansen (ref. 3), and Moeckel
and Weston (ref. 4). In reference 3, data for com-
pressibility factor. enthalpy, speed of sound, specific
heat, Prandtl nnmber, and the coefficients of viscos-
ity and conductivity are presented as functions of
temperature and pressure.

Eventunally, the calculation of equilibrium  air
properties was possible through the use of FOR-
TRAN computer programs, which can be divided
broadly into two categories.  The first category
consists of programs that compute the equilibrium
composition and thermodynamic properties using a
harmonic-oscillator rigid-rotator model for the vari-
ous component species of the gaseous mixture. Bai-
ley (ref. 5) developed computer programs which
used the temperature, density, and molar concen-
trations of the various constituent species to calcu-
late the pressure, gas constant, cnthalpy, entropy,
specific heats, and coefficient of thermal conductiv-
ity. These properties were computed for a 9-species
model as well as an I1-species model of equilibrium
air.  Zeleznik and Gordon (ref. 6) developed a so-
phisticated computer program, improved later by
Gordon and McBride (ref. 7), which computed the
chemical equilibrium composition of complex chemi-
cal systems given the constituent species and one of
five possible pairs of thermodynamic state combina-
tions.  Also. a 27-reaction equilibrium air program
was developed by Miner et al. (ref. 8).

The second category of computer programs con-
sists of programs that determine the thermodynamic
properties of equilibrium air in a noniterative fashion
using either of the interpolation-of-polynomial ap-
proximation techniques. Lomax and Inouye (ref. 9)
developed FORTRAN programs to determine the
speed of sound, cnthalpy, temperature, and entropy
as functions of cither pressure and density or pres-
sure and entropy.  Their programs used a 9-point
spline interpolation and required a lookup of over
10000 tabulated values. The programs developed at
NASA Ames Rescarch Center in references 5 and 9
eventually evolved into the NASA RGAS program.
The NASA RGAS program employs a cubic inter-
polation technique. with the associated table lookup
of cubic coefficients, to compute the enthalpy, tem-
perature, entropy, and speed of sound of 13 different
gas mixtures, mcluding equilibrium air as functions
of either pressure and density, or pressure and en-
tropy. The NASA RGAS program was modified by
Tannehill and Mohling (ref. 10) to allow internal en-
ergy and density to be used as independent variables



for “time-dependent” flow calculations. The major
shortcoming of the RGAS program is that the ta-
ble lookup of coeflicients for the cubic interpolation
makes it too cunmbersome and time-consuming to be
efficiently employed on an advanced computer.
Among the first to develop programs which
approximated  the  thermodynamic  properties
as  sclf-contained  closed-form  expressions  was
Graban (ref. 11). He outlined a systematic tech-
nique of modeling the thermodynamic properties
with polynomial expressions containing exponential
transitions. Using this technique, he determined the
enthalpy, entropy, speed of sound, and compressibil-
ity of equilibrium air as functions of pressure and
density in the form of closed-form expressions {curve
fits). Using Grabau’s technique, Lewis and Burgess
(ref. 12) obtained empirical equations for the density,
enthalpy, speed of sound, and compressibility factor
of air as functions of pressure and entropy. How-
ever, these curve fits had a range of validity only up
to 15000 K and a pressure range of 0.1 to 1.0 atm.
The method of reference 11 was also employed by
Barnwell (ref. 13) to curve fit 4 as a function of in-
ternal energy and density and temperature as a fune-
tion of pressure and density for equilibrium air. Vie-
gas and Howe (ref. 14) developed programs for the
density, temperature, viscosity, and Prandt] number
of equilibrium air as functions of pressure and en-
thalpy in the form of curve fits using least squares
and Chebyshev polynomial fitting. Tannehill and
associates (refs. 10, 15, and 16) developed simpli-
fied curve fits for the thermodynamic and transport
properties of equilibrium air with the same range of
validity as the NASA RGAS program. These curve
fits included pressure, temperature, speed of sound,
and coefficients of viscosity and thermal condnetivity
as functions of internal cnergy and density; also in-
cluded were temperature and enthalpy as functions of
pressure and density. The curve fits were constructed
using Grabau-type transition functions in a manner
similar to that of reference 11. In forming these curve
fits, as many as five Grabau-type transition functions
were joined with the perfect-gas equation of state.

Construction of Curve Fits
Typical Curve Forms

In the flow calculations of air in thermody-
namic equilibrium, it becomes important to know
the various thermodynamic properties as functions
of a pair of independent state variables. In or-
der to illustrate the spatial behavior of these ther-
modynamic surfaces, a typical curve is examined
here in some detail.  The nature of the thermo-
dynamic surface, with the plausible reasons for its

undulating behavior, provides a qualitative insight
into the choice of the approximating functions. Fig-
ure 1 shows the function 5 plotted with respect to
logro(p/po) — logio(p/po) at a density of 1077 ama-
gats. Also shown are the various segments into which
the curve may be divided, as indicated by A, AA, B,
C, and D. These segments arc basically quadratic or
linear curves which are joined together by transition
curves. Two types of transition curves appear in fig-
ure 1, and these are illustrated in figures 2 and 3.
Figure 2 shows a transition function which passes
through a point of inflection and is referred to as a
transition with inflection. Figure 3 illustrates the sec-
ond type of transition, which is one without a point
of inflection. Figure 1 shows that 3 goes through
three distinct transitions with inflections. According
to reference 3, there is a definite correlation between
these three transitions and the change in chemical
composition of the air as the temperature increases:
the first trausition, from AA to B, is due to the oxy-
gen dissociation reaction; the second, from B to C,
is due to the nitrogen dissociation; and the third,
from C to D, is due to the ionization reactions.

In addition to the three transitions with inflec-
tions in figure 1, there appears to be a relatively in-
significant transition without an inflection between
curves A and AA. Also, after a careful examination
of segment D, it appears that it may actually be part
of an incomplete transition with a point of inflection.

The term 5 is plotted as a function of logo(p/po) —
logo(p/po) for various densities in figure 4, which
includes the curve fit of figure 1. As the density
increases, pieces of the curve near C and D disap-
pear until only a part of the transition into C re-
mains at 10% amagats. The reason for this is that the
compressibility factor decreases steadily as the den-
sity is increased isothermally. Hence, it also follows
that isothermal points move rapidly along the curve
from D toward C as the density increases. Figure 4
provides an idea of the complexity of the problem of
devising a practical method of modelling the collapse
of the lower segments with increasing density. There
appears to be a tendency for transitions with inflec-
tions to convert to transitions without inflections as
the density increases. Reference | suggests that this
conversion might be correlated with the simultane-
ous, abrupt increases of the concentrations of ionized
oxygen and nitrogen atoms and of ionized nitrogen
molecules.

As a consequence of the above discussion, one
is motivated to model the thermodynamic surface,
in a pilecewise manner, with biquadratic or bicubic
polynomials joined together by exponential transi-
tion functions with or without points of inflection.
This is the procedure adopted in the present study.
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Figure 1. Variation of 3 with logyo(p/ps) — log o(p/po) for p/p, = 1071 amagats.
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Figure 2. Transition curve with inflection. Figure 3. Transition curve without inflection.



Transition Regions

The basic forms of the variables 5 and log (T /T,),
plotted at constant densities as functions of
logg(p/po) — logig(p/po), are shown in figures 4
and 5. As mentioned previously, these curves ex-
hibit segments of linear or quadratic functions suc-
cessively connected by transition functions, which
are asymptotic at both ends, and may or may not
include points of inflection. The fact that at least
some of these transitions can be attributed to dis-
sociation phenomena suggests the use of exponential
distribution functions.

Following the method outlined by Grabau (ref. 11),
one has a choice of two kernel transition functions.
The first is the Fermi-Dirac function

1

1 + exp(kx) 1)
which represents a transition between the levels zero
and unity, where the direction and rate of the transi-
tion depend on the sign and the numerical magnitude
of the exponential constant k. The numerator defines
the upper level of the transition and may take on a
variety of forms. In figure 6 the upper level of the
transition is a straight line inclined to the horizontal,
while the lower level is the z-axis. The transitions in
figure 6 have points of inflection and, in the termi-
nology of Grabau (ref. 11), are referred to as odd
transitions.

The second type of transition function is the
kernel of the Bose-Einstein distribution function

v (2)
1 — exp(kx)

which provides transitions leading from one function
to another without a point of inflection and is ob-
tained by merely changing the sign before the expo-
nential term in the denominator of the Fermi-Dirac
function. The transition function given by equa-
tion {2) is termed an even transition. Figure 7 illus-
trates two transitions of this kind between the r-axis
and the line y = z, where (as before) the directions
and rates of the transitions are governed by the sign
and magnitude of the exponential constant k. It is
important to note that the expression for an even
transition becomes an indeterminate form when r is
equal to the r-coordinate of the point of intersection
of the two lines bounding the transition.

In the current study, each of the thermodynamic
curves is approximated with quadratic or incomplete
cubic segments connected by odd and even transi-
tions as described above. Almost without exception,
at low densities all the curves undergo odd transitions

which gradually diminish as the density increases and
then change to even transitions. There are two ways
of applying each of these transition functions. When
the path of a curve appears to move from one straight
line to another, there is an offset present which can
be calculated in the direction of either of the vari-
ables. For accuracy it appears Lo be bhetter to view
the transition in terms of the smaller offset. Both
ways of viewing the offsets involve the choice of a
baseline. The use of the offset in the y-direction sim-
plifies this choice since the r-axis serves as a natural
baseline.

Consider the problem of determining the equation
of a curve consisting of two linear segments connected
by an odd transition function (fig. 8). The lower and
upper line segments are given by

Yy =ajr+by (3)

and
y2 = agxr + by (4)

The y offset is their difference:
y2 —y1 = (a2 —ay)z + (ba — by) (5)

which becomes the numerator of the transition func-

tion. The remaining constants of the transition func-

tion can be found graphically by drawing three lines

between y; and y2. The median line is given by
1ty

Yo = 2
Let y, be the median line between y, and y; and y,
be the corresponding median line between y,, and y;.
The center of the transition, (x,,y,), is the point at
which the transition crosses the median line y,. The
desired transition function is then of the form

(a2 —ayp)x + (by — by)
1+ exp[k‘(;l‘ - I())]

y=uy + (7)

The exponential constant k is found from the coor-
dinates r, and x; at which the transition intersects
the lines y, and yp. Specifically, for the intersection
with the line y,,

1 1 (8)
I+ explk(za —20)] 4
so that

explk(rq — 20)] = 3 (9)

Solving for & yields

In 3

k= 10
La — To ( )



0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20
Togy,{p/py) - Vogyleiny)

Figure 4. Variation of 3 with logio(p/po) — l0g10(p/ po) for various densities.
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Figure 6. Two odd transition functions.
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Figure 7. Two even transition functions.
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Figure 8. Construction of an odd transition function.



From the intersection of y with y, we get

o In 3 (11)

Iy — Ty

This procedure obviously yields two numerical values
for the constant k. However, they are substantially
alike in most instances.

The determination of the constants of an even
transition is simpler. In terms of the y offset, such a
transition can be written in the form

alr — x,)

y= (12)

1 —explk(xr — 1))
where r,, is the r-coordinate of the point of intersec-
tion of the two lines bounding the transition. The
value of the exponential constant & follows from the
coordinate y, at & = x,. Since the expression for y is
an indeterminate form at this point, its value is given
by the ratio of the derivatives of the nwmerator and
of the denominator at this point:

o {%[a(r — .I‘())]}

Yo = L d (13)
chim g {m {1 —explk(r — Io”}}
which gives
—Q
R (14)
Yo

This approach for determining the constants
of the Grabau-type transitions is extended in the
present work to approximate transitions in two in-
dependent variables. The kernel of an odd transition
function in three dimensions is

1

(15)
1 4+ explap + ajz + a2y + azry)
which is essentially an alternate form of
1
(16)

1+ explk(x — 1) (y — yo)]

Equation (15) is more convenient for determining the
values of the constants ag to a3 as dictated by the
behavior imposed on the transition function. The
general technique of determining the values of these
constants differs from the approach outlined earlier
and is as follows. The boundaries of the transition in
the directions of the two independent variables are
ro <ur <uryand ye <y <yy If fi{ry) and fo(z,y)
are the two surfaces limiting the transition function
Sflr.y), then

folz,y) — filz,y)

T, = x, +
flz.y) = fi(z.y) T+ explao + @17 + a3y T 37y

; (17)

In order to ensure an accurate and smooth transition
from fi(r.y) to fa(x,y), we require the quadratic
expression (ag + ajx + asy + azry) to behave as
follows. At the lower left corner point (z,,y.) the
quadratic expression should have a large positive
value so that f(u.y) ~ fi(z,y). At the upper right
corner point (., ;) the quadratic expression should
have a large negative value in order to ensure that
fle y) ~ falwe.y). At the midpoints of the left
and right boundarics, [xq, (ye + y4)/2] and [z}, (yo +
Yq)/2]. respectively. the quadratic expression should
be zero so that

P~ 00 ; falr.y)

These conditions vield the following four linear equa-
tions:

ap + ayrq + agye + azroye = +k (18)

ap + ayry, + axyq + azrpyg = —k (19)
apt+a1To+ax(ye +yq)/2+a3zq(ye+yq)/2 =0 (20)
aptarzy+axy +yq)/2+azry(ye+yq)/2 =0 (21)

)

where k is a positive constant (typically 20 < k < 25
chosen such that exp(k) and exp(—k) do not yield
overflow and underflow conditions on a computer.
The constants « to ay can now be obtained in
a straightforward manner from the system of four
linear equations in four unknowns (eqgs. (18) to (21)).

The above method of obtaining the Grabau-type
transition functions proved quite accurate in ensur-
ing a negligible mismatch in the dependent variable
over the boundaries of adjoining subregions. It is a
merit of this stepwise method of constructing em-
pirical equations that any part can be removed for
corrections without disturbing the surface approxi-
mation as a whole.

Equations of the Curve Fits

The curve fits for the various thermodynamic
properties are constructed through use of Grabau-
type transition functions, as described previously.
The general form of these curve fits can be written
as

f2(1',y) _fl(:csy) (22)

2z9) = filz.y) + 1 £ exp(kp + k1z + koy + k3zy)

where, in general,

Silr y) = py+ por + pa3y + pazy + P512 + P6y2
+ prty + pyzy? 4 poxd + oyt (23)



and

fz(x.y)

— fi(z,y) = p11 + P12 + P13y + P14TY
2 2 2
+p1sz” +p1sy” tP17TY
2 3 3
+p18zy” + P19z + p2oy (24)

The coefficients ky to k3 in the denominator of the
transition function in equation (22) are determined
by the technique outlined in the preceding section.
The coefficients py to pyg in equations (23) and (24)
are determined by the actual curve fitting of the data
from the NASA RGAS program. The exact location
and number of these data points over the cnrve fit
domain determines the aceuracy of the curve fits.
The points are clustered near the boundaries of the
domain and the middle region of the transition in
order to ensure continnity at the boundaries and
accuracy within the domain.  The data from the
NASA RGAS program are fitted to the equations
of the curve fits by the method of least squares. A
multiple linear regression technique (ref. 17) is used
to determine the coetlicients py to pp.

The general form of the curve fit for each ther-
modynamic property is described below. As in ref-
erences 10 and 15, for cach of the curve fits where
density is one of the independent variables, the range
of p is subdivided into three separate regions, with
different coefficients being used in the curve fits for
cach region (fig. 9). The division lines are located
at logo(p/pe) = —4.5 and log(p/po) = —0.5.

plog = 1077 ofog =

h/ho
Region | Region 11 Region II1

p/p

o

Figure 9. Division of curve fit range by density.

In order to ensure continuity of the dependent vari-
ables across these two division lines the following
technique was adopted. If the choice of indepen-
dent variables yields a point within a specified band
about either of these division lines, the dependent
variable is linearly interpolated between the values
obtained at the endpoints of the band. The coefli-
cients for all the curve fits have been tabulated in
appendix A. In appendix B, a master program which
handles all the thermodynamic computations is de-
scribed and a reference is cited for a listing of the

computer program.

P= p(ev p)

For the correlation of p = p(e, p). the ratio 5 =
h/e is curve fitted as a function of e and p so that p
can be calculated from

p=pe(y—1) (25)
The general form of the equation used for 5 1s

F=uay+a2Y +a3Z +asYZ + a5Y2
+ a6Z2 + a7Y2Z + agYZ2 + agY3
+a102° + (a11 + a12Y +a13Z
a2 +a5Y  +a62® +a1Y?Z
+asYZ2 + aeY? + (12023)/[1 + exp(az;
+ag2Y +a3Z + azY Z)) (26)

where Y = logg(p/po) and Z = logg(e/RT,). The
units for p are kg/m? and the units for e are lIlZ/S"
It should be noted that not all the terms appearing in
the above equation are used over the complete range
of e and p.

a = afe, p)

An exact expression for the speed of sound a in
terms of 5 was derived by Barnwell (ref. 13) and may
be written as

. s a5 1

o= (fe-n [ ()| - (3%2).)
(2T
Since complete bicubic polynomials are used for
(Y, Z) and fo(Y.Z) — fi(Y.Z) in equation (26)
for 3, equation (27) is used directly for the corre-
lation a = a(e, p) without further corrections, un-
like in references 10 and 15. The expressions for

(aglg—p)p and (5%?—) . are presented in appendix A.

T =T(e, p)

In the calculation of T = T(e,p), the pressure
is first determined with equation (25), and then the
temperature is calculated with the equation

log1o(T/To) = b1 + ba¥ +b3Z +bs¥ Z + b5Y? + be 2>
Fb7Y2Z 4 bgY Z2 + bgY? 4 81023
+ (b1 +b12Y +b13Z + b14Y Z
+b15Y 2 4 b162? +b17Y2Z + bigY 27
4510V 3 + b20Z3)/[1 + exp(b21
+ booY + bo3Z + bpaY 7)) (28)

where Y = log,o(p/po), X = logyo(p/po), and Z =
X — Y. The units for p are N/m?*, and the units for

9



T are K. The coeflicients by to by are determined in
such a way as to compensate for the errors incurred in
the initial calculation of pressure with equation (25).

h = h(p.p)

For the correlation of h = h(p.p). the ratio
5 = h/eis curve fitted as a function of p and P S0
that A can be caleulated from

h=(p/p)3/GG 1)) (29)

The general form of the equation used for 3 is
Y=c1~c2¥ +e3Z +csYZ +c5¥?
+e6Z% +c7Y?Z + egY 22
+ CQY3 + 01023 + (e31 + 12V
+c134 +c1aY 7 + C]5Y2 + 016Z2
+ c]7Y2Z + cngZ2 + 619}’3
+e02%) /1 ¢ exp(cat + 22V
+ c23Z + c24Y Z)] (30)

where Y = logg(p/po). X = log,4(p/ps). and Z =
XN =Y. For the correlations p = p(e.p) and h =
h(p.p). where 3 s the variable curve fitted, an even
transition function is used to model the transition
between the perfect-gas equation and the remain-
der of the curve fit in the lowest density region
(=7.0 < logy(p/po) < —4.50). This vields a more

accurate fit than an ordinary bicubie curve withont
any transitions.

T =Tip.p)

The general form of the equation used for the
correlation 7" = T(p, p) is

log10(T/To) =dy +daY +d3 2
+dyYZ +dsY? +dg2? + drV2Z
+dg¥VZ% +dgY3 + dy23
+(dyy +dioY +di3Z +d4Y 2
+d15Y2 4+ dyg2% + dy,v22
+d1gY Z% + dig¥> + dyo23)/11 + exp(dy,
+da2Y +dazZ + dosY 7)) (31)

where Y = logg(p/ps). X = log,y(p/pe), and
Z=N-Y,

10

s = s(e, p)

For the correlation of s = s(e. p). the general form
of the equation used is

}—; =t oY fegd ey Z + (35)-‘.’ + (i(;Z2

+(7)")Z + (fg)yZ“z+(fg)"3+61(123 (32)

where Y =log,,(p/p,) and Z =log,y(e/RT,). The
. . N £y - . .

units for s are m</s*-K. As is evident from equa-

tion (32). Graban transition functions are not neces-

sary for this curve fit.

p=pp.s)

Unlike the preceding curve fits in which density
1 one of the independent variables, the domain of
the curve fit p = p(p,s), as well as the curve fits
e = e(p,s) and a = a(p,s), cannot be divided into
subdomains on the basis of density. For reasons of
accuracy. 11 is necessary to subdivide the domain in
terms of s as shown in figure 10.

ol NN

25 000 K

10{11“(5“'4}

7.0 5.4 -3.0 -1.0 1.0 3.0 5.0
Togygle/e )

Figure 10. Division of curve fit range by entropy.

The general form of the equation used for the
correlation of p = p(p, s) is

logio(p/po) = f1 + [2Y + 32 + f4Y Z + f5Y?
+ f6Z% + 7Y% Z + fyY 2°
+ foV? + 1027 + (f11 + f12Y
tf13Z + f1aY Z + f15Y 2 + f1622
~ f17Y2Z 4 1Y Z2 + f1oY3
= f202°)/[1 + exp(f21
i+ f22Y + f23Z + faa X + fasY?)] (33)

where Y = log\o(s/R), X = log o(p/po), and
Z =X =Y. The units for s are m?/s-K.



e=e(p.s)
For the correlation of ¢ = ¢(p. 5), the general form
of the curve fit equation is

logiole/RTo) = g1 +g2Y + 932 + 94V 2
+g5Y2 +9622+g7Y2Z
+9g¥V 2% 4+ go¥3 4 g102°
+(911 +912Y +913Z + g14Y Z
+a15Y2 4+ 91622 + g17Y%2
+918Y 2% + 919> + 9202%)/[1 + exp(g2;
+922Y +923Z + 924X + g25Y?)) (34)

where Yo = logy(s/R). X = log,o(p/p,), and
Z=XN-Y.

a=a(p.s)

For the correlation of a = a(p, s), the general form
of the equation is

logig(a/an) = hy + hoY + hgZ + Y Z
+hsY2 4+ hgZ? + hyY?2Z + hgy 22
+ h9Y3 + thZ3 +(h11 + h12Y
+h13Z +h14YZ + R5Y?
+hieZ2 + h17Y%Z + h1gY 22
+h1gY? + haoZ%) /(1 + exp(hz
+hy2Y +hagZ + hoy X + hasY?)] (35)

where Y = logg(s/R). X = log,o(p/po), and
Z =X =Y. The units of @ are m/s.

Results and Conclusions

New. simplified curve fits for the thermodynamic
properties of equilibrium air were constructed with
the procedures described in the preceding sections.
Comparisons of the curve fits p = ple,p), a =
ale.p). T =T(e.p), s =s(e.p). T =T(pp) h =
hip.p). p = plp.s), ¢ = e(p,s), and a = a(p,s)
with the original NASA RGAS program are shown
in figures 11 to 19. The following procedure was
emploved in making the comparisons for the first four
curve fits. First, p and p data were supplied as input
to the NASA RGAS program and e was computed.
Then, this e and the original p were used to obtain
pyoa, T, and s from the above curve fits. As a result
of this procedure, log;o(p/po) is plotted as one of
the independent variables in figures 11 to 14, The
same p and p data used above were also employed in
the comparisons for the curve fits T = T(p. p) and
h = h(p, p).

The method adopted for the comparisons of p =
ppos), e =e(p,s), and a = a(p,s) with the NASA

RGAS program was quite similar to that for the first
four curve fits. First, p and p were supplied to the
NASA RGAS program, which yicelded s. This s and
the original p were used in the above curve fits to
obtain p, e, and a.

The above comparisons are presented graphically
to provide a qualitative overview of the accuracy of
the curve fits. However, as figures 11 to 19 indi-
cate, these graphical comparisons are restricted to
points lying on 11 constant-density lines ranging from
1077 to 107 amagats. In order to ensure the validity
and accuracy of the curve fits across the entire do-
main, a more comprehensive accuracy test was car-
ried out. The new curve fits were compared with
the NASA RGAS program for relative accuracies at
approximately 22000 data points. These test points
were chosen to span the entire density range from
1077 to 10% amagats and temperatures varying from
273 K 1o 25000 K. The results of these comprehen-
sive accuracy checks are presented in tables 1 to 9.
For the curve fits p = ple.p), a = ale.p), T =
T(e.p). T = T(p.p). and h = h(p,p). comparisons
with the curve fits of reference 15 are also presented
I the tables. The first column in the tables rep-
resents the percentage error in the comparison of
a property generated by the RGAS program and a
curve fit. The other columns contain the percent-
age of points in the test data base, generated by a
curve fit, which are in error by an amount greater
than that indicated in column 1. The accuracies of
the present curve fits are substantially improved over
the accuracies of the previous curve fits appearing in
reference 15, The somewhat higher percentage er-
rors in the curve fits with p and s as independent
variables can Ie attributed to the fact that a line of
constant s spans the entire density range, sometimes
necessitating the use of two Grabau-type transition
functions. Requiring a minimal mismatch across the
junctions of these transition functions resulted in a
relative loss of accuracy. However, these latter curve
fits are well within the accuracy limits required for
most engineering applications.

One of the primary objectives of this research
was to minimize the discontinuities in the depen-
dent variables across juncture points of the curve fits
(fig. 20). Comparisons of the dependent variables at
Juncture points of the curve fits for p = p(e, p), a =
a(e.p), T = T(e,p), T = T(p.p). and h = h(p, p)
are presented in tables 10 to 14. These new curve
fits showed a substantial improvement in continu-
ity at the juncture points when compared with
the previous curve fits. For the curve fits where
p and s were the independent variables, it was
very difficult to maintain continuity at the junc-
ture points. This was due to the manner in which

- 11



1oglo(e/RT0)

Togyg(a/a )

12

—--—— NASA RGAS

[o) Current results

1.00

-7.00 . -4.50 -3.25 -2.00 -0.75
10910(p/oo)

Figure 11. Comparison of curve fits for p = plecp).

———— NASA RGAS
[o} Current results

-7.00 -5.75 -4.50 -3.25 -2.00 -0.75 0.50 1.75 3.00 4.25

Tog,4(p/p,)

Figure 12. Comparison of curve fits for « = «(e. p).



10910(T/T0)

——NASA

RGAS
O Current
0.00 ! . ! ! ! i | : results

-7.06 -5.75 -4.50 -3,25 -2.00 -0.75 0.50 1.75 3.00 4.25
10g,4(p/p,)
Figure 13. Comparison of curve fits for T = T'(e, p).
NASA RGAS

[o] Current results

10g,4(s/R)

1.35

1.20 A | 1 1 1 L 1 1

-7.00 -5.75 -4.,50 -3.25 -2.00 -0.75 0.50 1.75 3.00 4.25

Tog,q(p/p,)

Figure 14. Comparison of curve fits for s = s(e, p).
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2.10
1.80
1.50
1.20
Tog,o(7/T,)
0.90
0.60
o NASA
0.30 RGAS
© Current
results
0.00 1 1 1 1 i i i 1
-7.00 -5.75 -4.50 -3.25 -2.00 -0.75 0.50 1.75 3.00 4.25
Tog,o(p/p,)
Figure 15. Comparison of curve fits for T = T'(p. p).
4.00
NASA RGAS
Current results
3.50
3.00
2.50
Tog,,(h/RT )

2.00

1.00

0.50 I 1 1 1 1 1 i

-7.00 -5.75 -4.50 -3.25 -2.00 -0.75 -0.50 1.75
tog;q(p/py)

Figure 16. Cowmparison of curve fits for h = hip. p).
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Figure 17. Comparison of curve fits for p = p(p. s).
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3.50 Current results
3.00
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Figure 18. Comparison of curve fits for e = e(p, s).
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Figure 19.
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Comparison of curve fits for a = a(p. s).



very difficult to maintain continuity at the junc-
ture points. This was due to the manner in which
the domain was subdivided to obtain the piecewise
approximating functions. However, discontinuities
were kept to a minimum, with average mismatches
of 2.4 percent for p = p(p,s), 1.2 percent for a =
a(p, s), and 2.0 percent for e = ¢(p, s).

3.90 7
ofoy = 107
E
1.40 Curve 6
D
2.90
Curve 4
2.40
¢ Grabau-typ
rabau-type
109;5(e/RTy) transition
functions
1.90
B
1.40
Curve 2
0.90
A
Curve 1 ; Perfect-gas eguation
0.40 1 1 Y ] 1

-7.00 -6.50 -6.00 -5.50 -5.00 -4.50 -4.00

Togy4(p/py)
Figure 20. Example curve fit for p = p(e, p).

A comparison of the relative computer times re-
quired for the new curve fit subroutines and the
NASA RGAS program on the National Advanced
Systems 9160 computer is given in table 15. The
new subroutine for determining p = p(e,p), a =
a(e,p), and T = T(e,p) was 2.4 times faster than
the NASA RGAS subroutine. The previous subrou-
tine (ref. 15) for the same curve fits was 3.4 times
faster than the NASA RGAS subroutine. The new

subroutine for T = T(p,p) was 2.7 times faster
than the NASA RGAS subroutine, and the previ-
ous subroutine (ref. 15) was 3.4 times faster. The
new subroutine for A = h(p, p) was 3.2 times faster
than the NASA RGAS subroutine, compared with
the previous subroutine (ref. 15), which was 4.4 times
faster. The subroutine for s = s(e, p) was 10.2 times
faster than the NASA RGAS program. The new
subroutines for the curve fits p = p(p,s), e =
e(p, s), and a = a{p, s) were approximately 10 times
faster than the NASA RGAS subroutine. It should
be noted that the NASA RGAS program requires two
data files for storage of the cubic interpolation coefli-
cients. The fact that these data files are now on disk
and not tape has significantly speeded up the NASA
RGAS subroutine. However, the curve fits still pro-
vide a substantial improvement in computing time,
being 2.4 to 10.2 times faster than the table-lookup
technique.

In conclusion, the new, simplified curve fits for the
thermodynamic properties of equilibrium air provide
substantial reductions in computer time and storage
while maintaining good accuracy. They can be in-
corporated into computational fluid dynamics com-
puter codes in a straightforward manner without the
need for data files. The improved accuracy of the
new curve fits permits their use in time-dependent
flow calculations from start-up to the final steady-
state solution. In addition, the improved continuity
of these curve fits permits their use in iterative calcu-
lations. For example, the new curve fit for h = h(p, p)
can be employed in the iterative procedure required
to “fit” a bow shock in equilibrium flow. However,
the discontinuities which still exist in the entropy
curve fits may cause difficulties when used in an it-
erative shock calculation.

NASA Langley Research Center
Hampton,Virginia 23665-5225
May 1, 1987
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Table 1. Accuracy of p = p(e. p)

Total number of data points = 22239

Current results: Maximum error = 3.93 percent
logrolp/po) = 4.0: log ple/RT,) = 3.28
T =147 x 107K

Ref. 15 results: Maximum error = 9.00 percent
logio(p/po) = —4.5; log gle/ RT,) = 2.236
T =153 x 10°K

Error, Current results, Results from
percent percent ref. 15, percent
0.5 28.43 68.29
1.0 10.63 42.87
2.0 1.01 17.51
3.0 .03 6.69
4.0 0 1.49
5.0 0 .24
6.0 0 .14
7.0 0 .04
3.0 0 .01

9.0 0 0
>10.0 0 0]

Table 2. Accuracy of a = al(e. p)

Total number of data points = 22239

Current results: Maximum error = 4.48 percent
logio(p/po) = —3.0; logy(e/RT,) = 3.31%
T =2.0x 10*K

Ref. 15 results: Maximum error = 4.94 percent
logiolp/po) = —7.0; loggle/RT,) = 3.279
T = 1.25 x 107K

Error, Current results, Results from
percent percent ref. 15, percent
0.5 20.94 60.67
1.0 5.75 27.21
2.0 .70 5.17
3.0 .09 98
4.0 .02 .11

5.0 0 0
6.0 0 0
7.0 0 0
8.0 0 0
9.0 0 0
>10.0 0 0




Table 3. Accuracy of T = T(e, p)

Total number of data points = 22239
Current results: Maximnm error = 4.36 percent
logio(p/po) = —4.0; log o(e/RT,) = 3.28
T =147 x 10*K
Ref. 15 results: Maximum error = 8.8 percent
logia(p/po) = —0.625; logp(e/RT,) = 3.255
T =24 x 10'K

Error, Current results, Results from
pereent percent ref. 15, percent
0.5 34.11 63.82
1.0 10.87 34.74
2.0 .58 9.51
3.0 10 2.43
4.0 .01 59
5.0 0 .19
6.0 0 .09
7.0 0 .04
3.0 0 .02
9.0 0 0
>10.0 0 0
Table 4. Accuracy of s = s(e, p)
Total number of data points = 21975
Current results: Maximum error = 2.51 percent
logio{p/po) = —0.625; log,p(e/RT,) = 0.657
T = 1.89 x 10%K
Error, Current results,
percent percent
0.5 49.77
1.0 15.95
2.0 .56
3.0 0
4.0 0
5.0 0
6.0 0
7.0 0
3.0 0
9.0 0
>10.0 0
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Table 5. Accuracy of T = T(p. p)

Total mumber of data points = 22239

Current results: Maximum error = 3.9 percent

logro(p/po) = —3.25; logo(p/po) — l0g 4/ pe) = 2.58

T =24 x 10K

Ref. 15 results: Maximum error = 5.71 percent

logio(p/po) = —0.625; log o(p/po) —log olp/p) = 2.44

T =23 x 10K

Error, Current results, Results from
percent percent ref. 15, percent
0.5 22.89 58.82
1.0 8.24 28.75
2.0 .22 4.89
3.0 .03 .96
4.0 0 .16
5.0 0 .04
6.0 0 0
7.0 0 0
3.0 0 0
9.0 0 0
>10.0 0 0

Table 6. Accuracy of h = h{(p.p)

Total number of data points = 22239

Current results: Maximum error = 3.44 percent

logo(p/pe) = =7.0; log o(p/po) —log1y(p/po) = 2.60

T =191 x 10*K

Ref. 15 results: Maximum error = 6.56 percent

]()E-';I()([)/[)(;) = —4.5; lOgl()(P/Pu) - 10{.’,1()(/),/[)(,) = 1.01

T =247 x 107K

Error, Current results, Results from
percent percent ref. 15, percent
0.5 23.85 67.45
1.0 7.65 40.36
2.0 %) 13.65
3.0 .04 4.78
4.0 0 1.56
5.0 0 46
6.0 0 .16
7.0 0 0
2.0 0 0
9.0 0 0
>10.0 0 0




Table 7. Accuracy of p =

Total number of data points = 21030
Current results: Maximum error = 7.58 percent

p(p. 5)

togio(p/po) = —6.625; log,o(e/RT,) = 3.30

T = 1.42 x 104K

Error, Current results,

percent percent
0.5 62.06
1.0 40.25
2.0 14.97
3.0 4.46
4.0 .98
5.0 .35
6.0 .03
7.0 .01
8.0 0
9.0 0

>10.0 0

Table 8. Accuracy of e = ¢(p, 5)

Total number of data points = 21030

Current results: Maximum error = 4.5 percent

logio(p/po) = 2.875; logig(e/RT,) = 2.85

T = 2.46 x 10K

Error, Current results,
percent percent
0.5 39.52
1.0 22.68
2.0 5.45
3.0 .04
4.0 .01
5.0 0
6.0 0
7.0 0
8.0 0
9.0 0
>10.0 0
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Table 9. Accuracy of a = a(p, s)

Total number of data points = 21030

Current results: Maximum error = 6.1 percent

logio(p/po) = —2.375; logg(e/RT,) = 2.39

T = 6.05 x 10°K

Error, Current results,
percent percent
0.5 50.08
1.0 20.2%8
2.0 5.71
3.0 1.6G7
4.0 AR
5.0 O
6.0 0
7.0 0
8.0 0
9.0 0
>10.0 0




Table 10. Comparison of Variables at Juncture Points for p = p(e, p}

Density Point A* Point B* Point C* Point D* Point E*

ratio,

o/ po Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
1077 1791072 | 1.81x10-2 | 7.32x 10-2 | 738 x 1072 | 1.90 x 107! | 1.90 x 101 [ 872 x 10" | 872 x 10~ ! | 2.62 x 107 | 2.63 x 100
1076 | 179 % 10-} | 1.80 x 10™1 | 7.81 x 1071 | 7.78 x 1077 | 201 x 10° | 203x10° | 953x 109 | 963 x 10° | 2.86 x 10! | 2.89 x 10!
1075 | 1.79 x 16° 1.80 x 100 | 817 x 100 | 819 x 10° | 2.16 x 10] 2.18 % 10! 1.05 x 102 1.06 x 102 | 3.15 x 102 | 3.16 x 10?
10~4 | 1.80 » 10! 1.81 x 10} 8.67 x 10! 8.70 x 10! 240 x 102 | 243x 102 | 978 x 102 | 9.79 x 102 1.80 x 102 | 1.81 x 102
1073 [ 180 102 | 1.81x 102 | 912x 102 |9.13x102 |26t x10% | 263x10% | 1.09x10% | 1.09 x 104

1072 | 1.80 x 103 1.8t x 103 | 951 x 108 | 9.51 x 107 2.83 x 104 2.84 x 104 1.23 x 10% 1.23 x 10°

10-1 | 1.80 x 104 1.81 x 104 9.80 x 10¢ 9.81 x 104 3.08 x 10° 3.08 x 10° 1.39 x 108 1.39 x 108

100 1.80 x 10° 1.81 x 10° 1.36 x 108 1.36 x 108 [ 4.11 x 108 | 4.11 x 108

10! 1.80 x 108 1.81 x 108 1.41 x 107 1.41 x 107 | 4.50 x 107 | 4.54 x 107

102 1.80 x 107 1.81 x 107 1.45 x 108 1.43x 108 | 491 x 108 | 5.00 x 108

103 1.80 x 108 1.83 x 108 1.48 x 109 1.45 x 109 | 5.42 x 10° | 5.53 x 109
*See figure 20 for curve breaks.

Table 11. Comparison of Variables at Juncture Points for a = a(e, p)

Density Point A* Point B* Point C* Point D* Point E*

ratio,

p/po Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
10°7 440 441 769 790 1250 1260 2718 2733 4731 4715
1076 440 439 808 814 1291 1307 2857 2871 4983 3016
107" 440 438 831 841 1343 1359 3021 3029 5259 5287
1074 441 440 869 874 1429 1441 2923 2925
1073 441 440 902 904 1498 1506 3115 3116
10°2 441 440 932 932 1573 1578 3337 3341
107! 441 441 957 957 1655 1656 3596 3602
10° 442 441 1120 1118 1924 1924
10! 442 440 1149 1145 2027 2039
102 442 440 1171 1164 2141 2166
10° 442 441 1188 1179 2287 2312

*See figure 20 for curve breaks.
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Table 12. Comparison of Variables at Juncture Points for T = T'{e, p)

Density Point A* Point B* Point C* Point D* Point E*
ratio,
p/po Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
1077 486 481 2112 2091 4033 4034 7868 7869
107° 486 482 2181 2168 4283 4284 8471 8479
10753 486 484 2243 2243 4548 4548 9145 9146
1074 486 481 2312 2312 4837 4818 10364 10319
1073 486 481 2347 2366 5090 5088 11190 11177
1072 486 481 2376 2404 5307 5326 11958 12006
107! 486 481 2400 2417 5508 5517 12702 12738
10° 486 482 2408 2414 6242 6265
10! 486 482 2413 2416 6585 6595
102 486 482 2416 2416 6955 6960
103 486 483 2418 2419 7317 7328
*See figure 20 for curve breaks.
Table 13. Comparison of Variables at Juncture Points for T == T'(p, p}
Density Point A* Point B* Point C* Point D* Point E*
ratio,
p/po Lower Upper Lower Upper Lower Upper Lower ¢ Upper Lower Upper
10°7 486 482 2089 2089 4025 4033 7864 7838
1078 486 482 2165 2165 4281 4281 8470 8481
1075 486 484 2242 2242 4549 4554 9146 : 9146
1074 486 482 2310 2310 5064 5042 10796 10746
1073 486 481 2363 2363 5386 5376 11793 11682
1072 486 481 2404 2404 5690 5701 12742 12679
10! 486 482 2402 2402 5968 5998 13671 13687
10° 486 482 2700 2700 6248 6267
10! 486 482 2706 2710 6585 6598
10? 486 483 2711 2712 6950 6959
103 486 483 2713 2713 7309 7319

*See Agure 20 for curve breaks.




Table 14. Comparison of Variables at Juncture Points for A = h(p, p)

Density Point A* Point B* Point C* Point D* Point E*
ratio,

2/ po Lower Upper Lower Upper Lower Upper Lower Upper Lower | Upper
10-7 T 0346 » 105 | 0.316 = 10° | 0.282 x 107 | 0.285 < 107 | 0.160 x 10° | 0.159 x 10% | 0.997 x 10% | 0.997 x 10°

1078 | 346 346 .253 254 138 138 890 .890

10°° | 346 346 233 235 120 122 793 792

10°% | 346 346 345 345 247 247 812 813

1073 | 346 346 314 315 214 214 720 a2

1072 | 346 346 296 296 .186 .186 646 646

107! | .346 346 288 288 .164 164 590 591

10° 345 345 386 .387 201 202

10! 345 345 377 380 .180 181

102 1345 345 374 376 .166 .166

103 345 345 374 374 156 156

*See figure 20 for curve breaks.

Table 15.

Comparison of Computer Times

Computer time, s, for
Number of Old New
Curve fit data points subroutine subroutine NASA RGAS
(ref. 15)

p = ple. p)

a = ale, p) 10661 0.54 0.77 1.86
T = Tl(e, p)

s = s(e, p) 10661 .20 2.03
T =T(p,p) 9921 .25 31 .84
h = h{p, p) 9921 19 .26 .84
p = pp,s) 3038 .10 1.07
e =e(p,s) 3038 11 1.06
a=alp, s) 3038 11 1.06
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Appendix A
Curve Fit Coefhicients
p = ple.p)

The coeflicients ay, a2, ..., asy and the proper
sign before the exponential term of the Graban tran-
sition in equation (26G) are given in tables Al to A3,
Table Al is for the density range —7.0 <Y < ~4.5,
table A2 is for —4.5 < ¥V < —0.5, and table A3 is for
—0.5 <Y <3.0. where Y = log o(p/p0).

The following linear interpolation technique was
adopted for all the curve fits where density was
one of the independent variables.  In general, for
f = (Y. Z), where f is the dependent variable,
Y= logg(p/ps). and Z is the sccond indepen-
dent variable (either internal energy or pressure), if
Y = (=4.5)] <25 % 1072, then

JOY.Z) = [(=4.4T5, Z) + [f(—4.475, Z)
— f(=4.525. Z)]
x (Y + 4.525)/0.05 (A1)

If Y~ (=0.5)] < 5.0 x 1073, then

FOY.Z) = f(—0495, Z) + [[(-0.195, Z)
- [(=0.505, 7))
X (Y +0.505)/0.01 (A2)

a = ale. p)

The exact expression for o was given in equa-
. . . ) 3
tion (27). The expressions for { 7o) and { 55

e P dlup ),
are given below:

ol 1 97
‘ = — A3
((’) In /1>(, In 10 9 (A3)

where

%’:—’- =ag +agl + 2a5Y + 2a7YZ + agZ2 + .'MgY“Z

+ (a2 +a14Z + 2a15Y +2a17Y Z + a1z 2% + 3a19Y?)/
{1 X exp(ag) + ag2Y +ag3Z + ags¥Y 7))

(a1 +a12Y +a;3Z +a1q¥Z +ay5Y2% + a2
+a17Y%2Z + a18Y 2% + a19Y? + ap02%)(agg + ag4”Z)
lexp(az) + az2V +az3Z + azqY Z)/

(1 + expag; + ag2Y +a23Z + apa¥ 2)}? {(A4)

B e
N R A5
(u I e>l, I 1002 (45)
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where
8y o 2 2
ﬁ = a3+a4} 1 Za(;l+a7Y +2a8YZ+3(1]()Z

+(a13 + a14Y ~ 2a16Z + 2a17Y % + 2a13Y Z
+ 3a2022),’[1 t exp(az; + a2V
+a3Z + apsY Z) F(a11 +a12Y +a132
+a1sYZ + a3V + a162% + a17Y?2
+a18Y Z% + a10Y? + a202%) (a3 + ag4Y)
lexplag) ~ azV +a23Z + aaY Z)]/
(1 +explaz) ¢ azeY + az3”Z +ag4YZ])2 {A6)

The coefticients ay. ay, ..., @4 are presented in
tables Al to A3,
T ="Tl(e p)

Coeflicients by, by, ., byg are presented in
tables A4, Ab. and A6, where equation (28) gives
the form of the curve fit.

h = h(p, p)

The equation of the curve fit is given by equa-
tion (30). The coellicients ¢y, 2. ..., ¢34 and the
sign before the exponent of the Grabau transition
function are presented in tables A7, A8, and A9.

T=T(p,p)

The coefficients dy. dy, day of the curve
fit, equation (31). are presented in tables A10, All.
and Al2.

s = s(e.p)

The coetlicients ¢, es. ..., ejg of the curve fit,
equation (32). are presented in table A13.

p=p(p.s)

The general form of the curve fit is given by
equation (33). The coefficients f{, fo. ..., far are
presented in table AT

e =e(p.3)

The coefficients gy, go, ..., go5 of the curve fit,
equation (34}, arc presented in table A15.

a=ap.s)

The curve fit is given by equation (35). The coef-
ficients Ay, ko, ..., b5 are presented in table A16.
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Appendix B

Master Program

All the curve fits developed in this study have
been incorporated into a single master program
called TGAS. This master program permits the user
to select the desired curve fit from a menu of pos-
sibilities. The calling statement for this subroutine
is

CALL TGAS (P,RHO,E,H,T,A,S,NTGAS)

where

P pressure, N/m?

RHO density, kg/m*

E specific internal energy, 1112/32
H specific enthalpy. 1112/52

T temperature, K

A speed of sound, m/s

S specific entropy, 1112/52—1(
NTGAS integer flag to be set

by the user for selection
of the appropriate curve
fit as follows:

NTGAS = 0: p = p(e, p)
NTGAS = 1: p = p(e, p).
a = ale,p)
NTGAS = 2: p = p(e, p),
T =T(e, p)
NTGAS = 3: p = ple, p).
a = ale,p),
T=T(ep
NTGAS = 4: s = s(e.p)
NTGAS = 5: T =T(p,p)
NTGAS = 6: h = h(p, p)
NTGAS = 7: p= p(p,s)
NTGAS = 8: e = e(p, 5)
NTGAS = 9: a = a(p.s)

The curve fits for p = p(e, p), a = ale,p), and T =
T(e,p) have been placed in the single subroutine
TGAS1. Subroutine TGAS2 computes s = s(e, p), sub-
routine TGAS3 computes 7' = T{p, p), and subrou-
tinc TGAS4 computes h = h(p,p). The curve fits for
p = p(p.s), e=ce(ps, ). and a = a(p,s) have been
placed in subroutines TGASS, TGAS6, and TGAS7, re-
spectively. The subroutines TGAS1 to TGAS7 can be
used in a “stand-alone” manner if so desired, inde-
pendent of the master program. A FORTRAN listing
of each subroutine is given in reference 18,
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