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Nomenclature

a vector of pitch line
a5 bp major and minor axes of gear cradle ellipse
g bf major and minor axes of pinion cradle ellipse
d(P) gear head cutter diameter
L Mean pitch cone distance
{o: _ (1, (2)
m;, gear ratio: m, =W Jw
mey pinion cutting ratio
mp2 gear cutting ratio
(F), n(P) unit normal to pinion and gear tooth surface
q direction angle of normal in coordinate system Sn
dp> dp parameters of pinion and gear machine-tool setting
i
r(P), r(F) radius of generating surface measured in plane X( ) =0
c c . m
(i=1, 2)
Ups Up generating cone surface coordinate
V(F), v(P) surface_ZF, ZP contact point velocity
v(l), V(Z) surface 21, 22 contact point velocity
Va velocity of intersection point at gear cutter axis in plane Il
c velocity of intersection point at pinion cutter axis in plane Il
W gear cutter width
Bp mean spiral angle
Yl’ Y, pinion and gear pitch angle
YR pinion root angle
SF, GP orientation angle of pinion and gear cradle ellipses
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rotation angle of frame Sh relative to frame Sf

rotation angle of frame S_ relative to frame Sn

f

pinion and gear dedendum angle
pinion machine-tool settings
generating pinion and gear cone surface coordinates

motion parameter of cradle ellipse

motion parameter of pinion and gear ellipses

plane of normals

pinion and gear tooth surfaces

generating surfaces of pinion and gear

generating surfaces rotation angle
pinion and gear blade angle

pinion and gear angular velocities

cradle angular velocities for cutting the pinion and gear

Cartesian Coordinate Frame

¢
S

()
C

connected to tool cone, j = F, p
conntected to cradle

connected to machine frame, i =1, 2
connected to pinion, gear

fixed to machine, used for mesh of ZF and Zl

vi

about axis Z

1




fixed to frame of gearbox, used for mesh of Zp and 22

connected to plane of normals
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SUMMARY

Spiral bevel gears are used in many applications where mechanical
power must be transmitted between intersecting axes of drive shafts.
Namely, two such applications are the rear axle differential gearbox for
land vehicles and the transmissions used in helicopters. For spiral
bevel gears, there is a continuing need for ever stronger, lighter weight,
longer-lived and quieter running gears. Above all, a rapid and economical
manufacturing method is essential to the industries that use bevel gearing
in their products.

For many years, the Gleason Works (Dudley, 1962; Anon. Gleason Works,
1964 and 1980) has provided the machinery for manufacture of spiral bevel
gears. There are several important advantages to the Gleason methods of
manufacture over hobbing methods. The machines are rigid and producé gears
of high quality and consistency. The cutting methods may be used for both
milling and grinding. Grinding is especially important for producing
hardened high quality aircraft gears. Both milling and grinding are
possible with Gleason's method. The velocity of the cutting wheel does not
have to be related in any way with the machine's generating motion.

Generally speaking Gleason's method for generation of spiral bevel
gears does not provide conjugate gear tooth surfaces. This means that the
gear ratio is not constant during the tooth engagement cycle, and,
therefore, there are kinematical errors in the transformation of rotation
from the driving gear to the driven gear. The research that had been
performed by the Gleason Works was directed at the minimization of gear
kinematical errors and the improvement of gear bearing contact by using
special machine-tool settings. The determination of such machine-tool

setting is accomplished by a computer program. It is known that Oerlicon




(Switzerland) and Klingelnberg (West Germany) have developed methods for
generation of spiral bevel gears that can provide conjugate gear tooth
surfaces. The disadvantage of these methods is that the gear tooth
surfaces cannot be ground and the tooth element proportions are unfavorable
due to the constant height of the teeth,

The objective of the new method for generation of spiral bevel gears
presented herein was to find a way to eliminate the kinematical errors for
spiral bevel gears, obtain gears with higher contact ratio, and improve
bearing contact and conditions of lubrication, while using the existing
Gleason's equipment and retaining all the advantages of the Gleason system
of manufacturing such gears. The proposed method for generation is based
on the following:

(i) Four surfaces — two generating cone surfaces (Zp and ZF) and gear
and pinion tooth surfaces (22 and Zl) are in continuous tangency at
every instant. The ratio of angular velocities in motion of the
above mentioned surfaces satisfies the requirement that the
generated pinion and gear transform rotation with zero kinematical
errors.

(ii) The cones have a common normal at the instantaneous point of contact
but their surfaces interfere with each other in the neighborhood of
contact point.

(iii) The point of contact of the above mentioned surfaces moves in a
plane (II) that is rigidly connected to the gear housing. The normal
to the contacting surfaces lies in plane II and performs a parallel
motion in the process of meshing.

(iv) Due to the elasticity of gear tooth surfaces their contact is

spread over an elliptical area. The proposed method for generation




provides that the instantaneous contact ellipse moves along but not
across the gear tooth surface. This provides improved conditions
for lubrication and a higher contact ratio will result.

(v) Until now, the reduction of kinematical errors of Gleason spiral
bevel gears was a subject of the computer search for the optimal
machine~tool settings. The computer program developed for this
purpose is called the TCA (Tooth Contact Analysis) program. The
proposed method is for direct determination of machine-tool settings
that result in zero kinematical errors because the gear tooth
surfaces are generated as conjugate gear tooth surfaces.

(vi) A new TCA program directed at the simulation of bearing contact and
the influence of errors of assembly and manufacturing has been
developed.

The contents of this report covers the new method for generation of
spiral bevel gears, their geometry, the bearing contact and simulation of
meshing. Special attention has been paid to the proposed principle of
performance of parallel motion by two related ellipses that results in the

desired parallel motion for the contact normal.

1. THE GLEASON MANUFACTURING METHOD

The gear cutter cuts a single space during a single index cycle. The
gear cutter is mounted to the cradle of the cutting machine. The machine
cradle with the cutter may be imagined as a crown gear that meshes with the

gear being cut. The cradle with the mounted head cutter rotates slowly



about its axis, as does the gear which is being cut. The combined process
generates the gear tooth surface. The cradle only rotates far enough so
that one space is cut out and then it rapidly reverses while the workpiece
is withdrawn from the cutter and indexed ahead in preparation for the
cutting the next tooth. The desired cutter velocity is provided while the
cutter spins about its axis which itself moves in a circular path.

We consider that two generating surfaces, ZF and Zp, are used for the
generation of the pinion tooth surface, Zl’ and the gear tooth surface, 22,
respectively. Both sides of the gear tooth are cut simultaneously (duplex
method) but both sides of the pinion tooth are cut separately (single
method). The basic machine-tool settings provide that four surfaces, I.,
Zp’ Zl and 22, are in contact at the main contact point. In the process of
meshing, surfaces ZF and Zl, and respectively surfaces ZP and ZZ’ contact
each other at every instant at a line (contact line) which is a spatial
curve. The shape of the contact line and its location on the contacting
surfaces is changed in the process of meshing. The generated pinion and
gear tooth surfaces are in contact at a point (contact point) at every
instant.

A head-cutter used for the gear generation is shown in Fig. l.1. The
shapes of. the blades of the head-cutter are straight lines which generate a
cone while the head-cutter rotates about axis C-C. The angular velocity
about axis C-C does not depend on the generation motion but only on the
desired cutting velocity. Two head-cutters are used for the pinion
generation; they are provided with one-sided blades and cut the respective
tooth sides separately. The head cutter is mounted to the cradle of the
machine. Fig. 1.2 shows schematically the positioning of the cradle of the

gear machine, the head cutter and the gear to-be generated.




2. GENERATING SURFACES AND COORDINATE SYSTEMS
The generating surface is a cone surface (Fig. 2.1). This surface is

(1

generated in coordinate system S
c

while the blades of the head-cutter

rotate about axis C-C (Fig. 1.1). The generation of gear tooth surfaces is

based on application of two tool surfaces, ZF and ZP, which generate gears

1 and 2, respectively. The generating surfaces (generating cones) do not

coincide: they have different cone angles wiF) and wiP)
(F)

mean radii r.

, and different
and riP) (Fig. 2.1,a). Special machine-tool settings, AEl
and ALl (Fig. 2.3,b), must be used for the generation of the pinion.

Considering the generation of gear 2 tooth surface we use the

following coordinate systems: (1) SéP) which is rigidly connected to the
generating surface Zp (Fig. 2.1,b); (ii) the fixed coordinate system S;z)

which is rigidly connected to the frame of the cutting machine, and (iii)
the coordinate system S2 which is rigidly connected to gear 2 (Fig. 2.2).

In the process of generation the generating surface rotates about the X(z)

m
(P)

- axis with the angular velocity w while the gear blank rotates about

2 axis with the angular velocity w(Z). Axes X(z) and Z, intersect

Z
the - 2

each other and form the angle 90° + Yy, - A,, where A, is the dedendum angle
2 2 2

(2)

for gear 2. Axis %m is perpendicular to the generatrix of the root cone
of gear 2. The coordinate system Sf shown in Fig. 2.2 is rigidly connected
to the housing of the gears and will be used for the analysis of conditions
of meshing of the gears.

Considering the generation of the pinion we use the following

(F)

coordinate systems: (i) Q:F which is rigidly connected to the generating
surface ZF’ (11) %ﬁl) which is rigidly connected to the frame of the
cutting machine and (iii) S1 which is rigidly connected to the pinion (gear

(Fig. 2.3). Axes Xﬁ}) and Z1 do not intersect but cross each other; AE1



and AL1 are the corrections of machine-tool settings which are used for the

improvement of meshing of the gears. In the process of generation the

(1)

generating surface rotates about the Xm —axis with the angular velocity

w(F)while the gear 1 blank rotates about the Z1 —axis with the angular

velocity w(l). Axes xél) and Z, form the angle 90° - Y1 + Al’ where A]_is

(1)

the dedendum angle of gear 1; axis Xm

is perpendicular to the generatrix

of the root cone of gear 1.

3. GENERATING TOOL SURFACES

The tool surface is a cone and is represented in the coordinate system 1

Sij) as follows (Fig. 2.1) 1
=T .. . T J
ng) riJ)cotwﬁj) - ujcoswij)
() (i) . ]
Ve ujsinlpc sinej (3 F, P) (3.1)
(1 = u.sinw(j)cose.
s J c J ‘
Ll _ Ll _ i

where uj and Gj are the surface coordinates. ]

The coordinate system SEJ) (j = F, P) is an auxiliary coordinate

system which is also rigidly connected to the tool (Fig. 2.1,b). To
iJ) we

represent the generating surfaces ZF and ZP in coordinate system S

use the following matrix equation




S| L@y | W
CcSs

s
,(3) &)
c s
[ T I oy ]
1 o 0 0 {3
s
= 0 cosq, ;sinq. ;b.sinq, y(j) (3.2)
J J 3 J s
0 +sing, cosq, b, cosq z(j)
- 3 h| | J s
| O 0 0 1 _J 1

Here: bj and qj are parameters which determine the location of the tool in

the coordinate system SéJ). Henceforth, the upper sign corresponds to the

generation of a left-hand spiral bevel gear that is shown in Fig. 2.1 and
lower sign for a right-hand spiral bevel gear.

Equations (3.1) and (3.2) yield

xﬁj) = rﬁj)cotwéj) - ujcoswéj)

g3 -y sinw(j)sin(e +q.) + b, sing, 33
[ J c J J J J

zﬁj) - ujsinwij)COS(Gj;qj) + bjcosqj

where j = (F, P).

The unit normal to the generating surface Zj (j = F, P) is represented




by

(i) (1) (i)
. N . or or
(j) _ _~c (G) _ = ~C
\Ec O where gc =36 X 3u (3.4)
|- i i
~c
Using Eqs. (3.3) and (3.4) (provided ujsinwéj) # 0), we obtain
Bij) = sinwéj)iéj) + coswij)[sin(ﬁj:qj)iij) + cos(ej - qj)Eij)] (3.5)

4. EQUATIONS OF MESHING BY CUTTING

Generation of Zl. We derive the equation of meshing of the generating

surface ZF and the gear tooth surface Zl using the following procedure:
Step 1: First, we derive the family of surfaces ZF that we represent in
the coordinate system Sél). Such a family is generated while the
coordinate system SéF) is rotated about the X;l) -axis (Fig. 2.3). We
recall that the generating surface ZF is rigidly connected to SEF). The
coordinate transformation in transition from SiF) to S;l) is represented by
the following matrix equation

LD (P
m (o4

RO O M

m C c
(4.1)
L, (P
m c
1 1

Here (Fig. 2.3):




[M;I)ﬁF)] =10 cos¢F sin¢F 0 (4.2)

where ¢F is the angle of rotation about the X(l) —axis.

m
Using Eqs. (4.1), (4.2) and (3.3), we obtain

— ——y

D] [P eonl® - sy
[ril)] = yil) = quinng)sinTF ¥ bpsin(qp + ¢F) (4.3)
z;” quinwéF)coer + beos(ag 3 ¢p)
AR I i

where

TG rapt

The upper sign corresponds to the right—hand spiral bevel pinion.
Equations (4.3), with parameter ¢F fixed, represent a single surface of the
family of generating surfaces.

Step 2: The unit normal to the generating surface ZF may be represented in

(1)

m as follows:

the coordinate systems S

(1) (1) (D
N or or
B;I) = —4%%3—- , where N(l) = aém X 8~m (4.4)
R - FooF




We may also use an alternative method for the derivation of the unit

normal. This method is based on the matrix equation.

[nfn”l = WD) () (4.5)

m cC Cc

Matrix [L;l)iF)] may be determined by deleting the 4th column and rows in

matrix (4.2).

F
The column matrix [n( )] is given by vector equation (3.5).
c

After transformations, we obtain

i ]
. (F)
51nwc
(D, _ (F)
[nm ] = cosll)c sinTF (4.6)
(F)
costpc cosTy
- pos
. . (F1)
Step 3: We derive the equations of the relative velocity, Vm , as
follows:
V(Fl) = V(F) - v(l) (4.7)
~M ~I ~
(F) | . (1)
where A is the velocity of a point N on surface ZF and vm is the
velocity of the same point N on surface Zl.
Vector V;F) is represented by the equation
oB) (D (D) (4.8)

~m ~m ~m

Here (Fig. 2.3):

10




Lo
WPy =] o
0
(1)

Vector ro is represented by equation (4.3).

Equations (4.8) and (4.9) yield

N 1
0
(01 =, ® | o
(D
ym

. -

Gear 1 rotates about the Z1 - axis with the angular velocity @

(4.9)

(4.10)

(1)

(Fig.2.3). Since w(l) does not pass through the origin 0(1), of the

~

m
coordinate system S(l), we substitute w(l)
m

~

through 0;1) and the vector moment represented by

Oi})oh X 9(1)

(1)

Then, we represent v as follows

TN SN ¢ ST SS PN ¢}

~m ~m ~m m h ~m

Here:

11

by an equal vector which passes

(4.11)




_ - _ —
Lsind sin(y1 - Al)

olfll)oh = | -& |, and [uéf)] =W (4.12)
- cos(y; = 4)

where L = OhM'

Equations (4.11) - (4.12) yield

(D 3D M
~m ~m ~m
[Vl(nl)] = -(L)(l) sin(-Yl - A]_) 0 COS(Yl - Al) -
LD n
m m m
(D j(1) ney
~m ~m ~m
w(l) LsinAl "AEl -AL, -
sin(y, = 4) 0 cos(y; = A))
_(yrfll) + AEl)cos(Yl - Al)

(1)

(1) (xéll) - LsinAl)(:os(Y1 - Al) - (zm + ALl) s:i.n(y1 - Al)

8P+ BB stacy, - 8))
-

(4.13)

The final expression for V;Fl) is

12




[V;Fl)] =

—uﬁl)(yil) + AEl)cos(Y1 -ApD

w(F)z;I) + w(l){(xif) - Lsinj )eos(y; = A) - (z;l) + AL )sin(y, - Al)}

F ’ 1
I SO C AN I PEEY G
- -
(4.14)
Step 4: The equation of meshing by cutting is represented by
n(l) . V(Fl) =0 (4.15)

~m ~m

Using equations (4.15), (4.14), (4.6) and (4.3), we obtain

{-uF + [riF)cotwiF) - LsinA1 - AL1 tan(y1 - Al)]coswiF)} sinTF +

(F)

sinf
c F

Mgy - sinly, - Al)]_

cos(y; - Al)

by [sinWéF)sin(qF,; ¢F) + cosy

AEl[sindéF) - coswéF)tan('Y1 - Al)cosTF] =
£,Cugs 6y ¢p) = O (4.16)
Here:
a, = (u(F)
1 w(l)

This equation relates the generating surface coordinates (uF, GF) with the

angle of rotation (¢F).

13




Generation of X,. By using a similar procedure we may obtain the equation

of meshing for surface ZP and surface 22 as follows

Step 1: Equations of the family of generating surfaces ZP represented in

the coordinate system S;z) are:
x(z)—1 r(p)cotw(p) -u cosw(p) ]
m c c P c
2 -
y; ) | upsinwép)sinTp ¥ bp51ﬂ(qp I ¢p) (4.17)
zéz) upsinWép)cosTp + bpcos(qp I ¢p)_J

Step 2: The unit normal to Zp is represented in S(z) by the column matrix

m

sinWép)
[néz)] = coswép) sinTp (4.18)
_cosWép) cosTp B

where
T =6 _+q_+ ¢
P p P p

The upper sign corresponds to the left-hand spiral bevel gear and the lower

to the right-hand spiral bevel gear.

Step 3: The velocities Y;P)

s v(z) and V(PZ) are represented in S(Z) as
~m ~m m

follows

14




-0 -
SIS IEETLL A (4.19)
" v Peos(y, - 8y 7
B = P - Lsina,eosty, - ) - 2 sinty, - 8y
i Y;Z)Sinwz -4, |
(4.20)
S = P - P (4.21)

Step 4: The equation of meshing

@ e _

~m ~m

yields the following equation

£ylups Ops ¢p) =

[uP - (rip)cotwgp) + LsinAz)coswgp)]sinTP F
B} (P) (P) mpy ~ sIn(¥y-Ay)
bpsin(q, 3 ¢P)sinwC + bycosy sind, COS(YZ‘AZ) =0 (4.22)
Here:
o w(P)
P2 w(Z)

15



5. ORIENTATION OF THE PINION CRADLE

Henceforth, we will consider two auxiliary coordinate systems Sf and

Sh’ that are rigidly connected to the gear and pinion cutting machines,

respectively (Fig. 5.1).

Figure 2.2 shows coordinate system Sf that is rigidly connected to the
(2)

gear cutting machine and to coordinate system Sm . Coordinate system Sf

is also rigidly connected to the housing of the gear train and the meshing
of the generated pinion and gear will be also considered in coordinate

system Sf. Axis Zf is the instantaneous axis of rotation of the pinion and

the gear - the pitch line (the line of tangency of the pinion and gear

pitch cones). The origin 0f of coordinate system Sf coincides with the

2
points of intersection of 3 axes: X; ), 22 (Fig. 2.2) and zl (Fig. 2.3).
e
m

Here: is the axis of rotation of the gear cradle; 22 is the axis of

rotation of the gear being in mesh with the generating gear ZP and Z1
is the axis of rotation of the pinion being in mesh with the generating
gear ZF and the gear member.

Figure 2.3 shows coordinate system S, that is rigidly connected to the

pinion cutting machine and coordinate system Sél). The origin 0h of

h

coordinate system Sh coincides with the origin 0f but the orientation of
system Sh with respect to Sf represents a parameter of the machine-tool
settings (proposed by Litvin, 1968). This parameter is designated by ¢
in Fig. 5.1.
The coordinate transformation in transition from 5y to S¢ is based on
the following considerations.
(1) Consider two auxiliary coordinate systems, Sa and Sb’ that are
rigidly connected to systems Sf and Sh’ respectively (Fig. 5.1,a and

Fig. 5.1,b), axes za and zb coincide with the pinion axis. Initially

coordinate system Sb coincides with Sa and system Sh with Sf.

16




(ii) Assume now that coordinate systems Sb and Sh are rotated about the
Za—axis, the axis of the pinion, through the angle € (Fig. 5.1,c¢).

This angle determines the orientation of coordinate system Sh with

respect to Sf, or the orientation of the pinion cutting machine with
respect to the gear cutting machine. Matrix [th] represents the
coordinate transformation in transition from Sh to Sf and is represented by
the following equation

Mg 1= (M. 1 M1 M, ]

r— -
cos€c032Y + sinzy sinecosy cosy, siny, (1 - cos€) 0
1 1 1 1 1
= —sinecosy1 cosE sinEsinYl 0
. 2 2
cosylsinyl (1 - cosg) -sinesiny, cosesin”y, + cosy, 0
| O 0 0 1|
(5.1)

6. PLANE OF NORMALS
It will be proven below that the generating surfaces ZP and ZF contact
each other at a point that moves in the same plane, Il. The generated

pinion and gear surfaces, I, and 22, also contact each other at every

1
instant at a point that coincides with the point of tangency of surfaces Zf
and ZP’ However, we have to emphasize that surfaces ZF and Zl

(respectively, Z_ and 22) are in line contact and the instantaneous line of

P
contact moves over the contacting surfaces. The special property of the
method developed for gemeration of spiral bevel gears is that the contact

point moves in a plane (plane II) that is rigidly connected to the fixed

17




coordinate system Sf. Also, the common normal to the contacting surfaces
lies in plane I and, as it will be shown later, performs a parallel motion
in the process of meshing. Plane Il is called the plane of normals and it
is determined as the plane that passes through the instantaneous axis of
rotation, Zes and the normal N to the generating surface Lp (Fig. 6.1).
The above normal passes through point N that is the main gear contact
point.

Figure 6.2 shows the orientation of coordinate system Sn with respect
to coordinate system Sf. Origin 0n coincides with origin 0f and axis Zf
coincides with the Zn - axis. The coordinate transformation in transition

from Sn to Sf is given by the matrix

_éosn -sinn O ]

L, ] = |sinn  cosn O (6.1)

fn

| 0 0 1|

The determination of angle n 1is based on the following considerations:

(1) unit vector in can be represented in coordinate system Sf by the

following matrix equation

T cosn  -sinn O |1 ]
[14%7= L 1041 = | simp  cosn 0 || 0O
f fn n
0 0 1 0
cosn
= sinn (6.2)
0

18




(P)

(2) The unit normal ng to the generating surface ZP is represented as

follows

2 2
() = P 1 P ) (6.3)

Here (Fig. 2.2)

cosA2 0 -sinA2

(2)

[Lfm 1=10 1 0 (6.4)

sinA2 0 cosA2

2
Unit vector Enf ) is given by column matrix (4.18). Equations (6.3), (6.4)

and (4.18) yield

_ (®) ]
cosA2 coslpc cos‘fPsinA2

sin

WP

[nép)] = cos¢§P)sinTP (6.5)

(P) (P)
sinll)c sinA2 + cos\bc cosTPcosA2

L

(3) Vectors ién) and BEP) are mutual perpendicular, i.e., iﬁn) . EEP) =0

This yields that

tan

lPéP)cosAz--cosTPsinA2
tann = -

sinT (6.6)
P

Here:

19



with the upper sign for the left-hand gear,
(®
c

= ap for the convex gear tooth side,

wép) = 180° - Op for the concave gear tooth side

where Op is the angle of the cutter blade.

Equation (6.6) determines the angle of orientation n of the plane of

normals (Fig. 6.2).

7. PERFORMANCE OF PARALLEL MOTION OF A STRAIGHT LINE PROVIDED BY TWO
RELATED ELLIPSES.

An important part of the proposed approach is a new technique directed
at the performance of a parallel motion of a straight line provided by two
related ellipses. By using this technique it becomes possible to provide a
parallel motion for the common normal to the gear-pinion tooth surfaces.
This motion is performed in a plane (the plane of normals) that is rigidly
connected to the gear housing and has the prescribed orientation.

It is well known that a translational motion of a straight line may be
performed by a parallelogram linkage (Fig. 7.1,a). Consider that a
straight line slides by its points A and C along two circles of equal

radii. Vectors v which represent the velocities of points A and C

Va and v

c
of the moving straight line are equal. The moving straight line AC being
initially installed parallel to the center distance OD will keep its
original direction in the process of motion.

The discussed principle of translational motion of a straight line may
be extended for the case where the straight line slides along two mating
ellipses (Fig. 7.1,b). These ellipses have the same dimensions and

orientation and again the velocity vectors Va and Vo are equal., Consider

that the moving straight line is initially installed parallel to OD where O
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and D are the foci of symmetry of the ellipses. Then, with Vo = V. the

A c

moving straight line will keep its original direction in the process of
motion.

Figure 7.1(a) and Fig. 7.1(b) show a translational motion of a segment
of a straight line (AC) with constant length. A more general case is
represented in Fig. 7.1(c). The straight line slides over two ellipses
whose dimensions and orientation are different. The length of segment AC
which slides along the ellipses is changed in the process of motion. The
problem is how to provide a parallel motion of the the moving straight
line. We call this motion a parallel one because the straight line has to
keep its initial parallel to line OD where O and D are the foci of symmetry
of two mating ellipses. Unlike the cases which are shown in Fig. 7.1(a)
and Fig. 7.1(b) the motion of straight line is not translation because the
velocities Ya and Yo of the tracing points A and C are not equal. The
distance between the sliding points A and C is changed in the process of
motion. It will be proven that the required parallel motion of straight
line may be performed with certain relations between the dimensions and
orientation parameters of two guiding ellipses which are shown in Fig.
7.1(c).

Consider that an ellipse (Fig. 7.2) is represented in coordinate
system Sa by the equations

X =0,y =aycosh,, z = b, siny, (7.1)
where ap and bP are the lengths of the semimajor and semiminor axes, respec-

tively, D is the origin of coordinate Sa and the symmetry focus of the ellipse;

parameter Hp determines the location of a point on the ellipse.
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Coordinate system sn has the same origin as Sa and the orientation of
Sn with respect to Sa is given by angle 6P. To represent the ellipse in

coordinate system Sn we use the following matrix equation.

ESOEN UG (7.2)
where
1 0 0 0 |
M 1=]0 cos§y ~-sing, O (7.3)

0 sin6P cosd 0

L0 o 0 1

Matrix equation (7.2) yields

(p) _ (p) _ _ .

x 7= 0, v, = aPcosépcosuP stin6P51nuP

z(P) = a_sind_cosy, + b_cosd_sinu (7.4)
n P P P P P P *

The symmetry focus of the mating ellipse is point O given by
. = Z J(0) ()
coordinates: C1 =0, C2 =y, s C3 =z (C2 and C3 are algebraic
values). The orientation of the ellipse is given by angle 6F (Fig. 7.2).

Equations of the mating ellipse are represented in coordinate system Sn as

follows

(F) _ (F) _ _ .

x 7= 0, Y, = aFcosﬁFcosuF bFsin6F51nuF + CZ’

Z(F) = a_sind_coslu, + b_cosS_sinu_ + C (7.5)
n F F F F F F 3 °
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Consider point A of ellipse 1 is determined by parameter Upg* Point C

of ellipse 2 is determined with parameter Koo Henceforth we will consider
o

such a motion where Hp = Hpy = Hp = Hpg = He. Line AC is drawn through
points A and C. Our goal is to provide that line AC will be parallel to
the center distance DO for any value of the motion parameter |1 and perform
a parallel motion. The above-mentioned goal can be achieved with certain
relations between the ellipse parameters aps bP’ GP’ aps bF and GF. We

start the derivation of these relations by considering the vector equation
DA(H) + AC(H) = DO(H) + OC(M) (7.6)

Vector equation-KE(u) = ADO is satisfied with any value of U if the
parallel motion of line AC is provided. (Where A is the constant required
to make the two vectors of equal magnitude.)

Equation (7.6) yields

(0C-Da) - J;n (A-1) (O - i]n) cos q

(0C-D&) *k (A-1)(B0 -k ) sing

(7.7)

Here: j and k are the unit vectors of axes Y and Z_ , q 1s the angle
n ~n n n

~

formed by axis Yn and vector DO (Fig. 7.2). For the further

transformation we will represent UP and uF as follows

H, = H

p + U (7.8)

+ U, by = u

PO FO

Equations (7.7), (7.4), (7.5) and (7.8) yield

(bllsinq - a,,sinq - b21cosq + a21cosq)cosu

11

+ (-blzsinq + bzzcosq + alzsinq - a22cosq)sinu =0 (7.9)
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Here:

aj, = aPcosdpcospPO - stinGPsiinO
aj, = aPcosépsinuPO + stinGPcosuPO
a = aPsinGPcosuPO + chossPsiino
ay, = aPsinGPsinuPO - choséPcospPO (7.10)

Coefficients b b and b, ., have similar expressions.

11° P12» Poy 22

Equations (7.9) must be satisfied for any value of the motion parameter U.
This means that equation (7.9) will be satisfied for any value of p if the

following two equations are satisfied simultaneously.

]
o

b, ,sinq - b21cosq - allsinq + a, cosq (7.11)

11

1
o

b,.sinq - bzzcosq - alzsinq + a,,Cosq (7.12)

12

Equations (7.10), (7.11) and (7.12) yield a system of two pseudo-linear

equations in two unknowns (cosuFO and sinuFo):

anin(q-GF)cosuFO - chos(q—SF)sinuFo =d, (7.13)

chos(q-GF)cosuFo + anin(q—GF)sinuFo =d, (7.14)
Here:

d, = aPsin(q—GP)cosuPo - chos(q—ﬁP)sinuPO (7.15)

d2 = aPsin(q-SP)sinuPO + chos(q-GP)cosuPO (7.16)
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The solution of equations (7.13) and (7.14) for coslipa and sinuFO is

as follows

aFdlsin(q—ﬁF)4'b dZCOS(Q’SF)

F
cosl, . = (7.17)
“FO 2 .2 2 2
agsin (q—GF) + chos (q-—GF)
. . aFdzsin(q—SF)-delcos(q-SF)
SiMgo =73 3 2 2 (719
apsin (q—GF)i-chos (q—GF)
Equations (7.13) and (7.14) yield
2 .2 2 2oy = 42 4 42
agsin (q GF) + chos (q 6F) = dl + d2 (7.19)
Equations (7.19) relates 3 parameters of the mating ellipse: ap, bF

and GF' (Parameters aps bP’ 6P of the first ellipse and q are considered
as given). Thus Eq. (7.19) can be satisfied with various combinations of
ag, bF and SF.

°F
Example: a_ =2, b_ = 1.25, § = 20°, q = 270°, — =

3 = =
p P p by > Hpo T Hro

= 2,2753, 6F = 34,3113°, These ellipses are shown in

0.

Then we obtain: ag

Fig. 7.2.
A linkage which may perform the described parallel motion of line AC is
shown in Fig. 7.3. Link 1l is in contact with two perpendicular slots and

DN = ap, DM = bp where Zap and 2bp are the lengths of the axes of ellipse

which is traced out by point A. Similarly, link 1' is in contact with two

other perpendicular slots, ON' = a_ and OM' = b

F P point C traces out

ellipse 2. The orientation of a pair of slots with respect to the other

one is determined by the angle (6F - 6P) (see Fig. 7.2). Links 1 and 1'

rotate with the same angular velocity w =-§%. Line AC will perform a

parallel motion if the ellipse parameters satisfy equation (7.19).
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8. GEAR MACHINE-TOOL SETTINGS
Input Data. The following data are considered as given to set up the gear

machine-tool settings.

the teeth number of the gear

Yoo the gear pitch angle (Fig. 2.2)

the gear dedendum angle (Fig. 2.2)

B, the mean spiral angle (Fig. 2.1)

L, ofMo’ the mean distance of the pitch cone (Fig. 2.2)
W , the point width of the gear cutter (Fig. 8.1)

w(p)’ the blade angle of the gear cutter (Fig. 8.1)

Gear cutting ratio. The gear cutting ratio represents the ratio between the

angular velocities of the cradle and the generated gear and is designated

by

m, =2 __ (8.1)

(2)

Henceforth, we will consider the two coordinate systems, Sm and Sf,
shown in Figure 2.2. Axis Zf is the pitch line of the mating spiral bevel

gears. It is also the instantaneous axis of rotation of the pinion and the

gear that transform rotation with constant angular velocity ratio. Assuming

that the generating cone surface, Zp’ the gear tooth surface, 22, and the

pinion tooth surface, Zl’ are in continuous tangency at every instant, it

is required that the instantaneous axis of rotation by the gear cutting must
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coincide with the pitch line, axis Zf. Thus

WP2) _ @) _ (2 g (8.2)

~ ~ ~ ~f

(p2)

This means that vectors W and kf are collinear.

(2)

Vectors w(p), w(z) and kf are represented in coordinate system Sm

as follows

-_w(p)w [-sin(Y, - AZ)W
ei)(P) =l o 9(2) - w(2) 0
o | cos(y, - £,)
'sinAz'
= (8.3)
k=] ©
LCOSAZ_
Equations (8.2) and (8.3) yield that
-® + uPsingy, - 8,)
= tanA (8.4)
0 2

cos(Y2 - Az)

Equation (8.4) results in that

(p) siny
w 2

m,. = = (8.5)
p2 w(2) cosA2
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Main Gear Contact Point. The main gear contact point is the center of the

bearing contact on the gear tooth surface. The location of this point can
be represented by the surface coordinates of the tool cone ep and up'

We can vary the value of up by keeping Gp fixed and obtain the desired
location of the main gear contact point.

We start with the case when M: coincides with the pitch point Mo
(Figure 8.2). In this case N* on the cutter surface is the contact point
of the pinion and gear tooth surfaces since the normal at this point
intersects the instantaneous axis of rotation, Zf. The basic relations

for the left-hand gear for this case are as follows:

*
6 = 90° - + =1+ 8.6
o 9 Bp 1, Pt Y (8.6)

%
LcosA231n(6p - qp) LcosAzcosB

= - P
bp ) ing" ) os(B ) ®1
sin -
p costPp T 9
d Lecosl,sing LcosA,sing
_P . 2* P . 2 p (8.8)
2 sinep COS(Bp - qp)
a =24 Lsina, tany P (8.9)
2 2 c :
d LcosA,sing
_ _ 2 P W .
rép) --?? - a-= — % - g - Ls1nA2tanwc(p) (8.10)
sinb
P
. @
* c , (®
u = ———— + asiny (8.11)
P siny (p) ¢
c
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*
6_ = 270° + - =71 -
0 7 Bp a4, p - % (8.6a)
LecosA,, cosB LcoslA, cos
bP - Sin(e£ - 188°) = cos(B2 - qBI)) (8.7a)
P P P
d LecosA, sin LcosA, sin
£ - 2 " . 2 7% (8.8a)

sin(S; - 180°) cos(Bp - qp)

Let us now consider point N whose surface coordinates of the tool cone

%
are 6 and
p

E3 X *
u = 0Py = o®* 4 ¥*n = u + (8.12)

Point N will become the point of contact if the normal vector of this point
passes through M;. This requirement will be observed if the cradle is turned
at a certain angle ¢p that is shown in Figure 8.3. We can determine angle ¢p
using the equation of meshing of the generating gear and the generated gear,
equation (4.22), together with equations (8.5), (8.6), (8.7), (8.8), (8.9),

(8.10), (8.11), and (8.12). This yields
£,(Bu, ¢) =

Aupcos(Bp i ¢p) + LcosAzsin\Pc(p)sind)p + LsinAzcoslbc(p)[cosBp“cos(Bp ¥ ¢pﬂ =0

(8.13)
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The upper sign corresponds to the left-hand spiral bevel gear and the lower

to the right-hand spiral bevel gear. Based on trigonometry transformations

a closed form solution for ¢p is obtained. That is

% A Va2 452 - 2

t
an - -3
Here:
Au
- . (P) _ ®)_. P .
A= cosA251nwc s1nA2coslpc 81n8p + I s1an
EEE 6:))
B = I cosBp - s:LnAzcoslpc cosBp

= af (®)
C s:.nAzcoslbc cosBp
For gear concave side using the same equations except

lpc(p)

- LsinAztan

N =

and

d LcosA,sing
@ T, Yy

Vo144 (p)
c sineg + ) Ls:.nAztambC

we can get the same result.

(8.14)

(8.15)

(8.16)

Equation (8.14) determines the main gear contact points for both convex

side and concave side. 1In general, Aup > 0 for gear convex side, and AuP < 0

for gear concave side. The absolute value of Aup for gear convex side is
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greater than that of Aup for gear concave side.

Direction of the Contact Path. The direction of the contact path may be

determined by the direction of the tangent to the contact path at the main con-

tact point. This can be done by differentiating equation (4.22). 1In the pro-

cess of motion the contact normal performs a parallel motion. Thus parameter

Tp is a constant and this yields that

dTp =0 dep = -d¢ (8.17)

Taking into account equations (8.17) and (8.5), we obtain after the differen-

tiation of equation (4.22) the following equation

[« 9

u
¢p sin'tp + bpcos(qp ¥ ¢p)sin¢£p) - bpcoswc(p)coseptanén =0

=

The upper sign corresponds to the left-hand gear and the lower to the right-hand
* *
gear. At the main contact point we have that Gp = ep, cosep = Sin(Bp - qp),

LcosAzcosB

b = . i
b COS(BP — qp) Then we obtain

EER LcosR _ ()
) s:LnTp + cos(B_ = ) [.cosA2 cos(qp + d)p)sinll)C -
P P 1%
sinAzsin(Bp - qp)cos¢£p>] =0 (8.18)

This yields

- - E
tan 4% = -3 (8.19)
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Here:

du
D = EE?- siansinTp + LcosAzsinw2p)cosBpsin¢p + LsinAzcoswép)coszsp
du (p) ()
E = d¢p cosBpsinTp + LcosAzsinwc coschosd)p - LsinAzcoslpC sinBPcosBp

There is a particular case when the direction of the contact path is
du d
parallel to the root cone and thus 352 = 0. For this case, however, 7;
P d

becomes substantially larger than LcosA,. More favorable ratio for —P_
2 2LcosA2

du
can be obtained by decreasing the value of 352 » but a more inclined path
P du
of contact will occur. A reasonable value of EEB is about -0.5 for the
P

left-hand gear convex side, or -0.2 for the left-hand gear concave side.

Because both sides of the gear are cut by duplex method, the values of
du du

EER for both sides are not independent, and we have to choose the value of 0
p

P
for both sides by a compromise.

Y. BASIC PRINCIPLES FOR GENERATION OF CONJUGATE GEAR TOOTH SURFACES

INTRODUCTION

The method for generation of conjugate spiral bevel gear tooth surfaces
is based on the following principles:
(1) Four surfaces-two generating surfacés (ZP and ZF) and pinion and gear
tooth surfaces (Zl and 22) are in tangency at every instant. The ratio of
the angular velocities in motion of surfaces ZP’ ZF’ Zl and Zo must satisfy
the following requirements: (i) the above-mentioned surfaces must be in
continuous tangency and (ii) the generated pinion and gear must transform
rotation with zero kinematical errors, and (iii) Point N of contact of both
pairs of contacting surfaces - ZP ZF’ 21 I, — moves in plane 1T (Fig. 9.1)

in the process of meshing and the common normal to above-mentioned surfaces

32




performs parallel motion in plane II.

Figure 9.1 shows the drawings that are represented in the plane of
normals, Jl. Point A is the point of intersection of the gear head-cutter
axis with plane Il and A is the initial position of the normal to surfaces
ZP and 22. Point D is the point of intersection of the gear cradle axis
with plane II. Simultaneously point D is the point of intersection of
pinion and gear axes. Axes of the gear cradle and gear head-cutter are
parallel (the head-cutter axis is not tilted with respect to the axis of
the cradle). The cradle axis, X;Z), is perpendicular to the gear root cone
but it is inclined with respect to the plane of normals, I.

Point C (Fig. 9.1) is the point of intersection of the pinion tool cone
axis with plane Il. Surface ZF of the pinion tool cone will be in contact
with surface ZP (and 22) if the common normal to surfaces ZP and 22 passes
through point C. Simultaneously, the pinion surface, Zl, will be in
contact with ZF (and ZP and Zz) at point N if the equation of meshing for
surfaces Zl and ZF is satisfied at N.

Point O that is shown in Fig. 9.1 is the point of intersection of the
pinion cradle axis with plane II. Point 0 does not coincide with point D of
the gear cradle axis. We recall that specific machine tool-settings for
the pinion, AEl and ALI’ (Fig. 2.3) have to be used to provide conjugate
pinion and gear tooth surfaces. This method for generation provides the
collinearity of vectors DO and NA, We recall that the pinion cradle axis,

1
X( ), is perpendicular to the pinion root cone but it is inclined with

respect to gear cradle axis, X;z), and plane Il. The orientation of axes
Xil) and X;Z) with respect to each other and plane Il depends on gear and

pinion dedendum angles, Al and AZ' The pinion cradle axis and the pinion

head-cutter axis are parallel (the pinion cutter is not tilted with respect
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to the pinion cradle).

Figure 9.1 shows the instantaneous positions of the contact normal N
and points A and C. In the process of meshing the normal performs a
parallel motion in plane Il while point A (and respectively C) traces out an
ellipse with the ellipse symmetry center D (symmetry center O,
respectively). The dimensions and orientation of the gear ellipse centered
at D are known since the gear machine settings are given. The dimensions
and orientation of the ellipse centered at O must be determined to provide
the desired parallel motion of the contact normal. Then it becomes

possible to determine the pinion machine-tool settings.

10. SATISFACTION OF THE EQUATIONS OF MESHING

Four surfaces - ZP’ ZF’ Zl and 22 - will be in contact within the
neighborhood of the instantaneous contact point if they have a common
normal and the following equations of meshing are satisfied at the point of

contact.

(1) The equation of meshing for surfaces 21 and 22 is represented as

follows (Fig. 9.1):

~

QB L L2 A C DI IN € - DI D NS R (10.1)

(1) (2)

w(lz) = u&l) - w(z) where and are the angular velocities
of the pinion and the gear, respectively. Vector w(lz) represents the

velocity in relative motion. Vector r(N)

~

Here:

is the position vector of contact
(12)

point N and N is the contact normal. Vector w must be directed along

the pitch line to provide transformation of rotation with the prescribed

angular velocity ratio.
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(2) The equation of meshing of surfaces ZP and 22 is represented by the

equation

[QFPZ)EFN)qj -0 (10.2)

Equation (10.2) is satisfied if w(?Z) = uﬁp) - w(z) is collinear to the
unit vector a of the pitch line. This requirement is observed already
since the gear cutting ratio is determined with equation (8.5).

(3) The equation of meshing of tool surfaces ZP and ZF is represented as

follows:

~ ~

CPE) |y o (B Y(F)) . N ={(w(l’)X L@y

(W My 4 (EXQ(F)]} cN=0 (10.3)

~

F)

Deriving equation (10.3) we substitute the sliding vector Q( that
passes through 0 (Fig. 9.1) by an equal vector that passes through D and

the vector moment represented by

(F)

m=D0 x w
In the process of motion the contact normal keeps its original direction that

is parallel to DO. Thus equation (10.3) yields

[&)@F)E(N)g] = [(‘B(P) - ~(F)) E(N) §] = 0 (10.4)

Equation (10.4) may be interpreted kinematically as a requirement that
N
vectors w(PF), r( )

~ ~

and N must line in the same plane, the plane of normals

IL. This means that

(tg(P) - Q(F)) i =0 (10.5)
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where }n is the unit vector of the Xn -axis that is perpendicular to planIl.

It was mentioned above that the proposed method for generation is based
on the parallel motion of the contact normal that slides along two related
ellipses. It was assumed that this motion is performed with the following

conditions (see Section 7):

duF duP
W= W~ Mo T BT W M F T Ew T (10-6)

where uF and UP are the ellipse parameters.
du duP
Let us prove that the requirementzﬁr-= qc can be observed if
IQ(F)| = [w(P)| and equation (10.5) is satisfied.

(F) (P)

Vectors W and w are directed along the X

(1) _ (2)

and x axes and
m m

equation (10.5) may be represented as follows

i =P oy (10.7)

(®) (F) (P)

= W = W we obtain that projections of vectors w and w

(F)

Since w
on the normal to the plane are equal.

This yields that

W W au |

dt dt T dt En

Here:

EooalP 1y =ea® - (10.8)
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du du
Vectors-é% and-:ﬁ? represent the angular velocities of links 1 and 1 (Fig.

7.3) in their rotational motions. Equations (10.8) also yields that

~m ~1 ~n ~1

Requirement (10.9) can be satisfied with a specific orientation of the
pinion cradle coordinate system, Sh’ with respect to gear cradle coordinate
system, Sf. This orientation may be achieved with a certain value of angle

e (Fig. 5.1,c) that may be determined by using equation (10.9). The matrix

representation of equation (10.10) is given as follows:

1
(2)
[100J[L (L, ""71} O
0_|
1
(1)
(1 0 0] [Lnf][th][Lhm 1{0 (10.10)
0

Here, matrix [Lfm(z)] is given by Eq. (6.4); matrix [Lnf] is the transpose
matrix of [Lfn] given by equation (6.1); matrix [Lfb] is the sub-matrix of
[th] given by equation (5.1); matrix [Lhm(l)] is represented as

follows (Fig. 2.3):

cosA1 0 sinAr"

(1), _
[l ) -

0 1 0 (10.11)

-sinA1 0 cosA1

Equation (10.10) yields
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cosA2 - SinYlsin(Y1 - Al)

cosY, cose - sincetann - COS(Yl = Al) =0 (10.12)

Equations (10.12) provides two solutions for angle € and the smaller value

of € is to—be chosen.

11. EQUATIONS OF SURFACE TANGENCY AT THE MAIN CONTACT POINT

We consider that the coordinates of the main contact point N on surface

ZP (Fig. 8.2) and the direction of the surface unit normal n(P) at point N

are known. We have to provide that surfaces ZP, 22, Zl and ZF will be in

tangency at the chosen point N. Surfaces ZP and 22 are already in tangency
at N since the equation of meshing of ZP and 22 is satisifed at this point
(see Section 8). Then we have to provide the tangency of surfaces ZP and
ZF’ ZF and Zl and 21 and 22.

Equations of Tangency of X, and ZF

The tangency of generating surfaces ZP and ZF at point N is provided if

the following equations are satisfied at N:

(F) (F) (F) = (P
r (ug, 6ps Op, LRGN Qs> To 5 AE;, AL)) =1 (11.1)
F F P
r~1( )(eF, Pps wf: ), ) = g( ) (11.2)
(P) (P)
Here r and n are the given position vector and surface ZP unit

normal. Vector Egqs. (11.1) and (11.2) may be considered in any coordinate
1

system, for instance, in system Sm( ). Vector Eq. (11.1) provides three

independent scalar equations but Eq. (11.2) provides only two ones since

|n| = 1. Parameters u, and 6 are the surface Lp coordinates for the point

of tangency. Parameter ¢F’ is the angle of cradle turn for the installment
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of the generating surface ZF and it may be chosen of any value, including
¢F = 0. Parameters ap and bF determine the location and orientation of the
pinion head-cutter in coordinate system Sm(l) (Fig. 2.1); wiF) is the blade

angle (Fig. 2.1); AE1 and ALl are the machine-tool settings that have been

(F)
c

shown in Fig. 2.3; r is the radius of the head-cutter circle obtained by

(1)

m

the intersection of the head-cutter surface with plane X = 0 (Fig. 2.1).

We may represent vector equations of tangency (11.1) and (11.2) as

follows
(F), _ (1) (2),, . (P), _ [ (1) (2),. (P)
[in(l)] = [Mm o ][1;(2)] = M h][th][Mfm ][r(z)] (11.3)
m
(F), _ (1) (2),,. (P, _ (1) (2),, (P)
[nm(l)] =L ][rlxn(z)] = (L L e L ][rInn(z)] (11.4)

Matrix [Mfm(z)] is represented by the following equation (Fig. 11.1)

~'cosA2 0 -sind, LsinAzcosAz_—
m, P1=10 10 0 (11.5)
sinA2 0 cosA2 LsinzA2
o 0o o 1 B

Matrix [th] is the transpose matrix of matrix [th] that is represented by
equation (5.1).

Matrix [Mm(l)h] is represented as follows (Fig. 2.3)
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'"cosAi 0 —sinﬁi LsinAl‘
[Mm(l)h] =1 o 1 0 -AE (11.6)

sinA1 0 cosA1 -AL

The column matrix [i;ggg] and [nifg

(4.18)., After matrix multiplications we obtain

} are represented by equation (4.17) and

b5 b Pig by
[Mm(l)m(Z)] = | Par Pyy Ppg By, (11.7)
by B3y B33 By
| o 0 0 1|
Here:
bll = cos€cos(Yl - Al)cos(Y1 + AZ) + sin(y1 - Al)sin(y1 + AZ)
b, = —sinecos(y1 1A1)

b,y = -cosecos(y, - Ap)sin(y, +A,) + sin(y, - A )eos(y; +4,)

b14 = LsinA1~+ LsinA2 b11
by, = sinEcos(Yl + Az)
b22 = ¢OSE
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=2
1]

- sinesin(Yl + AZ)

b24 = - AE1+ LsinA2 b21

-

by, = —cosesin(Y1 - Al)cos(y1 + A?) + cos(Y1 - Al)sin(y1 + AZ)
by, = sinesin(Y1 - Al)
b, = cosesin(y; - Al)sin(Y1 + A2) + cos(Y1 - Al)cos(y1 + Az)

b = -AL1+ L31nA2 b31

Equations (11.3) and (11.4) are used for the determination of pinion

machine-tool settings.

12. PINION MACHINE-TOOL SETTINGS

The pinion machine-tool settings are represented by the following

. ()
. parameters: T,

L (D
m

- the radius of the head—cutter circle measured in plane
= 0; bF and dp parameters that determine the location of the
S 0 with¢p =0 (see Fig. 2.1);

(F)
(F) — parameter that determines the blade angle; me =L ___ the ratio by
c 1 w(l)

head-cutter in plane Xm

¥

cutting; AE1 and AL1 - corrections of machine-tool settings that are shown
in Fig. 2.3.

The determination of the pinion machine—tool settings is based om the
equations that relate the parameters of the gear and pinion ellipses,
equations of tangency of the pinion and gear tooth surfaces at the main
contact point and the equation of meshing by pinion cutting. These

settings must be determined for the following 4 cases that are represented

in the plane of normals, by Fig. 12.1 and Fig. 12.2, respectively. Figure
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12.1(a) corresponds to the case where the gear is left~hand, the gear tooth

F) (P)

contacting surface is convex, rg > rC and CN > AN. Figure 12.1(Db)

corresponds to the case where the gear is left-hand, the gear tooth

F P
contacting surface is concave, rg ) < ré ) and CN < AN.

Drawings of Fig. 12.2 correspond to the cases where the gear is
right-hand and the gear tooth contacting surface is convex (Fig. 12.2,a)

P) (F)
c

and concave (Fig. 12.2,b). The difference between rC and r with other

parameters as given determines the required dimensions of the contacting

ellipse.

Determination of the Cutting Ratio Moy

It is mentioned above that the proposed method for generation provides:

(i) the simultaneous tangency of four surfaces: ZP’ ZF’ 21 and 22, where

ZP and ZF are the gear and pinion generating surfaces and Zl and 22 are the
generated pinion and gear tooth surfaces; (ii) the generating gears
LB - (P

(cradles) are rotated with the same angular velocities i.e.

This yields the following equation for the pinion cutting ratio

w(F) w(P) mPZ

m

Fl L - @ T m
w w m 5 12
Here:
siny
mpy = cosAz (see equation 8.5)
I N
12 w(Z) 1‘11

where N2 and N1 are the numbers of gear and pinion teeth.

The final expression for the pinion cutting ratio is
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N1s1nY2

= —_— (12.1)
Tp1 NzcosA2

Determination of b,

The procedure of computations of bF is based on the following steps:

(i) determination of semiaxes of the gear cradle ellipse, a, and bP; (ii)

P

determination of the parameter of orientation of the gear cradle ellipse,

6 (iii) determination of the parameter of orientation of the pinion

p?

cradle ellipse, §_ and, (iv) determination of bF.

F

Step l: Determination of semiaxes of the gear cradle ellipse.

The gear cradle ellipse is obtained by intersection of the cylinder
of radius bP (Fig. 2.1) with the plane of normals. The semiminor axis of the
cradle ellipse is the cylinder radius bP. The semimajor axis is represented

by the equation

Pp

a = —2 (12.2)
Poy@ Ly

.
~m ~Tl

(2)

where the unit vector im is collinear to the cylinder axis, in is the

unit vector that is perpendicular to the plane of normals. The scalar

product zm(Z) . in may be represented as follows
i(z)‘i =
~m ~n
1~
[1oo0J[L (2 1L 1 O (12.3)

Here, the column matrix represents the unit vector in in coordinate system
Sn and the row matrix represents the unit vector 1;2) in Sm(zl

Equation (12.3) yields
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(2) -
Em En cosAzcosn (12.4)

and

bP
ap © cosAzcosn (12.5)

Step 2: Determination of orientation of the gear cradle ellipse.
o
We designate with Qp the unit vector of the minor ellipse axis and with
Gp the angle that is formed by axis y and the major ellipse axis (Fig.

12.3). Vectors bg and iéz) are mutual perpendicular and this yields that

-0 -
(2) - = =
(L oolfL, f]]Lfn] sind, sinSPsinncosA2 + cosépsinA2 =0
b_cosGP__ (12.6)

and

tanA2

= - 12.7
tan(SP prpe (12.7)

Step 3: Determination of orientation of the pinion cradle ellipse.

The unit vector of minor axis of the pinion cradle ellinse, b;, (Fig. 12.3)

~

is perpendicular to the cylinder axis of radius bF. Thus

1 (D 2= (12.8)

The matrix representation of equation (12.8) is as follows:
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1 _
(10 0][L§1 ) WL 0L 1 | —sing, | =0

cosﬁF

Equation (12.9) yields

tan6F =

o>

where

>
L

= cosesiny, - cosyltan(y1 - AI)

o
]

cosnsine + simnn[cosecosy, + sinmy,tan(y; - A})]

Step 4: Determination of bF

(12.9)

(12.10)

(12.11)

(12.12)

It is easy to prove that the ratio between the axes of both ellipses is the

same since

b
e S ¢ D R S ¢ ) B
a., ~m sn a2 m n
F P ~
and
@y . -2, .
Em i Em i (see Eq. (10.9))
Thus:
b b
a_, = F = 3

F cosAzcosn ’ ap = cosA2cosn
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The parameters of both ellipses have been represented by equation (7.19) as

follows
2 2 2 2, 22
agsin (q - GF) + brcos (q GF) =d] +d, (12.14)

Equations (7.15), (7.16) and (12.12) yield that

2 2 2 2
dj +d; = b, |cos (q - GP) +

sinz(q-GP)
— 5 5~ (12.15)
cos Azcos n

where q is the angle that is formed between vector DO and axis Y (Fig.
7.2). We recall that vector DO is collinear to the contact normal. Using
equations (12.14) and (12.15), we obtain

1/2
cosz(q-GP)coszAzcoszn-+sin2(q-GP)

b, =b (12.16)
F cosz(q-—SF)coszAzcoszni-sinz(q-GF)

Determination of ap

The main idea of determination of qp is based on identification in

plane xﬁf) = 0 of projections of two vectors: OC (Fig. 12.1 and Fig. 12.2)
and a that is the unit vector of 0;1)0;F) (Fig. 12.4). We recall that

points 0;1) and 0 lie on the axis of the cradle and O:F)

and C lie on the

axls of the pinion head-cutter (Fig. 12.4). Points 0 and C are the points
(1)

of intersection of pinion cradle axis, Xm , and the pinion head-cutter
axis, OgF)C, with the plane of normals, II. Plane II has been shown in

Fig. 6.1.

(1) (1)

Unit vectors im , a and OC lie in the same plane. Here i

.

m

is the

unit vector of axis X

Thus:
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fa1{? el =2+ P x 00 -0 (12.17)

The determination of the dp is based on equation (12,.17) and the

computational procedure may be presented as follows:

(D

Step 1: Representation of vector a in coordinate system 3

Figure 12.5(a) and Fig. 12.5(b) show the orientation of unit vector a
in plane Xil) in two cases where the generating gear is left-hand
(generated gear is right-hand) and generating gear right-hand (generated is

left-hand), respectively. Vector a is represented by the following column

matrix:

a= sian (12.18)

cosqg

Angle qp is measured clockwise. This angle is negative if measured

in opposite direction as shown in Fig. 2.{.(

The generating gear'genefates the member-gear with the same direction of the
spiral (the member-gear is down with the respect to the generating gear as
it is shown in Fig. 2.2). The generating gear generates the pinion with the
opposite direction of the spiral (the pinion is up with the respect to the

generating gear as it is shown in Fig. 2.3).

Step 2: Representation of vector 0C in coordinate system Sn' Using

equations (7.5) and (12.13) we may represent vector OC as follows:
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- .

oC = aFcos6FcosuF0 - bFsinGFsinuFo =
LaninGFcosuFo + ch°56FSinuF0__
ro 1 o]
ap cosﬁFcosuFo - sinGFsinuFocosT\cosA2 = | by (12.19)
] sinGFcosuFO + codesinuFocosncosA2 B __b3_4

The sub—script "FO" in Upo indicates that the initial position of the
contact normal (at the main contact point) is considered.
Step 3: Representation of vector OC in coordinate system %ﬁl)
(1) is

The coordinate transformation in transition from Sn to Sm

represented by the product of matrices.

a1 %12 23

w9 1= a, a, a (12.20)
m h hf fn 21 22 23 ¢
| %31 %32 %33
Then vector EE-may be represented as follows
_ _
a19by * 313by

oc b (12.21)

C = | aypby + 853D,

| 330Dy *+ 233b3

Step 4: Representation of the cross—product ié ) x OC.

It is easy to verify that:
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x 0C = -(a32b2 + a33b3) (12.22)

39,0y * 3y

— p—

Step 5: Determination of 9p

Equations (12.17), (12.18) and (12.22) yield

—sian(a32b2 + a33b3) + cosqF(aZZb2 + a23b3) =0

Thus
a,,b,+a,.b
tanq; = a22b2_+323b3 (12.23)
3272 73373
Here:
3y, = —sin€cosYlsinn + cos€cosn (12.24)
a4 = —sinesinY1 (12.25)
agy = sinn[cosscosylsin(y1 - Al) - sinylcos(y1 - Al)]
+ cosnsinesin(y1 - Al) (12.26)
ajq = cosylcos(yl - Al) + cosesinylsin(yl - Al) (12.27)

Expressions of b, and b3 have been represented by the column matrix (12.19)

2

in terms of Hgo® Our purpose is to derive relations between Upos Hpg and

yéN) and z(N) Here:

AR Upo is the parameter of the gear cradle axis for
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N
™) ) are coordinates of the main contact

point A (Fig. 9.1); y, ~ and z

point. Equations (7.17) and (7.18) yield:

d
2
d1 tan(q-—cSF)--cosncosA2
tan Mg, = g
tan(q-—éﬂ)4~5— cosncosA2
B 1

Here (see equations (7.15) and (7.16))

d2 tan(q--GP)tanuPO-i-cosncosA2

d1 tan(q-—éP)-cosncosAztanuPO

(12.28)

(12.29)

The determination of parameter Hpo is based on the following considerations

(Fig. 12.6)

0O0A=0N+0NA
n n

Equation (12.30) yields
A N —
xé ) xé )= -AN °* cosq

ng) - z§§)= -AN * sing

Thus:
ZiA) _zsN)
oy _an _emas o
Yo ~Ya

Using equations (7.4) and (12.5) we get

z(A) b <s1n6PcosuP0
P

n cosncosA2 + COSSPSiin0>
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(12.32)




) _ <cos§PcosuPo
P

n cosﬂcosA2 - SinSPsiin()) (12.33)

() ()

Y and z =~ are coordinates of the main contact point N in coordinate

system Sn,q determines the orientation of the contact normal in plane

Using Eqs. (12.31) - (12.33) we may determine parameter Upg®

Determination of Relation Between AEl and ALl

Parameters AE1 and ALl of the pinion machine-tool settings have been
shown in Fig. 2.3. Our goal is to prove that the proposed method for
generation relates AE1 and AL1 in a certain way.

Consider the drawing of Fig. 12.7. Point D coincides with the origins:
0h of coordinate system Sh’ 0f of coordinate system Sf (Fig. 5.1) and the
origin of coordinate system Sn. Point D is also shown in Fig. 9.1. Point
0 is the point of intersection of the pinion cradle axis with the plane of
normals, lI. Vector DO must be collinear to the contact normal (Fig. 9.1).

Figure 12.7 shows a plane that is drawn through points O;l), D and O.

—

Since vectors i(l), 0;1)

i D and OD lie in the same plane, we have that

(1) =
[0, 'DDO 1 ] =0 (12.34)

Vector Oél)D is represented by the column matrix (see Eq. 4.12))

— . -
L51nA1

(1) (L, _
0, "D =0 0h = AE1 (12.35)

AL1

L -

Vector DO is collinear to the unit contact normal ne and is given by (see
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Eq. 4.6))

sinWéF)
[nﬂ%ﬁ] = coswéF)sinTF (12.36)
m
coswéF)cosTF

Equations (12.34) - (12.36) yield

LsinA1 AE1 ALl

. (F F) . F
s1n¢§ ) cosWé )31nTF coswé )coer =0 (12.37)
1 0 0

Equation (12.36) results in that

AE
-—ALl = tan’[F (12.38)
where
(12.39)

T, =06 =
F-% * 9t o

Determination of ng)l_IF and AE1

F
Parameter wé ) determines the blade angle of the pinion head-cutter.
Parameter TF with the known value of ap determines the cone surface
parameter eF’ We may determine WéF) and Ty by using the equations of

tangency at the main contact point represented as follows:
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E(P) = E(F) (12.40)
E(P) - E(F) (12.41)

Equations (12.40) and (12.41) provide the equality of position-vectors
and unit surface normals, respectively at the main contact point for the
generating surfaces ZP and ZF. Vector equations (12.40) and (12.41)
provide three and two scalar equations, respectively, since lg(P)[ = IB(F)‘

F)

= 1, Using vector Eq. (12.41) we may determine parameters Wi and T,. To

F
determine AEl we need only one scalar equation from the three ones provided
by vector equations but the remaining two scalar equations should be

checked to ensure that they are satisfied with the determined machine~tool

settings.

13. INSTALLMENT OF MACHINE-TOOL SETTINGS

The installment of the eccentric angle, EA, and cradle angle, CA, on
the Gleason cutting machine Nof 26 and No. 116 provides the required values
of qj and bj (j =P, F),

Consider that a left-hand gear is generated. Figure 13.1 shows two
positions of the eccentric and its center: before and after the
installment of the cradle angle, CA. The axis of the cradle is
perpendicular to the plane of drawings and pointed to the observer. The
axis of the head-cutter passes through the center of the cradle since the
eccentric angle is not installed yet. Figure 13.2 shows two positions of
the axis of the head-cutter: before and after the installment of the
eccentric angle. It is evident that angles qj,CA and EA are related by the

equation

53



ay = CA+ B _90° =2 B (13.1)

Ei-= 00 sin 22 (13.2)
2 c 2
where 00c = k is the given constant value. Figures 13.3 and 13.4
correspond to the installment of a right-hand gear (the generating gear is
left-hand). Figure 13.3 shows the installment of the cradle angle (CA).
Figure 13.4 shows the installment of the eccentric angle and the relations
between angular parameters CA, EA and qj. Equations (13.1) and (13.2)
also for the case of generation of a right-hand gear hut the value of gjis
larger than in the case of generation of a left-hand gear (see Fig. 13.2).
The installment of corrections of machine-tool settings AE1 and AL1 are
only applied for the generation of the pinion. These corrections are
installed on the Gleason's cutting machine by “the change of machine center
to back” and "the sliding base”.

The correction AE., represents the shortest distance between the crossed

1
axes of the pinion and the gear; AE1 is called "the offset” in Gleason
terminology (Fig. 13.5).

The correction AL1 is installed at the machine as a vector-sum of: (i)
the change of machine center to back (CB) and (ii) the sliding base (SB)
(Fig. 13.6a,b). The change of machine center to back is directed parallel

to the pinion axis and the sliding base is directed parallel to the cradle

axis. It is evident that

ALy

cosyy

CB = , SB = AL, tany, (13.3)

Here, YR is the root cone angle; CB is the machine center to back; SB is

the sliding base.
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CONCLUSION
The authors proposed a method for generation of spiral bevel gears with
conjugated gear tooth surfaces with the following properties:
(1) The transformation of rotation is performed with zero or almost
zero kinematical errors.

(ii) The contact point of gear tooth surfaces (the center of instantaneous
contact ellipse) moves in a plane (7) of a constant orientation
that passes through the pitch line of the gears,

(iii) The normal to the contacting surfaces moves in the process of motion
in plane T keeping its original orientation.

(iv) It is expected that due to the motion of the contact ellipse along
but not across the gear tooth surfaces the contact ratio will be
increased and the conditions of lubrication improved.

The authors developed a method of parallel motion of a straight line by
two ellipses with related dimensions and orientation.

A TCA program for the simulation of meshing and bearing contact for the
proposed gears has been developed. The advantage of the proposed gearing is

that the gears can be manufactured by the Gleason's equipment.
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NUMERICAL EXAMPLE

Basic Machine Settings

Gear (LH) Pinion  (RH)

Both Sides Concave Convex
# of Teeth N 41 10 10
Mean Spiral Angle B 35° - ———
Dedendum Angle A 3°53/ ° 41 1 a4t
Mean Cone Dist. L 3.226 - ——
Cutter Radius r 3.957128371 3.895686894 4.034935029
Cutter Width W 0.08 ———- ——
Blade Angle a 20° 16.7979304880° 23.188994098°
Machine Root Angle| Yg | 72.4097056667° | 12.0236276667° | 12.0236276667°
Radial b | 3.37751754380 | 3.31529203349 | 3.45277453402
Setting Angle q | 73.6837239464° | 75.1337128849° | 71.9315208492°
Machine Offest AE 0 0.005082532914 |-0.009816930736
Mach. Ctr. to Back| Xy 0 ~0.00041258199 | 0.00062147078
Sliding Base Xg 0 -0.00008594705 0.00012946173
Ratio of Roll m | 0.973756061793 | 0.237501478486 | 0.23750147848
Orientation:Angle | € ———- -0.26906022362° | 0.22644169356°
Tilt i 0 0 0
Swivel j 0 0 0

20




cradle axis

= 72.4097°

'
gear axig
L'al
®
On
. ) |
| , o = 20
3 ‘?& /L \
N N
N / \
~
; .
| .
i \ W=0.08
™
N
! Q= 73.6837239464" g=35"
L=3.226

GEAR (LH

91




PINION (CONCAVE

cradle axis

4L, =0.004035307

A o
— = / va=12.0236% ;T 0.005082532914
-~
’ =~ ~——— — [ "“—““Z
: T A
/! [~ Ppinion
|
b‘:
! r
‘l
1
u
) _
y uibiuintiatutintuly Rebuiil y
,,L-— _________
/
7 |
/
/
/
/
/
/

9 =75.133712884

~

> -

axis

o = 16.7979304880°




PINION (CONVEX

cradle axis

ALI: 0.00607836819

= 12.02363

AEI= 0.009816930736

Z

/[
~‘h\

Pinion axig

/

Z
9= 71.9315208492

A =23.188994098°

93
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PURPOSE

To find the machine setting parameters for the generation of
spiral bevel gears.

s
O
=
m

This program is written in FORTRAN 77. It can be compiled by
V compiler in IBM mainframe or FORTRAN compiler in VAX system.

DESCRIPTION OF INPUT PARAMETERS

N A : JJ=1 for left—-hand gear, JJ=2 for right-hand gear
.. TNI1 : teeth number of pinion

TN2 : teeth number of gear

D1DG, DIMIN : dedendum angle of pinion (degree and arc minute,
respectively)

dedendum angle of gear (degree and arc minute,
respectively)

.
.
.

D2DG, D2MIN

.
.
.

... GAMADG : shaft angle (degree)
.. BPDG : mean spiral angle (degree)
.. RL : mean cone distance
..o W : point width for gear finishing
.. ALFAP : blade angle of gear cutter (degree)
... RCF1 : pinion cutter radius for pinion concave side
... RCF2 : pinion cutter radius for pinion convex side
DUP1 ¢ a chosen value for pinion concave side to locate the
main contact point at the desired location
.. DUP2 : a chosen value for pinion convex side to locate the
main contact point at the desired location
.. DUPFEP : a chosen value for pinion concave side to get the

desired direction of the contact path

DESCRIPTION OF OUTPUT PARAMETERS

. PHPDG : blade angle of gear cutter (degree)
.. PHFDG : blade angle of pinion cutter (degree)
... RCP : radius of gear cutter (measured on cradle plane)
.. RCF : radius of pinion cutter (measured on cradle plane)
.. TPDG : the difference between the sum of gear cone surface

angle coordinate and generating surface rotation
angle, and machine setting angle (degree) [see
equation (4.18) in report]
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the difference between the sum of pinion cone
surface angle coordinate and generating surface
rotation angle, and machine setting angle (degree)
[see equation (4.3) in report]

radial of gear cutter

radial of pinion cutter

machine setting angle of gear

machine setting angle of pinion

ratio of cradle angular velocity for cutting the
gear and gear angular velocity

ratio of cradle angular velocity for cutting the
pinion and pinion angular velocity

machine offset for cutting the pinion

vector-sum of (1) the change of machine center to
back and (2) the sliding base

generating surface rotation angle at initial main
contact point

rotation angle of frame h relative to frame f about
Z1

IMPLICIT REAL*8(A-H,0-2)

DATA TN1,TN2/10.D00, 41.D00/
DATA DI1DG,DIMIN/1.D0Q, 41.D00/
DATA D2DG,D2MIN/3.D00,53.D00/
DATA GAMADG,BPDG/90.D00,35.D00/
DATA RL/3.226D00/

DATA ALFAP/20.D00/

DATA RCF1/3.86707929616D00/

DATA RCF2/4.05714282715D00/

DATA DUP1/0.042787628358701D00/

DATA DUP2/-0.0377637374416016731D00/
DATA DUPFEP/-0.526309620098410257D00/

C CONVERT DEGREES TO RADIANS

CNST=4.DO0*DATAN (1.D00) /180.D00
D1=(D1DG+DIMIN/60.D00) *CNST
D2=(D2DG+D2MIN/60.D00) *CNST

C... TFDG
C
C
C...
C... BP
C... BF
C... QPDG
C... QFDG
C... MP2
C
C... MF1
C
C... DE1
C... DL1
C
C... FEEODG
C
C... DELTADG
C
C
C
C INPUT THE DESIGN DATA
C
DATA JJ/1/
DATA W/0.08D00/
C
C
BP=BPDG*CNST
C

C CALCULATE GAMAl AND GAMA2
C

GAMA=GAMADG*CNST
RM12=TN2/TN1
RM21=TN1/TN2
GMA1=DATAN (DSIN (GAMA) / (RM12+DCOS (GAMA)))
GMA2=DATAN (DSIN (GAMA) / (RM21+DCOS (GAMA) ))
IF(GMAl .LT. 0.)THEN

GMA1=180.*CNST+GMAL

END IF
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IF(GMA2 .LT. 0.)THEN
GMA2=180.*CNST+GMA2
END IF
C
C SUBSTITUTE SIN AND COS FUNCTION BY A SHORT NAME
c

SNBP=DSIN (BP)
CSBP=DCOS (BP)
SND1=DSIN(D1)
CSD1=DCOS (D1)
SNR1D1=DSIN(GMA1-D1)
CSR1D1=DCOS (GMA1-D1)
SNR1D2=DSIN (GMA1+D2)
CSR1D2=DC0S (GMA1+D2)
SNR2D2=DSIN (GMA2-D2)
CSR2D2=DC0S (GMA2-D2)
CSD2=DCO0S (D2)
SND2=DSIN (D2)
CSGM1=DCO0S (GMA1)
SNGM1=DSIN(GMA1l)
CSGM2=DC0S (GMA2)
SNGM2=DSIN (GMA2)

CALCULATE CUTTING RATIOS

aaon

RMP2=SNGM2/CSD2
RMF1=TN1*SNGM2/ (TN2*CSD2)

I1=1: THE PINION CONCAVE PART ANALYSIS, II=2: THE PINION CONVEX PART
ANALYSIS

OO0

DO 10000 I1=1,2
IF(I1 .EQ. 1)THEN
RCF=RCF1
DUP=DUP1

ELSE

RCF=RCF2
DUP=DUP2
END IF

CALCULATE PHP

eNeNe]

IF(I1 .EQ .1) THEN
PHP=ALFAP*CNST
ELSE
PHP=(180.DO0-ALFAP) *CNST
END IF
SNPHP=DSIN (PHP)
CSPHP=DCOS (PHP)

CALCULATE FEEP AT INITIAL MAIN CONTACT POINT

aan

A=CSD2*SNPHP-SND2*CSPHP*SNBP+DUP*SNBP/RL
IF(JJ .EQ. 2)THEN
=—A
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END IF
B=DUP*CSBP/RL-SND2*CSPHP*CSBP
C=SND2*CSPHP*CSBP
D=DSQRT (A*A+B*B—C*C)
E=C-B
F1=DATAN ({-A+D) /E)
F2=DATAN ((-A-D) /E)
IF(DABS(F1) .LT. DABS(F2)) THEN
FEE=2.D00*F1
ELSE
FEE=2.D00*F2
END IF
CSFEE=DCOS (FEE)
SNFEE=DSIN (FEE)
C
C CALCULATE TP
C
IF(JJ .EQ. 1)THEN
TP=90.D0O0*CNST~BP+FEE
ELSE
TP=270.D00*CNST+BP+FEE
END IF
SNTP=DSIN (TP)
CSTP=DCOS (TP)
C
C CALCULATE QP
C
IF(II .EQ. 1)THEN
IF(JJ .EQ. 1)THEN
D=DUPFEP*SNBP*SNTP+RL*CSD2*SNPHP*CSBP*SNFEE+RL*SND2*CSPHP
# *CSBP*CSBP
ELSE
D=DUPFEP*SNBP*SNTP-RL*CSD2*SNPHP*CSBP*SNFEE+RL*SND2*CSPHP
# *CSBP*CSBP
END IF
E=DUPFEP*CSBP*SNTP+RL*CSD2*SNPHP*CSBP*CSFEE-RL*SND2*CSPHP
#  *SNBP*CSBP
QP=DATAN (-E/D)
IF(QP .LT. 0.D00) THEN
QP=180.D00*CNST+QP
END IF
END IF
IF(JJ .EQ. 1)THEN
SNQPFE=DSIN (QP-FEE)
CSQPFE=DCOS (QP-FEE)
THP=90.D00*CNST+QP-BP
ELSE
SNQPFE=DSIN (QP+FEE)
CSQPFE=DCOS (QP+FEE)
THP=270.D00*CNST-QP+BP
END IF
SNTHP=DSIN (THP)

c
C CALCULATE RCP

c
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CMO=RL*CSD2*DSIN (QP) /DCOS (BP-QP)
IF(II .EQ. 1)THEN
RCP=CMO-W/2.0D00-RL*SND2*SNPHP/CSPHP
ELSE
RCP=CMO+W/2.D0O0-RL*SND2*SNPHP/CSPHP
END IF

CALCULATE RBP

eNeNe]

RBP=RL*CSD2*CSBP/DCOS (BP-QP)

CALCULATE UP

[eNeNe!

UP=(RCP*CSPHP/SNPHP+RL*SND2) *CSPHP+RBP* (SNPHP *SNQPFE-CSPHP*
#  SNTHP*SND2/CSD2) /SNTP

CALCULATE RN

oNeNe]

AN=-SNPHP*CSD2+CSPHP*CSTP*SND2
BN=CSPHP*SNTP

RN=DATAN (AN/BN)

SNRN=DSIN (RN)

CSRN=DCOS (RN)

CALCULATE DLTA

oNeNe!

A=CSGM1
B=-SNRN/CSRN
C=(SNGM1*SNR1D1-CSD2) /CSR1D1
X1=—B+DSQRT (A**2+B**2-C**2)
X2=~B-DSQRT (A**2+B**2-C**2)
Y=C-A
AE=X1/Y
BE=X2/Y
DLT2A=DATAN (AE)
DLT2B=DATAN (BE)
IF (DABS (DLT2A) .LT.DABS (DLT2B) ) THEN
DLTA=DLT2A*2.D00
ELSE
DLTA=DLT2B*2.D00
END IF
SNDLTA=DSIN (DLTA)
CSDLTA=DCOS (DLTA)

CALCULATE DETAP

aonon

AQ01=SND2/CSD2
BO1=—SNRN
DETAP=DATAN (A01/B01)

CALCULATE DTAF

aNeNe!

A211=CSGM1*SNR1D1/CSRID1-CSDLTA*SNGM1
B211=- (SNDLTA*CSRN+SNRN* (CSDLTA*CSGM1+SNGM1*SNR1D1/CSR1D1))
DETAF=DATAN (A211/B211)
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CSDTAF=DCOS (DETAF)
SNDTAF=DSIN (DETAF)
C
C CALCULATE Q
c
C calculate normal vector at main contact point in F coordinate system
C
RNXF2=SNPHP*CSD2-CSPHP*CSTP*SND2
RNYF2=CSPHP*SNTP
RNZF2=SNPHP*SND2+CSPHP*CSTP*CSD2
C
C calculate normal vector at main contact point in N coordinate system
C
RNYN2=-SNRN*RNXF2+CSRN*RNYF2
RNZN2=RNZF2

C
Q=DATAN2 (-RNZN2,-RNYN2)
QAP=Q-DETAP
QAF=Q-DETAF
SNQAP=DSIN (QAP)
CSQAP=DCOS (QAP)
SNQAF=DSIN (QAF)
CSQAF=DCOS (QAF)
C
C CALCULATE BF
C
BF=DSQRT ((CSQAP**2%CSD2**2*CSRN**2+SNQAP**2)
# / (CSQAF**2*CSD2%**2*CSRN**2+SNQAF**2) ) *RBP
C
C CALCULATE PO
C
RAP=RBP/ (CSD2*CSRN)
C

C calculute coordinate of main contact point in M coordinate system
C

RMXM2=RCP*CSPHP/SNPHP-UP*CSPHP

RMYM2=UP*SNPHP*SNTP-RBP*SNQPFE

RMZM2=UP*SNPHP*CSTP+RBP*CSQPFE
C
C calculute coordinate of main contact point in F coordinate system
C

RMXF2=CSD2*RMXM2-SND2*RMZM2+RL*SND2*CSD2

RMYF2=RMYM2

RMZF2=SND2*RMXM2+CSD2*RMZM2+RL*SND2*SND2

C
C calculute coordinate of main contact point in N coordinate system
c

RMXN2=CSRN*RMXF2+SNRN*RMYF2
RMYN2=-SNRN*RMXF2+CSRN*RMYF2
RMZN2=RMZF2

AG=-RAP*SNQAP

BG=RBP*CSQAP
CG=RMYN2*DSIN (Q) ~RMZN2*DCO0S (Q)
G11=—-BG+DSQRT (AG**2+BG**2-CG**2)
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G22=-BG-DSQRT (AG**2+BG**2-CG**2)
G33=CG-AG
PO1=DATAN(G11/G33)
P02=DATAN(G22/G33)
1F (DABS (PO1) .LT.DABS (P02)) THEN
PO=P02%2.D00
ELSE
PO=P01%*2.D00
END IF
SNPO=DSIN (P0O)
CSP0=DCOS (P0O)

C
C CALCULATE FO
C
AF=BF/ (CSD2*CSRN)
RNF=BF**2
RMF=AF*%*2
DD11=RAP*SNQAP*CSPO-RBP*CSQAP*SNPOQ
DD22=RAP*SNQAP*SNPO+RBP*CSQAP*CSPQ
S$5S8= (AF*SNQAF) **2+ (BF*CSQAF) **2
CSFO= (AF*DD11*SNQAF+BF*DD22*CSQAF) /SSS
SNFO= (AF*DD22*SNQAF-BF*DD1 1*CSQAF) /SSS
FO=DATAN2 (SNFQ,CSF0)
C
C CALCULATE QF
c
AA22=-SNDLTA*CSGM1*SNRN+CSDLTA*CSRN
AA23=-SNDLTA*SNGM1
AA32=SNRN* (CSDLTA*CSGM1*SNR1D1-SNGM1*CSR1D1)+CSRN*SNDLTA*SNR1D1
AA33=CSGM1*CSR1D1+CSDLTA*SNGM1*SNR1D1
BB22=AF* (CSDTAF*CSFO-SNDTAF*SNFO*CSRN*CSD2)
BB33=AF* (SNDTAF*CSFO+CSDTAF*SNFO*CSRN*CSD2)
UUU=~(AA22%BB22+AA23*BB33)
DDD=AA32*BB22+AA33*BB33
QFFE=DATAN2 (UUU, DDD)
QF=QFFE
SNQF=DSIN(QF)
CSQF=DCOS (QF)
SNQFFE=DSIN (QFFE)
CSQFFE=DCOS (QFFE)
C
C calculate normal vector at main contact point in H coordinate system
C
RNXH2= (CSDLTA*CSGM1*CSGM1+SNGM1 *SNGM1) *RNXF2-SNDLTA*CSGM1*RNYF2
# +CSGM1*SNGM1* (1.D00-CSDLTA) *RNZF2
RNYH2=SNDLTA*CSGM1*RNXF2+CSDLTA*RNYF2-SNDLTA*SNGM1*RNZF2
RNZH2=CSGM1*SNGM1* (1.D0O0-CSDLTA) *RNXF2+SNDLTA*SNGM1*RNYF2+
# (CSDLTA*SNGM1*SNGM1+CSGM1*CSGM1) *RNZF2
C
C CALCULATE PHF
C
PHF=DASIN (CSD1*RNXH2-SND1*RNZH2)
IF(II .EQ. 2)THEN
PHF=180.D00*CNST~PHF
END IF
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SNPHF=DSIN (PHF)
CSPHF=DCOS (PHF)

C calculute coordinate of main contact point in H coordinate system
RMXH2= (CSDLTA*CSGM1*CSGM1+SNGM1*SNGM1) *RMXF2-SNDLTA*CSGM1*RMYF2
RMYH2=SNDLTA*CSGM1*RMXF2+CSDLTA*RMYF2-SNDLTA*SNGM1*RMZF2
RMZH2=CSGM1*SNGM1* (1.D0O0~CSDLTA) *RMXF2+SNDLTA*SNGM1*RMYF2+

UF=(RCF*CSPHF/SNPHF-RMXH2*CSD1+RMZH2*SND1-RL*SND1) /CSPHF

C
C CALCULATE TF
C
IF(II .EQ. 2)THEN
TF=DATAN2 (-RNYH2, —SND1*RNXH2-CSD1*RNZH2)
ELSE
TF=DATAN2 (RNYH2,SND1*RNXH2+CSD1*RNZH2)
END IF
SNTF=DSIN (TF)
CSTF=DCOS (TF)
C
C CALCULATE THF
C
THF=TF+QFFE
SNTHF=DSIN (THF)
CSTHF=DCOS (THF)
C
C CALCULATE UF
C
c
# +CSGM1*SNGM1* (1.DO0-CSDLTA) *RMZF2
# (CSDLTA*SNGM1*SNGM1+CSGM1*CSGM1) *RMZF2
C
C
C CALCULATE DE1,DL1
C
DE1=RMYH2-UF*SNPHF*SNTF+BF*SNQFFE
DL1=DE1*CSTF/SNTF
C

C CONVERT RADIANS TO DEGREES

C
PHPDG=PHP/CNST
TPDG=TP/CNST
QPDG=QP/CNST
RNDG=RN/CNST
DLTADG=DLTA/CNST
DTAPDG=DETAP/CNST
DTAFDG=DETAF/CNST
QDG=Q/CNST
PODG=P0/CNST
FODG=F0/CNST
QFDG=QF /CNST
PHFDG=PHF/CNST
TFDG=TF/CNST
FEEDG=FEE/CNST
WRITE (6 ,60000)
WRITE (6,60001)
WRITE (6,60002)
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IF(I1.EQ.1) THEN

WRITE (6,60003)

ELSE

WRITE(6,60004)

END IF
WRITE (6,60002)
WRITE(6,60001)

WRITE (6,60000)
WRITE (6,90001)
WRITE (6,90002) PHPDG, PHFDG,RCP,RCF, TPDG, TFDG
WRITE(6,90003)RBP,BF,QPDG,QFDG,RMP2,RMF1,DE1,DL1,FEEDG,DLTADG
WRITE (6, 1) RNDG

WRITE(6,20001)
WRITE(6,20002) DTAPDG, PODG,RBP,RAP
WRITE(6,20003)
10000 WRITE(6,20004)DTAFDG,FODG, BF, AF
90003 FORMAT(1H ,'BP =' G18.12,15X, 'BF =',G18.12,/
# 1H ,'QPDG =',G18.12,15%,'QFDG =',G18.12,/
# 1H , 'MP2 =',G18.12,15%, 'MF1 =',G18.12,/
# 1§ ,'DE1 =',G18.12,15X,'DL1 =',G18.12,/
# 14 ,'FEEODG=',G18.12,15X, 'DELTA =',G18.12/)
1 FORMAT(1H ,'ROTATION ANGLE OF RN =',G18.12/)
20001 FORMAT(1H ,' GEAR CRADLE ELLIPSE PARAMETER D)
20002 FORMAT(1H ,'GEAR ELLIPSE ORIENTATION=',G24.17,/
# 1H ,'INITIAL POSITION=',G24.17,/
# 1H , 'MINOR AXIS=',G24.17,5X,'MAJOR AXIS=',G24.17/)
20003 FORMAT(1H ,' PINION CRADLE ELLIPSE PARAMETER h)
20004 FORMAT(1H ,'PINION ELLIPSE ORIENTATION=',G24.17,/
# 1H ,'INITIAL POSITION=',G24.17,/
# 1H ,'MINOR AXIS=',G24.17,5X,'MAJOR AXIS=',G24.17/)
60000 FORMAT (1H1,' ')
60001 FORMAT ( 1H s ¥ e de e St P ol st S vl Sl S Yo v s Sk Y de o et e e s S s e e e de s e e e s e e e e e de st e e e )
60002 FORMAT(1H ,'* *)
60003 FORMAT(1H ,'* CONCAVE PINION PART ANALYSIS ')
60004 FORMAT(1H ,'* CONVEX PINION PART ANALYSIS *1)

90001 FORMAT(1H ,'GEAR PARAMETER',27X,'PINION PARAMETER')
90002 FORMAT(1H ,'PHPDG =',G18.12,15X,'PHFDG =',G18.12,/
# 1H ,'RCP  =',G18.12,15X,'RCF  =',G18.12,/
# 1H ,'TPDG =',G18.12,15X,'TFDG =',G18.12)
END
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Tooth contact analysis of spiral bevel gears

This program is written in FORTRAN 77. It can be compiled by
V compiler in IBM mainframe.

This program calls ZSPOW, a subroutine of IMSL package.

DESCRIPTION OF INPUT PARAMETERS

JJ=1 for left-hand gear, JJ=2 for right—-hand gear
II=1 for pinion concave side, 1I=2 for pinion convex
side

teeth number of pinion

teeth number of gear

dedendum angle of pinion (degree and arc minute,
respectively)

dedendum angle of gear (degree and arc minute,
respectively)

shaft angle (degree)

mean cone distance

blade angle of gear cutter (degree)

blade angle of pinion cutter (degree)

radius of gear cutter (measured on cradle plane)
radius of pinion cutter (measured on cradle plane)
the difference between the sum of gear cone surface
angle coordinate and generating surface rotation
angle, and machine setting angle (degree) [see
equation (4.18) in report]

the difference between the sum of pinion cone
surface angle coordinate and generating surface
rotation angle, and machine setting angle (degree)
[see equation (4.3) in report]

radial of gear cutter

radial of pinion cutter

machine setting angle of gear

machine setting angle of pinion [ALWAYS consider it
as a POSITIVE input even it is negative gotten from
the output of maching setting program

ratio of cradle angular velocity for cutting the
gear and gear angular velocity
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C.. MF1 : ratio of cradle angular velocity for cutting the
C pinion and pinion angular velocity

C.. DE1 : machine offset for cutting the pinion

C... DL1 : vector-sum of (1) the change of machine center to
C back and (2) the sliding base

C.. FEEODG : generating surface rotation angle at initial main
C contact point

C... DELTADG : rotation angle of frame h relative to frame f about
C zZ1

C... DFEPDG : increment of FEPDG

C

IMPLICIT REAL*8(A-H,0-2Z)
INTEGER NSIG, IER, ITMAX,M,MLOOP,N1,N2,N5,NSIG1
REAL*8 PAR5(5),X(5),FNORM5,WK5(75) ,MP2,MF1
EXTERNAL FCN1,FCN2
COMMON/A1/CNST
COMMON/A2/DE1,DL1,RCP,RL,RCF,PHFDG
COMMON/A3/SNPHF,CSPHF,SNR1D1,CSR1D1, SNBP,CSBP,SNR1D2,CSR1D2
COMMON/A4 /W,ECENDG,DISTEC
COMMON/A5/SNGM1,CSGM1,GMAL, SNGM2,CSGM2, SND2,CSD2, SND1,CSD1
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF, CSTF, TF, TFDG
COMMON/A7/SNDLTA,CSDLTA, SNPHP,CSPHP, SNR2D2,CSR2D2, DLTADG
COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A14/SNRN, CSRN,RNDG,RN
COMMON/A18/SNQP,CSQP,QPDG, SNQF, CSQF, QFDG, QP, QF ,QPO, QF0
COMMON/A27/XF1,YF1,ZF1,XF2,YF2,ZF2
COMMON/A32/AYN,AZN,BYN,BZN,CYN,CZN,DYN,DZN,RMYN,RMZN
COMMON/A33/PHP1,PHF1,PHP2,PHF2,PHP1DG, PHF1DG, PHP2DG, PHF2DG
COMMON/A34/FE1,SNFE1,CSFE1, FE2,SNFE2,CSFE2,FEP,FE221,FE111,
# FEPDG, FEFDG,F111DG,F221DG :
COMMON/A35/SNTHP,CSTHP, SNTHF ,CSTHF , THPDG, THFDG
COMMON/A36/RK12,RK22,RK11,RK21,UTX11,UTX12,UTY11,0TY12,UTZ11,
# UTZ12,UTX21,UTX22,UTY21,UTY22,UTZ21,UTZ22
COMMON/A37/RNXF2,RNYF2,RNZF2,RNXF1,RNYF1,RNZF1
COMMON/A38/DEF, SIGMDG, ALPHDG, AXISA, AXISB,ERROR
COMMON/A40/GMENRA, PMENR1 , PMENR2
COMMON/A49/SNQAP, CSQAP, SNQAF, CSQAF
COMMON/A55/DETAP, DETAF, SNDTAP,CSDTAP , SNDTAF, CSDTAF , DTAPDG, DTAFDG
COMMON/A77/Q,QDG, PODG, FODG, PMIN,PMAX, FMIN, FMAX
C
C INPUT DATA
C
JI=1
I1=1
TN1=10.D00
TN2=41.D00
D1DG=1.D00
DIMIN=41.D00
D2bG=3.D00
D2MIN=53.D00
GAMADG=90.D00
RL=3.226D00
PHPDG=20. 0D00
PHFDG=16.7979304880D00 /
RCP=3.83760775903D00
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C END

[eNe]
P

eNeNe]

RCF=3.86707929616D00
TPDG=53.0019620800D00
TFDG=51.5519731416D00
BP=3.37751754380D00
BF=3.31529203349D00
QPDG=73.6837239464D00
QFDG=77.1317508049D00
MP2=.973756061793D00
MF1=.237501478486D00
DE1=0.508253291408D-02
DL1=0.403530720434D-02
FEPODG=-1.9980379199559D00
DLTADG=-.269060223623D00
DFEPDG=1.00D00

OF INPUT DATA

DEF=0.00025D00
N5=5

NSIG1=12
ITMAX=200
RBP=BP
RMP2=MP2
RMF1=MF1

CONVERT DEGREE TO RADIANS

CNST=4.DO0*DATAN (1.D00) /180.D00
GAMA=GAMADG*CNST

QP=QPDG*CNST

PHP=PHPDG*CNST

PHF=PHFDG*CNST

TP=TPDG*CNST

TF=TFDG*CNST

DLTA=DLTADG*CNST

QF=QFDG*CNST

FEPO=FEPODG*CNST

FEF0=0.D00

D1=(D1DG+DIMIN/60.D00) *CNST

D2= (D2DG+D2MIN/60.D00) *CNST
RM12=TN2/TN1

RM21=TN1/TN2

GMA1=DATAN (DSIN (GAMA) / (RM12+DCOS (GAMA)))
GMA2=DATAN (DSIN (GAMA) / (RM21+DCOS (GAMA)))
M=(360.D00/ (2.0D00*TN2) ) /DFEPDG

CALL HEAD1(JJ,II)

SUBSTITUTE SIN AND COS FUNCTION BY A SHORT NAME

SND1=DSIN (D1)
CSD1=DC0S (D1)
SNR1D1=DSIN(GMA1-D1)
CSR1D1=DCOS (GMA1-D1)
SNR1D2=DSIN (GMA1+D2)
CSR1D2=DCOS (GMA1+D2)
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SNR2D2=DSIN (GMA2~-D2)
CSR2D2=DCOS (GMA2~D2)
CSD2=DCOS (D2)
SND2=DSIN(D2)
CSGM1=DCOS (GMA1)
SNGM1=DSIN (GMA1l)
CSGM2=DCOS (GMA2)
SNGM2=DSIN (GMA2)
SNPHP=DSIN (PHP)
CSPHP=DCOS (PHP)
SNQP=DSIN (QP)
CSQP=DCOS (QP)
SNTP=DSIN (TP)
CSTP=DCOS (TP)
SNDLTA=DSIN (DLTA)
CSDLTA=DCOS (DLTA)
SNQF=DSIN (QF)
CSQF=DCOS (QF)
SNPHF=DSIN (PHF)
CSPHF=DCOS (PHF)
SNTF=DSIN (TF)
CSTF=DCOS (TF)

C..
C.. TOOTH CONTACT ANALYSIS
C... DETERMINATION OF THE KINEMATICAL ERROR, BEARING CONTACT
C..
TPO=TP
TFO=TF
QP0=QP
QF0=QF
RINITP=M*DFEPDG
FEP=-RINITP*CNST+FEPO
C... INITIAL GUASS FOR ZSPOW
X(1)=TFO
X(2)=TPO

X (3)=-RINITP*CNST+FEF0

X (4)=0.0D00*CNST

X (5)=0.0DO0*CNST

MLOOP=M*2+1

MLOOPO=M+1

DO 99 J=1,MLOOPO

IF(JJ .EQ. 1)THEN

CALL ZSPOW(FCN1,NSIG1,N5,ITMAX,PARS, X, FNORM5,WK5, IER)
ELSE

CALL ZSPOW(FCN2,NSIG1,N5,ITMAX,PARS, X, FNORM5,WK5, IER)
END IF

CALL ANGLE (X(1))

CALL ANGLE(X(2))

CALL ANGLE(X(3))

CALL ANGLE(X(4))

CALL ANGLE(X(5))

FEF=X(3)

FE2=(FEP-FEPOQ) /RMP2

FE1=(FEF-FEFOQ) /RMF1

FE111=X(4)
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99

FE221=X(5)
FE2PR=FE2-FE221
FEIPR=FE1-FE111
FEPDG=FEP/CNST
FE1PRD=FE1PR/CNST
FE2PRD=FE2PR/CNST
FEP=FEP+DFEPDG*CNST
CONTINUE

FE1PRO=FE1PR
FE2PRO=FE2PR
RINITP=M*DFEPDG
FEP=—RINITP*CNST+FEPO
QP0=QPO

QF0=QF0

INITIAL GUASS FOR ZSPOW
X(1)=TFO

X(2)=TPO

X (3)=-RINITP*CNST+FEFOQ
X(4)=0.0D0O0*CNST
X(5)=0.0D00*CNST
MLOOP=M*2+1

DO 88 J=1,MLOOP

IF(JJ .EQ. 1)THEN

CALL ZSPOW(FCN1,NSIG1,N5,ITMAX,PARS,X, FNORM5,WK5, IER)

ELSE

CALL ZSPOW(FCN2,NSIG1,N5, ITMAX,PAR5,X,FNORM5,WK5, IER)

END IF
CALL ANGLE(X(1))
CALL ANGLE (X(2))
CALL ANGLE(X(3))
CALL ANGLE (X (4))
CALL ANGLE(X(5))
FEF=X(3)

FE2= (FEP-FEPO) /RMP2
FE1= (FEF-FEFQ) /RMF1
SNFE1=DSIN (FE1)
CSFE1=DCOS (FE1)
SNFE2=DSIN (FE2)
CSFE2=DCO0S (FE2)
SNTF=DSIN(X(1))
CSTF=DCOS (X (1))
SNTP=DSIN(X(2))
CSTP=DCOS (X (2))
FE111=X(4)
FE221=X(5)
FE2PR=FE2-FE221
FE1PR=FE1-FEl11

ERROR= (FE2PR*3600.D00-FE2PR0*3600.D00- (FE1PR*3600.D00-FE1PRO*

# 3600.D00) *TN1/TN2) /CNST
TFDG=X (1) /CNST
TPDG=X(2) /CNST
FEFDG=X (3) /CNST
FEPDG=FEP/CNST
F111DG=FE111/CNST
F221DG=FE221/CNST
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FE1PRD=FE1PR/CNST
FE2PRD=FE2PR/CNST

C... DETERMINATION OF THE BEARING CONTACT
C

CALL FNORM(DN1XTH,DN1XFE,DN1YTH,DN1YFE,DN1ZTH,DN1ZFE)
CALL PNORM(DN2XTH,DN2XFE,DN2YTH,DN2YFE,DN2ZTH,DN2ZFE)
CALL DUP (UPP,DUPTHP,DUPFEP)

CALL DUF (UFF,DUFTHF,DUFFEF)

CALL DR2(UPP,DUPTHP,DUPFEP,DX2THP,DX2FEP,DY2THP,DY2FEP,
# DZ2THP,DZ2FEP)

CALL DR1(UFF,DUFTHF,DUFFEF,DX1THF,DX1FEF,DY1THF,DY1FEF,
# DZ1THF ,DZ1FEF)

CALL PC(DN2XTH,DN2XFE,DX2THP ,DX2FEP,DN2YTH,DN2YFE,DY2THP,
# DY2FEP,X12,X22,RK12,RK22)

CALL PC(DN1XTH,DN1XFE,DX1THF,DX1FEF,DN1YTH,DN1YFE,DY1THF,
# DY1FEF,X11,X21,RK11,RK21)

CALL PD(DX2THP,DX2FEP,DY2THP,DY2FEP,DZ2THP,DZ2FEP,X12,
# PDX12,PDY12,PDZ12)

CALL PD(DX2THP,DX2FEP,DY2THP,DY2FEP,DZ2THP,DZ2FEP,X22,
# PDX22,PDY22,PDZ22)

CALL PD(DX1THF,DX1FEF,DY1THF,DY1FEF,DZ1THF,DZ1FEF,X11,
# PDX11,PDY11,PDZ11)

CALL PD(DX1THF,DX1FEF,DY1THF,DY1FEF,DZ1THF,DZ1FEF,X21,
# PDX21,PDY21,PDZ21)

CALL UNIT(PDX11,PDY11,PDZ11,UNIT11,UX11,UY11,UZ11)

CALL UNIT(PDX21,PDY21,PDZ21,UNIT21,UX21,UY21,UZ21)

CALL UNIT(PDX12,PDY12,PDZ12,UNIT12,UX12,UY12,UZ12)

CALL UNIT(PDX22,PDY22,PDZ22,UNIT22,UX22,UY22,UZ22)

CALL UTRAN1(UX11,UY11,UZ11,UTX11,UTY11,UTZ11)

CALL UTRAN1(UX21,UY21,0UZ21,UTX21,UTY21,UTZ21)

CALL UTRAN2(UX12,UY12,UZ12,UTX12,UTY12,UTZ12)

CALL UTRAN2(UX22,UY22,UZ22,UTX22,UTY22,UTZ22)

CALL AXIS(SIGMDG,AXISA,AXISB,ALPH,ALPHDG)

CALL WRITE2

FEP=FEP+DFEPDG*CNST

88 CONTINUE
STOP
.END

C..., (Hkdick SUBROUTINE ANGLE Fdedededk
C

SUBROUTINE ANGLE (X)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/A1/CNST
CNST2=2.D00*CNST*180.D00
M=X/CNST2

RM=M

X=X-RM*CNST2

RETURN

END

R bt SUBROUTINE FCN1 Fededkdk

SUBROUTINE FCN1(X,F,N5,PARS5)
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IMPLICIT REAL*8 (A-H,0-2)

INTEGER N5

REAL*8 X(N5),F(N5),PAR5(N5)

COMMON/A1/CNST

COMMON/A2/DE1,DL1,RCP,RL,RCF, PHFDG
COMMON/A3/SNPHF, CSPHF, SNR1D1,CSR1D1, SNBP,CSBP, SNR1D2,CSR1D2
COMMON/A5/SNGM1,CSGM1,GMA1, SNGM2,CSGM2, SND2,CSD2, SND1,CSD1
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF, CSTF, TF, TFDG
COMMON/A7/SNDLTA,CSDLTA, SNPHP , CSPHP, SNR2D2, CSR2D2, DLTADG
COMMON/A12/UF ,BF,RBP,UP,RMF1,RMP2
COMMON/A18/SNQP,CSQP, QPDG, SNQF, CSQF, QFDG, QP, QF ,QP0, QF0
COMMON/A27/XF1,YF1,ZF1,XF2,YF2,ZF2
COMMON/A34/FE1,SNFE1,CSFE1, FE2, SNFE2,CSFE2, FEP,FE221,FE111,
# FEPDG, FEFDG,F111DG,F221DG
COMMON/A35/SNTHP ,CSTHP, SNTHF, CSTHF, THPDG, THFDG
COMMON/A37/RNXF2,RNYF2 ,RNZF2,RNXF1,RNYF1,RNZF1

QF=QF0-X(3)

SNQF=DSIN (QF)

CSQF=DCOS (QF)

QP=QPO-FEP

SNQP=DSIN (QP)

CSQP=DCOS (QP)

FE111=X(4)

FE221=X(5)

SN221=DSIN(FE221)

CS221=DCOS (FE221)

SN111=DSIN(FE111)

CS111=DCOS(FE111)

SNTF=DSIN(X (1))

CSTF=DCOS (X (1))

SNTP=DSIN(X(2))

CSTP=DCOS (X(2))

THF=X (1) +QF

THP=X (2) +QP

THFDG=THF /CNST

THPDG=THP /CNST

SNTHF=DSIN (THF)

CSTHF=DCOS (THF)

SNTHP=DSIN (THP)

CSTHP=DCOS (THP)
UF1=((RCF*CSPHF/SNPHF-RL*SND1-DL1*SNR1D1/CSR1D1) *CSPHF*SNTF+
# BF* (SNPHF*SNQF+CSPHF*SNTHF* (RMF1-SNR1D1) /CSR1D1)-DE1*(
# SNPHF-CSPHF*CSTF*SNR1D1/CSR1D1)) /SNTF
XH1=(CSGM1*CSR1D1*CS111+SNGM1*SNR1D1) * (RCF*CSPHF/SNPHF-UF1*
# CSPHF-RL*SND1) +BF* (CSGM1* (SNQF*SN111-CSQF*CS111%*

# SNR1D1)+SNGM1*CSQF*CSR1D1) +DL1%* (SNGM1*CSR1D1-CSGM1*

# SNR1D1*CS111)-SN111*DE1*CSGM1-UF1*SNPHF* (CSGM1* (SNTF*
# SN111+CSTF*CS111*SNR1D1)-SNGM1*CSTF*CSR1D1)
YH1=CSR1D1*SN111%* (RCF*CSPHF/SNPHF-UF1*CSPHF-RL*SND1) ~BF* (
# SNQF*CS111+CSQF*SN111*SNR1D1)-DL1*SNR1D1*SN111+DE1*

# CS111+UF1*SNPHF* (SNTF*CS111-CSTF*SN111*SNR1D1)
ZH1A=(CSGM1*SNR1D1-SNGM1*CSR1D1*CS111) * (RCF*CSPHF/SNPHF-UF1*
# CSPHF)+RL*SND1* (SNGM1*CSR1D1*CS111-CSGM1*SNR1D1) -BF* (SNGM1
# *(SNQF*SN111-CSQF*CS111*SNR1D1) -CSGM1*CSQF*CSR1D1) +

# DL1* (SNGM1*SNR1D1*CS111+CSGM1*CSR1D1)+DE1*SN111*SNGM1
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ZH1=ZH1A+UF1*SNPHF* (SNGM1* (SNTF*SN111+CSTF*CS111*SNR1D1)+CSGM1*
#. CSTF*CSR1D1)
XF1=(CSDLTA*CSGM1**2+SNGM1**2) *XH1+SNDLTA*CSGM1*YH1+ (1.0D0O-
# CSDLTA) *CSGM1*SNGM1*ZH1
YF1=-SNDLTA*CSGM1*XH1+CSDLTA*YH1+SNDLTA*SNGM1*ZH1
ZF1=(1.0D00~-CSDLTA) *CSGM1*SNGM1*XH1-SNDLTA*SNGM1*YH1+
# (CSDLTA®SNGM1**2+CSGM1**2) *ZH1 .
XF2A=RBP* (CSPHP*SNTHP*SND2/CSD2-SNPHP*SNQP) * (CSPHP*CSR2D2
E: *CSGM2%*CS221/SNTP+CSPHP*SNR2D2*SNGM2/SNTP-SNR2D2*SNPHP *
i CSGM2*CS221*CSTP/SNTP+SNPHP*CSR2D2*SNGM2*CSTP/SNTP-SNPHP*
# CSGM2*SN221)+CSPHP*CSGM2* (RCP*CSPHP+RL*SNPHP*SND2) * (SNTP*
# SN221+CSTP*CS221*SNR2D2)
XF2=XF2A+RBP*CSGM2* (SNQP*SN221+CSQP*CS221%*SNR2D2) +RL*SND2*
# (CSGM2*CSR2D2*CS221+SNGM2*SNR2D2) ~RBP*CSR2D2*CSQP*SNGM2
i +CSGM2*CSPHP*CSR2D2*(CS221%* (RCP*SNPHP-RL*CSPHP*SND2) -RCP*
# CSPHP*SNGM2* (CSPHP*CSR2D2*CSTP—SNPHP*SNR2D2) -RL*CSPHP *SND2
E: *SNGM2* (SNPHP*CSR2D2*CSTP+CSPHP*SNR2D2)
YF2=CSPHP*CSR2D2*SN221* (RL*CSPHP*SND2-RCP*SNPHP) +RBP* (SNPHP*
# SNQP-CSPHP*SNTHP*SND2/CSD2) * (SNPHP*CS221-SNPHP*SNR2D2*
# SN221*CSTP/SNTP+CSPHP*CSR2D2*SN221/SNTP) —-RBP* (SNQP*(CS221
# +CSQP*SN221*SNR2D2) ~RL*SND2*SN221*CSR2D2+CSPHP* (RCP*
# CSPHP+RL*SNPHP*SND2) * (SNTP*CS221-CSTP*SNR2D2*SN221)
ZF2A=RBP* (SNPHP *SNQP~CSPHP *SNTHP*SND2/CSD2) * (CSPHP*SNR2D2*
# CSGM2/SNTP-CSPHP*CSR2D2*SNGM2%*CS221/SNTP+SNR2D2*SNPHP *
# SNGM2*(CS221*CSTP/SNTP+SNPHP*CSR2D2*CSGM2*CSTP/SNTP+SNPHP*
# SNGM2*SN221) -RBP*SNGM2* (SNQP*SN221-CSQP*(CS221*SNR2D2)
# +RBP*CSR2D2*CSQP*CSGM2
ZF2=ZF2A+SNGM2*CSPHP* (SNTP*SN221+CSTP*SNR2D2*CS221) * (RCP*CSPHP
# +RL*SNPHP*SND2) +SNGM2*CSR2D2*CS221* (RCP*CSPHP*SNPHP-RL*
# SND2*CSPHP**2) +RCP*CSGM2*CSPHP* (CSPHP*CSR2D2*CSTP-SNPHP*
# SNR2D2) +RL*CSPHP*SND2*CSGM2* (CSPHP*SNR2D2+SNPHP*CSR2D2*
# CSTP) +RL*SND2* (SNGM2*CSR2D2*CS221-SNR2D2*CSGM2)
RNXF2=CSPHP*CSGM2*SNTP*SN221+SNPHP* (SNGM2*SNR2D2+CSGM2*CSR2D2*
# CS221)-CSPHP*CSTP* (SNGM2*CSR2D2-CSGM2*SNR2D2*(CS221)
RNYF2=CSPHP*CS221*SNTP-SN221* (SNPHP*CSR2D2+CSPHP*SNR2D2*CSTP)
RNZF2=CSPHP*CSTP* (CSGM2*CSR2D2+SNGM2*SNR2D2*CS221) +SNPHP* (

# SNGM2*CSR2D2*CS221-CSGM2*SNR2D2) +CSPHP*SNGM2*SN221*SNTP
RNXH1=-CSPHF*CSGM1*SNTF*SN111+SNPHF* (SNGM1*SNR1D1+CSGM1*

# CSR1D1*CS111)+CSPHF*CSTF* (SNGM1*CSR1D1-CSGM1*SNR1D1*

# CS111)

RNYH1=CSPHF*SNTF*CS111+SN111*(SNPHF*CSR1D1-CSPHF*SNR1D1*CSTF)
RNZH1=CSPHF*CSTF* (CSGM1*CSR1D1+SNGM1*SNR1D1*CS111)+SNPHF* (

# CSGM1*SNR1D1-SNGM1*CSR1D1*CS111) +CSPHF*SNGM1*SNTF*SN111
RNXF1=(CSDLTA*CSGM1**2+SNGM1**2) *RNXH1+SNDLTA*CSGM1*RNYH1+
i (1.D00-CSDLTA) *CSGM1*SNGM1*RNZH1

RNYF1=-SNDLTA*CSGM1*RNXH1+CSDLTA*RNYH1+SNDLTA*SNGM1*RNZH1

RNZF1=(1.D00-CSDLTA) *CSGM1*SNGM1 *RNXH1-SNDLTA*SNGM1*RNYH1+
# (CSDLTA*SNGM1**2+CSGM1**2) *RNZH1

F(1)=XF1-XF2

F(2)=YF1-YF2

F(3)=ZF1-ZF2

F (4) =RNXF1-RNXF2

F (5)=RNYF1-RNYF2

RETURN

END
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eNeNe!

e SUBROUTINE FCNZ dededeh st

SUBROUTINE FCN2(X,F,N5,PARS)

IMPLICIT REAL*8(A-H,0-Z)

INTEGER N5
REAL*8 X(N5),F(N5),PAR5 (N5)

COMMON/A1/CNST
COMMON/A2/DE1,DL1,RCP,RL,RCF,PHFDG
COMMON/A3/SNPHF, CSPHF,SNR1D1,CSR1D1, SNBP,CSBP,SNR1D2,CSR1D2
COMMON/A5/SNGM1,CSGM1,GMAL, SNGM2,CSGM2, SND2,CSD2, SND1,CSD1
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A7/SNDLTA, CSDLTA, SNPHP , CSPHP, SNR2D2,CSR2D2, DLTADG

COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A18/SNQP,CSQP,QPDG, SNQF , CSQF,, QFDG, QP,QF,QP0, QFO0
COMMON/A27/XF1,YF1,ZF1,XF2,YF2,ZF2
COMMON/A34/FE1,SNFE1,CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FEl111,
# FEPDG, FEFDG,F111DG, F221DG
COMMON/A35/SNTHP, CSTHP, SNTHF,, CSTHF, THPDG, THFDG
QF=QF0+X (3)

SNQF=DSIN (QF)

CSQF=DCOS (QF)

QP=QPO+FEP

SNQP=DSIN (QP)

CSQP=DCOS (QP)

FE111=X(4)

FE221=X(5)

SN221=DSIN(FE221)

CS221=DCOS (FE221)

SN111=DSIN(FE111)

CS111=DCOS(FE111l)

SNTF=DSIN (X (1))

CSTF=DCOS (X (1))

SNTP=DSIN(X(2))

CSTP=DCOS (X (2))

THF=X (1) -QF

THP=X (2) -QP

THFDG=THF/CNST

THPDG=THP/CNST

SNTHF=DSIN (THF)

CSTHF=DCOS (THF)

SNTHP=DSIN (THP)

CSTHP=DCOS (THP)

UF 1= ( (RCF*CSPHF/SNPHF-RL*SND1-DL1*SNR1D1/CSR1D1) *CSPHF*SNTF+
# BF* (-SNPHF*SNQF+CSPHF*SNTHF* (RMF1-SNR1D1) /CSR1D1) -DE1* (
# SNPHF-CSPHF*CSTF*SNR1D1/CSR1D1)) /SNTF

XH1=(CSGM1*CSR1D1*CS111+SNGM1*SNR1D1) * (RCF*CSPHF/SNPHF-UF1*
# CSPHF-RL*SND1) +BF* (CSGM1* (~SNQF*SN111-CSQF*CS111*

# SNR1D1) +SNGM1*CSQF*CSR1D1) +DL1* (SNGM1*CSR1D1-CSGM1*
# SNR1D1*CS111)~SN111*DE1*CSGM1-UF1*SNPHF* (CSGM1* (SNTF*
# SN111+CSTF*CS111*SNR1D1)~SNGM1*CSTF*CSR1D1)

YH1=CSR1D1*SN111%* (RCF*CSPHF/SNPHF-UF1*CSPHF-RL*SND1) -BF*(

# -SNQF*CS111+CSQF*SN111*SNR1D1)-DL1*SNRI1D1*SN111+DE1*
# CS111+UF1*SNPHF* (SNTF*CS111-CSTF*SN111*SNR1D1)
ZH1A= (CSGM1*SNR1D1-SNGM1*CSR1D1*CS111) * (RCF*CSPHF/SNPHF-UF1*
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# CSPHF) +RL*SND1* (SNGM1*CSR1D1*CS111-CSGM1*SNR1D1) -BF* (SNGM1

# * (-SNQF*SN111-CSQF*CS111*SNR1D1) ~CSGM1*CSQF*CSR1D1) + '

# DL1* (SNGM1*SNR1D1*CS111+CSGM1*CSR1D1) +DE1*SN111*SNGM1
ZH1=ZH1A+UF1*SNPHF* (SNGM1* (SNTF*SN111+CSTF*CS111*SNR1D1)+CSGM1*

# CSTF*CSR1D1)

XF1= (CSDLTA*CSGM1**2+SNGM1**2) *XH1+SNDLTA*CSGM1*YH1+ (1.0D00-

# CSDLTA) *CSGM1*SNGM1*ZH1
YF1=-SNDLTA*CSGM1*XH1+CSDLTA*YH1+SNDLTA*SNGM1%*ZH1
ZF1=(1.0D00-CSDLTA) *CSGM1*SNGM1*XH1-SNDLTA*SNGM1*YH1+

# (CSDLTA*SNGM1**2+CSGM1*%*2) *ZH1
XF2A=RBP* (CSPHP*SNTHP*SND2/CSD2+SNPHP*SNQP) * (CSPHP*CSR2D2

# *CSGM2*CS221/SNTP+CSPHP*SNR2D2*SNGM2/SNTP-SNR2D2*SNPHP *

# CSGM2*CS221*CSTP/SNTP+SNPHP*CSR2D2*SNGM2*CSTP/SNTP-SNPHP*

# CSGM2*SN221) +CSPHP*CSGM2* (RCP*CSPHP+RL*SNPHP*SND2) * (SNTP*

# SN221+CSTP*CS221*SNR2D2)

XF2=XF2A+RBP*CSGM2* (-SNQP*SN221+CSQP*CS221*SNR2D2) +RL*SND2*

# (CSGM2*CSR2D2*CS221+SNGM2*SNR2D2) ~RBP*CSR2D2*CSQP*SNGM2

# +CSGM2*CSPHP*CSR2D2*CS221* (RCP*SNPHP-RL*CSPHP*SND2) -RCP*

# CSPHP*SNGM2* (CSPHP*CSR2D2*CSTP-~SNPHP*SNR2D2) ~-RL*CSPHP*SND2

# *SNGM2* (SNPHP*CSR2D2*CSTP+CSPHP*SNR2D2)
YF2=CSPHP*CSR2D2%*SN221%* (RL*CSPHP*SND2-RCP *SNPHP) +RBP* (-SNPHP*

# SNQP-CSPHP*SNTHP*SND2/CSD2) * (SNPHP*CS221-SNPHP*SNR2D2*

# SN221%CSTP/SNTP+CSPHP*CSR2D2*%SN221/SNTP) -RBP* (-SNQP*CS221

# +CSQP*SN221*SNR2D2) -RL*SND2*SN221*CSR2D2+CSPHP* (RCP*

# CSPHP+RL*SNPHP*SND2) * (SNTP*CS221-CSTP*SNR2D2*SN221)
ZF2A=RBP* (~-SNPHP*SNQP-CSPHP *SNTHP*SND2/CSD2) * (CSPHP*SNR2D2*

# CSGM2/SNTP-CSPHP*CSR2D2*SNGM2*CS221/SNTP+SNR2D2*SNPHP*

# SNGM2*CS221*CSTP/SNTP+SNPHP*CSR2D2*CSGM2*CSTP/SNTP+SNPHP*

# SNGM2*SN221) ~RBP*SNGM2* (~-SNQP*SN221-CSQP*CS221*SNR2D2)

# +RBP*CSR2D2*CSQP*CSGM2
ZF2=ZF2A+SNGM2*CSPHP* (SNTP*SN221+CSTP*SNR2D2%*CS221) * (RCP*CSPHP

# +RL*SNPHP*SND2) +SNGM2*CSR2D2*CS221* (RCP*CSPHP*SNPHP-RL*

# SND2*CSPHP**2) +RCP*CSGM2*CSPHP* (CSPHP*CSR2D2*CSTP-SNPHP*

# SNR2D2) +RL*CSPHP*SND2*CSGM2* (CSPHP*SNR2D2+SNPHP *CSR2D2*

# CSTP) +RL*SND2* (SNGM2*CSR2D2*(S221-~SNR2D2*CSGM2)
RNXF2=CSPHP*CSGM2*SNTP*SN221+SNPHP* (SNGM2*SNR2D2+CSGM2*CSR2D2*

# CS221) -CSPHP*CSTP* (SNGM2*CSR2D2-CSGM2*SNR2D2*CS221)
RNYF2=CSPHP*CS221*SNTP-SN221* (SNPHP*CSR2D2+CSPHP*SNR2D2*CSTP)
RNZF2=CSPHP*CSTP* (CSGM2*CSR2D2+SNGM2*SNR2D2*CS221) +SNPHP* (

# SNGM2*CSR2D2*CS221-CSGM2*SNR2D2) +CSPHP*SNGM2*SN221*SNTP
RNXH1=—CSPHF*CSGM1*SNTF*SN111+SNPHF* (SNGM1*SNR1D1+CSGM1*

# CSR1D1*CS111) +CSPHF*CSTF* (SNGM1*CSR1D1-CSGM1*SNR1D1*

# CS111)

RNYH1=CSPHF*SNTF*CS111+SN111%* (SNPHF*CSR1D1-CSPHF*SNR1D1*CSTF)
RNZH1=CSPHF*CSTF* (CSGM1*CSR1D1+SNGM1*SNR1D1*CS111) +SNPHF* (

# CSGM1*SNR1D1-SNGM1*CSR1D1*CS111) +CSPHF*SNGM1*SNTF*SN111
RNXF1=(CSDLTA*CSGM1**2+SNGM1**2) *RNXH1+SNDLTA*CSGM1*RNYH1+
# (1.D00-CSDLTA) *CSGM1*SNGM1*RNZH1

RNYF1=-SNDLTA*CSGM1*RNXH1+CSDLTA*RNYH1+SNDLTA*SNGM1*RNZH1
RNZF1=(1.D00-CSDLTA) *CSGM1*SNGM1*RNXH1-SNDLTA*SNGM1*RNYH1+
# (CSDLTA*SNGM1*%*2+CSGM1*%2) *RNZH1

F(1)=XF1-XF2

F(2)=YF1-YF2

F(3)=ZF1-ZF2

F (4) =RNXF1-RNXF2
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F(5)=RNYF1-RNYF2
RETURN
END

¥k SUBROUTINE FNORM k%

SUBROUTINE FNORM(DN1XTH,DN1XFE,DN1YTH,DN1YFE,DN1ZTH,DN1ZFE)
IMPLICIT REAL*8(A-H,0-2)
COMMON/A3/SNPHF,CSPHF,SNR1D1,CSR1D1, SNBP,CSBP,SNR1D2,CSR1D2
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A34/FE1,SNFE1,CSFELl,FE2,SNFE2,CSFE2,FEP,FE221,FElL11,

# FEPDG, FEFDG, F111DG,F221DG
DN1XTH=-CSPHF*SNFE1*CSTF+CSPHF*CSFE1*SNR1D1*SNTF
DN1XFE=—SNPHF*SNFE1*CSR1D1/RMF1-CSPHF* (CSFE1*SNTF/RMF1+SNFE1*

# CSTF)-CSPHF*SNR1D1* (~SNFE1*CSTF/RMF1-CSFE1*SNTF)
DN1YTH=CSPHF*CSFE1*CSTF+CSPHF*SNFE1*SNR1D1*SNTF
DN1YFE=SNPHF*CSFE1*CSR1D1/RMF1+CSPHF* (-SNFE1*SNTF/RMF1+CSFE1*

# CSTF)~CSPHF*SNR1D1* (CSFE1*CSTF/RMF1-SNFE1*SNTF)
DN1ZTH=-CSPHF*CSR1D1*SNTF
DN1ZFE=—-CSPHF*CSR1D1*SNTF
RETURN
END

Fdededek SUBROUTINE PNORM ook

SUBROUTINE PNORM (DN2XTH,DN2XFE,DN2YTH,DN2YFE,DN2ZTH,DN2ZFE)
IMPLICIT REAL*8(A-H,0-Z)
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A7/SNDLTA,CSDLTA, SNPHP, CSPHP, SNR2D2, CSR2D2, DLTADG
COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A34/FE1,SNFE1,CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FE111,
# FEPDG, FEFDG,F111DG, F221DG

DN2XTH=CSPHP* (SNFE2*CSTP-CSFE2*SNR2D2*SNTP)
DN2XFE=-SNFE2*CSR2D2*SNPHP /RMP2+CSPHP* (CSFE2*SNTP/RMP2+SNFE2*
# CSTP) +CSPHP*SNR2D2* (~SNFE2*CSTP/RMP2-CSFE2*SNTP)
DN2YTH=CSFE2*CSPHP*CSTP+SNFE2*SNR2D2*CSPHP*SNTP
DN2YFE=-CSFE2*CSR2D2*SNPHP /RMP2+CSPHP* (~-SNFE2*SNTP/RMP2+
# CSFE2*CSTP) ~CSPHP*SNR2D2* (CSFE2*CSTP/RMP2-SNFE2*SNTP)
DN2ZTH=-CSPHP*CSR2D2*SNTP

DN2ZFE=-CSPHP*CSR2D2*SNTP

RETURN

END

Jedede sk SUBROUTINE DUP Fedefkdk

SUBROUTINE DUP (UPP,DUPTHP,DUPFEP)

IMPLICIT REAL*8(A-H,0-2)
COMMON/A2/DE1,DL1,RCP,RL,RCF,PHFDG
COMMON/A5/SNGM1,CSGM1,GMAL, SNGM2,CSGM2, SND2,CSD2, SND1,CSD1
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A7/SNDLTA, CSDLTA, SNPHP, CSPHP , SNR2D2,CSR2D2, DLTADG
COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A18/SNQP, CSQP, QPDG, SNQF, CSQF , QFDG, QP,QF,, QP0O, QFO
COMMON/A35/SNTHP ,CSTHP , SNTHF , CSTHF , THPDG, THFDG
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UPP=RBP* (SNPHP*SNQP~CSPHP*SNTHP*SND2/CSD2) /SNTP+CSPHP* (RCP*
i CSPHP/SNPHP+RL*SND2)

DUPTHP=RBP*SNQP* (~SNPHP*CSTP+CSPHP*SND2/CSD2) /SNTP**2
DUPFEP=-RBP*SNTHP* (SNPHP-CSPHP*CSTP*SND2/CSD2) /SNTP**2
RETURN

END

.

etk SUBROUTINE DUF Tdedest

SUBROUTINE DUF (UFF,DUFTHF,DUFFEF)
IMPLICIT REAL*8(A-H,0-Z)
COMMON/A2/DE1,DL1,RCP,RL,RCF, PHFDG
COMMON/A3/SNPHF,CSPHF,SNR1D1,CSR1D1, SNBP,CSBP, SNR1D2,CSR1D2
COMMON /A5 /SNGM1,CSGM1,GMA1, SNGM2, CSGM2, SND2, CSD2, SND1,CSD1
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A18/SNQP,CSQP,QPDG, SNQF,CSQF, QFDG, QP, QF,, QPO,QFO0
COMMON/A35/SNTHP,CSTHP, SNTHF , CSTHF, THPDG, THFDG
UFF= (BF* (SNPHF*SNQF+CSPHF*SNTHF* (RMF1/CSR1D1-SNR1D1/CSR1D1)) -
# DE1* (SNPHF-CSPHF*CSTF*SNR1D1/CSR1D1)+CSPHF*SNTF* (RCF*
# CSPHF/SNPHF-RL*SND1-DL1%*SNR1D1/CSR1D1)) /SNTF
DUFTHF= (-BF*SNQF* (SNPHF*CSTF+CSPHF* (RMF1/CSR1D1-SNR1D1/CSR1D1
# ))-DE1* (CSPHF*SNR1D1/CSR1D1-SNPHF*CSTF)) /SNTF**2
DUFFEF= (SNPHF+CSPHF*CSTF* (RMF1/CSR1D1-SNR1D1/CSR1D1)) * (-BF*
# SNTHF/SNTF**2) +DE1* (SNPHF*CSTF-CSPHF*SNR1D1/CSR1D1) /
# SNTF*%*2
RETURN
END

sestdedek SUBROUTINE DR2 etk

SUBROUTINE DR2 (UPP,DUPTHP,DUPFEP,DX2THP , DX2FEP,DY2THP,DY2FEP,
# DZ2THP ,DZ2FEP)

IMPLICIT REAL*8(A-H,0-2)

COMMON/A2/DE1,DL1,RCP,RL,RCF, PHFDG

COMMON/A5/SNGM1,CSGM1,GMAL, SNGM2, CSGM2, SND2, CSD2, SND1, CSD1

COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG

COMMON/A7/SNDLTA,CSDLTA, SNPHP , CSPHP , SNR2D2, CSR2D2, DLTADG

COMMON/A12/UF,BF ,RBP,UP,RMF1,RMP2

COMMON/A18/SNQP, CSQP, QPDG, SNQF , CSQF , QFDG, QP , QF , QP0, QF0

COMMON/A34/FE1, SNFEL,CSFE1, FE2,SNFE2,CSFE2, FEP,FE221,FE111,

# FEPDG, FEFDG,F111DG,F221DG
DX2THP=~CSPHP*CSFE2*CSR2D2*DUP THP+SNPHP*SNFE2* (UPP*CSTP+SNTP

# *DUPTHP) +CSFE2*SNR2D2*SNPHP* (~UPP*SNTP+CSTP*DUPTHP)
DX2FEP=~RCP*CSR2D2*SNFE2* (CSPHP/SNPHP) /RMP2-CSPHP*CSR2D2* (

# -UPP*SNFE2/RMP2+CSFE2*DUPFEP) -RL*SND2*CSR2D2*SNFE2/RMP2
# ~RBP* (~SNFE2*CSQP+SNQP*CSFE2/RMP2) +RBP*SNR2D2* (CSFE2*

# SNQP-CSQP*SNFE2/RMP2) +SNPHP* (UPP* (SNFE2*CSTP+SNTP*CSFE2

# /RMP2) +SNTP*SNFE2*DUPFEP)

DX2FEP=DX2FEP+SNPHP*SNR2D2* (UPP* (-CSFE2*SNTP-CSTP*SNFE2/RMP2) +
# CSFE2*CSTP*DUPFEP)
DY2THP=SNFE2*CSR2D2*CSPHP *DUP THP+SNPHP*CSFE2* (SNTP*DUPTHP+UPP

# *CSTP) -SNPHP*SNFE2*SNR2D2* (-UPP*SNTP+CSTP*DUPTHP)
DY2FEP=-RCP*CSR2D2*CSFE2* (CSPHP/SNPHP) /RMP2+CSPHP*CSR2D2* (UPP*
# CSFE2/RMP2+SNFE2*DUPFEP) ~RL*SND2*CSR2D2*CSFE2/RMP2-RBP*
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# (-~CSFE2*CSQP-SNFE2*SNQP/RMP2) ~RBP*SNR2D2* (SNFE2*SNQP+

# CSQP*CSFE2/RMP2) +SNPHP* (UPP* (CSFE2*CSTP-SNFE2*SNTP /RMP2

# ) +CSFE2*SNTP*DUPFEP)
DY2FEP=DY2FEP-SNPHP*SNR2D2* (UPP* (~-SNFE2*SNTP+CSTP*CSFE2/RMP2)
# +SNFE2*CSTP*DUPFEP)
DZ2THP=SNR2D2*CSPHP *DUP THP+SNPHP*CSR2D2* (~UPP*SNTP+CSTP*

# DUPTHP)
DZ2FEP=CSPHP*SNR2D2*DUPFEP+RBP*CSR2D2*SNQP+SNPHP*CSR2D2* (—UPP

# *SNTP+CSTP*DUPFEP)
RETURN

END

*%%%%  QUBROUTINE DR1 ¥

SUBROUTINE DR1 (UFF,DUFTHF,DUFFEF,DX1THF,DX1FEF,DY1THF,DY1FEF,
# DZ1THF ,DZ1FEF)

IMPLICIT REAL*8 (A-H,0-2)

COMMON/A2/DE1,DL1,RCP,RL,RCF, PHFDG

COMMON/A3/SNPHF ,CSPHF,SNR1D1,CSR1D1, SNBP,CSBP,SNR1D2,CSR1D2
COMMON/A5/SNGM1,CSGM1,GMA1, SNGM2,CSGM2, SND2,CSD2, SND1,CSD1
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A12/UF,BF,RBP,UP,RMF1,RMP2
COMMON/A18/SNQP,CSQP, QPDG, SNQF, CSQF, QFDG, QP,QF,, QP0, QF0
COMMON/A34/FE1l,SNFE1,CSFE1,FE2,SNFE2,CSFE2, FEP,FE221,FE111,

# FEPDG, FEFDG,F111DG,F221DG
DX1THF=-CSPHF*CSFE1*CSR1D1*DUFTHF-SNPHF*SNFE1* (UFF*CSTF+SNTF*
# DUFTHF) ~SNPHF*CSFE1*SNR1D1* (-UFF*SNTF+CSTF*DUFTHF)
DX1FEF=-RCF*CSR1D1*SNFE1* (CSPHF/SNPHF) /RMF1-CSPHF*CSR1D1%* (
# ~UFF*SNFE1/RMF1+CSFE1*DUFFEF) +RL*SND1*CSR1D1*SNFE1/RMF1
i +BF* (~SNFE1*CSQF+SNQF*CSFE1/RMF1) -BF*SNR1D1* (CSFE1*SNQF
# ~CSQF*SNFE1/RMF1) +DL1*SNFE1*SNR1D1/RMF1-DE1*CSFE1/RMF1
DX1FEF=DX1FEF-SNPHF* (UFF* (SNFE1*CSTF+SNTF*CSFE1/RMF1) +
# SNFE1*SNTF*DUFFEF) -SNPHF*SNR1D1* (UFF* (-CSFE1*SNTF-CSTF*
# SNFE1/RMF1)+CSFE1*CSTF*DUFFEF)
DY1THF=-CSPHF*SNFE1*CSR1D1*DUFTHF+SNPHF*CSFE1* (UFF*CSTF+SNTF*
# DUFTHF) -SNPHF*SNFE1*SNR1D1* (~UFF*SNTF+CSTF*DUFTHF)
DY1FEF=RCF*CSR1D1*CSFE1* (CSPHF/SNPHF) /RMF1-CSPHF*CSR1D1*(
# UFF*CSFE1/RMF1+SNFE1*DUFFEF)~RL*SND1*CSR1D1*CSFEl/RMF1-
# BF* (-CSFE1*CSQF-SNFE1*SNQF/RMF1) -BF*SNR1D1%* (SNFE1*SNQF
# +CSFE1*CSQF/RMF1)-DL1*CSFE1*SNR1D1/RMF’ -DE1*SNFE1/RMF1
DY 1FEF=DY1FEF+SNPHF* (UFF* (CSFE1*CSTF-SNFE1*SNTF/RMF1) +CSFE1*
# SNTF*DUFFEF) —~SNPHF*SNR1D1* (UFF* (~SNFE1*SNTF+CSFE1*CSTF/
# RMF1) +SNFE1*CSTF*DUFFEF)

DZ 1 THF=-CSPHF*SNR 1D1*DUFTHF+SNPHF*CSR1D1* (~-UFF*SNTF+CSTF*
# DUFTHF)
DZ1FEF=-CSPHF*SNR1D1*DUFFEF+BF*CSR1D1*SNQF+SNPHF*CSR1D1* (
# ~UFF*SNTF+CSTF*DUFFEF)

RETURN

END

k%% SUBROUTINE PRINCIPAL CURVATURE — *¥k%
SUBROUTINE PC(D1,D2,D3,D4,D5,D6,D7,D8,X1,X2,RK1,RK2)

IMPLICIT REAL*8(A-H,0-2)
A=D1*D7-D5*D3
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C...
C...
C...

B=D1*D8+D2*D7-D5*D4~D6*D3

C=D2*D8-D6*D4

X1=(-B-DSQRT (B**2-4,0D00*A*C) )/ (2.0D00*A)
X2=(-B+DSQRT (B**2-4.0D00*A*C)) /(2.0D00*A)
RK1=- (D1*X1+D2) / (D3*X1+D4)

RK2=~ (D1*X2+D2) / (D3*X2+D4)

RETURN

END

ek SUBROUTINE PRINCIPAL DIRECTION Fededededk

SUBROUTINE PD(Al,A2,A3,A4,A5,46,PC0,PD1,PD2,PD3)
IMPLICIT REAL*8(A-H,0-Z)

PD1=A1*PCO+A2

PD2=A3*PCO+A4

PD3=A5*PC0+A6

RETURN

END

##¥dk  SUBROUTINE UNIT VECTOR OF PRINCIPAL DIRECTION ik

SUBROUTINE UNIT(E1l,E2,E3,UNITO,UNIT1,UNIT2,UNIT3)
IMPLICIT REAL*8 (A-H,0-2)

UNITO=DSQRT (E1**2+E2%*2+E3%%2)

UNITI=E1/UNITO

UNIT2=E2/UNITO

UNIT3=E3/UNITO

RETURN

END

skcfededed SUBROUTINE UTRAN1 Jededededk

SUBROUTINE UTRAN1(B1,B2,B3,UT11,UT21,UT31)

IMPLICIT REAL*8(A-H,0-2)
COMMON/A5/SNGM1,CSGM1,GMAl, SNGM2,CSGM2, SND2,CSD2, SND1,CSD1
UT11=B1*CSGM1+B3*SNGM1

UT21=B2

UT31=B1* (-SNGM1)+B3*CSGM1

RETURN

END

%*%%%%  QUBROUTINE UTRAN2 =~ *#kik

SUBROUTINE UTRAN2(C1,C2,C3,UT12,UT22,UT32)

IMPLICIT REAL*8(A-H,0-2)
COMMON/A5/SNGM1,CSGM1,GMAl, SNGM2, CSGM2, SND2,CSD2, SND1, CSD1
UT12=C1*CSGM2-C3*SNGM2

UT22=C2

UT32=C1*SNGM2+C3*CSGM2

RETURN

END

¥¥%%%  QUBROUTINE ELLIPSE AXIS ¥k

SUBROUTINE AXIS(SIGMDG,AXISA,AXISB,ALPH,ALPHDG)
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IMPLICIT REAL*8(A-H,0-Z)
REAL*8 SIGM(4)
COMMON/A1/CNST
COMMON/A36/RK12,RK22,RK11,RK21,UTX11,UTX12,UTY11,UTY12,UTZ11,
# UTZ12,UTX21,UTX22,UTY21,U0TY22,UTZ221,UTZ22
COMMON/A37/RNXF2,RNYF2,RNZF2 ,RNXF1,RNYF1,RNZF1
COMMON/A38/DEF, SIGMGG, ALPHGG, AXIAA, AXIBB, ERROR
AK2=RK12+RK22
AK1=RK11+RK21
G1=RK11-RK21
G2=RK12-RK22
C... FOR LEFT-HAND GEAR
CS21=(UTX11*UTX12+UTY11*UTY12+UTZ11*UTZ12)
IF(IT.EQ.2)GO TO 1208
SN21=UTX11*RNYF2*UTZ12+UTX12*RNZF2*UTY11+RNXF2*UTY12*UTZ11-
# (UTX12*RNYF2*UTZ11+RNXF2*UTY11*UTZ12+UTX11*RNZF2*UTY12)
GO TO 1209
1208 SN21=-(UTX11*RNYF2*UTZ12+UTX12*RNZF2*UTY11+RNXF2*UTY12*UTZ11)
# +(UTX12*RNYF2*UTZ11+RNXF2*UTY11*UTZ12+UTX11*RNZF2*UTY12)
1209 SIGM21=DATAN2 (SN21,CS21)
5 CALL ANGLE(SIGM21)
CSSIGM=DCOS (SIGM21)
SNSIGM=DSIN(SIGM21)
SIGMDG=SIGM21/CNST
AA=(AK1-AK2-DSQRT (G1*%2~2,0D00*G1*G2*DCOS (2.DO0*SIGM21) +G2**2)

# )/4.0D00
BB= (AK1-AK2+DSQRT (G1**2-2.D00*G1*G2*DCOS (2. DO0*SIGM21) +G2**2))
# /4.0D00

AXISA=DSQRT (DABS (DEF/AA))
AXISB=DSQRT {DABS (DEF/BB))
RATIO=AXISA/AXISB
FF=G1*DSIN(2.0D00*SIGM21)
HH=G2-G1*DCO0S (2.D00*SIGM21)
ALPH2=DATAN2 (FF,HH)
ALPH=ALPH2/2.00D00

CALL ANGLE (ALPH)
ALPHDG=ALPH/CNST

RETURN

END
C...
C... Jededdk SUBROUTINE WRITE2 Fdedekek
C..

SUBROUTINE WRITE2

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF, CSTF, TF, TFDG
COMMON/A27/XF1,YF1,2ZF1,XF2,YF2,ZF2
COMMON/A34/FE1,SNFE1,CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FE111,

# FEPDG, FEFDG,F111DG,F221DG
COMMON/A35/SNTHP,CSTHP, SNTHF,, CSTHF , THPDG, THFDG
COMMON/A36/RK12,RK22,RK11,RK21,UTX11,UTX12,UTY11,UTY12,UTZ11,

# UTZ12,UTX21,UTX22,UTY21,UTY22,UTZ21,UTZ22
COMMON/A38/DEF, SIGMDG, ALPHDG, AXISA, AXISB, ERROR
WRITE(6,70002)

70002 FORMAT(1H ,'**RESULT OF KINEMATIC ERROR & BEARING CONTACT**'/)
WRITE (6, 70003) FEPDG, FEFDG, THPDG, THFDG, TPDG, TFDG,F221DG,F111DG
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70003 FORMAT(IH ,'::: FEPDG=',G20.12,10%, 'FEFDG="',G20.12,"' :::',/
# 1H ,° THPDG=',G20.12,10X, ' THFDG=",G20.12,/
# i1H ,' TPDG =',G20.12,10X, 'TFDG =',G20.12,/

# 1H ,' F221DG="',G20.12,9X,'F111DG=",G20.12)
WRITE(6,70004)XF1,YF1,ZF1,XF2,YF2,ZF2
70004 FORMAT(1H , 'XF1=',G20.12,3X, 'YF1="',G20.12,3X, '2ZF1="',G20.12,/

# 1H ,'XF2=',G20.12,3X, 'YF2=',G20.12,3X, 'ZF2="',G620.12/)
WRITE(6,70005) ERROR
70005 FORMAT(1H , 'KINEMATIC ERROR=',G20.12/)
WRITE(6,70006)

70006 FORMAT (1H , 'RESULT OF PRINCIPAL CURVATURE')
WRITE(6,70007)RK12,RK22,RK11,RK21

70007 FORMAT(1H ,'GEAR RK12="',G20.12,3X, 'RK22=",G20.12,/
# 1H ,'PINION: RK11="',G20.12,3X, 'RK21="',G20.12/)
WRITE(6,70008)UTX11,UTY11,UTZ11,UTX21,UTY21,UTZ21

70008 FORMAT (1H ,'PINION UNIT VECTOR OF PRINCIPAL DIRECTION ',/
# I1H ,'UTX11=',G20.12,'UTY11="',G20.12,'UTZ11=",G20.12,/
# 1H ,'UTX21=',G20.12, 'UTY21="',G20.12, 'UTZ21=",G20.12/)
WRITE(6,70009)UTX12,UTY12,UTZ12,UTX22,UTY22,UTZ22

70009 FORMAT(1H ,'GEAR  UNIT VECTOR OF PRINCIPAL DIRECTION',/
# I1H ,'UTX12=',G20.12, 'UTY12="',G20.12,'UTZ12=",G20.12,/
# 1H ,'UTX22=',G20.12, 'UTY22=",G20.12, 'UTZ22=",G20.12/)
WRITE(6,70010) SIGMDG, ALPHDG, AXISA, AXISB

70010 FORMAT(1H ,'DIRECTION & DIMENSION OF ELLIPSE',/

# IH , 'SIGMDG=',G20.12,10X%, ' ALPHDG="',G20.12,/

# 1H ,'AXISA=',G20.12,11X, 'AXISB=',G20.12,/

# 1 ,72(C".")/)

RETURN

END

C...
C... dededetd SUBROUTINE HEADI Fededeek
C..

SUBROUTINE HEAD1 (JJ,II)
IMPLICIT REAL*8(A-H,0-Z)
WRITE (6,60000)
WRITE(6,60001)
WRITE(6,60002)
IF(JJ .EQ. 1) THEN
WRITE (6,60005)
ELSE
WRITE(6,60006)
END IF
WRITE(6,60002)
IF(II.EQ.2) GO TO 1
WRITE(6,60003)
GO TO 2

1 WRITE(6,60004)

2 WRITE(6,60002)
WRITE(6,60001)
WRITE (6,60000)

60000 FORMAT (1H1,' ')

60001 FORMAT (1H t e dedede o dede e de s e e e de sk ek e de sk e e e s st e e e e e s e s e sk e e sk e s st e e o )
’

60002 FORMAT (1H ,'* *')
60003 FORMAT (1H ,'* CONVEX PART ANALYSIS *')
60004 FORMAT(1H ,'%* CONCAVE PART ANALYSIS **)
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60005 FORMAT(1H ,'* LEFT-HAND GEAR *1)

60006 FORMAT(1H ,'* RIGHT-HAND GEAR *1)
RETURN
END

C..

C...

cC... s sk WRITEO (II) Kk

C..

SUBROUTINE WRITEO(II)
IMPLICIT REAL*8 (A-H,0-2)
COMMON/A2/DE1,DL1,RCP,RL,RCF,PHFDG
COMMON/A6/SNTP,CSTP, TP, TPDG, SNTF,CSTF, TF, TFDG
COMMON/A33/PHP1,PHF1,PHP2,PHF2,PHP1DG, PHF1DG, PHP2DG, PHF2DG
IF(I1.EQ.2)GO TO 1
PP=PHP1DG
PF=PHF1DG
GO TO 90000
1 PP=PHP2DG
PF=PHF2DG
90000 WRITE(6,90001)
90001 FORMAT (1H ,'GEAR PARAMETER',27X,'PINION PARAMETER')
WRITE (6,90002)PP,PF,RCP,RCF, TPDG, TFDG
90002 FORMAT (1H , 'PHPDG=',G20.12,15X, 'PHFDG="',G20.12,/
# 1H ,'RCP =',G20.12,15X,'RCF =',G20.12,/
# 1H ,'TPDG =',G20.12,15X, 'TFDG =',G20.12)
RETURN
END
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