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Several silicon solar cells with and without back surface fields (BSF), having

thicknesses of 200 _m and 63 L_n Were irradiated with 1MeV protons having fluences

between 1 x I0 I0 and 1 x 1012 p/cm 2. The irracliation was performed using both

normal and isotropJc incidence on the front as well as back surfaces of the solar

cells. The results of the back surface irradiations are anal_rzedbyusingamodel

in which irradiation-induced defects across the b_igh-low (BSF) junction are

considered. It is concluded that degradation of the high-low junction is

responsible for the severe performance loss in thinner cells when irradiated from

the rear.

INTRODUCTION

For the past several years most solar cell manufacturers have incorporated a

back surface field in their solar cells in order to boost power output. The BSF

has been particularly important in thin solar cells where the minority carrier

diffusion length may be much larger than the thickness. Sigrdficant increases in

power (as much as 28% for 63 _m thick cells) are achieved when the field is

incorporated. However, BSF cells lose their output at a greater rate than their

non-field counterparts when exposed to ionizing radiation typical of space

exposures (ref. i). The degradation of BSF cells with radiation has not been

adequately _modeled, and it is the purpose of this paper to explore the cell

wiuL, one _i_:_ ener_-_T ......degradation ""_ -__ _ p_nenns and conlpare the results with the

predictions of a recent model describing the behavior of cells with defective BSFs

(ref. 2).

EXPERIMENTAL PROCEDURE

The solar cells tested were made from i0 obm-cm silicon. They all had dual

antireflection coatings and aluminum back surface reflectors (BSR). Two

thicknesses of solar cells were used, 63 _m and 200 _m. Half the cells of each

thickness had back surface fields applied using aluminum paste, and half had no

BSF. The cell manufacturer estimated that the junction depths were 0.25 _m, the

BSFs penetrated into the cell ~ 5 _m and the thicknesses of the aluminum BSRs Were

0.2 _m. All cells measured 2 x 2 cm.
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The 1 MeV proton irradiations were performed at the Caltech i MeV van de

Graaff accelerator facility using the techniques described in reference 3. The

protons were spread out into a uniform beam at the target plane by use of a gold

scattering foil about 2 _m thick. Two groups of cells were irradiated during each

run, one group under front normal incidence, and the other group under simulated

front isotropic incidence using the omnidirectional fixture (ref. 3). After the

groups of cells were irradiated in this manner, the irradiation was repeated

with another twD groups of cells with the protons incident on the rear cell

surfaces. Light I-V curves before and after irradiation were talaen with an X25

Solar Simulator simulating the air mass zero solar spectrum. This procedure was

repeated 7 times with the same solar cells, increasing the fluence level each time

until a total fluence of 1 x 10 12 p/cm 2 had been accumulated. The cells were not

annealed after irradiation, and in most cases were measured within an hour of the

irradiation.

RESULTS ANDDISCUSSION

Protons having an energy of I MeV will penetrate to different depths in

silicon solar cells, depending on whether they are incident on the front or rear

surfaces. They will go into the silicon 16.5 _m_ (ref. 4) when incident on the

front, but due to the presence of the rear metal contact, they will only go into

the silicon N 4 _n when incident on the rear. P_lenprotons are incident normally,

they produce most of the dispiacement damage very near the end of their track,

essentially producing a recombination zone which inhibits passage by minority

carriers. But when protons are incident isotropically, they produce a rather

smeared out damage profile which will be easier for minority carriers to cross.

The use of 1MeV protons _as made in this investigation to selectively examine the

effect of irradiation on the front portion of the cells where the junction is

involved, and on the rear portion of the cells where the back surface field is
involved.

Tables I and II show the values of Isc, Voc, Pmax, and FF of 200 _m and 63
silicon solar cells respectively before and after 1 MeV proton irradiation to

fluences of 1 x 1012 p/cm'-22. The pre-irradiation data shows the advantage of using

the BSF structures. For example, the fields increased cell performance in the

200 _m cells by ~ 20 mA in Isc, 69 mV in Voc, and 17 mW in Pmaxwhile in the 63 pm
cells, the fields gave corresponding increases of - 15 mA, 90 mV, and 16 mW.

The advantage of the field is given up after front surface irradiations,

however. As shown in the Tables, the electrical parameters of the 63 pm cells are

essentially the sameafter either normal or omni irradiation, regardless of whether

the cells began life with a BSF. In contrast, the thicker 200 _n cells with BSF

retain slightly higher outputs cells after the I MeV front irradiations. This

behavior is also depicted in figures I and 2 where Pmax is plotted as a flinction of
1 MeV proton fluence. The data is illustrating that as the proton fluence is

increased, the effectiveness of the BSF is reduced and nearly the same values of

Pmax should be observed irrespective of BSF and cell thickness.

A comparison of the differences between front surface omni vs. normal

incidence irradiation reveals some interesting differences. For both cell

thicknesses, the cmlni irradiation is not as damaging for either Isc or Pmax" But
for Voc, the end result after _ = 1 x 1012 p/cm 2 is exactly the same.

When the non-BSF cells of either thickness are irradiated from the rear with

omnidirectional protons, there is almost no degradation of the solar cell

parameters. This is not true of the BSF cells, however. The 63 pm BSF cells with

fields degrade more than the non-BSF cells under these conditions. The opposite
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is true of the 200 pm BSF cells where the BSF cells retain higher outputs after the
rear cmni irradiations.

Examining the case for rear normal irradiation, we find degradation in all

cell types. Here too, the 63 _m cells with fields degrade more than their non-BSF

counterparts. The 200 _m cells with fields degrade at a faster rate than their

non-field counterparts, but they retain more absolute power. Figures 3 through 5

illustrate the degradation of the various cell parameters under normal rear

incidence irradiation. Figure 3 illustrates that negligibly small changes occurred

in the Isc values of non-BSF cells of either thickness. However, significantly

large degradations in Isc values are seen in both thicknesses of BSF cells. The 63

pm BSF cells retain their^Is_ advantage over the non-BSF cells until fluences
greater than I x 1011 p/cm z _e reached, but from then on, the non-BSF cells were

superior. This behavior, which has been observed a sufficient number of times to

establish statistical validity, is not understood. The Isc va]ues for 200 _m BSF
cells also degrade under this irradiation geemetry, but they retain their advantage

over the non-BSF cells over the entire fluence range. The Isc degradation curves
for both thicknesses of BSF cells appear to exhibit a plateau effect such that

after reaching a certain fluence, no further degradation will occur. For 200 _m_

cells, this plateau occurs at N 3 x i0II p/cm 2 and for the 63 _n cells, the plateau

is not fully developed, but appeaz_ to occur at slightly higher fluences.

The variation of Voc as a function of I MeV protons normally incident on the

rear cell surfaces is presented in figure 4. Negligibly small changes in Voc for

non-BSF cells were observed. However, dramatic reductions in the Voc values with

increasing fluence in 63 Nm BSF cells were noted and Voc _as reduced to less than
the corresponding Voc values of non-BSF cells after _ > 2 x i0II p/cm 2 .

Figure 5 gives the change in Pmax as a function of 1 MeV proton fluence

_cident normally on the rear surfaces. As for ]sc and Voc, the non-BSF cells do
not decFcade with fluence, but here that is only true for fluences less than

1 x l0 II p/cm 2 , after which they begin degradation. The Pmax degradation for 63 pm

BSF cells occurs at a more rapid rate than for any other cell type, and these cells

lose their power advantage over the 63 pm non-BSF cells after # > 2 x i0 II p/cm 2.

Figure 6 depicts the variation of Pmax as a function of fluence of 1 MeV

protons with omnidirectional incidence on the rear surfaces. Here there is no Pmax
degradation of cells without BSF, nor do the BSF cells degrade as severely as

observed for the rear normal incidence cases shown in figure 5. Also, the BSF

effect in 63 pm cells is preserved up through _ = 5 x 1011 p/cm 2.

The important point to be made here is that though significant improv_nent in

63 pm cell performance is achieved by using a BSF, it is totally reduced to less

than the non-BSF cell performance level after high fluences of low energy protons.

Fields in the thicker cells do not e_9/%ce the cell perfo_ir_nce q._ite as ir_rkedly

as they do for thinner cells, but the thicker cells retain some of their advantage
after irradiation to these .same levels.

_±_L fi_CULA"..'IONS

Front Surface Irradiations

Since the projected range of i MeV front s,Irface normally incident protons is

16.5 pm, we attempted to analyze the data by dividing the cell into two regions,

one inner irradiated region (16 pm thick) and the other consisting of a deeper non-

damaged region (184 _ thick). As a first approximation, we assumed that in the

damaged region only the minority carrier lifetime is uniformly degraded throughout

the 16 _m layer. We also assumed that with a proton fluence of I x 1012 p/cm 2,

heavy damage has been introduced at the end of the proton track and consequently
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for front surface irradiations, the BSF and non-BSF cells are similar. This

rationale appears to be acceptable based on the results shcm;n in figures 1 and 2.

The exl0erimental Isc and Voc values before .irradiation were fitted to the
standard solar cell equations (ref. 5) using suitable values for i0 ohm-cm silicon,

e.q. the diffusion constant D = 30 cm2/sec, the dopant concentration, NA = 1.3 x

1015 cm -3, and back surface recombination velocities, SB values of iO cm/sec and
108 cm/sec, for BSF and non-BSF cells respectively. Minority carrier diffusion

length (Ln) values of 600 Val were found to fit the pre-irradiation data for both
BSF and non-BSF cells.

Various calculations were made to fit the post-irradiation Isc and Voc values.

In these calculations, only Ln values for the inner layer were varied in order to

fit the data. The calculated Isc and Voc values were significantly affected only

when Ln values for the inner layers were made less than 16 _m. For both BSF and

non-BSF cells under normal incidence, Ln values of 4 _ml for the inner layer gave

good fits to the data, and Ln values of about 6 jim gave good fits to the
cm%nidirectional data.

It should be pointed out that if values of D, Ln, SB, and intrinsic carrier

concentration (ni), are varied, then several sets of these parameters could

conceivably give fits to the experimental data. This problem in the calculation

can be reduced by subdividing the damaged layer into multi-layers (refs. 6 and 7)

which take into account the non-unifoz_tity of proton irradiation, and assigning

appropriate parameters to each layer. However, such calculations are highly

cclnplicated and are not considered here.

Back Surface Irradiations

Figures 3 through 6 show that rear surface normal and omnidirectional protons

do not degrade non-BSF cells except for fluences greater than I x I0 I0 p/cm 2 at

normal incidence. As can be seen in Tables I and II, the fill factors (FF) of

these cells are significantly reduced after normal incidence irradiation of 1012

p/an 2 . This charge in FF could be due to an increase in dark saturation current in

the base, Iob, an increase in series resistance, Rs, or a decrease in the shunt

resistance, Rsh. Changes in Rsh and Iob will have a major effect on the

degradation of Voc and an increase in Rs will degrade Isc (ref. 5). Since

significant reductions in Voc are observed compared to those in Isc, it would

appear that major changes in Rsh and Iob are occurring. Also some increase in Rs

may be expected with such a high fluence due to majority carrier removal (ref. 8).

Iob will increase due to decreases in Ln and D due to radiation-induced defects.
Since the non-BSF cells are not degraded as badly as the BSF cells, we will focus

our attention on the degradation in the BSF cells.

Since the 1 MeV protons are stopping in the pp+ region, they will produce

maximum d_nage to the high-low junction. The energy levels and density of these

defects depend strongly on the fluence and irradiation configuration. Omni-

directional incidence protons will induce defects that are spatially smeared in the

entire BSF region whereas normal incidence protons will produce highly localized

large defect concentrations in the vicinity of the pp+ junction. Consequently, a

more defective BSF is produced by the normal incidence protons than by the cmni

protons. This is reflected in the experimental data of figures 3 through 6.

Attempts were made to explain the degradation of BSF cells using the existing

models (refs. 2 and 9). In the Sah model (ref. 9) the effects of defects

distributed in the bulk across the BSF are analyzed by using three regions in a

defective unit cell containing one defect. The width of the first region

surrottn_ing the defect is characterized by the distance-of-influence which is about

two diffusion lengths. The defect itself is characterized by three parameters,

namely, defect density, defect area and the surface recombination velocity at the
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defective area. The model _predicts very substantial degradation of Voc even if

there are only 40 defects/cm z (ref. g). If this would have been the case, then the

Voc values sho_n in figure 4 and the P_ values sho_a% in figures 5 and 6 would
have been rapidly degraded with fluences_ess than 1 x I0 II p/cm 2 . Since this is

not so, this model apparently over-estimates the cell degradation (ref. 2).

The other model is described in detail in reference 2. The ini0ortant finding

of this model analysis is that it is possible to have a fully effective BSF region,

regardless of the spatial distribution of the defective areas as long as the total

defective area is reduced below certain limits. A case of distributed defects

discussed in reference 2 closely matches the defect geometry induced in the BSF

region by low energy protons. Modifying eq. 8 (ref. 2) for the distributed defect

case to match the degradation in Voc by low energy protons in BSF cells, we obtain:

dVoc KT in __ Jscl ( S' + tanh d/Ln) -_= (i)

LJsc2 ( tanh d/L n + S' tanh 2 d/L n) J
where Jscl and Jsc2 are the short circuit currents of the BSF cells before and
after irradiation respectively and

S' = 5 x 106 F _f _ Ln (2)

f__] Dn

wb_re S' is a normalized rear surface recombination velocity, SB, f is the fraction
of the BSF area which is defective, and d is the cell thickness.

The change in S' as a function of _ can be calculated using equation (I) and

the corresponding value of f can then be obtained from equation (9). SB is given

t_] (ref. 2) :

where V is the carrier thermal velocity which for silicon is ~ 107 cm/sec.

Several runs were made using various values of Ln while holding D constant at
30 cm2/sec. Figure 7 illustrates the results of our model calculation where the

back surface recombination velocity plots as a function of proton fluence are given

for 900 _m and 63 _m BSF cells having _ = 800 and 600 _m respectively. As can be

seen, SB increases with _, and it increases at a different rate for normal
incidence than it does for omnidirectional incidence. These results clearly

demonstrate that as the BSF becomes defective, SB tends to increase. Thus the cell
performance which has been improved by using a BSF has been mostly degraded after

irradiation. In general, for a given fluence there is more increase in SB for rear

normal incidence than that for omnidirectional irradiation. SB values of 5.36 x
105 cm/sec and 1.07 x 104 cm/sec were calculated for 200 _m and 63 _m BSF cells

respectively after rear normal irradiation with _ = I x 1012 p/cm 2.

It is gratifying to find that such a simple model can provide quantitative

changes in the trend of SB as a function of fluence. However, to obtain an in-
depth understanding of damage mechanism of the BSF, the model would probably have

to be refined to take into account the leakage in the high-low junction, changes in

the recombination velocity at the pp+ junction, and the change in Ln in the p+

region with fluence. In addition it may be necessary to consider imperfections in

the A1 paste alloying, invpurities in the paste, and an imperfect A1 profile.
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CONCLUSIONS

Of the four radiation geometries observed, the front surface normal incidence

irradiation was the most effective in producing degradation in both thick and thin

cells with andwithout BSF.

No significant cell degradation was observed in either thick or thin non-BSF

cells when irradiated from the rear surface with 1MeV protons.

After rear surface normal and omnidirectional irradiation with fluences of 1

x 1012 p/cm 2, all the BSF cells degrade at a faster rate than cells without BSF.

However, the 200 _m BSF cells retain more absolute power t_an comparable non-BSF

cells, but 63 Dm BSF cells retain less absolute power than comparable non-BSF

cells.

A simple model was used to calculate the back surface recombination velocity

and explain the rear incidence proton irradiation damage in both thick and thin BSF

cells.

Additional rear surface irradiation experiments with the cells having BSF made

by boron diffusion, ion implantation and A1 diffusion coupled with a refinedmodel

which will take into account hlgh-low junction related device parameters will be

required to fully understand the defective BSF and its role, particularly in thin
cells.
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Table I. Light I-V Data (AM), 28° C) of 200 pm Thick SJl_con

Solar Cells Before and After i MeV Proton Irradiation

Irradiation BSF Fluence Isc Voc P-max
Configuration (p/cm 2 ) (mA) (mV) (mW)

Front Normal No 0 150.1 539.3 63.23

i x 1012 89.9 437.6 27.61

Yes 0 171.0 608.4 80.78

I x 1012 95.1 441.1 29.88

Front Omni No 0 150.9 538.2 63.15

1 x 1012 104.4 437.9 32.86

Yes 0 170.9 607.4 80.48

1 x 1012 113.1 440.4 35.94

FF

0.78

0.70

0.78

0.71

0.78

0.72

0.78

0.72

Rear Normal No 0 151.9 537.1 63.28

1 x 1012 150.0 524.0 54.45

Yes 0 173.5 605.8 80.99

1 x 1012 158.6 530.7 63.23

Rear Omni No 0 152.0 536.8 63.35

1 x 1012 151.4 535.3 62.86

Yes 0 171.7 606.4 80.62

I x 1012 159.4 542.1 67.23

0.78

0.69

0.77

0.75

0.78

0.78

0.78

0.77
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Table II. Light I-V Data (AMO,28° C) of 63 ]an Thick Silicon
Solar Cells Before and After i MeV Proton Irradiation

Irradiation BSF Fluence Isc Voc Pmax

Configuration (p/cm 2 ) (mA) (mY) (mW)

Front Normal No 0 144.5 509.9 56.43
1 x 1012 96.3 434.1 28.43

Yes 0 161.2 600.2 72.53

1 x 1012 95.8 434.5 28.59

Front Omni No 0 144.9 510.3 56.68
1 x 1012 107.7 435.2 33.60

Yes 0 160.2 600.3 72.33

1 x 1012 iii.0 436.5 34.97

0.77

O. 68

0.77

0.69

0.77

0.72

0.75

0.72

Rear Normal No 0 143.6 511.5 56.03
1 x 1012 138.9 493.2 46.13

Yes 0 161.7 597.9 72.29

1 x 1012 133.9 485.5 43.97

Rear 0mni No 0 144.7 511.3 56.09

1 x 1012 142.2 506.5 54.31

Yes 0 160.5 601.5 72.41

1 x 1012 137.8 504._ _ :

0.76

0.67

0.76

0.67

0.76

0.75
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Figure I. Pmax of 200 pm and 63 pm BSF and Non-BSF Solar Cells as a Function of
F/uence of I MeV Front Surface Normal Incident Protons.
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Figure 2. Pmax of 200 pm and 63 pm BSF and Non-BSF Solar Cells as a Function of
Fluence of I MeV Front Surface Omnidirectional Incident Protons.
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Figure 3. Isc of 200 pm _nd 63 pm _]_' and Non-BSF Solar Cells as a Function of
Fluence of i MeV Rear Surface NozTaa] Incident Protons.
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Fig_ire 4. Voc of 200 pm and 63 pm BSF and Non-BSF Solar Cells as a Function of
Fluence of 1 MeV Rear Surface Normal Inc_den% Protons.
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Figure 5. Pmax of 200 pm and 63 pm BSF and Non-BSF Solar Cells as a Function of
Fluence of i MeV Rear Surface Normal Incident Protons.
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Figure 6. Pmax of 200 pm and 63 pm BSF and Non-BSF Solar Cells as a Function of
Fluence of I MeV Rear Surface Omnidirectional Incident Protons.
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Figure 7. Calculated Back Surface Recombination Velocity of 200 _ and 63 _m Solar
Cells as a Function of Fluence of 1 MeV Rear Surface Normal and Omni Incident

Protons.
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