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ABSTRACT

The Massively Parallel Processor

(MPP) is an ideal machine for computer

experiments with simulated neural nets

as well as more general cellular

automata. The purpose of this paper

is to describe our experiments using

the MPP with a formal model neural

network. Our results on problem

mapping and computational efficiency

apply equally well to the neural nets

of Hopfield, Hinton et al., and Geman
and Geman.
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INTRODUCTION

This paper is a preliminary

report on a major component of the

research proposal of M. Conrad and the

authors, entitled "Applications of

stochastic and reaction-diffusion

cellular automata." These types of

automata are a natural formal setting

for theoretical investigations in

brain and ecosystem modelling. Most

of the proposal was concerned with

brain modelling. A significant part

of the proposed activity in that area

has been completed, and will be
discussed here.

Hastings and Pekelney (Ref. 4),

observed that many of the properties
of the brain seemed to be natural

consequences of the working hypothesis

that the brain was a large network of

McCulloch-Pitts neurons (threshold

devices) connected by synapses with

stochastic conduction thresholds. In

particular, such networks display both

gradualism (small changes in inputs

cause small changes in outputs (Ref.

1)) and modification-based learning

(structural changes as a result of

history, Conrad, Ref. 2).

Later, the authors developed a

model neural network, implemented the

network on a VAXII-780, and conducted

experiments in basic learning

principles. They also defined (Ref.

5) three postulates which

characterized evolutionary learning

(for example, by simulated or real

neural networks).

Evolutionary Learning

An evolutionary learning system

is a formal dynamical system in which

the states correspond to modes of

information processing, while the

suitability of each state is measured

by a potential function, the most

desirable states possessing least

potential. The dynamics of such a

system are determined by an annealing

process (Refs. 8-9), so that desirable

modes are attained by a gradual

lowering of the amount of thermal

noise.

(The prototype example of an

annealing process consists of a gas

molecule confined in a potential well,

in which the goal is the location of a

global potential minimum. If the

ambient temperature is lowered

sufficiently slowly, the molecule will

become trapped in the global minimum

with a probability arbitrarily close

to one. It is the random behavior of

the molecule, "thermal noise," which

accounts for its ability to escape

from local minima during the cooling

process. Simulated annealing then

entails simulation of these dynamics

in the solution of combinatocically

large-scale minimization problems such

as the "travelling salesperson"
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problem. The essential role played by
randomnoise in such techniques places
them outside the realm of algorithmic
strategies.)

Further, the potential energy
function depends on the environment,
so that it is the environment which
indirectly determines the equilibria
and evolution of the system. Werefer
to this indirect process of control as
soft programming. An evolutionary
learning system may then be thought of
as a dynamical system which behaves
according to three principles:

ergodicit¥ - the use of chaotic

behavior to search a state space,

annealing - the regulation of thermal

noise by means of (local) lowering of

ambient temperature, and

§oft programming - the indirect
control of the evolution of the system

by the environment.

More complex learning regimes

were shown to follow the same basic

principles (Waner and Hastings, Ref.

10). We also remark that gradualism

in annealing systems is a consequence

of the annealing dynamics: small

changes in the starting point or the

shape or potential surface usually

cause small changes in the dynamics.

Modification of the potential surface

through feedback in learning

corresponds to Conrad's modification

based learning. The annealing

dynamics are considered to be internal

and inaccessible in detail compared to

the feedback dynamics of any learming
scheme •

In late 1985 and early 1986 the

neural network programs were

transported to the MPP. The

relationship between the theoretical

dynamics and the neural net models

will be briefly discussed below.
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The rest of this paper is divided

into three main parts. The first of

these summarizes our neural network

models. The second part summarizes

our experiments to date on the MPP,

and should be understood in the

context of a preliminary report. The

last part describes conclusions for

the application of the MPP and similar

massively parallel architectures for

our model and similar models. Most of
our qualitative conclusions may be

readily applied to other neural

networks (Hopfield (Ref. 7), Hinton,

Sejnowski, and Ackley (Ref. 6), Geman

and Geman (Ref. 3)).

THE NEURAL NETWORK

In this section we describe the

data structures and algorithms used in

our neural network, and briefly

describe the dynamics.

Data Structures

The fundamental data structure is

a directed graph in which nodes

correspond to formal neurons, and

arrows to formal synapses. Early

experiments on a VAX used a

rectangular array of neurons, with

nearest neighbor and second-nearest

neighbor connections. This structure

suggested a natural problem mapping to

the MPP. The MPP model uses a 128 x

128 array of formal neurons, with

connections to all neighbors in a 5 x

5 array centered at each neuron. This
data structure also accords well with

a 2+ _ -dimensional structure for

random access in the brain (see Ref. 4

for discussion).

The formal neurons are

McCulloch-Pitts neurons. Each

contains one or more inputs, has a

fixed firing threshold, and fires

(sends an output) if and only if the

sum of inputs since the last firing is

greater than or equal to the firing

threshold. The sum of these inputs is

called the activity of the neuron; on

firing the activity is reset to 0.



The synapses are also threshold
devices. Their associated thresholds
are called conduction thresholds.
However, there are two important
differences between the use of
thresholds of synapses and those of
neurons. First, the conduction
threshold of a synapse determines the
probability of conduction along that
synapse according to the rule
prob(conductlon) = I - (conduction
threshold). Second, the conduction
thresholds are modified according to
two rules :

LEARNINGBY REPETITION. Thresholds of
synapses which conduct (and similar
synapses) are lowered. Conduction
thresholds of synapses which do not
conduct (and similar synapses) are
raised. In the presence of suitable
learning regimens, this yields
Conrad's modification based learning.
The threshold modification schememust
be constructed carefully to minimize
the chance of positive feedback in the
internal dynamics.

LONG-TERMFORGETTING.Most conduction
thresholds (all thresholds except
those very near 1 or very near 0)
slowly decay to a base value.
Thresholds sufficiently close to 0 or
1 do not change; this corresponds to
modification-based learning.

Annealing System

Recall that the temperature in an

annealing system corresponds to the

degree of randomness. In this sense,

the entropy (Shannon information)

associated with random behavior at all

of the synapses corresponds to the

temperature. When following a

learning regimen results in reducing

this entropy, this corresponds to a

reduction in temperature. The use of

random conduction along synapses

yields the underlying diffusion in an

annealing system; restricting the

dimension to 2 or using a wrap-around

topology would guarantee ergodiclty.

For all practical purposes the present

system appears ergodlc. Differences

in thresholds yield drift terms

corresponding to the gradient flow

part of annealing. These differences

and consequent drift become more

pronounced as learning via "annealing

through modes of information

processing" proceeds.

We remark that classical

annealing problems (Ref. 9) can be

readily programmed on the MPP with an
analogous problem mapping of one cell

per processor.

Soft Programming

Soft programming consists of

specifying the learning goals. Three

types of goals have been studied

theoretically. The simplest consists

of structured path learning o

learning paths from "s rces to

"targets." The MPP program below

illustrates this case. More complex

cases include associative learning and

more complex route-finding (only

theory so far).

Problem Mapping

We have allocated one processor

to each node. This offers the

advantages of simple data flow and

programming, at the expense of

frequently having idle processors in

simple experiments.
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The Program

NEURAL NET: BEGIN

I. INITIALIZE

Net: initialize thresholds

initialize activities

initialize source and

target, or learning problem

Supervisory: initialize random

number generator, clocks,

maximum time allowed, etc.

Learning regimen : specify.

2. MAIN LOOP: REPEAT until timeout

or learning occurs. Increment random

number generators as necessary

throughout loop.

AT each neuron: IF activity is

greater than or equal to

firing thresholds, THEN

FIRE and reset activity to O.

AT each synapse, IF neuron at

tail of synapse has fired, THEN

TEST for conduction:

synapse conducts if random

number is greater than

conduction threshold.

IF synapse conducts, THEN

increment activity of

neuron at head of synapse.

AT each synapse, modify

conduction thresholds incor-

porating learning by

repetition and short-term

forgetting.

Did net learn? If so, then

exit loop and print results.

Increment clock.

END MAIN LOOP

3. OUTPUT

END NEURAL NET
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One should note that the net is

intrinsically parallel and

stochastlc. The parallel feature of

the net allows a natural problem

mapping: one maps one formal neuron

to each processor. Other mappings are

possible; for example, one could map

each processor to one neuron in a

neighborhood of a given neuron, and

store the net in an appropriate data

structure for transversal. The

problem mapping we used was chosen for

its simplicity, and potential to

reduce the size of the program and

max imi ze computing speed. For

example, the MPP program is

approximately 20-30% shorter than the

VAX program, and both are programmed

in similar high-level languages.

The MPP prog ram al so ran

significantly faster than that of the

VAX. The present improvement factor

in simple experiments is about 100.

However, the MPP does not slow down as

the number of neurons firing is
increased. This combined with a

utilization factor in critical steps

of about 5% in simple experiments

suggests a relative speed increase in

complex tasks should approach 2000.

CONCLUSIONS

Massively parallel architectures

are especially appropriate and useful

for neural network and similar

simulations. In particular, the

geometry of the MPP closely parallels

the structure of our net model. This

places much of the data structure in

hardware, reducing computational

costs. In addition, much of the

computation is "strongly parallel" in
the sense that the next state

computations must take place

simultaneously at many locations.

Failing this, data structures and data

movement must be developed to simulate

this degree of parallelism.

Furthermore, most of the VAX

computation cost apparently lies in

data movement, since no elaborate



function evaluations are needed. This
contrasts sharply with both algorithms
such as Gaussian elimination in which
such t ight parallelism is not
necessary, and algorithms such as many
finite element algorithms in which
such parallelism is necessary (at
least at a simulation level), but in
which significant function evaluation
costs far exceed data movementcosts.

Much of our computing time is
spent in random numbergeneration. We
are exploring the possibility of
realizing random number generators or
more general stochastic gates in VLSI
hardware. Should this exploration
prove successful, it would be possible
to const ruc t simple, rapid, and
powerful evolutionary learning
hardware.

Otherwise, the limited processor
power and memorydo not slow this type
of modelling. In fact, the MPP
architecture may well offer the best
relative performance because much of
the data structure and flow is already
present in hardware.

FUTUREDIRECTIONS

At this point, the first part of
our proposed research has been largely
completed. Wehave largely developed
the theory for applying our learning
model to the route-finding problem,
and should begin MPP investigations
into this problem in early 1987. The
extension of these models to more
complex (reaction-diffusion) neurons
will be done largely by M. Conradwith
his former student K. Akingbehin. In
a related direction, some successful
ecosystem simulations have been
performed with more work expected
later this year.
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