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COMPOSITE THEORY APPLIED TO ELASTOMERS

1. Introduction

Reinforced elastomers form the basis for most of the
structural or load carrying applications of rubber products. The
reinforcing materials include various synthetic textiles, glass and
steel, and are most usually utilized in the form of twisted
filamentary assemblages, cords, designed to impart stiffness,
strength and to resist fatigue. Due to the geometry of such cords
they are almost always used in the form of a parallel array,
embedded in rubber. 80 as to give highly directional properties
to the composite cord-rubber lamina.

Computer based structural analysis in the form of finite
element codes has been highly successful in refining structural
design in both isotropic materials and rigid composites. This has
lead the rubber industry to attempt to make use of such techniques
in the design of structural cord-rubber composites, among the more
prominent being tires of all types where volume production or
technical necessity can justify extensive design computation.

While such efforts appear promising, they have not been easy
to achieve for several reasons. Among these is a distinet lack of
a clearly defined set of material property descriptors suitable for
computer analysis. There are substantial differences between
conventional steel, aluminum or even rigid composites such as
graphite-epoxy, and textile-~cord reinforced rubber. These
differences are both conceptual and practical. They are discussed

in this paper.



-2=
Based on the assumption of a linear continuum, it may be shown

that Yoy and v , are related so that the measurement of four
properties suffices for experimental description.

In many applications the elastic properties are quite close in
numerical value for filaments in either tension or compression, and
so little or no differentiation is made between them. Similarly,
while damping or viscoelastic properties are useful in many
structural applications to suppress unwanted vibratory motion,
these properties are not usually considered as an integral part of
the material property description.

Finally, it should be noted that while the individual
filaments usually are themselves orthotropic, with different
properties in the filament direction compared to the direction
perpendicular to the filament, they are so0lid monofilaments and
they are almost always individually embedded in the matrix. They
cannot 8lip or move relative to one another, and so individually
and collectively contribute to the material properties of the

composite sheet.

3. Cord Rubber Composites

The comparison of cord-rubber composites with rigid composites
is best done using a lamina such as shown conceptually in Fig. 1.
Geometrically, the primary differences in the two are in the
filamentary reinforcement, where in cord-rubber constructions the
filaments are almost always assembled or twisted into strands, and

strands into cords, to form large discrete reinforcement elements
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4 2. Rigid Composite Lamina

Most rigid composite structures are composed of filamentary
reinforcement, such as glass or graphite, in a matrix proportioned
in such a way that the diameter of an individual filament is very
much smaller than the thickness of the part in question, and so
that a number of filaments occur through the thickness of a
section. Reinforcement volume loadings are usually quite high, and
in many ways it is reasonable to assume that material stiffness and
elastic properties are smeared or averaged over the thickness,
giving rise to a composite material property. While mat and roving

-are widely used for lower strength applications, most structural
uses are based on a series of filaments being laid parallel to one
another, so as to form a highly anisotropic solid having three
principal material directions, these being the direction of the
filamentary reinforcement and the two mutually perpendicular
directions to the filament, as shown in Fig. 1. Many thin-walled
structures are formed by laminating a series of thin sheets of this
type, each sheet being considered orthotropic and treated as a
two-dimensional load carrying element in the 1-2 plane, those
effects in the 3 direction being given a secondary role. Such a
sheet 1s usually described as a linear elastic element, but
requires five elastic constants to describe it completely, these
being:

E, = elastic modulus in 1 direction

1

E2 = elastic modulus in 2 direction

G12 = shear modulus in 1-2 directions

v12 = Poisson's ratio for stress in the 1 direction

v21 = Poisson's ratio for stress in the 2 direction



— -
occupying now a significant fraction of the lamina thickness, as

shown in Fig. 2. 1In some types of reinforcement the cord is
impregnated with a dip to promote adhesion, and the dip forms a
shell or coating over the cord which tends to cause it to act as a
unit. However, in other materials, notably steel, such unitary
action is not always evident since the filaments are more nearly
individual. 1Internal filament slip can occur, In any case, the
dispersion of reinforcement evident in rigid composites is not
present in cord-rubber composites. Rather the reinforcement is
agglomerated and the material is more nearly periodic in its
properties. The concept of a smeared or averaged set of material
properties is still valuable and even necessary at the present
level of computational efficiency, but the definition of these
properties is more difficult since the reinforcement can be defined
clearly only in the direction of the strand or cord. The
transverse response of the strand, or its shear response, depend on
the material as well as dip and processing variables which are not
always well defined. Some variation in averaged material
properties is to be expected in cord-rubber composites.

In a rigid composite the reinforcing filament is almost always
transversely orthrotropic. In a cord=rubber composite the
reinforcement strand is twisted, or the equivalent in steel, so
that bending fatigue properties are improved. This twist usually
couples tension in the strand to strand twist, so that the
transverse orthotropy is lost. This means that the lamina itself
is coupled between tension in the cord direction and twist of the
1-2 plane, as shown in Fig. 1. It is common to neglect this twist

effect, which is not usually large, and to consider the lamina
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purely orthotropic in the 1-2 plane. Otherwise it must be

described as monoclinic, as has been pointed out [1]%, and would
require 13 elastic constants for its definition instead of the five
needed otherwise.

One major difference between cord~rubber and rigid composites
lies in the ratio of reinforcement modulus to matrix modulus. One
measure of this is the ratio of modulus of the lamina of Fig. 1 in

the cord direction to the transverse direction, E,/E

1 Ref. [1]

2.

lists values shown in Table 1 below.

Composite System E,/E

-4
Glass~epoxy 2.9
Graphite~epoxy 4o
Nylon-rubber 80
Steel-rubber 850 |
Table 1

Ratio of Longitudinal to Transverse Modulli

Practically speaking, cord<rubber composites are characterized
by very low modulus matrices which provide very little lateral
reinforcement against filament buckling. Further, since the
internal section of most strands of filaments are not fully
penetrated by the dip, they are supported laterally only by
adjacent filaments. Due to twist, the initial shape of individual

filaments is curved, and the filaments straighten under tension and

*Numbers in parentheses refer to references in the Bibliography.
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become stiffer., All of these effects combine to result in the
stress~strain curves of lamina in the 1 direction being distinctly
non~-linear for all commercially important cord-rubber laminates.
This is illustrated conceptually in Fig. 3, where it is understood
that the transition region may occur at different levels of cord
strain E1 depending on the reinforcing cord material.

Stress~strain response such as illustrated in Fig. 3 has been
widely discussed in the literature as bimodular response. Two
excellent review articles covering the mathematical description [2]
and the mechanicecs of the phenomenon [3] are available.

Past work on this phenomenon have divided this non-linear
response into regions of cord tension and cord compression.
Experimental data shows that this is an oversimplification. Figure
4 shows data on rayon from [4], Fig. 5 shows data on nylon from
[5], Fig. 6 shows data on steel-rubber from [6], Fig. 7 shows data
on polyester~-rubber from [7] while Fig. 8 shows data on
aramid-rubber, also from [7].

In view of the clearly different behavior exhibited by these
various reinforcing materials, possibly for different structural
reasons but certainly associated with processing variables, it is
proposed that the bimodular simplifcation be adapted in the form
illustrated in Fig. 9, taken from Ref. [5]. Here the stress-strain
curve in the reinforcement direction is idealized into two linear
regions, I and II. Region I is the low cord modulus region, with
individual filaments contributing little to lamina stiffness. In
region II the filaments are fully effective in enhancing stiffness.

The two regions are linearized and their intersection is expressed

in terms of cord strain €,%, a material property of the lamina.




-7-
The elastic constants of the lamina must be measured separately in

both regions I and II.
In this descriptive framework, an elastic cord-rubber lamina

is now described by eleven elastic constants, these being shown

below in Table 2.

Region 1 Region 1
E, E,
E2 E2
G2 612
Vi2 V12
V21 Vo
plus e1*

Table 2

Elastic Constants for a Cord-=Rubber Lamina

In future notation, the elastic constants will be subscripted
with I or II to indicate the region in question.

Some elastic constants have been reported in the literature
for both regions I and II, such as in refs. [6] and [8]. As an
example, constants are given from Ref. [8] for aramid-=rubber and
polyester~-rubber in Table 3, while the data for nylon is from our

current studies. The volume fraction is not quoted.



Aramid~Rubber Polyester~Rubber Nylon-Rubber
I II I II I II
E1 12. 3580. 36.9 617. 88. hy7,
E2 12, 9.1 11. 8. 8.4 8.4
G12 3.7 3.7 2.7 2.6 3.5 .4
Vo 0.205 0.416 0.185 0.475 0.837 0.283
Table 3

Bimodular Elastic Properties

Modulus Values in GPa

In 80 far as is known, no data has been published on ¢ ¥, A

1
review of available 0, VS e, curves available in the literature and
from work done by the writer give values of 61* as shown in Table
4, These should be taken as representative only, since they are

clearly a function of variables such as cord twist, compound

modulus, and construction of the lamina.

Material 54* Ref.

Nylon 840/2 .015 [5]

Polyester 0 (7]

Fiberglass ~0.005

Steel .065 (6]

Aramid 0 (61
Table 4

Values of E; for Various Reinforcement Systems




What is clear from Table 4 is that allowance should be made in

general for the bimodular transition to occur at a value of e *

1

which is an inherent material property, just as clearly as the

other elastic constants.

Computationally, this quantity can be

tracked and used as a switch to move from one set of values to

another. Such a system probably provides a realistic material

framework compatible with present FEM technology, as evidenced in

its use in Ref [8].

While the role of the elastic and shear modulil are clear, some

discussion is in order concerning the Poisson's ratios v and

12 Voi-

It is customary in conventional rigid composites to consider the

material as an elastic continuum, in which case strain energy

considerations lead to the well known reciprocity relation

With this relation,
Poisson ratio, the other
There has been some
applicability of Eq. (1)
class. This seems to be
(a) Conceptually, a

continuum, The

12 /E
it is now only necessary to measure one
being obtained from Eq. (1).

question in the literature on the

to cord~rubber composites as a general
due to at least two reasons, these being:
twisted filamentary strand is not a

filaments may separate under transverse

tension, so that load is carried around the strand but not

through it. However, the filaments are very effective in

carrying load in the longitudinal direction, so that

inherently different load carrying mechanisms operate in
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the two principal directions. The cord rubber composite
is not a continuum but a structure, and may not be
symmetric for that reason.

(b) Accurate measurements of Poisson's ratio are difficult to
make for a variety of reasons which will be dealt with in
more detail in a later section. Little published data is
available for the two Poisson's ratios for the same
material, so that confirmation of reciprocity has yet

to be demonstrated convinecingly.

For the remainder of this paper it will be accepted that Vo

and V,, are elastic constants which will be obtained by independent
measurement.

A second major difference between conventional rigid
composites and cord-rubber composites lies in the significant
energy loss component associated with cyclic stress in cord-rubber
laminates. This effect is large enough so that it must be taken
into account in describing tests where self*heating can occur. In

this paper the notation of Ref. [9] is adapted, so that elastic

constants can be expressed as:

E¥ = E' + iE" (2)

where the real portion E' represents the in-phase elastic modulus
obtained by using the slope of the line 0-1 as illustrated in Fig.
10. The imaginary portion E" is obtained from the well known

relation
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E" = _A (3)

where A and e, are also defined in Fig. 10, The ratio E"/E' is
called tan 8 and widely used as a measure of material damping.
Both E" and tan 8 will be used in the following discussion.

Since the elastic constants representing the interaction of
stress with strain now appear in the form of both real and
imaginary parts, the number of elastic constants needed for
description of the lamina of Fig. 1 now is 17, as shown in Table

5.

Y1 EY 1 EY,II B 11
B>, 1 By 1 Y, 11 E'..2,II
"
Cla,1 Gl2,1 12,11 G12,11
V12,1 Vi2,11
V21,1 Tk Vo1,11
Table 5

Elastic Constants for Cord Rubber Composite

In Table 5, the Poisson's ratios v12 and Voy represent the
interaction of two strain terms. On physical principles, and from
experimental observation where only in-phase values have been
observed, these constants are assigned only real values. Data
taken on V12,II on 840/2 nylon in rubber is given in Fig. 11 as
indicative of observations.

Because of the dependence of elastic properties such as given
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in Table 5 on cord material, twist, denier and end-count, as well
as compound characteristics, only representative values of such
constants can be given, and even those have limited validity. For
example, Table 6 gives values for a particular nylon/rubber

composite under conditions listed there.

By g = 87.8 Ej = 18.9 E;’II - 447.3  Ey ;1 = 50.8
E'Z’I - 8.U41 E':?’I - 2.19 E'Z,II = 8.41 E"2'II 2.19
G’12’I= 3.54 G"12’I- 0.42 G;Z,II- 4,43 G"12’II- 0.42
Vi, g= 0.84 Yoy, 1r=0-283
v21’I= 0.17 v21,II not measured

e, = 0.015

Table 6

Elastic Constants for 840/2 Nylon in NR compound
End count/dm 118, Temperature 22°C, Frequency 1 Hz

~

Volume Fraction vc = 0.17. Units: MPa

It is recognized that properties such as quoted in Table 6 are
also dependent on both frequency and temperature. Such dependence
is a function of the specific material and is difficult to
generalize. Studies on selected properties from Table 6 are given
in Figs. 12 through 15, but these should be used with caution since
there is no evidence that the trends observed have quantitative
generality to other constructions or materials. However, the known
response of both rubber compounds and most polymeric textile cords
supports the generalizations that modulus values increase somewhat

Wwith frequency but decrease with increasing temperature.




-13-

Insofar as is known, Table 6 represents the only complete set
of data on cord-rubber composites expressed in the form of Table 5.
However, a number of partial data sets are available in the
literature. These have been collected in Appendix 1 for convenient

reference.

4, Angle Ply Effects

Most cord-rubber lamina are used in laminates, where a number
of plies are bonded together to form a structure, usually forming
principal material directions which are not aligned with the cord
reinforcement direction. Rigid composite practice involves the use
of a compliance or stiffness matrix to represent the plane elastic

properties of the lamina. Using the notation of Ref [10] and Fig.

1,

. _ _
oy Qy Qp O 181]

P = [Q2 Qy O €5 (4)
T2 N 0 Q5|12

where the reciprocity relation of Eq (1) has been invoked to obtain
the symmetry of the Q matrix, and where all quantities represent
the real, or elastic response, so that

Q = Eu/1~v

11 127 V21

1 a
Qua = V92Ba/(17vy2Vpq) = v EYV A=V 5v5)
Q

' )
E}y/ (1=

22 ViaVar)
L

Qs = G12 (5)

By transformation of the stresses and of the strain measures,



-14—-

it may be shown that in directions different from the 1=2~3

principal directions, the relations of Eq (4) become

r— -
Ty €x
4] =
y . ©y
Txy ny (6)

where the Q matrix i{s now fully populated and is a function of both
the Q11, Q22, etc., and the angle 08 between the x axis and the 1
direction, as shown in Fig. 16. Q is given in Ref [10].

The effectiveness of this transformation procedure is widely
accepted in the analysis of rigid composites. Ref. [11] has
documented experimental evidence of its adequacy for cord=rubber
composites, where single ply test specimens were studied over a
variety of cord angles. Good agreement was obtained by comparing
the measured real elastic constants with those calculated from Eq.
(6). The reinforcing materials were polyester, steel and aramid,
all in rubber compounds. Details of the material properties are
given in Appendix 1.

The test techniques used in Ref [11] involved the use of
tensile test specimens with the reinforcement at an angle to the
tensile direction. Cord compression existed at angles above 60°,
and the test data reported represent a mixture of data from what
in this paper are denoted as regions I and II. Nevertheless, the
agreement with transformation theory for the real part of the
elastic constants is surprisingly good, and based on this work its
use appears justified for the real portion in the region of cord

tension, i.e. region II.




-15-

In view of the importance of this experimental evidence, the
comparisons of measurements with calculation from Ref. [11] are
given in Figs. 17 through 19.

A major question now concerns the application of classical
transformation theory to the concept put forth in this paper,
namely that there exist two regions of cord<rubber composite
behavior, region I and region II, and that inside both regions the
modulus values are complex numbers. 1In order to clarify this
question, an extensive series of experiments has been conducted on
tubular specimens using a balanced two=ply construction with cord
angles +06 with respect to the longitudinal axis of the tube. The
reinforcing materials have been nylon, as described in Table 6,
polyester, steel and fiberglass. Modulus data was obtained using
several test techniques, the most common being cyclic extension of
the tubes., In addition, some data was gotten by inflation of the
tubes and other data by torsion with and without combinations of
tension and inflation. Tube geometry is illustrated in Fig. 20.

The results of these experiments appear to confirm and extend
the concept that transformation theory is applicable to the
imaginary elastic modulus as well as the real elastic modulus,
as might be anticipated from the correspondence principal. Figure
21 shows comparisons of the real modulus of nylon in both Region I
and Region II with calculated values over the range of cord angles
0° to. 90°. The calculations are based on the formulations of Ref.
{12], which for completeness is given in Appendix 2. Similar data
is given for the imaginary modulus in Fig. 22. From these
comparisons it appears that satisfactory prediction of complex

modulus for any angle can be obtained using such transformation
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equations.

The data of Table 6 shows that the shear modul G12,I and
G12,II differ only slightly, probably because they are controlled
primarily by the relatively soft matrix which is not affected
in moving from Region I to Region II. However, off-angle
shear modulus values are sensitive to this bi-<modular effect, since
there cord stiffness can play an important role, particularly near
45°, Figures 23 and 24 show comparison between measurement and
calculation from transformation theory for G' and G". While
agreement 1s not as good here as in the case of the extension
modulus, nevertheless the trends are strong enough so as to confirm
the adequacy of the transformation equations.

Part of the scatter of data in Figs. 23 and éu is quite
probably due to experimental difficulties in obtaining good

"
measurements of G and GII’ since these tests must be performed

'
11
under conditions of combined tension, internal pressure in the
tube, and torsion.

There is considerable data on un-reinforced rubber compounds
showing a reduction of modulus values with increasingly large
strain. That effect does not appear to be present in the group of
cord-reinforced materials studied here, or in Refs. [U4] through
(7]. One explanation for this is that low cord compliance limits
matrix strain values, particularly in multi=ply laminates, so that
only limited strains are experienced. In any event, modulus values
are observed to be nearly independent of strain level as long as
strains are well into Region I or Region II, and will be considered

as constants in this paper.

Having available a rational basis for calculation of plane




~-17-

multi=<ply laminates stiffness, the complete [A] matrix may be
formed in the set of equations relating membrane forces to plane

strain, as in Eq. (7).

N > (7)
Non~symmetric laminates and the introduction of bending
moments require a more complete set of relations than given in Eq.

(7), in the form shown in Eq. (8), as given in Ref. [10].

M|={B D K (8)

*
1

any lamina, the moduli and a values from Eq. (4) may be assigned to

Depending on the critical parameter €7 at a given location in

either Region I or Region II. The appropriate summation of those
through the thickness of the variou; lamina in the laminate allows
the A, B, and D matrices to be calculated, each lamina contributing
both a real and an imaginary portion. In cases where the imaginary
component is small, elastic¢ analysis can be carried out using only
the real part. An excellent example of this technique is given by
Ref. [13] where solutions are obtained for the deflection of
bimodular elliptic plates using the concept advanced here of two
elastic regions, equivalent to Regions I and II, with 81* = 0,

In those cases where the imaginary component of Q is
substantial, or where viscoelastic response is desired, it is
necessary to utilize the complete complex form of the A, B and D
matrices,

One important effect of a bimodular material model which was

brought out in Ref. [8] and Ref. [13], but which should be
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emphasized here once more, is that with this type of material the
matrices [A],[B] and [D] are no longer material invariants for a
given laminate. Rather here they depend on the strain state of the
cord reinforcement in each individual lamina making up the
laminate. Therefore any analysis using Eq. (8) as a basis is
often, althbugh not always, a trial and error procedure. This is
particularly true if bending is involved, since the [D] matrix

will automatically contain components from lamina in Region I and
Region II both, unless other factors such as large membrane strains
override the bending strain distribution. As an example of this,
Ref. [1] gives a listing of reinforcing cord moduli deduced from
both tensile and bending tests. Ihe bending modulil listed will
contain elements of both the tensile and compressive cord modulus,
but the large differences illustrate clearly the major changes
occurring quantitatively in the elements of the [D] matrix. This

data is reproduced in Table 7.

Cord Tensi}e Cord Modulus Bend@ng Modulus Ec/' Compressive .
Type Construction Ec,II EB’ Em Cord Modulus Ec,I
Steel 5 x 0.25 106,000 53,400 2.0 35,700

Steel 4 x 0.21 +1 57,700 13,500 4,2 7,640
Aramid  1500/3 49,600 1,200 40 610

Glass G75-5/0 59,500 3,300 18 1,700

PET 1300/3 7,700 240 32 120

TABLE 7
Tensile and Bending Moduli of Tire Cords Ref [1]

Compressive Cord Modulus by Calcualtion Units, MPa

An estimate of the compressive cord moduli for the materials
given in Table 7 can be obtained by neglecting the shear

deformation of the rubber matrix between cord layers and computing
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an effective cord compressive modulus. The results are also given
in Table 7. It should be emphasized that these are only
estimates.

One may view the [A],[B] and [D] matrices involving bimodular
materials as variables whose values range from one extreme when all
lamina are in Region I to another extreme when all lamina are in
Region II. As an example of this, one may use properties of a
typical Aramid reinforced rubber composite such as given in
Appendix I from Ref. [8] to construct three different levels of the
[D] matrix. These are given in Table 8 in order to illustrate the
extreme variation in numerical values of matrix elements as cord

strain moves from Region I to Region II.

Region I: [D] = [12.5 2.5 0
2.5 12.5 0 | n3
12
0 0 3.7
L. -
Intermediate Condition r-537 3 o |
Pure Bending (D] = 3 12.4 0 gi
12
51* = 0 0 0 3.7
L -
. r- -
Region II: [D] = [3583 6.1 O
6.1 12. o |n
12
0 0 3.7
Table 8

Variation of [D] Matrix from Region I to Region II

Material: Aramid-Rubber Composite., 0°, thickness h.
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APPENDIX 1

Material Properties in Units of MPa

Reinforcing Measured Measured
Material Constituent Properties Composite Properties* Ref.
Rayon E, = 3410 E, = 779
v L
E = 8.8 E, = 13.9 (14]
v = 0.23 Gi2= 3.57
1
Ecv = 784 Vig = 0.49
L] _ [} —
Nylon E},I_ 82.6 E},II— 420.5
E%,I= 8.41 EZ‘II= 8.41 Table 6
Glz,I— 3.24 G12,II= 4.44
V12,17 V12,17~ 0-283
eq* = 0.015
Polyester E_ = 4780 E; = 841
EA = 8.8 E) = 13.4 [14]
v = 0.17 Gy = 3.45
)
E Vv = 813 V), 0.49
) ]
Ec = 3970 E, = 6.7
En = 5.5 E) = 10.6
. ?_ . [ll]
v = 0.149 G12= 3.13
E v = 592 V)= 0.475
] ]
E},I— 36.9 E},II' 617
E = . = 8.
2,1 10.6 E2,II 8.0 [8]

— ' —
Glz,I— 2.67 Glz,II— 2-62

A%

Vv — =
12,1I= 0.185 12,17

€1% = o

.475

*Region II unless otherwise specified.



Reinforcing Measured Measured

Material Constituent Properties Composite Properties Ref.
) [
Aramid Eé = 24800 E, = 3580
E = 8.0 E! = 12.0 [111]
m '2
v = 0.14 Gy, = 3.83
E'v = 3472 vi5 = 0.416
C
Eé = 68600 Ei = 17800
] - ' -
Em 7.56 1-3;2 13.3 [1]
v = 0.26 Gy, = 2.76
E,v = 17,840 v ,= 0.534
v v
E? 26,100 E]'L 5230
E. = 7.93 | ?2 = 13.5 [14]
v = 0.2 Gy, = 3.45
E,v = 5220 Vi, = 0.49
[} 1 _
E; ;= 12.0 E; ;1= 3580
] _ ' _
E, ;= 12.0 E; ;.= 9.09 (8]
' [ |
Gy2,1= 3-7 Gyp 11= 3.7

= 0.205 v = 0.416

12,1 12,11




Reinfbrcing Measured Measured
Material Constituent Properties Composite Properties Ref.
Steel E; 72400 E; = 14080
] v
Em 10.0 ?2 = 10. [11]
'v 0.135 G12 = 3.13
Ecv 9770 Vip = 0
Ec': 103,200 E]'_ = 26,900
] LI
Em 7.56 E2 = 10.8 [1]
v = 0.267 Giz = 2.76
]
Ecv 28,890 Vigy = 0.568
] L
Ec 50,500 I1 = 5720
T [ ]
E_ 15.9 ?2 = 19.3 [14]
'v 0.11 G12 = 4.92
Ecv 5555 Vi, = 0.49




APPENDIX 2

For two-dimensional problems, the strain-stress relations, with

respect to an arbitrary coordinate system, I—E, have the following form

in the transformed domain

~ ~

€1 = all(p)—all(p) +312(p)?22(p)

+ 216 (p) §12 (p)

~

222 = EZl(p)Ell(p) + 522(p)°22(p)

+ a26(p)olz(p)

~ -

2
€

12 = Esl(p)gll(p) + Esz(p)géz(p)
L L
+ B (LT, (P)

where the notations with an overhead bar denote quantities in I-2 coordinate

system. The transformed properties, Eij(p) are related to engineering

complex properties in the 1-2 coordinate system. The engineering constants

~

in any arbitrary direction, then, can be calculated from Eij(p), which are

given below.




The real and imaginary parts of the complex flexibility moduli in an
arbitrary direction can be found from the following relations in terms

of the engineering moduli.

a = 6
E’ G: 2v.,EJ
o Yeoste o iz - 2ih).
E11%E1) G12%6G12 E{1*Elr
.2 2 Eso .
sSln acos «o + ———-’2 ) sin a
EjotEss
= Bl ) o4 4 |- €12, 2M12%11
11 "V T7 2 3. .2 2...2
\Ei1%E11 Gi5*Gi, Ei *Ey,
) 2 Ejs .
sln ac0Os ¢ - _———"2 ) siln o
EjotEg)
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.2 Ejo 4
sSin acos a - ) ) CcC0OS o
E5p*Ess
— Eyp \ .. 4 Gya 2v15Ey,
85, = “\m—gsine v\~ 5 7 T 22
Ej1*Eqr Gio¥Gio  Epy*Er;
2 .2 Ejo 4
cOos agsin a - ﬂ CcOS a
E5otEgn
— o [ap)BEn | B2 %12 |
12 ° % PV DY) R
Ei11*Eqy E5o*ESs  Gy,%Gy)
.2 2 v12E1)
Sin acos a - ,2—:2-
Ej1*tEqy
z ¢ 2
= (142v,)B11 , P22 12 .
12 22, .22 J2...2 2 221
Eyj1*tEnr EJotES;  Gyp*Gys
.2 2 vi2E7g
sSln acos a + ———Z——TZ-
EZ+E?>

11 711
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66 = INPY. 2,52 griigi2 |
E]1+E11 B227E32  CG12%Cp:
GI
sin®acos A -
G02+G:2
12 712
I KT L T R
66 = 7 22 2,522 72,432
E1a*tEin EppfEy;  Gpp¥6p;
sinzacos a - -GL
nz ‘2
G12+G12
E' sinza E’ Césza
. _ 22 11
a16 - + 2 s 42 - 02 :2 +
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3
Compression Tension
&
2
3. Typical bimodular response for
unidirectionally reinforced lamina
[ with twisted reinforcement.
1. Principal material directions for
unidirectionally reinforced lamina. 6r

[O 000000 0]

H

2. End view of cord-rubber composite.

STRESS, MPa
O

)

O 005 .01 0I5 .02 025 .03 035
STRAIN

5. Stress-strain curve for nylon

reinforced rubber, 1 direction, Ref. [5].

Strain
-010 -008 -006 -004 -002

ol

4. Stress-strain curve for rayon-reinforced

rubber, 1 direction, Ref. [4].



6.

o Uniaxial Tensile Test
a Sandwich-Beam Test

10071

80t

o

S 6(}.

5

£ 40t

&H

EK)"

100 -50 s .
O 50 100

-20- Strain, Millistrain

Stress-strain curve for steel reinforced

rubber, 1 direction, Ref. [6].

1007

Stress, MPa
3

404

o Uniaxial Tensile Test 301
& Sandwich-Beam Test

201

Strain, Millistrain 10
-50 30 -0

=40+

Stress-strain curve for Aramid reinforced

rubber, 1 direction, Ref. [6].

O Uniaxial Tensile Test 507
&  Sandwich~Beam Test

Strain, Millistrain 10T
-60 -100 -50

P lo

-10

7. Stress-strain curve for polyester

rso reinforced rubber, 1 direction, Ref. {7].

— 1 e (b)
Region I—-i t—~ Region I (c)
\-Tronsition Region

(a)
9. Generalized stress-strain curve for

bimodular material, with notation.

%
{
I 1 ;
Ii A

o} i
2¢, L
’ i—Zeo-i 1

O'é EA
E'=slope of line O-1

A =Area under curve

10. Typical stress-strain curves,

Regions I and II, with notationm.
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Frequency, Hz
12. g

IT and E'I'I values vs frequency for nylon

reinforced rubber

100
o Olb/cord
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70k Region I
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20"‘ Regionl
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20 50 100 150 {70
Temperature, °C
14. .E'l,II and E;,II values vs temperature

for nylon reinforced rubber.
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0] 4 8 12 16 20 24 28 15. Eé IT and E‘z' I values vs temperature
, Frequency, Hz . ’
13. Eé II and E; I values vs frequency for nylon for nylon reinforced rubber.

reinforced rubber.
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16. Notation for angular orientation of

unidirectionally reinforced lamina.

200 20
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(60l  *EXPERIMENT ol *EXPERIMENT
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c
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L

a0}

) 3060 90 803060 90

6 (DEGREES) 6 (DEGREES)

11 and S12

angle for a polyester cord-rubber ply. Ref. [11]

17. Variation of compliances § with cord
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18. Variation of compliances §11 and §12 with cord

angle for a steel cord- rubber ply. Ref. [11].
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19. Variation of compliances §ll and 512 with cord

angle for an Aramid cord-rubber ply. Ref. [11]

21. Variation of real Young's moduli E

| “

11. €, Vs &, from experimental data

on nylon reinforced rubber

d=19mm
t=4 mm
2=145mm

20. Tubular cord-rubber specimen.
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I
and EEI with cord angle for a

ny10n—rubber bias ply tube.
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22. Variation of imaginary Young's moduli 24,
E; and E;I with cord angle for
a nylon-rubber bias ply tube.
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23. Variation of real shear moduli
Gi and GEI cord angle for a nylon-

rubber bias ply tube.
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Variation of imaginary shear modulus

c'I' and G'I'I with cord angle for

a nylon-rubber bias ply tube.



