
NASA Technical Memorandum 59161

T R A D I T I O N A L VERSUS RULE-BASED PROGRARI ING
TECHNIQUES:
OPT1 ONAL F L I G H T INFORMATIOM

A P P L I C A T I O N TO T H E CONTROL OF

WENDELL R, R I C K S
KATHY It, ABBOTT

J U L Y 1987

(EASA-TB-8916 1) I B A C I T I C H A L YLESUS N87-2t255
602.6-EASED P E C G E A L B I N G TECBLICOES:
A€PLICATION T O 18E C C L l E C L C P CE!XIIOIAL
E L l G t i ' I X I F O R R A T I C L (N A S A) 15 p Avail: Unclas
NlIS EC AO2/HP A01 CSCL 12A G3/59 0094120

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

SUMMARY

To the software design community, the concern over the costs associated
w i t h a program's execution time and implementation is great.
desirable, and sometimes imperative, t ha t the proper programming technique i s
chosen which minimizes a l l costs for a given application or type of
application.

I t is always

T h i s paper describes a study t h a t compared the cost-related factors
associ ated w i t h t radi t ional programming techniques t o rul e-based programming
techniques for a specif ic application.
t radi t ional approach regarding execution efficiency, b u t favored the rule-
based approach regarding programmer productivity (implementation ease).

The results of this study favored the

Execution efficiency was measured by the number of steps required t o
i s o l a t e hypotheses.
or a fetch fo r information from another body of code. The separate
homogeneous rule-base and inference mechanisms of the rule-based program
required more steps i n the isolation of hypotheses. The best case fo r the
rule-based program was approximately four times l e s s e f f i c i en t than the
t r a d i ti onal program.

A step was defined t o be a condition test, function c a l l ,

The resu l t s for programmer productivity were based on the modification
ease, ver i f icat ion ease, and the ease of adding explanation capabili ty t o each
program. These measures were determined by a qua l i ta t ive sumnation of the
required process for each measure. The separate homogeneous rule-base and
inference mechanisms of the rule-based program provided potential for improved
programmer productivity.

T h i s study was based on a specific application. The application was both
complex and frequently modified, and therefore, tes ted key features of both
programming techniques.
the results should be widely applicable.

Although this study examined a specif ic application,

INTRODUCTION

A program tha t generates correct r e su l t s , b u t is too expensive w i t h
respect t o execution and implementation costs , is a f a i lu re (r e f . 1). A
successful program is one designed to minimize the cost associated w i t h the
execution and implementation while maintaining correct resul ts .
appropriate programmi ng technique can reduce both execution and implementati on
costs , decisions concerning the proper programing technique for a specif ic
application are most important. Usually, programmer preference is the factor
t ha t determines which technique i s used.
trained t o use t radi t ional programing techniques, and therefore prefer
them. However, the successes of expert systems tha t use rule-based
programming techniques have heightened an awareness of a promising new
approach. I n these e f fo r t s , programs which used rule-based programni ng
techniques were easi ly devel oped and modified; (r e f . 2) t h u s suggesting tha t
rule-based techniques might serve as a basis for improved programer
productivity i n complex and rapidly changing appl ications.

Since the

Most of today's programmers are

This paper describes a study t h a t compared rule-based versus t r a d i t i o n a l
techniques f o r developing a program, the function of which was t o contro l the
presentation o f opt ional f l i g h t information t o the f l i g h t crew of an
a i r c r a f t . The presentation o f t h i s optimal f l i g h t informat ion depended on
m u l t i p l e combinations of several factors which included, (1) f l i g h t phase,
(2) contro l mode sett ings, (3) signal a v a i l a b i l i t y , and (4) switch set t ings.
A1 though t h i s study exami ned execution ef f i c i ency and programmer product i v i ty
based on a speci f ic appl icat ion, the t radeof fs i d e n t i f i e d should be widely
appl i cab1 e.

APPROACH

A l i c a t i o n To determine the t radeo f f s between rule-based and
t r a d i +- ti ona programni ng techniques, an appl i cat1 on was necessary so t h a t an
evaluat ion could be performed. A desirable app l i ca t i on f o r t h i s t e s t would be
one t h a t required complex decis ion l o g i c and frequent changes during software
development.

An appl icat ion t h a t f it these requirements was p a r t o f a research e f f o r t
underway i n the F l i g h t Management D iv i s ion a t NASA Langley Research Center.
This research e f f o r t invest igated concepts f o r informat ion display i n c i v i l
t ranspor t cockpits. The f l i g h t informat ion o f t h i s research e f f o r t included
both basic information (e.g., ind icated airspeed), displayed a t a l l times
during the a i r c r a f t ' s operation, and opt ional informat ion (e.g., reference
a1 ti tude), d i splayed only under appropriate condi ti ons.

Presentation o f the opt ional f l i g h t informat ion depended on mu1 t i p l e
combinations o f the f l i ght phase, cont ro l mode sett ings, avai 1 abi 1 i ty o f
signal s, and switch set t ings. For example, the reference-a1 ti tude po in te r was
opt ional i nformati on, and was d i spl ayed when the f o l 1 owl ng condi ti ons were
true: the f l i g h t phase was "climb," the contro l mode s e t t i n g was "automatic
v e r t i c a l path," the navigation path was "val id," and selector switch 2 was
"on . I'

The r u l e s tha t determined the display o f opt ional f l i g h t informat ion were
represented i n a decision tree, which was traversed i n a data-driven manner.
Figure 1 i l l u s t r a t e s a por t ion o f t h a t decision tree. The organizat ion o f a
decis ion t r e e allowed common condi t ions t o be grouped near the top o f the
tree, which f a c i l i t a t e d ear ly pruning.

Implementation.- The decision t ree f o r t h i s appl icat ion was implemented
i n two programs, one using t r a d i t i o n a l programming techniques and the other
using r u l e-based programni ng techniques. Both programs performed the same
function, so the end user saw no d i f ference between them. The program using
t r a d i t i o n a l techniques combined the ru les and the contro l s t ructure of the
decision t r e e i n nested IF-THEN o r IF-THEN-ELSE statements. Figure 2 shows an
excerpt from the program code.

The rule-based program, on the other hand, separated the r u l e s from the
i nference procedures (o r i nference engi ne) t h a t mani pul ated them.
o f the ru les f r o m the inference engine y ie lded a r u l e base i n which a l l the
ru les had a homogeneous syntax.

Separation

2

The rule-based program used frames t o organize the homogeneous r u l e s i n a
dec is ion- t ree- l ike s t ructure (re f . 3) .
app l i ca t i on were the optional pieces of information, were located i n the
terminal (o r l e a f) nodes. The condit ions o f the rules, which described the
condi t ions t h a t must be t rue for optional informat ion t o be displayed, were
located i n preceding nodes. The inference engine was a t r e e t raversa l
a1 go r i thm, d i rected by the successful execution o f condit ions.

The hypotheses, which for t h i s

RESULTS AND DISCUSSION

The two prototype programs were evaluated f o r execution e f f i c i e n c y and
imp1 ementati on ease (programmer producti v i t y 1. The c r i t e r i o n used t o
determine the execution ef f ic iency was the t o t a l number o f steps required t o
i s o l a t e hypotheses t h a t were true. The c r i t e r i a used t o evaluate the
implementation ease were (1) ease o f modif icat ion, (2) ease o f v e r i f i c a t i o n ,
and (3) ease o f providing explanation capabil i ty.

Eff iciency.- The object ive of evaluat ing e f f i c i e n c y was t o compare the
execution cost o f each programming technique. It was desirable i n t h i s study
t o obta in a machine-independent measure o f execution cost. Therefore, the
e f f i c i e n c y o f each program was measured by the t o t a l number o f steps requi red
t o i sol a te hypotheses.

The type o f steps used for t h i s measure were (1) funct ion c a l l s ,
(2) fetches o f information, and (3) condi t ion tests. A funct ion c a l l was the
t r a n s f e r o f cont ro l t o d i f f e r e n t sections o f the program. A fe tch was defined
as the r e t r i e v a l o f information, such as, r e t r i e v i n g ru les from a r u l e base.
A condi t ion t e s t was a t e s t f o r a l og i ca l re la t ionship, such as, X > Y. The
number o f steps were determined by t rac ing the inference process f o r d i f f e r e n t
hypotheses.

It was expected t h a t the rule-based program would requi re more steps t o
1 sol a te t r u e hypotheses than the t r a d i t i o n a l program, since the r u l e-based
program had t o fe t ch the ru les from the r u l e base and perform tes ts t o
manipulate the tree.
required f o r each program was expected (e.g., rule-based steps = 3 times
t r a d i t i o n a l steps). Thus, the object ive o f t h i s measure was t o determine the
re la t i onsh ip showing how much more e f f i c i e n t the t r a d i t i o n a l program was.
However, a s ing le re la t i onsh ip among the number o f steps was not found due t o
the t r a d i t i o n a l program's abi 1 i t y to d i s t i ngui sh mutual l y excl us i ve condi ti ons
wh i l e the rule-based implementation could not.

A s ing le re la t ionship between the number o f steps

Mutual l y excl us i ve condi ti ons are condi t ions which cannot be s a t i s f i e d
simultaneously, such as, X = 2 and X = 3. Trad i t i ona l programs handle
mutual ly exclusive condi t ions i n an IF-THEN-ELSE statement, as shown bel ow:

I F X = 2 Then do action f o r X = 2
ELSE I f X = 3 do act ion f o r X = 3

The advantage of t h i s capabi l i ty i s t h a t when X i s equal t o 2, the
program w i l l not evaluate the condit ion X equal t o 3.
cannot d i s t i ngui sh sets o f mutual ly-excl us i ve condi t ions from those which are
not. Therefore, a rule-based program would evaluate the condi t ion f o r X
equal t o 3, even a f t e r establ ishing t h a t X was equal t o 2.

Rule-based programs

3

When no mutually exclusive condi t ions were evaluated during the i s o l a t i o n
o f a hypothesis, one re la t i onsh ip between the t r a d i t i o n a l implementation and
the r u l e-based imp1 ementation always resulted. Given 3 non-mutual l y exclusive
condi t ions t o evaluate, the t r a d i t i o n a l program required 3 t e s t s f o r a t o t a l
of 3 steps. The rule-based program required 23 tests, 2J+1 fetches, and 1
func t i on c a l l . Therefore, when no mutual l y excl u s i ve condi t ions occurred, the
rule-based program always required a t o t a l o f d1+2 steps, o r approximately 4
times the number o f steps required by the t r a d i t i o n a l program.

However, when mutual ly exclusive condi t ions were evaluated, more than one
re1 a t i onship resulted. For example, when there were mutual ly excl us i ve
condi t ions and the l a s t condi t ion i n the set was true, the re la t i onsh ip
between the t r a d i t i o n a l and rule-based programs remained the same. That i s ,
i t required a t o t a l of K steps f o r the t r a d i t i o n a l program and 4K+2 steps f o r
the rule-based program. However, when the f i r s t condi t ion o f the K mutual ly
excl u s i ve condit ions was true, the t r a d i ti onal prograin requi red only one
cond i t i on tes t . The rule-based program s t i l l required 4K+2 steps.

Addi ng the capabi 1 i ty o f e f f i c i e n t l y hand1 i ng mutual l y excl us i ve
condi ti ons t o the r u l e-based program woul d therefore, have been benef i c i a1 .
However, adding t h i s c a p a b i l i t y t o the rule-based program would have been
d i f f i c u l t and possibly detr imental t o the homogeneity o f the r u l e base. It
may have required m r k i ng mutual l y excl us i ve condit ions, which woul d requi re
the inference engine t o always t e s t f o r them. Adding t h i s c a p a b i l i t y t o the
r u l e-based program woul d have actual l y decreased the e f f i c i e n c y by i ncreasi ng
the number o f steps required f o r a l l cases because o f the addi t ional tests.

Therefore, the t r a d i ti onal program was more e f f i c i e n t than the r u l e-based
program. I n the best case f o r the rule-based program, the t r a d i t i o n a l program
was approximately 4 times more e f f i c i e n t . Table 1 provides a sumnary o f the
e f f i c i ency resul ts .
before making a decision based on these resul ts . The development o f
h i gh-speed symbolic processors may decrease the time needed t o execute
rule-based programs. This may decrease the impact o f the number o f steps
required. There i s a lso research being performed t o develop too l s t h a t
convert rule-based programs t o t r a d i t i o n a l code. These t o o l s would enable a
programmer t o obtain the execution e f f i c i e n c y o f t r a d i t i o n a l programs i n the
f i nal product whi 1 e us i ng r u l e-based programi ny techniques f o r devel opment .

Modif icat ion.- The object ive o f evaluat ing m o d i f i a b i l i t y was t o determine
the degree i n which the programing techniques f a c i l i t a t e d program
modif icat ions.
important factor o f t h i s c r i t e r i o n .
c r i t e r i a by a q u a l i t a t i v e summation o f the modi f icat ion process required by
each program.

The t r a d i t i o n a l program was modified using the same method as employed
w i t h the devel opment o f most software. Modi f i c a t i on i n the t r a d i ti onal
program required the programer t o search manually through the code and change
the code appropriately.
data-driven decision t ree format. Therefore, a l l the condi t ions o f a r u l e for
a given display were d i f f i c u l t t o locate i n the t r a d i t i o n a l code. Changing,
delet ing, o r adding a condi t ion t o a rule, or de le t i ng o r adding an e n t i r e
r u l e required a very complex search and po ten t i a1 l y error-prone
mani pul a t i on. For example, addi ng the f o l 1 owi ng ru le :

However, one shoul d consi der other re1 ated i n f ormati on

The program's ef f ic iency a f t e r a modi f icat ion was an equally
Thi s study determi ned the modi f i abi 1 i ty

I n t h i s study, the r u l e s were organized i n a

4

i f ATTITUDE-CWS = ENGAGED o r VELOCITY-CWS = ENGAGED
and, i f FLIGHT PHASE = CLIMB, CRUISE, o r DESCENT
and, i f NAVIGATION-PATH = VALID
and, i f SWITCH5 = ON

then CROSS TRACK DEVIATION = ON,

would have requi red a very complex search, and the change would have been
subject t o errors. It would not have been d i f f i c u l t t o add a new IF-THEN
statement t o accommodate the new rule.
the a1 ready ex i s t i n g r u l e s t ruc tu re requi red proper c l u s t e r i n g of the
condi t ions i n the new ru le .

However, mainta in ing the e f f i c i e n c y of

C lus ter ing the above r u l e would have requi red a search o f the outer-most
IF-THEN(-ELSE) statement of the ex i s t i ng code f o r common condi t ions w i t h those
o f the new ru le . The programmer would have then placed the remaining
condi t ions o f the new r u l e i n t o an IF-THEN(-ELSE) statement a t the l o c a t i o n
where he found the l a s t match. It i s easy t o understand how complex and e r r o r
prone a process l i k e t h i s can be, especia l ly when the dec is ion t r e e i s large.

Determining the overa l l impact o f modi f icat ions t o the t r a d i t i o n a l
program was a lso d i f f i c u l t . In teract ions among the new r u l e and the o l d r u l e s
were hard t o i d e n t i f y . Erroneous side e f f e c t s were qu i te poss ib le w i t h each
mod i f i ca t ion t o the ru les. I n the t r a d i t i o n a l program, i t was the
r e s p o n s i b i l i t y o f the person modifying the program t o determine manually a l l
o f the s ide e f fec ts . The d i f f i c u l t y was magnif ied when the number o f r u l e s
became la rge r and more complex.

Modify ing the rule-based program was easier. This was because the
homogeneous r u l e base, being separate from the in ference engine, al lowed the
rule-based program t o access the rules as data. This l e d t o the development
o f an i n t e r a c t i v e mod i f i ca t ion u t i l i t y f o r the rule-based program. With t h i s
u t i l i t y , a programmer could add and delete ru les i n te rac t i ve l y . This provided
an eas ier means o f code mod i f i ca t ion than provided w i t h t r a d i t i o n a l program
development. For example, the programer would have been able t o add the new
r u l e given above t o the rule-based program by accessing the u t i l i t y func t ion
and prov id ing the new r u l e i n i t s en t i re ty . The i n t e r a c t i o n f o r the above
example woul d be:

=> CHANGE-RULEBASE <cr>

For which d isp lay? => CROSS TRACK DEVIATION <cr>

(A)dd or (D le le te => A <cr>

Enter each cond i t ion of the new ru le , fo l lowed by a car r iage
return. Terminate ru le en t ry w i th an "!."

=> ATTITUDE-CWS = ENGAGED OR VELOCITY-CWS = ENGAGED <cr>

=> NAVIGATION-PATH = VALID <cr>
=> SWITCH5 = ON <cr>
=> !

=> FLIGHT-PHASE = CLIMB OR FLIGHT-PHASE = CRUISE OR
FLIGHT-PHASE = DESCENT <cr>

5

The u t i l i t y funct ion would have then searched the e x i s t i n g r u l e base and
automatical ly performed the c l u s t e r i n g needed t o maintain the e f f i c i e n c y of
the decision tree.
modi f icat ion capab i l i t y t o the t r a d i t i o n a l program would be false. However,
t o provide t h i s capab i l i t y would be very d i f f i c u l t , since i t would requi re a
program t h a t could i n t e l l i gent ly i n t e r p r e t the e n t i r e t r a d i t i o n a l programing
language used. On the other hand, the homogeneous nature o f the r u l e base i n
the rule-based program made the task easy.

de let ing ru les t o the rule-based program. I n t h i s study, u t i l i t i e s o f the
rule-based program showed the ru les i n a textua l format when prompted but not
the ove ra l l impact t h a t a change had on the decis ion tree. One comnercial ly
avai lab le program t h a t has t h i s c a p a b i l i t y i s the Automated Reasoning Tool
(ART) developed by Inference Corporation. ART displays the c l u s t e r i n g o f the
r u l e base i n a t ree-sty le format, thus g i v ing the developer a v isual
representation o f the impact o f an addi t ion o r de let ion o f a r u l e on the
deci s i on tree. Thi s capabi 1 i ty i s no t avai 1 ab1 e w i t h t r a d i ti onal p rog rami ng
techni ques.

To say there was no way t o provide t h i s i n t e r a c t i v e

There was s t i l l the issue of determining the e f f e c t s o f adding o r

Therefore, r u l e-based techniques provided the potent i a1 f o r easier
modi f icat ion wi th less chance of er ror .
t r a d i t i o n a l code required a programer t o manually perform the tasks t h a t the
u t i l i t y functions o f the rule-based program d i d automatical ly.
change was completed t o the t r a d i t i o n a l program, there were no automated t o o l s
f o r assessing the impact and side ef fects . Table 2 provides a sumnary o f the
modi f i c a t i on resul t s .

Adding and de le t i ng ru les from the

Even when a

Ver i f icat ion.- The object ive of software v e r i f i c a t i o n i s t o measure such
Val ues as the compl eteness, accuracy, re1 i abi 1 i ty , and performance o f the
software.
v e r i f i c a t i o n and v e r i f i c a t i o n by software test ing. This sect ion w i l l b r i e f l y
discuss the dif ferences i n the two v e r i f i c a t i o n approaches and how these
approaches d i f f e r when appl i e d t o t r a d i t i o n a l and r u l e-based programs. As
w i t h modi f i ab1 1 i t y , t h i s study determi ned the ve r i f i abi 1 i ty by a subject ive
assessment o f the v e r i f i c a t i o n process.

The two major approaches t o v e r i f i c a t i o n are mathematical

I n mathematical v e r i f i c a t i o n , a formal mathematical proof must insure
t h a t the program meets the desi red funct ional and re1 i abi 1 i ty requi rements.
One way o f accomplishing t h i s i s t o mathematically def ine the c r i t e r i a f o r
correct funct ioning o f the program and then prove the program s a t i s f i e s these
c r i t e r i a (re f . 4) .
speci f icat ions i n a natural 1 anguage. However, when performing mathematical
v e r i f i c a t i o n , the t rend i s t o use mathematical notat ion f o r spec i f icat ions.
This aids i n generating more concise and precise speci f icat ions.
v e r i f y i n g the program i s then s i m p l i f i e d by proving t h a t a program conforms t o
i t s speci f i c a t i ons (re f . 5) .

The c r i t e r i a f o r a program are usual ly w r i t t e n as

The task o f

S impl i fy ing the speci f icat ions can reduce the task o f mathematically
def i n i ng a program's speci f i c a t i ons , as the t r a d i t i o n a l program SIFT does
(ref . 4).
consecuti ve t i e r of the h i erarchy has an easi er-to-prove speci f i c a t i on than
the preceding t i e r . Rul e-based programs coul d a1 so use t h i s h ierarch ica l

SIFT formulates i t s program spec i f i ca t i ons i n t o a hierarchy. Each

6

s i m p l i f i c a t i o n process for the design o f the speci f icat ions.
programing technique was found t o have any advantages over the other i n the
program speci f i c a t i ons stage.

The other approach t o software v e r i f i c a t i o n i s v e r i f i c a t i o n by software
test ing. This i s the process of comparing statements o f i n t e n t
(spec i f i ca t i ons) w i t h a c t u a l i t y (the program execution). Three categories
commonly used t o check adherence t o speci f icat ions are: s t a t i c analysis,
dynamic analysis, and formal functional analysis (re f . 6). There are many
automated t o o l s t h a t i n teg ra te these t e s t i n g methods and y i e l d good r e s u l t s
when v e r i f y i ng t r a d i ti onal code (ref . 7).

Neither

For rule-based programs, the process o f t e s t i n g t h a t the program i s
accurate and r e l i a b l e has two d i s t i n c t components: (1) checking t h a t the r u l e
base contains a l l necessary information, and (2) checking t h a t the program can
i n t e r p r e t and apply t h i s information c o r r e c t l y (re f . 8). During t h i s process,
rule-based programs should be able t o employ the t e s t i n g methods used w i t h
t r a d i t i o n a l code (e.g. , s t a t i c analysis, dynamic analysis, and formal
funct ional analysis) . Again, nei ther programing technique was found t o have
any advantages over the other i n the app l i ca t i on o f software t e s t i n g
techniques.

However, the separate, homogeneous r u l e base o f rule-based programs may
F i r s t , code s i m p l i f i c a t i o n be an advantage i n other stages o f v e r i f i c a t i o n .

i s an important step i n a l l forms o f v e r i f i c a t i o n . The separation o f the r u l e
base and the inference engine should ease the s i m p l i f i c a t i o n task (re f . 9).
Also, i t i s already possible w i t h rule-based systems t o eas i l y t race the
program's reasoning process, set up an i n t e r a c t i v e mechanism f o r reviewing and
co r rec t i ng the program's concl usions , and t o provide explanation
capabi 1 i ti es . The abi 1 i ty t o easi ly add these capabi 1 i ti es t o r u l e-based
programs could be helpfu l i n developing automatic t e s t i n g c a p a b i l i t i e s f o r
r u l e-based programs.

Other advantages i n v e r i f y i n g rule-based programs may reside i n the
a b i l i t y t o t e s t the ru les before the r u l e base o r inference mechanism are
completed.
can run prel iminary checks on the knowledge base before the f u l l reasoning
mechanism i s functioning, and without gathering actual data f o r t e s t runs
(re f . 8 1. Test i ng during the knowledge acqui s i ti on shoul d prove p a r t i cu l a r l y
he lp fu l when working w i t h large ru le bases.

When a r u l e-based program i s being developed, the program bui 1 ders

I n summary, s i m p l i f i c a t i o n i s a major concern i n a l l v e r i f i c a t i o n
methods.
which coul d a i d the simp1 i f i c a t i on process.
base could also be an advantage when developing t e s t i n g t o o l s and performing
prel iminary tests.

Ex 1anation.- Software's a b i l i t y t o expla in i t s act ions i s a r e l a t i v e l y

Rule-based programs have separate r u l e bases and inference engines,
The separate, homogeneous r u l e

Table 3 provides a sumnary o f the v e r i f i c a t i o n resul ts .

new capa + 1 i t y , which o r ig ina ted i n rule-based expert system programs. The
advantages o f expl anation capabi 1 i t i e s i n program development prompted i t s use
as an eval u a t i on c r i t e r i a.
i n program debuggi ng and a f t e r program modi f i cation.
when debugging t o determine why cer ta in r e s u l t s occur. They a lso help

Expl anati on capabi 1 i ti es are p a r t i cu l a r l y hel p f u l
Expl anat i ons are used

7

determine the effects o f a r u l e modif icat ion t o other ru les i n the r u l e
base.
implement i t easily.

It i s , therefore, important t o have t h i s c a p a b i l i t y and t o be able t o

Tradi ti onal programmi ng techniques embed the ru les i n t o the contro l
structure, which prevents the use o f the r u l e s f o r more than one purpose. To
provide expl anation capabi 1 i ty t o the t r a d i t i o n a l program woul d have required
t h a t the ru les be repeated i n d i f ferent program statements. This a lso meant
t h a t each time a modi f icat ion o f the decision t ree was necessary, the
programmer would have t o make the change a t every occurrence o f the rules.
Changi ng the rules woul d therefore be more complex, which potent i a1 l y
increases the probabi 1 i ty o f error. An expl anat i on capabi 1 i ty was n o t
implemented i n the t r a d i t i o n a l program o f t h i s study.

However, the ease of adding explanation features t o the rule-based
program y ie lded two types of explanation capab i l i t i es . One type o f
explanation was t o show a l l the ru les f o r a given hypothesis - comnand
SHOW-RULE.
the ru les f o r a given hypothesis (i.e., opt ional d isplay). For example:

A user could give the command SHOW-RULE a t any time t o show a l l

=> SHOW-RULE <cr>
For which display? => CROSS TRACK DEVIATION D I G I T S ccr)

would display a l l the ru les t h a t determined the display o f cross t rack
devi a t i on i n di g i ts .

The other expl anat i on funct ion imp1 emented i n the r u l e-based program was
A user could invoke the WHY funct ion t o i nqu i re which r u l e the WHY function.

determined a current hypothesis. For example:

=> WHY <cr>
For which display? => CROSS TRACK DEVIATION D I G I T S <cr>

would display the r u l e t h a t caused cross t rack deviat ion i n d i g i t s t o be
d i splayed.

Explaining a (rule-based) program's act ions can be as simple as s t a t i n g
the corresponding rule, i f the informat ion i n the r u l e adequately shows why
ac t i on was taken (r e f . 10). Therefore, adding explanation c a p a b i l i t y t o the
rule-based program was a much simpler task. This again was due t o the
separate r u l e base and inference engine i n the rule-based program.
homogeneous r u l e base o f the rule-based program made i t possible t o access the
r u l e s and manipulate them as a data. This s i m p l i f i e d and reduced the amount
o f code needed. There remained only one representation o f the rules, wi th
d i f f e ren t control structures accessing the r u l e s f o r explanations. Therefore,
modif icat ions t o the ru les need only be done i n one locat ion, the r u l e base.

The

Adding explanation capabi 1 i t i e s t o the rule-based program, therefore, was

Being able t o access the ru les o f the rule-based program and

simpler than i t would have been f o r the t r a d i t i o n a l program.
the dif ference between embedding and separating the inference mechanism and
r u l e base.
manipulate them as data s i m p l i f i e d the code needed f o r the explanation
capabi 1 i ty. The t r a d i t i o n a l program would have needed t o repeat the rules,

This was due t o

a

.

once fo r the explanation and once for the reasoning i tself . T h i s would
increase the amount of code and potentially the d i f f i cu l ty of managing i t .
See Table 4 f o r a sumnary of the explanation results.

CONCLUDING REMARKS

T h i s paper described a study performed t o compare t rad i t iona l programni ng
techniques t o rule-based techniques, given a spec i f ic application. The
application used for this study was control l ing the display of optional f l i g h t
i nformati on i n a ci v i 1 t ransport cockpi t. T h i s appl i c a t i on requi red compl ex
decision logic and a frequently modified rule base.

The t rad i t iona l program was more e f f i c i e n t i n execution than the
rule-based program. That is , the t rad i t iona l program required fewer steps t o
i s o l a t e a true hypothesis. The exact re la t ionship i n the number of steps
between the two programs differed depending on whether the set of conditions
tes ted consi sted of mutually excl usi ve conditions o r not.
rule-based program typical ly required about four times as many steps as the
t rad i t iona l program. However, h i gh-speed symbol i c processors and software
too l s f o r converting rule-based programs t o t rad i t iona l code may reduce this
disadvantage.

Overall, the

The resu l t s show t h a t rule-based programmi ng techniques have the
potential f o r improving the productivity of the programmer or designer who
develops a system. In t h i s study, modification of the rule-based program was
eas i e r , more eff i c i ent , and 1 ess error-prone than the t rad i t i onal program' s.
The rule-based program's separate, homogeneous rule base and inference engine
could a id i n the s implif icat ion and tes t - tool development needed d u r i n g the
ver i f ica t ion process.
capabi 1 i t y i n the rul e-based program.

I t was also e a s i e r t o implement an explanation

9

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8 .

9.

Schneiderman, B. : Software Psychology. L i t t l e , Brown, and Company
(Canada Limi ted, 1980.

Doyle, J.: Expert Systems and the 'Myth' o f Symbolic Reasoning.
Transactions On Software Engineering, Vol. SE-11, No. 11, November 1985,

IEEE

pp. 1386-1390.

Winston, P.; and Horn, B.: - LISP. Second ed i t i on . Addison-Wesley

Melliar-Smith, P. M.; Schwartz, R. L. i C.S. Laboratory; and C.S. and

Publ i shi ng Company, 1984.

Techno1 ogy Divis ion: Formal Speci f 1 c a t i o n and Mechanical Veri f i ca t ion
o f SIFT: A Faul t -To lerant F l i g h t Control System. Technical Report CSL-
123, March 1981.

Wulf, W.; Shaw, M.; H i l f inger , P.; C.S. Dept. Carnegie-Mellon Universi ty;
and Flon C.S. Dept. Univers i ty o f Southern Ca l i f o rn ia : Fundamental
Structures of Computer Science. Addi son-Wesl ey Publ i shi ng Company,
1981.

Taylor, R. N.:

Senn, E.; Ames, K.; and Smith, K.: In tegrated V e r i f i c a t i o n and Test ing

An In tegrated V e r i f i c a t i o n and Test ing Environment.
SOFTWARE-Practice and Experience, Vol. 13, 1983, pp. 697-713.

System (IVTS) for HAL/S Programs.
S o f t f a i r '83 Conference, Ar l ington, V i rg in ia , Ju l y 26-28, 1983.

Completeness and Consistency i n a Rule-Based Expert System.
Computer Science, Stanford Universi ty, Stanford, Ca l i f o rn ia , Report No.
STAN-CS--82-922, June 1982.

Presented a t the (IEEE, ACM, NBS)

An Approach t o Ver i f y ing Suwa, M.; Scott, A.; and S h o r t l i f f e , E.:
Dept. o f

Alvarez, R.: On Software Aspects o f St rateg ic Defense Systems.
Communications o f the ACM, A p r i l 1986, pp 262-265.

10. Buchanan, B.; and S h o r t l i f f e , E.: Rule-Based Expert Systems. Addison-
Wesley Publishing Company, 1985.

.

/

. . . .

/

. . . .

ALT I TUDE

Figure 1.- Portion o f Decision Tree.

IF ATTITUDE-CIS = ENGAGED OR VELOCITY-CIS = ENGAGED THEN
IF FLIGHT-PHASE = CLIMB OR FLIGHT-PHASE CRUISE OR FLIGHT-PHASE = DESCENT
IF ALTITUDE-ENGAGE > PRESELECT THEN
IF SWITCH = ON THEN
REFERENCE-ALTITUDE-DIGITS =I ON

ELSE, IF ALTITUDE-ENGAGE < PRESELECT THEN
IF SWITCH2 = ON THEN
REFERENCE-ALTITUDE-POINTER ON

IF NAVIGATION-PATH VALID THEN
IF SWITCH3 = ON THEN
WAYPOINT-STAR - ON
IF SWITCH4 = ON THEN
HORIZONTAL-DEVIATION = ON

ELSE, IF FLIGHT-PHASE = LAND THEN

ELSE. I? AUTO-PILOT ENGAGED THEN

Figure 2.- Excerpt from Traditional Representation.

11

TRADITIONAL NONE

TESTS FOR
TERM I NAL
NODES

RULE-BASED

DOES

DOES NOT TRAVERSE
RULE BASE

TRADITIONAL PROGRAYYER

SOPTIARE
AIDS

i

RULE-BASED

FETCHES

NONE

FOR
CONDITIONS

AND
FUNCTION CALL2

I 1
TREE FUNCTION 1 MUTUALLY 1

YANIPULATION 1 CALLS EXCLUSIVENESS

NONE

Table 1.- Summary o f the Ef f ic iency Results.

CHANGES

EXTERNAL
ED I TOR

RUN-T IHE

MAINTAINING
EFFICIENCY

PROGRAMMER
HAINTAINS

UTILITY
FUNCT I ON
HA I NTA INS

RECOGNIZING
SIDE EFFECTS

.

.

12 Table 2.- Sumnary of the Modi f ica t ion Results.

RULES I
WITH

STATEMENTS
I TRAnTTlONAT. I CONTROL

WHILE
ACQU IR ING

CONTROL
STRUCTURE

WITH
EMBEDDED
RULE-BASE

SEPARATE

I MP LEMENTAT I O N

UT I L I T IES

USER
INTERACTION

CODE
MANIPULATION

Table 3.- Sumnary o f the Ver i f i ca t ion Kesul ts .

CODE MANAGMENT

INCREASES THE

DIFFICULTY

MINIUUY IMPACT

Table 4.- Summary of the Explanation Results.

13

Report Documentation Page

1. Report No.

NASA TM-89161

2. Government Accession No. 3. Recipient's Catalog No.

Information 6. Performing Organization Code t-----
I

7. Author(s1 I 8. Performing Organization Report No.

Wendeli R. Ricks
Kathy H. Abbott I------ 10. Work Unit No.

9. Performino Oraanization Name and Address I 505-67-41-01
I I

NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administrat ion
Washington, DC 20546

I

15. Supplementary Notes

16. Abstract

To the software design community, the concern over the costs associated w i t h a
program's execution time and implementation i s great. I t i s aiways desirabie,
and sometimes imperative, t h a t the proper programming technique i s chosen which
minimizes a l l costs f o r a given app l i ca t i on o r type o f app l i ca t ion . Phis paper
describes a study tha t compared the cost - re la ted factors associated w i th
t r a d i t i o n a l programming techniques t o rule-based programming techniques for a
s p e c i f i c appl icat ion. The r e s u l t s o f t h i s study favored the t r a d i t i o n a l approach
regarding execution e f f i c iency , bu t favored the rule-based approach regarding
programmer p roduc t i v i t y (implementation ease). A I though t h i s study examined a
speci f ic appl icat ion, the r e s u l t s should be widely appl icable.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

A I
Kul e-Based Systems
Evaluation

Unc lass i f ied - Unl i m i ted

Subject Category 59
I

21. No. of pages 22. Price 19. Security Classif. (of this report) 20. Security Classif. (of this page)

A02 Uncl ass i f i ed Uncl ass i f i e d 14
UASA FORM 1626 OCT 86

