
0 .

NASA Technical Memorandum 88331, Rev. 1 -
8

The Nature and Evaluation of
Commercial Expert System
Building Tools: Revision 1 .

William B. Gevarter

March 1987

c

(hASA-TB-8833 1 - E e v - 1) T H E B A l U I i E AND N03-28281
E Y A L U A T I C B OP CCf!&EECIAL EXEEE'I SYSTEEI
E L I L D I I G T C O L S , E E Y I S l C l 1 4 h A S A) 30 p
A v a i l : NfIS BC AO3/B€ A01 CSCL 098 Onclas

63/61 006g4sa

National Aeronautics and
Space Ad ministration

NASA Technical Memorandum 88331, Rev. 1

.

The Nature and Evaluation of
Commercial Expert System
Building Tools: Revision 1

~~

Wil l iam B. Gevarter, Ames Research Center, Mof fe t t Field, California

March 1987

.

.

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

THE NATURE AND EVALUATION OF COMMERCIAL
EXPERT SYSTEM BUILDING TOOLS:

REVISION 1

William B. Gevarter

ABSTRACT

This memorandum reviews the factors that constitute an Expert System Building Tool
(ESBT) and evaluates current tools in terms of these factors. Evaluation of these tools is based
on their structure and their alternative forms of knowledge representation, inference mecha-
nisms, and developer/end-user interfaces. Next, functional capabilities, such as diagnosis and
design, are related to alternative forms of mechanization. The characteristics and capabilities
of existing commercial tools are then reviewed in terms of these criteria.

INTRODUCTION

The development of new expert systems is changing rapidly both in ease of construction
and time'required due to improved Expert System Building Tools (ESBTs). These tools are the
commercialized derivatives of artificial intelligence (AI) systems developed by AI researchers at
universities and research organizations. It has been reported that these tools enable an order
of magnitude less time to develop an expert system than would have been required with the
use of traditional development languages such as LISP. This memorandum reviews the factors
that make up an ESBT and evaluates current tools in terms of these factors. Because of the
rapid changes in ESBTs, this memorandum has been written to revise and update an earlier
version issued in June 1986.

THE STRUCTURE OF AN
EXPERT SYSTEM BUILDING TOOL

The core of an expert system consists of a knowledge base and an accompanying inference
engine that operates on the knowledge base to develop a desired solution or response. To use
such a system, an interface is required to the end-user or to an array of sensors and effectors for
communication with the relevant world. In addition, to facilitate the development of an expert
system, an ESBT must also include a developer interface (1) so that the requisite knowledge
base (KB) can be built for the particular domain application for which the system is intended;
(2) to develop the appropriate end-user interface; and (3) to provide for any special instructions
to the inference engine required for the particular domain. The character and quality of these
interfaces function as one of the main differentiations between commercial tools and research
ESBTs developed at universities. Also important in the structure of ESBTs are interfaces to

1

other software and data bases, and the computers on which they will run for development and
for delivery. Figure 1 summarizes the structure of an ESBT.

KNOWLEDGE REPRESENTATION

The type of knowledge that can be easily represented by the tool is a key consideration in
choosing ESBTs. As indicated by Figure 2, there are three aspects of Knowledge Representa-
tion (KR) that are fundamental in these tools - object descriptions (declarative knowledge,
facts), certainties, and actions. One method of representing objects is by frames (with or
without “inheritance” l). F’rames are data structures for representing stereotyped objects or
situations. A frame has slots to be filled with data for objects and relations appropriate to the
situation. A version of frames incorporating provisions for message-passing between objects
includes procedures that can be activated by the received messages, and therefore supports
“object-oriented programming,” is referred to in the figure as objects. Declarative knowledge
can also be represented by parameter value pairs, by use of logic notation, and to some extent
by rules.

“Actions” change a situation and/or modify the relevant data base. Actions are most
commonly represented by rules. These rules may be grouped together in modules, in terms of
applicability, for easy maintenance and rapid access. Actions may also be represented in terms
of examples that indicate the conclusions or decisions reached. Examples are a particularly
desirable form of representation for facilitating knowledge acquisition and are capitalized upon
in inductive systems. Examples are much easier to elicit from experts than rules, and may
often be a natural form of domain knowledge. Actions can also be expressed in logical notation
-a form of rule representation. Finally, actions can be expressed as procedures elicited by
messages in object-oriented programming or by changes in a global data base observed by
”demons” (procedurea that monitor a situation and interrupt to perform an action when their
activating conditions appear).

In addition to the representation of objects and actions, one must consider the degree to
which the knowledge is known to be correct. Thus, most ESBTs have provisions for representing
certainty. The most common approach is to incorporate “confidence factors,” a derivative of the
approach used by the MYCIN expert system (Shortliffe, 1976); “fuzzy logic” and probability
are also used. An alternate way of handling uncertainties is to consider multiple worlds in
which different items are true or not true. Another consideration is whether or not a udeep
model” of the system can readily be built with the tool to enable model-based reasoning. (The
same underlying model can often be employed for multiple purposes.) Finally, system size (e.g.,
number of rules needed) can be of critical importance as it can have an important effect both
on memory requirements and memory management, and on run times.

.

INFERENCE ENGINE

Figure 3 indicates the major alternative means of doing inferencing that might appear in an
ESBT. The most usual approach is backward chaining, where given a fixed number of possible

‘Inheritance allows knowledge bases to be organized a hierarchical collections of frames which inherit infor-
mation from frames above them in the hierarchy. Thus inheritance mechanisms provide a form of inference.

2

conclusions, hypothesized conclusions are evaluated to see whether the evidence supports them.
This evaluation is usually done by backward chaining through the rules; starting with rules that
have the hypothesized conclusions as their outcome (consequent). Rules are then searched for
those that have as their outcome conditions that support the input conditions (antecedents)
in the hypothesized conclusion rule. Thia process continues recursively until the hypothesis is
fully supported, or until a negation or dead end is reached. If the latter happens, additional
hypotheses may be tried until =me conclusion is reached or the process is terminated. This
depth-first, backward-chaining approach was popularized by the MYCIN expert system. The
corresponding EMYCIN ESBT shell (Van Melle, 1980) is the prototype of virtually all the
hypothesis (or goal-) driven commercial ESBTs currently available.

Forward chaining starts with input data or with the situation currently present in a global
data base. The data or the situation is then matched with the input conditions in each of the
relevant rules to determine applicability for the current situation (usually represented by a set
of attributes and their associated values). One of the matching rules is then selected (e.g., by
the use of meta-rules or priorities), and the rule’s consequents are used to add information to
the dats baae or to actuate some procedure that changes the global situation. Forward chaining
also proceeds recursively (similar to backward chaining), terminating when a desired result or
conclusion is reached, or when all relevant rules are exhausted. Combinations of forward and
backward chaining have also been found useful in certain situations.

Forward reasoning (a more general form of forward chaining) can be done with data-driven
rules or datadriven procedures (demons).

Hypothetical reasoning refers to solution approaches in which assumptions may have to
be made to enable the search procedure to proceed. However, later along the search path, it
may be found that certain assumptions are invalid and therefore have to be retracted. This
“nonmonotonic” reasoning (reasoning in which facts or conclusions must be retracted given new
information) can be handled in a variety of ways. One approach that reduces the computation
required is to carry along multiple solutions (representing different hypotheses) in parallel and
to discard inappropriate ones as contradictory evidence is gathered. This approach is referred to
as “viewpoints,” “contexts,” or “worlds” in different tools. Another approach is to keep track of
the assumptions that support the current march path, and backtrack to the appropriate branch
point when the current path is invalidated. This latter approach has been referred to by such
namea as “nonchronological backtracking.” A related capability is “truth maintenance,” which
removes derived beliefs when their conditions are no longer valid.

Object-oriented programming is an approach in which information about an object and
procedures appropriate to that object are grouped together into a data structure such as a
frame. These procedures are actuated by messages which are sent to the object from a central
controller or another object. This approach is particularly useful for simulations involving a
group of distinct objects, and for real-time signal processing.

The blackboard inference approach is associated with a group of cooperating expert systems
that communicate via shared information on a common data structure referred to as a black-
board. An agenda mechanism can be used to facilitate the control of the solution development
on the blackboard.

In ESBTs, logic commonly refers to a theorem-proving approach involving “unification.”
Unification refers to substitutions for variables that make two items identically matched. The
common logic implementations are versions of Prolog that utilize a relatively exhaustive depth-

3

first search approach.
An important inference approach found in some tools is the ability to inductively generate

rules or "decision trees" from examples. As human experts are often able to better articulate
their expertise in the form of examples rather than in the form of rules, inductive learning
techniques are frequently ideal methods of knowledge acquisition for rapid prototyping. The
resultant expert system can then be iteratively refined by their human builders by critiquing
and modifying the results produced by the system. Inductive inference usually proceeds by
starting with one of the input parameters and searching for a tree featuring the minimum
number of decisions needed to reach a conclusion. The minimum-depth tree is found by cycling
through all parameters LIB possible initial nodes and using an "information theoretic" approach
to selecting the order and necessity of the parameters to be used for the remaining nodes. The
depth of the tree is usually relatively shallow (often a depth less than five) so that large numbers
of examples usually result in broad, shallow trees.

Some tools incorporate demons which monitor local values and execute procedures when
their actuation conditions appear. These are particularly appropriate for monitoring applica-
tions.

A number of tools offer a choice of several poasible inference or search procedures. In
such systems, meane are usually made available to the system builder to control the choice of
the inference strategies, depending on the system state. Such control is referred to as meta-
control. One form of meta-control is the use of "control blocks," which are procedures that
tell the system generically the next steps to take in a given situation, so that the search is
reduced, and a large number of rules can be accommodated without the search space becoming
combinatorially explosive.

As the certainty of data, rules, and procedures is usually less than lOO%, most systems incor-
porate facilities for certainty management. Thus, they have varioua approaches for combining
uncertain rules and information to obtain a certainty for the result.

Pattern matching is often required to mechanize inference techniques. The sophistication
of the pattern matching approaches affects the capabilities of the system. Pattern matching
varies from matched identical strings to variables, literals, and wildcards, and even partial and
approximate matching that ~ervea aa analogical reasoning.

Other ESBT capabilities vary from tool to tool. Some inference engines offer rapid and
sophisticated math calculation capabilities. One of the more valuable capabilities is supplied
by inference enginea that can manage modularized knowledge bases or solution subproblems by
accessing and linking these aa needed.

Another important consideration in a tool is the degree of integration of its various features.
Full integration is desirable 80 that all the tool features can be brought to bear, if needed, in
the solution of a single problem. For example, it is desirable, when appropriate, that expert
system developers be able to freely mix forward and backward chaining rules and be able to
reason about information stored in objects, for ESBTs having these features.

DEVELOPER INTERFACE
Various tools offer different levels of capabilities by which the expert system builder can

mold the system. The simpler tools are shells into which knowledge is inserted in a specific
structured fashion. The more sophisticated tools are generally more difficult to learn, but

4

allow a much wider choice for the system developer. In these, the developer can choose among
various knowledge base representations, inference strategies, and the form of the end-user (or
system) interface. Various levels of debugging assistance are also provided. Figure 4 provides
an indication (dependent on the tool) of the possible options that are available for each aspect
of the developer’s interface.

END-USER INTERFACE
Once the expert system has been built, its usability will depend in large part on the end-

user interface. Figure 5 indicates some of the range of end-user facilities found in ESBTs. As
most expert systems are really intelligent assistants, the end-user interface is often designed
as an interactive dialogue. This dialogue and/or initial input most often appears to the user
as a structured data-input arrangement that incorporates menu choices to answer requests
by the system for information. In some cases, systems will accept multiple and uncertain
user responses and still arrive at conclusions (though with reduced certainty), which increases
flexibility. For sophisticated systems, graphics are often used to show the line of reasoning in
response to users’ ‘how“ questions; whereas in simpler systems a listing of the rules supporting
the system’s conclusion may be employed. The ‘Why do you need this information?” questions
by a user in response to queries by the system are often justified by quoting the rule for which
the information is required. The ability of the system to answer the user’s ‘why” and “how”
questions is important, for it increases the end-user’s confidence in the system’s decision-making
ability.

Other aspects often found in ESBTs are facilities that allow the end-user to change pa-
rameters (‘what if” queries) and observe the affect on the outcome; facilities to allow the user
to initially prune the line of questioning or search so that the system need not pursue areas
that the user feels are irrelevant or unnecessary, and the capability to save examples for future
consideration or use.

Very sophisticated tools will often include interactive graphics and simulation facilities to
increase! the end user’s understanding and control of the system being represented. It is very
important that the end user interface be ‘user-friendly” to facilitate system acceptance. ’

ASPECTS OF TOOL SOFTWARE
AND COMPUTERS SUPPORTED

In addition to the structure and the paradigms supported by a tool, the language in which
the tool is written is of major importance. The language determines whether the expert system
is compilable and, if so, incrementally or in a batch mode. Compilability reduces memory
requirements and increases the speed of the expert system; incremental compilability speeds
development. Figure 6 is illustrative of the aspects related to the tool language choice.

In general, the more sophisticated tools have been written in LISP. However, even these tools
are now being rewritten in languages such as C to increase speed, reduce memory requirements,
and to increase availability on a larger variety of computers. However, some new approaches
to mechanizing LISP may reduce the speed and memory advantages associated with C.

Tools written in LISP are generally extensible by the user by writing additional LISP func-
tions. This is also true of some of the other languages, e.g., Prolog and PASCAL. Similar

5

considerations relate to the tool having language hooks for accessing other programs, or data
base hooks for acceesing other information. In some cases the expert system generated by the
tool is fully embeddable in other system for more autonomous operations. This latter consider-
ation is becoming increasingly important now that expert system are moving from prototypes
to being fielded. Reliability and memory management (e.g., for LISP garbage collection) are
often important considerations for fielded systems.

The computers supported by the various tools are primarily a function of the language and
operating system in which they are written, and the memory, processing and graphic display
capabilities of the individual computers. The trend toward making expert system shells available
on personal computers (such as the IBM) is partially due to the increasing capabilities of these
computers. However, this trend is $so in part due to writing tools in faster languages, such as
C, and to taking advantage of modularization in building the knowledge base - decomposing
the problem into subproblems, and providing appropriate linking, ~ E J required, during operation.

FUNCTIONAL CAPABILITIES
Of primary consideration are the functional applications that can readily be built with a

I particular ESBT. A review of the major functional applications (outlined in Figure 7) follows:

1. CLASSIFICATION I '
By far the moat common function addressed by expert systems is classification. Classi-
fication refers to selecting an answer from a fixed set of alternatives, based upon input
information. Subcategories of classification include:

0 Interpretation of Measurements: This refers to hypothesis selection, given measure-
ment data and corollary information.

0 Diagnosia: In diagnosis, the system not only interprets data but seeks additional
data, ae required to aid its line of reasoning.

0 Debugging, Treatment, or Repair: These functions refer to taking actions or recom-
mending measures to correct an adverse situation that has been diagnosed.

0 Use Advisor: An expert system as a front end to a computer program or to a piece
of machinery can be very helpful to the inexperienced user. Such systems depend on
the goals of the user and the current situation in suggesting what to do next. Thus,
the advice evolves 88 the state of the world changes. Use advisors can also be helpful
in guiding users through procedures in other domains (e.g., auto repair and piloting
aircraft).

Classification (as well as other functional applications) can be considered to be of two
types: surface reasoning and deep reasoning. In surface reasoning no model of the system
is employed, the approach taken is to write a collection of rules asserting that a certain
situation warrants a certain response or conclusion (usually written as a heuristic rule
garnered from experience). In deep reasoning, the system draws upon models or structures
of the system to help arrive at the conclusion. Thus, systems employing deep models are
potentially more capable and may degrade more gracefully than those relying on surface
reasoning.

6

2. DESIGN AND SYNTHESIS

Design and synthesis refers to configuring a system based on a set of alternative possibil-
ities. The expert system incorporates constraints that the system must meet as well BS

guidance for steps to meet the user’s objectives.

3. INTELLIGENT ASSISTANT
Here the emphasis is on having a system that can give advice, furnish information, or
perform various subtasks, depending on user needs.

4. PREDICTION
Prediction refers to forecasting what will happen in the future based on current informa-
tion. This forecasting may depend upon experience alone or it may involve use of models
and formulas. The more dynamic systems may use simulation to aid in the forecasting.

5. SCHEDULING

Scheduling refers to time-ordering a given set of tasks 80 they can be done within the
resources available, without interfering with each other.

6. PLANNING

Planning is the selection of a series of actions from a complex set of alternatives to meet
the user’s goals. It is more complex than scheduling in that tasks are chosen, not given.
In many cases, time and resource constraints do not permit all goals to be met. In this
case the most desirable outcome is then sought.

7. MONITORING
Monitoring refers to observing an ongoing situation for its progress as predicted or in-
tended, and alerting the user or system if there is a departure from the expected or usual.
Typical examples may be space flights, industrial processes, patients’ conditions, and
enemy actions.

8. CONTROL

Control is a combination of monitoring a system, and taking appropriate actions in re-
sponse, to achieve desired goals. In many cases, such as the operation of vehicles or
machines, the tolerable response delay may be as small as milliseconds. Thus, the system
may be referred to as a “real-time” system. Real-time is defined as responding within
the permissible delay time, so that the system being controlled stays within its operating
boundaries.

9. DIGEST OF INFORMATION
Such a system may take in information and return a new organization or synthesis. One
application may be the determination of a decision tree from examples. Another may be
situation assessment of a military situation or the stock market, based on input data and
corollary information.

7

10.

11.

DISCOVERY

Discovery is similar to Digest of Information except that the emphasis is on finding new
relations, order, or concepts. This is still a research area. Examples include finding new
mathematical concepts and elementary laws of physics.

OTHERS

There are other functions, such as learning, that are directly subsumable under the ones
we have enumerated thus far. In many cases these functions (and some of those already
mentioned) can be ingeniously decomposed into ones discussed previously. Thus, for
example, design and some other functions can often be separated into subtasks that can
be solved by classification.

IMPORTANCE OF VARIOUS ESBT ATTRIBUTES FOR
PARTICULAR FUNCTIONAL APPLICATIONS

Table 1 is an attempt to relate the various attributes that are found in different ESBTs to
their importance in facilitating the building of expert systems that perform different functions.2
A solid oval indicates an attribute that is perceived as very worthwhile in helping to build that
function. a An open oval indicates that it is a lesaer contributor. An empty cell indicates an
attribute that does not provide a significant contribution. As indicated earlier, the evaluation
is subjective, as some of the functions can be decomposed into other functions dependent upon
the insights and ingenuity of the system developer. Thus, Table 1 reflects what the author
see8 as obvious (and perhaps necessary) attributes for straightforward construction of expert
systems that perform the indicated functions.

ATTRIBUTES OF PARTICULAR COMMERCIAL ESBTs

Appendix A presents brief descriptions of some of the better-known commercial ESBTs.
Attributes of these ESBTs are listed in Appendix B. Inclusion of an ESBT in this memorandum
in no way repreaents an endorsement of that product. The descriptions and listing have been
constructed from company literature, discussions with company representatives, open-literature
sources, demonstrations, exploratory use of the tools, etc. However, some incompleteness,
errors, and oversights are inevitable in such an endeavor, so it behooves the potential purchaser
to use this memorandum as a guide and to examine directly those systems in which he or she
is interested. Direct examination is particularly important because increasing competition is
forcing ESBT developers to make rapid improvements and changes in both their systems and
their prices.

%rious approachea to ESBTs may be shown to be equivalent to a Turing Machine M) that any computation
can be performed by them. Therefore, it usually cannot be said definitively that ESBT x cannot do function
y. Thus, 'hble 1 b really an attempt to reflect the author's perception of which ESBT attributes facilitate or
simplify the programming of various expert system functions.

8

TABLE

INFERENCE APPROACH
Bc . 0 0 0 0

FC & FORWARD REASONING 0
BC, FC, 81 FORWARD REASON. . . 3 3 - . .

,- 3 ?- --------

1 . - A SUBJECTIVE VIEW OF THE IMPORTANCE OF VARIOUS EXPERT SYSTEM
TOOL ATTRIBUTES FOR PARTICULAR FUNCTIONAL APPLICATIONS

HYPOTHETICAL REASONING

OWECT-ORIENTED

BLACKBOARD

INDUCTION

VERY
0 SOMEWHAT

LITTLE

. . . 3 u .
13 C 3 0 0 0 0 0 0 0 " . . 0 0 0 3

,.

,.

FRAMES W I INHERITANCE

OBJECTS

PARAMETER VALUES PAIRS

LOGIC

. 0 1 . r , I o I 0 0 . I 3 1

0 3 . C 0 0 3 .
3 3 d

0 3 3 ? 0 J

9

COMPARATIVE COMPOSITE VIEW
OF THE VARIOUS TOOLS

Table 2 provides a composite view of the various ESBTs. Many of the attributes have
been integrated to provide a more easily understandable picture of the capability of the tools
in each subcategory (e.g., representation of actions and ease of knowledge base creation). A
solid oval indicates that the tool appears strong in a subcategory, an open oval indicates fair,
and an empty cell indicates little or no capability in that area. Note that by relating each
tool’s attributes to its functional importance, an attempt has been made to indicate each tool’s
suitability for developing various functional applications. Also, note that the more expensive
and correspondingly more sophisticated tools have the widest applicability. This is often due
to their being a collection of different paradigms incorporated into a single tool. As a result,
they may often be regarded as a higher-order programming language and environment, instead
of as a simple shell into which information is inserted, and an expert system directly results.
The latter is more nearly true of the simpler induction systems which can be considered as
knowledge acquisition and rapid prototyping toola from which more complex systems can be
built using other tools and the rules thus far generated.

OVERALL USABILITY OF A TOOL

Figure 8 summarizes some of the aspects that enter into the critical ESBT attribute “overall
usability of a particular tool.” In addition to obvious factors, such as costs and functional
applicability (which functions are easily accomplished with the tool and which are difficult) ,
tool choices should be guided by size of the system to be built, how rapidly a system of the
given size and complexity can be built with the tool, and the speed of operation of the tool
during development and particularly during end-use (when functioning as a delivery vehicle3 for
the developed expert system). Perhaps the most important factor, however, is user satisfaction
both of the developer and the end user. This is related to how obvious are the various functions .
to use, how direct ia the line of action to the user’s goals, the control the user senses that he/she
has over the system, the nature of the interaction or display (e.g., via menu or graphics), haw
easy is it to recover from errors, the on-line help that is furnished, and the perceived esthetics,
reasonableness, and transparency of the system. Also of major importance is how easy it is to
learn the system. This often depends on many of the above factors already discussed, but is
also cloeely related to how apparent the choice is at each step (e.g., use of menus versus via
programming), the quality of the documentation and on-line help, and the system’s structure.
Manufacturer-sponsored courses help; however, these are often expensive and inconvenient. A
related factor is manufacturer support of the tool, particularly the availability of help via the
telephone when required.

Finally, such factors as the system’s portability, machines it will run on, the delivery environ-
ment, its capability to interface with other programs and data bases, and whether the developed
system can be readily imbedded in a larger system &I1 all be important in an evaluation of a
tool. A more difficult factor to evaluate is the ease of prototyping versus life cycle cost. As

some cases, the more sophisticated ESBTs are used only for development of an Expert System, with the
find end umr version being reprogrammed in a more portable language such as C.

10

.I.
0 .

0 .

0 .

0 .

0 .

0 0

e .
e .
0 .

e .
e .

0 .

0 .

0 3

e .
0 .

0 .

0 0

0 .

I

.

.I.I I I .

I I I I I I I
a o (t m % ~ v

11

prototypes are expanded into fielded systems, and iteratively further expanded and updated,
difficulties are often encountered in system stability, run time, and memory management.

Though many of these factora can be deduced from the tool’s specifications and system
demonstrations, in many cases two tools intended for the same applications can be properly
differentiated only by learning both systems and attempting to build the same set of applica-
tions with the two systems. (Appendix C provides an indication of this approach with respect
to deriving timing benchmarks for ART, KEE, and several versions of OPS5 for a particular
example, the monkey and bananas problem.) Nevertheless, the factors described in this mem-
orandum, and the initial evaluation furnished, should prove useful in initially guiding potential
tool Users.

12

BIBLIOGRAPHY

Bundy, A., Ed.; Catalogue of Artificial Intelligence Tools, Springer-Verlag, Springer-Verlag,
New York, 1985.

Gevarter, W. B.; Intelligent Machines, Prentice Hall, Englewood Cliffs, NJ, 1985.

Gilmore, J. F. and Pulaski, K.; A Survey of Expert System Tools, Proc. The Second Conference
on Artificial Intelligence Applications, Miami Beach, FL, Dec. 11-13, 1985, pp. 498-502.

Gilmore, J. F., Pulaski, K., and Howard, C.; A Comprehensive Evaluation of Expert System
Tools, Proc. SPIE Applications of Artificial Intelligence, Orlando, FL, April 1986.

Harmon, P. and King, C. D.; Artificial Intelligence in Business, John Wiley, New York, 1985.

Hayes-Roth, F; Waterman, D. A. and Lenat, D. B; Building Ezpert Systems, Addison-Wesley,
Reading, MA, 1983,

Karna, Animesh and Karna, Amitabh; Evaluating Existing Tools for Developing Expert Sys-
tems in PC Environment, Proc. Ezpert Systems i n Gouernment, Karns, K. N., Ed., McLean,
VA, Oct. 2425,1985, pp. 295-300.

Riley, G. D.; Timing Tests of Expert System Building Tools, NASA JSC Memorandum,
FM7/Artificial Intelligence Section, April 3, 1986.

Richer, M. H.; An Evaluation of Expert System Development Tools, Ezpert Systems, Vol. 3,
No. 3, July 1986.

Shortliffe, E. H.; Computer-Bosed Medical Consultations: MYCIN, American Elsevier, New
York, 1976.

Van Melle, W.; A Domain Independent System that Aids in Constructing Knowledge-Based
Consultation Programs, Report No. 820, Computer Science Dept., Stanford University, 1980.

Waterman, D. A.; A Guide to Ezpert Systems, Addison-Wesley, Reading, MA, 1986, pp. 336
379.

Small Expert Systems Building Tools, Ezpert Systems Strategies, Harmon, P., Ed., Vol. 1, No.
1, Sept. 1985, Cahners Publishing Co., Newton, MA, pp. 1-10,

Expert Systema-Building Tools, Ezpert Systems Strategies, Harmon, P., Ed., Vol. 2, No. 8,
Aug. 1986, Cutter Information Corp., Arlington, MA, pp. 17-24.

13

AI Development on the PC: A Review of Expert System Tools, The Spang Robinson Report,
VOI. 1, NO. 1, NOV. 1985, pp. 7-14.

I Expert Systems Issue, PC, Vol. 4, No. 8, Apr. 16, 1985, pp. 108-189.

14

Figure 1.- An Expert System Building.Too1 structure.

WITH INHERITAN%

No INHERITANCE
OBJECTS

t- MULTIPLE WORLDS

r--

\
- mT-rLoGIC

MESSAGES t PROCEDURES

Figure 2 . - Knowledge representation possibilities.

BACKWARD CHAINING
FOAWARD CHAINING

VI€w?OlNrS (CONTEXTS) r
TFUJTH MAINTENANCE t HYPOTHESIZE AND TEST

HYPOTHETICAL REASONING
OBJECT-ORIENTED
BLAcKBaARD

MA-CONTROL
LNCERTAINTY

VARlABLES

LITERALS

STRINGS

MATH CALCUALTlaVS 7 WILD CARDS

FEATURE INTEGRATION

Figure 3 . - In fe rence engine p o s s i b i l i t i e s .

/
KB EDITOR / - W H l C A L EDITOR
CHECK FOR [MNsISTuw=I
SYNTACTIC CHECK
GRAPHICAL REP. OF KB
TRACING - ‘HOW”

CASE LIBRARY FACILITY

SCREEN FORMATING
GRAPHICS UTILITIES
ANIMATION CREATION \

SEARcHcaVTRoL

PRIOR ITlES META CONTROL

KB ACCESS CONTROL

Figure 4.- Developer i n t e r f a c e p o s s i b i l i t i e s .

16

RESPONSE TO SCREEN
QUERIES

ACCEPTS MULTIPLE AND -: USER RET7 ACTIVE IMAGES
SIMULATION

Ke STAUCTLAE
COMPLETELY USER-

LISTINGS

DEFINED

- H w

-WHY-

" A T IF'

INITIAL PRUNING By USER

WLTIPLE SOLUTIONS

D(AMpLEs SAVED

GRAPHICS

Figure 5.- End-user i n t e r f a c e p o s s i b i l i t i e s .

PASCAL
PROLOG

EXENSIBLE OTHER
on€RuwGFtEas.
OPERATING Svsravs

DEC pVAX
LANGwGE HOOKS SUN
c e m WORK STATIONS M O L L 0
BVBEDOABLE TEKTRWIX

MASSCOrvP
IBM RT
IBM - P C X A T
TI PROF

MACINTOSH

f --€

- € A T

MAINFWVVES

370

LOTHERS

Figure 6 . - Tool software and hardware a s p e c t s .

17

1. CLASSlFlcAflON
/ M A T . m P W E W D

HYPOTHESIS SELECTION BASED ON EVIDENCE

DMaaSlS

ruEAsuRouBvT SELECTION. I-PRETATION - ORPY USESM#L W STr 0%. AND BEHAVIOA

2. DESIGN AND mHES1s
PROVIDE CoVsTRAlNTS As WELL As GuloANcE

FORECASTlffi
3. PREDICTION

4. UsEAmlSoFI
HOW TO

5. INTELLI~AsslsrANT

oU=ISIoN AIDS

6. SCHEWLlffi

TIME-ORDERING OF TASKS
WITHIN RESOUACE CONSTRAINTS

7. Pu4MyING
MANY CoIvpLD(CHOICES AFFECT

EACH OTHER

8. MONITORING

REAL-TlMZ RELIABLE OPERATION

9. CcNTROL

PRocEsscoNTRoL

io. INFORMATION DIGEST

SITUATION ASSESWENT

11. DISCOVERY
NEW RELATIONS OR CONCEPTS

12. DEBUGGING

CORRECTING ACTION

13. D(AMPLE-BASEDRUSSONlNG

SOURCE OF ENEFtALITY OF RULES

Figure 7.- AI i m c t i o n a l c a p a b i l i t i e s .

SHALLOW
CaVlpANY

COST

RULE (OA SIZE) LIMIT

CLASSIFlCATlON

DESIGN

AN4LYSIS

PLPMVIbWSCHEWLING

MONITORING [PROCESSCONTROL

ON-LINE MANUALS

4 RULEZEC SAMPLE PROBLEM

TIME TO CONSTRUCT SAMPLE PROBLEM

RUN TIM FOR WPLE moBm
SPEED

EASE OF LEARNING +z
VERY HARD

INTERFACES TO OTHW W
PORTABlLiN
WCUMO\ITATION
TRAINING
CWVPANV SUPPORT
USER STISFACTION -moR. FAIR, GOOD. mcELLEr.n

Figure 8.- O v e r a l l u s a b i l i t y of t o o l .

18

APPENDIX A
BRIEF DESCRIPTIONS OF THE ESBTs COVERED IN

THIS MEMORANDUM
ART
ART is a versatile tool incorporating a sophisticated programming workbench for use with
advanced computers and work stations auch as the Symbolics, LMI, and VAX. ART’S strong-
point is ” viewpoints,” a technique that allows hypothetical nonmonotonic reasoning in which
multiple solutions are carried along in parallel until constraints are violated or better solutions
are found. At such points, inappropriate solutions are discarded. ART provides graphical in-
terfaces for browsing both its viewpoint and ”schema” (frame) networks. ART is primarily
a forward chaining system with sophisticated user-defined pattern matching based on an en-
hanced version of an indexing scheme derived from OPS5 (discussed later). Object-oriented
programming is made available via a procedural attachment (active value) feature to objects
(schemata). ART haa a flexible graphics workbench with which to create graphics interfaces and
simulations. ART waa designed for near-real-time performance, compiling its framebased as
well aa relational knowledge into logic-like assertions (discrimination networks) to help achieve
this performance. Applications particularly suited for ART are $mning/scheduling, simula-
tion, configuration generation, and design. Currently written in LISP, ART employs a very
efficient unique memory management system (that virtually eliminates ”garbage collection”).
A C version is expected shortly.

KEE
KEE, which runs on advanced AI computers, is the most widely used programming environment
for building sophisticated expert systems. An important aspect of KEE is its multifeature de-
velopment and end-user interfaces incorporating windows, menus, and graphics. KEE contains
a sophisticated frame system which allows the hierarchical modeling of objects with multiple
forms of inheritance. KEE also offers a variety of reasoning and analysis methods, including
object-oriented programming, forward and backward chaining of rules, hypothetical reason-
ing (KEE WORLDS), a predicate logic language, and demons. It has an open architecture
which supports user-defined inference methods, inheritance roles, logical operators, functions
and graphics. KEE has a large array of graphical interfaces under user control, including fa-
cilities for graphical simulation (SIM KIT, extra cost). KEE has been used for applications in
diagnosis, monitoring, real-time process control, planning, design, and simulation.

Knowledge Craft
Knowledge Craft (KC) is a hybrid tool based upon frames with user-defined inheritance. It
is an integration of Carnegie versions of OPS5, Prolog and the SRL frame representation lan-
guage. It is a high productivity tool kit for experienced knowledge engineers and AI system
builders. Fkames are used for declarative knowledge; procedural knowledge being implemented
by attached demons. KC is capable of hypothetical (nonmonotonic) reasoning using Con-
texts (alternative worlds). Search is user-defined. A graphics simulation package (Simulation
Craft) is available. Designed to be a real-time system, KC is particularly appropriate for plan-
ning/scheduling and to an extent for process control, but it is somewhat of an overkill for simple

19

classification problems.

PICON
PICON is designed as an object-oriented expert system shell for developing real-time, on-line
expert systems for industrial automation and other processes which are monitored using sen-
sors in real-time, such as in some aerospace and financial applications. PICON operates on
the LMI Lambda/PLUS LISP machine and the TI Explorer, which combine the intelligent pro-
cessing power of a LISP processor with the high-speed numeric processing and data-acquisition
capabilities of an MC68010 processor. The two processors operate simultaneously enabling PI-
CON to monitor the system in real time, detect possibly significant events in process, diagnose
problems, and decide on an appropriate course of action. PICON’s icon editor and graphically
oriented display enable a developer with minimal AI training to construct and represent a deep
model of the process being automated. Rules about the process are entered using a menu-based
natural language interface. PICON supports both forward and backward chaining.

s.l
S.1 is a powerful commercial ESBT aimed at structured classification problems. Facts are
expressed in a frame representation; judgmental knowledge as rules. Though ostensibly a back-
ward chaining system, it does forward reasoning using a patented “procedural control block”
technique. Control blocks can be viewed as implementations of flow diagrams that procedu-
rally guide the system as to the next steps to take in the current situation. Control blocks
can invoke other control blocks, rules or an interactive dialogue. Control blocks are a powerful
knowledge-based means of controlling the search and thus have made it possible to write pro-
grama containing thousands of rules without being overwhelmed by a combinatorial explosion
(run times tend to be linear with the number of rules). S. l is written in C and executes very
rapidly. A major advantage of S.1 is that it can readily be integrated with existing software.
A delivery version is available (without the development portion of S.1) and can be completely
embedded in applications. S. l is not aimed at exploratory programming, but is aimed at com-
mercial applications where an iterative solution to solvable problems is desired. S.1 has an
excellent user interface with graphical, mouseable representations of both the knowledge bases
and the inference traces. Problem can be solved in terms of subproblems which can be linked
(with consistency checking being performed) to handle the complete problem. All S.1 features
are expressed in an integrated, strongly typed, block-structured language that facilitates system
development and long-term maintenance.

ES ENVIRONMENT/VM or MVS (ESE/VM or ESE/MVS)
ESE is an improved version of EMYCIN designed for classification problems but does allow for
forward chaining. It consists of two components: a development interface and a consultation
interface. A Focus Control Block mechanism has been added to allow the developer to modify
and control the flow of inference to increase the system speed. ESE/VM and ESE/MVS have
good utilities to enable the developer to fashion the user interface and incorporate graphics
when appropriate. ESE is particularly suitable for IBM mainframe users who must interface
with existing software and databases.

20

ENVISAGE
ENVISAGE is a Prolog-derived tool. Thus, instead of entering rules, one enters logical asser-
tions. Features beyond Prolog include demons, fuzzy logic, and Bayesian probabilities. EN-
VISAGE is primarily aimed at classification problems.

KES
KES is a threeparadigm system supporting production rules, “hypothesize and test” rules (us-
ing minimum set coverage to account for data), and Bayesian-type rules for domains in which
knowledge can be represented probabilistically. KES is primarily geared to classification-type
problems. KES can be imbedded in other systems. The hypothesize and test approach starts
with a knowledge base of diagnostic conclusions (classifications) with their accompanying symp
toms (characteristics). The session begins by the system selecting the set of all diagnoses that
match the first symptom of the given problem and then reduces this set as the remaining prob-
lem symptoms are considered. If the initial set of diagnoses do not include all the remaining
symptoms, new diagnoses are added to the set to cover these cases.

M.1
M.l is a PC-based ESBT targeted for solvable problems rather than for exploratory program-
ming It is a basically a backward chaining system designed for classification. It includes the
capability for meta-level commands to direct forward reasoning. Written in C, it can readily
be integrated with existing conventional software. Its main drawback is that it has no true
objecbdescription capability and therefore cannot readily support deep systems. However, M.l
does have a good set of development tools and friendly developer and user interfaces.

NEXPERT OBJECT
NEXPERT OBJECT is a powerful rule-based tool coded in C to run on the Macintosh with
512K of RAM, the Mac Plus, or the IBM PC AT. It has editing facilities comparable to those
found on a large tool designed to run on the more sophisticated AI machines. The system allows
the developer to group rules into “categories” 50 they need be called up only when appropriate.
NEXPERT OBJECT supports variable rules and combinations of forward and backward chain-
ing. The system can automatically generate graphical representations of networks of rules to
indicate how they relate to each other. Similar networks can be generated to show rule firings
in response to a particular consultation. NEXPERT OBJECT includes the capability for frame
representations with multiple-inheritence and pattern matching rules so that deep reasoning is
facilitated. NEXPERT OBJECT is a sophisticated system with a focus on graphical represen-
tation of the knowledge bases and reasoning process that enables a natural and comprehensible
interface for both the developer and end-user.

PERSONAL CONSULTANT+ (PC+)
PC+ is an attempt to provide on a personal computer many of the advanced features found
in more sophisticated tools such as KEE. Thus PC+ provides frames with inheritance as well
as rules. PC+ supports the backward chaining derived from EMYCIN. It also includes for-
ward chaining capabilities without variable bindings. PC+ has an extensive set of tools with
user-friendly interfaces for both development and execution. The new 2.0 version supports up
to 2 Mbytes of expanded or extended memory for increased knowledge base capacity. It also
supports the IBM Enhanced Graphics Adapter and access to the popular dBase I1 and I11 data
base packages on the PC. A version of PC+ is also available for the TI Explorer symbolic
workstation. PC Easy, a simplified version of PC+ without frames, is also offered.

EXSYS 3.0
EXSYS 3.0 is written in C for PCs as an inexpensive, rule-based, backward chaining sys-

tem oriented toward classification-type problems. Rules are of the if-then-else type. EXSYS
includes a run-time module and a report generator. EXSYS can interface to California Intelli-
gence’s after-market products: FRAME to provide frame-based knowledge representation, and
TABLET to provide a blackboard knowledgesharing facility using tables.

EXPERT EDGE
EXPERT EDGE is basically a rule-based backward chaining system aimed at rapidly prototyp
ing and delivering classification-type problems in the 5040 500-rule range. It uses probabilities
and Bayesian statistics to handle uncertainties and lack of complete information. Its out-
standing feature is its excellent developer and end-user interface featuring a pop-up windowing
environment. This is accompanied by a natural language interface and very good debugging
facilities. The professional version interfaces with a video disk and is able to do extended math-
ematical calculations.

ESP ADVISOR and ESP FRAME-ENGINE
ESP is a Prolog-based system that is particularly appropriate for designing expert systems
that guide an end-user in performing a detailed operation involving technical skill and knowl-
edge. The developer builds the system by programming in KRL (Knowledge Representation
Language); a sophisticated and versatile language supporting numeric and string variables in-
cluding facts, numbers, categories, and phrases. PROLOG’s heritage is clearly apparent in the
system’s ability to support a full set of logical operators, enabling the developer to write efficient
complex rules. The ESP consultation shell offers a well-designed multipanel display that makes
good use of color. A text-animation” feature allows the developer to insert text at any point in
a consultation. Though ESP Advisor has been designed as an introductory prototype tool, its
extensibility makes more complex expert systems possible. The more sophisticatd ESP Frame-
Engine supports framea with inheritance, forward and backward chaining rules, and demons.

INSIGHT 2+

INSIGHT 2+ is primarily a rule-based backward chainmg (goal-driven) system but it can sup-
port forward chaining as well. Facts are represented as elementary objects with single-valued

22

I

or multivalued attributes. Rules are entered in PRL (Production Rule Language). The knowl-
edge base is compiled prior to run time. Uncertainty is handled using “confidence factors” and
thresholds. Because INSIGHT 2+ lacks methods for representing deep models, it is best used
for heuristic problems, for which it is a serious tool. Its ability to access external programs and
data bases is a major enhancement.

TIMM
TIMM is an inductive system that builds rules from examples. Examples are first translated
into rules, which are then used to build more powerful generalized rules. TIMM handles con-
tradictory examples by averaging the certainty of their conclusions. Partial-match analogical
inferencing is used to deal with incomplete or nonmatching data. TIMM indicates the reliability
of its results. The resultant expert systems can be embedded in other software programs.

RULEMASTER 3.0
Though RULEMASTER is capable (independently) of both forward and backward chaining, its
major distinguishing feature is its inductive capability for generating rules from examples. It
also offers fuzzy logic. The knowledge base interaction is Iurcnmplished via a text editor. If they
prefer, knowledge er?gineera can develop RULEMASTER applications by writing code directly
in the high-level Radial language of RULEMASTER instead of using examples. However, a
strong programming background is required for facile usage. RULEMASTER can generate C
or FORTRAN source code for fast execution, compactness, and portable expert systems that
can interface to other computer programs.

KDS3
KDS3 inductively generates rules from examples. Examples can be grouped to develop knowl-
edge modules (which KDS calls frames) which can be chained together to form very large
system. Both forward and backward chaining is supported. KDS3 can take input from ex-
ternal programs and sensors and can drive external programs. The resultant programs can be
made interactive or fully automatic for intelligent process control. The entire system is written
in assembly language for very rapid execution on PCs. Graphics can be incorporated automat-
ically from picture files or drawn in real time using built-in KDS3 color-graphics primitives.
KDS3 incorporatea a blackboard through which knowledge modules can communicate. KDS2
without the blackboard facility is also available.

1st-CLASS
1st-CLASS is an induction system that generates decision trees (elaborate rules) from exam-
ples given in spreadsheet form. Problems can be broken into modules of examples, which can
be forward or backward chained together. Rules can also be individually built or edited in
graphical form on the screen. Several algorithms are available for inferencing: the system can
match queries to examples that exist in the data base, or the system can utilize the rule trees
as generated, or in the preferred mode which employs optimized rule trees which ask questions
in the best order. Because all the rules are compiled, the system is very fast. 1st-CLASS is
designed to readily interface. yith other software.

23
< * . .

OPS5
Various versions of the OPS5 expert system development language, developed at Carnegie Mel-
Ion University, are available. OPS5 is a forward-chaining production rule tool in which many
famous systems used at DEC, such aa Rl/XCON, have been built. OPS5 pattern-matching
language permits variable bindings. However, OPS5 does not have facilities for sophisticated
object representations. In general, the development environment is unsophisticated, although
some debugging and tracing capability is usually provided. The use of a sophisticated indexing
scheme (the Rete algorithm) for finding rules that match the current data base, makes OPS5
one of the fastest executing tools. Unfortunately, it is not an easy tool for the nonprogram-
mer to use. Representative versions, OPS5+, for the IBM PC, the Macintosh, and the Apollo
Workstation, are available from Computer*Thought, Plano, TX.

24

APPENDIX C
TIMING BENCHAdARK RESULTS (IN SECONDS) USING

ESBTs TO SOLVE MONKEY AND BANANAS
PROBLEM1

TOOL

ART (V2.0)

ART (VZ.0)

ART (V BETA 3)

K E E ~ (vz.1.w)

NEE (VZ.1.88)

OPSS WAX VZ.01

OPS(F0RGYVPSZ)

oPss+d (V2.ooOz)

E X P E R W S ~ (~1.01)

PROLOG

C-PROLOG

The Artificial Intelligence Section of the Mission Planning and Analysis Division at Johnson
Space Center has made timing tests-of several ESBTs. The benchmark used for testing was a
modified version of a planning problem known as the monkey and bananas problem in which
a monkey must plan how to overcome a aeries of obstacles in order to eat a bunch of bananas.
The resulting benchmark for the forward chaining production systems consisted of 30 rules and
required 81 to 86 rule firings to obtain the solution (depending on the production system used).
Table C-1 presents the time in seconds required to reach the solution for various ESBTs.

While benchmarks provide useful information, one should avoid drawing far-reaching con-
clusions from them. This benchmark is just one of many possible benchmarks and does not
fully test the capabilities of the tools.

INFER METHOD COMPUTER

FC BC 00' SYM LMI TI-EXP VAX11/780 IBMAT IBMPC MAC

X 1.2 3 2.1

X 7.6

X 17

X 17.e

X 0.4

X 1.3

X 1.7

X 5.2 19 14

x 55

X d . 2 5

X cn 5

TABLE C-1.- TIMING TESTS OF EXPERT SYSTEM BUILDING TOOLS

%O REFERS TO OWECT-ORIENTED

~ K E E BENCHMARKS BASED UPON IMPLEMENTATIONS BY INTELLICORP. THESE BENCHMARKS ARE FOR
INTELLICORP MOOIFICATIONS OF FC KEE PROGRAMS WRITTEN BY THE J!X AI SECTION. WHICH TOOK
ABOUT 10 TIMES AS LONG TO RUN. ALL OTHER BENCHMARKS EXCEPT PROLOG ARE BASED UPON
IMPLEMENTATIONS BY THE JSC AI SECTION. PROLOG TIMING VALUES BASED UPON PRELIMINARY
RESULTS AT NASA AMES

CTEST RESULTS USING A BETA-TEST EC RULECOMPILER AT INTELLICORP YIELDED 0.3 FOR THE
COMPILED VERSION OF KEE 3.0

PRODUCT OF COMPUTER*THOUGHT. PLANO. TX

eEXPER-OPS PRODUCT OF EXPERTELLIGENCE. INC.. SANTA BARBARA, CA

'TU appendix extracted from Riley (1986).

27

Report Documentation Page
1. Report No.

NASA TM-88331, Rev. 1

2. Government Accession No.

7. Authork)

William B. Gevarter

19. Security Classif. (of this report) .

9. Performing Organization Name and Address

Ames Research Center
Moffett Field, CA 94035

20. Security Classif. (of t

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

s page)

3. Recipient's Catalog No.

21. No. of pages 22. Price

28 A0 2

5. Report Date

March 1987
6. Performing Organization Code

8. Performing Organization Report No.

A-87076
10. Work Unit No.

549-0 1-2 1
11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: William B. Gevarter, Ames Research Center, M/S 244-7
Moffett Field, CA 94035, (415) 694-6525 or FTS 464-6525

16. Abstract

This memorandum reviews the factors that constitute an Expert System
Building Tool (ESBT) and evaluates current tools in terms of these factors.
Evaluation of these t o o l s is based on their structure and their alternative
forms of knowledge representation, inference mechanisms and developer/end-
user interfaces. Next, functional capabilities, such as diagnosis and
design, are related t o alternative forms of mechanization. The character-
istics and capabilities of existing commercial tools are then reviewed in
terms of these criteria.

17. Key Words (Suggested by AuthorkJJ

Unclassified I Unclassified

18. Distribution Statement

Unclassified - Unlimited

