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ABSTRACT

In this paper, we introduce the notion of subcell resolution, which is
based on the observation that unlike point values, cell-averages of a dis-
continuous piecewise—smooth function contain information about the exact loca-
tion of the discontinuity within the cell., Using this observation we design
an essentially non-oscillatory (ENO) reconstruction technique which is exact
for cell averages of discontinuous piecewise-polynomial functions of the
appropriate degree. Later on we incorporate this new reconstruction technique
into Godunov-type schemes in order to produce a modification of the ENO

schemes which prevents the smearing of contact discontinuities.
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1. INTRODUCTION

In [7), [8], and [9] we have introduced a class of essentially non-~
oscillatory (ENO) schemes that generalizes Godunov”s scheme [2] and its second
order extensions ([10], [1]) to high order of accuracy.

Ip this paper we present a modification of the ENO schemes which is
designed to prevent smearing of linear discontinuities.

Let {Ij x[t stn41)}s where Ij = [xj-l/Z’xj+l/2]’ x = ah, g = kt, be

a partition of R xRt.  Let G? be the the "cell-average" of u at time

t i.e.,

n’

(1.1) G? =-% { u(x,tn)dx.
h|

The cell-average of the solution to the initial value problem

(1.2) u, + f(u)y = 0, u(x,0) = up(x)
satisfies

—+1 —n ~ ~ .
(1.3a) uy o= Uy - A[f(xj+1/2,tn,u) - f(xj_l/z,tn,u)]

where A =1/h and

T
(1.3b) F(x,t;u) = -:—f f(u(x,t))dn.
0

The ENO schemes can be written in the standard conservation form




ntl _ n _ . = - F - 7 JL S
(1.4a) Vi Ty A(fj+l/2 fj—1/2) = [Eh(T) v ]j’
here Eh denotes the numerical solution operator and fj+1/2’ the
numerical flux, denotes a function of 2k variables

F = n LN N ) n

(1.4b) Forr72 = £05arr 200 Vi)
which 1is consistent with the flux £f(u) in (1.2), in the sense that
f(u,u,ses,u) = f(u). Unlike standard difference schemes, v? in the ENO
schemes is a high-order approximation to the cell~average E?, and not to
the point value u(xj,tn). Setting v? = G? in the numerical scheme (1.4)
and comparing it to relation (1.3), we see that if the numerical flux

?5+1/2 = ?(E?_k+1,...,ﬁ?+k) can be expanded as

r+l}

—n 1
(1.5a) IO k41" ,u j+k = ?-é f(u(x, +1/2,t +n))dn + d(x, +1/2)h + 0(h )

then the truncation error

r+l

d(x YIn' + 0(n

(1.5b) 'J‘;.‘” - [E.. o). = Ald(x, ),

h j +1/2) -1/2

is O(hT'l) wherever d(x) 1is Lipschitz continuous, i.e., the scheme (1.4)
is r~th order accurate in the sense of cell averages.

The most important ingredient in the ENO schemes is a procedure to re~
construct a piecewise~smooth function w(x) from its given cell-averages
{55}. This reconstruction, which we denote by R(x;w), 1s a piecewise-

polynomial function of x that has a uniform polynomial degree (r - 1) and



satisfiles:
(i) At all points =x for which there is a neighborhood where w 1s

smooth

(1.6a) R(x3%) = w(x) + eGOh’ + 0(h™y;

(ii) Conservation in the sense of

f ! X3+1/2
| (1.6b) T/ R(xj + E3w)dE = ’v?j;
: X3-1/2

(i1i) 1t 1is essentially non-oscillatory
1+P

(l.6c) TV(R(+3w)) < TV(w) + O(h™ "), P > O
where TV denotes total variation in x.

Using the reconstruction (l.6) we can express the abstract form of the
ENO schemes by
(l1.7a) Eh(T)'§.= A(I)+E(1)+R(s;W).
Here A(I) 1is the cell-averaging operator

(1.7b) ACD)ew = T%T'f w(y)dy
1

and E(t) 1is the exact evolution operator of the IVP (1.2), i.e.,




(1.7¢) ue ,t) = E(t)uo.

We note that (l.7a) with the piecewise constant reconstruction

(1.8) R(x;w) = wi for Xj-1/2 £ x 5-xj+1/2

is exactly the first order accurate Godunov's scheme [l]; (1.7a) with the

piecewise linear reconstruction

(1.9a) R(x;w) = W + Sj(x - xj) for X3-1/2 <x< Xi41/2
where
(1.9b) S, =w (x.) + 0(h),

J X ]

is the abstract form of the second order accurate extensions to Godunov”'s
scheme described in [10], [1], and [7].
In the first order case (1.8), the scheme (l.7a) can be expressed in the

conservation form (l.4) with the numerical flux
(1.10) T, = f (v‘.‘,vg‘ )s

here fR(ul,uz) is an approximation to the flux at the origin in a Riemann
problem with wu; to the left and wuy to the right.
In the second order case (1.9), the numerical flux of the abstract scheme

cannot be expressed in a simple closed form, and we approximate it by



- _#EN0 _ R, L R
(1.11a) Firr/2 = Fie172 = € Oie1y20V50172)
where
L _ .n N TN . R =y - n n ;
(1.11D)  vyyyyp = vy + 0L = Xad85/2, vy g = Vigq = hQL+dag )8, /25

here a = £7(vM).
J ]

In this paper we pay special attention to the second order accurate
scheme (l.11), because at present this seems to be the state of the art. This
class of second order schemes (with various choices of S?) performs rather
well in smooth regions and shocks. However, it exhibits excessive smearing of
linear discontinuities, i.e., contact discontinuities. Usually such discon-
tinuities are smeared more and more in time at the rate 0(n1/3), where n
is the number of time-steps. To understand this smearing we note in (1.7)
that whenever a discontinuity in the reconstruction R 1is propagated by the
evolution operator E 1into the interior of the cell, then the cell~averaging
operator A(I) replaces this sharp discontinuity by a smeared transition. 1In
the linear case there is nothing to stop this process and therefore it goes on
forever. 1In the case of a shock wave, the fact that the characteristics con-
verge 1nto the shock counteracts the smearing, and a steady progressing
profile is obtained.

The above observation is the basis for the artificial compression concept
[3]. In order to prevent the excessive smearing of a linear discontinuity one
can artificially induce convergence of the numerical characteristic field at

each monotoune strip of the solution. This can be accomplished by modifying




the expression of the slopes S?, or by adding a corrective term to the
numerical flux (1.11) (see [4]). The main advantage of artificial compression
is that it 1s easy to use. The primary disadvantage is that one has to be
extra careful (which also means to do a lot of checking...) not to generate
unphysical discontinuities by applying it too strongly, where it need not be
applied at all. We refer the reader to [6] for more details.

The piecewise-parabolic method (PPM) of Colella and Woodward [1] includes
a mechanism to detect contact discontinuities and to correct the scheme by
using a "steeper" reconstruction. The PPM proved itself to be a robust high
resolution scheme in a large number of numerical tests [12]. 1In this paper we
present a technique, which we call "subcell resolution,”" that is close in
spirit to the PPM but is somewhat different in its methodology.

The present scheme is a "souped up" version of (l.11) in which the linear
advection part is boosted to third-order accuracy (in Ll—sense) and is
capable of propagating linear discontinuities perfectly (within 3rd order
accuracy). The main ingredient in the new method is the observation that the
information in cell-averages of a discontinuous function, unlike that of point
values, contains the location of the discontinuity within the cell, e.g., the

cell~averages E}

up j<-1
(1l.12a) wj =q Uy i=0 ,
up j>1

with uy - between u;, and ug, are identical to those of the step-function



x < (6 = h

(1.12b) w(x) =

u x> (- %Oh
Using this observation we can modify the ENO reconstruction of [8] to recover
exactly any discontinuous quadratic function from its cell-averages.

In order to retain the relative simplicity of the numerical scheme (1.11)
we use the new reconstruction to correct only the linear adyection part. The

new numerical flux is

~

(1.13) Fie1/2 = Tf-’?:Kl)/z t 841723
here éj+1/2 is the flux through X441/2 due to the 1linear advection of
the difference between the modified reconstruction and the pilecewise-linear
one (1.9). In the counstant coefficient case the scheme (1.13) is exact for
discontinuous quadratic initial data.

Later on in this paper we present the extension of the "subcell resolu-
tion" concept to any finite order of accuracy, and also extend the scheme to

the Buler equations of gas dynamics.

2. ENO RECONSTRUCTION
In this section, we describe one of the techniques to obtain an ENO re-
construction. Given cell-averages {QG} of a piecewise smooth function

w(x), we observe that




_ X3541/2
(2.1a) h w, = i wiy)dy = W(xj+1/2) - W(Xj-l/Z)
3-1/2
where
X
(2.1b) Wx) = [ w(y)dy
%0

is the primitive function of w(x). Hence we can easily compute the point

values {W(xi+1/2)} by summation
i —

Let Hy(x;u) be an interpolation of u at the points {yj}, which is

accurate to order m, 1i.e.,

(2.2a) Hm(yj;u) = u(yj),
£ 2 -
(2.3b) v =L w0 + o™ ™), 0 < g < m.
£ m [} _ -
dx dx

We obtain our '"reconstruction via primitive function" technique by

defining
(2.4) R(x;@) = 9= H_(x;W)
* ? dx r 7

Relation (l.6a) follows immediately from (2.3b) with g =1 and the defini-

tion (2.1), 1i.e.,



R(x;w) = g—x B (x;W) = %{- W(x) + O(h")

w(x) + 0(h%).

Relation (1.6b) is a direct consequence of (2.3a) and (2.2), {i.e.,

X
j+1/2 d

ACLORG W) = ¢ | .

j T Hr(x,W)dx
*5-1/2

1 1 —
=7 BeOogpyyasW) = Bry g sVl = g TGy p) = WGy p)] = vy

To obtain an ENO reconstruction, we take H. in (2.4) to be the new ENO

interpolation technique of the author [5]. In this case, Hy(x;u) is a
piecewise-polynomial function of x of degree m, which is defined (omitting

the u dependence) by

(2.5a) Hm(x;u) = qj+1/2(x) for 95 Ly« Y i+1

where qj+1/2 i{s the unique polynomial of degree wm that interpolates u

at the m+l points

]

(Z.Sb) Sm(i) {yi+1"°'ayi+m}

for a particular choice of i = i(j) (to be described in the following). To

satisfy (2.3a), we need
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Q172005 = 00 449540 = ulygyy)s

therefore, we limit our choice of 1(j) to
(2.5¢) j - ml < 1(3) < 3.

The ENO interpolation technique is nonlinear: At each interval
[yj,yj+1], we consider the m possible choices of stencils (2.5b) subject to
the restriction (2.5c), and assign to this interval the stencil in which u
is "smoothest" in some sense; this is done by specifying 1i(j) in (2.5b).

The information about the smoothness of u can be extracted from a table

of divided differences. The k=th divided difference of u

(2.6a) u[yi,yi+1,--o,yi+k] = u[Sk(i)]

is defined inductively by

(2.6b) ulSy(D] = uly,)
and
(2.6¢) uls, (1)] = (uls, _, A+ = w8, (DID/(y 47y,

If u(x) is m times differentiable in [y;,yq4,] then

(2.7a) u[Sm(i)] ='%T u(m)(g), for some yis_g S_yi+m.



1f u(p)(x) has a jump discontinuity in [yi’yi+m] then
(2.7b) uls (1)1 = 0™ PPy, 0 ¢ p < w1

([u(p)] in the RHS of (2.7b) denotes the jump in the p-th derivative).
Relations (2.7) show that Iu[Sm(i)]| is a measure of the smoothness

of u in S (i), and therefore can serve as a tool to compare the relative

smoothness of u in various stencils. The simplest algorithm to assign

Sp(1(3)) to the interval [yj,yj+1] is the following:

Algorithm I. Choose 1i(j) so that

(2.8) luls_(1(i)1] =  min  {Juls_(1)]]}.
jm+ 1<I<
Clearly (2.8) selects the '"smoothest'" stencil, provided that h is
sufficiently small.
In order to make a sensible selection of stencil also in the 'pre~

asymptotic" case, we prefer to use the following hierarchial algorithm:

Algorithm II. Let 1,(j) be such that Sy(ig(j)) 1is our choice of a (k+l)-

point stencil for [yj,yj+1]. Obviously we have to set

(2.9a) i1(3) =3
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To choose 1k+1(j), we consider as candidates the two stencils

L N
(2.9b) Sl = sk+1(ik(3) D),
R .

which are obtained by adding a point to the left of (or to the right of)

Sk(ik(j)), respectively. We select the one in which u is relatively

smoother, i.e.,

. L R
ik(J) -1 if Iu[Sk+l]| < Iu[Sk+1]|

(2.94) i, ., = .
+
ket ik(j) otherwise
Finally we set 1(j) = 1_(J).
Using Newton”s form of interpolation, we see that the polynomials
{qk(x)}, 1 S_k < m, corresponding to the stencils sk = S(i(3)) selected
by Algorithm II, satisfy the relation

+
k 1]

(2.9e) qk+1(x) = qk(x) + uls I (x~y).

ye$s
This shows that the choice made in (2.9d) selects qp4; to be the one that
deviates the least from Qy .« It is this property that makes Algorithm II

meaningful also for h 1in the pre-asymptotic range.



3. ENO RECONSTRUCTION WITH SUBCELL RESOLUTION

In this section, we show how to modify the ENO reconstruction of the pre-
vious section so as to allow for the recovery of discontinuities in the in~
terior of the cells, To illustrate the procedure, we first consider a dis~
continuous piecewise polynomial function w(x) of the form

PL(x) x < Xy

(3.1a) w(x) = ’
PR(x) x > Xy

where PL(x) and PR(x) are polynomials of degree less or equal s
(3.1b) deg(PL) <s, deg(PR)‘S Se

We assume that w(x) 1is actually discontinuous at x4, 1.e.,

(3.1¢) P (xy) # Pplxy)

and that the discontinuity is located in the interior of the interval I,

(3.14d) X_1/2 < X, < Xy /9°
(See Figure la,)

Next we denote the cell-averages of w(x) in (3.1) by {EG} and con-
sider the ENO reconstruction R(x;W) applied to these data. To simplify
our presentation let us denote the polynomial defining R(x;w) in the
cell 1I; by Rj(x;a). Clearly, provided h 1is sufficiently small, the

J

stenclils assigned to cells {Ij}, j # 0, are selected from the smooth part of




-14-

the function. Therefore, it follows from (2.3) - (2.5) that

Rj(x;G) P (x) + 0(h") for j < -1

(3.2)

Rj(x;;) PR(x) + O(hr) for j > 1.

R(x;w) in Iy does not introduce spurious oscillations, however it does not
provide an accurate approximation to the discontinous function w(x) either
(see Fig. 1b). Using (3.2) and the information contained ia the cell~-
average Gb, we can easily rectify this situation as follows: We extend
R_l(x;a) to a point z in Iy from the left, and extend Rl(x;a) to
z from the right and then approximate the location of the discontinuity in
the cell I; by finding a value of 2z that will fit the cell average

Eb (see Fig. lc). This is done by finding a root of the algebraic equation

Fo(z) = 0 where

, .2 X1/2
(3.3a) Fo(z) = ¢ {{( R_; (x;W)dx + £ R, (x;Wdx} - . ‘
-1/2

When h 1is sufficiently small, the data near the cell I, approach those of

|
a step—function. Therefore, as in (1.12) we expect to have 4

(3.3b) F.(

0(*-1/27Folxyjp) L0

and a single root of Fy(z) =0 in Iy; we denote this root by 8o

(3.30) Fo(eo) = 0.



It follows from (3.2) that

(3.34d) log = x,| = 0",

0

What we mean by "ENO reconstruction with subcell resolution" is the modified

ENO reconstruction R(x;w) which is defined in this case by

(3.4a) ﬁj(x;W) = Rj(x;W) for §# 0O
R _ R_1 (x;w) for x__l/2< x < 60
(3.4b) Ro(x;w) = _ .
Rl(x;w) for 60 < x < Xy /2

Clearly it follows from (3.2) and (3.3d) that R(x;w) is an  O(nY)

approximation to w(x) 1in the L; sense, i.e., for any a and b

b .
(3.5) [ R(x;%) - w(x)|dx = 0(n").
a
We observe that if the polynomial degree s in (3.1d) is less or equal
(r = 1) then the primitive functions of Py and Pp are polynomials of
degree less or equal r, and therefore H_.(x;w) in (2.5) is exact except at

Ip. Hence,

(3.6a) Rj(x;ﬁ = PL(x) for j < -1
(3.6b) Rj (x;w) = PR(x) for j > 1,
and consequently 6, = x in (3.3). Thus we have shown

0 d
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(3.6¢) s<r=1 = R(x;W) = wlx).

We turn now to describe the algorithm defining  R(x;w) for a general
piecewise-smooth function w(x). As in the previous example we take R(x;w)
in I to be Rj(x;ﬁ), unless Ij is suspected of having a discontinuity

of w(x) 1in its interior. 1In the latter case we check whether

(3.7a) Fj(xj—l/Z).Fj(xj+1/2)-s 0,
where
T _ *3+1/2 _ _
(3.7b) Fj(z) = F-{£ Rj_l(x;w)dx + £ Rj+1(x;w)dx} - wj.
§-1/2
If (3.7a) holds, then there is a root z = ej,

(3.7¢) Fj(ej) =0, xj-l/2-£ ej_g xj+1/2

in the cell 1y, and we define R(x;w) 1in this cell to be

R _ Rj—l(X;;) for X4.1/2 <x < 0
(3.74d) Rj(x;w) = .

Rj+1(x;w) for ej <x < xj+l/2

If (3.7a) does not hold (which means that either there is no root in Ij,

or that there is an even number of roots in Ij), we take Rj(x;in to be

Rj(x;;).

Let oj be some measure of the non—-smoothness of the reconstruction

R(x;w) in Iy, e.g.,
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4k
(3.8a) o, = "TZ R(x

sw)|, 1<k<rl,
I gy 3

or a combination of such derivatives. Our algorithm identifies cells which
are suspect of harboring a discontinuity of w(x), as those which attain a

local maximum of "non-smoothness" of the recoastruction, 1i.e.,

(3.8b) o, >0 and o, > ¢

J 3-1 3 j+r’

We summarize the algorithm defining i(x{ﬁ) by:

If
(3.9a) oy > 95.10 95 Z.Gj+1 and Fj(xj—l/z)'Fj(xj+l/2)-s 0
then
) _ Rj_l(x;ﬁ7 for X 1/2 <x< 85
(3.9b) Rj(x;w) = _ H
Rj+1(x;w) for ej <x < xj+1/2
otherwise
(3.9¢) ij(x;m = R, (x;%).
In an Appendix, we present analysis which motivates the choice of condi-
tion (3.8b). In the following we make several remarks and observations

about i(x;w), the "ENO reconstruction with subcell resolution."”
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(1 ﬁ(x;ﬁ) is indeed essentially non-oscillatory (ENO). This follows from

the fact that local maxima are isolated, i.e., if (3.8b) holds for Ij,

it cannot hold for neither Ij—l nor Ij+1. Consequently, if R(x;w)

is defined in Ij by the discontinuous (3.9b), then in Ij—l

Ij+l it is defined by (3.9¢), i.e.,

and

(3.10) Rj-l(X;w) = Rj—l(X;w)’ Rj+1(x;w) = Rj+1(x;w).

(2) 1f, as in the example (3.1), there is a discontinuity of w(x) in the

interior of IO, then

(3.11a) =0, o

5, L =01, gy =0(1)
where k 1is the order of the derivative used in (3.8a).
Therefore, provided h 1is sufficiently small, we get that

(3.11b) 9 > o-1, 9 > gy

and also as in (3.3b)

(3.11e) Fo(x_l/z)-Fo(xl/z) < 0.

This shows that R(x;w), as defined by the general algorithm (3.9), will

recover any real discontinuity of w(x).
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(3) We observe that condition (3.9a) may hold also in the smooth part of
w(x) mnear a local maximum of |dkw/dxk|. In this case the algorithm
places a discontinuity at ej in the iaterior of Ij. However,
because of the smoothness of w(x) there and (l.6a), we have

r
. > -. = s + .

(3.12) RJH(BJ,W) W(BJ) 0(h™)

Consequently the jump is of the size of the reconstruction error 0(h%).
We recall that the original ENO reconstruction 1is discontinuous at
{xj+1/2}. Therefore, the effect of the algorithm (3.9) is to replace the
two discontinuities at X4-1/2 and X5+1/2 by a single one at ej.

(4) We observe that in order to evaluate Rj(x;a) in a cell Ij which
contains a discontinuity at ej, we have to find out whether x > ei
or x < ej. Assuming ej to be the only root of Fj(ej) =0 1in
Ij, as is the case for a real discontinuity, we can use the logic of the
interval-halving technique to evaluate Rj(x;ﬁ) without actually
computing ej. To do so we calculate Fj(x) and compare its sign with
that of Fj(xj—l/Z) or Fj(xj+1/2):

. Rj_l(x;ﬁ) if Fj(x)-Fj(xj_l/z) >0

(3.13) R(x;w) = _ .

Rj+1(x;w) otherwise
4. A SECOND ORDER ACCURATE ENO SCHEME WITH SUBCELL RESOLUTION

In the following we describe how to incorporate the reconstruction with

subcell resolution into the ENO schemes, so as to improve their resolution of
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linear discontinuities. 1In this section, we present the derivation of (1.13),
which is an improved version of the second order accurate MUSCL~type scheme
(1.11). 1In the next section, we shall generalize these ideas to any order of
accuracy.

We start with the piecewise-parabolic reconstruction R(x;w) which is

defined by (2.4) with r = 3, i.e.,

— _ d .

(4.13) R(X,W) = a; H3(X,W)

where W 1is the primitive function (2.1b) of w(x), and Hy(x;W) is a
plecewise~cubic ENO interpolation. Let 1 = i(j) be the left endpoint of the
stencil (Xi-l/Z’ Xi+1/2> Xi+3/2> xi+5/2) assigned to the interval

(xj—1/2’ xj+1/2) by (2.8) or (2.9) or some other ENO technique;

i=2<1i¢< 3. The parabola describing R(x;w) in (xj—l/z’ xj+1/2) is

given by
Suyaw) ~ o
(4.1b) cJ. = T = (g, = 20, +w)/h
d2H3(x;w) _ _
(4.1c) Sy = ——5— lgmg, = (igyy W)/ + (G -1 - 1/2)he,
dx j
(4.1d) R(x;w) = (w, -hZC.)+S.(x~x.) +—1-C,(x—x )2.
i 2573 hi j 2 73 3

Using the algorithm described in (3.9) we now define R(x;w), which
modifies R(x;w) in (4.1) so that it includes a discontinuity in the

interior of each cell Ij which meets condition (3.9a). Ideally, we would

like to use the scheme



(4.2) v?+1 = ACE@RG v,

which is third order accurate in L;-sense (but only second-order accurate in
the maximum norm). However, the proper approximation of the numerial flux of
(4.2) 1is much more complicated than (l.11), since it 1is one order more
accurate in time, and on top of it one has to account for discontinuities
crossing the boundaries of the cell during the time-step. Bearing in mind
that the main fault in the MUSCL-type scheme (1l.11) that we want to correct is
the smearing of linear discontinuities, we settle for the simpler second order
scheme (1.13), which will be identical to (4.2) only in the constant co-
efficient case.

Our basic scheme remains
(4.3a) v?+1 = ACTDE(OLE v
with the piecewise linear reconstruction

(4.3b) L(x;w) = ;J' + Sj(x - xj) xel,;

as in (l.11) we approximate its numerical flux by

—_ _ —=ENO _ R, L R
where
L _ .n - N\oN R - o0 _ n n
(4.4Db) Vj+l/2 = vj + h(l )\aj)Sj/Z, vj+1/2 Vj+1 h(l + )‘aj+l)sj+1/2'
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We take 85 in (4.4b) to be (4.1c), and observe that by (2.3b)

(4.40) 5, = w,(x5) + 0(h?),

which 1is one order higher than (1.9b). Consequently, as the UNO scheme of
Harten and Osher [7], this scheme is truly second order in all Lp norms
(unlike TVD schemes which are first-order in L and second order only in
L)

We introduce subcell resolution into the scheme by modifying its numer—-

ical flux to be (1.13), i.e., we consider the scheme

4.5 AR e 3 - T

(4.5a) vy vi T ME 0 T fimy2)
- _ ENO ~

(4.5b) Fiv172 = fiv1/2 t Ei+1/2°

In the constant coefficient case,
(4.6) u, + au = 0, a = const.

we define to be

&5+1/2
~ a (b ° n n
(4.7a) gj+1/2 = ?.é [R(xj+1/2 - at; v ) ~ L(xJ.+1/2 - at;v )ldt.

Since in the constant coefficient case

T
(4.7b) T =2 1
To

n
j+1/2 = Xj+1/2 - at; v )dt
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we get that
T ~
- _ 3 - . n
(4.7¢) fj+1/2 == é R(xjﬂ/2 at; v )dt.

This shows that in the constant coefficient case (4.6), the scheme (4.5) is
identical to (4.2). Consequently, it is exact for discontinuous parabolic
data of the form (3.1).

Next we derive an expression for §j+1/2 in the constant coefficient
case (4.7a); this will later be generalized to the nonlinear case by "freez-
ing" the charasteristic speed within the cell.

In the constant coefficient case, (4.7a) can be rewritten as

Xi+1/2

~

" -1y
j+1/2 1 .

~

(4.8) [R(y;v™) = L{y;v™)]dy.

j+1/2-at

First let us assume a > 0, When

(4.9a) i(x;vn) = Rj(x;vn) in Ij,
then
X
“ j+1/2
1 n n a 2
= _ . - . =2 _ - -1 s
(4.90)  g5,/9 Ti [Ri(ysv) = L{ysvDldy = 33 O = D(2v-Dh7C 3
j+1/2-ar
here v = )a.
When there 1s a discontinuity in the interior of Ij, ij(x;vn) is

given by (3.9b), i.e.,
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Rj_l(x;vn) X5-1/2 <x < Gj
(4.10a) R(x;vn) = o
Rj+1(x;v ) 0.

and we have to find out whether (x art) is larger on smaller than

j+1/2
ej. We recall that for (4.10a) to hold the relations

(4.10b) F,(64) =0, Fj(xj_1/2)°Fj(xj+1/2) L0

have to be satisfied, where Fj(z) is defined by (3.7b). Using the basic
idea of the interval-halving method for calculating a root of algebraic equa-
tions, we can find out in which of the two cases we are in without actually
calculating ej (see Remark (4) at the end of the previous section). All
we have to do is to compute F (xj+1/2— at) and compare its sign to that

h|
of Fj(xj_l/z)’ i.e.,

(4.10c) Fj(xj+1/2 - aT)-Fj(xj_l/z) >0 = Xipp/2 T AT < ej
(4.104) Fj(xj+1/2 - aT)'Fj(xj-l/Z)-S 0 = Xip1/2 T 2T > 0.

- 1

To express the integral in (4.8) let us introduce the notation

Y9 2 Ya—X
_ ..n - n_h 1 2 1 3,2 "m
(4.11) b _(3,,7,) -{' R (x;v)dx = [(v) =57 C)y +5 Sy +gCy ]yl_Xm .
1
In case Xi41/2" & Z_ej, we get from (4.8) and (4.10a) that
1

(4.12a) g5 = {b

_ B - n_ 1 _ n
s1/2 = 7 g (Rypqyp = 30 Xypyp) ~ atlvy + g (b= sS40
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When xj+1/2 - at < ej, we use the fact that

X
j+1/2

%-f R(x;vn)dx = v?

X4-1/2

to express the integral in (4.8) by

X541/2 . *541/2787 X541/2720

J R(x;v)dx = hv’- / R(x;v™)dx = hv'- f R._l(x;vn)dx;
X ~-at I % I % J
i+1/2 j-1/2 j=1/2

Rearranging terms we get in this case

~ _ 1 _ n _ at gny _ -
(4.12b) 84172 = ?-{(h at)(vj 2_'Sj) bj—l(xj—l/Z’ Xi41/2 at)}.

To summarize, the definition of §j+1/2 in the case a > 0 is:

(4.13a)" =3 (y - 1)(2v - 1)hzcj,

T8541/2

unless the discontinuity condition (3.9a) holds for Ij; in the latter case we

define
(4.130)%F
n art - -
) (h-ar)(vj- I_Sj)_bj—l(xj-l/2’§+1/2 at) if Fj(xj+1/2 aT)°Fj(xj-l/2) >0
8541727

n 1
bj+1(xj+1/2-a1,xj+1/2)-a1[vj + 7(h ar)Sj] otherwise

Similarly for a < 0 we get:
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- ~ - at 2
(4.13a) ng—l/z =13 (v+1)(2v+1)h Cj’

unless the discontinuity condition (3.9a) holds for I:; in the latter case we

J,
define
(4.13b)"
n_l _
X —bj_l(xj_l/z,xj_l/z-ar)-aT[vj 7(h+ar)]Sj if Fj(xj_l/z)-Fj(xj_llz at) >
Tg. 5
j=1/2

n_ at
bj+1(xj_l/2-ar,xj+1/2)—(h+ar)(vj > Sj) otherwise

Note that the expressions (4.13) are formulated as the contribution of the

~

cell Ij to the numerical flux g. Thus, if a > 0, the contribution of

from the Ij cell goes to

~

Bi+1/2° while if a < 0 this contribution goes

Ei-1/2°

In section 6, we extend the subcell resolution ideas to the Euler equa-

to

tions of gas dynamics. Since shocks are highly resolved by the original ENO
scheme, we apply subcell resolution only to the 1linearly degenerate
characteristic field in order to improve the resolution of contact dis-
continuities. In this case the characteristic speed, which is the velocity of
the flow, is not a constant but a function of the solution itself. Neverthe-
less, we use the same expressions as in (4.13), except that a in Ij is
replaced by aj» and v = Aaj. We compute the corrective flux é in the
following Qay: First we preset % = 0, and then we sweep over the mesh and

~

collect contributions to g from each cell: If aj > 0 we add the RHS of

gj+l/2; if ay < 0 we add the RHS of (4.13)” to

8y-1/2°

Note that if aj41 < 0 and aj > 0, then gj+l/2 gets contributions from

(4.13)F to

both Ij and Ij+1o
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S. EXTENSION TO HIGH ORDER OF ACCURACY

In this section, we describe the extension of the ENO scheme with subcell
resolution to arbitrarily high order of accuracy. As in the second order case
(4.5), we introduce subcell resolution to the high order accurate ENO schemes

via a corrective flux ’éj+1/2’ i.e., we consider the modified scheme

(5.1a) Vo= vyt ’\(fj+1/2 ~ fj-1/2)
- _ _ENO -
(5.1b) Firrz2 = B5+172 * 8441720

First, we describe briefly the derivation of ??2(1)/2' We refer the

reader to [8] for more details. Let L(x;w) be an r-th order accurate

reconstruction of w(x), such that

1 =
(5.2a) B—II L(x;w)dx = e
h|
As before we denote the (r-1)-th degree polynomial describing  L(x;Ww) in

I. by Lj(x;W), and express it in the following Taylor expansion

J
-1 D k
— k k ~ d -
(5.2b) L.(x;w) = ) —(&x-x), D =— L(x,;w).
3 k=0 ' 3 ok

Let uj(x,t) be the solution to the initial value problem
(5.3a) u, + f(u)x =0, u(x,0) = Lj(x;;z').

t

Since the initial data in (5.3a) are analytic, we know from the Cauchy-
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Kowalewski theorem that uj(x,t) exists uniquely and it is analytic for some

time 0 <t 5-tc° Therefore, its Taylor expansion around x = X3 and t =0

1 k
(5.3b) uj(x,t) =Y = 1
(5.3b)

is valid for 0 <t S-tc and x sufficiently close to X3

define vj(x,t) to be the truncated Taylor expansion

Using (5.3) we

(5.4a) (x,t) = ril 1 § (k) B t™(x - x )™
* Vyi¥s 20 —T.m=0 m’ m,k-m j g
(5.4b) |vj(x,t) - uj(x,t)l = 0(n").
The coefficients 5m k~m in (5.4a) can be computed directly from the
’

known coefficients {ﬁk} in (5.2b) (note that 30, k = ﬁk) by successive

differentiation of the partial differential equation and substitution--see [8]

for detials.

Finally, using an appropriate numerical quadrature to approximate the

—=ENO

integral in (1.5a), we define fj+1/2 to be

K
—ENO  _ R
(5.3) fj+1/2 = kzl B f (Vj(Xj+1/2’Ykr)’vj+l(xj+l/2’ykr))'

Here Bk and Yi are the coefficients of the numerical quadrature. In

the second order case we use the mid-point rule: K =1, Bk =1, Y = %—. In

the third and fourth order case we use the Gaussian quadrature: K = 2,
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1 1 - 1 —
By =By =35 5 Y = 5‘(1 - 1//3), Yy = 5-(1 + 1//3). Note that the second-

order accurate scheme (1.11) is identical to (5.5) with r = 2.

Next we describe the derivation of the corrective flux in

Ei+1/2
(5.1b). Let R(x;w) be another reconstruction of w(x) which is at least

r~th order accurate. Using the algorithm (3.9) we define i(x;ﬁ), its

modified version with subcell resolution. As in the second order case (4.7a)

~

we define gj+1/2 in the constant coefficient case to be

~

T A
Bi+1/2 ~ ?‘é (RCxgpy/p = a8V = Llxgyy )y = atsvilde

(5.6) .
4172 .
/ [R(y;v™) - L(y;v™ ldy.

xj+1/2-a'r

|-

We note that relations (4.7b) - (4.7c¢) hold for any r; therefore, we can
state that the scheme (5.1) in the constant coefficient case is identical to
(4.2) in general. Consequently, if the reconstruction R(x;w) 1is exact for
smooth polynomial data of degree r, then the ENO scheme with subcell resolu-

tion (5.1) is exact for all initial data of discontinuous piecewise-polynomial

functions of degree less or equal .

Let us denote

Y2
(5.7a) d (y,y,) = IR (v™) = L (x;v™")]dx,
1
Y2
n
(5.7b) Cop1/2(9157y) = £ [R_, Cxsv™) - Rm(x;vn)]dx.
1

~

Using these notations we can evaluate gj+1/2 by the following expressions:
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If a > 0, then

+ - _ -
(5.8a) ng+1/2 = dj(xj+1/2 at,xj+1/2),
unless
(5.8b)+ g, > o, o, 20

s T3y Fy (x5 9) €0

in which case

4350172780841 720 ¥ Ci1 /2417273758541 72)
+ _° = . -
(5.8¢c) ng+l/2 = if Fj(xj+l/2) Fj(xj+1/2 at) > 0

dj(xj+1/2—ar,xj+1/2)+Cj_1/2(xj_1/2,xj+l/2-ar) otherwise.

If a < 0, then

.8a)~ o = - -
(5.8a) T85_1/2 dj(xj—l/Z’xj—l/Z atr),
unless

(5.8b)™ g, > o, g, >

in which case



-dj (Xj_l/z ’xj-l/z_aT) + Cj+1/2(xj_1/2—a1' ,Xj+1/2)

(5.8¢)" T8i-1/2 = if Fj(xj+1/2)'Fj(xj-l/2-aT) >0

-dj(xj_l/z,xj_l/z-ar) + Cj—l/Z(xj-l/Z’xj-l/Z_aT) otherwise

We observe that up to this point we have not specified L(x;w) and
CR(x;w). One possibility is to generalize the set up of the second order
accurate scheme in section 3 as follows: Let r be the desired order of
accuracy of the scheme. We start with a reconstruction via primitive func-

tion R(x;w) which is one order higher, i.e.,

d

(5.9a) R(x;w) = = H , (x;W);

here W 1is the primitive function of w, and H.; 1is the ENO interpolation
of section 2. As before we denote the polynomial of degree r defining

R(x;w) in Ij by Rj(x;ﬁ), and rewrite (5.9a) as a finite Taylor

expansion:

dk+l

AU S A S
I E . (R o B R

(5.9b) R, (x;w) =
J 0 J dx

=
il &~y

Using (5.9b) we now define L(x;w) to be

_ r r~1 Dk K
(5.10a) Lj(x;w) = (DO +ah Dr) + kzo T (x - xj) ,
where
0 for k odd
(Solob) o ] = .
k -k
2 T/ (k+1)! for k even
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Lj(x{E) is a polynomial of degree (r = 1) which reconstructs w(x)
in Ij to O(hY). We observe that
dr—l _ dr—l 2
(5.10¢) ! Lj(x;w) =D __; = = w(xj) + 0(h%);

this, as (4.4) does in the second order case, eliminates some of the non-
smoothness in the reconstruction error which is due to the adaptive choice of
stencils. Consequently, the ENO scheme based on this reconstruction is r—th
order accurate in all Lp norms, including the maximum norm. Note that the

correction to the first term in the RHS of (5.10a) takes care of the conserva-

tion property (5.2a), i.e.,

1 = _ =
(5.10d) F—{ Lj(x,w)dx Wj'
h|
Remark: There are other reasonable choices of L{x;w) and R(x;w).

We may choose

oy - d . oy = 4 .
(5.11) L(x;w) = T= Hr(x,W), R(x;w) I% Hr+l(x,W)
or even
(5.12) L(x;w) = R(x;w) = g—x Hr(x;;z');

note that the expression for in the latter case is much simpler

8i+1/2
since dj(yl,yz) =0 in (5.7a).



6. EULER EQUATIONS OF GAS DYNAMICS

In this section, we describe how to apply the scheme (5.1) to the Euler

equations of gas dynamics for a polytropic gas:

(6.1a) up + f(u), =0
(6.1b) u= (p,mE)T
(6.1c) £(u) = qu + (0,P,qP)T
(6.14) P=(y- DE - 503

Here psq,P and E are the density, velocity, pressure and total energy,
respectively; m = pgq is the momentum and Y is the ratio of specific
heats.

The eigenvalues of the Jacobian matrix A(u) = 3f/du are

(6.2a) aj(u) =q=-¢ ayu) =q, azlw)=q+ec

1/2

where ¢ = (YP/p) is the sound speed.

The corresponding right—eigenvectors are

1 1 1
(6.2b) rl(u) = (q -c ), rz(u) ==( q ) . r3(u) = (q + ¢
H - qc 12 H+q
24

here
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(6.2¢) H=(E+P)p=c/y-1) +53q°

is the enthalpy.
To compute a left—eigenvector system {lk(u)} which is bi-orthonormal

to {rk(u)} in (6.2b), we first form the matrix T(u), the columns of which

are the right-eigenvectors in (6.2b)
T(u) = (ry(u),ry(u),r3(u))

and then define 1k(u) to be the k~th row in TPI(u), the inverse of T(u).

We get
1
ll(u) = 7‘(b2 + q/c,~b1q - l/c,bl)
(6.2d) zz(u) = (1 - b2,b1q,—b1)
1
£3(U) = -2-(b2 - q/c,-blq + l/c,bl)
where
_ 2
(6.2e) b, = (v - /e
_1 2
(6.2£) b, == q°b,.

Given {v?}, approximation to {G(xj,tn)}, we use (6.2d) - (6.2f) to

evaluate the locally defined characteristic variables W?(vg)

(6.32) W = L IW] for 1= - reee,i+r oand k= 1,2,3.
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Note that j is fixed in (6.3a) while 1 varies over the points which
are relevant to the selection of the stencil for the cell Ij, Thus, the
elgenvector system {zk(v?)}a=l should be regarded in this context as a
constant system of coordinates. Next we apply our scalar algorithm to each of
the 1locally defined characteristic variables in (6.3a), i.e., we select a

(possibly different) stencil for each of the characteristic variables and de-

fine Rj(x;ak) by (5.9); then we combine these scalar reconstructions by

(6.3b) Rj(x;vn) kg R, (x;% (v N1, (v ).

As in section 5 we rewrite the r-th degree polynomial (6.3b) as a finite
Taylor expansion, except that now the coefficients {D,} in (5.9) are
vectors. With this convention in mind we proceed to define the vector recon-
struction L (x;v™) and the numerical flux T?E?/z by (5.10) and (5.5),
respectively.

We turn now to describe the vector gj+l/2’ which introduces the
subcell resolution to the numerical flux (5.1). As we have mentioned earlier
in this paper, we use subcell resolution only in the linearly degenerate field
(k = 2 in (6.2)) in order to improve the resolution of contact discontinui-
ties. We do so by applying the algorithm (5.8) scalarly to the linearly

degenerate characteristic field k = 2 as follows:

We define
(6.4) oj = Iz (v ) R (xj,v )| for some k, 1 <k <r -1,
x
1 o Xj541/2
(6.5) Fj(x) - zz(v ) {f R, (x;v Ydx + £ R, (x50 Mdx - hv, %

X5-1/2
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and similarly

Y2
(6.6a) d; (v, 5,) =fy £ (VR Gv™) = L (9™ Jax
1
V2
(6.6Db) Cm+1/2(y1,y2) = £ zz(v?)[km+l(x;vn) - Rm(x;vn)]dx for m = j-1,j.
1

The characteristic speed of the 1linearly degenerate field is the flow
velocity q; which can be of different sign in different regions. The defini-
tion of gj+1/2 in (5.8) is formulated as the contribution of the cell

Ij to the numerical flux. Therefore, it 1s convenient to program the

calculation of the numerical flux in two stages: First we evaluate

_ _ _ENO
(6.7) Fiv172 = f541/2

by (5.5) for all j. Then we sweep over the mesh again and collect the con-
tribution of each cell to the numerical flux. Using FORTRAN conventions this

can be described by:
n
If qj >0 then

+ _ 1 _ ..n ny,
(6.8) Tj+1/2 = ?j+1/2 + T_ hd dj(xj+1/2 qu’xj+1/2)r2(vj)’

If q;_s 0 then

- = 1 _._n n
Fim172 = Tym172 ~ 7 43Oy 0% 4172 ~ TIpITRV)-
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Next we check whether the discontinuity condition

(6.9) o > O4-10 95 2-°j+1’ Fj(xj-1/2)°Fj(xj+1/2)-S 0

is satisfied. 1If one or more of the inequalities in (6.9) is not true, we
move on to the next cell. 1If all the inequalities in (6.9) are true we pro-

ceed to calculate as follows

1f q; > 0, then

- 1q? . . |
. Cyr1/2 0172 T T Rg1yg) 1E FiCryy p)eF i (xy 0 1af > 0
(6.10a) Gj =

n
cj—l/Z(xJ-l/Z ,xj+1/2 Tq.) otherwise

and

+ - n
(6.10b) fj+l/2 = fj+1/2 + <sjr2(vj).

If q;'s 0, then

- o ° - n
Cye1/2%g1/27 T Rgary) A6 FyOegp )0 Filxy g p= Tap) > 0
(6.10&)— 6j=
n
cj-l/Z(xj-l/Z’xj_l/z‘ qu) otherwise
and
(6.10b)~ T T

= + n .
3=1/2 7 Fg-r2 T 8570y

Once we have completed the calculations in (6.10) we move on to the next

cell.
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7. NUMERICAL EXPERIMENTS

In this section, we present results of several computer experiments with
the ENO schemes (5.5) and their modified version with subcell resolution
(5.1); we refer to the latter as ENO/SR.

In all these experiments we have used

d
(7.1) o5 = lgz RGxy3v™|

and similarly k =1 41in (6.4) for systems. In all the calculations reported
in this section we have used a CFL number of 0.8. The continuous line in
Figures 2 - 8 represents the exact solution. The circles in all Figures
represent values of R(xj;vn) at the time specified.

We start with the scalar constant coefficient problem
(7.2) u +u_ =0, u(x,0) = uo(x), -1 <{x<1

t X

with periodic boundary conditions at x = xl, 1In this case, we take
(7.3) fR(ul,uz) = uj.

First, we present numerical experiments with the highly discontinuous initial

data
-xsin(%.nxz) -1 < xX ﬁ%
(7.4a) 4y (x +0.5) = |sin(2nx) ]| Ix| < % -
2x-1-sin(3nx)/6 ,_1{< x < 1

Note that the RHS of (7.4a) is shifted by (-0.5) for purposes of display. We
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initialized the calculation by taking

X5+1/2

1
ug(x)dx = U, (g0 9 = Uo (%51 721

0 1
(7.4Db) vy o= H{(

j-1/2
where Uy 1is the primitve function of wup(x). 1In Figures 2 to 6, we show
results with h = 1/30 (i.e., 60 cells) at: (a) t = 2 (after 1 period = 75
time steps), (b) t = 8 (after 4 periods = 300 time-steps). 1In Figure 2, we
show for sake of comparison the results of the MUSCL~scheme (1.11) with a

slope s? defined by
n _ n _ ny 1 n _._n n_ .n .

here m(x,y,z) 1is the minmod function

S e min(|x|,|y|,|z|) if sgn(x) = sgn(y) = sgn(z) = s
(7.5b) m(x,y,z) = .

0 otherwise

In Figure 3, we present results of the second-order accurate ENO scheme (4.3),
and in Figure 4 we show results of the corresponding second order accurate
ENO/SR (4.5) with (4.13)*. 1In Figure 5, we present the results of the fourth-
order accurate ENO scheme (5.5) with r = 4, and in Figure 6 we show the
corresponding results of the fourth-order accurate ENO/SR (5.1).

Next we demonstrate the kind of accuracy to be expected from these
methods in smooth problems by calculating a refinement sequence for the

periodic constant coefficient problem (7.2) with initial data

uo(x) = sin(wx).
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In Table 1, we show the results at t = 2 with h = %-, é-, %3- (i.e., 8,

16, and 32 cells, respectively). The quantity r, in this table is the
"computational order of accuracy" which is evaluated from two successive cal-
culations by assuming the error to be a constant time hrc; clearly this
definition is meaningful only for h sufficiently small.

We turn now to present numeriéal experiments with the Euler equation of

gas dynamics (6.1). In these calculations we take y = l.4 and fR(ul,uz)

= £ROE(y,,uy), where

ROE, 1 3 - .
(7.6a) £ (ug5u,) =5 [£(u)) + £(u,) - kzl 8, la (|1, (W],
with
(7.6b) 8§, = £ (u)(uy= uy);
here Ay and T are the eigenvalues and the 1left- and right-
eigenvectors, respectively. u is a particular average of u; and u9

which is defined by:
(7.6¢) = <a/p>/</p>, B = WEdI/P>, ¢ = (v - DY AE-1/24%;
here < > denotes arithmetic average, i.e.

1

1

In Figures 7 and 8, we show results of the Riemann initial value problem



x <0
(7.7a) u,_ + f(u)_= 0, u(x,0) =
t X
up x>0

with

(7.7b) (o, q» P) = (0.445, 0.698, 3.528); (pp,ap,Pg) = (0.5,0,0.571).

These calculations were performed with 100 cells, h = 0.1, CFL = 0.8 and 85
time—-steps. In Figure 7, we show the density computed by the second order ENO
scheme and in Figure 8 we show that of the corresponding ENO/SR.

Finally, we present numerical solutions to the problem of two interacting

blast waves:

‘UL 0 {x<0.1
(7.8a) u{x,0) = Uy 0.1 < x <0.9
luR 0.9 < x<1
where
3 -2 2
(7.8b) OL=DM=9R=1,€1L=qM=qR=0,PL=10,PM=10 » Pp = 107

the boundaries at x = 0 and x = 1 are solid walls. This problem was
suggested by Woodward and Colella as a test problem; we refer the reader to
[12] where a comprehensive comparison of the performance of various schemes
for this problem is presented. We refer the reader to (8] for a detailed
description of the implementation of the solid wall boundary condition in the

ENO schemes.
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In Figure 9, we show the density at t = 0.038 calculated by the second
order accurate ﬁNO/SR with 800 cells and CFL = 0.8. The circles in this
figure represent values of R(Xj,pn); the continuous line is just the
pilecewise~linear interpolation of these values. Comparing these results to
the solution presented by Woodward and Colella in {12], we find that it shows
all the important features of the‘various interactions and thus can be con—-
sidered a "converged" solution. We use this piecewise~linear interpolation of
the calculation with 800 cells as the "exact solution" in Figures 10 and 11.
The circles in Figures 10 and 11 are reconstructed values of density in a
calculation with 200 cells, In Figure 10, we show the calculation by the
second order accurate ENO scheme; in Figue 11 we show the results of the
corresponding ENO/SR.

In the following, we make several remarks and observations concerning the

numerical results presented in this section.

(1) 1In all our calculations we find that the subcell resolution technique is
capable of producing perfectly resolved linear discontinuities. Observe
that if R(x;v%) has a single intermediate value at a discontinuity then

this discontinuity is perfectly resolved by ﬁ(x;vn).

(2) When we study the effect of higher formal order of accuracy in the calcu-
lation of discontinuous data by the ENO schemes, we find that the most
noticable improvement is due to the reduction in smearing of the linear
discontinuities. However, when we compare the second order and the
fourth order ENO/SR schemes we see that the improvement is primarily due

to higher accuracy in the smooth part of the solution. Consequently,



(3

(4)

there is not sense in going to higher order when solving a Riemann IVP,
To justify the increased computational cost associated with higher order,

one needs a lot of structure in the smooth part of the solutionm.

Comparing the solution of the interacting blast waves (7.8) by the second
order ENO/SR to that of the PPM in [12], we find that the ENO/SR is more
accurate. The ENO/SR highly resolves all three contact discontinuities
in the problem, while for some reason the PPM resolves well two of the
contact discontinuities but smears the one which results from the shock
interaction. Another possible explanation for the difference in accuracy
may be due to the fact that the ENO/SR is uniformly second order
accurate, while the PPM (because of its monotonicity constraints) reduces

to first order accuracy at points of local extremum.

The numerical results for the Euler equations of gas dynamics clearly
demonstrate that shocks are highly resolved by the original ENO schemes,
and subcell resolution is not needed there. In any case, the expressions
for éj+1/2 have to be modified before applying subcell resolution to a
genuinely nonlinear field, as follows: (i) a? should be replaced by
the speed of the shock. (ii) Dissipation proportional to

(aj+1/2 - aj-1/2) should be added to a centered rarefaction wave.
Fortunately, if the discontinuity condition (3.9a) is met in the cell
Ij, then ﬁ(x;vn) is continuous at th1/2 and no interaction terms
need be added to the numerical flux. However, one has to account for the
fact that the wave from the interior of I. crosses its boundaries

J
during the time-step.




[1)

(2]

(3]

(4]

[5]

[6]

(7]
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APPENDIX: Derivation of the discontinuity coandition

The reconstruction R(x;w) is by definition discontinuous at
{xj+1/2}. In regions of smoothness of w(x) the jump of the reconstruction
at xj41/2 1s of the order 0(hT). When a discontinuity of w(x) 1is located

in the interior of Ij, then the discontinuities of the reconstruction at

xjt1/2 are fragments of that of w(x). (See Figure 1b).

In order to recover a possible discontinuity in the interior of each
cell, we would like to associate the reconstruction with the boundaries of the
cells {xj+1/2}, rather than the cells themselves. Let ij+1/2(x;5) be the
polynomial description of such a reconstruction which is valid in the neigh-

borhood of Xi41/2° Once this is done we consider reconstructing w(x) in

Rj—l/Z(X;W) for Xj-l/Z-S x < ej
(A.1) Rj(x;w) =
Rj+1/2(x;w) for ej <x< xj+l/2

if possible, i.e., if there is a ej such that

(A.2a) ?j(ej) = 0, X501/2 §.ej < Xi41/2
where
N 1 z N _ xj+1/2 - _ _
(A.2b) Fj(z) = F.{f Rj—l/Z(X;w)dx + f Rj+l/2(x;w)dx} - wj.
Xj—l/2 z

If there is no such ej, we define



(A.3) ij(x;'ﬁ) = R, (x5%).

The only thing which is left open at this point is the definition of

§j+1/2(x{5). It is most natural within the framework of the ENO reconstruc-

tion to select the "smoother" of Rj(x;ﬁ) and Rj+l(x;5), i.e.,
) _ R;(x5w)  1f o4 < 041
(A.4) Rj+1/2(x;w) = .

Rj+1(x;w) if cj Z_oj+1

Here oj is a monotone iuncreasing function of the "non-smoothness'", such as
(3.8a). Note that since Ri(xfﬁ) is associated with a stencil of points,
(A.4) is equivalent to assigning a stencil to X541/2> the boundary of the
cell.

We observe that there is a certain ambiguity in the definition of
ij(x;w) in (A.1) since ej
ambiguity by adopting a policy of "no unnecessary changes', and agree that

ieed not be unique. We remove wmost of this

R, = R, =R

(A.5) R or §j+1/2 = R, 3 y

. = R,
ji=1/2 3j

i.e., if one of the candidates for extension into I; is no smoother than the

~

original Rj we just retain the original definition in Rj' From the

definition (A.4) of R we can rewrite (A.5) in terms of oy as

(A.5)” . <o or o, <o, = R. =R..

j+l j h|

Hence we conclude that we define ﬁj(x;ﬁ) to be (A.1l) only if
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(A.6) g, > 041 and o

which is the discontinuity condition (3.8b).

~

and Rj+1/2= 3+1

j.>_°j+1

In this case

R and the definition (3.9) follows.

R,
5=
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PL(X)

| l | | | .
X_5/9 X_3/2 X-1/2 Xa %172 X3/9 X5/9

Figure la. w(x) in (3.1); circles denote cell-averages {55}.
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R.q (X:W)
] l | [ | .
X-5/9 X_-3/2 X-1/2 X1/2 X3/2 X5/2

Figure 1b. The ENO reconstruction R(x;w). The circles denote the given

values of the cell-averages {Ww.}.
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Figure 7. Second-order [

ENO Scheme: Density °

(85 time~-steps). "m””wmm“a“wah%n o
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Figure 8. Second-order
ENO/SR: Density (85

time-steps).
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Figure 9.
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Second-order ENO/SR.

Density at

t = 0.038 with 800

cells,
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Figure 10. Second~order-

ENO. Density at t = 0.038

with 200 cells.

Figure 11, Second-order B ° .
ENO/SR. Density at J

t = 0.038 with 200 cells. [ -

1
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