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SPACESTA_ONINTEGRATED WALLDESIGNANDPENETRA_ON DAMAGE
CONTROL

by

A. R. Coronado, M. N. Gibbins, M. A. Wright, and P. H. Stem

ABSTRACT

A methodology has been developed to allow a designer to optimize the pressure wall,

insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft

configuration and threat environment. The threat environment consists of meteoroids and orbital

debris, as specified for an arbitrary Orbit and expected lifetime. An overall probability of no

penetration is calculated, as well as contours of equal threat that take into account spacecraft

geometry and orientation. Techniques, tools, and procedures for repairing an impacted and

penetrated pressure wall have been developed and tested. These techniques are applied from the

spacecraft interior and account for the possibility of performing the repair in a vacuum.

Hypervelocity impact testing has been conducted to (1) develop and ref'me appropriate penetration

functions and (2) determine the internal effects of a penetration on personnel and equipment.
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FOREWORD

Thisreportpresentsthework accomplished by The Boeing Company fi'om3 June 1985 to5

August 1987 on "Space Station Integrated Wall Design and Penetration Damage Control," NAS8-

36426. The work was administered under the direction of Mr. Sherman L. Avans, Structures

Development Branch of the Structures and Dynamics Laboratory, NASA George C. Marshall

Space Flight Center.

We want to express our appreciation to Mr. Avans for his encouragement and contributions

on this contract, and to Ms. Jennifer Horn for her support. We also wish to thank Mr. Roy Taylor

for his efficient direction of the MSFC hypervelocity impact test laboratory. His help was

instrumental in enabling us to modify and expand our testing program as the need arose.
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SPACE STATION INTEGRATED WALL DESIGN AND PENETRATION
DAMAGE CONTROL

by A. R. Coronado, M. N. Gibbins, M. A. Wright, and P. H. Stem

The Boeing Company

SUMMARY

A methodology, in the form of a computer code, has been developed that will allow a designer

to optimize the pressure wall, insulation, and meteoroid/debris shield of a manned spacecraft of

arbitrary configuration and orientation. This design analysis code, BUMPER, uses a geometry

model similar to a NASTRAN structural model to def'me the geometry and orientation. The

geometry model is analyzed from all possible threat angles, for either meteoroids or debris, to

determine which elements are exposed to a threat and which are hidden and therefore shielded by

other elements. The wall configuration for each of the model elements is defined and, through the

use of the penetration function, the diameter of a threat projectile that just penetrates that

configuration is calculated. These diameters are calculated for the entire range of expected

velocities and impact angles. Using the NASA flux models for debris and/or meteoroids, the

probability of no penetration (IN-P) for any time period can be calculated. The probability of

penetration for each element is calculated and can be used to identify the spacecraft areas at greatest

risk. A companion code, CONTOUR, can produce design contour plots of equal PNP for any

combination of shield and wall thicknesses, spacing, and insulation. These plots allow designers

to conduct rapid trade studies of differing wall configurations.

Hypervelocity impact testing was conducted at the NASA/MSFC facility using a two-stage,

light-gas gun. A total of 118 tests were conducted to verify and improve the penetration function

of a two-plate target array impacted by spherical aluminum projectiles. Test parameters were

varied widely; (1) spacings varied between 101.6 to 203.2 mm (4 to 8 in), (2) shield thicknesses

varied from 0.813 to 2.032 mm (0.032 to 0.08 in), (3) wall thicknesses varied from 1.60 to 4.775

mm (0.063 to 0.188 in), (4) impact angles varied from normal to 65 deg from normal, (5) impact
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velocitiesvariedfrom 2.0 to 7.8 km/s (6500 to 25,600 ft/s), and (6) the majority of the specimens

had 30 layers of multilayer insulation (MLI) between the shield and the second plate. In addition,

24 tests were conducted to investigate the internal effects of a penetration (i.e., flash, noise, and

spall). These tests were conducted in a large, highly instrumented pressure vessel to simulate a

common module.

Repair techniques,includingpatches,applicationtools,and procedures for applying the

patchesin a vacuum while wearing a pressuresuit,were developed. These procedures have been

testedin the neutralbuoyancy tank atNASA/MSFC, and recommendations by the testengineers

have been incorporated.Prototypepatcheshave been appliedtoimpacted panels,which were then

testedfor theirabilityto hold pressure.A patentapplicationhas been submitted fortheserepair

techniques.

2
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INTRODUCTION

The work performed under this contract was divided into four tasks. Task 1 was the

development of an integrated module wall design guide. Under this task we developed a module

wall design methodology allowing designers to evaluate alternative wall configurations, conduct

trade studies, and detemaine which design is optimum for a given orbit, spacecraft configuration

and orientation, and threat environment. We also demonstrated technology readiness of the design

guide. This design guide is in the form of a computer code, named BUMPER, which uses a

geometry model similar to that used by NASTRAN to account for the effects of spacecraft

geometry and orientation such as self-shielding. BUMPER also uses equations to define a

penetration function defining the projectile size that just penetrates the defined wall configuration

for a given velocity and impact angle combination. A hypervelocity impact testing program,

conducted by NASA at MSFC, was used to verify and improve the empirical penetration function

and demonstrate!_ teehnolo_ _ness.

Task 2 was the development of a penetration control plan to assess the effects of a primary

wall penetration and for module repair or replacement following an impact. To fulfill the

requirements under this task, we developed an effects of penewation test program, again conducted

by NASA/MSFC, to quantitatively measure what happens during the penetration of a large

chamber simulating a common module. The results of these tests will be used to define the

instrumentation requirements for later tests and should not be considered definitive. We developed

repair criteria and requirements for determining when and how repairs should be made. We also

developed repair concepts, fabricated prototype patches, repaired and pressure-tested actual

penetrated aluminum plates, and determined procedures for performing these repairs while wearing

a space suit. These procedures were later demonstrated and verified in the neutral buoyancy

simulator at MSFC under a separate program.

Task 3 was the development of a phenomenological penetration function, PEN4, used to

complement our empirical penetration function. PEN4 was originally developed under a Navy



D180-30550-1

contractto determinetheabilityof a warhead fragment to penetrate a multiple aluminum array and

destroy critical components within. It has since been modified to determine the penetration

resistance of an arbitrary aluminum target array to impacts by aluminum projectiles and therefore

can be applied to Space Station wall designs.

Task 4 was the development of an acoustic impact/penetration system that used acoustic

transducers, digital recording equipment, and appropriate software to the determine the location of

impacts. Initial experiments were conducted on flat aluminum plates to demonstrate proof of

concept; later tests were conducted on a large, curved, aluminum panel with an isogrid rib

reinforcement system.

Tasks 3 and 4 were added to the contract in March 1987.

4
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1.0 REFERENCE CONFIGURATION

1.1 REPRESENTATIVE BASELINE

The development of a design tool required that a Space Station module configuration be

available to measure development progress and to provide a standard for alternative design

comparison. The design chosen for the purposes of the contract is referred to as the reference

configuration and is shown in figure 1.1-1. However, it does not represent a specific design by

any organization but rather a representative baseline that incorporates features expected to be found

in a Space Station design. When comparisons are made to test or analysis results later in this

document, they will generally be made to the reference configuration. This may refer to either the

Space Station design configuration, the wall configuration, or both. In any case, the reference

configuration is meant to be only representative of features found in Space Station designs.

1.2 MODULE_PATTERN

The module pattern is based on the twin-keel, horizontal figure-eight configuration with nodes

and tunnels proposed by NASA/MSFC in 1985. The long axis of the reference configuration is

parallel to the velocity vector (X-axis). All center lines of Space Station elements (modules,

connecting tunnels, and nodes) lie in the orbital plane, which is defined by the X- and Y-axes. The

Z-axis is parallel to the Earth normal vector and positive away from Earth.

1.3 INTEGRATED WALL DESIGN

The reference wall configuration chosen was proposed by Boeing Aerospace Company (BAC)

for the Space Station Phase B RFP and is shown in figure 1.3-1 along with details of the reference

common module. This configuration is representative only of expected wall designs and may not

represent an optimized design. It incorporates all major integrated wall elements such as a shield,

MLI, and a backwall. The shield is 7075-T6 aluminum 1.016 mm (0.040 in) thick and stands off

101.6 mm (4.0 in) from the backwaU. The backwall, which is the pressure wall, is 2219-T87

5
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aluminum 3.175 mm (0.125 in) thick. The multilayer insulation consists of 30 layers 1/2 mil

kapton aluminized on one side, 29 layers of Dacron mesh between each kapton layer, and 1 layer

of beta cloth (coated s-glass) on the side nearest the shield for durability. The areal weight of this

combination is 1.074 kg/m 2. There is no differentiation between wall configurations such as

waffle grid or T-stiffened monocoque, and stress in either wall is not considered.

7
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2.0 ENVIRONMENT

2.1 DEBRIS ENVIRONMENT

The document defining the debris environment for this contract is JSC 20001 (ref. 2-1). The

flux equation and distribution for debris is shown in figure 2.1-1. The debris velocity probability

distribution in figure 2.1-2 shows that the expected impact velocity ranges from 0.1 to 16.0 krn/s.

The angle distribution is derived from the velocity distribution using the vector diagram and

equation shown in figure 2.1-3. Important assumptions are that the orbits for Space Station and

threatening debris are circular and at the same altitude, (i.e., that they have the same velocity).

While analyzing these data we determined that the angle and velocity distributions given in

reference 2-1 were inconsistent. The author later confirmed that the two distributions were derived

from North American Aerospace Defense (NORAD) data from different years. Because of this

inconsistency we used the velocity distribution, the more fundamental form of data, and derived a

consistent angledistribution (fig. 2.1-4) for use under this contract. This figure shows thatthe

majority of debris approaches Space Station from approximately 45 deg on either side of the orbital

velocity vector. This implies that the Space Station orientation is an important factor in determining

PNP. This was later shown to be correct.

The debris flux is a highly directional phenomenon; however, the flux equation in figure 2.1-1

has been modified to conform to the definition of an omnidirectional flux. This was done by the

author of reference 2-1 to be consistent with the definition and usage of the meteoroid flux equation

described in the following section. The debris flux equation as defined in JSC 20001 is for a

random-tumbling plate. Appendix G defines the Space Station probability model using an

orientated plate. To account for the differences between the two def'mitions, the debris flux

equation must be multiplied by a factor of four. A more rigorous explanation may be found on

page G-6 of this report.

PR_I3EDING Plt_?rEBLANK NOT FILMED



D180-30550-I

4
.4

-7

g4

1N0's m Emtlmmwt

----..,
-2 -I 0 1 2 3

LOG(Dis), ¢m

Flux Equation:

Log F - -?.52 Log D-S._

D - diameter in centimeters; D<l.0cm

LogF ,, -S.46-1.7111JNjD ÷ 0._Ulg(LogO)2-0.1g4(Log D)3

D = diameter in cemtimeters; 1.0 cm < D < 200 cm

where:

F . Number of impacts of objects with diameter O or

greater per square meter per year

Log ,, Logarithm base 10

Orbital Altitude • 500 km

Figure 2.1-1. Debris Rux Environment

JSC 20001 DATA

0.00
0 .1 4 5 6 7 8 9 10 11 12

RELATIVE IMPACT VELOCITY, KM/SEC

Figure 2.1-2. Debris Velocity Probability Distribution

10



0.21

_CklO

D180-30550-1

20001 OA"rA

.(Mm
0 I "_ =l 4. S 6 ? • • 10 11 I=1 1._ 14 II lJ

RmUvem_ct vekx_y,Km_c (vs)

te Iv)-I-2vss_ eIfv (2vscose)

_i_N mm_ ,n;c2oaol _ OAI"A

20 40 EIO BO iClQ

.,_i. mxjnm (e)

• F'Qure 2.1-3. Transforming Velocity Distdbutionto Angle Di_ion

APPROACH ANGLE DENSITY FUNCTION
COMPARISON OF D(NSITY F'UNCTIONS

0.25

0.20

_ 0.15

..I

,<
rn
0
n.. O.lO

n

o._

--100 --80

. /DERIVED FROMOSC20001

Fk / I'_ VELOCITY OISTRISUTION! [AND t.l_D IN CONTRACT

it
i I

\JiI\ af,t_. 11 II

Ill i v \,_ /. " t ill.

--GO --40 --20 0 20 4.0 SO 80 1 O0

APPROACH ANGLE, DEGREES

F'_jure2.1-4. Comparisonof Angle Density Functions

11



D180-30550-1

Several important assumptions have been made about the character of orbital debris. JSC

20001 states that the average mass density for debris objects less than 1 cm in diameter is 2.8

g/era 3, approximately the same as aluminum. Predicted average densities are less for larger objects.

For consistency and repeatability, testing is performed with spherical aluminum projectiles.

Limited testing was done with cylindrical projectiles to estimate how much more penetration

capability they have, and with lexan projectiles to simulate meteoroid impacts.

As stated previously, all orbital debris that threatens Space Station is assumed to be in the

same orbit as Space Station and therefore has the same orbital velocity. We expect few, if any,

debris impacts will occur to rearward facing structure because, in general, debris cannot catch up.

Additionally, all threatening debris approachs Space Station in the orbital plane, so few debris

impacts are expected to occur to structure not facing the orbital plane (i.e., toward or away from

the Earth). Some debris arc in noncireular orbits and could strike Space Station from slightly above

or below the plane of the orbit; however, due to atmospheric drag these particles tend to circularize

or reenter the atmosphere more quickly and therefore pose a lesser threat.

2.2 METEOROID ENVIRONMENT

The document defining the meteoroid environment for this contract is NASA SP-8013 (ref. 2-

2). It recommends a design density of 0.5 g/cm 3 for meteoroids. A small percentage of particles

are stony with much higher densities_ however, the majority of particles are assumed to be sporadic

and stream meteoroids of cometary origin with low densities. The velocity probability distribution

and flux model given in reference 2-2 are shown in figure 2.2-1. Meteoroid velocities range from

10 to 72 km/s with an average of 20 km/s.

The velocity distribution and flux model are geocentric and must be corrected for the effects of

orbital velocity as shown in figure 2.2-2. This effect increases the apparent flux and impact

velocity for surfaces facing toward the Space Station velocity vector and decreases it for surfaces

that face away. The increase in impact velocities for forward-facing surfaces is caused by the

vector summation of Space Station's orbital velocity and meteoroid's geocentric velocity. This

12
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lowers the apparent impact angle for forward-facing surfaces and increases it for rearward-facing

surfaces. This in turn leads to a higher apparent flux impacting forward-facing surfaces and a

lower apparent flux impacting rearward-facing surfaces. Figure 2.2-3 shows the changes in the

impact velocity distribution when the Space Station orbital velocity (7.5 kin/s) is taken into

account. Our studies, summarized in section 7.0, show that using an average meteoroid velocity

of 20 km/s and accounting for Space Station orbital velocity allows us to accurately calculate PNP

and distribution of impacts on Space Stations' surface.

Generally two eoneefion factors must be applied to a meteoroid flux distribution when the area

of interest is a low-Earth orbit: defocusing and body shielding. The defocusing factor is an

apparent increase in flux near the Earth due to gravity. Body shielding is due to shielding of the

meteoroid flux by the Earth and increases as orbital altitudes decreases. Defocusing has been

applied to the flux equation used in this contract. Body shielding is accounted for during the

generation of _ threl/t angles, which is described more fully in section 7.4. An assumed

orbital altitude of 500 km is used to determine the geometry of the threat angle generation. Threat

angles below the Earth's horizon are not considered in theanalysis.

lb

2.3 UNCERTAINTIES IN ENVIRONMENT DEFINITIONS

JSC 20001 describes uncertainties in the debris flux equation that range from a factor of 3 for

debris 1.0 cm in diameter and larger to a factor of 10 for debris 1.0 mm in diameter and smaller.

For this con_'act the flux equation, as described in reference 2-1, was considered nominal, and no

attempt was made to inccnporate the uncertainties into the analysis. However, sensitivity studies

were conducted to determine what effect these possible variations in the flux would have on PNP.

These results are reported in the following paragraphs.

SP-8013 indicates that there may be greater uncertainties in the meteoroid environment, both

with the flux model and with the density estimates. As with the debris environment, the meteoroid

flux equation is used as nominal with no attempt to account for the uncertainties. Sensitivity studies

15
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show that meteoroid impacts are a much smaller problem than debris impacts, and therefore the

meteoroid environment uncertainties have much less effect.

2.4 ENVIRONMENT SENSITIVITY STUDIES

As stated previously, sensitivity studies were conducted to determine how much of an effect

changes in the environment definitions, penetration function, or time in orbit had on PNP. The

computer code and technique used to conduct these analyses is described in more detail in section

7.0. The configuration and orientation used was the reference configuration described previously

with the reference wall design.

2.5 FLUX DEFINITION UNCERTAINTY

The first study determined the effect uncertainties in the debris flux definition have on PNP.

This was done by multiplying the calculated flux by a factor ranging from 0.5 to 10. The results in

figure 2.5-1 show PNP decreasing as the multiplier on the flux (flux factor) approaches 10. We

conclude from this figure that an accurate flux definition is necessary for an accurate PNP

calculation.

2.6 DEBRIS PENETRATION FUNCTION UNCERTAINTY

The second study determined how uncertainties in the debris penetration function affect PNP.

The penetration function is the calculation of projectile diameters that just penetrate a wall

configuration for any given velocity and impact angle combination. This was done by multiplying

the diameter of a debris particle that would just penetration the reference configuration by an

adjustment factor. Figure 2.6-1 shows how PNP varies for adjustment factors between 0.65 and

1.5, an uncertainty larger than we expect. Only a 3.4% change in PNP is demonstrated for a plus

and minus 10% change in the penetration function. This could represent, however, a significant

weight impact for Space Station.
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2.7 EXPOSURE DURATION SENSITIVITY

During the course of this contract, estimates for expected exposure duration for Space Station

have varied from 10 to 30 years. To determine what affect this would have PNP for debris, we

varied the time in orbit while holding all other variables constant (i.e., no change in configuration,

shielding, or flux). Figure 2.7-1 shows a significant decrease in PNP with exposure duration,

indicating additional shielding will be needed over time to maintain the required PNP. The second

exposure duration study determined the resulting weight increase ff the shield and wall thickness

were increased to maintain a constant PNP. Figure 2.7-2 shows that a doubling of weight is

required to maintain the required PNP. This assumes a constant debris environment and no

additional shielding

2.8 IMPACT ANGLE AND VELOCITY PROBABILITY DISTRIBUTION

During the course of the sensitivity studies we developed probability distributions for impact

angle and veloci'ty as shown in figures 2.8-1 and 2.8-2, respectively. These proved to be useful in

developing a test matrix, described in section 3.0, and in developing a penetration function. Figure

2.8-1 shows that the median impact angle for debris is between 45 and 50 deg, although most of

the available test data was for normal (0-deg) impacts. Figure 2.8-2 reveals a more disturbing

trend: a two-stage, fight-gas gun can achieve a maximum impact velocity of approximately 8 km/s

for useful projectile sizes. Fully 70% of expected impact velocities are outside of our ability to test

and verify experimentally. Analytic methods used to predict results of impacts in this region are

described in section 4.0.

2.9 PNP REQUIREMENT

The original requirement for PNP was set in NASA TM-82585 (ref. 2-3), which stated that

Space Station program elements will be designed for at least a 0.95 total probability of no

penetration during the 10-year, on-orbit design life. Therefore, most comparisons in this report

will give a single overall PNP value, which represents the PNP for the entire habitable portion of

18
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Space Station. However, in November 1986, the Space Station Control Board issued a directive

(ref. 2-4) that changed these requirements significantly. First, it requires that each Space Station

critical elements (SSCE) such as modules, nodes, and tunnels be considered individually, and,

second, that they must separately and individually meet a PNP of 0.9955. These requirements

were further expanded and clarified during the second Space Station RFP by NASA document SS-

SRD-001 (ref. 2-5). Analyses and comparisons after that date are done by either on an individual

basis or multiplying individual PNPs together for comparison with earlier results.

The reference design used in this contract, at an assumed orbital altitude of 500 kin, does not

meet the requirement of 0.95 PNP. It did, however, provide a basis with which to compare

changes in design, flux, and altitude and in this manner proved itself to be very useful.

2.10 FUTURE FLUX ENVIRONMENT

In response to a request from NASA/MSFC, a future environment proposed by Mr. Don

Kessler of NASA/JSC was evaluated and compared with the JSC 20001 environment. These

specific questions were addressed:

a. What is the change in the probability of no penetration on existing designs under the future

flux?

b. What is the weight increment required to provide the existing level of protection for the future

environment?

Figure 2.10-1 shows a comparison of the equations describing the current debris environment

as given in JSC 20001 and the suggested environment for the year 2000. The configuration that

was analyzed is the reference configuration described in section 1.0. Figure 2.10-2 shows the

PNP as a function of design life for both the current and future environment. The PNP for the

entire reference configuration and 10-year life is 93.4%. This value applies to the entire habitable

portion of the Space Station. For each curve, we have assumed that the environment remains
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constant over the life of the station. The effect of a time-varying environment is to change the

nearly linear relationship shown in the graphs to curves.

Figure 2.10-3 shows the Space Station weight increase as a function of exposure time for both

the current and the future environment, assuming that PNP was held constant at the reference

design value of 93.4% by increasing only shield and backwall thickness. Thus, these estimates are

not for an optimized structure and tend to overestimate the weight.

2.11 CONCLUSIONS

The conclusion reached during these studies was that confidence in calculated PNP for Space

Station depends on confidence in the delxis flux definition.

The complete environment model including meteoroids was brought together in one

document, JSC 30000 (ref. 2-6), as part of Space Station system requirements. The environment

specifications in JSC 30000 correspond to JSC 20001 and SP-8013.
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3.0 HYPERVELOCITY IMPACT TESTING

3.1 DATA BASE FROM PRECEDING STUDIES

As a basis for preliminary analysis and for developing a test program we used data from

four sources (refs. 3-1, 3-2, and 3-3) plus data from Martin Marietta Aerospace (MMA) testing

performed at MSFC during 1985 and 1986. Testing reported in references 3-1 and 3-2 used

relatively thin aluminum plates. Thin backwalls tend to perform differently than thick backwalls;

most notable is spallation vulnerability of thick backwalls. More recent testing at MSFC has

reflected plate thicknesses representative of Space Station pressure wall (backwaU) and shield

requirements. The majority of these tests were at 0-deg impact angles; however most Space

Station impacts are expected to occur above 45 deg.

3.2 ADDITIONAL TESTING FOR PENETRATION ANALYSIS - TASK 1

Test Facility. All contract hypervelocity impact testing was performed on the two-stage,

light-gas gun at MSFC, which is capable of velocities between 1 and 8 km/s depending on the

projectile mass. This facility is fully described in reference 3-4.

Rational for Testing. Testing was designed to build on the available data base and to

increase confidence in the penetration function. Figure 3.2-1 shows the relationships among the

reference Space Station design, the optimum integrated wall design as determined by our analysis,

and the primary test parameters. The optimum weight line represents the optimum ratio of shield

and backwall thickness to maximize PNP and minimize structural weight.

Task 1 test program details are outlined in figure 3.2-2. Test cases were specified to

increase the range of key test variables in the data base, while keeping the variables within expected

Space Station design boundaries. Selected shield and backwall thicknesses were limited to readily

available sizes. Although this testing was primarily performed at oblique impact angles, some tests

were done at 0 deg for direct comparison to previous testing. To effectively model the expected

Space Station configuration, approximately half the tests included MLI between the shield and
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Test Number 201 202 203 204 205 206 207 208 213 214 215 216 217 218

• MLI
Yes •

No

Shield
0.032
0.040 •
0.063
0.080

Wall
0.063
0,100
0.125 •
0.188

Spacing:
4_ •

6
81

Impact Angle
0-deg

45-de_ i •
65-deg!

Unless otherwise noted:
Shield - 6061-T6
Wall - 2219-1"87
Projectile - 1100 sphere

All dimensions in inches.

Test Number 219 220 223 224 225 226 227 228J 229 230 231

MLI
Yes • • • • • •
No • • • • •

Shield
0.032 • • •
0.040 • • •
0.063 • • • •
0.080 •

Well
0.063 •
0.100 •

0.125 • • • • • • •
0.188 • •

Spacing
4 • • • • •
8 • • • • • •

8

Impact Angle

0-de_l • • • • •

45-de_ • • • • •
65-de,q •

(1) (2) (3) (4) (s)

Unless otherwise noted:
Shield - 6061-T6
Wall - 2219-T87
Projectile - 1100 sphere

All dimensions in inches.

(1)LiAIshieldmaterial

(2)dSiC shieldmaterial

(3)Cylinderprojectile

(4)Cylinderprojectile

(S)Lexanprojectile

Figure 3.2-2. Task I Test Summary.
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backwall. Several shots employed cylindrical projectiles at oblique impact angles to enhance the

data base available on nonspherical impacts. Two advanced material systems, discontinuous

silicon carbide reinforced aluminum and lithium aluminum, were tested as shields to screen their

performance under hype_elocity impacL

Test Design. The basic test configuration is diagrammed in figure 3.2-3, and a test

article in the test chamber is shown in figure 3.2-4. Oblique impact tests produce several effects

different from normal impact: ricochet from the shield, and two components of damage - normal

and flightpath. The ricochet particles were detected with a wimess sheet situated as shown in the

figure. Normal and flightpath damage can usually be distinguished on the backwaU by following

the projectile line of flight for flightpath damage and following a line normal from the point of

shield penetration for normal damage.

This test program used witness sheets to measure the residual damage of projectiles

penetrating the backwall. This technique was employed in all the testing included in our data base.

Comparable values for degree of penetration are the important data in determining a penetration

function from the test restflts. The impact test results provide the maximum crater depth in partial

backwaU penetrations, and the number of thin witness plates penetrated in tests penetrating the

baclovall. This information is converted to the number of equivalent backwall plates penetrated,

N, by the method shown in figure 3.2-5.

Test Results. Test data are plotted diameter versus velocity in appendix J. The first two

of these are also shown in figures 3.2-6 and 3.2-7. The line appearing in the figures is the

alternative regression analysis penetration function described in section 4.3 and demonstrates the

shallow slope of the penetration function at 45-deg impact angles. The data points shown bracket

the penetration function in both figures. Section 4.0 contains a more detailed data analysis.

3.3 TASK 2 TESTING FOR EFFECTS OF PENETRATION

Rationale for Testing. Pressure wall penetration by orbital debris or meteoroids will

produce a pressure pulse and a light flash, followed by pressure decay within the Space Station

28
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module. Most previous testing for transient effects concentrated on small test chambers, and often

used high percentages of oxygen in the atmosphere. This program used a large chamber con -

mining a standard atmosphere. A primary intent of our test program was to identify instru -

mentation and systems required for an improved test program to fonow.

Test Design. Testing was conducted at the MSFC hyperveloeity facility to measure the

transient effects in a large chamber at 1 atm as illustrated in figure 3.3-1. The test summary is

shown in figure 3.3-2. Most test configurations are dual wall (shield and backwall) with and

without MLI because we expect the module to use this construction in most areas. Four tests were

performed on a single wall with and without MLI to measure any variation in response resulting

from lack of a shield. Projectile sizes ranged from 0.125- to 0.350-in diameter to produce a variety

of penetration severities.

The instrumentation used during testing is outlined in figure 3.3-3 and is diagrammed in

figure 3.3-1. The figure 3.3-4 photograph shows the witness plate used to represent internal

structure and the pressure transducers mounted on a support behind it. Figure 3.3-5 shows the test

article bolted to the flange inside the chamber and the pressure transducers and photodiodes

mounted close to the penetration site.

Test Results. Results of task 2 testing is discussed in section 5.0 and appendix I.
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Wall

S"

O-Ring
Seal

Shield Plate

Test Article

Test Article --_
Gun Tube
near 0 Ib/ir

High-Speed Camera

Window

[] []
B

Tank at 1 atmosphere

Instrumentati¢
'Support

Door

Floor

[] Pressure Transducer

Collecting Medium

• Photo Diode

Figure 3.3-1. Effects of Penetration Test Chamber and Setup.
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Test Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181 19 _ 20 21 22 23

MLI
Yes • • • • • • • • • • • • •

No • • • • • • • • • •

Shield

0.040 • • • • • • • • •

• 0.0631 • • • • • • • • • •

none i • • • •

Projectile Die

sphere 0.125 • •

0.187 • •

0.250 • • • •

0.313 • • • •

0.350 • • • • • • • • •

_linder 0.200 • •

Spacing

4 • • • • • • • • • • • • • • • • • •

6 • •

Impact Anglo

0-dog • • • • • • • • • • • • • • • • • • • • • • •

45-deg

NI dimensionsin inches;allwall _idmesses = 0.125 inch.

Figure 3.3-2. Task 2 Test Configuration Summary.

• • •

Instrumont

Photodiode

Pressure
Transducer

High Speed
Camera

H Field Sensor

Witness Plates/

Collecting Medium

Commercial Type

EG&G HD - 1100

DCB H109/A02

HYCAM

Wire coil with RF amplifier
and oscilloscope

To include materials used in
module interiors

and calibrated geletin.

Environmental
Effect

Flash Intensity
and Temperature

Pressure Pulse

Visual Effects

Electro Magnetic Pulse

Effects on Materials

Response
Range

Wavelength
400 to 1100
nanometers

125,000 Ib/in2
0.0005 Hz to

500 kHz

8000 frames

per sac

100 MHz

Number
Required

2

Figure 3.3-3. Task 2 Effects of Penetration Testing Instrumentation.
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4.0 WALL DAMAGE CHARACTERIZATION AND PENETRATION CRITERIA

4.1 TASK 1 DATA ANALYSIS

Data Analysis for Penetration Prediction. Pressure wall (backwall) damage can occur

in several ways, such as cratering, spalling, fracture, crack propagation, perforation, and

combinations of these. A definition of acceptable damage level in the pressure wall is required to

ensure structural integrity and crew safety. The criteria for identifying pressure wall failure due to

an impact is crucial in ealeulaling an accurate penetration function and ultimately a probability of no

penetration (PNP) for Space Station design. The criterion used in data analysis on this contract is

light visible through the backwall constitutes a penetration. Quantification of damage is described

in section 3.2.

Effect of Incident Angle. Data gathered on this and other programs show the range in

damage produced by different incident angles. Figure 4.1-1 summarizes closely comparable tests

varying only in angle, with other test variables held approximately constant. Reproducibility of

impact velocity is difficult in hypervelocity testing, so the tests do not have precisely equal

velocities. Nevertheless, we feel the velocities are close enough to draw meaningful conclusions.

Damage as measured with wimess plates and with the normalized penetration value indicates

impacts at 45-deg incidence angles are more damaging than impacts at either 0-deg or 65-deg.

This conclusion is also suplx_ed by the photographs in figures 4.1-2 and 4.1-3, representing

two pairs of tests appearing in figure 4.1-1. These photographs show the normal and flightpath

backwall damage modes for two pairs of tests. (See fig. 3.2-3 for a definition of normal and

flightpath.) The photographs show the damage mode has an angle dependency. The 45-deg

impacts demonstrate a greater degree of damage in the flight-path direction, while the 65-deg

impacts show a greater degree of damage in the normal direction. Flightpath damage caused the

penetration in the 45-deg impacts. In these tests the flightpath damage of 65-deg impacts is less

severe and does not penetrate. While normal damage increases for 65-deg impact, the increase in

this case is not enough to penetrate. Both normal and flightpath modes are presumed to coincide

t_RECF.J)ING PAGE BLANK NOT P'ILMF_,J)
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(a) 45-deg Impact Angle, 4.20 km/s (205 A) 

(b) 65-deg Impact Angle, 4.37 km/s (209 A) 

Figure 4.1-2. Impact Angle Effect on Backwall Damage for Tests With 0.063 in Shields, 

39 

4-in Spacing, 0.125-in Backwall, and MLI; 0.250-in Diameter Projectile. 



(a) 45-deg Impact Angle, 6.38 km/s (212 B) 

(b) 65-deg Impact Angle, 6.47 km/s (207 B) 

Figure 4.1-3. lmpact Angle Effect on Backwall Damage for Tests With 0.063-in Shields, 
4-in Spacing, 0.125-in Backwall, and MLI; 0.300-in Diameter Projectile. 
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for 0-deg impacts. A phenomenological explanation for why 45-deg impacts are more damaging

than 0-deg impacts is not yet available.

This discussion demonstrates, for incidence angles between 45 and 65-deg, that the damage

mode crosses over fr6m flightpath dominated to normal dominated. Figure 4.1-4 shows this

transition as incidence angle increases from 45 through 55 to 65-deg. Figure 4.1-1 shows, for

these tests, quantitatively measured damage (normalized penetration) decreasing as the incidence

angle increases from 45 to 65-deg. This discussion also reinforces the argument for additional

testing at these incidence angles.

Shield Thickness. Shields of differing thickness shatter the projectile in differing ways.

Some investigators (ref. 3-1) have identified optimum ratios between shield thickness and

projectile diameter. Our approach is to determine the lowest weight integrated wall (shield and

backwall) design to achieve the required penetration-resistance level. Nevertheless, test data

demonstrate that impact damage chnracteristics vary for different shield thicknesses and impact

angles.

Figure 4.1-5 compares tests showing the effect shield thickness has on backwall and witness

plate damage. At O- and 45-deg incidence angles, damage is less severe for the thicker shield. The

reverse is true at 65-deg, with the thinner shield resulting in less damage. This effect is also

evident by observing damage on the test panels. The photographs in figure 4.1-6 show the normal

and flight'path damage on the back-wall for 45-deg impact and two different shield thicknesses.

More severe damage is evident in the Righrpath area with the thinner (0.040-in) shield (a), while

normal damage (in the form of craters) is greater with the thicker (0.063-in) shield (b).

Conversely, figure 4.1-7 shows the damage modes of higher incidence angles (around 65-

deg) crossover, with the normal damage component more severe than the flightpath damage

component for both thick and thin shield configurations. Because normal damage controls for 65-

deg and thick shields produce greater normal damage, thick shields are less efficient for high

impact angles. The crossover impact angle occurs in the region between 45- and 65-deg.
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(a) 45deg Impact Angle, 5.51 km/s (230 D) 

Martin Marietta Aerospace 
(b) 55-deg Impact Angle, 6.25 km/s (136 A) 

Figure 4.7 -4. Impact Angle Effect on Backwall Damage for Tests With 0.063-in Shields, 
4-in Spacing, 0.125-in Backwall, No MLI; 0.250-in Diameter Projectile. 
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ORIGINAL PAGE IS e POOR QUALITY 

~ _ _  _ _ _ -  

(c) 65deg Impact Angle, 5.63 kmls (208 D) 

Figure 4.1-4. (Continued). Impact Angle Effect on Backwall Damage for Tests 
With 0.063-in Shields, 4-in Spacing, 0.125-in Backwall, No MLI; 
0.250-in Diameter Projectile. 
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(a) 0.040-in Shield, 4.33 km/s (201 A) 

(b) 0.063-in Shield, 4.20 km/s (205 A) 

-6. Shield Thickness Effect on Backwall Damage for Tests With 4-in Spacing, 
0.125-in Backwall, and MLI; 0.250-in Diameter Projectile at 45-deg Impact Angle. 
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(a) 0.040-in Shield, 6.45 km/s (203 A) 

(b) 0.063-in Shield, 6.47 km/s (207 B) 

Figure 4.1-7. Shield Thickness Effect on Backwall Damage for Tests With 4-in Spacing, 
0.125-in Backwall, With MLI; 0.300-in Diameter Projectile at 65-deg Impact Angle. 
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The previous discussion has demonstrated the interrelationships among impact angle, shield

thickness, and damage to the backwall. Because many impacts occur on the Space Station at

angles in and above the region where damage modes cross over (see see. 2.0 for the distribution of

impact angles), an optimum shield thickness may exist for Space Station integrated wall designs.

To determine the optimum shield thickness, the penetration function must correctly model the

crossover effect. Additional test data in the high impact angle region will increase confidence in

our penetration function.

Effect of Multilayer Insulation. Testing under this and other studies has demonstrated

the effect multilayer insulation (MLI) has in inhibiting impact damage. Figure 4.1-8 shows the

effect for normal impact by comparing damage for tests with and without MLI. The effect of MLI

is to remove the smallest fragments from the cloud of fragments created by shield impact and

thereby reduce damage to the backwall, as shown in figure 4.1-9. This means fewer small craters

and fewer overlapping craters occur in the backwaU. Dissipating the energy hitting the backwall

also reduces spalling from backwall back side surface, as shown in figure 4.1-10. While the

backwall unprotected by MLI is badly spalled, the backwaU covered by MLI is only bulged. The

damage mode is often a bulge with cracks for an MLI-covered backwall rather than the cratering

and spallation experienced without lVlLI.

The MLI blanket can be severely damaged during an impact as shown in figure 4.1-11, which

views the test article inside the test chamber immediately after the shot. Reinforcing the MLI with a

scrim, performing like rip-stop nylon, would reduce the amount of damage. This photograph also

illustrates that MLI tends to explode upon impact. In some tests using MLI, this explosion has

deformed the shield against the flightpath direction as shown in figure 4.1-12.

4.2 LEXAN PROJECTILES

Four tests were conducted using lexan projectiles (spheres and cylinders) to investigate

meteoroid-like (icy) impacts against Space Station structme. Lexan was chosen as a representative

material because its density is close to water. Representative backwall damage is shown in figure
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(a) Without MLI, 5.90 km/s (213 B front side) 

(b) With MLI, 5.30 km/s (229 A front side) 

figure 4.1-9. MU Effect on Backwall Damage for Tests With 0.080-in Shields, 4 in 
Spacing, 0.788-in Backwall, 0.373-in Diameter Projectile at 0-deg Impact Angle. 
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(a) Without MLI, 5.90 km/s (213 B back side) 

(b) With MLI, 5.30 km/s (229 A back side) 

Figure 4.1 - 10. MLI Effect on Backwall Damage for Tests With 0.080-in Shields, 4 in 
Spacing, 0.188-in Backwall, 0.31 3-in Diameter Projectile at 0-deg Impact Angle. 
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I 

Figure 4.7-1 1. Multilayer Insulation (MLI) Damage From Hypervelocity Impact, Test 270 B. 

Path of Oblique Projedile 

\ 

Figure 4.7-72. Shield Blowback During Impact Tests Wth MLI. 
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(a) 0.368-gm Projectile, 5.80 km/s (225 A) 

(b) 0.475-gm Projectile, 6.41 km/s (225 D) 

Figure 4.2- 1. Lexan Projectile Impacts, 0.040-in Shields, 4-in Spacing, 
0.125-in Backwall, No MLI. 
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4.2-1. The smaller spherical lexan projectiles failed to penetrate in three tests, so the fourth test

used a larger mass cylindrical lexan sabot. The sabot penetrated four witness sheets as well as the

backwall.

4.3 MULTIPLE VARIABLE LINEAR REGRESSION

An Empirical .Penetration Function. Penetration functions represent critical projectile

diameters as a function of projectile velocity for a specific integrated wall design. A critical

projectile just barely penetrates the backwall. Empirical penetration functions are possible for

impacts below 8 km/s because testing can be performed for these velocities. Previously developed

empirical penetration functions are presented in references 3-1 and 3-2 for velocities between 3 and

8 km/s known as the shatter regime, and reference 4-1 for velocities below 3 km/s known as the

ballistic regime. Test data from this contract, and other testing performed from 1985 to 1987 at

MSFC, reflect plate thicknesses and spacings typically specified in Space Station integrated wall

designs. Many of these tests also include MLI between the shield and backwaU, and have oblique

impact angles. We used these test data to evaluate the existing empirical penetration functions and

to develop an alternative penetration function in the shatter range with multiple variable linear

regression as outlined in the task flow diagram in figure 4.3-1.

Linear Regression. Advantages and disadvantages of the regression technique are outlined

in figure 4.3-2. Primary advantages center on the quantitative results obtainable from the final

penetration function developed. The penetration function can be used to assess the relative pene -

tration resistance of proposed integrated wall designs and can be applied in the BUMPER code to

determine an overall PNP estimate for the module group. Disadvantages of the technique extend

from the problems of choosing appropriate variables to constitute the function and from the quality

of available test data. These disadvantages can be minimized by planning test programs to provide

a meaningful range of all design variables. All values in the range should be evenly represented to

maximize confidence in the trends. Also, variables can be chosen to reflect hypothesized physical

effects.
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i Hypervelocity Test Data BaseFrom sources using witness sheets to measure damage. J

Calculate Normalized Penetration Depth

Descnl_d in Section 3.0

Multiple Variable Linear

BMDP 9R

Regression

Penetration Function
Combine functions to cover the complete velocity range.

/
Critical Projectile Diameter

Sensitivity Analyses
Compare relative merits of various shield thick-
nesses, backwall thicknesses, spacings, etc.

BUMPER Analysis Code /

Described in Section 7.0 Jl

Perform Design Assessments

(PNP)

Optimum Integrated Wall Design

Figure 4.3-1. Development and Use of a Multiple Variable Linear Regression
Penetration Function.
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Advantages

• Results are quantitative.

• Penetration function is objectively
derived.

• Leads to sensitivity studies.

• Can use function to evaluate hypothetical
designs.

• Function can reveal and quantify trends
not apparent from 2D data plots.

• Global trends can be revealed that may
not appear in subsets of the data base.

Disadvantages

Results are data base dependent. 1

Results depend somewhat on the
variables chosen.

Function may not model physical

processes.

Agreement between function and all data

may not be achieved.

1"1. Large and consistent data spread required in all
test variables for confidence in the results.

2. All important variables may not show significance
and therefore may not be represented inthe
penetration function.
3. The degree of penetration must be quantified in a
way useful to the eventual application of the
penetration function.

Figure 4.3-2. Assessment of the Multiple Linear Regression Technique.

Basic Test Variables

Multiplicative
Combinations of
Test Variables

Ratios of

Test Variables

T 1 T 2 S D MLI V 0

T2 T 2 S2

T1x T 2 sin e

Vx cos O V x T2

MLI x T1x cos O

D x T1 MLI x T1

cos O tan 0

T 2 x cos 0

MLI x T2 x cos 0

s v
D D T2 D

T1 = Shield Thickness, T2 = Backwall Thickness, S = Spacing, D = Projectile Diameter

e = Impact Angle, MLI = Multilayer Insulation (1 if included, 0 if not included),
V = Projectile Velocity

Figure 4.3-3. A Sample of Variables Used in the Multiple Linear Regression Studies.
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Data Base. The data base included only test data employing witness sheets (see fig. 3.2-3),

which provide a consistent method for measuring damage. In addition to testing performed under

this contract, data sources include references 3-1, 3-2, and 3-3 plus data from MMA testing

performed at MSFC during 1985 and 1986. Shield thicknesses ranged from 0.51 to 4.06 mm

(0.020 to 0.160 in), spacings ranged from 25.4 to 305 mm (1 to 12 in), backwall thicknesses

ranged from 0.25 to 5.72 ram (0.010 to 0.225 in), impact angles ranged from 0- to 75-deg, and

impact velocities ranged form 1.40 to 7.83 km/s. This data base is weak in some areas such as

shield thicknesses above 2.03 mm (0.080 in), spacings above 203 mm (8 in), and backwall

thicknesses above 4.78 mm (0.188 in). The complete data base is listed in appendix C.

A single numerical quantity (normalized penetration depth, N) specified the amount of damage

depending on the depth of the deepest crater or the number of witness sheets penetrated. The

technique for calculating this normalized penetration depth is described in section 3.2. N is the

regression-dependent variable. The penetration function value is therefore the normalized

penetration depth, N. The penetration function takes the general form: N = f(D, V, other test

parameters). Solving the penetration function for N = 1 produces projectile diameter, D, and

velocity, V, pairs describing the line between penetrating and nonpenetrating projectiles. This line

is also termed the penetration function and is illustrated in the figures of appendix J.

The Form of the Function. Regression variables were chosen from three categories: (1)

geometric dimensions of the basic test parameters, (2) multiplicative combinations of these geo -

metric dimensions, and (3) ratios of the geometric dimensions suggested in previous studies.

Some of these variables are shown in figure 4.3-3. An approach to solving the problem of

determining the appropriate combination of these variables is to apply a microcomputer statistical

software package, BMDP (ref. 4-2). One of the subprograms of BMDP, 9R, was used to develop

penetration functions with various combinations of the regression variables. Starting with a list of

potential penetration function variables, the 9R subprogram forms all possible subsets of variables,

performs multiple variable linear regressions on these subsets, and searches the results for the best
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• • • • • • • • • •

• • • • • • •
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Number of Vadables
Included

a 2

1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

QO CO QO 00 00

Best overall
Alternative 11 variable
penetration functions.

Figure 4.3-4. Variables Included In Best Fit Penetration Functions
as Determined by BMDP 9R.
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Figure 4.3-5. Analysis for Optimum Number of Regression Variables.
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Variable

Intercept

D

sine

MLI

tane

 xT2
Vx cose

DxT 

Vx T2

D180-30550-1

Coefficient
Estimate

3.685

122.4

-51.88

103.8

15.19

1.421

-0.5174

-1.119

99.78

-0.3490

-128.8

1.767

t- test

4.27

-15.74

9.37

11.50

6.70

-7.22

-10.39

3.31

-6.45

-5.72

4.31

Significance
Level

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

<.001

<.0001

<.0001

<.0001

Coefficient of determination, R 2= 0.849 254 Data points

N = Number of equivalent thickness back walls (T2) penetrated:

N =3.685 + 122.4"1"12-51.88 "1"2+103.8 T2+ 15.19 D + 1.421 sin0 -0.5174 (MLI)

- 1.119 tan0 +99.78 T_T2- 0.3490 V cos 0 -128.8 D T 1+ 1.767 V T 2

T 1 , T2 , and D in inches, V in km/s. MLI = 1 if included, 0 if not included.

Figure 4.3-6. BMDP-Derived Penetration Function in 11 Variables.
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fitting subsets. Best fit is judged with the coefficient of determination, R 2. The coefficient of

correlation is the square root of the coefficient of determination or R.

Figure 4.3-4 represents a 9R analysis performed using the 23 variables in the left-hand

column. These variables were selected because they were considered fundamental to impact

mechanics, or they performed well in earlier BMDP studies. (Some combinations of variables

were never included in any functions.) The bullets in figure 4.3-4 indicate the best fit functions for

a specific number of variables. The coefficients of determination corresponding to these best fits

are listed in the bottom row. The left four columns list alternative functions to the best fit 11

variable function. This method of presentation also shows how specific variables enter and exit the

best fit penetration function as the total number of variables inca'eases.

A surprising development was that spacing, S, did not appear in a best fit penetration

function, but appeared only in the fourth and fifth best function for 11 variables. When included,

spacing had weak si_, often in excess of 0.05 as measured by the Student t statistic. This

result indicates spacing has a weak effect on penetration resistance in the velocity range between 2

and 8 km/s. Similarly, several ratios (S/D, T1/D, T:_/D) appearing in penetration functions from

other studies (refs. 3-1 and 3-2) are not significant in figure 4.3-4.

Many variables can be included in one penetration function, although there is usually a limit to

the number of significant variables. As variables are added to a particular penetration function, the

R 2 continues to increase, but at an ever-diminishing rate. This effect is shown in figure 4.3-5. We

therefore limit the numlx_ of variables in a penetration function to approximately 12.

The best fit penetration function off figure 4.3-4 (for 11 variables) is listed in figure 4.3-6.

All variables are well within the required significance level of 0.05. When plotted, this penetration

function shows expected integrated wall performance based on trends in the entire data base.

Figure 4.3-7 shows the relative performance of MLI in raising the critical projectile diameter. This

function is valid only between 2 and 8 km/s. Estimated critical projectile lines are included below 2

krn/s and above 8 km/s to represent the role played by linear regression in determining the complete
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penetration function. The estimated functions represent trends revealed by other analytical

techniques but are not numerically pre_se.

Results. The common way to present a penetration function is by plotting diameter versus

velocity. Appendix H contains plots of the figure 4.3-6 penetration function for various shield

thicknesses, backwall thicknesses, and impact incidence angles. The function plots as a straight

line unless it contains a power term in either diameter or velocity.

No combination of variables was clearly superior to another. Selection of the best penetration

function is therefore difficult. Nevertheless, some trends were consistent:

a. Some variables are consistently included in the highest scoring combinations; some variables

are never included in any combinations. T2 has the strongest role in most penetration

functions.

b. Sensitivity studies on most of the penetration functions plotted showed 45-deg incident angles

are more penetrating than 0-deg, and 65-deg incident angles are less penetrating than either 45-

or 0-deg.

c. Penetration functions for 0-deg incident angles had less slope than previously thought (i.e.

less velocity dependency). For 45-deg incident angles, the functions were essentially fiat, and

for 65-deg incident angles the functions were negatively sloped.

These conclusions must be considered with caution because the data base still lacks broad

coverage in some areas, such as spacing and backwall thickness. More testing is required to make

the regression technique completely satisfactory. Data are especially needed at high impact angles

(40- to 75-des.)

Alternative Approach to Linear Regression. Independent of and earlier than the effort

previously described, a penetration function was assembled by trial and error. The specific

variables were chosen to reflect expected performance in the integrated wall design and were

included only if their t-test exceeded 2.00 (significance < 0.05.) Overall the functions were

compared to one another by the coefficient of determination, R 2.
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The best function obtained using this method is listed in figure 4.3-8. This is the penetration

function depicted in the figures of appendix J and leads to alternative conclusions on the effect of

impact angle. The slope of the critical diameter line decreases with increasing impact angle but

does not become negative. In addition, this penetration function does not show a drop in critical

diameter for 45-deg impacts.

Final Selection of a Regression Penetration Function. The alternative regression

penetration function was the first to produce acceptable results and, because it maintains a positive

slope, is more easily integrated into the BUMPER analysis described in section 7.0. Appropriate

application of either the BMDP function or the alternative function depends on the task at hand.

4.4 BACKWALL FAILURE DEFINITION

Onset of Spallation Definition. When a hypervelocity particle impacts a plate, a corn -

pression wave_ fl'om the front surface toward the back surface. The compression wave

is reflected from the back surface as a tensile wave. Spalling occurs when when this tensile wave •

exceeds the ultimate dynamic tensile yield strength of the material (ref. 4-3).

To account for penetrations caused by a combination of cratering and spalling, we use a spall

factor in our penetration analysis code. One option for this spall factor is a constant 0.85 (i.e.,

failure is assumed to occur when the calculated crater depth reaches 85% of the plate thickness).

This estimate was based on a few normal impact tests that resulted in penetrations, which were

performed early in the Space Station Advanced Development SM-1 Test Program (ref. 3-3.) The

spa11 factor provides a margin of safety over a perforation criterion.

Analysis of available test data shows the onset of spalling varies with the projectile velocity

component normal to the backwall. Figure 4.4-1 shows only nonpenetrating tests from our data

base to determine the minimum penetration depth where spallation occurs. The penetration fraction

or normalized penetration is plotted against normal projectile velocity (velocity times the cosine of

the impact angle). The penetration fraction is the ratio of the deepest crater depth in the baclcwall to

the original backwall thickness raised to the 0.45 power, as described in figure 3.2-4. This

63



D180-30550-I

Variable

Intercept

T2

log S

D

(MLI)(T1

D1/3

Vcos 2e

Tan e

Coefficient Significance
Estimate t- test Level, %

1.52 2.03 <.05

-6.18 -7.03 <.0001

-18.8 -18.52 <.0001

-0.146 -2.40 <.05

-14.0 -8.63 <.0001

10.8 9.79 <.0001

-0.287 -8.00 <.0001

-0.713 -7.66 <.0001

Coefficient of determination, R 2_ 0.77 234 Data points

N = Number of equivalent thickness back walls (T2)penetrated:

N - 1.52 - 6.18 "1"11/3- 18.8 T2 - 0.146 log S 14.0 (MLI)(T1) + 10.8 D 1/3
D

- 0.287 Vcos2e - 0.713 Tan e

T1 , T2 , S, and D in inches, V in km/s. MLI - 1 if included, 0 if not included.

Figure 4.3-8. Early Regression Equation.
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exponent correlates the predictions based on tests penetrating multiple, thin (0.020-in) witness

sheets versus nonpenetrating thick backwall test data developed in reference 3-1. Figure 4.4-1

indicates the spalling factor varies from 0.90 at 2.6 km/s to approximately 0.43 at 6.1 km/s. This

is consistent with the value of 0.476 at 7.4 km/s derived in reference 4-4. The spall factor is

assumed equal to 1.0 (i.e., no spalling) at velocities below 2.0 km/s and equal to 0.43 above 6.1

km/s.

The data in figure 4.4-1 include results from tests performed at velocities between 1 and 7.4

km/s and aluminum shield thicknesses ranging from 1.02 to 2.03 mm (0.040 to 0.080 in). The

backwall material was 2219-T87 aluminum in each test. The spacing between shield and backwall

varied between 102 and 152 mm (4 and 6 in). The results may be configuration dependent and,

although probably adequate for comparable aluminum configurations, may not be valid for

materials other than aluminum-

We define the onset of spallafion as the point where an impact causes deformation (bulging)

and cracks oh the backwall back side but no penetration occurs and no backwall material is

released. (A velocity slightly faster would produce spalling.) This is a conservative approach to

defining the backwall failure criterion because all the nonpenetrating, nonspalling tests shown

above the assumed spall line in figure 4.4-1 would be considered failures.

Penetration Threshold Definition. A less conservative alternative approach is to define

failure as the penetration threshold. The penetration threshold occurs when the bottom of the

deepest impact crater on one side of the backwall and the bottom of the deepest spall formation on

the other side just meet. Applying this criterion to test data requires some judgement because few

tests actually achieve the penetration threshold. Tested backwalls judged near the penetration

threshold were included in the sample. These test data are plotted in figure 4.4-2. The penetration

fraction is defined the same as in figure 4.4-1. Many test specimens represented in figure 4.4-2

experienced spallation (those above the line), but the extent of spallation is not used directly in

defining the penetration threshold.
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The threshold failure curve for the all-aluminum configurations tested is defined as follows:

below 2.0 km/s the curve is set equal to 1.0 because spalling cannot occur below this velocity;

above 7.4 km/s the factor is assumed to remain constant at 0.786 (ref. 4-4) to prevent failure due to

perforation. The intermediate region is determined by the data points with the smallest penetration

fraction (the lower boundary of the data in fig. 4.4-2) and defines the lower limit for

nonpenetrating damage where the impact crater and spall damage just meeL

Failure Definition Comparisons. The reference Space Station configuration and

integrated wall design, shown in figures 1.0-1 and 1.0-2, was analyzed using these two failure

definitions in BUMPER (described in sec. 7.0) for comparison. The constant 0.85 spall factor

produces a 93.4% PNP with the penetration analysis code. Substituting the curve in figure 4.4-I

for the constant quantitatively shows the effect of defining failure as the onset of spalling; PNP

was 90.0%. In a similar manner we can substitute the threshold equation shown in figure 4.4-2

into a second version of our penetration analysis code; PNP was 92.2%. The absolute value of

PNP is dependent on the penetration function, configuration, and environment def'mition used;

nevertheless, the 2.2% difference is significant. A 10% increase in backwall thickness is required

to raise the PNP from 90.0% to 92.2% using the operational (constant spall factor) code. All

parametric data reported under this contract arc based on the operational version of BUMPER.

For a constant PNP, integrated walls designed to the onset of spallation failure criterion

expose personnel and equipment to less potential danger. The penalty, however, is increased

shielding weight. The threshold failure criterion saves weight but may expose personnel and

equipment to spall fragments traveling at hypervelocities.

4.5 IMPACT TESTING OF ALTERNATIVE SHIELD MATERIALS

Metallics. The contract test program included two metallic shield materials as potential

alternatives to 6061-T6: (1) a lithium aluminum alloy (Li-A1) and (2) discontinuous silicon carbide

reinforced aluminum metal matrix composite (dSiC/A1). The thicknesses available for test samples

of Li-A1 and dSiC could not be compared directly to 6061-T6 on an equal areal weight basis.
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Therefore, these data were compared in figure 4.5-1 using our penetration analysis for an

equivalent configuration with a 6061 shield of areal weight equal to the Li-Al or dSiC/Al shields.

The analysis calculates N, the number of equivalent backwall plates penetrated; shorter bars

indicate less penetration. Li-Al performed better than the predicted performance for aluminum in

three out of four tests, while dSiC/A1 performed worse in both tests. Although the results for Li-

Al appear encouraging, they arc only preliminary indications for material evaluation. A complete

test program incorporating various projectile diameters, impact angles, and target thicknesses

would be required to quantify the performance of these materials.

Kevlar. Kevlar was tested as a shield material by MMA at MSFC. Figure 4.5-2 shows the

results of hypcrvelocity impact tests of configurations with Kevlar and aluminum shields having

approximately equal areal densities. The predicted performance of all aluminum configurations as

determined by the regression analysis (described in sec. 4.3) is also shown for comparison. The

data appear to indicate Kevlar and aluminum shields with equal area density have approximately

equal penetration resistance. The results also show alternating penetration and no penetration with

increasing velocity for the all aluminum specimens. This condition is not uncommon when using

shields that are thick compared to the backwall. Previous testing has shown thick shields produce

massive fragments that in turn become lethal projectiles on the backwaU.

In figure 4.5-3, results for Kevlar shield testing arc compared to predictions for aluminum

shield configurations of approximately equivalent areal density. The methodology used for this

comparison is the same as used in figure 4.5-1. These results also indicate that on an equal areal

density basis, Kevlar and aluminum shields are equally effective in resisting penetration.

Nevertheless, the data as presented in figures 4.5-2 and 4.5-3 do not reflect the relative severity of

damage to the backwall.

The important difference between aluminum and Kevlar shields is revealed by comparing

backwall damage test-to-test as shown in figure 4.5-4. Three pairs of tests were grouped

according to approximately equivalent shield areal weight, projectile diameter, spacing, and

backwaU thickness. Impact velocities could not be duplicated exactly but are closely paired in each
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case. The backwa11 hole sizes were measurod directly 1_om the test article. The relatively large

hole sizes produced in the Kevlar tests can be explained by a mismatch in shock impedance

between shield and projectile materials (see app. F). This mismatch prevents the dispersion of

impact fragments, from both projectile and shield, over as large an area on the backwall as would

occur with an aluminum shield.

Comprehensive experimental programs for various shield materials were reported in

references 3-2 and 4-5. These investigations show structural grade aluminum is as good or better

than other structural materials. No composite materials were considered in these programs.

The foregoing discussion presents results from some preliminary screening tests comparing

alternative composite shield materials. Based on this limited investigation no significant advantage

appears for Kevlar and dSiC over aluminum in terms of weight or penetration resistance. In fact,

these composite materials appear significantly worse from the standpoint of residual damage

potential to the backwall and interior components for those combinations of projectile mass and

velocity causing a penetration.

4.6 SINGLE AND DOUBLE SHIELD TEST RESULTS COMPARISON

Most testing performed under this contract has used a single shield protecting the baclcwall. A

portion of these tests also included 30 layers of multilayer insulation (MLI) between the shield and

backwall to more accurately simulate the proposed Space Station module design. MMA has

conducted tests at MSFC using two aluminum shields. We have compared these test results with

our single shield test data and analysis results to assess differences in performance.

Data for single and double shield configurations are superimposed in figure 4.6-1. Here, both

configurations have equal areal weight of shielding. A penetration function estimated from the

double shield data is shown for comparison to the single shield penetration function developed

from the regression analysis. These data indicate that dividing a single shield into two spaced

shields each half as thick as the single shield significantly increases the penetration resistance.

These data confirm the results from reference 3-2, where three or more spaced elements
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consistently provided better protection than equivalent two element (shield plus backwall)

configurations.

Data for both double and single shield with MLI configurations are superimposed in figure

4.6-2 along with the linear regression penetration function for single shields. Both configurations

have 1.60-ram (0.063-in) shields, 102-ram (4-in) spacing, and 3.18-mm (0.125-in) backwalls;

however, an MLI blanket (1185 g/m 2) is used in the single shield configuration instead of a 0.032-

in=thick aluminum intermediate shield (2200 gj_2.) These data indicate the _ provides the same

level of penetration resistance as a second shield of 0.81-ram (0.032-in) aluminum.

Our test data have shown MLI enhances the shields effectiveness; therefore, we also compared

the double shield data to a hypothetical single shield (with MLI) configuration in figure 4.6-3. The

single shield capability was determined by the alternative regression analysis function (see sec.

4.3) using a 1.19-mm (0.047-in) aluminum shield configuration with an MLI blanket. The single

shield and MLI combination have a total areal weight equal to the tested double shield. The figure

also shows an estimated penetration function for the double shield data. This comparison indicates

a double shield is superior to a single shield with MLI.

Figure 4.6-4 shows the results of MMA tests of double shield configurations at 45-deg impact

angles along with comparable single shield data and associated analysis obtained under this

contract. Also included in this figure is an analysis for an equivalent weight single shield

configuration with MLI. Because no nonpenetrating test results are available for the two-shield

configuration, we cannot determine the capability of this configuration. Nevertheless, this analysis

shows a shield of 1.19-ram (0.047-in) aluminum plus MLI, which has an equal area weight as a

1.60-ram (0.063-in) aluminum shield without MLI, provides at least as good protection as the

double shield.

The foregoing discussion illustrates the difficulty encountered when comparing the results of

hypervelocity impact tests on different configurations. The results from tests conducted under

controlled conditions are subject to considerable scatter particularly at oblique impact angles. For
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thisreasonwe have relied on the results of linear regression analysis and a large experimental data

base.

In figure 4.6-5 the analysis curves from figures 4.6-1 through 4.6-4 are superimposed and all

the test data points deleted. This comparison indicates the following trends:

a. A single shield approximately half as thick as the backwall provides the least protection that is

acceptable.

b. Replacing the single 1.60-ram (0.063-in) aluminum shield with an equivalent areal weight.

combination of 1.19-ram (0.047-in) aluminum plus MLI increases the penetration resistance.

c. Replacing the single 1.60-ram (0.063-in) aluminum shield with two shields each 0.81-rnm

(0.032-in) thick provides still more protection.

d. The most dramatic improvement for a modest increase in weight is obtained by adding lVILI to

the basic shield.

e. With a relatively thick shield (1.60-mm [0.063-in] aluminum), there is virtually no

improvement by substituting a metallic shield of greater weight for the MLI (see fig. 4.6-2.)

When two lighter shields (0.81-mm [0.032-in] aluminum) are used, the all-aluminum

configuration appears superior to the aluminum plus lVILI combination (see fig. 4.6-3.)

f. Advantages of a double metallic shield over a shield-plus-MLI combination arc partially offset

by the greater attach structure weight required for the intermediate metallic shield over the

structure weight required to restrain the MLL

4.7 TOTAL PENETRATION FUNCTION

A penetration function defines the relationship between projectile velocity and critical projectile

diameter. Four alternative penetration functions are available in our analysis code, BUMPER, as

shown in figure 4.7-1. Penetration function number 1 combines three partial functions from the

ballistic, shatter, and melt/vaporize velocity ranges. In the low-velocity range the ballistic portion

of PEN4 is used as presented in figure 4.7-2. This is an earlier version of PEN4 than described in

section 4.8 but is maintained for continuity with the configuration and design studies using this
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1

Four Altemative Penetration Functions

Ballistic - PEN4 Section 4.8 Reference 4-6.
Shatter - Burch Section 4.7 Reference 3-1.
Melt/Vaporize - Wilkinson Section 4.7 Reference 4-3.

2I
3I
41

Ballistic - PEN4 Section 4.8 Reference 4-6.
Shatter - Regression Section 4.3 Figure 4.3-8.
Melt/Vaporize - Wilkinson Section 4.7 Reference 4-3.

Complete Function - PEN4 Section 4.8 Reference 4-6.

Single Plate Function - Schmidt-Holsapple Section 4.9 Reference 4-5.
(See figure 4.9-1 for single plate penetration function diagram and
equation.)

All penetrationfunctionsassume aluminum on aluminum impacts. For penetration functions
1 and 2 above, transitionsmustbe made between the ranges. Between ballisticand shatter,
criticaldiameters arecalculated for both and the largerdiameter controls. Between shatter
and melt/vaporize,criticaldiameters are calculatedfor both andthe smallerdiameter controls.

Figure 4. 7-1. Overview of Single and Double Wall Penetration Functions
A vailable in BUMPER.
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Vso i = EE',o. 8,o-,,i 1"-"j_// COS Pp

112

i = 1 for shield
i = 2 for wall

Shield is penetrated only if V > V5oi= 1

If v > vf + 4000 Impact occurs in shatter regime

4100 if TIo
Vf- D <0.40

_D .21 T_4986 if D

Residual Velocity

,, use Burch equation.

__.0.40

V R
_ F 1"33 V2 R_ Pp - (8 S,_ T/e -v 3.125 x lo .4

L 1.33RgP,.apm,P,/ cosO )/cos 011/2

Wall is penetrated only if

VR

Dual Wall

V R > Ysoi= 2

V

V
i= 1

i=2

= particle velocity, ft/s

Ti = plate thickness, ft

D = particle diameter, ft

R p = particle radius, ft

13p = particle density, slugs/ft

13/ = plate density, slugs/ft

0 = impact angle, from the normal

SYi = yield strength, Ib/ft 2

Figure 4.7-2. Ballistic Range (PEN4) Penetration Function
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function. In the shatter range the Burch equations (ref. 3-1) shown in figure 4.7-3 are used. In

the transition region between ballistic and shatter ranges, BUMPER calculates the critical diameter

with both PEN4 and the Butch, and chooses the larger as the controUing critical diameter. The

Wilkinson equations (ref. 4-6) are used for the melt/vaporize range. In the transition region

between shatter and melt/vaporize, BUMPER calculates the critical diameter with both Burch and

Wilkinson). The velocity where Wilkinson produces the smaller critical diameter demarks the

transition from shatter to melt/vaporize. Wilkinson then predicts the critical projectile diameter for

greater velocities. Wilkinson is a theoretically derived penetration function for impacts at velocities

above where testing is possible and is outlined in figure 4.7-4. Wilkinson is also used in analyzing

meteoroid impacts, which can reach very high velocities. (See sec. 2.0 for meteoroid velocity

distribution.)

Penetration function 2 of figure 4.7-1 is formed similarly to 1 above except the regression

equation for the shatter range (as described in see. 4.3) replaces the Butch equations and the latest

version of PEN4 is used.

As a verification of our analysis, we compared penetration function 2 to results from a HULL

hydrocode analysis performed for MSFC by Dr. Robert Becker of the Army Corps of Engineers

(ref. 4-7). The comparison is for normal impacts only and is shown in figure 4.7-5. All

penetrating HULL runs are above the penetration function, and all nonpenetrating HULL runs are

below the penetration function. This serves as independent support for our penetration function.

Uncertainties in this verification may be eliminated with more HULL runs.

4.8 PHENOMENOLOGICAL PENETRATION FUNCTION - PEN4

Penetration function 3 in figure 4.7-1 is an improved phenomenological penetration code

originally developed to determine the ability of warhead fragments to penetrate multiple aluminum

arrays and destroy critical components within (ref. 4-8.) It has since been modified to determine

the penetration resistance of an arbitrary aluminum target array to impacts by aluminum projectiles
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Flight Path Penetration:
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N F ----(1:1+ 0.63 F2 -5/12 T2 )-7/12

Normal Path Penetration: N N = F3 (_) (v)-,,3

F1 = 2.42 (_ }'/% 4.26 (_)1/3- 4.18

F_=05- _87(_-). (5_ -16)z_+(17-12-_)x

F3 = 0.32 ('_ _6+ 0.48 (_)1/3sin30

Z = tan 0 - 0.5

C - speed of sound in shield, ft/s

V = projectile velocity, ft/s

S - spacing, in

D = projectile diameter, in _ NF

r/= plate thickness, in T 2,

NN

For "1"2 penetration, set N -- 1 a,nd solve for D which will be the critical diameter.

To account for spallation of T2, solve for N = 0.85.

Reference: G.T. Burch, Airforce Armament Laaboratory Technical Report AFATL-TR-67-116, Boeing, 1967.

For Normal Impact: N = F_(_-)"3 (_.SD 16112(_)-7/12
Implemented through November 1985

Reference: Lundeberg, Stern, and Bristow, "Meteoroid Protection for Spacecraft Structure,
NASA CR-54201, October 1965.

Equivalent Aluminum T 2 Thickness of 30 Layers of MLI

When MLI is included in the dual wall design, it is equivalent to
an amount of aluminum added to the backwall T 2 as fOllOWS:

TMU = 3.045 X 10 -e V 3.42cm (v_ lOknvs)

TML I = 0.008 cm (v • _okrrvs)
Ref. B.G. Cour-Palais, ESA SP -153, 1979.

Figure 4.7-3. Shatter Range (Burch Equations) Penetration Function.
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For M1 /(pp D) > 1.0 Mp = 1.44 L 2M2 S2/VN

1.44( _/6)1/Z L2 M1 M2 $2] 3/4
For M_ /(Pp D) < 1.0 Mp= ( pp)2/3 VN

113

Projectile diameter, cm D=

1. Calculate critical projectile mass with one of the above equations.
2. Calculate projectile diameter.
3. If initial equation does not apply for that diameter, use other equation.

M p = critical projectile mass, gm

M_ = mass per unit area for shield, gm/cm 2

i 2= mass per unit area for w_ill, gm/cm 2

YN = normal component of velocity vector, km/s

L 2 = vessel wall material constant (0.401 for AI - 2219)

S = spacing, cm

Pp = projectile density, gm/cm 3

Reference: J.P.D. Wilkinson, "A Penetration Criterion for Double Walled Structures

Subject to Meteoroid Impact," AIAA Journal, October 1969.

Figure 4.7-4. Melt/Vaporize Range (Wilkinson) Penetration Function.
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and can therefore be applied to Space Station integrated wall designs. This fimction is completely

de.Tibet in a companion report to this contract.

Features of PEN4 not found in the other penetration functions include (1) the penetration of a

plate by multiple impacts is allowed, (2) the crater depth relation was validated by hydrocode for

impact velocities grvater than 8 kin/s, (3) the residual velocity relationship is applicable to both

rigid and deformable, spherical and cubic projectiles, and (4) it accurately models the mass

decrease of the largest residual fragment for impacts above 3 km/s. A comparison between PEN4

and the HULL code results is shown in figure 4.8-1. In all cases the HULL penetrations are above

the PEN4 function, and in all but one ease the HULL nonpenetrations are below the PEN4

function.

4.9 SINGLE PLATE PENETRATION FUNCTION

To account for the possibility of impact on a wall without a shield, a single plate penetration

function, the Schmidt-Holsapple crater volume equation (ref. 4-9) is included in the BUMPER

computer code; this is penetration function number 4 in figure 4.7-1. This equation was developed

from many tests over a wide range of material densities and impact velocities, and applies to both

debris and meteoroid impacts. A comparison of critical particle sizes for equivalent weight single

and double wall structures is shown in figure 4.9-1. The 0.70 factor used to determine the critical

plate thickness prevents a penetration caused from spalling. The curves illustrate the significant

benefit obtained from double- over single-walled construction.
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5.0 INTERNAL EFFECTS OF PENETRATION

5.1 TASK 2 DATA ANALYSIS - TRANSIENT EFFECTS

A survey of transient penetration effects from previous test programs is illustrated in figure

5.1-1. The following is a summary analysis of data collected under this contract's effects of

penetration test program. A complete report on this evaluation is contained in appendix I.

Pressure Pulse. The pressure pulse, noise, and flash data collected during testing were

evaluated by a physiologist from the Boeing Crew System/Life Support organization. A pressure

impulse resulting fi'om a pressure wall penetration probably would cause no more than a temporary

threshold shift (temporary deafness) in a crew member's hearing. If the crew member was

especially close to the impact site, eardrum rupture could occur. Eardrum rupua¢ is not necessarily

a serious condition if it heals without infection.

Light Flash. Tim photodiode data.thow light flash from a penetration occurs in the visible

spectrum. Light intensity evaluations of these data show in most cases the measured light flashes

exceed visual tolerance criteria. Flash blindness could occur if a crew member were looking

directly at the flash. Internal structure should largely shield crew members from the light flash and

also attenuate the effects of pressure pulse.

5.2 PHYSIOLOGICAL EFFECTS OF PRESSURE LOSS

Following the transient effects of penetration, module pressure loss will threaten the crew. In

our study of repair techniques for module walls penetrated by debris particles, we assumed the

module would be evacuated and repaired later by a crew member in EVA equipment. We based

this assumption on the belief that inadequate time was available to locate the damage and perform

the repair before the module internal pressure decayed to hazardous levels. To examine the validity

of this assumption, we compared the pressure decay rate of a punctured module with capability of

unprotected crew at the various atmospheric pressure levels. A summary of this investigation,
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performed by a physiologist from the Boeing Crew System/Life Support organization, is given in

appendix E.

The results show for a 2.54-cm (1-in) diameter hole, approximately 10 rain are available

before supplemental 100% oxygen must be supplied to avoid the onset of hypoxia. It is reasonable

to assume the availability of supplemental oxygen in a waik-around configuration as emergency

equipment in each module. In the event such equipment is not available, the module should be

evacuated unless it was certain the leak could be stopped in about 20 min. This is a very risky

scenario because failure to perform the repair would likely result in death for the crew left in the

module. Even if the repair could be performed, significant risk remains owing to the significant

time required to repressurize the module and transfer the crew to a recompression facility.

With supplemental oxygen, the time of useful function can be extended to about 40 min. This

approach also involves significant risk because although hypoxia can be prevented to about 4 psia,

there is a high probability of decompression sickness (bends) occurring. Furthermore, several

oxygen containers would be necessary owing to the extended time required to make repairs and

repressurize the module. Figure 5.2-1 summarizes the physiological effects of penetration on the

crew.

It appears that, for holes larger than a fi'action of an inch, the crew should evacuate the module

unless the damage can be located and identified within a few minutes of penetration. A remote

system for estimating the hole size seems desirable because the puncture may be hidden by internal

structure. For instance, the system monitoring the internal pressure could estimate the hole size

and forecast the safe operation time available from pressure decay measurements made immediately

after a puncture.
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Condition

Pressure Pulse

Light Flash

Pressure Decay

D180-30550-1

Effect on Crew

Temporary hearing loss,

ear drum rupture.

Temporary blindness,
retinal burns.

Decompression sickness,

hypoxia,
unconsciousness.

Prognosis

Not a lethal threat to crew unless an individual is
very close to the point of penetration. Ear drum
rupture will heal over time.

Unlikely threat to crew unless an individual is
gazing directly at the point of penetration.

Must have supplemental oxygen available when
pressure drops below 10 psia. Must evacuate
the module when pressure drops below 4 psia.

Figure 5.2-1. Effects of Pressure Wall Penetration on Crew Physiology.

94



D180-30550-1

6.0 REPAIR TECHNIQUES

Some Space Station module components susceptible to hypervelocity impact damage are listed

in figure 6.0-1 along with brief descriptions of repair concepts to treat the damage. The entries

cover module structure from body-mounted radiators to internal utility lines. This contract focused

on pressure wall damage repair and describes procedures, tools, and patches for performing such a

repair.

Definition. Our working definition of pressure wall repair is an emergency procedure to

maintain or restore design performance to a penetrated Space Station module. The scope is limited

to repairs applied locally by a Space Station crew lacking specialized repair skills.

Most repair procedures are optimally applied to the pressure side of the pressure wall because

the pressure differential works to hold them in place. Repairs performed from outside the module

will require a blind-side technique to hold it in place.

The penetration size will directly affect crew response. Following a small penetration, the

atmosphere loss rate may be low enough to permit application of a simple patch in the normal

interior environment to temporarily stop the leak. The crew could then apply a permanent repair

without donning special life support equipment. FoUowing a more severe penetration (producing a

larger hole), the crew may need to evacuate the damaged module, seal off the remaining modules,

and then reenter the module in a pressure garment assembly (PGA) to complete the repair. The

repair procedures described below assume the more rigorous requirements of a pressure-suited

astronaut to account for a worst case condition.

Requirements and Assumptions. The following specifications for repair method design

and testing ensure the repair methods developed will be applicable in the Space Station

environment, yet focus primarily on the repair task itself:

a. All repairs can be performed under vacuum and zero-gravity conditions.

b. The damage location is known. The EVA or IVA astronaut will not be required to search

extensively for the penetration.
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DamagedComponents

BodyHountedRadiator /
Debris Shield

1 Skin Holes < 0.4"

2 Heat Pipe - none

3 Support Structure

Hultilayer Insulation

Multiple Holes

RaggedHoles 6' X 6'

Surface Damage 10' X 10"

Pressure Wall - Exterior

Irregular Hole 1" 1 0,5"
Surface Craters 5" dia area

Raised Lip

Pressure Jail - Interior

Irregular Hole 1' X 0.5'

ChippedPaint
Spall

AttachHnt Fixtures
and Hechanises

Electric and

Fluid Lines

Hindo,s

Module

Repair
Location

External

External

External

External

Internal

Internal

Internal

and

External

External

Repair

Concept

Refurbish

or Replace

Patch or

Replace

fILlBlanket

Attachadditional

aluminumplates
overthe area.

Patch

Replace

Components

Replace

Segments

Preliminary
iork

Remove& Replace

Cut or

RemoveHLI to

expose damage

RemoveHLI

blanketand

loosedebris.

Inspect

Inspect

Verify
Completed

#ork

Visual

Visual

Visual

System

Check

Replace

Locate_ Inspect

ApplyInternal

Temporary5eai

Seal

Check

Figure 6.0-1. On -Orbit Repair of Integrated Common Module Wall

96



D180-30550-1

c. The MLI blankets are approximately as wide as the radiator panels and reside directly under

each radiator panel.

d. The appropriate procedure for removing and replacing radiator panels will be developed and

specified under separate efforts.

e. Repair of body-mounted radiator panels or other subsystems is not considered.

6.1 PATCH METHODS DEVELOPED AND THEIR APPLICATIONS

Pressure wall patch techniques developed during this contract are summarized in figure 6.1-1.

Layered Patch. The basic design is shown in figure 6.1-2. Each layer performs a critical

function. Aluminum foil (8 to 12 mils thick) provides the pressure seal and conforms to pressure

wall curvature and to any irregularities in the damaged area. The Kevlar or silicone-foam pad

• prevents sharp edges of the damage from puncturing the aluminum foil. The adhesive used must

be space qualified and resist degradation from possible exposure to the low Earth orbit

environment including atomic oxygen and high vacuum. The Teflon release ply protects the

adhesive layer during patch handling. The release tabs allow an astronaut wearing pressure suit

gloves to easily remove the release ply. The Velcro square attached in the center provides a

temporary handle attachment point. This design cannot support the pressure differential over a hole

with diameter greater than 1 in.

Long versions of this patch, as shown in figure 6.1-3, could repair long and narrow cracks.

Alternative materials could be substituted for the Kevlar layer;, for instance, a rubber pad, a wire

mesh, or a combination of layers to optimize performance.

A simplified patch would include only the aluminum foil and adhesive and may be especially

useful as an initial repair on multiple small holes or as a supplement to other repair techniques.

Rubber Ring Patch. The basic design is shown in figure 6.1-4. The stiff aluminum plate

spaced 6.35 to 19.05 mm (0.25 to 0.75 in) away from the pressure wall surface gives this patch

more durability than the layered patch. As an alternative to aluminum, the plate material could be a

stiff composite such as graphite epoxy. The rubber spacer provides a gap between the damage and

the plate, and conforms to irregularities in the surface. In addition to sealing a penetration, this
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Rubber Ring Method Layered Patch Method

C/)

O1
m

¢
¢1l
>

"O
<

• Simple installation.

• Durable.

• Reliable seal.

• Simple installation.

• Reliable seal.

• Conforms closely to wall.

• Various shapes can be fabricated

to cover a wide range of expected

damage.

¢R

O
m==
m

Q.
D.

Out of plane deformations •
up to 13-mm (0.5-in) and

within 152-mm (6-in) diameter. •

• Interior surface only.

Minor out-of-plane deformations only.

Sharp edges must be confined
to 102-mm (4-in) diameter.

(Patch could be fabricated in a
larger or differently shaped version.)

• Interior surface only.

Figure 6.1-1. Space Station Pressure Wall Repair Concept Summary.
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_ Kevlar 49 Fabric, Style 1811,380 Denier

5 layers sewn, .25 mm (0.01 in) thick per ply •
or

Silicone Foam - 1.59 mm (1/16 in) R-311-V.Tape
with 1 Kevlar layer - Rubatex Corp.

Aluminum Tape - 3m Type Y435
.203 mm (8 Mils) Thick
178 mm (7 in) Diameter

Adhesive -Synthetic Rubber
Blend 3M Type 830

Aluminized Fabric Release Tabs
3M YR-364

Velcro Pile
for handle attachment

Release Ply .025 mm (1 rail) FEP
DuPont Teflon

Figure 6.1-2. Space Station Layered Patch Repair Technique.

Figure 6.1-3. Altemative Concept Multilayered Patch.
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Rubber-
Stouffer-Wacker 7220

BMS 1-70

Adhesive --
BAC 5010 Type 68
RTV 700 GE
Primer - SS4155 GE

,Rgure 6.1-4.

Aluminum Plate
0.51 to 3.18 mm thick
(0.020 to 0.125 in)
203 mm (8 in) diameter

Rubber Ring Patch Design.

Adhesive __HHHHIHHHHH_

Q
'Interior)

(Exterior)

Inject Void with Sealant
After Application

Adhesive --_ (

_""'""""_J .................._Tape _':"_"......°

,,,,,,,,,,,,,.....,
G % % % % % % pJ Iiii

.... ]_-- ____ _ j, ____1'__ _ ......................... "-='_"_'_'_"_'_l_l

Adhesive _./I/: >-.///////.-/_._ _1//_////////. 7/1///: >'...'//,4

•.'..'..:.".:$:.::_.'.",': _:_&_&_:.,._.,.,:.x.:.:.x.:..

_Expa It

Figure 6.1-5. Rubber Ring Patch Alternative Application Methods.
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technique could be used to protect a previously applied temporary or less durable patch and to

provide a redundant seal.

The rubber ring method lends itself to several installation alternatives, as illustrated in figure

6.1-5. The basic installation is shown in item 1. A plate stiff enough to resist the 14.7-1b/in 2

pressure differential will require preshaping m seal against the pressure wall contour. Using a

thinner, more flexible plate to conform to various pressure wall curvatures may require injecting a

stiff sealant (as shown in item 2 to support the plate under the 14.7-1bfm 2 pressure differential. A

tape cover would prevent the sealant escaping through the hole. Item 3 shows this patch held in

place and actually formed to the cylindrical contour with a bolt and expanding nut inserted through

the penetration.

6.2 REPAIR TOOLS DEVELOPED

The layered and rubber ring patches require special tools to aid a pressure-suited astronaut in

their appllcatiea,_The,_g teels were developed under this contract with assistance from

spacecraft crew systems specialists to ensure conformance with applicable NASA requirements;

for instance, all tools incorporate a tether attachment ring and Velcro-lined handles to aid in

securing them during use and storage.

Abrasion/Cleanup Tool. This tool (fig. 6.2-1(a)) is used to prepare the interior pressure

wall surface for a good adhesive bond. The abrasive side is used to remove items such as

loosened paint and penetration-related debris from the pressure wall area intended for patch

application. The abrasive could range from Scotch Brite to a wire brush depending on the

performance required. The adhesive side is used perform final cleanup and to test the surface for

patch adhesion.

Alignment Template. To ensure the patch is centered over the penetration, we have

developed a template (fig. 6.2-1 (b)) for marking alignment lines directly on the pressure wall. The

clear template is visually centered directly over the penetration. A hole in the template's center

allows clearance for any out-of-plane damage. The astronaut then applies visible marks in three or

four places around the template circumference.
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Figure 6.2- I .  Repair Tools and Patches: (a) cleaning tool, (b) alignment tool, (c) patch handle, 
(d) layered patch, (e) tubber nrg patch.. 

Tool Features Uses 
EVA Trash Bag Overlapping baffle Hold small items during 

& Velcro strap repair activity. 

EVA Trash Bag Without baffle & strap Hold large items during 
repair activity. 

Mini Work Station Holds several tool caddies Organize repair tools. 

Scissors Cut away damaged MLI. 

Tool Caddy Velcro lined Stow and tether 
repair tools. 

EMU Lights Provide general lighting. 
and Battery 

EVA Portable Provide lighting in 
Flashlight recessed locations. 

Tape Caddy Hold supplemental 
adhesive tape. 

Portable Foot Allow two handed 
Restraint repair operation. 

Reference' 
P/N 101 176-201 57 

P/N 101 176-201 60 

P/N 101 50-1 0050-05 

P/N 101 59-20001 -02 

P/N 101 53-1 0053-03 

P/N 101 61 -1 0061 -04 
P/N 101 61 -20002-01 

P/N 101 72-20561 -02 

P/N 101 59-20004-03 

Figure 6.2-2. Required Existing Tools From the Space Transportation System Inventory. 
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Marker. We used a felt-tipped marker (not illustrated) in our simulations; however, we' do

not expect this to work well in a vacuum because the ink volatiles will quickly evaporate.

Alternatives we have identified include a graphite pencil and a grease pencil. ' . , ,

Patch Handle and Burnisher. Poor manual dexterity and tactile sensation in space suit

gloves led to designing a detachable handle (fig. 6.2-1(c)) that would make patch manipulation

easier. The handle's function was extended to burnishing and smoothing out the layered patch

after application. Combining tool functions in this way reduces the equipment required by the

astronaut and reduces task complexity.

In addition to these tools, we have identified tools from the EVA Catalog Tools and Equip -

ment (JSC-20466) to ease repair task performance in vacuum and zero-g conditions. These tools

are listed in figure 6.2-2. In general, the selected tools help carry and organize the above tools for

task efficiency. Foot restraints will be required to keep the astronauts stationary during repair

work.

Equipment and Tool Configuration. Figure 6.2-3 lists the repair tools required during

three types of repair activity: external repair or replacement of the MLI blankets, and patching a

hole from the inside. Internal pressure wall repair is desired so the pressure differential can be

used to advantage. External pressure wall repair methods will require methods for resisting the

pressure for long time periods for permanent repairs.

6.3 PATCH APPLICATION DEMONSTRATED

To ensure our repair techniques were as valid as possible for Space Station, we prepared and

then demonstrated patch application procedures. Demonstrations occurred in both terrestrial

laboratories and the MSFC neutral buoyancy simulation facih'ty.

Layered Patch Application Laboratory Demonstration. The most critical assumption

applied to identifying repair tasks was the need to perform repair in a vacuum, which requires that

the astronaut work in a pressure suit. Keeping in mind the constraints imposed by this condition,

figure 6.3-1 lists all the individual tasks important to completing an effective pressure wall repair.
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Step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

Task Time,
minutes

1

5

1

1

1

1

3

1

1

2

3

1

1

1

2

2

1

1

I

1

2

Total Time,
minutes

1

6

7

8

9

10

13

14

15

17

20

21

22

23

25

26

28

29

3O

31

32

33

35

Task Description

Translate to damaged area.

Attach portable foot restraint_

Inspect the hole area, and check for other holes.

Deploy trash bag and attach to structure or MWS.

Open the tool caddy.

Remove abrasive tool and cleaning pad
combination.

Abrade rough edges; remove loose paint and
material.

Remove backing from cleaning pad.

Discard backing in trash bag.

Collect loose material, dust, chips with cleaning
pad.

Remove expended pad layers and continue
deaning asrequired.

I

Return tool to tool caddy.
I

Remove alignment template from tool caddy.
I

Remove backing from template face & discard
backing in trash bag.

Center template alignment crosshair over hole
center and press firmly in place. Release handle.

Remove marker tool from tool caddy.

Mark pressure wall adjacent to template guide
marks at a minimum of 3 locations.

Return marker to tool caddy.

Remove alignment template and return to tool
caddy.

Remove patch with detachable handle from tool
caddy.

Verify fit of selected patch against wall markings.

I Remove the backing from the patch, and discard
I backing intrash bag.

iAlign patch with marks on wall and press firmly
!into place.

24 1 36 : Remove handle from patch, and return it to
caddy.

Figure 6.3-1. Preliminap/Task AnalysisInterior(PGA)PatchApplicationTask Analysis
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Step

25

26

27

28

29

Task Time,
minutes

1

3

1

3

Total Time,
minutes

37

4O

41

44

44

Task Description

Remove burnisher from tool caddy.

Burnish bubbles, folds, and creased edges in the
patch.

i

Return burnisher to tool caddy.

Visually inspect the completed patch, check for
loose edges. (Reburnish if required).

Repair complete; repressurize the module.

Monitor patch during repressurization.

In a shirt sleeve environment, place tape over
velcro on the patch.

F'_ure 6.3-I. PreliminaryTask AnalysisIntedor (PGA) Patch ApplicationTask Analysis
(Conmued)
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The time estimates are based on judgments of crew systems analysts and reflect a ground role that

limited minimum task time to 1 rain.

Repair task timeline performance using the developed tools and patch is illustrated in figures

6.3-2 through 6.3-9. Figure 6.3-2 shows the hypervelocity impact test article used to apply the

patch to for a realistic demonstration. This was the baekwall of an article tested at MSFC and

represents a complete penetration with spalling, dimpling, and several rough edges. The test article

was mounted vertically for the repair procedure.

A goal in the cleaning steps was to minimize released particles. A fine powder was formed

during Scotch Brite abrading of step 7 (fig. 6.3-3). The cleaning tool adhesive surface used as

shown in figure 6.3-4 was able to collect some of this powder.

Patch alignment over the hole was crucial for sealing the hole and ensuring the protective

Kevlar or foam pad could protect the aluminum foil. The alignment template was clear, so the

damaged area was visible through it. A hole in the center of the alignment tool ensured it could lie

flat aghast the 9re_ure wall, as shown in figure 6.3-5, without interference from the damage.

As a f'mai step before applying the patch, a verification fit was made to ensure the alignment is

correct as shown in figure 6.3-6. After the release plies protecting the adhesive are removed, the

patch is applied over the hole as shown in figure 6.3-7. The patch handle is removed after the

patch is secured in place. The final step is to ensure good adhesion by burnishing the patch surface

with the patch handle as shown in figure 6.3-8. The completed patch is shown in figure 6.3-9.

6.4 RUBBER RING PATCH APPLICATION

The task timeline for the rubber ring patch application is shown in figure 6.4-1. The tasks are

similar to the layered patch tasks in figure 6.3-1 and shown in the photographs. The patch is

shown applied to a curved panel in figure 6.4-2. The curvature is a 82-in radius, equivalent to our

reference configuration module design.
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Figure 6.3-2. Hypervelocity Impact Damage for Repair Demonstration. 
ORIGINAL PAGE IS 
OF POOR QUALITY 

Figure 6.3-3. Abrade the Wall Surface With the Cleaning Tool to Remove Loose Material. 
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7gure 6.3-4. Collect Loose Material With Adhesive Surface On Cleaning Tool. 

Figure 6.3-5. Center Alignment Template Over Hole. 
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I ~~ ~~ 

Figure 6.3-6. Veriv Fit of Selected Patch Against Wall Markings. 

Figure 6.3-7. Press Patch Firmly Into Place. 
ORIGINAL PAGE 1s 

110 OF POOR QUALITY 



I 

Figure 6.3-8. Burnish Bubbles, Folds, and Creased Edges With Patch Handle. 

Figure 6.3-9. The Completed Layered Patch. 
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Time, ITime,
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Task Description

Translate to damaged area, and attach portable foot restraint.

2 1 1

3 1 2

Inspect the damage area, and check for other holes.

Deploy trash bag and attach to structure or MWS.

4 1 3 Open the tool caddy and remove rag or wiping mit.

5 3 6 Clean 10 inch diameter area around damage to remove
loose dirt, grease, and fluids. Replace rag or mit.

6 3 9 Remove abrasive tool and cleaning pad combination from tool caddy.

Clean ring area 3 inches wide and 8 inches diameter to remove
loose paint and material.

7 3 12 Remove backing from cleaning pad, discard backing in
trash bag, and collect loose material with adhesive
surface. Remove expended layers and discard into trash
bag as required. Return tool to tool caddy.

81 1 13 Remove alignment template from tool caddy. Remove
backing from template face and discard into trash bag.

9 1 14 Center alignment template over hole and press firmly in place.

10 2 16 Remove marker tool from tool caddy. Mark pressure
wall at 3 locations 90-deg apart. Return marker to tool caddy.

11 1 17 Return alignment template to tool caddy.

20 1 18 Remove patch from tool caddy, and verify fit.

22 1 19 Remove the backing from the patch, and discard backing in trash bag.

23 1 20 Align patch with marks and press it into place.

24 1 21 Remove handle from patch, and return it to caddy.

28 2 23 Visually inspect the completed patch.

29 1 24 Remove tape strip from tape caddy, and place over velcro on patch.

31 24 Repair complete; repressurize the module.

Figure 6.4-1. Rubber Ring Patch Application Task Timeline.

112



Figure 6.4-2. The Rubber Ring Patch Applied to a Curved Panel. 
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6.5 CONCLUSIONS OF LABORATORY PATCH DEMONSTRATIONS

The foUowing conclusions are based on laboratory testing and conversations with NASA

personnel and representatives of CAMPUS Inc.:

a. Cleaning tools and techniques must be compatible with the constraints of a suited astronaut

and NASA safety requirements (ref. 2-5).

b. Tools should be well organized for astronaut efficiency.

c. Detailed station and azimuth markings on module interior and exterior walls would add to the

complete description of the damage and aid in specif_g its location when previously located

from the opposite side.

d. Alignment marks on the patch should be applied with paint, stain, ink, or equivalent so they

do not interfere with the burnishing operation.

e. The alignment template should be marked with a simple protractor and with a scale of

concentric rings to aid the astronaut in describing details of the damage.

f. The burnisher handle should be approximately 10 in long to improve two-handed use when

extra pressure is required. All other handles must be at least 6 in long.

g. Pending clarification of EVA requirements, all removable release plies may need to be captive

to prevent accidental release.

h. Adhesive layer and release ply combinations should be selected and configured to prevent

adhesive layer removal when the release ply is removed.

i. An additional task sequence is needed to describe repair tool refurbishment.

The following recommendations were made by Bill Pogue of CAMUS, Inc., a space

operations consultant:

a. Tabs for removal of any adhesive release backing should contrast visually (color, pattern) with

the patch or tool.
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b. The color of the adhesive layers on the cleaning tool should contrast with the picked up and

adhering particles. (Light and dark bands or stripes would provide contrast with a wide

variety of particles.)

c. Use the alignment template to mark ares rather than ticks on the pressure wall to align the

patch. Ares would be easier to see and would not require the patch be rotated to a precise

orientation. The tick marks (:odd also be deleted from the patch.

d. While graphite may be the best substance to use for a marker, graphite particles could be

released during use, and there is the danger of breaking off the tip.

e. Develop a method to assess patch performance such as a leak indicator built into the patch, for

example dust or dye. (A liquid crystal coating could reveal an area experiencing a local drop

in temperature. A temperature drop could indicate an anomaly stemming from an impact or

penetration.)

f. The pressurized air throttling dmough a penetration and expanding would cause ice to build up

at the hole and tend to close the hole. Small holes would tend to close altogether (i.e., self-

seal). (Nevertheless, as the pressure wall at room temperature warmed the ice it would melt

and sublimate, and the hole would open again.) Such ice and moisture must be removed

before the patch is applied.

g. Tabs for removing multiple adhesive layers on tools should not only be staggered, but when

possiblealternatedfrom one sidetothe other.This would easeremoval of thelayers.

h. ExteriorMLI blanketsshouldbe segmented intosizeseasilymanageable by EVA astronauts.

Rollinga longMLI blanketmay be a difficultand thereforeunrealisticactivity.

Additional Questions Raised. Several questions emerged during our repair simulations

that we were unable to resolve under this contract but should be considered in future studies:

a. How can extra, nonstandard, or emergency patch material and tools be passed from the

pressurized to the unpressurized module?

b. Can the pressurized nodes be used as airlocks to move from the pressurized to the

tmpressurized station areas?
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c. Should a complete repair kit be included in each module?

d. What will be the quality and intensity of lighting behind the internal subsystem racks? Will

supplemental lighting be required?

e. Can a suited astronaut reach the pressure wall through the internal rack support structure?

Will subsystems such as fluid lines block access to portions of the pressure wall?

f. Can a suited astronaut successfully remove and relocate the internal equipment racks?

g. Would application of this patch be significantly different on a hole still bleeding atmosphere?

How can this best be simulated?

6.6 NEUTRAL BUOYANCY SIMULATIONS

A complete description of the neutral buoyancy simulated tests is provided in appendix B.

Important overall lessons learned were that (1) astronaut positioning at the repair site is a

significant issue for efficient work and (2) tool handling and motions should be kept as simple as

possible.

6.7 PATCH MATERIALS

The patch materials used to construct these demonstration versions are listed in the diagrams

but not all have been space qualified. When possible, we used representative materials available in

our laboratories that could be easily processed. Alternative, space grade materials are listed in

figure 6.7-1. Two elastomers not yet space grade show promise in preliminary tests. The SWS-

7220 U showed extremely low sensitivity to atomic oxygen in a laboratory plasma asher test. The

polyphosphazene performs within the NASA outgassing requirements. We believe functioning

models of our patch designs can be constructed with these space grade materials. Using space

grade materials will facilitate qualifying the patches for space application.

Other advanced materials have potential applications in pressure wall repair; for example,

adhesives that use ultraviolet (UV) radiation to induce curing are being developed. Radiation

sources available include the sun, fluorescent lamps, pulsed lamps, medium pressure mercury

lamps, and electrodeless mercury lamps. Advantages of such adhesives include fast room
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Features

g

Sealants

DC 6-1104 (3) •

DC 6-1125 (5) •

Sealant Adhesives

CV-1142 (1)(3) •

CV-1143 (1)(3) •

cv-15oo (1)(4) •

CV-2564 (1)(3) •

CV-2566 (1) •

RTV 142 (1) •

Foam

i

CCF1-2365 •

SILASTIC S-5370 •

Primer

RTV 566 •

DC 1204 (2) •

Low Durometer Elastomers

CV1-2500 (2) •

SWS-7220 U (6)(7)

Polyphosphazene (7)

(1) Silicone (3) Translucent
(2) Clear (4) Black

ii

o
o3

r-
o3

Dow Coming

Dow Coming

McGHAN NuSIL

McGHAN NuSIL

McGHAN NuSIL

McGHAN NuSIL

McGHAN NuSIL

General Electric

McGHAN NuSIL

Dow Coming

General Electric

Dow Coming

• McGHAN NuSIL

• Stouffer-Wacker

Ethyl Corp.

(6) Uncatalyzed methyl vinyl silicone
(7) Potential for space qualification

(5) White

Figure 6. 7-1. Potential Repair Materials.
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temperature cure, reduced energy requirements and fu'e hazard when compared with high-

temperature cure, and reduced volatiles.

Electron beam (EB) curing adhesives are alternatives to UV curing adhesives. EB adhesives

can be heavily pigmenteA became the electron beam is penetrating, whereas the UV adhesives are

thickness limite_ EB curing requires an inert atmosphere while UV does not. UV curable resin

systems are currently available that will satisfy NASA outgassing requirements for space usage.
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7.0 DESIGN EVALUATION COMPUTER CODE

Overview. Prior to this contract the method of analysis for hypervelocity impacts ( > 2.0

kin/s) consisted of using flux equation, time in orbit, surface area, and the required PNP to

calculate a design particle. This was assumed to be the largest particle likely encountered during a

spacecraft's lifetime. Candidate wall designs were then tested using projectiles of this size, fired

by devices such as two-stage, light-gas guns. If the wall design could withstand this impact, it

was considered adequate. This technique assumes that the resistance of the wall to such an impact

follows a power function with velocity (i.e., the function describing the relation between critical

diameter and velocity is continuous and varies as a power of impact velocity).

Testing conducted under a Boeing contract with NASA/Lewis in 1965 (ref. 3-2) as well as

other studies reveal a different situation. These investigations showed three distinct failure

mechanisms involved during hyperveloeity impact of a two-plate structure similar to that first

recommended by Whipple (ref. 7-1). Figure 7.0-1 shows predictions of the response function of

the reference wail configuration for impact by aluminum spheres from 0.1 to 16 km/s and for

impact angle ranging from O-deg (normal) to 60-deg. The f'n'st failure mechanism (0.1 to 3.0

kin/s) is characterized by ballistic penetration of both plates by a projectile remaining essentially

intact and maintaining most of its mass and velecity. The second failure mechanism (3.0 to 8.0

kin/s) is characterized by a fragmenting projectile causing failure of the second plate through a

combination of multiple impact craters and spallation. In general, higher impact velocities produce

smaller projectile fragments, resulting in less wall damage. The final failure mechanism is

characterized by projectile and wall fragments vaporizing and imparting an impulse load to the

second plate. Impulse failure of the backwall is easily recoganized by cracks and petaling with little

or no cratering.
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Figure7.1-1. Space Station Geometry Model, 5000 Elements
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The design evaluation computer code developed under the contract is BUMPER. This refers

to both the family of codes; BUMPER, GEOMETRY, and RESPONSE, as a whole and to one of

the modules within this family. The theory upon which these codes are based may be found in

Appendix G of this report.

7.1 BUILDING THE SPACE STATION MODEL

Because of the nonlinear response of a typical wall configuration, the directionality of the

debris environment (and the meteoroid environment when considering Earth shielding), and the

rigorous PNP requirements, we take a discrete clement approach in describing Space Station

geometry. Space Station was modeled in a manner similar to a finite element model to take

maximum advantage of mutual serf-shielding and to allow the integration of the nonlinear effects of

impact angle and velocity over the entire range of possibilities. A finite elemenrmodel of the

reference configuration is shown in figure 7.1-1. This approach allows us to analyze a specific

Space Station configuration, orientation, and orbit. Using a model of this type gives us power and

flexibility both in analysis and in the presentation of the results. Using a large number of elements

permits modeling a Space Station design containing various aluminum single and double wall

configurations. The vulnerability of specific areas can be assessed, and the Space Station can be

partitioned to analyze specific subunits such as modules.

There are no provisions for modeling windows within BUMPER. A suitable penetration

function for mnltipane windows did not exist during the time of performance of this contract, and it

was beyond the scope to develop one.

7.2 HIDDEN SURFACE ALGORITHM

It was necessary to develop a hidden surface algorithm to make full use of a geometry model

as previously described. In the analysis a threat direction is chosen that is in the plane of the orbit

for debris or out of plane for meteoroids. The algorithm determines whether a particular element

faces the threat and eliminates all those that do not. It then determines whether any element is
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hidden behind another and eliminates those that are. This is done by transforming the original

coordinates of the nodes into a coordinate system having one axis parallel to the threat direction.

The nodes are projected onto a plane perpendicular to the threat direction. The centroid of each

element is calculated and then sorted in relation to the threat. An algorithm then determines

whether an element's eentroid is hidden by the bounding of another element. The cosine of the

impact angle is output for each exposed element of each threat angle, allowing the penetrating flux

to be calculated and summed over the entire environment. Figure 7.2-1 shows an example of the

hidden surface algorithm for a typical meteoroid threat angle.

7.3 APPROACH TO MODELING ORBITAL DEBRIS

Figure 7.3-1 shows the seven steps used in analyzing debris impacts but assuming only

normal impacts. For each unique wall configuration, it is fLrSt necessary to determine the critical

projectile diameter (1). For each impact velocity increment (4), the critical projectile diameter is

calculated by using the appropriate penetration equations described later in this report. This

projectile diameter (2) is used to determine the number of particles of this size or larger (3). All

particles larger than this will penetrate at this particular velocity and therefore must be accounted for

in the probability equations. Because penetrations are rare occurrences, the correct probability

function to use is the Poisson probability function (6). Our interest is in the probability of no

occurrences, therefore by setting N = 0 the equation simplifies as shown. Because the probability

of the impact velocity in question occurring is extremely small (4), the probability of small delta

around this velocity is calculated. The equation that must be solved is shown in (7) and is approx -

imated by a summation in the design analysis code.

This technique must be expanded further as shown in figure 7.3-2, when considering a single

surface element in the model. A threat direction is chosen (1) that determines the impact angle

relative to a vector normal to the elements surface (2). The threat direction also determines the

impact velocity (3) by assuming all orbits are circular and therefore that everything at that orbital

altitude has the same orbital velocity. By using the appropriate penetration function for the
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Top Vtew

Figure 7.2-1. Outputof Hidden SUrfaceAlgodthmfor MeteoroidThreat Angle
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calculated impact angle, the critical diameter can be calculated. The probability of both the impact

velocity (4) and threat or approach angle (5) occurring is calculated. The summation is then

expanded to include all possible approach angle and all elements. Within the code the penelrating

flux for each element is stored, allowing PNP calculations for each element, for elements

representing a single Space Station critical element (SSCE), or for the overall Space Station.

7.4 APPROACH TO MODELING METEOROIDS

The approach to modeling the meteoroid environment is similar to that used for debris, but

expanded for out of plane angles. The meteoroid model and corrections for Earth orbit were

mentioned previously in section 2.0. The flux equation shown in figure 2.2-1 comes from

reference 2-2; but the best explanation of the equation is given in reference 2-6, which states, "The

exact meaning of N can be confusing. It is the flux in one direction through a fiat plate of one

square meter area. Thus, if the directional flux were j particles/(m2-sec-steradian) and j is

isotropic, then N = 3.14159 xj."

Each element in the model is then exposed to a hemisphere (fig. 7.4-1) that has been divided

into surface elements of equal area. The probability of meteoroid flux coming from a direction

defined by the centroid of the surface element is the area of that surface element divided by the area

of the hemisphere. The dot product of the vector from the surface element centroid and the velocity

vector (X-axis) of the spacecraft def'mes the threat angle used to determine exposed areas. This

technique was used tD ensure that all combinations of possible approach angles were equally likely.

The modeling of the velocity effects for meteoroids is handled differently that for debris. The

entire velocity spectrum, which is in turn defined by the approach angle, is used in evaluating a

Space Station model for debris impacts. For meteoroids, the velocity distribution is independent of

approach angle. The correct approach to modeling meteoroids is to select an approach angle,

calculate the probability of that angle occurring, calculate the probability of the flux coming from

that angle, and then calculate the critical particle diameter for velocity increments between 10 and
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72 km/s. The probability of that velocity increment occuring would then have to be factored into

the analysis. This would be very tedious and time-consuming even using computers.

We took an alternative approach to see ff it was actually necessary to account for the entire

velocity range when calculating PNP due to meteoroids. A sensitivity study was done to determine

the effect of using an average meteoroid velocity of 20 km/s versus the SP-8013 (ref. 2-2) distri -

bution on PNP for 10, 20, and 30 years of exposure time. An early version of BUMPER that did

not account for geometry, but which did use the SP-8013 meteoroid velocity distribution, was

used to calculate the overall PNP due to meteoroid impacts. The code was then modified to use a

constant meteoroid velocity of 20 km/s. These results, presented in figure 7.4-2, show almost no

difference between the two approaches to velocity. A second study was done to see if there was

any difference in the analysis using an average velocity but accounting for the effects of Space

Station orbital velocity of 7.5 km/s. These results, given in figure 7.4-3, again show almost no

difference between the two approaches.

The conclusions reached were that (1) meteoroids were not a design driver when compared

with the debris environment, (2) use of an average meteoroid velocity of 20 km/s was adequate for

calculating a PNP for Space Station due to meteoroid impacts, and (3) effects of orbital velocity

should be accounted for to correctly model the distribution of impacts on the upper and forward

surfaces of Space Station.

7.$ PENETRATION FUNCTION

The penetration function is a series of equations that determine the diameter of a debris or

meteoroid spherical projectile that just penetrates a given wall configuration at a specific impact

velocity and angle. This information can then be used to determine the penetrating flux on an

element and/or overall PNP. A complete description of penetration functions used is presented in

section 4.0.
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Zenith

Threat angles at and Sj are
measured to centroid of

curved surface element.

AIIcombinations of et and tj

are equally likely.

Reference_is_ "f

F¢jure 7.4-1. Meteoroid Analysis Threat Angle Generation

Condition

Constant Velocity I

SP8013 Distribution 2

Probability of No Penetraldon. %

•Exposure Time. Years

10

99.925%

99.923%

20

99.849%

99.845%

30

99.774%

99.768%

Note I Vmeteoroid = 20km/sec, reference wall design, Vspacestetion = 0

Note 2 SP 8013 velocity distribution, reference wall design, Vspace station = 0

Figure 7.4-2. Effect of MeteoroU Velocity on Total Space Station PNP

Condition

No Orbital Velocity I

With Velocity Effects 2

Probability of No Penetration, %

10

99.966%

99.964%

Exposure Time, Years

20

99.932%

99.929%

30

99.897%

99.893%

Note 1 Vmeteoroid = 20 kmlsec,Vspacestation = 0, Reference Configuration

Note 2 Vmeteoroid . 20 km/sec, Vspace station =, 7.5 kmlsec, Reference
Configuration

Figure 7.4-3. Effect of Space Station Orbital Velocity on Total Space Station PNP
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7.6 DESIGN ANALYSIS COMPUTER CODE

A highly modular computer code named BUMPER was developed to bring all of the

preceding elements together. Figure 7.6-1 graphically shows the flow of data through the various

modules, which will be described in more detail in the following sections.

7.7 MODEL GENERATION

SUPERTAB is a finite element preprocessor and postprocessor that was used to generate the

geometry model. It was selected because of convenience and familiarity and is not critical to the

analysis. SUPERTAB's Universal File Format (UFF) was selected as the means of transmitting

the geometry information to the GEOMETRY module. This was again done for convenience and

is not critical to the analysis. Any finite element generation system or code may be used as long as

the rules stated in the users document are followed.

7.8 GEOMETRY MODULE

The GEOMETRY module reads the UFF, which contains the node and triangular element

definitions of the Space Station model. The surface area of all elements is calculated and written to

a file, along with the threat information and element and property identifications. For each threat

angle, the cosine of the impact angle for each element, which is unique for each threat angle, is

calculated. This allows the back side elements to be eliminated from further consideration. The

remaining elements are sorted in relation to the threat direction to allow the shadowing subroutine

to efficiently eliminate elements that are hidden behind other elements. For each threat angle, a list

of exposed element points and the associated cosine are written out. This information is then used

by the BUMPER module to compute the appropriate statistics. The GEOMETRY module requires

a relatively large amount of computing resources, but need only be executed once for a given

configuration and orientation.
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7.9 RESPONSE MODULE

The RESPONSE module contains the penetration functions described in section 4.0. Using

these functions, RESPONSE builds tables of critical projectile diameters as a function of impact

velocity, impact angle, and wall configuration. These tables are read by the BUMPER module and

used to calculate the penetrating flux. A great deal of flexibility is inherent in using this approach.

The response function could simply be a lookup table if there was sufficient test data to fill one out,

a constant to evaluate a specific threat such as a single projectile/velocity combination, or a

combination of empirical and theoretical equations as we have now. The response function would

have to be in a binary file compatible with FORTRAN formats used in the RESPONSE and

BUMPER modules.

7.10 BUMPER MODULE

The BUMPER module reads in the tables of exposed elements and projected areas from

GEOMETRY and the tables of critical diameters from RESPONSE. Using this information and the

flux equations from SP-8013 and JSC 20001, it calculates the flux of the critical projectile. This

flux multiplied by the projected area of the element multiplied by the probability of the threat

occurring is summed up for all elements and all threats.

7.11 CONTOUR MODULE

CONTOUR produces the data base that may be used by user-supplied software to produce

design contour plots. The plots show the relationship between shield and vessel wall thickness

and PNP for a given shield standoff. An example of this plot is shown in figure 7.11-1. Contours

of this type will be extremely useful to designers in developing optimized wall configurations.

This code is similar to BUMPER with the exception that the RESPONSE module has been

incorporated as a subroutine. The range of input variables must be defined by determining a

minimum, maximum, and increment for shield and wall thicknesses as well as standoff, insulation,

and type of threat. CONTOUR then loops through the parameters calculating PNP for each unique
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combination of wall configuration parameters. It then writes a summary f'fle containing these

parameters along with their calculated PNP.

7.12 ANALYSIS RESULTS

The output from BUMPER can be displayed in several ways. Because the probability of

penetration (1.0 - PNP) is calculated and stored on an element basis it can be displayed as

contours of equal threat on the Space Station model. Figure 7.12-1 shows the threat distribution

for debris. The greatest threat is to the leading edges and sides of Space Station, while the inner

portions that are self-shielded show almost no threat. Plots such as these can be used by designer

for placement of critical and sensitive items such as pressurized tanks. Figure 7.12-2 is a similar

plot of threat contours for meteoroids and shows the increased threat to the upper and forward

parts of Space Station. The Earth prevents meteoroids from approaching from below the plane of

orbit, resulting in very low levels of threat to surfaces that face Earth.

7.13 ORIENTATION SENSITIVITY STUDY

By a simple coordinate system transformation it is possible to determine the effects of different

Space Station orientations on PNP. Figure 7.13-1 shows the results of such a sensitivity study.

The reference orientation is shown at the top with a PNP of 93.4%. Rotating the model 90-cleg

around the Z-axis simulates the effect orbiting Space Station broadside to the velocity vector. This

orientation shows a modest improvement over the reference orientation. The worst orientation is

rotating the model 90-deg around the velocity vector. This exposes the most surface area to the

threat and results in the lowest PN-P.

The results of additional sensitivity studies are presented in section 2.0.
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7.14 THEORY

The rigorous theoretical derivation upon which our analysis technique is based can be found in

appendix G. This comprehensive section deals with both debris and meteoroids and how they

impact a body in orbit.
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8.0 DESIGN GUIDE

8.1 INTEGRATED WALL DESIGN

The Space Station will present new problems in designing for safety and reliability as described in

the Space Station Systems Requirements Document 0001, Revision A, p. A-115:

A.13.1 DESIGN APPROACH TO ORBITAL DEBRIS AND METEOROID PROTECTION

The past approach to protecting spacecraft against meteo_ds has been to add sufficient shielding and/or
redundancy to provide a desired reliability in a known environment. This approach has worked well for the
relatively short lifetime, small struclnres of the past; however, when this approach is applied to SSPE, its
larger size, longer lifetime, and the addition of an orbital debris environment cause the following problems to
emerge:

• The amount of shielding required to achieve the currentdesign reliability will add signif'r.ant weight.

• Cune_t design does not adequately address the issue of crew safety. Consequently, a conservative approach
would suggest that reliability be increased which would increase the shielding weight further.

• The current debris environment does not include recent measmements nor debris that has been and will be
generated by antisatell_ tests, the pom'ble debris from unanticipated satellite breakups, SSPE operations,
or other unexpected activities in LEO.

The following possible approach combines shielding and/or redundancy with engineering design and operations
to provide a level of crew safety comparable to certain industrial standards. Different levels of safety could be
required for noncritical hardware. Thus, in addition to a 0.95 hardware reliability against meteoroid and debris
damage, the SSPE should be designed and operated in a manner such that the individual crewman would not be
exposed to a risk of more than 0.0005 (1 per 2000) accidental deaths per year as a consequence of meteoroid and
debris strikes.

In addition to limiting the damage caused by theruptureof the pressure vessel (e.g., closed doors to cenf'me the
loss of pressure, automatic systems that decrease the netoxygen loss rate for a short time, arrangements of
internal hardware to decrease the amount of shrapnel) the following could be implemented.

• A damage preventim concept to include onbeard detection of orbital debris

• Collision warning

• Poss_ly a collision avoidance system

• An area with maximum shielding where the crew spends most of their time or could go in case of
emergency

• Crew activities planned so that the safety goal is maintained. This might limit the number of hours a
crewmember could stay in more hazardousareas suchas EVA or a lightly shielded work area.

PRECEDING PAGE BLANK NOT FILMI_D
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The designer can approach these concerns with the analytical techniques and principles

discussed here. Components of our reference configuration integrated wall are illustrated in figure

8.1-1, and their relevance to hypervelocity penetration resistance is discussed in the following

paragraphs.

Shield. In addition to possible use as thermal radiators, the shield is intended to break a

projectile Into fragments that the backwall can successfully resist. A body of test data exists for

thicknesses from 0.51 mm (0.020 in) to 2.03 mm (0.080 in.) The design thickness will depend on

structural rigidity requirements, thermal performance (if it also performs as a thermal radiator), and

penetration resistance requirements. Some work has indicated an optimum ratio exists between

shield thickness and projectile diameter (ref. 3-1); nevertheless, this effect may not be relevant for

a shield intended to protect against a range of projectile sizes and impact angles.

Theoretical work (app. F) has shown the shield material's shock impedance should be

matched to the expected projectile material's shock impedance. Because aluminum is the primary

component of orbital debris, aluminum should perform well as a shield and better than composite

materials and many other metals. In this study, no other material was found to work better.

Another study (ref. 4-5) showed shield areal density roughly determines shield effectiveness.

This implies shield effectiveness is gained only at the cost of shield weight. An important

exception occurs for materials with volume densities below 2 g/era 3, which are less effective on an

areal density basis. Such materials include magnesium, magnesium-lithium, and polyethylene.

Conversely, lead and cadmium perform better than the areal density rule indicates. These results

reinforce the conclusion that aluminum is a good shield material because it is structurally more

efficient than either lead or cadmium.

Baekwall. The backwall of the integrated wall design serves as the module pressure wall.

Because backwall penetration is the effect we wish to minimize, backwall thickness is one of, if

not the most, important variable in the integrated wall design. Increasing backwall thickness will

always increase the PNP. The module wall may require stiffness augmentation in the form of

structural rings, integral isogrid or waffle grid, and/or integral ribs. In general, this additional
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structure will contribute a small amount toward penetration resistance; however, we neglect the

contribution in calculating overall PNP. To achieve rnaxirn,m PNP, extra structure is better spread

evenly over the backwall surface.

Relatively low internal module pressure (< 15 lb/in 2) means critical crack lengths in the

pressure wall will be long, approximately 50 em (20 in) The presence of a waffle stiffening pattern

will improve resistance to crack growth.

Spacing. The spacing between the shield and backwall allows expansion of projectile and

shield fragments and/or vapor cloud before they impact the backwall; however, the positive effects

of this diminish as the spacing increases.

MLL MLI is included in the module design to thermally isolate the modules from temperature

variations outside. MLI also absorbs fragmented particles from the projectile shield interaction and

hence contributes toward penetration resistance. In all testing, the MLI has been attached to the

backwall. This position seems optimum, as the fragments are dispersed to the maximum extent,

minimizing the chance for overlapping impacts. All MLI used in this study contained 30 layers

with separator netting between each layer and beta cloth on the front surface. No conclusions on

optimum MLI designarepossiblebased on thisdataalone.

Structural Members. Structuralstiffeningmembers and supportsmay be attachedto the

pressure wall'sexteriorsurface. In general,thisstructureshould contributeto pressure wall

penetrationresistance;however, we do not accountforitinthe analysis.These members may also

be damaged by impacts. This damage should be accounted forifthe members are importantin

carryingloadsduringorbitaloperations.

Material Selection. Materialswe reviewed for applicationto integratedwall design are

listedinfigure8.1-2.The materialswere assessedon advantages and disadvantagcsin theiruse

and performance. Considerationsincluded relativeweight, fabricationcost,and demonstrated

resistancetopcnctration.Resin matrixcomposites arcsusceptibleto atomic oxygen (AO) erosion

and willrequiredcvcloprncntof durableprotectivecoatingsbeforeuse inlong-lifespacecraft.In

addition,low thermalconductivityof resincornpositcswillprecludethciruse as thcrrnalradiators.
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Metal matrix composites are less sensitive to AO, but will require further development for

manufacturing feasibility and lower cost. Lithium aluminum, after some preliminary tests, appears

to perform well as a shield but also will require more development. Beryllium and magnesium

may incur high machining costs. Titanium, while relatively stiff and strong, may be too heavy for

module construction.

The aluminum alloys listed at the bottom of figure 8.1-2 are widely used in the aerospace

industry. We used the BUMPER analysis to assess the relatively small differences in performance

as shield materials of these alloys. BUMPER allows us to assess performance across the expected

distribution of impact angles and velocities and to make station-level comparisons with one value,

PNP. Only shield materials were varied. The baseline for comparison was our reference

configuration materials. Performance of all other combinations of materials was compared with

this baseline as shown in figure 8.1-3. This comparison shows the baseline combination of

materials performs marginally better than the other materials, but these differences are within the

limits of BUMPER.

Similar comparisons of backwall materials demonstrated even less material differentiation.

Within the limits of our penetration analysis technique, no aluminum alloy stands out as a superior

backwall material. We therefore concluded that specific material selection for integrated wall

design is determined by factors other than hypervelocity penetration resistance.

Optimum Design. Designs can be optimized (within the discussed limitations) using the

BUMPER analysis code and the design plots described in section 7.11.

8.2 MODULE CONFIGURATION

Dimensions. Dimensions for the reference configuration are shown in figure 1.3-1.

Adjustments to these dimensions will not significantly alter the conclusions reached.
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Shield

Material

7075-T73

6061 -T6

2219-T87

2024-T861

Backwall
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2219-T87
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O%

-0.29%

* Probability of No Penetration

Percent of
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PNP

0

-0.2

-0.4

-0.6

-0.8

2219-T87 2024-T861 6061-T6

Figure 8.1-3. Shield Materials Penetration Resistance Trade Study.
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End Cones/Bulkheads. Most external surfaces are subject to hypervelocity impact from

meteoroids or orbital debris and will require shielding for optimum system PNP. Any subsystems

(e.g., fluid tanks, lines) located against the pressure wall or end cone will serve to protect the wall

in that region. On the other hand, these subsystems may in turn need shielding to achieve their

own required PNP.

Internal Structure. Internal structure or subsystems will be at risk only if the pressure

shell is penetrated. Internal structure arranged close to the pressure wall will absorb damage

during a penetration and will limit injury to crew, but may also hinder pressure wall access.

Therefore, internal structure and subsystems should provide enough clearance to permit repair of

all pressure wall areas.

8.3 MODULE PATTERN

Effect of Mutual Shielding. The ability of Space Station elements to block each other

from the orbital debris flux can be used to advantage when configuring the module pattern. Figure

8.3-1, created by the BUMPER code, shows how one module shields much of the surface area on

another module from a specific debris threat. Only the elements shown are vulnerable to the

indicated threat.

Possible Orientations. Mutual shielding affects the overall station PNP. Three

orientations of the reference configuration module pattern are shown in figure 7.12-1. Each

orientation exposes a different amount of surface area to the debris threat and results in different

PNP by orbital debris. Because debris holds a greater threat to Space Station, the module pattern

orientation chosen should minimize area exposed to the debris threat.

Relative Threat to Module Pattern Regions. The BUMPER code also reveals relative

differences among regions of the module pattern in impact susceptibility. These regions occur

around the module pattern perimeter as shown in figure 8.3-2. The safest areas are on the pattern

interior (areas safe from debris impact) and on Earth facing sides (safe from meteoroid impact.)
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9.0 CONCLUSIONS

This report demonstrates that we have complied with all conwact objectives and requirements

as directed in the contract statement of work. Compliance is shown in figure 9.0-1.

Major Results. Some of our major conclusions follow:

a. Impact incidence angles have def'mite effect on damage (see. 4.1.)

b. Impact incidence angles are expected to range between 0- and 90-deg with the majority

occurring above 45-deg (see. 2.0.)

c. Optimum shield thickness depends on incidence angles. Thick shields arc detrimental at

angles above 65-deg (see. 4.1.)

d. Multilayer insulation (MLI) filters out small projectile and shield fragments approaching the

back'wall from the shield impact, thus InCVenting overlapped craters and reducing baelcwall

damage (see. 4.1.)

e. Multiple variable linear regression can be used to uncover trends in a large test data base.

Results must be used with caution, however, clue to limitations in the range of test variables

available (see. 4.3.)

f. Backwallspallationisaninemasingdangerasveloeityincreases(sec. 4.4.)

g. Kevlar and dSiC/AI materials do not perform as well as aluminum in shielding the backwall

(see. 4.5.)

h. Some double shield configurations perform better than single shields (see. 4.6.)

i. The majority of orbital debris impacts will occur at velocities above the capability of most

light-gas guns (see. 2.0.)

Increases in the debris flux will require test projectiles larger than currently tested.

Uncertainties in the debris environment translate into uncertainties in integrity of design (see.

2.0.)

j.

k.
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Objectives:
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Identify and develop an Integrated Module Wall Design
and a Penetration Control Plan.

Demonstrate Technology Readiness.

Integrated Module Design - Optimum Configurations

Bumper on Standoffs - Section 4.1
Multiple Bumpers on Standoffs - Section 4.6
High Performance MLI Between Bumper and Wall - Section 4.1
Integrated Wall Design - Sections 7.0 & 8.0

Deliverable Items

Test Hardware Documentation - Appendix D
Test Hardware - provided at time of test
Test Requirements - Section 3.0
Test Reports - Section 4.0
Module Wall Design Guide - Sections 7.0 & 8.0

Penetration Control Plan

Design to Inhibit and Resist Penetration - Sections 7.0 & 8.0
Assessing the Effects of Penetration - Sections 3.0, 4.0, & 5.0
Locating and Assessing the Degree of Damage - Section 9.0
Repair Tools and Techniques - Section 6.0

Deliverable Items

Design Requirements for Penetration Control - 7.0 & 8.0
Test Hardware Documentation - Appendix D
Test Hardware - provided at time of test
Test Requirements - Section 3.0
Test Reports - Section 5.0 and Appendices E & I
Repair Procedures - Section 6.0

Figure 9. O-1. Compliance With Contract Objectives and Requirements.
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1. The pressure pulse and light flash occurring upon pressure wall penetration will be harmful to

crew members if they are close to and unobstructed from the impact site. Because

substructure (e.g., racks, cabinets) will intervene, this threat is considered small (see. 5.0.)

m. Rapid pressure loss following a penetration will require immediate crew evacuation of the

effected module. A hole large enough to cause rapid pressure loss (of 1-in diameter and

larger) has lower probability than incipient penetration upon which the PNP calculation is

based (see. 5.0.)

n. We have developed and demonstrated two viable repair techniques and associated procedures.

We have also developed or identified required tools (see. 6.0.)

o. We have developed an analysis technique to assess integrated wall designs and Space Station

PNP. The analysis can also identify areas of the Space Station highly vulnerable to debris or

meteoroid impact (see. 7.0.)

p. The BUMPER code developed under this contract allows designers to optimize shield,

backwall, insulation, and spacing for a given Space Station, orbit, orientation, and

configuration (see. 7.0.)

Areas for Further Study and Testing. These are areas in which we believe further

testing and study are required.

a. Multiple Shields and MLI. The effectiveness of double shields and MLI has been

demonstrated. Additional testing and analysis is required to quantify effectiveness as a

function of thickness and standoff for multiple shields, and as a function of number of layers

and standoff for MLI. Quantification is important so designs can be optimized and overall

station safety assessed.

b. High Incidence Angle Impacts. Most impact data available use a 0-deg incidence angle;

however, most Space Station impacts are expected to occur at angles above 45-deg, where the

mechanics of multiplate impact appear to be different. The majority of future testing should

use incidence angles at 45-deg and above.
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High Velocity Impacts. Alternative experimental techniques or additional theoretical methods

must be developed to increase confidence in impact mechanics above 8 km/s.
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Appendix A - Test Data Summary

The following tables contain key test data describing the hypervelocity impact testing

performed for this contract. All testing was performed at the Marshall Space Flight Center

hyperveloeity test facility. Test program details are described in section 3.0, and results are

analyzed in sections 4.0 and 5.0.
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Explalnation of Column Heading

Test Number

Shield Material

Shield T1 (in)

Standoff (in)

MLI ?

Back Wall Marl

Baekwall T2 (in)

Witness. Material

Spacing Wit. (in)

Thick Wit. (in)

Proj. Marl.

Proj. Dia. (in)

Impact Angle (deg) -

- Number assigned in test matrix.

- Material of shield.

- Thickness of shield in inches.

Standoff between shield and backwall in inches.

Was 30 layers of multilayer insulation included

between shield and backwall

Material of backwall (pressure wall).

Thickness of backwall in inches.

Material of witness plates.

Spacing between witness sheets.
- Thickness of witness sheets in inches.

- Material of projectile.

- Projectile diameter in inches. Cylinderical

projectiles have L/D ratio of 1 to I.

Angle of impact in degrees with respect to

shield.

Impact Vel. (km/see) - Velocity of projectile at shield impact in

kilometers/second.

Wall Pen.? - Was the backwall penetrated, YES or NO.

Wall Spalled? - Was the backwall spalled but not penetrated,

YES, NO, or not applicable (N/A).

Crater Depth Backwall - Depth of deepest crater in backwall in inches.

Equal to Back Wall T2 (in) if plate is penetrated.

Mat. Rem. Nor. (in) Thickness of remaining backwall material in inches

for normal impact component.

Mat. Rem. Flt. (in) Thickness of remaining backwall material in inches

for flight path component.

Witness Sheets Penetrated - Number of witness sheets penetrated after

backwall penetration.
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Test Shield Shield

Number Material TI (in)

201A 6061-T6 0.040

201B 6061-T6 0.040

201C 6061-T6 0.040

201D 6061-T6 0.040

202A 6061-T6 0.040

202B 6061-T6 0.040

202C 6061-T6 0.040

202D 6061-T6 0.040

202E 6061-T6 0.040

202F 6061-T6 0.040

Standoff

(in)

D180-30550-1

IMPACT TESTING DATA BASE

Specimen Configuration and Material

MLI? Back Wall Back Wall Witness Spacing Thickness

Matl. T2 (in) Material Wit. (in) Wit. (in)

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4 00

4 00

4 00

4 00

4 00

4 00

203A 6061-T6 0.040 4.00

203B 6061-T6 0.040 4.00

203C 6061-T6 0.040 4.00

203D 6061-T6 0.040 4.00

203E 6061-T6 0.040 4.00

203F 6061-T6 0.040 4.00

203G 6061-T6 0.040 4.00

204A 6061-T6 0.040 4.00

204B 6061-T6 0.040 4.00

204C 6061-T6 0.040 4.00

204D 6061-T6 0.040 4.00

205A 6061-T6 0.063 4.00

205B 6061-T6 0.063 4.00

205C 6061-T6 0.063 4.00

205D 6061-T6 0.063 4.00

205E 6061-T6 0.063 4.00

206A 6061-T6 0.063 4.00

206B 6061-T6 0.063 4.00

206C 6061-T6 0.063 4.00

206D 6061-T6 0.063 4.00

206E 6061-T6 0.063 4.00

206F 6061-T6 0.063 4.00

207A 6061-T6 0.063 4.00

207B 6061-T6 0.063 4.00

207C 6061-T6 0.063 4.00

4.00

4. O0

4/00

4.00

4.00

208A 6061-T6 0.063

208B 6061-T6 0.063

208C 6061-T6 0.063

208D 6061-T6 0.063

208E 6061-T6 0.063

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

YES 2219-T87 0.125 2024-T3

I 000

I 000

I 000

i 000

I 000

I 000

1.000

1.000

1.000

1.000

_i.000

1.000

1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

NO 2219-T87 0.125 2024-T3

1.000

1.000

1.000

1.000

1.000

1.000

YES 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

YES 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

NO 2219-T87 0.125 2024-T3 1.000

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.O2O

0.020

0.020

0.020

0.020

0.020

0.020

0.020
0.020

0.020

0.020
0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020
0.020

0.020

0.020

0.020

0.020

0.020

0.020
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Test Shield Shield

Number Material TI (in)

209A 6061-T6 0.063

209B 6061-T6 0.063

209D 6061-T6 0.063

210B 6061-T6 0.063

210D 6061-T6 0.063

211B 6061-T6 0.063

211D 6061-T6 0.063

212B 6061-T6 0.063

213A 6061-T6 0.080

213B 6061-T6 0.080

214A 6061-T6 0.040

214B 6061-T6 0.040

214C 6061-T6 0.040

214D 6061-T6 0.040

215A 6061-T6 0.040

215B 6061-T6 0.040

215C 6061-T6 0.040

215D 6061-T6 0.040

216A 6061-T6 0.080

216B 6061-T6 0.080

216C 6061-T6 0.080

217A 6061-T6 0.040

217B 6061-T6 0.040

218A 6061-T6 0.040

218B 6061-T6 0.040

218C 6061-T6 0.040

2214 6061-T6 0.040

221B 6061-T6 0.040

221C 6061-T6 0.040

221D 6061-T6 0.040

D180-30550-1

IMPACT TESTING DATA BASE

Secimen Configuration and Material

Standoff MLI? Back Wall Back Wall Witness Spacing

(in) Marl. T2 (in) Material Wit. (in)

Thickness

Wit. (in)

4.00 YES 2219-T87 0.125 2024-T3 1.000 0.020

4.00 YES 2219-T87 0.125 2024-T3 1.000 0.020

4.00 YES 2219-T87 0.125 2024-T3 1.000 0.020

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 NO 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

8.00 YES 2219-T87 0.188 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020
0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020
0.020

0.020
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Test

Number
Shield Shield

Material TI (in)

222A 6061-T6 0.040

222B 6061-T6 0.040

222C 6061-T6 0.040

226A 6061-T6 0.032

226B 6061-T6 0.032

226C 6061-T6 0.032

227A 6061-T6 0.032

227B 6061-T6 0.032

228A

228B

228C

228D

229A

229B

229C

230A

230B

230C

230D

230E

231A

231B

231C

231D

6061-T6 0.032

6061-T6 0.032

6061-T6 0.032

6061-T6 0.032

6061-T6 0.080

6061-T6 0.080

6061-T6 0.080

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

6061-T6 0.063

D180-30550-1

IMPACT TESTING DATA BASE

Specimen Configuration and Material

Standoff MLI? Back Wall Back Wall Witness Spacing

(in) Marl. T2 (in) Material Wit. (in)

4.00 NO 2219-T87 0.125 2024-T3 1.000

4.00 NO 2219-T87 0.125 2024-T3 1.000

4.00 NO 2219-T87 0.125 2024-T3 1.000

6.00 YES 2219-T87 0.i00 2024-T3 1.000

6.00 YES 2219-T87 0.I00 2024-T3 1.000

6.00 YES 2219-T87 0.i00 2024-T3 1.000

6.00 YES 2219-T87 0.063 2024-T3 1.000

6.00 YES 2219-T87 0.063 2024-T3 1.000

6.00 NO 2219-T87 0.063 2024-T3 1.000

6.00 NO 2219-T87 0.063 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

4.00 NO 2219-T87 0.188 2024-T3 1.000

4.00 YES 2219-T87 0.188 2024-T3 1.000

4.00 YES 2219-T87 0.188 2024-T3 1.000

4.00 YES 2219-T87 0.188 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 YES 2219-T87 0.125 2024-T3 1.000

4.00 NO 2219-T87 0.125 2024-T3 1.000

4.00 NO 2219-T87 0.125 2024-T3 1.000

4.00 NO 2219-T87 0.125 2024-T3 1.000

4.000 NO 2219-T87 0.125 2024-T3 1.000

4.000 NO 2219-T87 0.125 2024-T3 1.000

4.000 NO 2219-T87 0.125 2024-T3 1.000

4.000 NO 2219-T87 0.125 2024-T3 1.000

Thickness

Wit. (in)

0.020

0.020
0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020

0.020
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Test Proj. Proj. Dla.

Number Marl. (in)

201A II00-AL 0.250

201B II00-AL 0.250

201C II00-AL 0.250

201D II00-AL 0.250

202A II00-AL 0.187

202B II00-AL 0.187

202C II00-AL 0.187

202D 1100-AL 0.187

202E 1100-AL 0.187

202F II00-AL 0.187

203A II00-AL 0.300

203B II00-AL 0.300

203C II00-AL 0.300

203D II00-AL 0.300

203E 1100-AL 0.300

203F 1100-AL 0.350

203G 1100-AL 0.350

204A II00-AL 0.250

204B II00-AL 0.250

204C II00-AL 0.250

204D II00-AL 0.250

205A II00-AL 0.250

205B II00-AL 0.250

205C II00-AL 0.250

205D II00-AL 0.250

205E II00-AL 0.250

206A II00-AL 0.187

206B II00-AL 0.187

206C II00-AL 0.187

206D II00-AL 0.187

206E II00-AL 0.187

206F II00-AL 0.187

207A II00-AL 0.300

207B II00-AL 0.300

207C II00-AL 0.300

208A II00-AL 0.250

208B II00-AL 0.250

208C II00-AL 0.250

208D II00-AL 0.250

208E II00-AL 0.250

D180-30550-1

IMPACT TESTING DATA BASE

Test Parameters and Results

Impact Impact Vel. Wall Wall Crater Depth

Angle (deg) (km/sec) Pen. ? Spalled? T2 (in)
45.00 4.330 YES NA 0.125

45.00 5.510 YES NA 0.025

45.00 7.210 YES NA 0.125

45.00 7.690 YES NA 0.006

45.00 3.530 YES NA 0.125

45.00 4.300 YES NA 0.125

45.00 5.260 YES NA 0.006

45.00 6.500 YES NA 0.125

45.00 7.190 YES NA 0.125

45.00 7.510 YES NA 0.125

65.00 6.450 NO NO 0.042

65.00 3.670 NO NO 0.049

65.00 2.720 NO NO 0.020

65.00 5.590 NO NO 0.037

65.00 6.750 NO NO 0.064

65.00 3.040 NO NO 0.090

65.00 4.700 YES NA 0.125

65.00 4.810 YES NA 0.125

65.00 5.870 NO NO 0.102

65.00 4.300 NO NO 0.052

65.00 3.180 NO NO 0.055

45.00 4.200 YES NA 0.125

45.00 4.620 YES NA 0.125

45.00 5.300 YES NA 0.125

45.00 6.420 NO NO 0.057

45.00 3.150 YES NA 0.125

45.00 4.780 YES NA 0.125

45.00 5.090 NO NO 0.120

45.00 5.400 NO NO 0.080

45.00 3.690 NO NO 0.090

45.00 3.240 NO NO 0.080

45.00 6.240 NO NO 0.070

65.00 5.860 YES NA 0.125

65.00 6.470 YES NA 0.125

65.00 7.080 NO NO 0.049

65.00 5.040 NO NO 0.058

65.00 4.380 YES NA 0.125

65.00 3.420 NO NO 0.120

65.00 5.630 YES NA 0.125

65.00 6.480 YES NA 0.125
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Test Proj. Proj. Dia.

Number Marl. (in)

209A II00-AL 0.250

209B II00-AL 0.250

209D II00-AL 0.250

210B II00-AL 0.350

210D II00-AL 0.350

211B II00-AL 0.350

211D II00-AL 0.350

212B II00-AL 0.300

213A IIO0-AL 0.313

213B II00-AL 0.313

214A II00-AL 0.250

214B II00-AL 0.250

214C II00-AL 0.250

214D II00-AL 0.250

215A II00-AL 0.350

215B II00-AL 0.350

215C II00-AL 0.350

215D 1100-AL 0.350

216A II00-AL 0.350

216B II00-AL 0.350

216C II00-AL 0.313

217A II00-AL 0.313

217B II00-AL 0.313

218A II00-AL 0.350

218B II00-AL 0.350

218C II00-AL 0.350

221A II00-AL 0.187

221B II00-AL 0.187

221C II00-AL 0.187

221D II00-AL 0.187

D180-30550-1

IMPACT TESTING DATA BASE

Test Parameters and Results

Impact Impact Vel. Wall

Angle (deg) (km/sec) Pen. ?

65.00 4.370 NO

65.00 6.400 NO

65.00 7.400 NO

65.00 5.670 YES

65.00 7.050 YES

Wall Crater Depth

Spalled? T2 (in)

NO 0.061

NO 0.068

NO 0.067

NA 0.125

NA 0.125

45.00 5.880 YES NA 0.125

45.00 6.840 YES NA 0.125

45.00 6.380 YES

0.00 4.910 YES

0.00 5.900 YES

0.00 5.650 NO

15.00 5.010 YES

0.00 4.830 YES

0.00 4.850 YES

0.00 4.660 YES

0.00 5.480 YES

0.00 6.310 NO

0.00 6.160 YES

45.00 6.100 YES

45.00 6.570 YES

45.00 6.960 YES

45.00 6.650 YES

45.00 7.100 YES

45.00 5.820 YES

45.00 6.400 YES

45.00 6.880 YES

NA 0.031

NA 0.188

NA 0.188

YES 0.105

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NO 0.084

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NA 0.188

NA 0.188

45.00 6.670 NO NO 0.056

45.00 5.970 NO NO 0.041

45.00 4.620 NO NO 0.054

45.00 4.140 NO NO 0.055
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Test Proj. Proj. Dia.

Number Matl. (in)

222A II00-AL 0.125

222B II00-AL 0.125

222C II00-AL 0.125

226A II00-AL 0.250

226B II00-AL 0.250

226C II00-AL 0.250

227A II00-AL 0.250

227B IIO0-AL 0.250

228A IIO0-AL 0.313

228B IIO0-AL 0.313

228C IIO0-AL 0.250

228D 1100-AL 0.250

229A II00-AL 0.313

229B II00-AL 0.313

229C II00-AL 0.313

230A II00-AL 0.187

230B II00-AL 0.187

230C II00-AL 0.250

230D II00-AL 0.250

230E II00-AL 0.250

231A II00-AL 0.187

231A II00-AL 0.187

231A II00-AL 0.313

231A II00-AL 0.313

D180-30550-1

IMPACT TESTING DATA BASE

Test Parameters and Results

Impact Impact Vel. Wall

Angle (deg) (km/sec) Pen. ?

Wall Crater Depth

Spalled? T2 (in)

45.00 5.600 NO NO 0.052

45.00 5.030 NO NO 0.053

45.00 3.330 NO NO 0.046

45.00 4.480 YES NA 0.i00

45.00 5.490 YES NA 0.I00

45.00 6.800 YES NA 0.i00

45.00 5.640 YES NA 0.063

45.00 7.250 YES NA 0.063

0.00 6.050 YES NA 0.063

0.00 6.750 YES NA 0.063

0.00 6.980 YES NA 0.188

0.00 6.650 YES NA 0.188

0.00 5.300 NO NO 0.090

0.00 3.070 YES NA 0.188

0.00 3.560 YES NA 0.188

45.00 4.410 NO NO 0.047

45.00 3.240 NO NO 0.032

45.00 5.160 YES NA 0.125

45.00 5.590 YES NA 0.125

45.00 6.620 YES NA 0.125

65.000 3.380 NO

65.000 2.490 NO

65.000 6.590 YES

65.000 7.260 YES

NO

NO

N/A

N/A
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Test

Number

201A

201B

201C

201D

202A

202B

202C

202D

202E

202F

203A

203B

203C

203D

203E

203F

203G

204A

204B

204C

204D

205A

205B

205C

205D

205E

206A

206B

206C

206D

206E

206F

207A

207B

207C

208A

208B

208C

208D

208E

Mat.Rem.

Nor.(in)

0.096

0.i00

0.000

0.119

0.072

0.066

0.094

0.098

0.086

0 076

0 105

0 088

0 061

0 081

0 078

0.064

0.023

0.073
0.070

0.079

0.079

0.080

0.099

0.081

0.055

0.058

0.000

0.076

0.067

0.000

0.000

Mat.Rem.

Flt.(in)
0.000

0.125

0.000

0.125

0.000

0.000

0.000

0.000

0.083

0.085

0.115

0.092

0.070

0.035

0.000

0.000

0.064
0.075

0.I01

0.000

0.000

0.000

0.068

0.000

0.064

0.000
0.082

0.078

0.075

0.078

0.051

D180-30550-1

IMPACT TESTING DATA BASE

Test Parameters and Results

Witness Sheets

Penetrated

2.50

4.00

0.25

2.75

0 00

1 50

2 50

2 00

0 00

0 75

0.00

0.00

0.00

0.00

0.00

0.00

0.25

1. O0
0.00

O. O0

O. O0

0.25

0.50

1.25

0.00

2.00

I.00

0.00

0.00

0.00

0.00

0.00

0.25

0.I0

0.00

0.00

0.50

0.00

0.00

1.00
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Test Mat.Rem. Mat.Rem.

Number Nor.(in) Flt.(in)

D180-30550-1

IMPACT TESTING DATA BASE

Test Parameters and Results

Witness Sheets

Penetrated

209A 0.064 0.ii0 0.00

209B 0.057 0.125 0.00

209D 0.058 0.104 0.00

210B 0.000 0.074 0.25

210D 0.000 0.125 0.50

211B 0.108

211D

212B 0.094

213A 0.000

213B 0.000

214A 0.083

214B 0.000

214C

214D

215A

215B

215C 0.104

215D 0.000

216A 0.090

216B 0.092

216C 0.102

217A 0.127

217B 0.125

0. 000

0.125

0.000

0.000

0.083

0.000

0.104

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.069

0.084

0.071

0.070

218A 0.125

218B 0.125

218C 0.125

221A 0.105

221B 0.125

221C 0.094

221D 0.108

4.00

4.00

2.75

3.25

0.25

0.00

1.00

0.00

0.25

3.25

1.25

0.00

1.00

5.00

5.00

1.80

4.00

4.00

4.00

4.00

4.00

0.00

0.00

0.00

0.00
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Test Mat.Rem.

Number Nor.(in)

D180-30550-1

IMPACT TESTING DATA BASE

Test Parameters and Results

Mat.Rem. Witness Sheets

Flt.(in) Penetrated

222A 0.083 0.073 0.00

222B 0.072 0.083 0.00

222C 0.107 0.079 0.00

226A

226B

226C

227A

227B

4.50

4.25

2.00

3.25

2.00

228A 4.50

228B 4.50

228C 0.000 0.000 2.00

228D 0.000 0.000 1.00

229A

229B

229C

O. Ii_

0.116

0.049

0.000

0.000

230A

230B

230C

230D

230E

0.00

2.25

0.25

.0.'078 :;_ ..... 0_00

0.093 0.00

0.000 3.00

0.000 2.50

0.000 1.50

0.000

0.000

0.250

0.250
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D180-30550-1

Appendix B - Test Report - Neutral Buoyancy
Simulation of Pressure Wall Repair

The following report contains observations on simulated repair procedures performed in the

Marshall Space Flight Center neutral buoyancy simulation facility. These repair simulations were

based on the procedures described in section 6.0.
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D180-30550-1
OBSERVER'S REPORT - NEUTRAL BUOYANCY REPAIR TEST

MARSHALL SPACE FLIGHT CENTER 3/27/86

This test demonstrated the tasks required for astronauts to per-

form a non structural repair inside a space station module while

wearing pressure suits. The repair consisted of applying a patch

on the internal module surface to restore the module's pressure
containment ability. The test was performed in the MSFC Neutral

Buoyancy Simulator (NBS) with tools and simulated space station

module structure provided by Boeing and fabricated by Essex under
a subcontract. Simulation astronauts were Brand Griffin and

Gerald Cart. The primary tasks were I) removing intervening

subsystem racks, 2) preparing the wall surface, and 3) applying
the patch. Two repairs were demonstrated, one for round hole and

damage, and another for a gash.

Subsystem RackRemoval

To gain access to the pressure wall, the astronauts had to dis-

connect and remove racks representing subsystems, storage, or

experimental equipment. The astronauts reported that there was no

particular problem completing this task. However, in the pressure
suits it was necessary to remove at least two 21 inch wide racks

to gain useful access to the wall.

Restraining the Astronauts

Some sort of restraint is required whenever the astronauts need to

apply a force. Proper restraint is important for efficient and

accurate work and to reduce fatigue. Two methods of restraint
were demonstrated: foot restraints and hand holds.

Foot restraints in general provide better restraint than hand

holds, however they can be difficult to adjust and can restrict

motion. One-foot and two-foot restraints were tried. In general,
two-foot restraints provide more security and were preferred by

the astronauts over one-foot restraints. However, Griffin
surmised that with training and experience the one-foot restraint

would be useful in circumstances where extra mobility is required.

In Carr's opinion, with adequate hand holds the repair tasks could

be performed without foot restraints. This implies the need for
hand holds at frequent intervals on the pressure wall (behind the

racks.) During one test run, a tool caddy was attached to a hand
hold which decreased the hand hold length available to the
astronauts.

Repair Tools

Cleaning / Abrading Tool - The NBS version of this tool requires

improvement for effective use. The angles on the work surfaces
were too shallow to allow complete contact with the wall surface

or to allow application of sufficient pressure during manual
abrading. Carr suggested a rounded tool surface (such as a half

cylinder shape) would be easier to use. Alternatively, an

adjustable angle would also permit more flexibility.
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In general, abrading has been judged by the simulator astronauts

to be a potentially tiring activity. Carr recommended that a hand
held power tool be developed to do this job. This could be an

attachment for the STS hand held rotary power tool.

Alignment Template - Several problems appeared during use of the

template. The self rewinding tether connecting the template to
the tool caddy tended to inadvertently pull the template off the
wall after it was attached. Attachment was with velcro to

simulate adhesive. The template was designed for application on

two patch sizes, and this introduced extra complexity. In one

instance Griffin seemed to be confused by the template, and began

applying marks in locations inappropriate for the patch being

applied until reminded by the test director. In previous tests,
the JSC astronauts did not like the template at all, and preferred
to eyeball the mark locations or merely use a hand spread over the

hole as the template.

Patch Handle - The patch handle designed for the NBS test could be
adjusted to various angles with the patch, however it could not be

adequately attached to the patch. Apparently the velcro surface

area was not large enough, though high strength velcro was used.

The water viscosity probably contributed to the problem. Griffin
and Cart suggested using a patch handle that would not be removed

after patch application, or could be cut from the patch if

necessary.

The Patch - Two patches were used: a 7 inch diameter disk to

cover damage with a round pattern, and an oblong patch to cover

gashes. Both were fabricated from aluminum foil (approximately 6
mils thick) and used velcro rather than adhesive as the attachment

method. No adhesive could be identified permitting under water
application. The lack of adhesive meant that the burnishing

action could only be simulated, and the astronaut could not

perceive the effectiveness of the burnishing tool or the
burnishing activity.

Burnisher - In this test the forward edge of the abrading /

cleaning tool was used as the burnisher. This approach seemed
adequate for the simulated patch using velcro in place of an

adhesive. However, dry demonstrations of this patch application

indicated that the burnishing pressure needed to ensure good
adhesion required two hands. Two handed operation can only be

done in a foot restraint. A more effective procedure to
burnishing may be to use a roller or brayer.

Hammer - The hammer was apparently a good general repair tool with
several potential applications. It was intended to beat down the

sharp edges around the penetration before applying the patch.

Although the test occurred on simulated damage, all the astronauts
concluded that this concept was sound. Other uses for a hammer of

the design used here are: i) as a probe to feel the texture,
sharp points, and edges of the damage near the hole, 2) as a

burnisher; the curvature of the head might be just the design

needed, 3) as a patch handle by attaching a velcro section to the
end of the hammer handle.
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Astronaut positioning at the repair site is a more significant

problem than defining the repair procedure. Most of the test time
was spent removing racks and securing the astronauts in a workable

position.

Another problem is tool handling. This may have been aggravated

by the negative buoyancy of most tools. Attachment clips on
tethers between the tools and the tool caddies cannot be removed

by the suited astronauts. This should be kept in mind when

planning work activity and time lines.

Griffin did not like dealing with the trash bag. Trouble may be

caused by the water viscosity and because the bag was a sim-
ulation, not the actual item. However, he suggested that we not
use a trash bag, but leave a small adhesive section on all release

plies so they can be attached to a convenient surface. Final
clean up would occur in shirt sleeves after repressurization.

Experience seems to be an important factor in working efficiency.

In the opinion of some test personnel, experienced JSC astronauts
could complete tasks in half the time of inexperienced test

subjects. Cart said he had to relearn neutral buoyancy skills,

and found himself "torquing" in incorrect directions.

Cart also suggested that designers tour the skylab mockup at MSFC

to gain insight into design for weightless activity.

Martin Gibbins

eutral Buoyancy Test 8-4
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Appendix C - Data Base for Linear Regression

In addition to the test data collected under this contract, four other sources of test data were

used to develop the linear regression penetration function described in section 4.0. These

additional sources included other testing performed at MSFC (for the SM-1 advanced development

program, and for Martin Marietta Aerospace), and programs conducted at Boeing laboratories on

previous study programs (ref. 3-1 and 3-2.)
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Explainatlon of Column Heading

Source of Data ADP SMI - Reference 3-3.

BOEING - Boeing IR&D performed at NASA/MSFC.

Bristow - Reference 3-2.

BURCH - Reference 3-1.

IWALL - Testing performed under this contract.

MARTIN - Martin Marietta IR&D performed at MSFC.

Test Number

Shield Material

Shield T1 (in)

Standoff (in)

MLI ?

Back Wall Marl

Backwall T2 (in)

Proj. Marl.

Proj. Dia. (in)

Impact Angle (deg)

Impact Vel. (km/s)

Wall Pen.?

Wall Spalled?

Number assigned in test matrix.

Material of shield.

Thickness of shield in inches.

Standoff between shield and backwall in inches.

Was 30 layers of multilayer insulation included

between shield and backwall

Material of backwall (pressure Wall).

Thickness of backwall in inches.

Material of projectile.

Projectile diameter in inches. Cylinderical

Angle of impact in degrees with respect to

shield.

Velocity of projectile at shield impact in

kilometers/second.

Was the backwall penetrated, YES or NO.

Was the backwall spalled but not penetrated,

YES, NO, or not applicable (N/A).

Spacing Wit. (in) -

Thick Wit. (in)

Mat. Rem. Nor. (in) -

Mat. Rem. Flt. (in) -

Nn (normal)

Nf (flight)

N' (largest)
MLI

Crater Depth Backwall - Depth of deepest crater in backwall in inches.

Equal to Back Wall T2 (in) if plate is penetrated.

Witness. Material - Material of witness plates.

Spacing between witness sheets.

Thickness of witness sheets in inches.

projectiles have L/D ratio of 1 to i.

Thickness of remaining backwall material in inches

for normal impact component.

Thickness of remaining backwall material in inches

for flight path component.

Number of witness sheets penetrated by normal

component after backwall penetration.

Number of witness sheets penetrated by flight

path component after backwall penetration.

Largest of Nn or Nf. To be used in regression.

1.0 if specimen has MLI, otherwise 0.0.

N(ang)

TI^I/3

T2

Log(S)/O

MLI*TI

Dia^i/3

Number of equivalent backwalls penetrated, see

Sec. 2.0. Dependent variable in regression.

Shield thickness, inches, raised to (1/3) power.

- Backwall thickness, inches.

- Log (base i0) of spacing in inches divided by

projectile diameter in inches.

- biLl (i.0 or 0.0) times shield thickness.

- Projectile diameter raised to (1/3) power.
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V.Cos^2

Tan

N'

Residual

Velocity (km/sec) times square of Cosine of

impact angle.

- Tangent of impact angle.

- Number of calculated equivalent backwall plates

penetrated, using regression coefficients.

- Difference between N(ang) and N'.
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Sourceo_
Data

ADP SMI
ADP SMI
ADP SMl
ADP SMI
ADP SMI
ADP SMI
ADP SMI
ADP SMl
ADPSMI
ADP 5MI
ADP SMI
ADP SMI
ADPSM1
ADPSM1
ADPSMI
ADP SMI
ADP SMI
ADPSMI
AMP SMI
ADP 8MI
AOP SMI
ADPSMI
ADP SMl
AMP SMI
ADP$R1
ADP SMI
ADP SMI
ADP SMI
AOP SMI
ADP SMI
ADP GMI
ADP GMI
ADPSMI
AOP SMI
AOP SMI
ADP SMI
ADP SMI
AOP SMI
ADP Snl
ADP SMI
ADP SMI
ADP SMI
ADPSMI
ADP SMI
ADP GMI
AOP SMi
ADP SMI
ADP SMI
AOP SMI
ADP SMI
ADP SMI
ADP SMi
AOP SMI
AOP SMI
ADP SMI
ADP SMI
ADP SMI
ADP SMi
ADP SMI
ADP SMI
ADP SMI
ADP SMI
BOEING
BOEING
BOEING
BOEING

Test
Number

12C
120
13
138
13C
139
13E
14B
14C
140
14E
14F
15
15B
15C
16
16A
16B
16C
16E
16G
16H
16J
16k
16L
16M
16N
16P
17
20C
20F
20H
21
21B
21C
210
24C
24F
246
25
25A
25B
25C
25D
27
27A
27B
27C
270
27E
27F
28
33
338
33BI
33C
34C
34CI
34C2
35
358
35C
O0]A
001B
O02A
0028

Shield
Material

_061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-]6
6061-T6
6061-T6
606!-T6
6061-T6
6061-T6
6061-T6
6061-T6

Shield
TI (in)

0,063
0,063
0,063
0,063
0,063
0.063
0,063
0,063
0,063
0,063
0,063
0,063
0.063
0,063
0.063
0.063
0.063
0,063
0,063
0,063
0,063
0.063
0.063
0,063
0,063
0,063
0,063
0.063
0.063
0,063
0,063
0,063
0,063
0,063
0,063
0,063
0.063
0.063
0,063
0,063
0.063
0.063
0,063
0,063
0,063
0,063
0,063
0,063
0,063
0,063
0.063
0,063
0.040
0.040
0.040
0,040
0.040
0.040
0.063
0.063
0.063
0.080
0.080
0.0B0
0.063
0.063

D180-3_550-1
IMPACTTESTINGREGRESSIONDATA BASE
SpecimenConfigurationand Material

Standoff MLI? Back Wall Back Wall Proj. Proj.Dia.
(in) MaLl. T2 (in) MaLl.. (in)

4,00
4.00
6,00
6,00
6,00
6,00
6,00
6,00
6,00
6,00
6,00
6,00
6.00
6.00
6,00
6,00
6.00
6.00
6.00
6.00
6,00
6.00
6.00
6.00
6.00
6,00
6,00
6.00
4.00
6.00
6.00
6,00
4.00
4.00
4.00
4.00
6.00
6.00
6.00
6,00
6.00
6,00
6.00
6,00
4.00
4.00
4.00
4,00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4,00
4.00
4.00
4.00
6.00
6.00
6.00
4.00
4.00
4.00
4.00

YES 2219-T87 0.125 IIO0-AL 0.250
YES 2219-T87 0.125 IIO0-AL 0.250
NO 2219-T87 0.125 IIO0-AL 0.250
NO 221g-T87 0.125 IIO0-AL 0.250
NO 2219-T87 0.125 IIO0-AL 0.250
YES 2219-TB7 0.125 IlO0-AL 0.250
YES 2219-T87 0.125 IIO0-AL 0.250
NO 2219-T87 0.125 IIO0-AI 0.187
YES 2219-TB7 0.125 IIO0-AI 0.187
NO 2219-T87 0.125 IIO0-AL 0.187
YES 2219-T87 0.125 IIO0-AL 0.1B8
YES 2219-T87 0.125 IIO0-AL O.IBB
NO 2219-T87 0.125 IIO0-AI 0.125
YES 2219-T87 0.125 IIO0-AL 0.125
NO 2219-T87 0.125 IIO0-AI 0.125
NO 2219-T87 0.125 6061-T6 0.300
NO 2219-T87 0.125 6061-T6 0.300
NO 2219-T87 0.125 6061-T6 0.300
NO 2219-TB7 0.125 6061-T6 0.300
NO 2219-T87 0.125 6061-T6 0.300
NO 2219-TB7 0.125 6061-T6 0,300
YES 2219-T87 0.125 6061-T6 0.300
YES 2219-T87 0.125 6061-T6 0,300
YES 2219-TB7 0.125 6061-T6 0.300
YES 2219-TB7 0.125 6061-T6 0.300
YES 2219-T87 0.125 6061-T6 0.300
YES 2219-T87 0,125 6061-T6 0,300
YES 2219-T87 0.125 6061-T6 0.300
NO 2219-TB7 0.125 6061-T6 0.300
NO 2219-T87 0.125 IIO0-AL 0.300
YES 2219-T87 0.125 IIO0-AL 0.300
YES 2219-T87 0.125 IIO0-AL 0.300
NO 2219-T87 0.125 IIO0-AL 0.300
YES 2219-T87 0.125 IIO0-AL 0.300
YES 2219-T87 0.125 IIO0-AL 0.300
YES 2219-T87 0.125 IIO0-AL 0.300
NO 2219-T87 0.125 6061-T6 0.250
NO 2219-T87 0.125 6061-T6 0.250
YEs 2219-T87 0.125 6061-T6 0.250
NO 2219-T87 0.125 6061-T6 0.187
NO 2219-TB7 0.125 6061-T6 0.IB7
NO 2219-T87 0.125 6061-T6 0.187
NO 2219-T87 0.125 6061-T6 0.187
YES 2219-T87 0.125 6061-T6 0.187
NO 2219-TB7 0.125 IIO0-AL 0.187
NO 2219-TB7 0.125 IIO0-AL 0.187
NO 2219-T87 0.125 IIO0-AL 0.IB7
YES 2219-T87 0.125 IIO0-AL 0.187
YES 2219-T87 0.125 IIO0-AL 0.187
YES 2219-T87 0.125 IIO0-AL 0.187
YES 2219-T87 0.125 IIO0-AL 0.187
NO 2219-TB7 0.125 IIO0-AL 0.125
NO 2219-T87 0.125 IIO0-AL 0.250
NO 2219-T87 0.125 IIO0-AL 0.250
NO 2219-TB7 0.125 IIO0-AL 0.250
NO 2219-T87 0.125 IIO0-AL 0.250
YES 2219-TB7 0.I00 IIO0-AL 0,250
YES 2219-T87 0.I00 IIO0-AL 0.250
YES 2219-TB7 0.I00 IIO0-AL 0.250
NO 2219-T87 0.125 IIO0-AL 0.350
YES 2219-T87 0.125 IIO0-AL 0.350
YES 2219-T87 0.125 IIO0-AL 0.350
NO 2,,-TB7 0.125 IIO0-AL 0.313
YES 2219-T87 0.125 IIO0-AL 0.313
NO 2219-TB7 0.125 1100-AL 0.313
YES 2219-T87 0.125 IIO0-AL 0.313

Impact impactVel.
Angle (deg) (km/sec)

0.00 4.330
0.00 3.960
0.00 4.770
0.00 6.150
0.00 5.790
0.00 5.980
0.00 3.940
0.00 3.710
0.00 3.740
0.00 3,26O
0.00 2.770
0.00 2.950
0.00 2.B50
0.00 2.110
0.00 3.010
0.00 5.140
0.00 6.040
0.00 6.330
0.00 6.630
0.00 6.7B0
0.00 7.180
0.00 7.130
0.00 6.930
0,00 6,730
0.00 4.820
0.00 3.370
0.00 3.760
0.00 4.230
0.00 7.013
0.00 5.630
0.00 4.960
0.00 4.680
0.00 6.63O
0.00 6.890
0.00 6.600
0.00 5.850
0.00 5.800
0.00 5.880
0.00 4.310
0.00 3.710
0.00 3.27O
0.00 2,250
0.00 2.590
0.00 1.620
0.00 4.530
0.00 3.870
0.00 4.150
0.00 3.680
0.00 3,080
0,00 2.830
0.00 2.540
0.00 3.000
0.00 7.210
0.00 4.850
0.00 5.260
0.00 5.530
0.00 5.490
0.00 4.410
0.00 5.170
0.00 6.690
0.00 6.300
0.00 5.720
45.00 6.640
45.00 6.560
45.00 6.550
45.00 b.510
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Sourceof
Oata

Bristo#
BristoN
BristoN
BristoN
8risto.
Bristo.
Bristow
Bristo.
Bristo.
Bristo.
Bristo.
Bristo.
8ristow
Bristo.
Bristow
Bristow
BURCH
8URCH
BURCH
BURCH
BURCH
BURCH
8URCH
8URCH
BURCH
BURCH
BURCH
BURCH
BURCH
8URCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
8URCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BURCH
BUSH
BUSH
8URCH
BURCH

Test
Number

36
37
40
46
55
56
59
81
82
83
91
92
109
110
117
118

1675
1676
1677
167B
1679
1680
1681
1682
1684
1686
1687
1688
1689
1690
1691
1695
1694
1695
1696
1699
1702
1703
1705
1706
1707
1708
1709
1710
1711
1712
1715
1714
1716
1717
1719
1721
1725
1726
1727
1728

D180-30550-1
IMPACTTESTINGREGRESSIONOATABASE
SpecimenConfigurationand Material

Shield Shield Standoff MLI? Back Wall Back Nail
Material TI (in) (in) Hat]. T2 (in)

2024-T3 0.020 2.50 NO 2024-T3 0.020
2024-T3 0.040 2.50 NO 2024-T3 0.020
2024-T3 0.020 2.50 NO 2024-T3 0.020
2024-T3 0.020 2.50 NO 2024-T3 0.020
2024-T3 0.020 5,00 NO 2024-T3 0,020
2024-T3 0,020 5.00 #0 2024-T3 0,020
2024-T_ 0.020 2.50 NO 2024-T3 0.020
2024-T3 0,020 5.00 NO 2024-T3 0,020
2024-T3 0.020 5,00 NO 2024-T3 0.020
2024-13 0.020 2.50 NO 2021-T3 0,020
2024-13 0.020 2,50 NO 2024-T3 0,020
2024-T3 0.020 2.50 NO 2024-T3 0,020
2024-13 0,020 2.50 NO 2024-T3 0,020
2024-T5 0.020 7.00 NO 2024-T3 0.020
2024-13 0.020 1,25 NO 2024-13 0.010
2024-13 0.020 1,25 NO 2024-T3 0,010
2024"T3 0,040 3,00 NO 2024-T3 0,020
2024-_ 0.040 5.00 NO 2024-T5 0.020
2024-T3 0,040 3,00 NO 2024-T3 0.020
2024-T3 0.040 3.00 NO 2024-T3 0,020
2024-T5 O.OBO 3.00 NO 2024-T3 0.020
2024-T5 0.080 3,00 NO 2024-T3 0,020
2024-T3 0,160 3,00 NO 2024-T3 0,020
202&-1_ 0.160 3,00 NO 2024-T3 0.020
2024-T3 0.080 5.00 NO 2024-T3 0.020
2024-T5 0.040 6.00 NO 2024-T5 0.020
2024-T5 0.040 6.00 NO 2024-T1 0.020
2024-_ 0.040 6.00 NO 2024-T5 0.020
2024-11 0.040 9°00 NO 2024-11 0,020
202¢"T3 0.040 9.00 NO 2024-1_ 0.020
202¢-T5 0.040 5.00 NO 2024-1"_ 0.020
2024-T5 0,040 3.00 NO 2024-T5 O,OIO
2024-13 0,040 5.00 NO 2024-T3 0,020
2024-13 0.040 5,00 NO 2024-T3 0,040
2024-13 0.040 5.00 NO 2024-T3 0.040
2024-13 0.020 3,00 NO 2024-T3 0.020
2024-13 0.040 3.00 NO 2024-T3 0.020
2024-T3 0.040 3.00 NO 2024-T3 0.010
2024-1"_ 0.020 3.00 NO 2024-1_ 0.020
2024-13 0.020 3.00 NO 2024-T3 0.020
2024-T5 0,040 3,00 NO 2024-T3 0,020
2024-T5 0,040 _,00 NO 2024-T5 0.020
2024-13 0.040 3.00 NO 2024-T3 0,020
2024-T3 O,OBO ],00 NO 2024-T3 0,020
202T-T3 0.060 3.00 NO 2024-T3 0.020
2024-T3 0.080 5.00 NO 2024-T3 0.020
2024-13 0,160 3.00 NO 2024-T5 0.020
2024-_ 0.160 5.00 NO 2024-T3 0.020
202#--13 0.020 2,00 NO 2024-T3 0,020
2024-1"3 0.020 2.00 NO 2024-T3 0.020
2024-13 0,020 5.00 NO 2024-T3 0.020
2024-T3 0,020 5,00 NO 202&'T3 0,020
2024-_ 0.020 1.00 NO 2024-T3 0.020
2024-'r3 0,040 5,00 NO 2024-T3 0,040
2024-13 0,040 3,00 NO 2024-13 0.040
2021-T3 0,040 5,00 NO 2024.-T5 0,040

Proj.Proj.Dia. Impact ImpactVel.
Natl. (in) Angle (deg) (kmlsec)

AI 0.125 0.00 7.440
AI 0.125 0.00 7.560
AI 0.125 0.00 6.550
AI 0,250 0.00 6.000
AI 0,250 0.00 5,760
AI 0.125 0.00 7,590
AI 0.250 0.00 6.250
AI 0,125 0.00 7.590
AI 0.125 0.00 7.800
AI 0.125 0.00 7.830
AI 0.125 0.00 1.400
AI 0,125 0.00 3.140
AI 0.125 0.00 7.710
AI 0.125 0.00 7.770
kl 0.065 0.00 5.030
AI 0.065 0.00 6,160

2017 AL 0,250 0.00 4.970
2017 AL 0.250 0.00 5,790
2017 AL 0,250 30,00 5.350
2017 AL 0,250 45,00 5.090
2017 AL 0.250 ' 30.00 5.240
2017 AL 0,250 45,00 5.270
2017 AL 0.250 30.00 5.090
2017 AL 0.250 45.00 5.360
2017 AL 0.250 60,00 5.240
2017 AL 0,250 30,00 5,360
2017 AL 0.250 45,00 5.120
2017 AL 0,250 60,00 4,630
2017 AL 0.250 45,00 5.090
2017 AL 0,250 60,00 4,970
2017 AL 0,250 70,00 4,570
2017 AL 0.125 45,00 4.480
2017 AL 0,125 45.00 5.820
2017 AL 0.250 45.00 5.360
2017 AL 0,250 45,00 5.330
2017 AL 0,250 60.00 4.050
2017 AL 0.125 60.00 3.960
2017 AL 0.125 60.00 4.180
2017 AL 0.250 45.00 4.540
2017 AL 0.250 60.00 5.490
2017 AL 0,250 60.00 5,300
2017 AL 0.250 45.00 5.520
2017 AL 0.250 60,00 5.210
2017 AL 0,250 30,00 5,120
2017 AL 0,250 45.00 5.210
2017 AL 0.250 60.00 5.300
2017 AL 0,250 30.00 5.240
2017 AL 0,250 45,00 5.360
2017 AL 0.250 30.00 5.210
2017 AL 0.250 45.00 5.000
2017 AL 0.250 30.00 5.120
2017 AL 0,250 60.00 5.460
2017 AL 0.125 30.00 5,300
2017 AL 0.250 30.00 5.270
2017 AL 0.250 45.00 5.150
2017 AL 0.250 60,00 5.300
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D180-30550-1

IMPACTTESTIN6RECESSIONDATABASE
Specimen Configuration and Material

Source oF Test Shield Shield SLandoff MLI?
DaLa Number Material T1 (in) (in)

IWALL 201A 6061-T6 0.040 4.00 YES
IWALL 2018 6061-T6 0.040 4.00 YES
INALL 201C 6061-T6 0.040 4.00 YES
IWALL 2010 6061-T6 0.040 4.00 YES
IWALL 202A 6061-T6 0.040 4.00 NO
IHALL 2028 6061-T6 0.040 4.00 NO
]WALL 202C 6061-T6 0.040 4.00 NO
IWALL 2020 6061-T6 0.040 4.00 NO
]WALL 202E 6061-T6 0.040 4.00 NO
INALL 202F 6061-T6 0.040 4.00 NO
INALL 203A 6061-T6 0.040 4.00 YES
IWALL 2038 6061-T6 0.040 4.00 YES
INALL 203C 6061-T6 0.040 4.00 YES
IWALL 2030 6061-T6 0.040 4.00 YES
INALL 203E 6061-T6 0.040 4.00 YES
IWALL 203F 6061-T6 0.040 4.00 YES
IMALL 2036 6061-T6 0.040 4.00 YES
]NALL 204A 6061-T6 0.040 4.00 NO
IWALL 2048 6061-T6 0.040 4.00 NO
INALL 204C 6061-T6 0.040 4.00 NO
INALL 204D 6061-T6 0.040 4.00 NO
IWALL 205A 6061-T6 0.063 4.00 YES
IMALL 2058 6061-T6 0.063 4.00 YES
]MALl 205C 6061-T6 0.063 4.00 YES
]WALL 2050 6061-T6 0.063 4.00 YES
IWALL 205E 6061-T6 0.063 4.00 YES
IWALL 206A 6061-T6 0.063 4.00 NO
]WALL 2068 6061-T6 0.063 4.00 NO
IWALL 206C 6061-T6 0.063 4.00 NO
INALL 2060 6061-T6 0.063 4.00 NO
iWALL 206E 6061-T6 0.063 4.00 NO
IWALL 206F 6061-T6 0.063 4.00 NO
]WALL 207A 6061-T6 0,063 4.00 YES
]WALL 207B 6061-T6 0.063 4.00 YES
IWALL 207C 6061-T6 0.063 4.00 YES
IWALL 208A 6061-T6 0.063 4.00 NO
INALL _8B 6061-T6 0.063 4,00 NO
tNALL 208C 6061-T6 0.063 4.00 NO
]WALL 2080 6061-T6 0.063 4.00 NO
IWALL 208E 6061-T6 0.063 4.00 NO
]WALL 209A 6061-T6 0.063 4.00 YES
IWALL 2098 6061-T6 0._3 4.00 YES
IWALL 2090 6061-T6 0.063 4.00 YES
IWALL 2108 6061-T6 0.063 4.00 YES
IWALL 2100 6061-T6 0.063 4.00 YES
IWALL 2118 6061-T6 0.063 4.00 YES
IWALL 2110 6061-T6 0.063 4.00 YES
INALL 2128 6061-T6 0.063 4.00 YES
IWALL 213A 6061-T6 0,080 4.00 NO
IWALL 213B 6061-T6 O.OBO 4.00 NO
IWALL 214A 6061-T6 0.040 8.00 NO
iWALL 214B 6061-T6 0.040 8.00 NO
IWALL 214C 6061-T6 0.040 8.00 NO
IWALL 2140 6061-T6 0.040 8.00 NO
IWALL 215A 6061-T6 0.040 8.00 YES
IWALL 2158 6061-T6 0.040 8.00 YES
INALL 215C 6061-T6 0.040 8.00 YES
I_ALL 2150 6061-T6 0.040 8.00 YES
IWALL 216A 6061-T6 0.080 4.00 NO
iWALL 2168 6061-T6 0.080 4,00 NO
INALL 216C 6061-T6 0.080 4.00 NO
iWALL 217A 6061-T6 0.040 fl.O0 NO
IWALL 2174 6061-T6 0.040 B.O0 NO
IWALL 218A 6061-T6 0.040 8.00 YES
INALL 2188 6061-T6 0.040 B.O0 YES

Back Wall Back Wall Proj. Proj. Oia.
Natl. T2 (in) Matl. (in)

2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.2_
_19-T47 0.125 II00-AL 0.187
2219-TB7 0.125 lI00-AL 0.187
_19-T87 0.125 IIO0-AL 0.187
2219-T87 0.125 IIO0-AL 0.187
2219-T87 0.125 IlO0_L 0.187
2219-T87 0.125 IIO0-AL 0.187
2219-T87 0.125 llO0-AL 0.300
2219-T87 0.125 l100-AL 0.300
2219-T87 0.125 IlO0-AL 0.300
2219-T87 0.125 IIO0-AL 0._00
2219-T87 0.125 1100-AL 0.300
2219-T87 0.125 II00-AL 0.350
2219-T87 0.125 llO0-AL 0.350
2219-TB7 0.125 IlO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 1100-AL 0.250
2219-TB7 0.125 IIO0_L 0.250
2219-T87 0.125 lI00-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 lI00-AL 0.250
2219-T87 0.125 IlO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 IlO0-AL 0.187
2219-T87 0.125 II00-AL 0.187
2219-T87 0,125 II00-AL 0.187
2219-T87 0.125 IIO0-AL 0.187
2219-T87 0.125 IIO0-AL 0.187
2219-T87 0.125 II00-AL 0.187
2219-T87 0.125 IIO0-AL 0.300
2219-T87 0.125 I100-AL 0.300
2219-T87 0.125 IIO0-AL 0.300
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 llO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 IIO0-AL 0.250
2219-T87 0.125 llO0-AL 0.250
2219-T87 0.125 1100-AL 0.250
2219-T87 0.125 l100-kL 0.250
2219-T87 0.125 1100-AL 0.250
2219-T87 0.125 IIO0-AL 0.350
2219-T87 0.125 IIO0-AL 0.350
2219-T87 0.125 IIO0-AL 0,350
2219-TB7 0.125 II00-AL 0.350
2219-T87 0.125 IIO0-AL 0.300
2219-T87 O.IBB II00-AL 0.313
2219-T47 0.I48 IIO0-AL 0.313
2219-T87 0.188 IIO0-AL 0.250
2219-T47 0.188 IIO0-AL 0.250
2219-T87 O.IBB IIO0-AL 0.250
2219-T87 0.188 IIO0-AL 0.250
2219-T87 0.188 IIO0-AL 0.350
2219-T87 0.188 IIO0-AL 0.350
2219-T87 O.IBB IIO0-AL 0.350
2219-T87 0.I48 IIO0-AL 0.350
2219-T87 O.lfl8 IIO0-AL 0.350
2219-T87 0.188 IIO0-AL 0.350
2219-T87 0.188 IIO0-AL 0.313
2219-T87 0.188 IIO0-AL 0.313
2219-T87 0.188 IIO0-AL 0.313
2219-T87 O.IBB IIO0-AL 0.350
2219-T87 0.188 IIO0-AL 0.350

Impact Impact Vel.
Angle IdeA) (km/sec)

45.00 4.330
45.00 5.510
45.00 7.210
45.00 7.690
45.00 3.530
45.00 4.300
45.00 5.260
45.00 6.500
45.00 7.190
45.00 7.510
65.00 6.450
65.00 3.670
65.00 2.720
65.00 5.590
65.00 6.750
65.00 3.040
65.00 4.700
65.00 4.810
65.00 5.870
65.00 4.300
65.00 3.180
45.00 4.200
45.00 4.620
45.00 5.300
45.00 6.420
45.00 3.150
45.00 4.740
45.00 5.090
45.00 5.400
45.00 3.690
45.00 3.240
45.00 6.240
65.00 5.860
65.00 6.470
65.00 7.0B0
65.00 5.040
65.00 4.380
65.00 3.420
65.00 5.630
65.00 6.480
65.00 4.370
65.00 6.400
65.00 7.400
65.00 5.670
65.00 7.050
45.00 5.880
45.00 6.840
45.00 6.380
0.00 4.910
0.00 5.900
0.00 5.650
15.00 5.010
0.00 4.830
0.00 4,850
0.00 4.660
0.00 5.480
0.00 6.310
0.00 6.160
45.00 6.i00
45.00 6.570
45.00 6.960
45.00 6.650
45.00 7,100
45.00 5.820
45.00 6.400
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Source of
Data

INALL
IWALL
IWALL
INALL
INALL
INALL
]NALL
INALL
INALL
INALL
INALL
INALL
INALL
IHALL
]MALL
IHALL
INALL
IFFALL
INALL
IHALL
INALL
INALL
INALL
]HALL
INALL

MARTIN
MARTIN
MARTIN
MARTIN
nARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN
MARTIN

Test
Number

2IBC
221A
2218
221C
221D
222A
222B
222C
226A
2269
226C
227A
227B
228A
228B
228C
228D
229A
2298
229C
2;30A
230B
230C
2300
230E
101
IOIA
1018
102

102A
1028
102C
1020
I05
I05A
1058
106
I06A
106R
106-I
106-2
107

I07A
I07B
108
109

109A
I09B
I09C
I09D
II0
11;3
II;3A
114
II4A
121-I
121-2
135A
135B
135C
135D
135E
136A
136B

Shield
Material

6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
606I-T6
6061-T6
6061"T6
6061-T6

• 6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6_I-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6
6061-T6

Shield
T1 (in)

0.040
0.040
O.040
0.040
O.040
0.040
O.040
O.040
0.032
0.032
O.032
0.0;32
O.032
O.032
O.03,2
0.032
0.032
O.080
O.080
O.080
0.063
0.06;3
0.06_
0.06;3
O.06;3
O.080
O.080
O.080
0.080
O.OBO
O.080
0.080
O.080
O.OBO
0.080
O.080
O.080
O.OBO
O.080
O.080
O.080
O.080
O.080
O.OBO
O.OBO
O.OBO
O.080
O.080
O.OBO
O.OBO
O.080
O.06;3
O.06;3
0.063
0.063
0.080
O.080
O.06;3
O.063
O.063
0.06;3
O.06;3
O.06;3
O.06;3

Standoff
(in)

8.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
6.00
6.00
6.00
6,00
6.00
6.00
6.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
12.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
6.00
6.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00

D180-30550--1

IMPACTTESTINGREGRESSIONDATABASE
SpecilenConfigurationand Material

MLI? Back WallBack Wall
Natl. T2 (in)

YES 2219-T87 0.188
YES 2219-T87 0.125
YES 2219-T87 0.125
YES 2219-T87 0.125
YES 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
YES 2219-T97 0.I00
YES 2219-T87 0.100
YES 2219-T87 0.100
YES 2219-T87 0.06;3
YES 2219-T87 0.063
NO 2219-T87 0.06;3
NO 2219-T87 0.063
NO 2219-TB7 0.188
NO 2219-T87 0.188
YES 2219-T87 0.188
YES 2219-T87 0.188
YES 2219-T87 0.188
YES 2219-T87 0.125
YES 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-TB7 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
YES 2219-T87 0.125
YES 2219-T87 0.125
• S 2219-T87 0.125
YES 2219-T97 0,125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-TB7 0. I25
NO 2219-T87 0.I25
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.175
NO 2219-T87 0.200
NO 2219-T87 0.225
NO 2219-T87 0.125
NO 2219-TB7 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-TB7 0.125
NO _IO,TB7 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125
NO 2219-TB7 0.125
NO 2219-T97 0.125
NO 2219-T87 0.125
NO 2219-TB7 0.125
NO 2219-T87 0.125
NO 2219-T87 0.125

Proj.Proj.Oia. Impact ImpactYel.
Natl. (in) Angle (den) (kmlsec)

IlOO-AL 0.;350 45.00 6.880
IIO0-AL 0.197 45.00 6.670
IIO0-AL 0.187 45.00 5.970
IIO0-AL 0.187 45.00 4.620
IIO0-AL 0.187 45.00 4.140
IIO0-AL 0.125 45.00 5.600
IIO0-AL 0.125 45.00 5.0;30
IIO0-AL 0.125 45.00 ;3.330
IIO0-AL 0.250 45.00 4.480
IIO0-AL 0.250 45.00 5.490
IIO0-AL 0.250 45,00 6.800
IIO0-AL 0.250 45.00 5.640
IIO0-AL 0.250 45.00 7.250
IIO0-AL 0.;313 0.00 6.050
IlO0-AL 0.;31;3 0.00 6.750
IIO0-AL 0.250 0.00 6.980
IIO0-AL 0.250 0.00 6.650
IIO0-AL 0.;31;3 0.00 5.300
llO0-AL 0.;31;3 0.00 ;3.070
IIO0-AL 0.;31;3 0.00 ;3.560
IIO0-AL 0.187 " 45.00 4.410
IIO0-AL 0.187 45.00 3.240
IIO0-AL 0.250 45.00 5.160
IIO0-AL 0.250 45.00 5.590
IlO0-AL 0.250 45.00 6.620
IIO0-AL 0.187 0.00_ 3.094
llO0-AL 0.187 0.00 ;3.696
1100--_ 0.187 0.00 4.270
IIO0-AL 0.;300 0.00 7.200
IIO0-AL 0.300 0.00 5.;350
IIO0-AL 0._00 0.00 5.960
IIO0-AL 0._00 0.00 4.740
IIOO-AL 0.300 0.00 _.830
IIO0-AL 0.;350 45.00 3.510
IIO0-AL 0.;350 60.00 4.050
llO0-AL 0.;350 75.00 ;3.890
IlO0-AL 0.350 45.00 6.840
IIO0-AL 0.375 60.00 6.660
llO0-AL 0.;375 75.00 6.730
IIO0-AL 0.350 60.00 6.800
IIO0-AL 0.350 75.00 6.650
IlO0-AL 0.;350 O.O0 6.800
IIO0-AL 0.350 0.00 6.740
IlO0-AL 0.350 0.00 6.820
IlO0-AL 0.;350 0.00 6.850
IIO0-AL 0.197 O.OO 7.;390
IIO0-AL 0.187 0.00 4.060
IIO0-AL 0.197 0.00 3.610
IIOO-AL 0.197 0.00 2.560
IlO0-AL 0.IB7 0.00 2.000
6061-T6 0.300 0.00 7.1_0
6061-T6 0.250 60.00 3.180
6061-T6 0.250 45.00 3.200
6061-T6 0.300 60.00 3.;340
6061-T6 0.300 45.00 3.510
IlO0-AL 0.;300 0.00 6.730
IIOO-AL 0.;300 0.00 6.390
]IO0-AL 0.250 30.00 5.930
IIO0-AL 0.250 ;30.00 7.240
IIO0-AL 0.250 30.00 6.760
IIO0-AL 0.250 30.00 6.9_0
IIO0-AL 0.250 30.00 7.;310
IIO0-AL 0.250 55.00 6.250
IIO0-AL 0.250 55.00 7.300
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ADP SMI 12C
ADP SHI 120
ADP SMI 13
ADP SMI 13B
ADP 8_I 13C
AOP5B1 130
ADPSHI 13E
hOPSMI 14B
AOPSBI 14C
ADP5B1 14g
ADPSBI 14E
ADPSMI 14F
ADP SHl 15
ADP SMI 15B
ADPSN1 15C
ADPBMI 16
Ai)P SBI 16A
ADPSH1 16B
AOPSM1 16C
ADPSAl 16E
ADPSA1 16G
AOPSHI 16H
ADPSH1 16J
AOPSHI 16K
ADPSBI 16L
ADPSH1 16B
AOP SHI 16N
ADP SHI 16P
AOP SMI 17
ADPSHI 20C
ADP SMI 20F
ADPSHl 20H
ADP SMI 21
ADP SHl 21B
AOP SMI 21C
ADP SHI 210
ADP SMI 24C
ADPSH1 24F
ADPSMI 24G
ADPSHl 25
AOPSMI 25A
ADPSMl 25B
ADP SHI 25C
ADP SHl 250
AOP SMI 27
ABP SMI 27A
ABP SMI 27B
AOP SMI 27C
ADP SM1 27B
ADP SM1 27E
ADP SMI 27F
ADP SMI 2B
AOP 8MI 33
ADPSMI 33B
ADP SMI 33BI
AOP SMI 33C
AOPSH1 34C
AOP SMI 34CI
ADP SMI 34C2
ABP SNI 35
AOP SHl 35B
AOP SM! 35C
BOEING O01A
BOEING O01B
BOEING O02A
BOEING O02G

Wall Wall CraterDepth
Pen.? Spalled? Back,all

NO NO 0.100
NO NO 0.120
YES NA 0.125
NO YES 0.020
YES NA 0.125
NO NO 0.010
NO NO 0.070
NO YES 0.060
NO NO 0.020
YES NA 0.125
YES NA 0.125
NO NO 0.060
NO NO 0.020
NO NO 0.040
NO NO 0.020
YES NA 0.125
YES NA 0,125
YES HA 0.125
YES NA 0.125
YES NA 0.125
NO YES 0.120
NO NO 0.010
NO NO 0.010
NO NO 0.010
NO NO 0.070
YES NA 0.125
YES NA 0.125
YES NA 0.125
YES NA 0.125
YES NA 0.125
NO NO 0.090
YES NA 0.125
YES NA 0.125
NO NO 0.010
NO NO 0.010
YES NA 0.125
YES NA 0.125
YES NA 0.125
NO YES 0.120
NO NO O.OBO
NO NO 0.030
YES HA 0.125
NO NO 0.070
NO NO 0.120
NO NO 0.020
YES NA 0.125
YES NA 0.125
NO NO 0.060
NO NO 0.030
NO NO 0.050
NO NO 0.120
NO NO 0.010
YES NA 0.125
YES NA 0.125
YES NA 0.125
NO NO 0.100
NO NO 0.067
YES NA 0.100
NO NO 0.050
YES NA 0.125
NO NO 0.050
YES NA 0.125
YES NA 0.125
YES NA 0.125
YES HA 0.125
YES NA 0.125

D180-30550-I
IMPACTTESTIN6REBRESBIONDATA BASE

Test Results

Witness
Material

Spacing Thick Hat.Re=.Hat.Rez. Nn
git. (in)Wit. (in)Nor.fin)Fit.fin)(normal)

2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 1.500
2024-T3 0.500 0.020 0.250
2024-T3 0.500 0.020 2.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0,000
2024-TS 0.500 0.020 0.500
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.750
2024-T3 0.500 0;020 0.500
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 2.500
2024-T3 0,500 0.020 2.000
2024-T3 0.500 0.020 1.500
2024-T3 0.500 0.020 1.500
2024-T3 0.500 0,020 0.500
2024-T3 0,500 0,020 0,500
2024-T3 0,500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0,500 0.020 0.000
2024-T3 0,500 0.020 0.000
2024-T3 0.500 0.020 2.000
2024-T3 0.500 0.020 3.500
2024-T3 0.500 0.020 1.500
2024-T3 0.500 0.020 2.000
2024-T3 0.500 0.020 1,250
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.250
2024-T3 0.500 0.020 2.250
2024-T3 0.500 0.020 0.000
2024-T3 0,500 0.020 0,000
2024-T3 0.500 0,020 1.000
2024-T3 0.500 0.020 0.250
2024-T3 0.500 0,020 0.500
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0,020 0.000
2024-T3 0.500 0.020 2.500
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.500
2024-T3 0.500 0.020 0.500
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0,500 0.020 0.000
2024-T3 0,500 0,020 0,000
2024-T3 0.500 0.020 2.100
2024-T3 0.500 0.020 1.250
2024-T3 0.500 0.020 1.200
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 0.250
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 1.000
2024-T3 0.500 0.020 0.000
2024-T3 0.500 0.020 2.000
2024-T3 1.000 0.020 0.000 0.000 0.000
2024-T3 1.000 0.020 0.079 0.000 0.000
2024-T3 1.000 0.020 0.062 0.000 0.000
2024-T3 1.000 0.020 0.113 0,000 0.000

Nf
(flight)

0.000
0.000
0,000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.300
0.300
4.500
0.300

J

ilargest)

0.000
0.000
1.500
0.250
2.000
O.000
O.000
O.500
0.000
0.750
0.500
0.000
0,000
0.000
0.000
2.500
2.000
1.500
1.500
0.500
0.500
0.000
0.000
0.000
0.000
2.000
3.500
1.500
2.000
1.250
0.000
0,250
2.250
0.000
0.000
1.000
0.250
0,500
0.000
0,000
0.000
2.500
0.000
0.000
0,000
0.500
0.500
0.000
O.000
O.000
O.000
O,000
2.100
1.250
1.200
0.000
0.000
0.250
0.000
1,000
0.000
2.000
2.300
0.300
4.500
0.300

I.000
I.000
O.000
0.000
O.000
I.OOC
I.000
0.00_
1.000
O.OOC
1.000
I.00¢
O.00_
1. OOC
0.000
0.00¢
O.OOC
O.00(
O.00¢
O.00(
O.OOC
I.00(
I,00(
I.00(
I.00(
I.00(
1.00(
1.00(
O.00(
O.00(
I.00(
I.00_
O.OOI
I.OOt
I.OOq
I.00_
0. OOi
O.00_
i.001
0,00=
O.00_
0.00
O.OOq
1.00
O.00_
0.00
O.O0
1.00
1.00
1.00
1.00
0.00
0,00
O.O0
0.00
0.00
].00
1.00
1.00
0.00
1.00
1.0_
0.0(i
1.0{
0.0(_
1.0(
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BristoN 36
BristoN 37
Bristo# 40
BristoN 46
Bristow 55
Bristow 56
BristoN 59
Bristow 81
Bristo. 82
Bristo# 83
Bristo. 91
Sristo. 92
Bristow 109
Dristo. II0
Bristo. 117
Bristox I18

BURCH 1675
BURCH 1676
BURCH 1677
BURCH 1678
BURGH 1679
_RCH 1680
BURGH 1681
BURGH 16B2
BURCH 1684
BURCH 1686
BURGH 1687
BURCH 1688
BIJRCH 1689
BURCH 1690
BIJRCH 1691
BURCH 1693
_RCH 1694
BURGH 1695
BURCH 1696
BURCH 1699
BURCH 1702
BURCH 1703
BURCH 1705
BURCH 1706
BURCH 1707
BURCH 1708
BURGH 1709
BURGH 1710
BURCH 1711
BURCH 1712
BURCH 1713
BURCH 1714
BURCH 1716
BURCH 1717
BURCH 1719
BURCH 1721
BURCH 1725
BURCH 1726
BURGH 1727
BURCH 1728

D180-30550-1
IMPACTTESTINGREGRESSIONDATABASE

Test Results

Hall Hall Crater Depth Nitness Spacing Thick Nat.Re=. Mat.Rem. Nn
Pen. ? Spalled? Backwall Material Wit. (in) Hit. (in) Nor.(in) FIL.(in) (normal)

YES NA 0.$20 2024-13 1.000 0.020 1.700
YES NA 0.020 2024-13 1.000 0.020 1.100
YES NA 0.020 2024-T3 1.000 0.020 1.900
YES NA 0.020 2024-T3 1.000 0.020 4.000
YES HA 0,020 2024-13 1,000 0,020 5,000
YES NA 0.020 2024-13 1.000 0.020 1.100
YES NA 0.020 2024-13 1.000 0.020 4.000
YES NA 0.020 2024-13 1.000 0.020 2.000
YES NA 0.020 2024-13 1.000 0.020 2.000
YES NA 0.020 2024-T3 1.000 0.020 2.000
YES NA 0.020 2024-13 1.000 0.020 4.000
YES NA 0.020 2024-13 1.000 0.020 3.000
YES NA 0.020 2024-13 1.000 0.020 3.000
YES I_i 0.020 2024-T3 1.000 0.020 1.000
YES NA 0.010 2024-T3 hO00 0.010 1.900
YES NA 0.010 2024-T3 1.000 0.010 2,400
YES NA 0.020 2024-T3 1.000 0.020 4.000
YES NA 0.020 2024-13 1.000 0.020 3.300
YES NA 0.020 2024-13 1.000 0.020 3.000
YES Nn 0.020 2024-13 1.000 0.020 2.000
YES _ 0.020 2024-13 1.000 0.020 2.000
YES NA 0.020 2024-13 1.000 0.020 3.000
YES NA 0.020 2024-13 1.000 0.020 3.400
YES NA 0.020 2024-13 1.000 0.020 4.000
YES NA 0.020 2024-T3 1.000 0.020 4.000
YES NA 0.020 2024-T3 1.000 0.020 2.000
YES NA 0.020 2024-13 1.000 0.020 2.000
YES NA 0.020 2024-13 1.000 0.020 3.300
YEB NA 0,020 2024-13 1,000 0,020 2,000
YES NR 0,020 2024-13 1,000 0,020 2,000
YES Nk 0,020 2024-13 1,000 0,020 3.300
YES NA 0,010 2024-13 1.000 0,010 3.000
YES IM 0.020 20"24-T_ 1.000 0.020 1.000
YES NA 0.040 2024-T3 1.000 0.040 1.000
YES NA 0.040 2024-T3 1.000 0,040 1.000
YES NA 0.020 2024-13 1.000 0.020 2.000
YES NA 0.020 2024-T3 1.000 0.020 2.000
YES NA 0.010 2024-T3 1.000 0.010 3.500
YES NA 0.020 2024-T3 1.000 0.020 1.500
YES NA 0.020 2024-T3 1.000 0.020 2.100
YES NA 0.020 2024-T3 1.000 0.020
YES NA 0.020 2024-13 1.000 0.020 2.100
YES NA 0.020 2024-13 1.000 0.020 2.900
YES NA 0.020 2024-13 1.000 0.020 2.300
YES NR 0.020 2024-13 1.000 0.020 2.500
YES NA 0.020 2024-13 1.000 0.020 3.600
YES NA 0.020 2024-13 1.000 0.020 3.300
YES NA 0.020 2024-13 1.000 0.020 3.600
YES NA 0.020 2024-T3 hO00 0.020 4.100
YES NA 0.020 2024-13 l.O00 0.020 1.300
YES NA 0.020 2024-13 1.000 0.020 1.100
YES NA 0.020 2024-13 1.000 0.020 2.100
YES NA 0.020 2024-13 1.000 0.020 1.200
YES NA 0.040 2024-13 1.000 0.040 1.000
YES NA 0.040 2024-T3 hO00 0.040 1.000
YES NA 0.040 2024-T3 1.000 0.040 2.200

Nf N' MLI
(flight) (largest)

0.000 1,700 0.000
0.000 1,100 0.000
0.000 1.900 0.000
0.000 4.000 0,000
0.000 5.000 0.000
0.000 I.I00 0.000
0.000 4.000 0.000
0.000 2.000 0.000
0.000 2.000 0.000
0.000 2.000 0.000
0.000 4.000 0.000
0.000 3.000 0.000
0.000 3.000 0.000
0.000 1.000 0.000
0.000 1.900 0.000
0.000 2.400 0.000
4.000 4.000 0.000
3.300 3.300 0.000
4.300 4.300 0.000
4.100 4,100 0.000
3.300 3.300 0.000
3.300 3.300 0.000
3.000 3.400 0.000
3.000 4.000 0.000
3.200 4.000 0.000
3.300 3.300 0.000
4.700 4.700 0.000
4.000 4.000 0.000
5.000 5.000 0.000
4.000 4.000 0.000
3.800 3.800 0.000
4.000 4.000 0.000
3.000 3.000 0.000
3.000 3.000 0.000
3.000 3.000 0.000
5.100 5.100 0.000
2.000 2.000 0,000
3.500 3.500 0.000
5.500 5,500 0.000
3.500 3.500 0.000

1.200 3.500 3.500 0.000
4.300 4,300 0.000
3.500 3.500 0.000
3.300 3.300 0.000
3.100 3.100 0.000
3.600 3.600 0.000
3.000 3.300 0.000
2.700 3.600 0,000
5.100 5.100 O,O00
6.100 6.100 0.000
4.300 4.300 0.000
3.800 3.800 0.000
3.300 3.300 0.000
4.500 4.500 0.000
4.900 4.900 0.000
3.600 3.600 0.000
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IW_L
]NALL
INALL
INALL
IWALL
INALL
INALL
]NALL
INALL
]NALL
INALL
IWALL
IW_L
IN_LL
]NALL
INALL
INALL
INALL
IWALL
INALL
INALL
INALL
INALL
IWALL
INALL
]WALL
]W_LL
IWALL
]WALL
INALL
INALL
INALL
INALL
INALL
IWALL
IWALL
IHALL
IWALL
INALL
IWALL
INALL
IWALL
INALL
INALL
IWALL
INALL
IWALL
IWALL
IWALL
IWALL
INALL
IWALL
IWALL
IWALL
IWALL
INALL
IWALL
IWALL
IWALL
IWALL
INALL
IWALL
IWALL
IWALL
IWALL

201A
2018
201C
201D
202A
202B
202C
202D
202E
202F
203A
203B
203C
2030
203E
203F
2038
204A
2048
204C
2040
205A
2058
205C
205D
205E
206A
2068
206C
2060
206E
206F
207A
2078
207C
208A
208B
208C
2088
20BE
209A
2098
2090
2109
2100
211B
2110
212B
213A
213B
214A
214B
214C
2140
215A
2158
215C
2150
216A
216B
216C
_Aln

2178
218A
218B

D180-30550-1

IHPACTTESTIN6RE6RESSIONOATABASE
Test Results

Wall Nall CraterOepth Nitness Spacing Thick Mat.Rem.Mat.Rem. Nn
Pen.? Spalled? BackNall MaterialNit. (in)Nit. (in)Nor.(in)Flt.(in)(normal)

YES NA 0.125 2024-T3 1.000
YES NA 0.025 2024-T3 1.000
YES NA 0,125 2024-T3 1,000
YE8 NA 0.006 2024-T3 1.000
YES NA 0,125 2024"T3 1,000
YES NA 0.125 2024-1'3 1.000
YES NA 0.006 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0,125 2024-T3 1,000
NO NO 0,042 2024-T3 1.000
NO NO 0.049 2024-T3 1.000
NO NO 0,020 2024-T3 1,000
NO NO 0.037 2024-T3 1.000
NO NO 0.064 2024-T3 1.000
NO NO 0.090 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0,125 2024-13 1.000
NO NO 0,102 2024-T3 1,000
NO NO 0.052 2024-T3 1.000
NO NO 0.055 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES Nk 0.125 2024-T3 1,000
YES NA 0.125 2024-T3 1.000
NO NO 0.057 2024-T3 1.000
YES NA 0.125 2024-T3 1.000

0.020 0.096 0.000 2.500
0.020 0.100 0.125 4.000
0.020 0.000 0.000 0.250
0.020 0,119 0.125 2.750
0.020 0.000
0.020 1.500
0.020 0,072 0.000 2.500
0.020 0.066 0.000 2.000
0.020 0,094 0.000 0.000
0.020 0.09B 0.000 0.750
0.020 0.086 0.083 0.000
0.020 0.076 0.085 0.000
0.020 0.105 0.115 0.000
0.020 0.088 0.092 0.000
0.020 0.061 0.070 0.000
0.020 0.081 0.035 0.000
0.020 0.078 0.000 0.250
0.020 0.064 0.000 0.000
0.020 0,023 0.064 0.000
0.020 0.073 0.075. 0.000
0.020 0.070 0.101 0,000
0.020 0,079 0.000 0.250
0.020 0.079 0.000 0.500
0.020 0.080 0.000 1.250
0.020 0.099 0.068 0.000
0.020 0.081 0.000 2,000

Nf N' RLI
(flight)(largest)

0.000 2.500 1.000
0.000 4.000 1.000
0.000 0.250 1.000
0.000 2.750 1.000
0.000 0.000 0.000
0.000 1.500 0.000
0.000 2.500 0.000
0.000 2.000 0.000
0.000 0.000 0.000
0.000 0.750 0.000
0.000 0.000 1.000
0.000 0.000 1.000
0.000 0.000 1.000
0.000 0.000 1.000
0.000 0.000 1.000
0.000 0.000 l.O00
0.000 0.250 1.000
1.000 "1.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.250 1.000
0.000 0.500 1.000
0.000 1.250 1.000
0.000 0.000 1.000
0.000 2.000 1.000

YES NA 0.125 2024-T3 1.000
NO NO 0.120 2024-T3 1.000
NO NO 0.080 2024-T3 1,000
NO NO 0.090 2024-T3 1.000
NO NO 0.080 2024-T3 1.000
NO NO 0.070 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.125 2024-TS 1.000
NO NO 0.049 2024-T3 1.000
NO NO 0.058 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
NO NO 0.120 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
NO NO 0,061 2024-T3 1,000
NO NO 0.068 2024-T3 1.000
NO NO 0.067 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.125 2024-T3 1.000
YES NA 0.031 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
NO YES 0.105 2024-T3 1.000
YES NA O.IBB 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES NA O.IBB 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
NO NO 0.084 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES HA 0.188 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES HA 0.188 2024-T3 1.000
YES HA 0.18B 2024-T3 1.000
YES NA 0.188 2024-T3 1.000
YES NA 0.188 2024-T3 1.000

0.020
0.020
0.020 0.000
0,020 0.000
0.020 0.000
0.020 0.055 0.064 0.000
0.020 0.058 0.000 0.250
0.020 0.000 0.082 0.100
0.020 0.076 0.078 0.000
0.020 0.067 0.075 0.000
0.020 0.000 0.078 0.500
0.020 0.000
0.020 0.000
0.020 0.000 0.051 1.000
0.020 0.064 0.II0 0.000
0.020 0.057 0.125 0.000
0.020 0.058 0.104 0.000
0.020 0.000 0.074 0.250
0.020 0.000 0.125 0.500
0.020 O.IOB 0.000 4.000
0.020 4.000
0.020 0.094 0.125 2.750
0.020 0.000 0.000 0.000
0.020 0.000 0.000 0.000
0.020 0.083 0.083 0.000
0.020 0.000 0.000 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.104 0.104 0.000
0.020 0.000 0.000 0.000
0.020 0.090 0.000 0.000
0.020 0.092 0.000 0.000
0.020 0.102 0.000 0.000
0.020 0.127 0.000 0.000
0.020 0.125 0.000 0.000
0.020 0.125 0.000 0.000
0.020 0.125 0.000 0.000

1.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000

0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.250 1.000
0.000 0.I00 1.004
0.000 0.000 1.000
0.000 0.000 0.00C
0.000 0.500 O.OOO
0.000 0.000 0.00(
0.000 0.000 O.OOG
0.000 1.000 0.00(
0.000 0.000 I.OOC
0.000 0.000 1.004
0.000 0.000 I.OOC
0.000 0.250 1.00(
0.000 0.500 1.004
0,000 4,000 1.00(
0.000 4.000 1,004
0,000 2.750 1.004
3.250 3.250 0.004
0.250 0.250 0.004
0.000 0.000 0.00(
1.000 1.000 0,00i
0.000 0.000 0.004
0.250 0,250 0.001
3.250 3.250 1.00i
1.250 1.250 1,00'
0.000 0.000 1.001
I=000 1.000 1.00
5,000 5.000 0.001
5,000 5,000 0.00
1.900 1.800 0.001
4.000 4,000 0,00
4.000 4.000 0.00
4,000 4,000 1.00
4,000 4.000 1.00
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D180-30550-1

IMPACTTESTIN6REGRESSIONDATABASE
Test Results

Hall Wall CraterDepth Witness Spacing Thick Nat.Rem.Mat.Rem. Nn Nf N'
Pen.? Spal]ed? BackNa]l MaterialNit, [in)Nit. (in)Nor.(in)Flt.(in)(normal) (flight)(largest)

IMALL 218C YES NA
INALL 221A NO NO
IWALL 221B NO NO
IMALL 221C NO NO
IWALL 2210 NO NO
IWALL 222A NO NO
INALL 2228 NO NO
]WALL 222C NO NO
INALL 226A YES NA
INALL 2268 YES NA
INALL 226C YES NA
INALL 227A YES NA
INALL 2278 YES NA
INALL 228A YES NA
INALL 2288 YES NA
INALL 228C YES NA
INALL 228D YES NA
INALL 229A NO NO
INALL 2298 YES NA
INALL 229C YES NA
INALL 230A NO NO
IWALL 2308 NO NO
IWALL 230C YES NA
IWALL 230D YES NA
IWALL 230E YES Nk

MARTIN I01 YES NA
MARTIN IOIA YES NA
MARTIN 1018 NO YES
MARTIN 102 NO YES
MARTIN I02A NO NO
MARTIN 1029 NO NO
MARTIN 102C NO NO
MARTIN 102D YES NA
MARTIN 105 YES NA
MARTIN I05A YES NA
MARTIN I058 YES NA
MARTIN 106 YES NA
MARTIN I06A YES NA
MARTIN 1068 YES NA
MARTIN 106-1 YES NA
MARTIN I06-2 YES NA
MARTIN 107 YES NA
MARTIN I07A YES NA
MARTIN 1078 YES NA
MARTIN lOB YES NA
MARTIN I09 NO NO
MARTIN 109A NO NO
MARTIN 1098 NO NO
MARTIN I09C NO YES
MARTIN 109D NO NO
MARTIN II0 YES NA
MARTIN 113 NO NO
MARTIN II3A YES NA
MARTIN 114 NO NO
MARTIN II4A YES NA
MARTIN 121-I YES NA
MARTIN 121-2 YES NA
MARTIN 135A YES NA
MARTIN 1358 YES NA
MARTIN 135C YES NA
MARTIN 1350 YES HA
MARTIN 135E YES NA
MARTIN 136A YES NA
MARTIN 136B NO YES

0.188 2024-T3 1.000 0.020 0.125 0.000 0,000
0.056 2024-T3 1.000 0.020 0.105 0.069 0,000
0.041 2024-T3 I.O00 0.020 0.125 0.084 0.000
0.054 2024-T3 1,000 0.020 0.094 0.071 0.000
0.055 2024-T3 1.000 0.020 0.I08 0.070 0.000
0.052 2024-T3 1.000 0.020 0,083 0.073 0.000
0.053 2024-T3 1.000 0.020 0.072 0.083 0.000
0.046 2024-T3 1.000 0.020 0.107 0,079 0.000
0.100 2024-T3 t.O00 0.020 0,000
0.100 2024-T3 1.000 0.020 0.000
0,100 2024-T3 1.000 0.020 0.000
0.063 2024-T3 1.000 0.020 0.000
0.063 2024-T3 1.000 0,020 0.000
0.063 2024-T3 I.O00 0.020 4.500
0.063 2024-T3 1.000 0.020 4.500
0.188 2024-T3 1,000 0,020 0.000 0.000 2.000
0.188 2024-T3 1.000 0.020 0.000 0.000 1.000
0.090 2024-T3 1.000 0.020 0.000
0,188 2024-T3 1.000 0,020 2.250
0,188 2024-T3 1.000 0.020 0.250
0.047 2024-T3 1.000 0.020 0.III 0.078 0.000
0.032 2024-T3 1,000 0.020 0.116 0.093 0.000
0.125 2024-T3 1.000 0.020 0.049 0.000 0.000
0.125 2024-T3 1.000 0.020 0.000 0,000 0.000
0.125 2024-T3 1,000 0.020 0.000 0.000 0.000
0.125 2024-T3 0.500 0.020 2.000
0.125 7075-T73 0.500
0.110 7075-T73 0.500
O.IlO 7075-T73 0.500
0.020 2024-T3 0.500
0,010 2024-T3 0.500
0.060 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.125 2024-T3 0.500
0.175 2024-T3 0.500
0.200 2024-T3 0.500
0.225 2024-T3 0.500
0.125 2024-T3 0.500
0.050 2024-T3 0,500
0.050 2024-T3 0,500
0.090 2024-T3 0.500
0.100 2024-T3 0.500
O,OBO 2024-T3 0,500
0.125 2024-T3 0.500
0,040 2024-T3 0,500
0.125 2024-T3 0.500
0.II0 2024-T3 0.500
0.125 2024-T3 0.500
0,125 7075-T6 1.000
0.125 7075-T6 1.000
0.125 7075-T6 1.000
0.125 7075-T6 1.000
0.125 7075-T6 1.000
0.125 7075-T6 1.000
0.125 7075-T6 1.000
0.125 2024-T3 1.000
0.120 2024-T3 1.000

0.032 0.750
0.032 0.000
0.032 0.500
0.032 0.000
0.032 0.000
0.032 0,000
0.032 0.000
0.020 1.000
0.020 1.000
0.020 1.000
0.020 3.000
0.020 3.250
0.020 2.000
0.020 0.000
0,020 0.000
0.020 4.000
0.020 2.500
0.020 0.750
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 1.500
0.020 0,000
0.020 2.000
0.020 0.000
0.020 2.000
0.020 0.000
0.020 2.100
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000
0.020 0.000

¢.000 4,000 1.000
0.000 0.000 1.000
0.000 0.000 1.000
0.000 0.000 1,000
0.000 0.000 1.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
4.500 4.500 1.000
4,250 4.250 I.O00
2,000 2.000 1.000
3,250 3.250 1.000
2.000 2.000 1.000
0.000 4.500 0.000
0.000 4.500 0.000
0.000 2.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
0.000 2.250 1.000
0.000 0.250 1.000
0.000 0.000 1,000
0.000 0.000 1.000
3.000 3.000 0.000
2.500 2.500 0.000
1.500 1.500 0.000
0.000 2.000 0.000
0.000 0.750 0.000
0.000 0.000 0.000
0.000 0.500 0.000
0.000 0.000 1.000
0.000 0.000 1.000
0.000 0.000 1,000
0.000 0.000 1.000
0.000 1.000 0.000
0.000 1.000 0.000
0.000 1.000 0.000
0.000 3.000 0.000
0,000 3.250 0.000
0.000 2.000 0.000
1.500 1.500 0.000
0.000 0.000 0.000
0.000 4.000 0.000
0.000 2.500 0.000
0.000 0.750 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.0_
0.000 0.000 0.000
0.000 0.000 0.000
O.O00 1,500 O.O00
0.000 0.000 0.000
0.000 2.000 0.000
0.000 0,000 0.000
0.000 2.000 0,000
0.000 0.000 0.000
0.000 2.100 0.000
2.000 2.000 0,000
0.250 0.250 0.000
1,750 1.750 0.000
2.250 2.250 0.000
0,250 0.250 0.000
1,000 1.000 0,000
0.250 0.250 0.000
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IMPACTTESTINGREGRESSIONDATABASE
Regression Analysis and Results

N(ang) T1"1/3 T2 LOGIS)/D NLI*T1 Dia^l/3 V,Cos^2 Tan N' Residual

ADPSM1
ADPSNl
ADP8N1
ADPSM1
ADPSM1
AOPSM1
ADPSHI
ADP SNl
AOPSMi
ADPSNl
ADPSMI
ADP SNI
AOP GMl
AI)PGHl
ADP GMl
AOP SMI
AOP SN1
ADPSN1
AOP GEl
ADP SHl
ADP SMI
ADPGM1
AOP SNl
ADP GNl
ADP 8Ml
ADPSH1
ADP GNl
ADP SHI
ADP 8M1
ADP SMl
AOP SMI
ADP SNI
AOP SMI
ADP SMI
ADPGEl
ADP SHI
ADP SMI
ADP SMl
AOP GMl
AOP SMI
AOP SMl
AOP 8MI
AOP SMI
AOP GHl
ADP SHI
AOP SMI
ADP SMI
AOP GHl
AOP SMI
ADP SMl
AOP SMI
AOP SMI
AOP SNI
ADP SMl

12C 0.904 0.398 0.125 2.40B 0.063 0.6300 4.330 0,000 1.135 0.231
120 0.9B2 0.398 0.125 2.408 0.063 0.6300 3.960 0.000 1.238 0.257
13 1.515 0.398 0.125 3.113 0.000 0.6300 4.770 0.000 1.724 0.209
138 0.435 0.398 0.125 3.113 0.000 0.6300 6.150 0.000 1.338 0.904
13C 1.687 0.398 0.125 3.113 0.000 0.6300 5.790 0.000 1.439 -0.248
130 0.317 0.398 0.125 3.113 0,063 0.6300 5.980 0.000 0.550 0.233
13E 0.768 0.39B 0.125 3.113 0.063 0.6300 3.940 0.000 1.120 0.352
148 0.716 0.398 0.125 4.161 0.000 0.5718 5.710 0.000 1.241 0.525
14C 0.435 0.398 0.125 4.161 0.063 0.5718 3.740 0.000 0.397 -0,037
140 1.258 0.398 0.125 4.161 0.000 0.5718 3.260 0.000 1.367 0.110
lqE 1.172 0.398 0.125 4.139 0.063 0.5729 2.770 0.000 0.683 -0.489
14F 0.716 0.398 0.125 4.139 0.063 0.5729 2.950 0.000 0.632 -0.084
15 0.435 0.398 0.125 6.225 0.000 0.5000 2.850 0.000 0.384 -0.051
158 0.596 0.39B 0.125 6.225 0.063 0.5000 2.110 0.000 -0.245 -0.840
15C 0.435 0.398 0.125 6.225 0.000 0.5000 3.010 0.000 0.340 -0.095
16 I.B58 0.398 0.125 2.594 0.000 0.6694 5.140 0.000 2.116 0.257
16A 1.687 0.398 0.125 2,594 0.000 0.6694 6.040 0.000 1.864 0.178
16G 1.515 0.398 0.125 2.594 0.000 0.6694 6.330 0.000 1.783 0.268
16C 1.515 0.398 0.125 2.594 0.000 0.6694 6.630 0.000 1.699 0.184
16E 1.172 0.398 0.125 2.594 0.000 0,6694 6.7B0 0.000 1.657 0.486
168 0.982 0.398 0.125 2.594 0.000 0.6694 7.180 0.000 1.546 0.564
16H 0.317 0.398 0.125 2.594 0.063 0.6694 7.130 0.000 0.724 0.407
16J 0.317 0.398 0.125 2.594 0.063 0.6694 6.930 0.000 0.780 0.463
16K 0.317 0.398 0.125 2.594 0.063 0.6694 6.730 0.000 0.836 0.519
I6L 0.768 0.398 0.125 2.594 0.063 0.6694 4.820 0.000 1.370 0.601
16N 1.687 0.398 0.125 2.594 0.063 0.6694 3.370 0.000 1.775 0.088
16N 2.202 0.398 0.125 2.594 0.063 0.6694 3.760 0.000 1.666 -0.536
16P 1.515 0.398 0.125 2.594 0.063 0.6694 4.230 0.000 1.534 0.019
17 1.687 0.398 0.125 2.007 0.000 0.6694 7.013 0.000 1.695 0.008
20C 1.429 0.398 0.125 2.594 0.000 0.6694 6.630 0.000 1.699 0.270
20F 0.861 0.398 0.125 2.594 0.063 0.6694 4.960 0.000 1.331 0.469
20H 1.086 0.398 0.125 2.594 0.063 0.6694 4.680 0.000 1.409 0.323
21 1.773 0.398 0.125 2.007 0.000 0.6694 6.630 0.000 1.802 0.030
21B 0.317 0.398 0.125 2.007 0.063 0.6694 6.890 0.000 0.894 0.577
21C 0.317 0.398 0.125 2.007 0.063 0.6694 6.600 0.000 0.975 0.658
210 1.343 0.398 0.125 2.007 0.063 0.6694 5.850 0.000 1.185 -0.159
24C 1.086 0,398 0.125 3.113 0.000 0.6300 5.800 0.000 1.436 0.350
24F 1.172 0.398 0.125 3.113 0.000 0.6300 5.880 0.000 1.414 0.242
246 0.982 0.398 0.125 3.113 0.063 0.6300 4.310 0.000 1.017 0,035
25 0.B16 0.398 0.125 4.161 0.000 0.5718 3.710 0.000 1.241 0.425
25A 0.523 0.398 0.125 4.161 0.000 0.5718 3.270 0.000 1.364 0.841
258 I,B5B 0.39B 0.125 4.161 0.000 0,5718 2.250 0.000 1.649 -0.209
25C 0.768 0.398 0,125 4.161 0.000 0.5718 2.590 0.000 1.554 0.7136
250 0.982 0.398 0.125 4.161 0.063 0.5718 1.620 0.000 0.990 0.008
27 0.435 0.398 0.125 3.220 0.000 0.5718 4.530 0.000 1.177 0.742
27A 1.172 0.398 0.125 3.220 0.000 0.5718 3.870 0.000 1.361 0.190
270
27C
27D
27E
27F
28
33
33B

1.172 0.398 0.125 3.220 0.000 0.5718 4.150 0.000 1,283 0.112
0.716 0.398 0.125 3.220 0.063 0.5718 3.680 0.000 0.579 -0.137
0.523 0.398 0.125 3.220 0.063 0.5718 3.080 0.000 0.747 0.224
0.659 0.398 0.125 3.220 0.063 0.5718 2.830 0.000 0.817 0.157
0.982 0.398 0.125 3.220 0.063 0.5718 2.540 0.000 0.898 -0.0B4
0.317 0.398 0.125 4.816 0.000 0.5000 3.000 0.000 0.589 0.272
1,721 0.342 0.125 2.408 0.000 0.6300 7.210 0.000 1.493 -0.22B
1.429 0.342 0.125 2.408 0.000 0.6300 4.850 0.000 2,153 0.724

ADP SNt 33BI 1.412 0.342 0.125 2.408 0.000 0,6300 5.260 0.000 2.038 0.626
AOP SMI 33C 0.904 0.342 0.125 2.408 0.000 0.6300 5.530 0.000 1.963 1.059
AOP GNI 34C 0.934 0.342 0.100 2.408 0.040 0.6300 5.490 0.000 1.884 1.050
ADP SHI 34CI 1.098 0.342 0.I00 2.408 0.040 0.6300 4.410 0.000 2.185 1.088
AOPSM1 34C2 0.730 0.398 0.100 2.408 0.063 0.6300 5.170 0.000 1.340 0.610
ADP SRl 35 1.343 0.398 0.125 2.223 0.000 0.7047 6.690 0.000 2.109 0.766
ADP SMI 358 0.659 0.398 0.125 2.223 0.063 0.7047 6.300 0.000 1.383 0.723
ADP SM1 35C I=687 0.431 0.125 2,223 O.OGO 0.7047 5.720 0.000 1.126 -0.561
BOEING O01A 1.790 0.431 0.125 1.924 0.000 0.6790 3.320 1.000 1.910 0.121
BOEING O01B 1.103 0.431 0.125 1.924 0.080 0.6790 3.280 1.000 0,B60 -0.243
BOEING O02A 2.545 0.398 0.125 1.924 0.000 0.6790 3.275 1.000 2.116 -0.429
BOEING 002B 1.103 0.39G 0.125 1.924 0.063 0.6790 3.255 1.000 1.2B6 0.183
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IHPACTTESTINGREGRESSIONDATABASE
Regression Analysis and Results

N(ang) TI^I/3 T2 LO6(8)/B HLItTI Dia*l/3 V,Cos^2 Tan N' Residual

1.700 0.271 0.020 3.184 0.000 0.5000 7.440 0.000 2.224 0.524
1.100 0.342 0.020 3.184 0.000 0.5000 7.560 0.000 1.776 0.676
1.900 0.271 0.020 3.184 0.000 0.5000 6.550 0.000 2.472 0.572
4.000 0.271 0.020 1.592 0.000 0.6300 6.000 0.000 4.2_6 0.236
5.000 0.271 0.020 2.796 0.000 0.6300 5.760 0.000 4.092 -0.908
1.100 0.271 0.020 5.592 0.000 0.5000 7.590 0.000 1.760 0.660
4.000 0.271 0.020 1.592 0.000 0.6300 6.250 0,000 4.166 0.166
2.000 0.271 0.020 5.592 0.000 0.5000 7.590 0.000 1.760 -0.240
2.000 0.271 0.020 5.592 0.000 0.5000 7.800 0.000 1.701 -0.299
2.000 0.271 0.020 3.184 0.000 0.5000 7.830 0.000 2.115 0.115
4.000 0.271 0.020 3.184 0.000 0.5000 1.400 0.000 3.911 -0.089
3.000 0.271 0.020 3.184 0.000 0.5000 3.140 0.000 3.425 0.425
3.000 0.271 0.020 3.184 0.000 0.5000 7.710 0.000 2.148 -0.852
1.000 0.271 0.020 6.761 0.000 0.5000 7.770 0.000 1.505 0.505
1.900 0.271 0.010 1.538 0.000 0.5979 5.030 0.000 2.315 0.415
2.400 0.271 0.010 1.538 0.000 0.5979 6.160 0.000 2.000 -0.400
4.000 0.342 0.020 1.908 0.000 0.6300 4.970 0.000 4.054 0.054
3.300 0.342 0.020 1.908 0.000 0.6300 5.790 0.000 3.825 0.525
4.300 0.342 0.020 1.908 0.000 0.6300 3.998 0.577 3.901 -0.399
4.100 0.342 0.020 1.908 0.000 0.6300 2.545 1.000 3.996 -0.104
3.300 0.431 0.020 1.908 0.000 0.6300 3.930 0.577 3.399 0.099
3.300 0.431 0.020 1.908 0.000 0.6300 2.635 1.000 3.450 0.150
3.400 0.543 0.020 1.908 0.000 0.6300 3.818 0.577 2.773 -0.627
4.000 0.543 0.020 1.908 0.000 0.6300 2.680 l.O00 2.780 -1.220
4.000 0.431 0.020 1.908 0.000 0.6300 1.310 1.732 3.282 -0.718
3.300 0.342 0.020 3.113 0.000 0.6300 4.020 0.577 3.684 0.384
4.700 0.342 0.020 3.113 0.000 0.6300 2.560 1.000 3.781 -0.919
4.000 0.342 0.020 3.113 0.000 0.6300 1.158 1.732 3.635 -0.365
5,000 0,362 0,020 3.817 0,000 0.6300 2,545 1,000 3.662 -1,338
4.000 0.342 0.020 3.817 0.000 0.6300 1.243 1.732 3.488 -0.512
3.800 0.342 0.020 1.908 0.000 0.6300 0.535 2.747 3.273 -0.527
4.000 0.342 0.010 3.817 0.000 0.5000 2.240 1.000 2.592 -1.408
3.000 0.342 0.020 3.817 0_000 0.5000 2.910 1.000 2.229 -0.771
3.000 0.342 0.040 1.908 0.000 0.6300 2.680 1.000 3.607 0.607
3.000 0.342 0.040 1.908 0.000 0.6300 2.665 1.000 3.611 0.611
5.100 0.271 0.020 1.908 0.000 0.6300 1.013 1.732 4.300 -0.800
2.000 0.342 0.020 3.817 0.000 0.5000 0.990 1.732 2.227 0.227
3.500 0.342 0.010 3.817 0.000 0.5000 1.045 1.732 2.388 -1.112
5.500 0.271 0.020 1.908 0.000 0.6300 2.270 1.000 4.487 -1.013
3.500 0.271 0.020 1.908 0.000 0.6300 1.373 1.732 4.200 0.700
3.500 0.342 0.020 1.908 0.000 0.6300 1.325 1.732 3.799 0.299
4.300 0.342 0.020 1.908 0.000 0.6300 2.760 1.000 3.936 -0.364
3.500 0.342 0.020 1.908 0.000 0.6300 1.303 1.732 3.805 0.305
3.300 0.431 0.020 1.908 0.000 0.6300 3.840 0.577 3.424 0.124
3.100 0.431 0.020 1.908 0.000 0.6300 2.605 1.000 3.458 0.358
3.600 0.431 0.020 1.908 0.000 0.6300 1.325 1.732 3.277 -0.323
3.300 0.543 0.020 1.908 0.000 0.6300 3.930 0.577 2.742 -0.558
3.600 0.543 0.020 1.908 0.000 0.6300 2.680 1.000 2.780 -0.820
5.100 0.271 0.020 1.204 0.000 0.6300 3.909 0.577 4.464 -0.636
6.100 0.271 0.020 1.204 0.000 0.6300 2.500 1.000 4.546 -1.554
4.300 0.271 0.020 2.796 0.000 0.6300 3.840 0.577 4.204 -0.096
3.800 0.271 0.020 2.796 0.000 0.6300 1.365 1.732 4.046 0.246
3.300 0.271 0.020 0.000 0.000 0.5000 3.975 0.577 3.325 0.025
4.500 0.342 0.040 1.908 0.000 0.6300 3.953 0.577 3.562 -0.938
4.900 0.342 0.040 1.908 0.000 0.6300 2.575 1.000 3.636 -1.264
3.600 0.342 0.040 1.908 0.000 0.6300 1.325 1.732 3.447 -0.153
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D180-30550-1

IMPACTTESTINGREGRESSIONDATA BASE

RegressionAnalysisand Results

N(ang) TI^I/3 T2 LO6(S)/DMLI*TI Dia^I/3V,Cos^2 Tan H' Residual

201A 1.858 0.342 0.125 2.408 0.040 0.6300 2.165 1.000 1.637 -0.221
2018 2.373 0.342 0.125 2.408 0.040 0.6300 2.755 1.000 1.472 -0.901
201C 1.086 0.342 0.125 2.408 0.040 0.6300 3.605 1.000 1.235 0.149
2010 1.944 0.342 0.125 2.408 0.040 0.6300 3.845 1.000 1.168 -0.776
202A 1.000 0.342 0.125 3.220 0.000 0.571B 1.765 1.000 1.542 0.542
202B 1.515 0.342 0.125 3.220 0.000 0.5718 2.150 1.000 1.435 -O.OBO
202C 1.858 0.342 0.125 3.220 0.000 0.5718 2.630 1.000 1.300 -0.558
2020 1.687 0.342 0.125 3.220 0.000 0.5718 3.250 1.000 1.127 -0.560
202E 1.000 0.342 0.125 3.220 0.000 0.5718 3.595 1.000 1.031 0.031
202F 1.258 0.342 0.125 3.220 0.000 0.5718 3.755 1.000 0.986 -0.271
203A 0.609 0.342 0.125 2.007 0.040 0.6694 1.152 2.145 1.553 0.944
203B 0.653 0.342 0.125 2.007 0.040 0.6694 0.655 2.145 1.692 1.038
203C 0.435 0.342 0.125 2.007 0.040 0.6694 0.486 2.145 1.739 1.304
2030 0.575 0.342 0.125 2.007 0.040 0.6694 0.99B 2.145 1.596 1.021
203E 0.738 0.342 0,125 2.007 0.040 0.6694 1.206 2.145 1.53B 0.800
203F 0.B61 0,342 0,125 1,720 0,040 0.7047 0.543 2,145 2,135 1,274
203E 1.086 0.342 0.125 1.720 0.040 0.7047 0.839 2.145 2.052 0.966
204A 1.343 0.342 0.125 2.408 0.000 0.6300 0.859 2.145 1.691 0.347
2048 0.912 0.342 0.125 2.408 0.000 0.6300 1.048 2.145 1.63B 0.726
204C 0.671 0.342 0.125 2.408 0.000 0.6300 0.768 2.145 1.716 1.045
2040 0.689 0.342 0.125 2.408 0.000 0.6300 0.568 2.145 1.772 1.084
205A 1.086 0.398 0.125 2.408 0.063 0.6300 2.100 1.000 1.022 -0.064
205B 1.172 0.398 0.125 2.40B 0.063 0.6300 2.310 1.000 0.964 -0.208
205C 1.429 0.398 0.125 2.408 0.063 0.6300 2.650 1.000 0.869 -0.561
2050 0.700 0.398 0.125 2.408 0.063 0.6300 3.210 1.000 0.712 0.012
205E 1.687 0.398 0.125 2.408 0.063 0.6300 1.575 1.000 1.169 -0.518
206A 1.343 0.398 0.125 3.220 0.000 0.5718 2.390 1.000 1.039 -0.304
2068 0.982 0.398 0.125 3.220 0.000 0.5718 2.545 1.000 0.996 0.015
206C 0.816 0.398 0.125 3.220 0.000 0.5718 2.700 1.000 0.953 0.136
2060 0.861 0.398 0.125 3.220 0.000 0.5718 1.845 1.000 1.192 0.330
206E 0.B16 0.398 0.125 3.220 0.000 0.5718 1.620 1.000 1.255 0.439
206F 0.768 0.398 0.125 3.220 0.000 0..5718 3.120 1.000 0.835 0.067
207A 1.086 0.398 0.125 2.007 0.063 0.6694 1.047 2.1¢5 0.949 -0.136
207B 1.034 0.39B 0.125 2.007 0.063 0.6694 1.156 2.145 0.919 -0.115
207C 0.653 0.398 0.125 2.007 0.063 0.6694 1.265 2.145 O.8BB 0.235
208A 0.705 0.398 0.125 2.408 0.000 0.6300 0.900 2.145 1.351 0.646
208B 1.172 0.398 0.125 2.40B 0.000 0.6300 0.782 2.145 1.384 0.212
20BC 0.982 0.398 0.125 2.408 0.000 0.6300 0.611 2.145 1.432 0.450
2080 1.000 0.39B 0.125 2.408 0.000 0.6300 1.006 2.145 1.322 0.322
208E 1.343 0.398 0.125 2.408 0.000 0.6300 1.157 2.145 1.279 -0,064
209A 0,722 0.398 0.125 2.408 0.063 0.6300 0.781 2.145 0.549 -0.173
2098 0.758 0.398 0.125 2.408 0.063 0.6300 1.143 2.145 0.448 -0.310
2090 0.753 0.398 0.125 2.408 0.063 0.6300 1.322 2.145 0.398 -0.355
2108 1.086 0.398 0.125 1.720 0.063 0.7047 1.013 2.145 1.371 0.285
210D 1.172 0.398 0.125 1.720 0.063 0.7047 1.259 2.145 1.302 0.130
211B 2.373 0.398 0.125 1.720 0.063 0.7047 2.940 1.000 1.674 -0.699
2110 2.373 0.398 0.125 1.720 0.063 0,7047 3.420 1.000 1.540 -0.834
212B 1.944 0.398 0.125 2.007 0.063 0.6694 3.190 1.000 1.192 -0.752
213A 1.879 0.431 0.188 1.924 0.000 0.6790 4.910 0.000 1.093 -0.7_
213B 1.068 0.431 0.188 1.924 0.000 0.6790 5.900 0.000 0.B16 -0.251
214A 0.767 0.342 O.IBB 3.612 0.000 0,6300 5.650 0.000 0.610 -0.157
2148 1.271 0.342 O.IBB 3.612 0.000 0.6300 4.674 0.268 0.686 -0.5B5
214C
2140
215A
215B
215C
2150
216A
216B
216C
217A
2178
21BA
2188

1.000 0.342 0.188 3.612 0.000 0.6300 4.830 0.000 0.839 -0.161
1.068 0.342 O.IBB 3.612 0.000 0.6300 4.850 0.000 0.834 -0.234
1.879 0.342 0.18B 2.5B0 0.040 0.7047 4.660 0.000 1.303 -0,577
1.338 0.342 0.188 2.580 0.040 0.7047 5.480 0.000 1.074 -0.265
0.693 0.342 0.188 2.580 0.040 0.7047 6.310 0.000 0.842 0.148
1.271 0.342 O.IBB 2.5B0 0.040 0.7047 6.160 0.000 0.884 -0.387
2.353 0.431 0.188 1.720 0.000 0.7047 3.050 1.000 1.177 -1.176
2.353 0.431 O.IBB 1.720 0.000 0.7047 3.285 1.000 1.111 -1.242
1.487 0.431 0.189 1.924 0.000 0.6790 3.480 1.000 0.757 -0.730
2.082 0.342 O.IBB 2.BB5 0.000 0.6790 3.325 1.000 1.153 -0.929
2.082 0.342 0.I88 2.885 0.000 0.6790 3.550 1.000 1.091 -0.992
2.082 0.342 0.188 2.580 0.040 0.7047 2.910 1.000 1.056 -1.026
2.082 0.342 0.188 2.580 0.040 0.7047 3.200 1.000 0.975 -1.107
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INPACTTESTINBREGRESSIONDATABASE
Regression Analysis and Results

N(ang) T1^1/3 T2 LOBI8)/D MLI*TI Oia^l/3 V,Cos^2 Tan N' Residual

218C
221A
2218
221C
2210
222A
2228
222C
226A
226B
226C
227A
2279
228A
2289
228C
2280
229A
2298
229C
230A
230B
230C
230D
230E
101
101A
I018
102
I02A
1029
I02C
I020
105
I05A
I058
106
I06A
I06B

2.082 0.342 0.188 2.5B0 0.040 0,7047 3.440 1.000 0.908 -1.174
0.694 0.342 0.125 3.220 0.040 0.5718 3.335 1.000 0.573 -0.121
0.602 0.342 0.125 3.220 0.040 0.5718 2.985 1.000 0.671 0.068
0.683 0.342 0.125 3.220 0.040 0.5718 2.310 1.000 0.859 0.177
0.689 0.342 0.125 3.220 0.040 0.5718 2.070 1.000 0.926 0.238
0.671 0.342 0.125 4.816 0.000 0.5000 2.B00 1.000 0.237 -0.434
0.677 0.342 0.125 4.816 0.000 0.5000 2.515 1.000 0.317 -0.360
0.635 0.342 0.125 4.816 0.000 0.5000 1.665 1.000 0.554 -O.OBO
2.760 0.317 0.I00 3.113 0.032 0.6300 2.240 1.000 2.183 -0.577
2.662 0.317 0.I00 3.113 0.032 0.6300 2.745 1.000 2.042 -0.621
1.782 0.317 0.I00 3.113 0.032 0.6300 3.400 1.000 1.859 0.076
2.664 0.317 0.063 3.113 0.032 0.6300 2.820 1.000 2.672 0.007
2.024 0.317 0.063 3.113 0.032 0.6300 3.625 1.000 2.447 0.423
3.304 0.317 0.063 2.486 0.000 0.6790 6.050 0.000 3.541 0.236
3,304 0,317 0,063 2,486 0,000 0,6790 6,750 0.000 3,345 0,041
1,541 0,317 0.188 2,408 0,000 0.6300 6.980 0,000 0,593 -0,948
1.271 0.317 O.IBB 2.408 0.000 0.6300 6.650 0.000 0.685 -0.585
0.715 0.431 0.188 1.924 0.080 0.6790 5.300 0.000 -0.077 -0.792
1.609 0.431 0.188 1.924 0.080 0.6790 3.070 0.000 0.546 -1.063
1.068 0.431 0.188 1.924 0.080 0.6790 3.560 0.000 0.409 -0.658
0.641 0.398 0.125 3.220 0.063 0.5718 2.205 1.000 0.256:0.385
0.538 0.398 0.125 3.220 0.063 0.5718 1.620 1.000 0.419 -0.119
2.030 0.398 0.125 2.408 0.000 0.6300 2.580 1.000 1.724 -0.306
1.858 0.398 0.125 2.408 0.000 0.6300 2.795 1.000 1.664 -0.195
1.515 0.398 0.125 2.408 0.000 0.6300 3.310 1.000 1.520 0,005
1.687 0.431 0.125 3.220 0.000 0.5718 3.094 0.000 1.385 -0.302
1.339 0.431 0.125 3.220 0.000 0.5718 3.696 0.000 1.217 -0.122
0.944 0.431 0.125 3.220 0.000 0.5718 4.270 0.000 1.056 0.113
0.944 0.431 0.125 2.007 0.000 0.6694 7.200 0.000 1.449 0.506
0.435 0.431 0.125 2.007 0.080 0.6694 5.350 0.000 0.905 0.471
0.317 0.431 0.125 2.007 0.080 0.6694 5.960 0.000 0.735 0.418
0.716 0.431 0.125 2.007 0.080 0.6694 4.740 0.000 1.076 0.360
1.000 0.431 0.125 2.007 0.080 0.6694 3.830 0.000 1.330 0.330
1.343 0.431 0.125 1.720 0.000 0.7047 1.755 1.000 2.647 1.304
1.343 0.431 0.125 1.720 0.000 0.7047 1.013 1.732 2.316 0.973
1.343 0.431 0.125 1.720 0.000 0.7047 0.261 3.732 1.055 -0.288
2.030 0.431 0.125 1.720 0.000 0.7047 3.420 1.000 2.182 0.152
2.116 0.431 0.125 1.605 0.000 0.7211 1.665 1.732 2.322 0.206
1.687 0.431 0.125 1.605 0.000 0.7211 0.451 3.732 1.190 -0.497

106-1 1.515 0.431 0.125 1.720 0.000 0.7047 1.700 1.732 2.124 0.609
106-2 1.000 0.431 0.125 1.720 0.000 0.7047 0.445 3.732 1.003 0.003
107 2.129 0.431 0.175 1.720 0.000 0.7047 6.800 0.000 1.093 -1.035

107A 1.653 0.431 0.200 1.720 0.000 0.7047 6.740 0.000 0.670 -0.982
1078 1.183 0.431 0.225 1.720 0.000 0.7047 6.820 0.000 0.208 -0.975
108 1.000 0.431 0.125 3.083 0.000 0.7047 6.850 0.000 1.720 0.720
109 0.659 0.431 0.125 3.220 0.000 0.5718 7.390 0.000 0.184 -0.475

109A 0.659 0.431 0.125 3.220 0.000 0.5718 4.060 0.000 1.115 0.456
1099 0.861 0.431 0.125 3.220 0.000 0.5718 3.610 0.000 1,241 0.379
I09C 0.904 0.431 0.125 3.220 0.000 0,5718 2.560 0.000 1.534 0.630
1090 0,816 0.431 0.125 3.220 0.000 0.5718 2.000 0.000 1.691 0.874

110 1.515 0.431 0.125 2.007 0.000 0,6694 7.130 0.000 1.469 -0.046
113 0.596 0.398 0.125 2.408 0.000 0.6300 0.795 1.732 1.684 1.088
IIIA 1.687 0.398 0.125 2.408 0.000 0.6300 1.600 1.000 1.998 0.311
114 0.944 0.39B 0.125 2.007 0.000 0.6694 0.835 1.732 2.147 1.204
II4A 1.687 0.398 0.125 2.007 0.000 0,6694 1.755 1.000 2.429 0.742
121-I 1.000 0.431 0.125 2.594 0.000 0.6694 6.730 0.000 1.478 0.478
121-2 1.721 0.431 0.125 2.594 0.000 0.6694 6.390 0.000 1.573 -0.146
135A 1.687 0.398 0.125 2.408 0.000 0.6300 4.448 0.577 1.513 -0.174
1358 1.086 0.398 0.125 2.408 0.000 0.6300 5.430 0.577 1.2_ 0.152
135C 1.601 0.398 0.125 2.408 0.000 0.6300 5.070 0.577 1.339 -0.262
1350 1.773 0.398 0.125 2.408 0.000 0.6300 5.198 0.577 1.303 -0.469
i35E 1.086 0.398 0.125 2.408 0.000 0.6300 5.483 0.577 1.224 0.138
136A 1.343 0.398 0.125 2.408 0.000 0.6300 2,056 1.4_ 1.555 0.212
136B 0.982 0.398 0.125 2.408 0.000 0.6300 2.402 1.428 1.459 0.477
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Appendix D - Test Specimen Hardware Drawings

The following drawings show the dimensions and configuration for test panels used in the

task 1 and task 2 test programs. Some task I panels are longer to permit impact at high incidence

angles. The task 2 panels were designed specifically for the mounting flange inside the large test

chamber used for effects of penetration testing.

D-1



5

D180-30550-1

-g _ _ W ,

- ,:5 d ,5 d

.< ,,< m "<

= n

t- e-

t_

o

t_

LU o

z__
zZ

_LU
z_
0_
_ ;.u l.U
_z
Z_
U._ O

O

¢'1

n"
"T"

U.I

U.I

,..1

n"

en

D-2 ,.- -



'q' CO _" 0 0

_ 0 03 0 CO C3 It') OO 0
• . 0 0 o _ _ _

-- 0 0 0 0 0 0 0 0 0

0

.,...

D180-30550-1

I--'1"
.o..o

,,_,w z

_x_

zz

z-_
wOO

m

r

0

m.

IN

0
t¢l

-I

£N

-.I

a.

w _

- ,,,0
..J

rr

D-3



I)-4



O

D180.-30550-1

• 0 0

m ,<

N •

'_ __ •"3

T

I
o
m.
(D

n

Z

O
Q

O
o.

o
m.
_D

on,-

u.lff)
._Jw

<ca.

<

• Q.. r,_
,,m,,,,z

_m

v W ,,._.

z_o
0,._, o_
_LulII

---_z
1.1.1a _

(5

u,.J

....J

n-
n-"

en
u.l

D-5



D180-30550-1

This page left intentionally blank.

D-6



Appendix E -
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Physiological Effects of Decompression

In our studies of module wall repair techniques, we have assumed in the worst case the

module would be evacuated and repaired later by a crew member in EVA equipment. We based

this assumption on the belief that inadequate time was available to locate the damage and perform

the repair before the module internal pressure decayed to hazardous levels. To examine the validity

of this assumption, we compared the pressure decay rate of a punctured module with capability of

unprotected crew at the various atmospheric pressure levels. This appendix is a summary of this

investigation, which was performed by a physiologist from the Boeing CrewSystem/Life Support

organization.
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PHYSIOLOGIC EFFECTS OF RAPID LOSS OF SPACE STATION NODULE PRESSURE

Donald H. Reid

Boeing Aerospace Company

In the event that Space Station is impacted by space debris or micrometeoroids

which actually penetrate the pressure-retaining hull, there are a number of
immediate consequences and concerns regarding safety of flight. Those of a

physiological nature are the subject of this paper.

If the "skin" of Space Station is punctured there will be an immediate out-
board rush of air from a pressure of approximately 14.7 psia (1ATA/

atmospheres, absolute), toward the near-vacuum of space. This phenomenon will
result in a "rapid" or "explosive" decompression with the pressure decay depen-

dent, in this case, upon the size of the opening and, of course, the ability

of makeup gases to maintain a habitable pressure environment for human occu-

pants, at least long enough to effect a repair. To the biomedical scientist,

"explosive decompressions" are those occurring in 1 second or less and are
extremely unlikely to occur in Space Station except in the case of complete

loss of a viewing window of approximately 20" diameter.

Rapid decompressions will have physical and physiological effects. The

primary physical events following perforation of the pressure vessel will be:

Noise, ranging from a swish to an explosive sound;

Flying debris, caused by the extremely rapid movement of air toward the

point of penetration, and
Fogging, due to a rapid decrease in both temperature and pressure.

Not all of these phenomena may occur, especially in the case of a situation
where the penetration is not over an inch in diameter and the decompression is

therefore relatively slow. These physical events can both help and hinder the

crew's ability to locate and repair the point of failure. The noise, flying

debris and fogging will be most pronounced in the immediate vicinity of the

puncture. On the other hand these consequences can obviously result in
impaired vision, temporary hearing shift (deafness), and injury from flying

objects. All of these effects depend upon the size of the opening and the
protection afforded by hardware within the module surrounding the orifice.

In discussing the physiological effects of decompression we will assume a
pressure differential of 14.7 psi (14.7 psia in module; vacuum outside Space

Station). The effects of primary concern are:

o Gas expansion (mechanical damage);

o Acute hypoxia (lack of oxygen to the tissues of the body);

o Decompression sickness ("bends"), and

o Hypothermia (reduced body temperature).

GJLS EXPANSION. During a rapid decompression gases within the body cavities
will immediately expand in accordance with the laws of physics and if the

escape of this gas from the body is impeded or blocked, excessively high

internal pressures can develop depending on the volume of the contained gas
and the elastic properties of the surrounding tissues and organs. This
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"trapped gas expansion" can occur primarily in body cavities such as the

middle ears, sinuses, gastrointestinal tract and lungs. The lungs are the

most vulnerable part of the body during a rapid decompression and many animal
studies have shown that, following rapid decompression, there have been

hemorrhages and evidence of mechanical damage to the lobes of the lungs.

Rarely, however, even in extremely rapid decompressions, have these lesions
been associated with detectable disability of the animals. All studies con-

ducted indicate that the healthy human can tolerate relatively severe decom-

pressions without apparent difficulty, providing the pulmonary airways are

open.

The human body contains water vapor and carbon dioxide in much higher

concentration than the surrounding environment. S_nce the body is approxi-
mately 80% water, at an internal temperature of 37 C the water vapor tension
is 47 torr. Carbon dioxide is a waste product of metabolism which normally

exerts a pressure of around 40 torr. Carbon dioxide is the primary chemical

regulator of respiration. As the metabolic rate increases and more CO 2 is
produced the organism compensates by breathing faster and deeper (hyper-

ventilation). When metabolism slows and CO 2 production decreases, so does
respiration. Therefore, at sea level where the total pressure is 760 torr

(14.7 psia), 87 torr is due to the presence of water vapor and CO 2, Exposure
of the human body to pressures below 47 torr (1 psia; 63,000 feet. altitude

equivalent), leads rapidly to vaporization of body fluids, a process known as

ebullisn. This phenomenon is rapidly fatal, since long before the blood

"boils" the body has suffered from a serious lack of oxygen (hypoxia).

The worst Space Station penetration case envisioned, an "explosive decom-
pression" [occurring in less than one second] due to a very large opening in

the module (20 inch diameter or greater), would be likely to have dire conse-

quences. The pressure delta of 14.7 psig would expose personnel to gases

expanding so rapidly that mechanical damage would occur (ebullisn).
Fulminating hypoxia provides no more than 20 seconds or less of "useful

conscious time" (effective performance time). Survival would only occur if

personnel could be evacuated within 2-3 minutes and immediately placed in a

recompression facility (hyperbaric airlock) for pressure/oxygen therapy.

HYPOXIA. Hypoxia is defined as a lack of oxygen to the tissues of the body.

Without going into great detail we know that for acute exposure, people

adapted to sea level require supplemental oxygen in their breathing medium at

pressures below approximately 10 psia (552 torr; 10,000 feet altitude equiva-
lent). The most dangerous aspect of hypoxia is that its symptoms are

insidious, not painful and may in fact induce euphoria (a false sense of well-
being). Therefore, hypoxia is not likely to be recognized by one suffering

from it, especially if they are extremely busy. Between 10-8 psia symptoms

will take a considerable time to develop and will affect primarily higher

mental functions. People may fatigue easily, feel tired, have lapses of atten-
tion and may feel irritable, or conversely, euphoric. At pressures below 8

psia symptoms develop more rapidly and in addition to mental aberrations there
may be motor effects such as tremor and twitching of muscles and possibly

inability to do reasonably simple tasks. The time when a person retains
consciousness at these pressures may be indefinite but his "useful conscious-

ness" is on the order of one-half hour at around 8 psia. At a pressure of
around 4 psia (200 torr; 30,000 feet altitude equivalent), "useful conscious
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time" is about one minute breathing ambient air. At pressures lower than 3

psia 100% oxygen alone will not prevent hypoxia and oxygen delivered under

pressure is required. Below 2 psia (87 torr; 50,000 feet), all of the lung is
occupied by water vapor (47 torr) and carbon dioxide (40 torr) and the indi-
vidual has less than 30 seconds to take action, since, in this case, oxygen

will actually be diffusing from the venous (deoxygenated) blood into the

ambient environment.

In the event of a space debris puncture, then, the crew identified to locate

and repair the hole will be equipped with supplemental oxygen which must be

utilized below 10 psia. Because of the likelihood of mental symptoms oxygen
should be utilized before the Station pressure has decayed to 10 psia. The

rate of decompression is important since during a slow decompression the body
can mobilize acute cardiorespiratory adaptations.

DECOMPRESSION SICKNESS. Another physiological disorder caused directly by

reduced barometric pressure is decompression sickness (DCS) or "bends". This

condition is an "evolved" gas problem caused by nitrogen moving from solution

as the pressure in body tissues to the gaseous state in an attempt to reestab-

lish equilibrium changes. Normally DCS does not occur at pressures greater

than 8 psia but recent NASA research indicates that nitrogen bubbles can be
detected in people decompressed from 14.7 to 9.5 psia. Therefore, we must
consider a risk, albeit small, from DCS at pressures as high as 9.5 psia with

the probability of these symptoms (joint pain; chokes; paresthesias)
increasing at lower pressures. Factors known to increase the incidence of DCS

in addition to absolute pressure include:

o Rate of decompression

o Duration of exposure to reduced pressures
o Exercise (more exercise, more bends)

o Amount of body fat (obese people more susceptible)

o Ambient temperature (cold more bends), etc.

The symptoms of DCS can be virtually eliminated by "denitrogenating"

(breathing 100% oxygen), which if continued long enough will eliminate over

50% of the nitrogen dissolved in body fluids and tissues. Space Station crews
habituated to the normal 14.7 psia module will have no opportunity to denitro-

genate in the event of a rapid decompression due to any cause. Therefore, the

possibility of DCS must be dealt with operationally, that is, when the DCS
risk gets high repair personnel should evacuate the damaged module. The "at

risk" pressure range exists between 9.5 and 4.4 psia and the "greatly at risk"

area at pressures below 4.4 psia.

The risk of bends to one or two crew members must be considered against the

seriousness of consequnces of not locating and repairing punctures to the

module hull. In other words, if not locating the failure would put the entire

Space Station in extreme danger, procedures more risky to individual health

might be employed. Even in this situation, however, there would be nothing
gained by exposing personnel to environmental stresses which would overwhelm

adaptive mechanisms and make normal performance impossible. In the situation

where Space Station contains a hyperbaric airlock capable of generating over-

pressures to at least 2.8 ATA, pain only decompression sickness is potentially
treatable and in this treatise we have therefore allowed the pressure to decay

to as low as 4 psia before mandating crew removal. If, however, there is no
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hyperbaric treatment capability, crew personnel should be removed fromthe

damaged module earlier, probably at 7.35 psia.

HYPOTHERNIA. Reduced body temperature due to extremely cold ambient tempera-

tures, although not likely to be a serious consequence of rapid decompressions
in Space Station, is an event which should be considered. The reduction in

module temperature depends on many factors but for small diameter penetrations
(2 inch hole or less), donning warm clothing should protect against hypo-

thermia becoming a major medical threat.

SUMMARY

A precise physiological scenario cannot be described for a rapid decompression

event in Space Station. Figure 1 shows likely physiological threats to crew

health plotted against time for a one-inch diameter penetration. However, a
module pressure slowly decaying to approximately 7 psia in 10 minutes or more

should pose no serious medical threat, if supplemental oxygen is available to

the crew personnel who will remain to locate and repair the damage and who
will don the emergency oxygen system as soon as the threat is recognized.

Between 9.5 and 7.4 psia decompression sickness (DCS) is possible but not

probable. At pressures between 7.4 and 4.4 psia the "possible" becomes
"probable" as the length of exposure increases and with other precipitating

factors operable. Below 4.4 psia the probability of DCS becomes so great

that, coupled with incipient hypoxia, personal safety considerations dictate

removal of the crew from the damaged module. Even with 100% supplemental
oxygen the repair crew should not remain in the module at pressures below 4

psia since even transient disruption of the oxygen supply could lead to

rapidly occurring hypoxia. Therefore, in a situation where module pressure

will decay from 14.7 to 7 psia the crew can be protected from hypoxia by
breathing supplemental oxygen via approved oxygen delivery systems and the

risk of DCS should not preclude attempting to locate and repair the puncture.

The decreasing pressures and temperatures, per se, should be easily tolerated

by healthy, experienced Astronauts. The risk of the two major physiological
threats, (hypoxia and decompression sickness), increase significantly at pres-

sures between 7-4 psia and to unacceptable levels below 4 psia.
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LEGEND FOR FIGURE 1.

PHYSIOLOGICAL THREAT FROM SPACE DEBRIS PENETRATION

The assumption is that one Space Station module is penetrated by a 1 inch

diameter hole caused by space debris or a micrometeoroid. With no make-up gas

to maintain a 14.7 psia pressure the pressure will decay from 1ATA to 4 psia
in approximately 40 minutes. If operational considerations require location

and repair of the puncture via IVA the following points are relevant to the

physiological safety of the crewpersonnel. (Safety requires that at least two
experienced personnel should remain together):

0 If supplemental oxygen in "walk-around" configuration is available

with duration of at least 1 hour, crew can work IVA until pressure
decays to 4 psia, IF:

Symptoms of decompression sickness (DCS) do not Occur. DCS will

not occur at pressures above 9.5 psia but become more likely as

the pressure goes below approximately 7 psia. Therefore, the

most hazardous zone for DCS symptoms is any pressure below 7
psia. Time of exposure, increasing physical activity, decreasing
temperature and various individual characteristics will affect

probability of DCS symptoms.

0 Expanding gas trapped within the body may cause discomfort but will

not pose serious medical/operational threats if proper clothing is
available.

Decreasing temperatures due to reducing pressure and/or loss of ECLSS

heating probably will not pose serious medical/operational threats if
proper clothing is available.

VACATE MODULE AT 4 PSIA OR ABOVE! -- Personnel should vacate

isolated, damaged module by the time an absolute pressure of 4 psia
is attained because even 100% oxygen cannot prevent symptoms of
hypoxia.

Serious DCS symptoms will dictate immediate evacuation of module,

regardless of pressure level, to the normal Space Station pressure

and may require hyperbaric therapy for treatment of bends.

This is a high risk scenario physiologically because of the possibility of DCS

which increases dramatically from 9.5 psia to 4.0 psia and the certainty of
hypoxia in the event of oxygen system malfunction or even transient disruption
of the oxygen supply.

Conservative policy would be to immediately clear a damaged, isolatable module
of personnel as soon as the risk is identified.
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Appendix F - Effectiveness of Composites as
Meteoroid/Debris Shields

Composite materials are emerging as viable spacecraft constituents because of their high

strength and low weight. The amount of test data available on composite plates is scarce, though

interest in using composites continues. The following is a theoretical assessment of composite

materials as hypervelocity impact shields.
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THE EFFECTIVENESS OF COHPOSITES AS METEOROID/DEBRIS SHIELDS

Michael D. Bjorkman

Boeing Aerospace Company

The effectiveness of a meteoroid/debris shield is dependent on the degree to

which it fragments and spreads the meteor or orbital debris particle. A quick

approach to ranking the effectiveness of shield materials uses the following

simple qualitative argument.

The degree of meteor/debris (hereafter referred to as projectile) fragmentation

is dependent on the magnitude of the stress and motions induced in the projec-
tile by the impact with the shield. This in turn is dependent on the compres-

sibility of the target material. If the target material is rigid then the pro-

jectile will stagnate at the target plate producing large stresses and radial
motions in the projectile. If the target plate is very compressible then the

target plate will deform around the projectile producing little stress and
radial motion within the projectile.

The curve describing the shock compressibility of the target material under
uniaxial strain shock waves is called the Rankine-Hugoniot curve (or R-H curve).

Several collections of R-H curves have been published. The R-H curves for the

shock pressure amplitude and the shock particle velocity amplitude (called

p-u R-H curves) for several materials are shown in the figure and have been

abstracted from reference 1 and 2. Also shown in the figure is the p-u R-H
curve for an aluminum projectile traveling at 8 km/s. The intersection of the

projectile and target p-u R-H curves gives the stress and particle velocity

amplitude of the shock wave driven into the target and the projectile by the
impact.

One notes from the figure that the shock compressibility of graphite-epoxy 3 is

less than that of aluminum and thus graphite-epoxy is expected to be a less

effective shield than aluminum. This conclusion is born out by recent ADP gas

gun tests which show graphite-epoxy shields do not spread out the projectile
fragments.

The same conclusion on the relationship between shield effectiveness and shock

compressibility was made in reference 4, a study of projectile materials prop-
erties important to defeating a shielded targets by hypervelocity impact. The

material properties studied in reference 4 were density, melting temperature,

toughness, liquid metal surface tension, and shock compressibility. In reference
4 it was concluded that out of the five material parameters studied shock com-

pressibility had the strongest correlation with effectiveness.

F-2



D180-30550-1

The authors of reference 4 further concluded that the optimum shield material

would combine small shock compressibility (for fragmenting the projectile) with

small density (to minimize perforation of the shielded plate). Even though
graphite-epoxy satisfies the second condition for small density, the recent ADP

tests indicate graphite-epoxy is too compressible under shock loading to meet
the first condition required for spreading the projectile fragments.

Even though the whole story on shield effectiveness is not given by the figure,
the shock compressibility has been shown to rank the effectiveness of shield

materials. Therefore, on the basis of this criterion it is concluded that

aluminum is a more effective shield material than graphite-epoxy composites.
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Appendix G - Mathematical Derivations of Analysis
Method

The following derivations provide rigorous mathematical support for our approach to

analyzing Space Station structure as implemented in the BUMPER computer code. The BUMPER

implementation is described in section 7.0.
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Space Station Penetration Probability Model

Revised Version: April 15, 1987

Fritz Scholz

Boeing Computer Services

Introduction

To protect a space station from penetration by debris particles orbiting

the earth and from penetration by meteoroids various designs for the outer

hull of this space station are under consideration. It is desired to choose a

design that will keep weight requirements low and will give effective protec-

tion against such penetration. The purpose of the following analysis is to

develop a measure of effectiveness for a given design. This measure is the

probability that the exposed surface hull area of the space station will not

be penetrated by any debris particle or meteoroid during a mission time of

duration T.

The reason for making a probabilistic assessment of effectiveness is a

consequence of the fact that the arrival time, velocity, striking angle and

diameter (mass) of any given particle or meteoroid is variable and unknown

and can at best be described only statistically.

Due to the difference in character of meteoroids and orbital space de-

bris separate models are developed for each, although some similarities lead

to repetition in the exposition. The vulnerable surface area of the space

station is decomposed into manageable flat surface elements and the prob-

abilities of no penetration are developed separately for each such surface

element. In the final section all these probabilities are integrated over all

the surface elements and over the two risk factors (debris and meteoroids).

Before going into the two respective probability models it appears justi-

fied to clarify certain notions of flux as they pertain to the isotropic nature

of meteoroid flux and the highly directional flux of space debris.

Isotropic Flux

One way of defining isotropic flux is by the average number Fsp-M,t(m)

of meteoroids of mass > m that will pass through a sphere with cross section

area 7rr 2 = 1 in unit time where the direction vectors of the meteoroids
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are equally distributed over all orientations in 3-dimensional space. Using

the sphere ensures that the exposed area perpendicular to any incident

meteoroid will always be a unit area.

To make this more precise and to relate it to another flux notion consider

a fixed coordinate system with y-axis pointing in the space station flight

direction, z-axis pointing radially away from earth and x-axis perpendic-

ular to the previous two in the usual orientation so that the (x, y)-plane

forms the tangential plane of the space station. Consider this coordinate

system fixed at some point in the space station orbit. In this coordinate

system describe the direction of an incoming meteoroid by the unit vec-

tor k = (sin(0)sin(a),cos(0)sin(a), cos(a)) with polar angles a E [0,_r]

and 0 E [0,27r). At this point any earth shadowing effectsare ignored.

Describing the density of (a,0) by

vCa,0)= sin(a) ixi0,.iCa)Xto,2. CS)

(using Is(z) = 1 if x e B and Is(z) = 0 otherwise) entailsthat the

corresponding directionsof k - k(a, 0) willbe equally distributedover the

unit sphere centered at the originof the coordinate system. Here "equally

distributed" means that the relativefrequency with which k points in the

direction outlined by the patch (a, a+da) and (0, O+dO) on the unit sphere

is just the area of that patch over the total surface area 4_r of that unit

sphere. Note that the area of that patch is dO da sin(a) and dividing this

by 4_r yields p(a, 0) da dO.

The above flux isotropy is then interpreted to mean that the flux inten-

sity in direction (a,0) is p(a,O)Fov_Met(rn ) or the expected number of me-

teoroids of mass _> rn passing perpendicularly through a unit area in a unit

time from direction(a,a + da) and (0,0-fdO) isF,p-M,t(rn)p(a,O) da dO.

The totalflux F_v_Met(m ) isrecovered by integratingthis infinitesimaldi-

rectionalfluxover allpossible directions.

In thiscontext a relatedbut differentnotion offluxshould be mentioned.

This flux, the flat plate flux and denoted by F/p-Met(m), is the average

number of meteoroids of mass _> rn that hit the upside of a flat plate of

area 1 in unit time from any direction. It turns out that the relationship
between these two fluxes is

F_p-M_(rn) = 4 Ffp-Met(m) .
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This is seen by considering the unit flat plate lying in the (x,y)-plane

with the upside facing in the z-direction and integrating the infinitesimal

directional flux over all directions and accounting for the fact that the

directional aspect of that unit flat plate is [cos a] +. Here [x] + = x if x > 0

and Ix]+ = 0 otherwise, so that [cos(a)] + = 0 if a 6 (Tr/2,r]. Hence

= f0 f[ [cos@]+ O)da d8

fo 1 sin(a) dad8 = 1= 2,_ [,:/2 cos(a) F,p-Ma(m) 2_r 2 _ F,p-Ma(m).
JO

Another way of seeing the factor 4 in the above flux relationship is by again

considering the sphere with cross section rr 2 = 1, i.e. with surface area

4_rr 2 = 4, and decompose that surface area into many disjoint infinitesimal

flat plates with area dS, so that

Fop-Ma(m) = [ F.tp-Ma(m) dS = 4F!p_Ma(m ) .
.Is phere

It is worth pointing out that for isotropic flux and in the absence of

any shielding the orientation of the flat plate makes no difference. Hence

the flat plate can also be considered as a randomly tumbling plate and

FIr_Ma (m) thus also represents the average number of meteoroids of mass

>_ rn that hit the designated upside of such a tumbling flat plate of area 1

in unit time with any incidence direction.

Relating this to [ll the following identifications can be made. The "in-

tegral flux N" given on page 74 of [1] is the same as the above fixed plate

flux Ffp-Ma(m) and the "directional flux" j given on the same page of [1]

is equivalent to F,p_Ma(rn)/(47r), i.e. the above defined "isotropic flux" per

steradian.

Orbital Space Debris Flux

Orbital debris particles pose a threat to the space station only if they

orbit at the same distance from earth as the space station. Such particles

and the space station therefore share the same absolute velocity v0. If

Vs and VD denote respectively the space station velocity vector and the

velocity vector of some orbital debris particle then the relative velocity

vector of the debris particle (relative to the space station) VDS = VD -- VS
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forms the angle 0 with the space station flight direction. The magnitude of

the relative velocity vDs is IVz_s] = 2v0 cos 0. This is the effective absolute

velocity with which such a debris particle will hit any exposed area of

the space station. The angle 0 that the incident debris particle can form

with the space station flight direction can vary from -1r/2 to _r/2 and the

frequency with which those angles occur is not uniform or isotropic over

this range.

To describe and define the debris flux consider the following space sta-

tion based (z, y, z) coordinate system with the positive y-direction pointing

in the direction of flight of the space station, the positive z-direction point-

ing radially away from earth and the x-axis forming the other axis in the

orbital tangential plane. Consider now a cylinder with base radius r = 1/2

and height h = 1 with its base standing on the (z, 9)-plane. Then any de-

bris particle flying in or parallel to the (z, y),plane will view this cylinder

as a square with area 1. The definition for the debris flux FDe_(d) paral-

lels that of F,p_Ma(rn) as follows. FD_(d) is the average number of debris

particles of diameter _> d that will pass through that cylinder with cross

section area 2r h = 1 in unit time. The angles of the incoming debris parti-

cles are distributed over the interval [-_r/2, _r/2] according to some density

w(0), so that FDeb(d)w(O) dO represents the average or expected number of

debris particles of diameter _> d, with direction angle [0, 0 + d0] which pass

perpendicularly through a unit area in a unit time.

As in the ease of meteoroid flux there is a corresponding notion of

flat plate debris flux. Here it will matter whether that flat plate is fixed,

rotating or randomly tumbling. The following makes these various debris

flux relationships explicit.

Fixed Plate Flux: Consider a fixed flat plate in the above Cz,9,z) -

coordinate system. Assume that this flat surface element, denoted by A,

has area IAI and unit normal vector nA pointing to the designated out-

side of that fiat plate. The angle that the relative velocity vector Vos of

the incoming debris particle forms with nA is denoted by/_ =/3(0). The

functional form of fl(0) is described by

cos(/_C0)) = sin(_b) cost0 - q_).

where _b and _b are the angles of the polar coordinate representation of
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nA, i.e. the normal vector nA forms the angle _b with the z-axis and the

projection of this normal vector onto the (z, y)-plane forms angle q_ with

the y-axis.

The area A has an exposed projection IAl[cos(/_(0))] + onto the plane per-

pendicular to the direction of the incoming debris particle. The [ ]+

accounts for the fact that particles can only hit the outside of A. Hence the

expected number of particles, with diameter _> d, hitting A from a direction

[8, 8 + dS] during a unit time interval is

lal [cosCnC0))l+F_,bCa)_CO)aO

and summing this over all possible angles 0 one obtains

IAIF_.bCd)['/' [cosCnC0))l+_C0)d0
J-f/,

= lal F_,_ca)"/"/__-./, [sinCe)cosC0-_)]+_(0)a0

= IAIF_,,bCa)since) [=/2_--/' [cos(0- _)]+_(0)a0
as the average number of particles of diameter > d which hit the outside

of A from any direction during a unit time interval. Note that this fixed

plate flux is highly dependent on wOO) and on the orientation C¢, _b) of the

fixed plate.

To further illuminate the relation between fixed plate flux and FD,.b(d)

consider again the cylinder in the definition of F.o,t, Cd). Decomposing the

outside mantle of this cylinder into vertical fiat plate strips of height 1 and

width dd_/2 (note r = 1/2), i.e. with area lal = a¢/2, then the integrated

flux overall these fiat plate strips is (using ¢ = 7r/2, i.e. since) = 1)

£'= f"/' [cos(O-,)1+ (o1do
J -_r/2

fo [cosCO- ,/,)]+d,/,,,,CO)do2 J--_r/2

2 ,,,CO)do= F_,,(d)
J-x/2
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which coincides with the definition of the debris flux. This should not be

surprising since what goes through the cylinder has to pass through its
mantle and vice versa.

Rotated Plate Flux: If the above plate A is rotated around the z-axis

then the average number of particles hitting this area A is further averaged

over the polar angle _b of the normal vector nA and one obtains

IAI F_Cd) sin(_b) ['/_ 2, 1,-./_ fo _ [co_CO- _)]+a_ wCO)a0

f.l_ i w(O)dO= lal F_._Ca)sin(_) 1= IAIF_._(a) sin(_) J--/, 7 ¥

which represents the average number of particles of diameter > d hitting

the area A during a unit time interval while it rotates around the z-axis.

Note that the rotated plate flux is independent of w (0).

Tumbling Plate Flux: If the above fixed plate tumbles so that it exposes

its outside surface toward any direction with equal frequency then the fixed

plate count should be averaged uniformly over all spherical directions, i.e.

over all polar angles (_b, q_) with joint density:

1 1/_ .g(_,_) = _ sinC_)Xto,.]C_)_ to,_-)C_)

Hence this average tumbling plate count is

lsin2(_) [.I, ,,r 1 [cos(O__b)]+ddpw(O)dOd_b

= lal F_,.,Ca) sin_C_)

Again note the tumbling flux no longer depends on the angle density

w(O). Because of this angle independence it is convenient to report the

debris flux in terms of the tumbling plate flux. However, it should be

realized that there is a factor 4 difference between the flux of a tumbling

plate of area 1 and the original definition involving a cylinder of cross
section area 1.
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Probability Model for Penetration by Meteoroids

Consider a specific (approximating) fiat surface element A ° that is ex-

posed tobeing hit by a meteoroid. Denote its area by IA°[. It seems

reasonable to model the succession of meteoroids that will hit A ° as a ran-

dom process. In fact, it is appropriate to model the arrival process (of the

meteoroids at A*) as a homogeneous Poisson process with some intensity

),.

Depending on its velocity, mass and impact angles such a meteoroid

may also penetrate the surface element .4'. Since the objective is to derive

a formula for the probability of no penetration, it is necessary to model the

velocity, impact angles and mass of each incident meteoroid. This leads to

a so called marked Poisson process as the appropriate vehicle for analysis,

see [21, [3].

Before going into the probabilistic description of such a process let us

discuss the characteristics of the incident meteoroids. The i t_ incident

meteoroid arrives at time Wi and has absolute velocity V/, mass M_ and

polar coordinate incidence angles (o_, 0i) as introduced in the section on

isotropic meteoroid flux. Here it is assumed that the (z, y, z) coordinate

system is fixed on the moving space station. The effect that this motion

has on the meteoroid isotropy assumption is ignored.

The meteoroid characteristics (V_,MI, c_,0_) may be considered as in-

dependent and identically distributed random vectors. Within each such

vector it is further reasonable to assume that all four components are in-

dependently distributed (ignoring any shadow effects at this point and also

neglecting the fact that the space station is a moving target). Thus let Vi

have density q(v), let M_ have density h(ra), O_ be uniformly distributed

over [0,2_r) and _ may have density sin(a)/2 on the interval [0, 7r]. The

joint density of (a, 0) is designed to assure that all meteoroid incidence di-

rections k = k(a, 0) relative to the space station are equally likely. (This

joint distribution of (a, 0) would be somewhat distorted from the given one

if the moving target effect were accounted for.) Of the two densities q and

h only q can be assumed as given directly. Information about h is given

only indirectly through the flux quantity Fsp-Ma(m).

Thus (Az sin(_o)/2) (A_/2_r) F,p-Ma(m) represents the (time) average

number of meteoroids of mass >_ m which, in a unit time, pass perpendicu-

larly through a unit area whose normal vector points in the direction (_, 0),
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with a 6 [c_0, a0 + ml], 0 C [00,00 + m2],

Although (a, 8) describes the direction of the meteoroid relative to the

space station coordinate system it is essential to introduce the plate specific

incidence angle/9 =/9(a, 0) =/9(a, 0,_b, qt) which is the angle formed by the

directionvector k = k(a,8) = (sin(0)sin(a),cos(8)sin(a), cos(a)) of the

meteoroid and the normal unit vector nA. = (sin(_b)sin(_b),cos(_b)sin(_b),

cos(g)) of the plate. The inner product of these two vectors yields the

cosine of ./9as

cos(/9)= sinCe)sinCa)Ccos(_- 0) - Z) + cos(_ - a).

Using the above plate specificincidence angle 19a criticalpenetration

mass as a function of/9 and v isgiven as follows

M,,_, = _k' (/9, v),

so that the i th incident meteoroid penetrates A* if and only if Mi >

v,).
The probabilistic structure of the marked Poisson process is specified

through an intensity function A. Here ), is a function defined on a subset

S of R 5 with values in [0, co). For the application at hand the following

specification is appropriate:

sin(a)z zt0,=.)Ce)xt0..iCa) hCm)= ao(/9)xt0,oo)Ct) 2

Here S = [0, oo)× [0,_r]× [0,21r)× [0,oo)× [0,oo) and t is the time variable

referring to the arrival times of meteoroids. Note that in the above specifi-

cation of the intensity A the variables cz,8, v, m appear individually factored

which reflects the previously discussed independence of these characteris-

tics. However, the time intensity A0(/9) of the Poisson process does depend

on (a, 0, _b, _b) through/9 =/9 (a, 0, _b, q_). This reflects the fact that at differ-

ent angles/9 different amounts of the surface area A* are (perpendicularly)

exposed to the direction of the flux as given by (a, 8).

The marked Poisson process with intensity A is a point process {N(C) :

C C S} such that:

• N(C) has a Poisson distributionwith mean or expected value

= [ A(t, c_, 8, v, m) d(t, a, 8, v, m)
JC
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and

• for any k and for disjoint C1 ,..., Ck C S the random variables

NCC1), ..., NCCk) are independent.

Here N(C) represents the random number of points (incident meteoroids)

with characteristics (t, a, 0, v, m) in C.

In order to establish the relationship between h(m) and Fap-Ma(m)

consider the following set Co of characteristics:

Co = {(t,a,0,_,m) e s: t < T, _ e [_o,_o+ZX!],0 e [0o,0o+A2],m > too}

then N(Co) represents the random number of incident meteoroids which

are counted during time span T, which are of mass >_ mo and which have

incidence angles a e [no, no + Ax] and 0 G [0o,0o + A2].

Then the expected or average value of N(Co) is

f o [.o+,, [,,o+,,2,xoC, )' sinCa)dodaE(N(Co)) = I_(Co) = h(m) dm T
o _ ao J eo 27r 2

(ao)ZXlAsin(_o) 1_(m0) r_0 2 2_

where H(rn) = 1 - "H(rn) is the cumulative distribution function of h and

#o = _(_0,0o,¢,¢) •
On the other hand the average number of meteoroids of diameter >_ rno

that hit A* from direction Ca, O) with a e [ao, ao + Az] and 0 • [00,00+ A2]

during time span T is approximately

A A sin(no) 1
1 _ _ 2_ Y,,,-_r,,(mo)T IA'I [cos(_o)]÷ ,

where IA*I [cos(#o)]+ is the projection of the outside area of A* onto the

plane perpendicular to the direction rio. That projection is the effective

area that the meteoroids will pass perpendicularly when they hit A* at

angle rio.

Combining the two previous flux equations yields

H(mo) ),o (flo) = Fn,_Ma(mo)I _'A*'I tcostflo)jr{ 1+ .
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Differentiating this with respect to m0 would yield a corresponding rela-

tionship for h.

It is of interest to compute the quantity Z(N(C(mo))) = I_(C(mo)),

where C(mo) = {(t,_,8,v,rn) 6 S :t<_T, rn >_rno}. Then

I._(C(mo)) = "-H(rno)T fo r f0'rAo(/5)sin_(a) 1 dO da21r

fo" fo '_" sin(_,) 1 dO d,_= T Fo,,-M,,(mo)IA'I [c°sC_C_'e))]+ 2 2_

/o" /o" sin(a) 1 dO da= T F,,,_,,,,,Cmo)IA'I [c°sCa)l+ 2 2_

1 T IA'I Fo,-Ma(mo),
4

where the above change of variable from/_(a, 8) to a utilizes the rotational

symmetry of the uniform distribution over the sphere. The above equation

thus reiterates the earlier relation between the isotropic flux Fsp_M,,t(m )

and the flat plate flux F fp_Ma(rn ).

With the above marked Poisson process in place the following filtered

marked Poisson process is the natural vehicle for finding the probability of

no penetration. Let B be a subset of B0 = [0, 2_r) × [0, 7r]. B defines the set

of incidence angles (a, 0) which are at all possible, i.e. are not shaded out

by the earth or the space station. Define the following derived or filtered

intensity:

_'(t, ,,,o, _,m) = x(t, ,,,o, _,,,,)z_C_,O)z_Cm,Z(,,,o), _),

where Q = ((_,_,,,) : .., >__¢'(_,,,)}.
Let {N*(C), C C S} be the corresponding point process with intensity

A*. N' (C) counts the number of meteoroids with characteristics in C which

are feasible (no blocking) and which penetrate the surface A*. Let C ° =

{(t, _, 0, v,m) 6 S: t <_ T} then N'(C*) counts the number of penetrations

of A" during time span T and the probability of no such penetrations is

PCN'(C*) = 0) = exp(--_(C')),

where

_(C') = fc" A'(t, oqO, v,m)d(t, oqO, v,m)
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ff fo °° 1 sin(a)--T 2_ 2 qCv) HC¢'(_,_)) _0(_) d,, d_ dO

oo sin(a)
= T IA*I//B fo 4_" [c°s(fl)]+ F'p-M't(¢*(fl'v))q(v)dvd_dO =: A*T

which reduces to

f[ fo since)[cos@l+= TIA'I

when B = B0, i.e. when there is no shadow effect. Here again use was

made of the isotropy when changing from/3 to a in the above integration.

Hence expC-l'T) represents the probability of no penetration of A' by

meteoroids during the time span T.

Probability Model for Penetration by Orbital Debris

Consider a specificsurface element A of the space station that may

be hit by orbiting debris (i.e.isnot in the shadow of other parts of the

space station). Using the notation introduced in the section on orbital

debris fluxrecallthat the relativevelocityvector VDS of a debrisparticle

forms an angle 8 with the space station flightdirectionand has relative

impact velocity v(0) = = cos(0). Further, the angle _(0) that

the incident debris particleforms with the normal vector of the surface

element has cosine

cos(/3(0))= sin(C) cos(0 - ¢).

As in the previous sectionitseems reasonable to model the succession of

debrisparticlesthat willhit A as a random process. Again itisappropriate

to model the arrivalprocess of the particlesas a homogeneous Poisson

process with some intensity_.

Depending on the velocityv(0),impact angle/3(0)and size(diameter) of

the particleitmay alsopenetrate the surface element A. Since the objective

isto derivea formula for the probabilityof no penetration itisnecessary to

model not only the arrivalprocess ofthe particlesbut alsotheirconcomitant

impact angles/3(0), velocity v(O) and diameter D. Equivalently one may

track the angle 0 and diameter D for each arriving particle. This leads

again to a so called marked Poisson process as the appropriate vehicle for

analysis.
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Before going into the probabilistic description of this process let us dis-

cuss the characteristics of the incident particles. The i th incident particle

arrives at time Wi, has diameter D/ and its relative velocity vector forms

angle O_ with the flight direction of the space station. Here the character-

istics (Di, 0/) may reasonably be considered as independent and identically

distributed random vectors. Within each such vector it is further reason-

able to assume that Di and Ol are statistically independent of each other

with respective densities h(d) and w(O). The density w(O) can be assumed

as given explicitly whereas the density h(d) is given only indirectly through

the flux quantity FD,b(d).

Also given is the critical penetration diameter as a function of v = v (0)
and/9 = tiC0), i.e.

D.., = OCt,a),
so that the e h incident particle penetrates A if and only if D/> ¢CvC81),#(8,))

and 0 < fl(Si) < r/2. The latter inequality expresses the fact that the-par-
ticle must hit the outside of the surface.

The probabi!istic structure of the marked Poisson process is specified

through an intensity function )i. Here ), is a function defined on a subset

S of R s with values in [0, co). For the application at hand the following

specification is appropriate:

),(t,a,d) = _oCa)Zto,co)(t)w(#)h(d ) .

Here S = [0, co) x [-Tr/2,z'/2] × [0,co} and t is the time variable refer-

ring to the arrival times of the particles. Note that w(#) and h(d} appear

individually factored which reflects the previously discussed independence

of the characteristics 8 and D. The factor ),0(8) models the arrival time

intensity of the Poisson process as a function of #. This takes into account

the fact that the surface element A only exposes a fraction of its outside

surface perpendicularly to the stream of particles coming in at angle 8.

The marked Poisson process with intensity ), is a point process {N(C) :

C C S} such that

• N(C) has a Poisson distribution with mean

= fo A(t, O, d) d(t,O, d)

and

G-13



D180-30550-1

• for arty k and for disjoint Cz ,..., Ck C S the random variables

N(Cz), ..., g(ck) are independent.

Here N(C) represents the random number of incident debris particles with

characteristics (t, 0, d) in C.

In order to establish the relationship between h(d) and FD,b(d) consider

the following set Co of characteristics:

Co= {(t, 8,d) 6 S :t < T,8 e [0o,8o + A],d> do},

then N(Co) represents the random number of incident debris particles which

are counted during time span T, which have diameter >_ do and which have

angle 8 6 [8o, 8o + A]. Then the expected or average value of N(Co) is

-- _* _oo f$O÷ AECN(Co)) _(Co) T h(=) d= _o(O)_(0) dO
o .10o

where H(d) = 1 - H(d) is the cumulative distribution function of h.

On the other hand the average number of debris particles of diameter

_> do that hit A with incidence angle 8 6 [8o, 8o + A] during time span T is

Lx_C0o)F_,_Cdo)T IAI[cos_C0o)]÷,

where IAI [cos_(eo)]÷ is the projection of the area A onto the plane perpen-

dicular to the direction/_(eo). That projection is the effective area that the

debris particles will pass perpendicularly when they hit A at angle/_(80).

The factor A w(80) indicates that only that part of the flux is operative at

the angles O E [O0, eo + A].

Combining the two previous equations yields

_(do) _oC0o)= F_,ddo)IAI [cos#(Oo)]+.

Differentiating this with respect to do would yield a corresponding relation-

ship for h.

With the above marked Poisson process in place the following filtered

marked Poisson process is the natural vehicle for finding the probability of

no penetration. For this purpose define the derived or filtered intensity:

,_*(t,O,d) = _(t,O,d)IQ(d,8) IB(8) ,
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where Q = {(d,8) : d > ¢(v(0),/3(0)} and B is some subset of [-lr/2, r/2]
indicating those directions 0 against which the surface element A is not

shielded.

Let {N*(C), C C S} be the corresponding point process with intensity

)¢. N ° (C) counts the number of debris particles with characteristics in C

which penetrate the surface element A. Let C* = {(t,O,d) E S : t <_ T}

then N*(C °) counts the number of penetrations of A during time span T

and the probability of no such penetrations is

PClv'Cc') = 0) = _xpC-,Cc')),

where

I_(C*) = fo. ,_'(t,O,d)d(t,O,d)

= fo"fo"fB

- T fB_'(¢(v(O),_(O))):Xo(O)w(O)dO

- TIAI f8 F_"(¢("(O)'_(O)))[c°s_(O)]+'_(O)dO=: _"

Hence exp(-AT) represents the probability of no penetration of A by debris

particles during time span T.

Combined Probability of no Penetration

Suppose the vulnerable surface area of the space station (SS) can be

decomposed into surface elements A1,..., A,,, when dealing with the threat

of orbital debris and into surface elements A_,..., A_, when dealing with
the threat of meteoroids.

The probability of no penetration of area Ai (A_) by orbital debris

(meteoroids) during time span T was given by exp(-_,T) (exp(-_;T)).

Computational formulae for the factors hi and ),_ were given in the previous
two sections.

It is reasonable to assume that the random arrival processes of debris

particles and meteoroids are independent of each other and that in addition

the arrival processes corresponding to the different surface elements are

independent of each other.
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These independence assumptions then yield the following combined

probability of no penetration for the entire space station by either orbital

debris or meteoroids during the time span T:

P(no penetration of space station)

= P(no penetration of SS by orbital debris)

×P(no penetration of SS by meteoroids)

= 1-I P(no penetration of Ai by orbital debris)
i=1

k

× IX P(no penetration of A; by meteoroids)
j=l

ra k ra k

= II expC-_,T)II expC-_;T)= _pC-T(_ _,+ _ _;11.
i=l j=l i=l j=l
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Appendix H - Sensitivity Analyses From Linear Regression
Penetration Function

The following figures demonstrate how the critical projectile diameter line (the graphical

penetration function representation) varies with variation in shield and backwall thickness. The

approach to linear regression to develop a penetration function is described in section 4.0. Cases

with and without MLI are included for 0-deg, 45-deg, and 65-deg incidence angles. The

penetration function slope is correlated with incidence angle: 0-deg angles producing positive

slopes, 45-deg angles producing nearly zero slopes, and 65-deg angles producing negative slopes.

In general thicker shields and backwalls raise the penetration function.
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Appendix I - Physiological Significance of Sound and
• Noise Data

The following report represents the primary analysis for the Task 2 Effects of Penetration test

program.
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6 April 1987
2-3755-DHR

To: Paul Stern 2-3600 8C-72

cc: •Alex Coronado .......2-3614

R. L. Olson 2-3755

82-97

8K-03

Sub j: Physiological Significance of Sound and Noise Data from

MSFC/Boeing Space Station Penetration Tests

References:

[1] "The Physiological Basis for Spacecraft Environmental
Limits", NASA-RP-I045, 1979.

[2] "Bioastronautics Data Book", NASA-SP-3006, 2rid ed.,
1973.

[3] "Fundamentals of Aerospace Medicine", ed. by R. L.

DeHart, Lea & Febiger, Philadelphia, 1985.

[4] "Aerospace Medicine", ed. by H. G. Armstrong, Williams
& Wilkins, Baltimore, 1961.

[5] "Space Physiology and Medicine", NASA-SP-447, 1982.
[6] "Life Sciences Considerations for Long Duration Manned

Space Missions", vol. I, NASA-TM-83093, 1984.

[7] Data from Subject MSFC Tests received from A. Coronado

Enclosures:

[a] Damage Risk Criterion (DRC) for Impulse Noise
[b] Luminance under varying conditions of illumination

[c] Range of luminance for visual performance

[d] The electromagnetic spectrum

SUMMARY;

NOISE-- Impulse noises on the order of 170 dB can be

expected to cause a Temporary Threshold Shift (TTS) on the

order of 20-25 dB in exposed individuals. This is an

"auditory effect". Non-audltory physiological effects may

also occur (gagging; respiratory cycle changes; visual

disturbanceds; psychological effects). If the noise waveform

were to persist for over I second and exceed 5 psig
("blast"), eardrum rupture with TTS could occur. It is

expected that the fully outfitted Space Station will afford

considerable sound attentuation to the penetrating object
producing impulse noise.

LIGHT FLASH-- The light flash raw data appear to
excee_ the upper limit of visual tolerance for luminance (104

to 10 J millilamberts), since most of these data were in that

range. However, this physiologist feels that the attenuation

afforded by the Space Station environment and the probability

of such a phenomenon being directly viewed by a Space Station

occupant reduces the significance of the quantitative flash
intensities recorded during some of the penetration tests
[7].
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NOISE DATA INTERPRETATION:

Of the 24 "shot total #s" in sequence from 471-496, 15

reported data in decibels (dB) from microphones I and/or 2

[7]. The dB readings ranged from 160 to 195 for mic2 with a

mean of 174.69 dB. For micl the readings ranged from 154 to

179, mean 169.50 dB. Specific data are:

I

471

472
474

475

476

477

478

479
484

487

489
491

494

495

496

15 Tests

162 dB

171
165
174

mmm

15q low

182 dB
182
165
195 high value
168
185

154 value 163
168 160
175 168
177 173
173 163
179 ___
175 193
171 174
175 ---
169.50 174.69 dB

Although the specific risetime-peaks for noise were not

analyzed, all were in the milli- or micro-second range which

would classify the sounds as "impulse" noise. Impulse noise

is dangerous to the human auditory system when it exceeds 140
dB at a distance of less than 20 cm [2]. The mechanism of

action of impulse noise is that it produces mechanical

disturbance of the hair cells on the organ of Corti

(respnsible for "transducing" sound waves), which can result

in a Temporary Threshold Shift (TTS), or if persistent,

Permanent Threshold Shift (PTS). Threshold shift means simply

that the threshold of hearing is re-set to a higher level --

zero keeps moving up. For example, a 180 dB peak impulse

results in approximately a 25 dB TTS; a 190 dB impulse in a
50 dB TTS. Threshold shifts due to impulse noises are

auditory effects, meaning the effect is to the hearing

apparatus. No useful NASA requirements data were found in

NASA-STD-3000 (Man-Systems Integration Standards).

There may also be non-auditory effects of noise. Over

150 dB there may be reduced visual acuity; gag sensations and

respiratory rhythm changes in addition to TTS.

"Damage Risk Criteria" (DRC) for impulse noise according

to CHABA (Committee on Hearing and Bio-acoustics of NRC-NAS)

is given in enclosure [a]. Some typical values of peak sound
pressue levels for impulse noise from reference [2] are given

below. (In most of these situations the impulse sound would

be repeated many times rather than just once):
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dB
190+
160-180

140-170
125-160

110-130

Example

Within blast zone of exploding bomb

Within crew area of heavy artillery piece

At shooter's ear when firing handgun

At child's ear when detonating toy cap

Construction site during pile-driving

In these tests we appear to be dealing with "impulse"

rather than "blast" noise. The latter differs from the former

in time duration -- blasts last longer than I second peak and

may have more than one waveform peak. CHABA DRC states the

blast exposure limit as:

5 psi (unprotected ear) to prevent eardrum rupture;
10 psi (protected ear) to prevent lung damage.

If the impulse noise reaching a Space Station

crewperson's ear were to be on the order of 170 dB, there

would definitely be a Temporary Threshold Shift (TTS) in the

person's hearing, that is, temporary deafness for normal
speech-level sound. There is also the possibility, depending

upon the individual's proximity to the sound, of eardum

rupture. (Eardum rupture is not necessarily a serious problem

if it heals without inner ear infection developing. The

eardrum rupture actually prevents more serious damage to the

auditory apparatus of the inner ear).

Unlike these tests, it is expected that in operational

Space Station there would be considerable (? dB) attenuation

of any noise-producing penetrant from the equipment racks,

etc. which will occupy the inside of the modules.
t

I conclude that even single impulse noises on the order

of 170 dB will have definite audiological effects which,

however, will not cause permanent deafness nor be life

threatening.

LIGHT FLASH DATA INTERPRETATION:

Interpretation of the light intensity data of subject

tests has proven less straightforward than_for the noise data
because of the difficulty converting roW/ca _ to

physiologically meaningful units and because of the great

disparity in data recorded by the photodiodes within the test

chamber ("LI through LT"). The raw flash intensity data are:

Test # Transducer # mW/cm _ mL W

471 L2 4.5 3,060

472 L3 190 129,200

L6 217 147,560

473 No light flash data

474 L3 54 36,720

L5 21 14,280

475 L2 52+ 35,360

L6 200 136,000

476 L3 255 173,400
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L6 534 363,120

477 L2 31 _ 21,080
L5 27 18,360

478 L2 51+ 34,680

L4 44 "29,920

L5 53+ 36,040
479 No light flash data

480 L2 60+ 40,800

481 No light flash data

482 Page missing

483 LI 25 17,O00

L2 52+ 35,360

L3 30 20,400

484 No light flash data

485 "No penetration"

487 L2 51+ 34,680

L4 141 95,880

L6 98 66,640

488 L3 125 85,000

L6 205 139,400

489 NO light flash data

490 L3 105 71,400

L4 83 56,440

L6 58 39,440

491 L3 320 217.,600

L6 650 442,000
492 No light flash data

493 No light flash data

494 L3 525 357,000

L6 770 523,600
495 L3 375 255,000

L6 970 659,600

496 4.3 157 106,760

L6 270 183,600

D180-30550-]

tt

mL = millilamberts, a unit of luminance_ -- these
values were calculated by multiplying the mW/cm 2 data by 680.

"Luminance is the photometric term corresponding to radiance
and refers to the amount of visible light coming from an

external surface which is illuminated or is self-luminous.

Luminance is the product of the illumination falling on a
surface and the luminous reflectance of the surface" [2].

Literature Review. The available literature were

reviewed for information about flash light or

"flashblindness". No absolute quantities were given at

which reversible or permanent chorioretinal eye damage would
be done so this determination was made by inference. No

useful specifications/requlrements data were found in NASA-

STD-3000.

Regarding Flashblindness: Reference [2] states that

"Momentary exposure to a very intense flash of light results

in a loss of visual sensitivity which may take some time to

be restored. Such exposures are likely to be accidental...

Recovery time depends upon the intensity and duration of the

flash... For any given task, recovery time can be shortened

by increasing the task luminance in the period immediately
following the flash."
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Reference [3], in discussing nuclear flash protection,
states that the "...potential dnager of flashblindness and

chorioretinal burns resulting from viewing nuclear fireballs

has now become a concern to aircrew members... During

daylight, with a high ambient illumination and through a

small pupillary diameter, the retinal burn and

flashblindness problem is greatly diminished. At night,

with a large pupil, protection is a must..."

Regarding tolerance to extremely bright light flashes:

Reference [4] states that "At 10,000 feet, the intensity of

light is 12,000 foot-candles and in space is about 13,600

ft-c. At these levels light is too intense for comfort."

Reference [3] says that "the rays that concern us on earth

are from 300-2100 nm in wavelength, with an intensity

varying between 10,000 ft-c at ground level to about 13,000

ft-c at presently attainable altitudes." [I foot-candle/ft-
c is about 0.9 millilamberts].

The most helpful information in interpreting the

subject data come from reference [3]: "The uppe_ limit of
tolerance for normal vision is between 10 _ and I0 _ log mL of

luminance. This would be equivalent to staring at the sun
or at the detonation of a nuclear weapon". [See enclosures

b and cS

Significance of the light flash data: These data were

reported to be within a wavelength range of 300-1100

nanometers (nm) which encompasses the visible light spectrum

[enclosure d] and takes in some of the UV and IR

wavelengths. With the exception of the value for L2 in shot
#471, all of the light flashe_ tabulated above exceed-the •

visual tolerance criteria Just discussed and

illustrated graphically in enclosure [b].

As with the impulse noises, I assume that in operational

Space Station there will be significant attenuation of light

flashes due to the equipment racks, etc., which will line the
inside of the modules. It is probable that personnel would

not be exposed to any light flash at all. However, IF an

individual were exposed to such light intensities directly
(looking in the direction of the penetrating object) and IF

the ambient light level were low, it is probable that

temporary "blindness" would occur and it is possible that
retinal burns could occur. Given the expected environment

within Space Station and the low probability (subjective) of

a person gazing directly at such a flash causes me to
conclude that such flashes would not permanently damage the

visual apparatus of an individual and would not otherwise

jeopardize "safety of flight".

DONALD H. REID, Ph.D.

M/S 8K-03 773-0028
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. B,

 /llllIlllJll,,,,,It,

(a) Type A-duration. (b) Type B-duration.

Impulse waveforms. See text for explanation.

165

160

g

150

i

145

131 l
.0k ._

A-duration

%

! ) f I ' I I T I I 1 '
.05 .I .2 .5 i 2 5 I0 20 50 I_ Z_

Ouration.msec

5OO I000

Damage risk criterion for impulse noise (gunfire); refe_*-ee

pressure is 2 x 10-5 N/m 2. See text for discussion.

Enclosure (a)
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Rangeof Luminancefor VisualPer_o_ce

L.um_.ance

in mL.

I • l0 t
TXI0 8

4.4 X 108

i • I01 0 X 10 T

i

I • 107 --

.1 • 101 -

I • IS s --

I.S8 x 104

9.4 X 103

1 • 10 4 i.; X lO J

4.3 X i0 J

[;
d 2 x 10 J

I,'I*_ ! ,.: x l,_
.... 7" .._ix 10z

I x tO _
S x 102

• 2.4 x 102

I • 10 2 -- 1.1 X 10 2

i

3 X 10 I

t.s x _0 l
I s 10 -- t x to"

T X tO 0

I • 100 8 X 10 "l

| a |0 .! --

2 x 10 -2

I • 10 .2

7.5 X 10 .2

I X 10 .3

"1 • 10"_

Son

Sun

A* Bomb

YenLul

Earth

Mercury

Earth

Jupiter

Sky

Mcmn

Salutes

Mace

Moon

Sky

_,1r aln,,dl --

Neptune

White paper in _od

reacbnt LLEq_I
Movie screen (indoors)

sermon

Pluto

Snow lnlight of full moor:.

Lower l/fret for _eful

Color vii |on

Earm

Upper linut for nil_t vision

Note_

Viewed from ouLmide earth's atmosphere

Viewed from the var_h

F|meb =II 4 miles from point Of detona-

Mort or' an 800 KT weapon.

kssume a/L_do (r) of 0.:59 v_ewed from

OUtJLde etmospherl
Viewed from space with cloud ¢0ver(r-0.8)

V|ewmd from outside atmomphere(r-Q.O69)

Viewed in Jamtmry from outside stress*

yphere, no cloucLa (r * 0.39)

te_ed from ouLmtde atmosphere (r.0.$6)

Averaoe sky c_ clear day
1r"lt moon viewed from o_tde of'

etmoepnere Ir • 0.073}

Viewed from ouLside atmosphere ( r * O.G3)

Viewed from outside atmosphere ( r * 0,15)

F"]I moan viewed from earth
Avera(n sky on cloud? day

VLrm_ from outside the earth(r • 0.63)

Viewed from ouUlade atmosphere(r.O.73)

Viewed from ouUiide the atmosphere

Viewed from outside atmosphere mttl_

fu/3. moon

i
t
I

I
J,

f

mL = mil lilamberts

Enclosure (c)
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Appendix J - Test Data Compared With Regression
Function

Test data obtained under task 1 testing for aluminum sphere on aluminum plate impact is

presented here plotted as projectile diameter versus projectile velocity. Also included in the plots is

the regression derived penetration function (described in see. 4.3) corresponding to the data points.
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.040 inch Shield, .188 inch Wall
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