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This article shows how a commercial time interval counter can be used to measure the

relative stability of two signals that are offset in frequency and mixed down to a beat

note of about i Hz. To avoid the dead-time problem, the counter is set up to read the

time interval between each beat note upcrossing and the next pulse of a 10 Hz reference
pulse train. The actual upcrossing times are recovered by a simple algorithm whose out-

puts can be used for computing residuals and Allan variance. A noise-floor test yielded a

Af/f A llan deviation of 1.3 X 10 -9/r relative to the beat frequency.

I. Beat-Frequency Method

In the beat-frequency or single-mixer method of frequency

stability measurement, the two sources to be compared must

have a small frequency offset, typically in the neighborhood

of 1 Hz. The two sources at frequency f0 are mixed down to a

sinusoidal beat note at the offset frequencyfb. This sine wave
is passed through a zero-crossing detector, which produces a

square wave at the same frequency. The relative time devia-

tion or fractional frequency deviation of the two sources is

equal tofb/f o times that of the square wave or, more precisely,

its stream of upcrossings, which are spaced approximately one

second apart [1]. The improvement to be discussed below

deals only with the measurement of these upcrossing times;

the analog front end of the system remains the same.

II. Current Measurement System

In the current system used at the JPL Interim Frequency

Standards Test Facility (IFSTF), the square wave beat note

goes to a custom-built digital module, the Stevens-Sydnor

Machine, which latches the readings of a free-running 1 MHz
30-bit counter at the upcrossings and writes them to a 7-track

tape, which is processed off-line by a Univac 1100 computer

at the Information Processing Facility (Fig. 1). Actually, each

Stevens-Sydnor Machine can handle three independent input

channels and multiplex them onto the tape. Of course, the
Univac software has to correct for the counter roUover, which

happens about every 17.9 minutes. In this way, the upcrossing
times are captured with a resolution of 1/as. Otoshi and

Franco [2] have been using a system similar to the IFSTF's,

but with a 10 MHz counter, to measure Deep Space Station

stability.

Although the IFSTF system has given good service, it has

several disadvantages. The counter resolution is too coarse for

certain applications whose fb/fo ratio is not small enough to

put the quantization noise floor below the frequency instabili-

ties to be measured. The 7-track incremental tape drives are

obsolete, expensive to rent, and unreliable. (The author had to

write a special software routine to recover from unreadable

tape blocks.) The Stevens-Sydnor Machines have a problem
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with input crosstalk; consequently_only one channel at a time
can be used. The cumbersome off-line tape processing and

graph plotting causes a turnaround time of several hours
between running a test and seeing graphical results.

III. An Improved SystemmThe Picket Fence

Because the frequency stability test operation is soon to be

moved to the new Frequency Standards Laboratory, this is a

good time to find a better way to carry out the tests and get
timely results. High-quality commercial equipment for the job

is already at hand; namely, a Hewlett Packard 1000 computer
and several HP 5334A universal counters, which can measure

time intervals with a 1 ns resolution and interface with the

computer on an IEEE-488 bus. The problem has been that these
are interval counters with dead time between measurements;

unaided, such a counter can measure at most every other

period of the stream of beat-note upcrossings. This dead-time
limitation has now been overcome by the introduction of one

more element, a 10 PPS (pulses per second) reference signal,

called the Picket Fence, provided by a frequency standard and
a divider.

A. Test Setup and Procedure

The new setup is shown in Fig. 2. The beat note square

wave goes into Input A of the counter, the picket fence into

Input B. The same frequency standard should drive both the
counter and the divider to keep the picket fence coherent with

the counter. In a multichannel system, each beat note has its

own counter and there is only one picket fence signal going

into all the B inputs.

To carry out a test, the Period A function of the counter is
used to make a preliminary measurement of the period p of

the square wave. It is permissible to use an increased gate time

or the 100-reading average function when doing this measure-

ment. Having measured the nominal period, the counter is
switched to its Time Interval A to B function, and records all

subsequent readings. Each reading is the time interval between

an upcrossing and the next picket fence pulse. As long as the

periods are not too short, the counter has time to reset itself
between readings, and hence no upcrossing is missed. From

these raw data, the actual upcrossing times are recovered in

software by an algorithm discussed below. Figure 3 shows the

time evolution of the measurement process.

B. Data Processing

Let d be the picket fence period (100 ms), p the initial

period measurement, and Vo, vl, v2,.., the sequence of time

interval data. Let to, tz, t2,.., be the actual upcrossing times
relative to some time origin, perhaps one of the picket fence

pulses (Fig. 3). Each tn differs from the corresponding -v n by

an unknown integer multiple of d, and we would like to!

resolve the ambiguities.

Let A denote the backward difference operator, e.g.,!

At n = tn -tn_ 1. The following assumptions are made abou!
the beat note:

(1) The first period At z differs from p by less than d/2.

Any two successive periods Atn_ 1, Atn differ by less t
than d/2. This guarantees that the 100 ms ambiguitiest

can be uniquely resolved.

(2) Each period Atn is greater than d + g, where g is the
maximum dead time of the counter. This just guaran-

tees that no upcrossing is missed.
I

Since the tn increase quickly and may contain important[

information in their least significant bits, they are awkward to I
compute, store, and use. Accordingly, the algorithm actually]

computes the sequence of time residuals defined by 1
/

x n = tn -t o -np, n = 0, 1,2 .... (1)!

Figure 4 shows the relationship between the tn and the x n.

The core of the algorithm is the signed residue function

Smod(x,m), which is defined to be x minus the closest[

integer multiple of m to x. For example,

Stood(3, 5)= Stood(-7, 5) = -2

If x is halfway between two integer multiples of m, then it

doesn't matter whether Smod(x, m) is defined to be m/2 or

-m/2.

The algorithm that generates the x n is given in Fig. 5. This

version incorporates a mild error check (lines 10 and 13) to

prevent one bad input from spoiling all the subsequent out-

puts. Appendix A gives a proof that the numbers defined by

Eq. (1) are identical, to the outputs x n generated by the
basic version of the algorithm, that is, with lines 10 and 13

removed. This is accomplished by forcing the second differ-

ence A2x n to be less than d/2 in absolute value (in accordance
with assumption 1) and also equal to -A2v n modulo d. Never-

theless, experience has shown that someprotection against
bad data is needed. Table 1 shows what can happen to the

basic version if there is one error with magnitude slightly

greater than d/4. The starred value of ddx (n = 3) has been
converted by Smod from -0.52d to 0.48d. As a result, the

x n start to increase linearly. This can cause computational

problems for a program that analyzes the x n. The error check
with threshold d/4 anchors the current bad data to the last

good data. If Ax m is the anchor dxa at time n, and the condi-
tion in line 10 is satisfied at times n and n + 1, then AXn+ 1

is within d/2 of £xxm. In the example, the anchor stays at
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AX1 for n = 2 and 3. At n = 4, it is pulled up again. As a

result, the x n values go back to 0 after time 2. Time will tell
whether this simple expedient is adequate in practice.

IV. Noise-Floor Test

In order to evaluate the technique, a single-channel hard-

ware and software system was set up (Fig. 2). The IIP 1000

collects the data in real time and stores the outputs of the

unfolding algorithm on disk. At the same time, a user can
process any portion of the test into residuals and Allan devia-

tion. Results can be printed, plotted on screen, or plotted

on a pen plotter.

To measure the ultimate noise floor of the technique and-

to test the integrity of the measurement system, an almost

perfect beat note square wave was simulated by a low-rate

pulse generator, which was stable at the nanosecond level,

and whose period could also be programmed to the nearest
nanosecond. The chosen period was

0.938196601 s = (10-r)d

where d = 0.1 s, the picket fence period, and r is the Golden

Ratio, (Vr5 - - 1)/2. This period guarantees a good mix of

counter readings vn [3, pp. 510, 511,543]. If a conveniently
available 1 PPS signal had been used, the counter would have

always been reading the same value. The same frequency

source, a cesium standard, was used for driving the counter,

the picket fence, and the pulse generator. Thus, the results
include instabilities and errors of the pulse generator, picket

fence divider, and counter, but not of the measurement time

base that drives these components.

A test of duration of 108,600s was carried out. The

accumulated time residuals, with the mean frequency offset
removed (about 0.3 ns/s), remained within a 6 ns band over

the entire run. The Allan deviation, shown in Fig. 6, is approxi-

mately 1.3 X 10-9/r for _"between 0.94 s and 11,500 s. This

shows that all the equipment maintained time coherence _it the

nanosecond level and that the counter met its specifications.

To see what this means for an actual test of frequency
sources, recall that these numbers must be scaled down accord-

ing to the source and beat frequencies. For example, if two

1 MHz sources with a 1 Hz offset were being tested, the digital

part of the measurement system would contribute a Af/f

Allan deviation of 1.3 × 10-1s/r.

V. Conclusions

The technique described in this article is a method for mea-

suring the stability of the square wave produced by mixing

two offset frequency sources and passing the low-frequency
sine wave through a Zero-crossing detector. In contrast to the

current IFSTF system, which uses custom digital hardware and

has microsecond resolution, this technique uses commercial

hardware of moderate cost (under $3000 per counter) with an
IEEE-488 interface, and offers nanosecond accuracy.

The author has recently learned of the existence of a unit

that can latch the readings of a free-running counter with a

precision of 1 ns for several input channels. The counter rolls
over every 224 ns, about 16.8 ms, so that in effect the counter

makes its own picket fence with that period, and the same
unfolding algorithm applies. A multichannel frequency stabil-

ity measurement system built around this unit might be

smaller and less expensive than one built around several

interval counters in separate chassis.
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Table 1. State of the unfolding algorithm after line 9 (d = 1) with one bad input and
no error handling

n v vl xl dua dxa du ddx dx x

0 0

i 0 0

2 -0.26 0

3 0 -0.26

4 0 0

5 0 0

6 0 0

line 9 not applicable 0

0 10 0 0 0 0 0

0 0 0 0.26 0.26 0.26 0.26

0.26 0.26 0.26 -0.26 0.48* 0.74 1.00

1.00 -0.26 0.74 0 0.26 1.00 2.00

2.00 0 l.O0 0 0 1.00 3.00

3.00 0 1.00 0 0 1.00 4.00
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! Global parameters: p, d

Do for n == O, I, 2, ...

Read v n

Call Unfold (n, Vn; x n)

Output x n
Enddo

Subroutine Unfold (n, v, x)

Inputs: n, v

Output= x
Local variables

du : current _U = --_V

dx : current _x

dua: du anchor

dxa: dx anchor

ddx: current dx - dxa or second difference

vl : previous v

xl : previous x

I. If n = 0 then

! Initialize

2. dua = p
3. dxa = 0

4. x=0
5. Else

6. du = vl - v

7. ddx = Smod (du - dua, d)
8. dx = dxa + ddx

9. x = xl + dx

Error handling
10. If Iddxl < d/4 then

Data OK, drag anchor along
11. dxa = dx

12. dua = du

13. Endif

14. Endif

15. xl = x

16. ul = v

17. Return

Fig. 5. Unfolding algorithm
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Appendix A

Proof of Correctness of the Unfolding Algorithm

To avoid confusion let the output of the algorithm be

denoted by Xn, while x n is still defined by Eq. (1). The error
correction lines 10 and 13 are deleted. We shall prove by

induction that X n = x n for all n. For n = 0, both quantities
are zero. For n = I we have

du = -Av I = At 1 (rood d),

ddx = Stood(At I -p,d) = At 1 -p (assumption 1)

= X 1 .

Therefore, X I = x = x 1 since dxa = xl = O. For n > 1 assume

the algorithm is correct up to n - 1. Then

dua = -AVn_ 1 = Atn_ l (mod d),

du = -Av n --- At n (modd),

ddx = Smod(A2tn,d) = A2t n (assumption 1)

= A2Xn,

dxa = Axn_ 1, x l = xn_l,

dx = Axn_ 1 + A2Xn = Axn,

X,, = x = x,,_l +Ax,, = x,,.
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