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SUMMARY 

Massive separation on airfoils operating at high Reynolds number is an important problem to the 
aerodyna.micist, since its onset generally determines the limiting performance of an airfoil, and it can lead 
t o  serious problems related to aircraft control as well as turbomachinery operation. In the present study, 
the phenomenon of crossover between local separation and massive separation on realistic airfoil geometries 
induced by airfoil thickness is investigated for low speed (incompressible) flow. The problem is studied both 
for the asymptotic limit of infinite Reynolds number using triple-deck theory, and for finite Reynolds number 
using interacting boundary-layer theory. 

Numerical results are presented which follow the evolution of the flow as it develops from a mildly 
separated state to  one dominated by the massively separated flow structure as the thickness of the airfoil 
geometry is systematically increased. The results of the triple-deck and the interacting boundary-layer 
analyses of the two airfoils which are considered are found to be in qualitative agreement. 

The effect of turbulence upon the evolution of the flow is considered, and the impact is significant, with 
the principal effect being the suppression of the onset of separation. A turbulent massively separated solution 
is presented for fiow past a circular cylinder, and the calculated surface pressure distribution is found to 
agree well with experimental data when the proper eddy pressure level is specified. 

Finaliy, the effect of surface suction and injection for boundary-layer control is considered. Application 
of mild surface suction is shown to  eliminate massive separation in cases which would otherwise be stalled, 
and tangential injection, represented here by a specified slip velocity along the surface, is shown t o  reduce 
or eliminate separation. 

The approach which has been developed as part of the present effort shows that interacting boundary- 
layer theory provides a valuable tool for the analysis of boundary-layer separation up to and beyond stall. 
Another important conclusion of the present study is that interacting boundary-layer theory provides an 
efficient tool for the analysis of the effect of turbulence and boundary-layer control upon separated viscous 
flow. 
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IN TROD U CTION 

The problem considered in the present study is the way in which the structure of the flow past a 
symmetric airfoil evolves from one which is fully attached when the airfoil is very thin to one for which 
the flow is massively separated, as the airfoil thickness increases. An understanding of the phenomenon 
of massive separation is important, since its onset generally corresponds to  the limit of the effective range 
of operation of an airfoil. Beyond a simple reduction in efficiency, massive separation (stall) can lead to 
conditions which compromise the safe operation of an aircraft. One example is the phenomenon of tip stall, 
where a wing at incidence to  the freestream flow experiences locally stalled flow near one of the wingtips. 
The associated loss of lift generates a large rolling moment on the vehicle which can induce a hazardous spin. 
In turbomachinery applications, stall which occurs on blades within an engine can lead a reduction in the 
efficiency of the engine and, in the worst case, to a loss of power, which again has the potential for creating 
a dangerous condition. In addition, with the recent interest in highly maneuverable aircraft, which operate 
at or near stalled conditions, an understanding of the massive separation phenomenon becomes increasingly 
important for the efficient design of such vehicles. 

The present effort focuses on the fundamental phenomenon of steady, massive separation for symmetric 
non-lifting airfoils by analyzing the process by which the crossover from locally separated to massively 
separated flow occurs as the airfoil thickness is increased. The understanding gained through consideration 
of the symmetric problem will be useful in helping to understand massive separation induced by increasing 
the angle of attack of an airfoil through stall. Restricting the analysis t o  steady separation eliminates the 
need to predict the complex way in which the flow develops into the massive separation structure thereby 
allowing the present focus to be placed on the final steady state flow structure. Finally, the present study 
serves to  lay the foundation for the future development of methods of analysis which can be applied to lifting 
airfoils. 

The analysis which is employed herein is developed by assuming that boundary-layer theory applies 
in many cases up to  and beyond the initial onset of massive separation; this assumption is supported by a 
number of theoretical studies which will be discussed later in this section. As a consequence of the boundary- 
layer assumption, relatively simple models have been developed for the analysis of massive separation on 
airfoils. The knowledge gained from these simple models can be utilized to assist in the development of 

Two theoretical approaches are employed in this study to calculate massively separated flow over airfoils. 
In the first approach, the problem is viewed in the asymptotic limit of infinite Reynolds number by utilizing 
triple-deck theory, in conjunction with the generalized Cheng-Rott (Ref. 1) thin-airfoil theory for mixed 
boundary-value problems. The Sychev-Smith (Ref. 2) massive separation model, which assumes a Kirchhoff 
eddy coupled t o  a triple-deck structure at the separation point, is applied. The second approach allows for 
finite Reynolds number effects by utilizing interacting boundary-layer theory, wherein instead of explicitly 
inserting the triple-deck structure at separation as done in the asymptotic approach, the boundary-layer 
equations are solved allowing for strong interaction between the boundary layer and the entire inviscid flow. 
The same inviscid model applied in the triple-deck analysis is utilized to calculate finite Reynolds number 
massively separated flow, but within the framework of an interacting boundary-layer numerical approach. 
Finite Reynolds number small scale local separation is also calculated in the interacting boundary-layer 
analysis, using the usual form of the incompressible thin-airfoil integral equation to  represent the inviscid 
flow. 

Triple-deck and interacting boundary-layer calculations are performed for two selected airfoil geometries 
for which the airfoil thickness is systematically varied in order to determine the way in which the flow becomes 
massively separated after initially experiencing small-scale local separation. The interacting boundary-layer 
procedure utilized in the present study to analyze the phenomenon of the finite Reynolds number crossover 
between local and massive separation is based upon that developed by Rothmayer and Davis (Ref. 3). 

The methods of analysis developed herein are shown to be very useful for predicting the crossover 
behavior occurring for realistic airfoils. In particular, the crossover behavior predicted by both the triple-deck 
and interacting boundary-layer analyses are in qualitative agreement for the realistic airfoils considered here. 
In addition, the present interacting boundary-layer analysis has been applied to the crossover problem in flows 
with turbulence and in cases where boundary-layer control (suction and injection) is applied. Interacting 
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boundary-layer theory is shown to be an efficient tool for the analysis of the crossover between local and 
massive separation on airfoils. 

Theoretical Basis for a Model of Stall 

Since boundary-layer theory provides the foundation for this investigation, important insights into the 
theoretical basis for the model of stall which is applied herein can be obtained by considering the evolutionary 
development of those aspects of the theory which are relevant t o  the present study. As shall be shown, the 
present approach is a natural extension of the evolving capability of boundary-layer theory. 

The development of boundary-layer theory from its inception about eighty years ago has followed a slow 
but methodical path leading to  a growing understanding of the phenomenon of boundary-layer separation. 
In comparison with the first six decades of the history of boundary-layer theory, the last twenty years have 
seen a quantum leap in the level of understanding of the physics associated with laminar flow separation, 
L . . L  U U ~  L l -  ~ I K I ~ :  .- is still the ueed I’ur considerably more innovative work before the phenomenon of boundary-layer 
separation can be considered to be well in hand. In the discussion which follows, which is summarized in 
Table 1, the fundamental developments in boundary-layer theory which have had the greatest impact on 
the still evolving understanding of boundary-layer separation are discussed. In each row of Table 1 the 
principal developments are illustrated. The first column shows the class of problems which is considered 
at each stage of the chronology, and lists the principal contributors in each area and the time frame of the 
initial developments in those areas. In the second and third columns, the framework in which boundary-layer 
theory has been applied in the asymptotic (infinite Reynolds number) limit and at finite Reynolds number, 
respectively, is noted at each stage in the chronology. 

Attached Flow 

The chronology begins with the first row of Table 1, where the genesis of boundary-layer theory is 
illustrated. Boundary-layer theory has its origins at the beginning of this century, with Prandtl’s initial 
contribution in 1904 (Ref. 4). 

Starting with the complete Navier-Stokes equations, Prandtl showed through an order-of-magnitude 
analysis that, in the limit of infinite Reynolds number, the first-order equations which result are the inviscid 
(Euler) form of the Navier-St.okes equations. This set of equations had been known in Prandtl’s time to 
result in discrepancies between theoretical predictions and the experimentally observed behavior of real flows, 
which could be traced to the neglect of viscous effects. The  presence of very small viscosity can cause the 
behavior of the flow to be greatly altered from that of a purely inviscid flow, and this is due to the formation 
of a “boundary layer” in the neighborhood of a solid boundary. The boundary layer forms because the fluid 
adheres to  a solid surface (in a continuum sense), which is referred to as the “neslip” condition. 

The mathematical nature of the Euler equations does not permit the satisfaction of the no-slip condi- 
tion at a solid surface. In order t o  satisfy the no-slip condition, boundary-layer theory postulates that a 
thin boundary layer develops between the outer inviscid flow and the body surface within which diffusion is 
important, and through which the inviscid surface velocity is reduced to  zero at the body surface. Mathemat- 
ically, the boundary-layer equations are developed from an order-of-magnitude analysis of the Navier-Stokes 
equations by retaining the next higher-order set of equations beyond the Euler equations, and taking the 
infinite Reynolds number limit. Upon matching the flow variables at the interface between the outer inviscid 
flow and the boundary layer, which in the limit of infinite Reynolds number is at the body surface, Prandtl’s 
classical boundary-layer theory results. As the theory is described above, it is strictly an asymptotic theory 
applicable in the limit of infinite Reynolds number. 

An important and restrictive feature of classical boundary-layer theory is the assumption that a hier- 
archy exists between the viscous and inviscid regions of the flow wherein the effect of the viscous flow upon 
the inviscid flow is higher order. The hierarchical nature of the flow is utilized to  develop the finite Reynolds 
number application of classical boundary-layer theory, which is sometimes referred to as “weak interaction 
theory”. In a typical application using the weak interaction approach, the inviscid surface pressure distri- 
bution is utilized to calculate the boundary-layer flow properties, in particular the displacement thickness. 
The displacement thickness represents the amount by which the original body has been “thickened” by the 
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presence of the boundary layer, and is used to generate the body which is effectively “seen” by the inviscid 
flow, which consists of the original body plus the displacement thickness, that is, the “displacement body”. 
The inviscid flow over the new effective body (and its viscous wake) is then recomputed yielding a new 
pressure distribution. If desired, this newly obtained pressure distribution can be utilized to recompute the 
boundary-layer properties and update the displacement body. This procedure can be repeated in an iterative 
fashion until a converged solution is (hopefully) obtained. One central point t o  note is that it is generally 
possible to extend classical boundary-layer theory, and its application to  finite Reynolds number flow, to 
turbulent flow with the inclusion of a model for the turbulence. 

TABLE 1 
BOUNDARY-LAYER THEORY CHRONOLOGY 

Local Separaf ion 

PRANDTL (1904) 

+ 
ATrACHED FLOW 

STEWARTSON (1969) 
NIELAND 
MESSITER - -- +- 0 

LOCAL SEPARATION 

SYCHEV (1972) 
SMITH (1977) 

BLUFF-BODY MASSIVE 
SEPARATION 

CHENG AND SMITH (1982) 

h -h2>h ,  

CROSSOVER 
LOCAL/MASSIVE 
SEPARATION 

Re +- 

CLASSICAL 
B L  

THEORY 

TRIPLE. 
DECK 

THEORY 

KIRCHHOFF 
FREE-STREAMLINE 

THEORY 

LOCAL 
TRIPLE-DECK 
STRUCTURE 

+ 

KIRCHHOFF 
FREE-STREAMLINE 

THEORY 

LOCAL 
TRIPLE-DECK 
STRUCTURE 

+ 

FINITE Re 

WEAK 
INTERACTION 

THEORY 

INTERACTING 
BOUNDARY- 

LAYER 
THEORY 

INTERACTING 
BOUNDARY. 

LAYER 
THEORY 

9 

INTERACTING 
BOUNDARY. 

LAYER 
THEORY 

As is well known, in a large number of cases the weak interaction procedure described above ultimately 
terminates when the boundary layer encounters what is known as the Goldstein singularity when an apparent 
separation point is approached. The fundamental reason for the emergence of the Goldstein singularity is 
the lack of a mechanism whereby the effect of the viscous flow upon the inviscid flow can be raised to first 
order, as usually occurs, for example, when a boundary layer separates from a solid surface. 
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A number of years elapsed between the development of Prandtl’s classical boundary-layer theory and 
the developments of the late 1960’s which led to  a theoretical understanding of the mechanism which permits 
the “strong” interaction between the viscous boundary layer and the outer inviscid flow which is required to 
circumvent the appearance of the Goldstein singularity (second row of Table 1). This strong interaction is 
characteristic of flow in the vicinity of a separation point and heralds the breakdown of the hierarchy assumed 
previously between the viscous and inviscid flow regions in the weak interaction theory. The formal theory 
resulting from the work on strong viscous-inviscid interaction has become known as “triple-deck theory”, 
in reference to  the three tiered structure which arises in the boundary-layer and nearby inviscid flow when 
the interaction between the viscous flow and the inviscid flow becomes strong. The principal developers of 
this theory in the late 1960’s were Neiland, Stewartson and Messiter (Refs. 5-7), although others played an 
important role. 

Triple-deck theory owes much to  the work of Lighthill (Ref. 8) in the 1950’s, who studied the mechanism 
whereby information can propagate upstream through the boundary layer, in an effort to explain experimental 
data which showed that that the boundary layer can respond upstream of the location of an imposed 
disturbance, even when the inviscid flow is entirely supersonic. The existance of upstream propagation of 
information in a supersonic flow is in direct contradiction to the mathematical nature of the equations which 
govern such flows, since the supersonic inviscid flow is governed by hyperbolic equations and the boundary 
layer is governed by parabolic equations. 

Triple-deck theory is an asymptotic theory derived, as Prandtl derived classical boundary-layer theory, 
from the Navier-Stokes equations in the asymptotic limit of infinite Reynolds number. The theory results 
from the application of the appropriate matching conditions for the asymptotic behavior of the flow variables 
upstream and downstream as well as matching in the direction normal to the body surface. Triple-deck 
theory removes the Goldstein singularity by permitting the viscous and inviscid flows to simultaneously 
adjust, allowing a smooth passage of the solution through the point of boundary-layer separation. 

Even before triple-deck theory had been developed, analytical techniques were developed and applied to 
finite Reynolds number flow problems in which strong interactions exist between the viscous boundary layer 
and the outer inviscid flow. The development of triple-deck theory gave those procedures, collectively known 
as “interacting boundary-layer theory”, a firm theoretical basis in the asymptotic setting of infinite Reynolds 
number. Interacting boundary-layer theory can be viewed as the reasonable finite Reynolds number analog 
to the rational infinite Reynolds number asymptotic theory, triple-deck theory. 

As with weak interaction theory, extensions to  turbulent flow of interacting boundary-layer theory have 
generally been found to yield reasonable results (within the limitation of the turbulence model utilized), even 
if the scalings which apply are no longer those of the laminar triple deck. 

Bluff-Body Massive Separation 

The next reference point in the present boundary-layer chronology, represented in the third row of Table 
1, is the work on bluff-body massive separation which followed closely the development of triple-deck theory. 
In 1972 Sychev published a paper in which he proposed a structure to explain the mechanism whereby a 
laminar boundary layer can break away from a smooth surface resulting in massive separation (Ref. 9). A 
century earlier Kirchhoff (Ref. 10) had contributed free streamline theory, an inviscid theory, in an effort 
to model the phenomenon of bluff body separation. In this model the free streamlines are assumed to be 
boundaries across which there is a discontinuity in the velocity, from freestream velocity on the external side 
to zero velocity on the internal side; the free streamlines bound the so-called “dead-air region” behind the 
bluff body within which the fluid is assumed to be very nearly static with respect t o  the body. 

Free streamline theory alone is not sufficient to close the problem of massive separation, for it is not 
a consistent model as it does not properly account for the role of viscous effects near the separation site. 
Sychev’s contribution was the proposal of a mechanism which, by coupling Kirchhoff’s free streamline theory 
with the assumption that a triple-deck structure arises locally in the vicinity of the separation point, allows 
for a consistent model for both the viscous and inviscid flows, at least on the body scale (i.e., on a length scale 
comparable to  the airfoil chord), for massive separation. Thus Sychev formulated a mathematical model for 
the phenomenon of massive separation. 

Smith, in a landmark paper in 1977 (Ref. 2), addressed the critical questions of existence and uniqueness 
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of a solution to the mathematical problem which Sychev posed (Ref. 9). By using a numerical approach, 
Smith showed fairly conclusively that a solution exists to Sychev's problem and that it is unique. Smith's 
numerical results were further verified by the later calculations of Korolev (Ref. 11) and Van Dommelen 
and Shen (Ref. 12). Smith worked out details of the embedding of triple-deck theory into the Kirchhoff 
free streamline model in a paper published in 1979 (Ref. 13). Thus a possible structure describing the 
phenomenon of massive separation from bluff bodies had been shown to exist. Inherent in that description 
is the assumption that the internal structure of the eddy downstream of separation is rather benign, that is, 

In the Sychev-Smith bluff-body massive separation model, the separated flow region is represented as 
a constant pressure region extending, in the limit of infinite Reynolds number, infinitely far downstream of 
the separation point. The major deficiency in this model is the lack of a mechanism to account for closure 
of the eddy (Ref. 14). Since publication of his 1977 paper (Ref. 2), Smith has considered the structure of 
the eddy, including closure, and he has found that the structure may not be as benign as assumed in the 
original theory incorporating the Kirchhoff eddy model. However, the correct behavior of the flow on the 
body scale is believed to  be captured by the Sychev-Smith model. 

Although Kirchhoff free-streamline theory has been considered in the work discussed above, another 
classical inviscid model for the eddy structure is the Prandtl-Batchelor model, wherein the massively sepa- 
rated flow region behind the body is postulated to consist principally of a pair of inviscid constant vorticity 
eddies. This model thus far lacks any inviscid solutions for smooth bodies, and there is currently no exper- 
imental or numerical evidence in its favor. However, it is notable that the latest proposed structure of a 
massively separated laminar flow given by Smith (Ref. 14) incorporates the Prandtl-Batchelor structure in 
the downstream portion of the eddy, which Smith postulates is a region of nearly constant vorticity, while 
near the body the eddy boundary grows in a parabolic (Kirchhoff-like) manner. Thus elements of both the 
Kirchhoff eddy (on the body scale) and the Prandtl-Batchelor eddy (on the larger eddy scale) are present 
in the structure of a massively separated flow recently proposed by Smith (Ref. 14). The structure which is 
postulated ip Ref. 14 is the first one which has been proposed for which it appears possible, in an asymptotic 
sense, to match all of the various regions of the eddy, from breakaway on the body surface to eddy closure 
far downstream. However, it remains to be proven that a massive separation solution exists which has all 
of the properties of that proposed structure. One encouraging sign is found in the low Reynolds number 
Navier-Stokes results obtained by Fornberg (Ref. 15) for flow past a circular cylinder, which show a ten- 
dency toward some of the features of the massively separated flow structure postulated by Smith (Ref. 14). 
Fornberg's results are discussed further below. 

An important observation to be made regarding the Sychev-Smith bluff-body massive separation theory 
is that  the triple-deck structure arising at separation is a local structure and as such it is essentially inde- 
pendent of the geometry of the body being considered. The location of the separation point is a function of 
the body geometry, however. The triple-deck structure in the vicinity of the separation point will retain its 
local character independent of the form of the downstream eddy; therefore whatever model is used for the 

With regard to  the determination of a structure for massive separation which is consistent from the 
separation point through closure of the eddy, the model for internal flows has a firmer basis. Smith (Ref. 
16) has shown that the Kirchhoff model of the eddy gives a consistent account of massive separation in a 
cascade. In such flows the closure of the eddy occurs through a viscous-inviscid interaction, as opposed to 
the principally inviscid mechanism acting in an external flow. Thus Smith has determined the first fully 
consistent high Reynolds number structure for a massively separated flow, namely that occurring in a cascade 
of airfoils. 

The problem of bluff-body massive separation at high (but finite) Reynolds number is at present far 
from being well in hand for external flows. In fact for the classic case of laminar flow past a circular cylinder, 
reliable numerical calculations recently obtained by Fornberg (Ref. 15) with symmetry imposed to force a 
steady state solution of the Navier-Stokes equations, are only available up to a Reynolds number of 600, far 
from the high Reynolds number regime. However, even at a Reynolds number of 600, eddy closure occurs 
at about 85 cylinder radii downstream of the body. In the structure of the eddy proposed recently by Smith 
(Ref. 14), the eddy dimensions are O(Re) length by O(&) width with nonuniform vorticity immediately 
behind the body generated by a reentrant jet returning upstream along the wake centerline and emanating 
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from the closure at the rear of the massive eddy. The calculation of such a massive and complicated structure 
at high Reynolds number clearly poses a monumental task, since the flow on the scale of the massive eddy 
would have to be computed at the same time as resolving the very small spatial scales associated with the 
triple-deck structure in the immediate vicinity of separation. 

As will be shown later in this study, it is possible t o  address problems in high Reynolds number bluff- 
body massive separation using interacting boundary-layer theory, however there are some aspects of such an 
approach which need to  be addressed before an interacting boundary-layer model for this phenomenon can 
be considered to be reasonable. Because of the questionable ability of interacting boundary-layer theory to 
handle the bluff-body massive separation problem at present, the finite Reynolds number entry in the third 
row of Table 1 is accompanied by a question mark. 

Crossover Between Local and Massive Separation 

The I&, area CL the hjti i i&i~-!~~~i  diioii"l"gy, iepiesenieci in iiie I'ouri'n row of Table i, is recent work 
which addresses the problem which is considered in the present study, namely the crossover process between 
local laminar separation on thin bodies and laminar massive separation occurring for flow past bluff bodies. 
In the paper by Cheng and Smith (Ref. 17), the crossover problem is considered for flow at infinite Reynolds 
number. The problem was analyzed in terms of a scaled thickness parameter which is given by the physical 
thickness multiplied by a function of the Reynolds number. Increasing (or decreasing) this parameter is 
therefore equivalent to  increasing (or decreasing) either the body thickness or the Reynolds number. The 
fundamental assumption which is made in Ref. 17 is that the Sychev-Smith model for bluff-body massive 
separation applies essentially unaltered to thin bodies, once massive separation has occurred. That is, a local 
triple-deck structure, the precise form of which was determined by Smith (Ref. 2), arises in the vicinity of 
the separation point, and the flow downstream of separation is viewed as consisting of a constant pressure 
Kirchhoff eddy with parabolic growth far downstream. Using this model, the evolution of the separation 
structure as it changes from the local form occurring when the airfoil thickness parameter is small t o  the 
massive separation structure present when the thickness parameter is sufficiently increased is studied in Ref. 
17. 

An important finding of the triple-deck analysis which was performed in Ref. 17 is that  the crossover 
between local and massive separation occurs when the airfoil thickness is O(Re-'/16), at which point the 
disturbance to the inviscid flow due to  the local triple-deck structure a t  separation is of the same order 
of magnitude as the disturbance induced by the airfoil itself. Cheng and Smith (Ref. 17) examined the 
way in which the Kirchhoff eddy, of large (O(Re"1')) length, collapses to an eddy of 0 ( 1 )  length as the 
airfoil thickness parameter decreases, or conversely, how the eddy grows from a local bubble to the massively 
separated form as the thickness parameter increases. Airfoils with different trailing-edge geometries, either 
cusped or wedge-shaped, are considered in Ref. 17, and significant qualitative differences in the crossover 
behavior are predicted by the asymptotic theory. In particular, some very interesting phenomena can arise 
when the airfoil has a cusped trailing edge. 

The qualitative behavior described in Ref. 17 for the two different trailing-edge geometries is discussed 
below, and is illustrated in Figs. 1 and 2, which are adapted from Ref. 17. In Figs. 1 and 2, the abscissa 
represents the location of the separation and reattachment (or wake closure) points, 2, and zr, respectively, 
measured from the airfoil leading edge, and the ordinate represents the scaled thickness parameter, 71, which 
is a measure of the airfoil thickness a t  fixed Reynolds number, or the Reynolds number at  fixed airfoil 
thickness. 

First consider an airfoil which has a wedge-shaped trailing edge for which the crossover process is 
illustrated in Fig. 1. For a wedge-shaped trailing-edge airfoil, increasing the thickness parameter causes the 
flow to initially separate at some non-zero value of the parameter, equal to  h, .  Continuing to increase h 
causes the separation bubble t o  grow from a small (0( Re-3/8))  length bubble at the trailing edge to an O( 1) 
length until a critical value of the thickness parameter, x c ,  dependent on the airfoil geometry, is reached. If 
the thickness parameter is increased slightly beyond this critical value, the eddy "inflates" becoming much 
longer and thicker, eventually O(Re) by O(Re), according to Smith (Ref. 14). 

If instead of increasing the airfoil thickness parameter from a value h ,< h,-for which a small scale 
local separation bubble exists, the airfoil thickness decreases from a value h > h,  for which the flow is 
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massively separated, the eddy deflates followin$ in reverse exactly the same path as when the eddy inflates 
as the thickness parameter increases through h,. The initial point at which the parabolically growing free 
streamlines collapse to the symmetry line at downstream infinity as the airfoil thickness parameter decreases 
has been referred to  as “cut-off by Cheng and Smith (Ref. 17). The cut-off behavior for a wedge-shaped 
trailing edge occurs in a continuous and steady state fashion, and is unique. That is, given a value of the 
airfoil thickness parameter, a unique location is predicted for the separation and reattachment points. 

airfoil displays significantly more complicated behavior than the wedge trailing-edge geometry as the thick- 
ness parameter is varied, with the crossover from local to massive separation occurring in a discontinuous 
fashion, leading to phenomena such as hysteresis and non-uniqueness which are not observed for wedge- 
shaped trailing-edge airfoils. The typical sort of behavior predicted for cusped trailing-edge airfoils by the 
asymptotic theory is illustrated in Fig. 2. 

In an effort t o  describe the behavior which is possible for cusped trailing-edge airfoils, the separation 
and reattachment point locations are presented in Fig. 2 as a function-of the airfoil thickness parameter. 
The airfoil thickness parameter is initially-assumed to have the value h l ,  for which the flow is massively 
separated. If h is gradually decreased from hl ,  the massive eddy slowly shrinks until the points denoted “2” 
on the figure are reached. A decrease in the thickness parameter slightly below the value at “2” forces the 
separation and reattachment points to jump discontinuously to the points labeled “3”, where the flow is no 
lonser massively separated, the eddy having collapsed to  a localized separated region. A further reduction 
in h causes the bubble to collapse to a point on the airfoil surface upstream of the tr_ailing edge when h has 
the value h,. If, instead of decreasing the thickness parameter from its value at “3”, h i s  increased, the local 
bubble will grow in extent until the points labeled “4” are reached. An increase in h slightly beyond the 
value at “4” again forces a discontinuous jump, this time from a locally to a massively separated flow, to 
the points labeled “5”. Thus a path for hysteresis can be set up going around the loop 2-3-4-5-2 in Fig. 2. 
In addition] the possibility exists that for a cusped trailing-edge airfoil, attached flow can be maintained for 
an airfoil thickness up to O( 1). The possible existence of nonuniqueness is indicated in Fig. 2 for values of h 
corresponding to the region between the points labeled 2 and 5, where both a local and a massive separation 
solution can exist, as well as by the possibility of an attached flow solution which may exist for the entire 
range of airfoil thicknesses up to O(1). Cheng and Smith (Ref. 17) also point out that the crossover from the 
local to the massive separation structure, that is, going from points 2 to 3 or from 4 to 5, probably occurs 
in an unsteady fashion for cusped trailing-edge airfoils. 

Cheng (Refs. 18 and 19) has considered infinite Reynolds number laminar separation from asymmetric 
airfoils and airfoils at angle of attack. Further intriguing phenomena such as symmetry breaking, that 
is, the existence of asymmetric massive separation for a symmetric airfoil a t  zero angle of attack, have 
been predicted. In addition, Rothmayer and Smith (Ref. 20) have considered the crossover from massive 
separation to an attached flow in a cascade of airfoils using the same basic asymptotic approach described 
above, but adapted to the cascade problem. The principal contributions of that study are the demonstration 
of the importance of local geometry effects in determining the location of the separation point and the 
properties associated with the cut-off phenomenon, as well as the possible occurrence of multiple regions of 
hysteresis in cascades. The effect of cascade spacing has been shown in Ref. 20 to have a strong influence 
on massive separation phenomena. I 

The finite Reynolds number application of the asymptotic analysis of Cheng and Smith (Ref. 17) has 
been carried out by Rothmayer and Davis (Ref. 3), using interacting boundary-layer theory in conjunction 
with the assumption that the massive eddy is of the Kirchhoff (constant pressure) form, to study the crossover 
process on model airfoil geometries. The only change to the “standard” interacting boundary-layer theory 
approach for incompressible flow over thin airfoils is to replace the usual Cauchy integral representing the 
inviscid flow with the Cheng-Rott integral for mixed boundary-value problems (Ref. 1). An important 
feature of this approach to the massive separation problem is that the Cheng-Rott integral need only span a 
finite region extending from the airfoil leading edge to a location just downstream of the separation point, as 
opposed to the semi-infinite region over which the Cauchy integral must be applied. Rothmayer and Davis 
(Ref. 3) have observed many of the same phenomena at finite Reynolds number which were predicted by 
Cheng and Smith using the asymptotic theory (Ref. 17), including non-uniqueness and an indication of the 
unsteady crossover between the local and massive separation structures for cusped trailing-edge airfoils. 

1 

1 

In contrast to the behavior described above for a wedge-shaped trailing edge, a cusped trailing-edge ’ ’ 
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I The evolution of boundary-layer theory is seen above to have followed a logical progression which has 
allowed the consideration of successively more complex phenomena associated with boundary-layer separa- 
tion. In particular, the analysis of the complicated means by which the crossover between local and massive 
separation occurs has recently become possible. The principal objective of the present effort is to extend the 
procedure developed by Rothmayer and Davis (Ref. 3) for the analysis of the crossover process to permit 
the investigation of crossover for realistic airfoil geometries, and to include the effects of turbulence and 
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PROBLEM DESCRIPTION AND FORMULATION 

The phenomenon of crossover between local separation and massive separation which occurs as the 
thickness of an airfoil is increased is investigated in the present study for laminar incompressible flows by 
utilizing two different approaches. The first approach employed is to consider the problem in the asymptotic 
limit of infinite Reynolds number. The theory which applies in this limit is known as Triple-Deck Theory. 
The second approach utilized allows consideration of the problem at finite (but large) values of the Reynolds 
number. The theory which is applied for the finite Reynolds number analysis is known as Interacting 
Boundary-Layer Theory. By employing these two theories in concert, one can hopefully obtain a more 
thorough understanding of the crossover phenomenon, as the knowledge of the limiting behavior of a physical 
phenomenon often aids in understanding the behavior when the limiting parameter, in this case the Reynolds 
number, is far from its asymptotic value. The present analyses are developed for application to  symmetric 
airfoils operating at zero angle of attack. 

Trip le-Deck T h e o r y  

One of the goals of the present study is to determine the behavior of the separated flow structure as a 
function of airfoil thickness for realistic airfoils. In order to accomplish this goal, the asymptotic behavior 
of the separation point location has been determined by utilizing triple-deck theory, following the analysis 
presented by Cheng and Smith (Ref. 17). The results of the triple-deck analysis will provide guidance in 
interpreting the finite Reynolds number behavior which will be determined later using interacting boundary- 
layer theory. 

Two fundamental assumptions are made in the asymptotic analysis with regard to  the structure of a 
massively separated flow. The first is that the eddy which arises downstream of the boundary-layer breakaway 
point contains a weak recirculating current, and therefore the pressure is assumed to  be a constant throughout 
the eddy. This model for the eddy is consistent with Kirchhoff's (Ref. 10) free streamline theory, which 
assumes that the eddy is open. The second assumption follows that adopted by Sychev (Ref. 9), whereby 
separation is assumed to  occur within a triple-deck structure. The reasoning which lead to  the introduction 
of the latter assumption will be described below. 

Let us consider the impact upon the results of classical boundary-layer theory of varying the assumed 
location of the breakaway point, which will be denoted by x, in this discussion. The pressure gradient 
imposed upon the boundary layer is assumed to be that which results from the inviscid (free streamline) 
theory (e.g., see Ref. 21). In the discussion which follows, the body is assumed to be symmetric and bluff, 
e.g., a circular cylinder, and 3: is measured along the body surface from the leading edge stagnation point. 

The behavior of the free streamline downstream of the separation point is discussed first, in order t o  
determine the limitations on the possible location of the separation point due to purely inviscid considera- 
tions. The furthest possible upstream location of the separation point, based upon free streamline theory, 
is the location designated I,; if the separation point is upstream of x, the free streamlines will cut through 
the body surface, which is clearly not physically plausible. In addition, if the separation point is assumed to 
be downstream of the point designated here as x, (xc > x,), then the symetrically disposed free streamlines 
will intersect one another at a finite distance downstream of the body, which also is not physically plausible. 
The conclusion which is reached from purely inviscid considerations is that the separation point must be 
located between the two points I, and 2,. 

Purely inviscid considerations determined from free streamline theory impose upstream and downstream 
limits on the location of the separation point. The pressure gradient which the inviscid flow imposes upon the 
boundary layer, in conjunction with classical boundary-layer theory, will hopefully be sufficient t o  determine 
the precise location of the separation point. The pressure gradient immediately upstream of the separation 
point is of the form d p / d x  N - k ( x ,  - " ) - ' I 2 ,  where k is a nonpositive constant which is a function of the 
assumed location of separation. The furthest possible upstream location of the separation point determined 
from inviscid considerations is at z, = t,; this point is known as the smooth separation point. The smooth 
separation point corresponds to the location at which IC is equal t o  zero, that is, the pressure gradient is 
zero at x,. Since boundary-layer separation must occur in an adverse pressure gradient, the separation 
point cannot be at x,. If the separation point is assumed to occur aft of x,, where k < 0, an infinitely 
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adverse pressure gradient will exist at  I,. The pressure gradient just upstream of x, is extremely adverse, 
and therefore classical boundary-layer theory will predict that separation will occur ahead of the assumed 
separation point a t  2,. Thus, viscous considerations do not permit separation to  occur in the region in which 
the separation point must be located based upon inviscid considerations. 

A paradoxical situation is seen to arise when free streamline theory for the inviscid flow is coupled to 
classical boundary-layer theory, since any point on the body surface at  which separation is assumed to occur 
leads to an incompatibility between the inviscid and the viscous theories. In order to resolve this apparent 
paradox, Sychev (Ref. 9) proposed that a triple-deck structure at  the separation point smooths out the 
infinitely adverse pressure gradient predicted by the inviscid theory for I, > x., and permits the boundary 
layer to pass smoothly through the separation point by allowing for a locally strong interaction between the 
inviscid and the viscous flows. Within Sychev's proposed structure, the pressure upstream of the separation 
point behaves according to  Eq. (l), which contains a dependence upon the Reynolds number through the 
definition of E ,  Eq. ( 2 ) .  The dependence is such that as the Reynolds number approaches the asymptotic 
iimlt, x, -+ 2,. 'l'hus the proposed structure provides a means to overcome the paradox described above, 
and provides a mechanism by which Reynolds number dependence is introduced into the massive separation 
problem thereby affecting the location of the separation point. 

The laminar separation criterion on the pressure immediately upstream of the separation point was 
proposed by Sychev (Ref. 9) to  be of the form 

__ 

where x is the arc length measured along the surface from the stagnation point and is normalized by a 
characteristic length scale, typically the airfoil chord, x, is the separation point location, p is the pressure, 
normalized by twice the freestream dynamic pressure pU2,  p ,  is the (constant) pressure in the eddy down- 
stream of separation, X is the wall shear at  x = x, which is evaluated using classical (weak-interaction) 
boundary-layer theory, and Q is the positive constant determined by Smith (Ref. 2) to have the value 0.44. 
The parameter E is given in terms of the Reynolds number, 

and becomes vanishingly small in the asymptotic limit, as Re + 00. The separation criterion (Eq. (l)), 
although determined for bluff body massive separation, applies to  thinner bodies as well. Therefore Eq. 
(1) forms the basis for the asymptotic analysis of massive separation on realistic symmetric airfoils which 
follows. 

The triple-deck analysis is based upon the assumption that the massively separated flow structure on 
the body scale (x = O(1)) can be modeled for slender bodies by utilizing thin-airfoil theory. The coordinate 
system for the triple-deck analysis has its origin a t  the airfoil leading edge with the x-axis oriented along the 
chord line, and x increasing in the direction of the trailing edge, and the y-axis is normal to  the oncoming 
uniform flow, positive in the upward direction. The coordinates (2, y) are nondimensionalized by the airfoil 
chord. The separation point is located at  the point x, where 0 < x, < 1. Upstream of the separation point 
the body shape is specified, and it is represented by normal injection through the x-axis. The body shape is 
written in the form 

where the function f(x) represents the body profile, and is the airfoil thickness parameter which is O(1), 
so that the physical airfoil thickness is O(Re-1 /16) ;  thus the airfoil is thin when the Reynolds number is 
large. 

Downstream of 2, the assumption is made that the eddy is of the Kirchhoff form and the pressure is a 
constant, equal to the freestream value, within the eddy and along the free streamline. The assumption of 
constant pressure along with thin-airfoil theory implies that downstream of the separation point a constant 
value of the tangential velocity is specified along the x-axis. In addition, it is assumed that the free streamline 
shape is given by 
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y = Re-l /"S(r)  (41 

where the quantity S(z) is 0(1)  so that the free streamline is slender when the Reynolds number is large. 
The resultant thin-airfoil problem is of a mixed boundary-value type, for which the form of the solution has 
been determined by Cheng and Rott (Ref. 1).  

The crucial element needed to complete the statement of the problem is the inclusion of the triple-deck 
separation criterion, Eq. (l), which is applied at  the point to, with p ,  equal top,. Utilizing complex-variable 
theory leads t o  the following mathematical statement of the problem, 

- 
h f ' ( s )  ds 

2 0  i 1 / 2  J, 
( 2 ,  - s)'/2(2 - s) g z ,  0) + iS'(2) = -(2 - 20) 

lr 
(5) 

where is the O( 1) scaled pressure related to the nondimensional physical pressure by 

(6 )  = Re-1/'6- P 

and ' denotes differentiation with respect to  the independent variable. Solving for the real part of this 
expression for 2 < 2, yields the following expression for the pressure, 

- 
h 

F(2,O) = --(20 - 2) 
lr 

and solving for the imaginary part for 2 > 2, results in the derivative of the free streamline shape, 

(7) 

S O  

f ' ( S )  ds, t > Z, h 1 (to - S ) ' / 2 ( "  - s) 
S'(2) = -(2 - Z o ) 1 / 2  

lr 

By applying the triple-deck criterion for the behavior of the pressure a t  the separation point given by 
Eq. (1) to Eq. (7) the following condition for determining the position of separation is obtained 

From Eq. (8) it can be seen that as c ---f 00 

that is, far downstream the eddy grows parabolically. There is generally a value of 2, < 1 for which b is 
equal to  zero; this value, designated zOc, corresponds to the phenomenon which Cheng and Smith refer to 
as "cut-off', which they discuss in detail in Ref. 17, and which was described briefly in the Introduction 
above. For values of 2, > z,,, b < 0, and for 2, < io,, b > 0. The massive separation model given by Eq. 
(9) only applies for b > 0. When b < 0 the massive separation structure no longer exists, the flow having 
crossed over to an entirely different flow structure with the eddy dimensions significantly diminished from 
those applying when the flow is massively separated. 

The behavior of the separation point as a function of the airfoil thickness parameter, x, is sought. I t  is 
easier in practice to solve Eq. (9) as an inverse problem by specifying I, and obtaining the corresponding 
value of i. One reason-for the use of an inverse procedure is the possiblity of nonuniqueness in the functional 
dependence - of x, on h,  which is easily determined by solving in an inverse fashion, since the dependence 
of h upon xo is unique. The reader is referred to  the detailed discussion of the nonuniqueness/bifurcation 
phenomenon which is provided in Ref. 17; the present discussion will be limited to a brief summary of some 
of the relevant conclusions of that study. 

In the study of Cheng and Smith (Ref. 17), certain airfoil profiles were found to give rise to nonunique- 
ness/bifurcation in the behavior of the separation point as a function of the airfoil thickness parameter. In 
particular, airfoils with cusped trailing edges, as opposed to wedge-shaped trailing edges, were found to  yield 
bifurcation. Rothmayer (Ref. 2 2 )  discusses the possibility that a more general criterion for nonuniqueness 
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than the presence of a cusped trailing edge exists, and demonstrates that the crossover properties (between 
local and massive separation) tends to be governed by the local curvature of the airfoil surface in the vicinity 
of the separation point, rather than simply by whether the trailing edge is cusped or wedge-shaped. Based 
upon the discussion and the results which were presented in Ref. 22, it appears that an inflection point 
in the airfoil profile near the trailing edge is sufficient to induce nonuniqueness and/or hysteresis in many 
airfoils; this issue will be interrogated further in the present study. 

The asymptotic analysis is carried out in the present investigation by assuming that the airfoil profile 
function f(z) is specified to be of the particular form 

f(z) = aozl’2 + 012 + a222 + 03x3 + u4z4 (11) 

where the coefficients a0 through a4 are determined for each airfoil under consideration. The expression 
given by Eq. (11) corresponds to the exact analytical form of the NACA 4 and 5 digit series airfoil thickness 
distributions, and has been found herein to give a good representation of other airfoil thickness distributions 
when utilized in a least-squares curve fit procedure using discrete data given for the airfoil profile. Assuming 
f ( z )  to be written in the form of Eq. (11) allows Eqs. (9) and (10) to be solved analytically. The solutions 
to these equations are given in Appendix A. It is notable that since the analytical function given by Eq. 
(11) provides a good fit to many general airfoil thickness distributions, and leads to  an exact analytical 
integration of Eq. (9), the result provided in Appendix A is very useful for solving the asymptotic symmetric 
massive separation problem in a very straightforward manner for many symmetric airfoil geometries, once 
they are fit to the profile function given by Eq. (11) .  

Interacting Boundary-Layer Theory 

Central to the interacting boundary-layer approach is the assumption that when the flow Reynolds 
number is sufficiently high, the flowfield can be subdivided into two regions, an outer inviscid region and an 
inner viscous region. These two regions are coupled through the mutual interaction existing between them, 
which is induced by the displacement thickness effect of the viscous flow upon the inviscid flow, and the 
simultaneous modification of the viscous flow by changes in the inviscid flow. In interacting boundary-layer 
theory, the effect of the viscous and inviscid regions of the flow upon one another is assumed to be of equal 
order of magnitude, in contrast with classical boundary-layer theory, where the effect of the viscous flow 
upon the inviscid flow is assumed to be weak, that is, of higher order. 

The simultaneous influence of one region of the flow upon the other which is present in the strong 
interaction problem must be reflected in the numerical solution procedure which is developed to  solve for flows 
which contain regions of strong viscous-inviscid interaction. The basic approach usually involves replacement 
of the specification of the pressure with specification of the displacement thickness or the skin friction in the 
boundary-layer calculation, i.e., an “inverse” boundary-layer calculation procedure is employed. The use of 
an inverse boundary-layer procedure eliminates the possible occurrence of the Goldstein singularity, which 
would terminate “direct” boundary-layer calculations, i.e., calculations in which the pressure is specified. 

Another issue which must be addressed is the method used to couple the inviscid solution technique to 
the viscous solution procedure in a manner which honors the non-hierarchical nature of a strong viscous- 
inviscid interaction. Several different procedures which accomplish this goal have been developed and some 
representative examples of successful coupling techniques are given in Refs. 23-26. 

Viscous Flow Model 

The viscous flow a t  high Reynolds number is confined to thin shear layers which are present on the 
surface of a body, along the boundary of a separated flow region and in the wake behind a finite body. These 
shear layers are in general dominated by diffusion in a single direction; diffusion is negligible normal to that 
direction. The equations which govern this type of viscous flow are the boundary-layer equations developed 
by Prandtl (Ref. 4). In the present study, the incompressible boundary-layer equations are written in a 
coordinate system which is located a small distance from the body surface or wake centerline (but within the 
shear layer). This “shear-layer” or “baseline” coordinate system was introduced by Werle and Verdon (Ref. 
27), and its principal use is to permit better alignment of the boundary-layer coordinate system with the 
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shear layer than is obtained with a coordinate system which is body-oriented. Proper choice of the shear- 
layer coordinates leads to  honoring the boundary-layer approximations more accurately, since neglecting 
diffusion along a properly chosen base curve should be more accurate than doing so along the tangent to 
the body surface, particularly when the flow is separated. The introduction of a baseline coordinate system 
leads to one difficulty however, and that is that the body surface does not lie along a constant coordinate 
curve. Fortunately, this difficulty is easily overcome by applying the Prandtl transposition theorem. 

In the following discussion, an asterisk denotes a dimensional quantity. The independent and dependent 
variables appearing in the boundary-layer equations are nondimensionalized and the Prandtl transposition 
theorem is applied simultaneously to yield 

' 

and 
P* - P &  

p* ug p = -  

where S* is the distance along the baseline coordinate curve measured from the leading edge, x* is the 
distance along the horizontal axis which is aligned with the oncoming uniform flow and has its origin at the 
leading edge, n* is measured from the body surface, y* is measured from the base surface (both along a line 
normal to  the base surface) and f* is the distance from the base curve to the body surface along the normal 
to the base curve (positive in the direction of the outward normal); the nondimensionalized f is scaled by 
the square root of the Reynolds number in the same way that n is defined. In addition, L* is the reference 
length (taken to be the airfoil chord in the present study), the subscript 00 indicates the freestream value 
and the Reynolds number, Re, is defined by 

(13) 
p* U& L* 

P* 
Re = 

The transposition theorem appears in the definition of the normal velocity, v, and the normal coordinate, 
n. The quantity w* is the physical velocity normal to the x-axis. Refer to Fig. 3 for an illustration of the 

Utilizing the above variables, the boundary-layer equations for the conservation of mass and momentum 
assume the identical form as when they are written in body oriented coordinates. Since the equations can 
be found in many standard works (e.g., Schlichting (Ref. 28)), they will not be repeated here. 

In addition to  the governing equations, boundary conditions must be prescribed. On a solid surface no 
slip is usually assumed and normal injection is allowed, 

1 
coordinate definitions and the shear-layer coordinate. 1 

u(x,O) = 0 (14a) 

and 

v(z, 0) = % ( X )  (14b) 
where vw(z) is the specified distribution of the surface injection velocity. If a nonzero slip velocity is 
introduced, the right-hand side of Eq. (14a) is set to the appropriate value of u. On a symmetric wake 
centerline symmetry is imposed on the u-component of velocity, 

a U  

a z  
-(X,O) = 0 

where z is oriented normal to the z-axis, and the wake centerline is a streamline so that the normal velocity 
is zero, 

w(x,O) = 0 (144 

At the outer edge of the boundary layer the tangential velocity approaches the inviscid velocity at the 
displacement body surface, 
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u ( x , n )  -+ U e ( x )  as n+ co (15 )  
From the matching condition at the outer edge (see Van Dyke (Ref. 29))  it can be shown that,  with surface 
injection, 

d 
dx v - V,  - nv, + -(Ueb') U S  n + 00 (16) 

where 5' is the displacement thickness measured from the body surface. This condition is more convenient 
to use for the purpose of coupling the viscous and inviscid equations than that given by Eq. (15), as shall be 
seen later. In addition, the matching conditions provide the dimensionless inviscid surface normal injection 
velocity, W(z, 0), which is applied along the base coordinate curve, 

In order to provide more efficient and potentially more accurate solutions to  the boundary-layer equa- 
tions, similarity type variables are introduced in place of the physical variables. Because similarity variables 
take advantage of the locally similar nature of the flow, their use minimizes streamwise gradients. In addi- 
tion, similarity variables account for the growth of a laminar boundary layer thereby allowing the use of a 
fixed number of grid points in the normal direction throughout the entire flowfield. The similarity variables 
utilized in the present study are a modified form of the Gortler variables. Let Ueo be the inviscid surface 
speed along the baseline coordinate surface. The independent transformed variables are defined by 

r b  

and 

where s is the arc length measured along the baseline curve from the leading edge. Defining transformed 
velocities by 

and 

where V is a similarity velocity function, the continuity and momentum equations in transformed variables 
become 

Continuity: 

V, + F + 2JFt = 0 

and 
Momentum: 

where Po and are defined by 

= o  

and 
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The quantity Po is the pressure gradient parameter for the inviscid flow over the baseline coordinate surface 
and PI is the pressure gradient parameter for the interacted flow; Ue is the inviscid surface speed for flow 
past the “effective” body, that is, the body thickened by the viscous displacement thickness. The momentum 
equation has been written in a general form which allows for the introduction of turbulence through the term 
E = 1 + r  where here E is the turbulent eddy viscosity coefficient, which is zero for laminar flow, and is defined 
for turbulent flow in Appendix B. 

The boundary conditions must also be transformed into similarity variables; the solid surface boundary 
conditions become 

V(€l 0) = Vu(€) (26b) 

where the transformed surface injection velocity is determined from the physical variable using Eq. (21) 
evaluated at the surface. As before, if a nonzero slip velocity is assumed at the surface, F is set to the 
appropriate value there. The wake centerline boundary conditions transform to 

and I 

V ( € ,  0) = 0 

The edge conditions equivalent to Eqs. (15 )  and (16 )  become 

and I 

which are evaluated at the edge value of 9, qmar. The displacement thickness, S’ ,  is defined in transformed 
variables by 

Inviscid Flow Model  

The inviscid flow is modeled in the present investigation by assuming that the flow can be represented 
using thin-airfoil theory. Two inviscid models are developed, the first is applicable to attached flows and 
flows with relatively small separation bubbles, that is, flows for which localized regions of strong interaction 
are present. This model will be referred to as the Local Strong-Interaction (LSI) model. The second model 
is applicable to configurations for which massive separation occurs and will be referred to as the Massive 
Separation (MS) model. 

In the local strong-interaction model, classical thin-airfoil theory for incompressible flow is employed. In 
the following discussion it will assumed for clarity that the baseline coordinate surface is the z-axis, which is 
aligned with the oncoming freestream flow. This assumption will be relaxed subsequently. For the thin-airfoil 
analysis the assumption is made that boundary conditions at the airfoil surface can be transferred to the 
baseline coordinate surface. The condition for the inviscid surface injection velocity W ( z ,  0) which is applied 
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along the x-axis is given by Eq. (17). With this condition and the inviscid flowfield governed by thin-airfoil 
theory, W ( x , O )  is related to Ue(x )  by the Cauchy principal value integral (see Ashley and Landahl (Ref. 
30)), 

U,(x) = 1 + Irn m d d t  
17 2 - t  

which is written to  reflect the fact that the displacement thickness is zero upstream of the leading edge at 
x = 0. 

In the massive separation model the inviscid flow is divided into two regions. The first is the region 
extending from the leading edge to  a prescribed point on the airfoil surface at  x = x, (0  < x ,  < 1) over 
which the displacement body is prescribed. In the second region, where x > io, the pressure is assumed to 
be a constant] which corresponds to the Kirchhoff eddy. Effectively, the inviscid normal injection velocity 
is prescribed in the upstream region and the tangential velocity is prescribed in the downstream region. 
C‘heng and Rott (Itef. i j  have deveiopeci a generaiized method for mixed boundary-vaiue probiems in thin- 
airfoil theory which is applicable to  this problem. Rothmayer and Davis (Ref. 3) have shown how to  apply 
this generalized method to  the massive separation problem and they obtained the inviscid expression which 
applies in this case, relating the inviscid surface speed on the displacement body to the normal injection 
velocity distribution along the x-axis. The condition which applies is 

which reflects the fact that the displacement thickness is zero upstream of the leading edge. Note that as 
x ,  -+ 00, Eq. (31) reduces to  Eq. (30), which is the standard thin-airfoil equation for the edge velocity. 
Recalling that W ( x , O )  is given by Eq. (17), it has been shown (Ref. 3) that the method of Cheng and Rott 
(Ref. 1) leads to  the following expression valid for x > x,: 

One of the goals of the present study is to apply the interacting boundary-layer analysis to realistic 
airfoils. Because most realistic airfoils have blunt leading edges, thin-airfoil theory cannot be applied in its 
usual form, since the theory is not valid locally near the leading edge of a blunt-nosed airfoil. In order to 
remedy this shortfall of thin-airfoil theory, instead of assuming that the flow is a small perturbation to  a 
uniform stream (i.e., flow past a flat plate), the assumption will be made that the flow over a blunt-nosed 
airfoil can be represented as a small perturbation t o  the flow past a parabola which has the same nose radius 
as the airfoil under consideration, which is accomplished by choosing the baseline coordinate curve to be the 
osculating parabola to the nose of the airfoil. The inviscid flow about a parabola can be solved analytically 
by using conformal mapping to map the parabola to a stagnation plane, which was the approach employed 
by Rothmayer (Ref. 22) t o  calculate the massively separated flow past elliptical cylinders using interacting 
boundary-layer theory. In the present study the parabola mapping is applied, in addition t o  the massive 
separation calculations, to the local strong-interaction calculations in order to permit the use of interacting 
boundary-layer theory in conjunction with thin-airfoil theory for calculations of symmetric flow past realistic 
airfoils for which the flow is attached or mildly separated. Rothmayer presents a procedure which can be 
applied t o  solve a more general class of airfoil problems within the context of the Cauchy integral (Ref. 22). 

The details of the mapping are contained in Ref. 22, hence only the final results will be shown here. 
The osculating parabola to  an airfoil of nose radius T, is defined by the equation 

y=- (33) 
Mapping this parabola from the complex z-plane ( z  = x+iy) to  the (-axis of the stagnation plane (C = c+iij) 
results in the following expressions for the pertinent variables needed for the interacting boundary-layer 
equations: 
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and 

(346) 
7.0 

For a parabola, the value of the Gortler variable is equal to the value of the Cartesian z-coordinate a t  that 
location. For a given value of < (equal to I), the value of s, the arc length measured along the parabola from 
the leading edge, is given by 

(35) 

Because the parabola has been unfolded in the <-plane, in the case where massive separation occurs 
there are two free streamlines, extending to  ( = foo. In order to account for this, the method of Cheng 
and Rott (Ref. 1) must be modified. Rothmayer presents the resulting massive separation inviscid integrals, 
which have the following form after transforming back to the r-plane (Ref. 22): 

and 

where I (<) is defined by 

where Ue,  is the imposed constant velocity (;.e., pressure) in the massive separation eddy. Note that if lJe, is 
equal to  unity (the freestream value), I ( ( )  does not vanish. The term I ( ( )  arises because the pressure is not 
equal to  the freestream value at  t = to; the freestream pressure is only achieved asymptotically along the 
parabola as t + 00. Note that these equations were developed in Ref. 22 with the assumption that r ,  << to 
, so that strictly speaking these equations are limited to thin, blunt leading-edge airfoils. 

A procedure similar to  that described above has been implemented in the present analysis to permit 
the application of the Cauchy integral, Eq. (30), to blunt leading-edge airfoils. Proceeding as was done for 
the massive separation integral, the Cauchy integral is transformed to 

(37) 

where once again the base flow is assumed to be the flow past the osculating parabola. 

22 



NUMERICAL METHOD 

Having presented the equations which govern the viscous and inviscid flows, the numerical procedures 
which are employed to  solve the equations will be discussed next. The method of solution for the viscous 
equations, wherein a finite-difference approach is utilized, is considered first. The viscous solution procedure 
for both the local strong-interaction and the massive separation problems is identical. The inviscid numerical 
methods are developed from the appropriate governing equation, Eq. (30) for the local strong-interaction 
problem, and Eq. (31) for the massive separation problem. An important consideration in the numerical 
solution of the interacting boundary-layer equations is the method by which the viscous and the inviscid 
flow equations are coupled. The coupling technique is discussed after the numerical approaches for each of 
the two regions are presented below. 

viscovs Equalions 

The partial differential equations governing the viscous flow, (22) and (23), and the boundary conditions, 
(26) and (28), are solved using a finite-difference approach. The momentum equation (22) is recast by 
substituting from the continuity equation (23) to eliminate the (-derivative in the former equation. With 
the momentum equation in modified form, only the continuity equation contains a derivative with respect 
to (. Therefore, if the 17-derivatives are all discretized to second-order accuracy, a completely second-order 
accurate scheme can be achieved by only considering the continuity equation. 

The form of the momentum equation which results after substitution from the continuity equation is 
the following: 

(7FV)V - VFV +wFVV + P I + ( w  - P o ) F 2  = 0 (38) 
The factor w has been introduced to allow for the application of the FLARE approximation (Ref. 31) to 
stabilize the equations in regions of reversed flow. If the use of FLARE is desired, then w is set equal to 
zero wherever F is .negative, otherwise w is equal to unity. It has been found, however, that because the 
&derivative does not appear explicitly in the momentum equation, the equations can often be marched into 
the separated flow region, even if the flow is massively separated, with w set equal to unity. In the present 
local strong-interaction calculations, FLARE has been found to ultimately be necessary to stabilize the 
solution when the separated region becomes very large, while in the massive separation calculations, where 
the solution is generally terminated a short distance aft of the separation point, the use of FLARE is usually 
unnecessary. Upwind differencing of the (-derivatives in the momentum equation has been attempted in the 
local strong-interaction procedure by reverting to  the momentum equation in its form prior to substitution 
from the continuity equation. For mildly separated flows, both FLARE and upwinding were found to give 
results which were very similar, however when the separation becomes very severe, with bubble lengths 
on the order of the airfoil chord, upwinding has been found to  not be sufficient to stabilize the numerical 
scheme, while the FLARE approximation permits such cases to be converged. The difficulties encountered 
in converging separated solutions which employ upwinding were unexpected, and should be interrogated 
further in the future. 

In order to  discretize the boundary-layer equations, the finite-difference mesh must first be defined. In 
Fig. 4, a typical computational molecule is illustrated with i and j denoting the indices in the (- and 17- 
directions, respectively. For the purpose of developing a general scheme, the grid spacing in the q-direction is 
assumed to vary. The scheme developed herein will be first-order accurate in A( and second-order accurate 
in Av. If turbulence is included, the scheme will become first-order accurate in A17 unless A17 is constant or 
varying sufficiently slowly, or unless the eddy viscosity coefficient is a constant in the 7-direction. 

The continuity equation, (22), is discretized first, a t  the point j + 1/2, which yields an expression of the 
form 

K,j-l = K,j + Pj(Fi,j t Fij-I) - Qj (39) 
The coefficients P, and Qj are defined in Appendix C. 

Discretization of the momentum equation in the form (38) is considered next. The momentum equation 
must be considered carefully in order to obtain second-order accuracy on a grid with arbitrarily varying 
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Av. The assumption is made that only three grid points in the 11-direction are to  be employed in the finite- 
difference molecule The most restrictive condition for second-ordcr accuracy can be sliowii to arise from the 
first term in Eq. (38), the second derivative. An analysis to determine a second-order accurate representation 
for this term leads to  the conclusion that, for an arbitarily varying A7 grid, the second derivative must be 
evaluated at an “offset” point which does not coincide with the grid point j .  The offset point is located a 
distance 7 away from j, where ? is positive when the offset is in the direction of j + 1. The value of the 
quantity 7 is determined from the expression 

’ 

, 
~ 

1 
I 
I 

where Aqt = ( v j + 1  - 113) and Av- is defined in a like manner by decrementing j by one in the expression 
for Aq+. The resulting expression for the second derivative is , 

I 

(41a) 

Second-order accuracy is achievable on a variable Aq grid if 5 is a constant, i.e., either the flow is laminar or 
the eddy-viscosity coefficient is constant, or if the rate of variation of Aq is small (formally, if Av+/Aq- - 1 = 
O(A7)).  For an arbitrarily varying grid spacing, it is not possible to obtain a second-order accurate expression 
for the second derivative with a variable coefficient 5 involving only three grid points. Most of the calculations 
performed herein have been for laminar flow, and the turbulent calculations have been carried out on grids 
which satisfy the small rate-of-variation criterion noted above, hence all of the results which are presented 

All remaining terms in the momentum equation, which consist of first derivative and function evalua- 
tions, must be evaluated at the offset point to maintain second-order accuracy in Av,  which is accomplished 
by writing all terms at the midpoint of each of the two cells, Le., at j f 1/2 and then adding the expressions 
obtained for each cell in an appropriately weighted manner. The result for each of the terms at j + 1/2 is as 

, 

, 

here are second-order accurate in Aq. I 

I I , 
1 follows, 

Similar forms are obtained at j - 1/2 by decrementing j by one in Eqs. (41b-d). After evaluating all of 
the terms in the momentum equation at j f 1/2, the upper and lower cell expressions are added in order to 
obtain the second-order accurate evaluation at the offset point. The form which results for a typical term 
evaluated at the offset point, for example, VF,,  is 

! 
I I 

where the weighting function, 0,  is given by 

- Av- +2? 
= AV-  + A ~ +  (43) 

All of the terms are written at the offset point by using the weighting function. 

assuming that any nonlinear term, which can be represented in the general form U V ,  can be linearized as 
Finally, the nonlinear terms in the momentum equation must be linearized, which is accomplished by 

uv = U’V + UV’ - U’V’ (44) 
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where the asterisk denotes a “guessed” value of the quantity, which will come either from the previous station 
(i - I) or from the previous iteration. Since the interacting boundary-layer method requires global iteration, 
in the present procedure the guessed value of a quantity at ( i , j )  is always that from the previous global 
iteration a t  the same (i, j )  location, except during the first global sweep, when the guessed value is that from 
the previous station, i.e., ( i  - 1, j ) .  

After discretization and linearization, all of the common terms in Eq. (38) are collected to yield an 
equation of the form 

where the coefficients are defined in Appendix C. 

equal to one, the boundary conditions, given by Eq. (26), are written as 
The boundary conditions must also be written in discrete form. At a solid surface, where the index j is 

and 

K , l  = V w ( C )  (46b) 

At a symmetric wake centerline, where V = 0, symmetry and antisymmetry conditions on F and V,  re- 
spectively, are employed in place of Eq. (26c) (forcing satisfaction of (26c)) within the momentum equation 
written at  the centerline, j = 1. With the index of the point below the centerline denoted by j = -2, 

resulting in the following form for the momentum equation after linearization, 

AoFi,1 + BoFi,2 + CoK,2 + DoPl, = Eo (47b) 

where the coefficients are defined in Appendix D. At the outer boundary, where j is equal to N J ,  the 
boundary condition given by Eq. (28), is discretized to  obtain 

Note that the term V,, is evaluated exactly since V behaves linearly at the edge of the boundary layer. The 
definition of F ,  Eq. (20), will also be employed at  the edge of the boundary layer, where 

Fi ,NJ = ue,/ue,, (49) 

The momentum equation evaluated a t  the edge of the boundary layer is utilized to close the system of 
equations. Since F,, and (SF,), go to zero at the edge of the boundary layer, using Eq. (49) the momentum 
equation evaluated there can be shown to be equivalent to the definition of PI. Thus the finite-difference 
form of Eq. (38), evaluated at  the edge of the boundary layer, is used to  provide the final relation needed 
for closure, and it is written in discrete form, after linearization, as 

(50) 
- 
WFi,NJ + XK/;.,NJ + T ; V ~ , N J - ~  + PI,  = 3 

where the coefficients are defined in Appendix D. 
The set of finite-difference relations given by Eqs. (39), (45), and (46)-(50) provide a balance between 

the number of equations and the number of unknowns only if the displacement thickness at  i is known. In 
the present numerical approach, however, 6: is unknown, and the final relation needed to close the system 
of finite difference equations will be obtained from the appropriate inviscid relation, either Eq. (30) or Eq. 
(31). 
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The system of equations which results from the procedure outlined above can be written in the form of a 
tridiagonal matrix, the solution for which can be efficiently obtained using recursion relations. The solution 
procedure will be described following the discretization of the inviscid governing equations, which is outlined 
below. 

Inviscid Equations 

The equations governing the inviscid flow for each of the solution techniques (local strong-interaction 
and massive separation) must be discretized to permit their application within the interacting boundary-layer 
approach. The appropriate discrete inviscid equation is coupled to the boundary-layer equations to yield an 
efficient system of finite-difference equations which can be solved in a relatively straightforward manner. 

Local Strong-Interaction Procedure 

Discretization of the Cauchy integral, which is used in the local strong-interaction solution procedure, 
is first considered. The discretization is carried out for the form given by Eq. (30); the discrete form of 
Eq. (37) is virtually identical, except that in the latter case the discretization is performed in terms of the 
Gijrtler variable and, on the left-hand side, U ,  is replaced by U e / U e , .  

The solution domain for Eq. (30) is generally divided into three regions; the first region extends from 
z = 0 to I = x I ,  the second spans the region between 2, and x F ,  and the final region extends from x ,  
to x = 00. The strong interaction is assumed to be confined to the region x c ( z l , z F ) ;  the other two 
regions are assumed to be weak-interaction regions for which the behavior of the displacement thickness is 
either available in a known analytic form or obtained from a separate numerical solution. In the present 
investigation, since all of the bodies considered have blunt leading edges, the strong-interaction region will 
begin a t  the leading-edge stagnation point, i.e., 2, = 0. Therefore, only the downstream weak-interaction 
region is included in the present analysis. 

The variable T is introduced and defined by 

T ( x )  = R e - 1 / 2 U , { 6 * ( ~ )  + f ( x ) }  (51) 
so that Eq. (30) can be written at z = 2; as 

Rothmayer (Ref. 22) found that unless T is rewritten by replacing Ue f by U,, f, difficulties could arise 
in the numerics. There is no inconsistency introduced by the substitution, since it is consistent with the 
order of approximation introduced by the use of thin airfoil theory, hence T is redefined as 

to avoid the associated numerical difficulty. 

treatment of the singular point at x - t = 0, yields 
For now, consider the integral spanning ( x , ,  x,). Integration by parts of Eq. (52), taking care with the 

(54) 

This is similar to  the integration by parts carried out by Davis and Werle (Ref. 26). The strong-interaction 
region is subdivided into subintervals, as shown in Fig. 5, within each of which T is assumed to be a constant. 
The points at zj correspond to the boundary-layer solution points, and those at  Z j  are at  the midpoints 
between the x j ,  i.e., x, = ( x j  +xj-1) /2 .  Each inviscid subinterval spans the region x c (Zj-lTZj).  Note that 
the first boundary-layer solution point is at  x 1  and the last is at  z r E ,  while the inviscid strong-interaction 
integral spans a slightly larger domain, starting and ending half a subinterval beyond the viscous calculation 
region. T h e  last term in Eq. (54) is written as a summation over each individual subinterval with the 
assumption of constant T within each interval to yield 
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I E  

T(t)d (2) X i - t  = Tj Dij 
j = l  

I 

I where Di, represents the integral over the j t h  element 

The above form correctly accounts for evaluation of the Cauchy principal value of the integral (See Ref. 22). 
Defining the qunatity iji by the expression 

Eq. (52) can be written (with Uei = U e ( z i ) )  in the form 

The form which i j i  has for the different far wake displacement thickness distributions appropriate to  laminar 
and turbulent wakes is given in Appendix E. In the present study, since x r  = 0, the second and third terms 
on the right-hand side of (56) are zero; the second term is equal to zero since T(0) = 0. This expression can 
be rewritten to isolate the contribution to  the displacement thickness distribution a t  i as 

which can be written in compact form as 

L ~ e ,  = Z;i + E i ( U e h * ) i  (574 

for which the coefficients 6 and 6 are easily obtained from Eq. (57b), and are given in Appendix E. 
Equation (57c) is the necessary additional relation which was sought earlier in order to close the viscous 

finite-difference set of equations. 
As indicated earlier, Eq. (57c) must be modified slightly for a blunt-nosed body to reflect the differences 

between Eqs. (30) and (37). As mentioned above, the modifications consist of replacing Ue by Ue/Ue ,  on 
the left-hand side and substituting the streamwise Gortler variable < for x .  

are present, within which the displacement thickness has an assumed analytic behavior, the two strong- 
interaction region endpoint values of T appearing in the first two terms of Eq. (54) are used to evaluate 
any unknown constants which appear in the analytic expressions for the displacement thickness distribution 
in the weak-interaction regions. In order to  justify determining the displacement thickness distributions in 
the weak-interaction regions from the strong-interaction solution results at  the endpoints, it is required that 
the boundaries of the strong-interaction region be placed sufficiently far upstream and downstream of the 
actual location of the localized strong viscous-inviscid interaction. The procedure described above absorbs 
the displacement thickness effects upon the strong-interaction region from the upstream and downstream 
weak-interaction regions into the first and last points of the latter region. The implementation of the above 
technique is manifested in the numerics through modification of the definitions of the Dij coefficients for 
j = 1 ,2  and j = I E  - 1, I E .  

I 

I 

I 

I In practice, for the general case in which the upstream and downstream weak-interaction regions 
1 
I 

I 
i 
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Massive Separation Procedure 

The inviscid integral appropriate to the massive separation model employed in the present study, Eq. 
(31), is now considered. The procedure described below is applicable to sharp leading-edge geometries. In 
order to  discretize the blunt leading-edge form of (31), namely (36a), the modifications are straightforward, 
hence only the discretization of Eq. (31) will be described in detail. 

I 
I 
1 
1 

As before, the definition (53) is used to rewrite (31) in the form 

0 0  

Ue(Zi) = 1 + - T’(t)  d t ,  2 < 2, : 1 ( x i - t ) J Z  

The integral has two singularities instead of the one present in Eq. (30); the first singularity is at  t = xi 
and the second is at t = 2,. The first singularity is treated in a similar manner to  that used in evaluating 
Eq. (30) to extract the Cauchy principal value, while the second requires special treatment. In the present 
investigation, the procedure developed by Rothmayer and Davis (Ref. 3) is followed very closely. They 
began by analytically extracting the singularity at  c, by writing 

I 
I 

where 

Following Rothmayer and Davis (Ref. 3), the values of T(I , )  and T’(z,) are obtained by using second-order 
accurate extrapolations from the three solution stations ahead of 2,. In addition, Eq. (36b) can be integrated 
to give 

I 
I 

I 

Equation (59c) is not employed within the interacting boundary-layer calculation; it is only used after the 
solution is converged to determine the distribution of the displacement thickness downstream of 2,. The 
numerical solution of Eq. (59c) will be discussed in Appendix E. 

The discretization of the Cheng-Fbtt integral is performed in much the same manner as was done for 
the Cauchy integral. The Cheng-Rott integral is discretized over a grid subdivided as in Fig. 5 and Ue, 
is again written in the form of Eq. (57c), after isolating the contribution to  the inviscid integral from the 
displacement thickness at i. In the massive separation procedure, the “influence coefficients”, Di, are given 
by 

where the integral (59a) is written as 

and M is the index of the last boundary-layer solution station upstream of 2,. The term gi and the coefficients ci and f i i  are given in Appendix E. 
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Interacting Boundary-Layer Equations 

The combined viscous and inviscid equations are referred to  as the interacting boundary-layer equations. 
The inviscid equations must be coupled to the viscous equations in some fashion which will lead to solutions 
which converge upon global iteration of the complete system. Two numerical methods which have been 
successfully applied to couple the equations for local-strong interaction calculations are the so-called semi- 
inverse method of Carter (Ref. 24) and the quasi-simultaneous methods of the Veldman-Davis (Refs. 25 and 
26) type. 

The semi-inverse method provides a simple technique with which to couple the viscous and inviscid flow 
regions. The quasi-simultaneous procedure, which was developed after the introduction of the semi-inverse 
method, has been shown to generally be the more preferable of the two approaches, because the quasi- 
simultaneous procedure tends to converge more rapidly due to its more implicit nature, as well as being 
in general more robust; the latter is an especially important consideration when separated flows are being 
ca:iu:at.ied* Foi the reaofia cited &G"e, ::,e qu=i-sir1;:t2fieoiia . .  approach is &i&-d 

The numerical implementation of the quasi-simultaneous coupling procedure which has been adopted for 
both the local strong-interaction and the massive separation models can be described in the same way. The 
two relations used in coupling the viscous and inviscid flows are given by Eqs. (48) for the boundary-layer 
equations and (57c) for the inviscid equations. Between these relations the quantity (Ue6*)i is eliminated 
and Eq. (49) is then used to express Uei in terms of & , N J .  The complete set of algebraic relations for the dis- 
cretized interacting boundary-layer equations is straightforwardly solved through the use of the appropriately 
chosen recursion relations. 

the present 3t;dj.'. 

The recursion relations are postulated to be of the form 

and 

The computation of the recursion relations is started at the body surface or wake centerline at  j = 1 using 
the appropriate boundary conditions on F and V .  On a solid surface the no-slip condition on F given by 
Eq. (46a) implies that all of the recursion relation coefficients in Eq. (62a) are zero there. If a slip condition 
is applied, then all of the coefficients are zero except for 21, , which is set equal to the specified value of the 
slip velocity. The surface injection condition on V implies that 2 2 ,  = V,(<) and the remaining coefficients 
are zero at the surface. On a wake centerline V is equal to zero so that all of the coefficients in (62b) are zero. 
The coefficients of (62a) are immediately determined from Eq. (47b), since the latter can be manipulated 
into the form of Eq. (62a). The discrete forms of the continuity and momentum equations in the mesh 
interior can be manipulated through substitution to obtain the form of the recursion relation coefficients 
there; they are defined in terms of the coefficients of the governing equations in Appendix D. 

Once the recursion relation coefficients have been determined by sweeping from the boundary at j = 1, 
the edge and coupling relations, Eqs. (48), (49), (50) and (57c) are solved to determine PI, and the remaining 
unknowns at the boundary-layer edge, including the displacement thickness and inviscid edge velocity. The 
details of the procedure at the edge of the boundary layer, which is where the coupling between the viscous 
and inviscid flows is accomplished, are provided in Appendix D. Once the unknowns at  the edge of the 
boundary layer have been determined, the recursion relations are employed t o  solve for Fi,j and K,j by 
sweeping from the edge of the boundary layer at  j = N J  to the lower boundary at j = 1. 

The viscous-inviscid interaction solution is determined by globally iterating upon the displacement 
thickness distribution starting with an initial guess for the distribution. Each spatial sweep of the boundary- 
layer equations is handled in a parabolic-like manner, marching the equations from an initial boundary-layer 
profile, which is generally a similarity profile. The maximum fractional change in the displacement thickness 
is monitored from one global iteration to the next until it falls below some preset tolerance, usually for 
the present calculations, at  which point the calculation is considered to be converged, and is terminated. 

For all of the airfoils considered in the present investigation, stretched grids are employed in both the 
streamwise and normal directions. The streamwise stretching is employed to resolve both the leading-edge 
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region of the blunt-nosed airfoils and, in the local strong-interaction calculations, the trailing-edge/near- 
wake region. The stretching uscd is a simple geometric one in which the stretching coefficients are precisely 
determined to give the desired number of grid points within a specified region with the stepsize at one end 

wall specified to allow the lower deck of the triple deck to be captured in the regions of strong viscous- 
inviscid interaction in laminar calculations, and to resolve the laminar sublayer in turbulent boundary-layer 
calculations. 

, 
I of the region specified. The stretching in the normal direction is also geometric, with the stepsize near the 

, 
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DISCUSSION OF RESULTS 

In the present study, results have been obtained to demonstrate the ability to predict, using interacting 
boundary-layer theory, the crossover process which occurs between a local airfoil trailing-edge separation 
bubble and the massive separation structure which develops as the thickness of a symmetric airfoil is increased 
in a laminar flow a t  finite Reynolds number. In addition to  the interacting boundary-layer results, asymptotic 
(infinite Reynolds number) results have been obtained using a triple-deck analysis. The results of the two 
analyses are compared to determine the extent to which the triple-deck and interacting boundary-layer 
theory predictions are in qualitative agreement. The effects of turbulence and boundary-layer control on the 
crossover process have also been investigated. 

Both the triple-deck and the interacting boundary-layer analyses have been applied to two realistic 
airfoil geometries, the first of which corresponds to  the NACA four digit series airfoil, NACA OOXX, where 
XX  represent.^ the maximum thickness of the airfoil expressed in percent of chord. The thickness distribution 
of the NACA OOXX airfoil has been modified slightly from the original distribution given by Abbott and Von 
Doenhoff (Ref. 32) to  obtain closure at the trailing edge. The second airfoil corresponds to  the thickness 
distribution of the Garabedian and Korn (GK) airfoil with the designation 70-10-13 (Ref. 33). The upper 
and lower surface coordinates are given in Ref. 33 as a discrete distribution of points. For this study these 
points have been used to determine the airfoil thickness distribution (;.e., the airfoil without camber), which 
has then been fit in a least-squares sense to  a polynomial of the form of Eq. (11). The function describing the 
GK 70-10-13 airfoil is multiplied by a scaling factor which is used to generate a family of airfoils designated 
GK 70-10-XX, where XX again represents the maximum percent thickness to  chord ratio. In addition, the 
effects of turbulence and boundary-layer control have been investigated for the NACA OOXX airfoil series. 

Triple-Deck Analysis 

Before considering the results of the calculations performed using the finite Reynolds number (interacting 
boundary-layer) approach, the behavior predicted by triple-deck theory at the asymptotic condition of infinite 
Reynolds number is considered. Specifically, using the technique described in the previous section for the 
solution of Eq. (9), the behavior of the separation point has been predicted for thicknesses beyond the 
critical value a t  which cut-off (wake inflation) occurs. For the asymptotic analysis, the airfoil thickness is 
scaled by the Reynolds number to  yield a thickness parameter, 'il, given by the expression 

- 
h = Re1/16h (63) 

The first result shown is that obtained for the NACA OOXX airfoil. The airfoil geometry is given by the 
expression 

f ( ~ )  = h(1 .48456  - 0.64052 - 1 . 7 5 8 ~ ~  + 1 . 4 2 1 5 ~ ~  - 0 . 5 0 7 5 ~ ~ )  (64) 

where h is the maximum thickness of the airfoil. The profile of the NACA 0012-airfoil is presented in Fig. 
6a. The results are given in Fig. 6b in terms of the scaled thickness parameter, h. This airfoil has a wedge- 
shaped trailing edge and is free of inflection points and therefore is expected to have unique behavior of the 
separation point, c,, versus the airfoil thickness parameter, similar to the behavior sketched in Fig. 1. As 
seen in Fig. 6b, unique behavior is indeed predicted. As the airfoil thickne.ss decreases, the separation point 
moves aft toward the trailing edge. The curve terminates at the value of h (equal he)  which corresponds to 
the collapse of the free streamline to  the x-axis at downstream infinity (cut-off). Cut-off is determined to 
have occurred when the coefficient of the parabolic term in the downstream free streamline shape, ( b  in Eq. 
( lo)) ,  is equal to  zero; for this airfoil cut-off occurs at  a value of h equal to 0.093758 for which 2, is equal 
to 0.64297. Any further decrease of the airfoil thickness parameter causes the free streamline to cross the 
- z-axis a t  a finite distance downstream, which is not a physically plausible solution. For thicknesses below 
h,, an analysis which accounts for the finite eddy length must be employed, such as that used by Rothmayer 
(Ref. 22). 

The second case considered is the family of airfoils obtained by linearly scaling the profile of the uncam- 
bered Garabedian and Korn (GK) 70-10-13 airfoil (Ref. 33). The notation GK 70-10-XX as used here refers 

- 
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to a symmetric airfoil with percentage XX thickness to chord ratio. The equation describing this airfoil, 
obtained by performing a least-squares fit of the discrete data given in Ref. 33, is given by 

I 

I 
f(x) = h(1 .423846 - 0.800726~ + 0.141386~’ - 2 . 4 9 8 8 2 ~ ~  + 1 . 7 3 4 3 2 ~ ~ )  (65) I 

The profile of the 13 percent thick airfoil shown in Fig. 7a displays the presence of an inflection point 
near the trailing edge. The existance of an inflection point introduces the possibility of non-uniqueness in the 
location of the separation point for a given value of the thickness parameter (Refs. 17 and 22), as illustrated 
in Fig. 2. Nonuniqueness has been found to  occur for the GK airfoil, for which the separation point behavior 
as a function of the airfoil thickness parameter is shown in Fig. 7b. The nonunique behavior is not obvious 
on the scale of Fig. 7b, but becomes apparent in the expanded vi5w shown in Fig. 7c, which illtstrates the 
behavior of the separation point location near the cut-off value of h. For this airfoil the value of h a t  cut-off 
is equal to 0.071946 and the corresponding location of the separation point, x,, is equal to 0.60074. 

The way in which non-unique behavior is manifested for those airfoils in which it occurs can vary 
significantly. In order to illustrate this point, a third airfoil has been analyzed using the triple-deck analysis; 
this airfoil was not analyzed using the interacting boundary-layer procedure. The airfoil considered is a 
symmetric NACA 6-series airfoil; the NACA 65-010 thickness distribution given as discrete points in Ref. 
22 was fit using a least-squares curve fit to obtain the polynomial equation 

I 

f(x) = h(1.107146 - 0.641582 + 2 . 1 1 3 1 1 ~ ~  - 5 . 6 1 4 9 3 ~ ~  + 3 . 0 3 3 8 6 ~ ~ )  (66) I 

This expressjon was scaled to obtain a family of airfoils related to the NACA 65-010 airfoil by the thickness 
parameter, h.  Although it is not formally correct to refer to these as NACA 65-OXX airfoils, since different 
thickness distributions in the NACA 6-series are not obtained by direct scaling, the XX notation will be 
used here for convenience. 

The profile of the 10 percent thick airfoil is shown in Fig. 8a, and the behavior of the separation point as 
the thickness parameter is varied is shown in Fig. 8b. The nonuniqueness is much more pronounced in this 
case than in the case of the GK 70-10-XX airfoil. In particular, instead of the nonunique behavior occurring 
when the separation point is in the vicinity of the trailing edge, it occurs as the separation point approaches 
the leading edge. In addition, the curve is seen in Fig. 8c, which is a detail of Fig. 8b near x, = 0, to  reverse 

geometry, the separation point moves infinitesimally close to the leading edge as the thickness parameter is 
increased. Eventually, as the airfoil thickness increases, consequently increasing the perturbation which the 
airfoil induces upon the global pressure field, the separation point will retreat away from the leading edge 
as the fixed magnitude (0(Re-l/16)) perturbation to the global pressure field due to the local triple-deck 
structure shrinks relative to  the perturbation due to  the airfoil and free streamline; the retreat from the 
leading edge occurs when the unscaled airfoil thickness is (see Ref. 17). For the NACA 650XX 
airfoil the cut-off value of is equal to 0.059234, for which the corresponding value of x, is equal to  0.64855. 

Based upon the results displayed in Figs. 8b and 8c, the NACA 65-OXX airfoil is concluded to be a 
geometry which shows a clear possibility for a hysteresis loop similar to that sketched in Fig. 2. 

A simple tool for determining the behavior of the separation point a t  the asymptotic condition of infinite 
Reynolds number, when the inviscid flow is assumed to be governed by the thin airfoil equations and the 
separation point behavior is assumed t o  be that determined by triple-deck theory, has been demonstrated for 
three realistic symmetric airfoil geometries. The existence of different types of behavior, which are dependent 
upon the particular airfoil geometry and include the possibilities of nonuniqueness and hysteresis, has been 
illustrated. 

~ 

I 

I 
I direction as the separation point moves very close to the leading edge. Fig. 8c shows that,  for this airfoil 
I 
I , 

I 

Interacting-Boundary Layer Analysis 

The Interacting Boundary-Layer (IBL) analysis described in the previous section has been used to 
predict the way in which the flow undergoes crossover from local to  massive separation, and to study the 
effects upon cressover of turbulence and the application of boundary-layer control. 

The IBL calculations have been performed in two modes; the first mode is referred to  as the “local strong- 
interaction” (LSI) mode and the second is referred to as the “massive separation” (MS) mode. In the local 
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strong-interaction mode, cases with strong viscous-inviscid interaction, where the flow is either attached or 
separated locally (on the airfoil or in the vicinity of the trailing edge), are treated. In the massive separation 
mode the flow is assumed to  have undergone crossover to a large-scale separated structure which is modeled 
using the Kirchhoff eddy model. 

Both IBL calculation modes were verified prior to embarking upon the in-depth study discussed below. 
The LSI mode was first verified by calculating the flow over two configurations which have been analyzed 
in numerous previous studies. These two configurations are the finite flat plate, which has a local region of 
strong interaction in the neighborhood of the trailing edge, and the so-called Carter-Wornom trough (Ref. 
34), which is essentially a depression on a flat plate which, under the appropriate conditions of Reynolds 
number and depth of the depression, produces a confined region of separated flow. Although not presented 
here, the results of the calculations performed for these geometries were in very good agreement with the 
results of other investigators who have considered these problems. The MS mode was not as easily verified, 
since very few calculations of this type have been performed to date. However the basic procedure was 
verified by comparing with results obtained previously by Rothmayer (Ref. 22). Agreement with those 
results, obtained using a very similar procedure to that employed here, was found to be excellent. 

All of the airfoil results discussed below have been obtained using the blunt leading-edge form of the 
interaction procedures presented in the last section. 

Two of the realistic airfoil geometries considered in the infinite Reynolds number (triple-deck) asymptotic 
analysis and discussed above have been analyzed using the finite Reynolds number (IBL) analysis, namely, 
the NACA OOXX and the Garabedian and Korn 70-10-XX airfoils. Both the local strong-interaction and 
the massive separation modes have been utilized to study the process by which a local separation bubble 
undergoes crossover to a massively separated eddy as the airfoil thickness is increased. In addition to 
the basic crossover analysis, the impact of turbulence and boundary-layer control upon flow with large- 
scale separation is studied for the NACA OOXX airfoil. Unless otherwise noted, the calculations have been 
performed assuming laminar flow at a Reynolds number of lo6. 

NACA OOXX Airfoil Ser ies  

The first airfoil which is considered is the NACA OOXX family described by Eq. (64), where the 
parameter h represents the maximum airfoil thickness to chord ratio. Calculations have been performed 
using the LSI analysis with the airfoil thickness systematically increased until the approach to cut-off (wake 
inflation) is observed. Following wake inflation, the MS analysis is applied as the airfoil thickness is further 
increased. 

The predicted behavior of the separation and reattachment points, 2, and zp, is shown in Fig. 9 
as the airfoil thickness is varied. Starting with a one percent thick airfoil, h is increased until incipient 
separation is observed at the trailing edge when h = 0.03. Further increasing the airfoil thickness results in 
growth of the separation bubble about the trailing edge. As the thickness increases, the separation point 
migrates upstream towards the leading edge while the reattachment point retreats from the trailing edge at 
an increasing rate. The approach of the curve of the reattachment point versus h to a vertical tangent signals 
the onset of wake inflation and the crossover from local to massive separation. In the present case, crossover 
occurs for a value of h between 0.06 and 0.07. For values of h beyond 0.06, the massive separation analysis 
has been applied. The results obtained using the MS analysis show that the separation point continues to 
move towards the leading edge as h increases. Of particular importance to note in Fig. 9 is the apparently 
smooth merging of the behavior of the separation point in going from the local strong-interaction to the 
massive separation model, which is a manifestation of the continuous crossover from the local separation to 
the massive separation flow structure which is predicted by triple-deck theory for airfoil geometries free of 
inflection points, and having a wedge-shaped trailing edge. 

The effects of varying the airfoil thickness upon the displacement body and the local aerodynamic 
properties, namely, C, , the pressure coefficient, and C j ,  the skin friction coefficient, are illustrated for the 
NACA OOXX airfoil family in Figs. loa-d. The skin friction coefficient is defined according to the relation 
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In Fig. 10a the airfoil profiles and the associated displacement bodies are plotted for various values of 
the thickness parameter, h. The location of the separation point is also noted in each case. Recall that the 
results shown were obtained with the LSI analysis for h 5 0.06 and with the MS analysis for h > 0.06. First, 
note that as h increases the displacement thickness increases, particularly in the vicinity of the trailing edge 
and in the downstream wake. As the value of h increases through wake inflation (0.06 < h < 0.07), the 
displacement body in the vicinity of the airfoil does not undergo any dramatic change in behavior. However, 
the length of the separated region has undergone a dramatic change after inflation, extending downstream 
to a distance on the order of the flow Reynolds number (according to the asymptotic theory), instead of 
an O(1) distance prior to the onset of wake inflation (see Ref. 17). Another observation to be made with 
reference to Fig. 10a is the clear tendency of the displacement body towards parabolic growth downstream, 

Figures 10b and 1Oc illustrate the behavior of the pressure coefficient, C,, as the airfoil thickness is 
varied. In Fig. 10b the pressure distributions for the calculations obtained using the LSI approach are 
shown along the airfoil and downstream to a distance of one chord length beyond the trailing edge. The 
development of a distinct pressure plateau is seen as the airfoil thickness increases to a value of 0.06. Recall 
that the existance of a constant pressure region downstream of the separation point is the fundamental 
feature assumed in applying the Kirchhoff eddy model to the massive separation calculations; the emergence 
of a constant pressure region as the separation bubble grows is clearly demonstrated in the results obtained 
using the local strong-interaction procedure. 

In Fig. 1Oc the pressure distributions are shown on the airfoil surface for both the local strong-interaction 
and massive separation calculations. As the airfoil thickness increases, the pressure coefficient distribution 
is observed to change in a smooth manner as the separated region undergoes wake inflation. The continuous 
change in character of the pressure distribution as the airfoil thickness increases through crossover is consis- 

kink in the pressure distribution seen for some of the LSI results in the vicinity of x = 0.2 is associated with 
the use of a numerical grid which is relatively coarse in that region, which was confirmed by performing a 
calculation which had a significantly finer grid in that region and for which a similar kink was not observed. 
The use of a coarse grid locally is dictated by the need for a very fine mesh near the leading and trailing 
edges, and the necessity that the total number of grid points be limited to  a reasonable number, which results 

10d. As noted for the pressure 
coefficient, the behavior of the skin friction coefficient distribution changes smoothly as the flow undergoes 
crossover from local t o  massive separation with an increase in airfoil thickness. The flow is attached along the 
entire airfoil for thicknesses below h = 0.03. At h = 0.03 incipient separation is observed at the trailing edge 
while above this thickness the separation bubble grows about the trailing edge until its length approaches 60 
percent of chord when h is equal t o  0.06. Massive separation is predicted for h > 0.06 with the skin friction 
very close to zero throughout most of the separated region. Consistent with the nearly zero skin friction, 
the reversed flow velocities were found to be quite small in the separation bubble. This result is expected 
since the eddy is a nearly stagnant flow region in the Kirchhoff model. 
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seen especially for the NACA 0010 airfoil. I 
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tent with the smoothly varying growth of the displacement body seen in Fig. 8a when crossover occurs. The I 

I 
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1 from the desire to keep computer storage and run times within reasonable limits. 
The behavior of the skin friction coefficient, Cj ,  is shown in Fig. 

I 

Drag Results 

An important parameter which is generally desired from airfoil calculations is the drag. The nondimen- 
sional drag coefficient is given by the expression 

where D* is the dimensional drag force. The total drag coefficient, Co, is the sum of two components, CD,, 
the drag due to pressure, and CD,, the drag due to the skin friction. The (dimensional) pressure drag can 
be written for a symmetric airfoil at zero angle of attack in the form 
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where the pressure is evaluated at the airfoil surface and the airfoil geometry is given by the expression 
y* - f*(x*) = 0. An asterisk denotes a dimensional variable. The skin-friction drag is obtained from the 
following equation, 

where T* is the wall shear, p*azl*/dn*. The airfoils are assumed to span t = 0 to x = 1 in writing Eqs. 
(69) and (70). These expressions are rewritten in terms of the appropriate nondimensional variables and 
numerically integrated using trapezoidal rule integration to obtain the final values of the components of the 
drag coefficient and the total drag coefficient. 

Before discussing the particular behavior observed for the drag calculated for the NACA OOXX airfoil 
family, some remarks regarding the observed behavior of the drag coefficient as a function of the location 
chosen for the downstream boundary of the strong-interaction region in the LSI calculations are appropriate. 

The downstream boundary location has been found to have a strong influence on the value of the drag 
which results from the numerical calculations. Downstream of the strong-interaction region, the displacement 
thickness is assumed t o  decay like x-l/'; this asymptotic behavior is incorporated into the LSI calculation 
procedure to account for the effect of the displacement body distribution in the region outside of the cal- 
culation domain on the flow in the strong-interaction region. The LSI calculations were initially performed 
with the downstream boundary located one chord length aft of the trailing edge of the airfoil. The resulting 
trend in the drag coefficient as the airfoil thickness was varied was observed to  be counter to the behavior 
which is expected. The mechanism which was found to be responsible for the anomalous behavior is the 
placement of the downstream boundary too close to the trailing edge of the airfoil. 

The observation noted above leads to the conclusion that the drag, which is a global quantity, provides a 
useful parameter in the local strong-interaction calculations for determining when the downstream boundary 
has been located far enough away from the airfoil. In the present calculations, inspection of the local 
quantities such as pressure and skin friction gave no indication that the downstream boundary was placed 
too close to  the airfoil. 

The behavior of the drag obtained from the study of the NACA OOXX series airfoil is shown in Fig. 11. 
First note that at h = 0, the flat-plate drag coefficient determined by Jobe and Burggraf (Ref. 35) using 
triple-deck theory is indicated. The remaining points are the numerically determined values obtained in the 
present study using the interacting boundary-layer approach. The drag coefficient is observed to  approach 
the asymptotic flat-plate value very well as the thickness decreases towards zero. The drag increases with 
increasing airfoil thickness, doing so more rapidly as the thickness becomes larger. The contribution to  the 
total drag from the skin-friction is nearly a constant as the thickness varies, while almost the entire change 
in the total drag is attributable to  the variation in the pressure drag. 

The curves of C D  and CD,, versus h are seen to be discontinuous in going from the LSI to the MS results 
between h equal t o  0.06 and h equal to 0.07. Based upon the continuous behavior of the separation point 
in going from the local t o  the massive separation structure, this discontinuity is unexpected. A strong clue 
to the cause of this behavior is provided by the fact that the behavior of the friction drag component is 
continuous as the crossover from local to  massive separation occurs while the pressure drag component is 
discontinuous. The pressure distribution illustrated for the NACA 0006 airfoil in Fig. 10b shows that the 
level of the plateau pressure is higher than the freestream pressure. If the constant pressure in the eddy 
of the massively separated flow is in reality higher than the freestream value, the pressure drag would be 
higher than that predicted using the Kirchhoff eddy model, wherein the eddy pressure has been assumed to 
be equal to  the freestream pressure. Thus, there is a strong possibility that  the discontinuity in the behavior 
of the drag in switching from the LSI to  the MS analysis is due to the assumption that the eddy pressure 
is equal to  the freestream pressure, which gives no net contribution to the pressure drag from the separated 
flow region. 

The broader conclusion with regard to  the aforementioned anomalous behavior of the drag coefficient 
is that  it is indicative of a defic.iency in the Kirchhoff eddy model, which is too restrictive because of the 
requirement that  the eddy pressure be imposed, instead of being obtained as part of the overall solution. 
Furthermore, the assumption of a constant eddy pressure is probably too restrictive; one would most likely 
have to  allow for variations in the pressure along the eddy in order to develop a more realistic model for 
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massively separated flow. Although the local structure in the vicinity of the body has been postulated to 
be close to that of a Kirchhoff eddy, the modifications of the body scale flow due to  the larger scale flow 
encompassing the global eddy structure will most likely have to  be accounted for in order to  get a completely 
self-consistent model of the massively separated flow structure (Ref. 14). 

It is expected that, as the Reynolds number for an interacting boundary-layer calculation is increased, 
the finite Fkynolds number result should approach the infinite Reynolds number (triple-deck) result. All of 
the finite Reynolds number results presented above were calculated a t  a Reynolds number of lo6. In order to 
confirm that the asymptotic behavior is approached as the Reynolds number increases, further calculations 
have been performed for the NACA OOXX-series airfoil at a Reynolds number of lo7 using the MS analysis. 
In order to  show the trend in the behavior, the finite Reynolds number results have been obtained over a 
limited range of airfoil thicknesses; it is not intended here to  show the entire range of behavior for each 
Reynolds number. 

The behavior of the separation point for the two finite Reynolds numbers, as well as the prediction 
obtained from the asymptotic_analysis, is presented in Fig. 12, where the airfoil thickness is expressed in 
terms of the scaled parameter, h (Eq. (63)), to permit comparison with the behavior predicted by triple-deck 
theory. As the Reynolds number is increased, the locus of the separation point locations calculated using 
the finite Fkynolds number MS approach is observed to tend towards the asymptotic result. However, it is 
obvious that convergence to the limiting asymptotic behavior as Re increases occurs very slowly. The slow 
approach to the asymptotic prediction for the behavior of the separation point is in contrast to  the excellent 
agreement of the predictions of the finite Reynolds number LSI calculations with the result of the asymptotic 
theory for the flat-plate drag illustrated in Fig. 11. In the theory which applies to  the latter case, the small 
parameter in the asymptotic expansion is O(Re-1 /2 ) ,  whereas in the asymptotic theory governing cut-off 
the small parameter is O(Re-l/16).  The latter parameter approaches zero considerably more slowly than thc 
former as Re ----f 00, which explains the much slower approach of the finite Re cut-off behavior as comparec 
to the approach of the finite Reynolds number drag behavior to  the asymptotic limit as the Reynolds numbei 
increases. Slow convergence of the finite Re results for cut-off to the predicted asymptotic behavior was alsc 
observed in Ref. 22. 
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Garabedian and Korn '70-1 0-XX Airfoil S e r i e s  I 
1 

I The aerodynamic properties of the NACA OOXX series airfoil were expected, based upon triple-deck 
theory, to  change in a continuous fashion as the airfoil thickness was increased through the critical value 
associated with wake inflation. The IBL analysis for that airfoil at a Reynolds number of lo6 yielded results 
which are generally consistent with the predictions of the asymptotic theory. The possibility of behavior 
which is not continuous (due to non-uniqueness and/or hysteresis) as the airfoil thickness increases through 
cut-off for certain types of airfoil profiles has been discussed in the previous section. This possibility has been 
shown to exist for an airfoil with an inflection point in the vicinity of the trailing edge (Ref. 22). In order to 
determine whether discontinuous behavior occurs at finite Reynolds numbers for a realistic airfoil, the scaled 
thickness distribution associated with the Garabedian and Korn (GK) 70-10-13 airfoil (Ref. 33), for which 
discontinuous behavior during crossover was predicted by the triple-deck analysis, has been considered. The 
airfoil is described by Eq. (65). The family of GK 70-10-XX airfoils was obtained by varying the coefficient 
h in Eq. (65), where h is the airfoil thickness to  chord ratio. The interacting boundary-layer analysis was 
carried out in the same manner as described above for the NACA OOXX series, and the results are presented 
below. 

The behavior of the separation and reattachment points, c, and cr, is shown in Fig. 13. First consider 
the behavior calculated using the local strong-interaction analysis as the thickness is increased from an 
initially small value. The boundary layer remains attached to the airfoil until separation is first observed for 
h equal to 0.05. Note that initially the entire separation bubble forms upstream of the trailing edge, which 
is due to  the inflection point in the airfoil profile ahead of the trailing edge. The inflection point induces 
an adverse pressure gradient locally which in turn provokes separation when the airfoil thickness becomes 
sufficiently large. The mechanism which induces separation in the presence of a geometrical inflection point 
is different than the mechanism which is present when the airfoil closes in a wedge-shaped trailing edge, 
where a strong singularity in the inviscid flow is present, which induces separation at the trailing edge. 
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Once separation occurs on the GK airfoil, a very small increase in the airfoil thickness causes a con- 
siderable expansion of the the separation bubble in the streamwise direction, in contrast to the slow initial 
growth of the separated flow region which is observed for the NACA OOXX airfoil after the boundary layer 
first separates. In particular, in Fig. 13 note the extremely large downstream motion of the eddy closure 
point which occurs between values of h equal to 0.052 and 0.053 for the GK airfoil. 

Calculations have also been performed using the massive separation analysis starting with a 10 percent 
thick airfoil and decreasing the airfoil thickness to a minimum value of h equal to 0.057. Below this value the 
MS results indicate that the eddy has collapsed to the z-axis at a finite distance downstream of the trailing 
edge; i.e., cut-off has occurred. 

The curves of zd versus h obtained from the LSI and MS analyses and presented in Fig. 13 do not 
merge smoothly as cut-off is approached, in contrast with the smooth behavior observed previously for the 
NACA OOXX airfoil (cf. Fig. 9). The contrast between the behavior predicted for the NACA OOXX and 
the GK 70-10-XX airfoils by the finite Reynolds number analysis appears to  be consistent with the contrast 
between the predictions of the asymptotic analysis, although it is unciear from these resuits preciseiy how 
the behavior predicted for the GK 70-10-XX airfoil by the triple-deck and IBL approaches is related (cf. 
Figs. 7 and 13). In any event, the lack of smooth merging of the results of the finite Reynolds number LSI 
and MS analyses appears to be related t o  the presence of an inflection point in the GK airfoil geometry, and 
is therefore consistent the prediction of triple-deck theory that airfoils which have inflectional profiles like 
that of the GK thickness distribution are not anticipated to undergo continuous crossover between local and 
massive separation (Refs. 17 and 22). 

The effects of varying the airfoil thickness upon the computed displacement body distributions and local 
aerodynamic properties, namely the pressure coefficient and skin friction coefficient, calculated for the GK 
airfoil series are shown in Figs. 14a-c, respectively. 

14a, where the 
separation points are also indicated. Several observations are made based upon this figure. First, the 
displacement thickness at a given streamwise location in the downstream wake is seen to be nearly constant 
as h increases through a value of 0.05. However, the small increase in airfoil thickness from 0.050 to 0.053 
is seen to  provoke a very large change in the displacement thickness distribution in the wake and on the aft 
portion of the airfoil, which is associated with the enormous expansion of the separation bubble occurring 
between those two values of h (see Fig. 13). Increasing the thickness of the airfoil from 0.053 to 0.057, 
which requires switching from the local strong-interaction to  the massive separation analysis, does not show 
the same rapid inflation of the eddy which is observed in going from a value of h equal t o  0.050 to  0.053. 
The discontinuity in the rate of inflation of the eddy may be a further indication of the lack of continuous 
merging of the local and massive separation flow structures as the airfoil thickness increases through cut-off. 
Once the flow has crossed over to a massively separated state, further increasing the airfoil thickness leads 
to a smoothly increasing displacement body thickness downstream of separation. 

In Fig. 14b the distribution of the pressure coefficient on the airfoil surface is shown for the various 
values of h considered. Consistent with the increase in the extent of separation going from h equal to 0.050 
to 0.053, a significant pressure plateau is observed in the latter case. The pressure distribution obtained from 
the massive separation calculation for a value of h equal to 0.057 is very close to  that for h equal to 0.053 
from the LSI analysis, with about the same extent predicted for the pressure plateau on the airfoil surface, 
which is consistent with the similar displacement body shapes predicted for these two cases. Increasing the 
airfoil thickness above 0.057 leads expansion of the pressure plateau upstream, consistent with the upstream 
movement of the separation point. 

The skin friction distributions for the GK airfoil are presented in Fig. 14c. The approach to separation 
is observed, with a small separation bubble initially forming ahead of the trailing edge for the case of h 
equal to  0.05. The rapid upstream movement of the separation point as the thickness increases to  0.053 is 
clearly seen in this figure, as is the continuing tendency of the separation point to move further upstream as 
h continues to  increase. 

The GK airfoil profiles and the associated displacement bodies are shown in Fig. 

Turbulence Eflects 

The effect of turbulence upon the onset of massive separation has been studied as part of the present 
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effort. Turbulence is simulated through the use of an algebraic turbulence model, which is described in 1 Appendix B. Two geometries are considered, namely, the NACA OOXX airfoil and a circular cylinder with a 
trailing edge splitter plate. I 

which separation can be suppressed by turbulence. 
Recall that the triple-deck analysis for laminar flew results in a thickness parameter, x, defined by Eq. 

NACA OOXX Airfoil I 

Circular Cylinder 

No massively separated turbulent flow solutions have been obtained for the NACA OOXX series airfoil 
over the range of the thickness parameter considered. However, the expectation is that by increasing the 
airfoil thickness until it is O( 1), that is, until the airfoil becomes a bluff body, massively separated solutions 
should result. In order to demonstrate that a massively separated solution can be computed for a turbulent 
flow, instead of considering bluff airfoils, the transitional flow past a circular cylinder geometry has been 
calculated herein. The specific case considered is the flow past a circular cylinder with a downstream splitter 
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plate, at a Reynolds number (based on diameter) of 14,500, for which experimental data is available (Ref. 
36). A configuration with a splitter plate has been chosen since the splitter plate suppresses the large 
scale unsteadiness associated with vortex shedding, hence making the experimental data more suitable for 
comparison with the present steady-state numerical results. 

The massive eddy which is present in a bluff-body flow is generally observed in experiments to be very 
nearly a constant pressure region, where the pressure level is a function of the geometry and flow conditions. 
In the present massive separation model, the level of the pressure in the Kirchhoff eddy is a parameter which 
can be set, however it can not be determined as part of the solution. Therefore, the results of the circular 
cylinder calculations which are presented below have been obtained by specifying the eddy pressure to be 
the value measured experimentally; the specified value of the pressure coefficient is C,, = -0.4465. 

An initial calculation has been performed assuming the flow to be completely laminar; the result of this 
calculation has then been used to  determine the transition location for a subsequent turbulent calculation. 
The transitional calculation has been performed assuming that transition occurs instantaneously just aft of 
the location at which separation is predicted in the laminar calculation, which occurs at an angular distance 
of approximately 78.5 degrees around the cylinder measured from the forward stagnation point. The results 
of both calculations are presented in Fig. 16 along with the experimental data of Roshko (Ref. 36). Massive 
separation is predicted for both the laminar and the transitional flow. The two results are virtually identical 
until a value of 0 of approximately 45 degrees, after which a slightly lower pressure is predicted for the 
turbulent flow. Both pressure distributions agree reasonably well with the experimental data. Note that 
good agreement with the experiment is obtained despite the fact that the present bluff-body calculations 
violate the restriction of the present thin-airfoil approach with respect t o  the ratio eo / ro ,  which should be 
large, as noted earlier, but is O(1) in this case. 

Several important conclusions are drawn from the results of the above calculations. The first conclusion is 
that the presence of a turbulent boundary layer, although it inhibits the initial onset of massive separation, 
does not prevent the occurrence of large-scale separated flow. Also, results have been obtained which 
demonstrate that  it is possible to  compute bluff-body massive separation with the present IBL approach 
for massively separated flow, however, the eddy pressure cannot be obtained as part of the solution, but 
must be specified in order t o  obtain reasonable results. Finally, with the correctly specified value of the 
eddy pressure, reasonable agreement with experimental data can be obtained despite the violation of the 
restriction with respect t o  the ratio Eo/r0. 

Boundary-Layer Control 

The reason for studying massive separation is not only to satisfy our curiosity about this intriguing 
fluid dynamic phenomenon, but also to gain an understanding which will lead to our ability to  control and 
ultimately t o  eliminate its occurrence. For the latter reason, a brief investigation into the impact of two forms 
of boundary-layer control, surface suction and tangential injection, upon the onset of massive separation in 
laminar flow has been undertaken as part of the present study. 

Surface Suction 

For the past decade there has been a considerable amount of research and development effort into the 
use of surface suction to maintain laminar flow over airfoils in order to improve their efficiency. The primary 
mechanism by which efficiency is improved is through the drag reduction achieved by maintaining a laminar 
boundary layer over as much of the wing as is possible, and the goal is generally to  do so under cruise 
conditions. In the present study, the application of suction is instead considered under the far from optimal 
conditions associated with the onset of massive separation. The intent is t o  determine whether an airfoil 
which would ordinarily be stalled without the application of surface suction would remain so in the presence 
of mild surface suction, and to  demonstrate a preliminary capability for the analysis of techniques for the 
control of boundary-layer separation. 

The airfoil for which this analysis has been undertaken is the NACA OOXX airfoil, over which laminar 
flow is assumed, and the Reynolds number is taken t o  be lo6.  All of the suction and injection calculations 
have been performed with the local strong-interaction analysis. Without suction, the crossover to massive 
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separation had been found to occur in the thickness range between 6 percent and 7 percent. With this in 
mind, the 6 percent thick airfoil, NACA 0006, is considered first. The distribution of the surface normal 
injection velocity is assumed to be sinusoidal and is expressed in terms of the physical velocity as 

where a, is a parameter which determines the magnitude of the normal injection and x is the distance along 
the chord line (z-axis) from the leading edge. The quantities 2 1  and 2 2  denote the starting and ending 
locations of the suction distribution; outside of the region bounded by x 1  and 2 2  no suction is applied. Note 
that when a, is negative, suction is applied as opposed to  injection when a, is positive. Also note that 
the magnitude of the dimensional normal velocity, v* , is small, being of the same order of magnitude of the 
normal velocity within the boundary layer, O(l/&). Expressed in terms of the Gortler variable for the 
normal velocity, the surface suction velocity is given by 

The first case considered is for suction applied along the entire chord of the airfoil, Le., x 1  = 0 and 1 2  = 1. 
Two non-zero magnitudes for the suction parameter have been considered: a, = -0.5 and a, = -1.0. The 
suction distributions are presented in Fig. 17. The results for these two cases are compared with the results 
for the baseline case without suction in Figs. 18a-d. 

The airfoil and the displacement body for the three cases are presented in Fig. 18a, along with the 
location of the separation point. A dramatic change is induced in the displacement body, particularly in the 
vicinity of the trailing edge, by the application of a small amount of surface suction applied over the full 
chord of the airfoil. Figs. 18b and 18c show the surface pressure and skin friction distributions obtained 
for the corresponding surface suction distributions. The application of surface suction is seen in Fig. 18b 
to cause a dramatic decrease in the extent of the pressure plateau present in the trailing-edge region of 
the airfoil without suction, for which there is an extensive separation bubble. An increase in the amount 
of suction results in an increase in the peak pressure at the trailing edge and a further reduction in the 
extent of the pressure plateau, with the plateau almost entirely eliminated when a, = -1.0. The pressure 
distribution is observed to become more “inviscid-like” (;.e., more singular in nature) as the displacement 
body becomes thinner with the increasing amount of suction. The skin friction distributions are seen in 
Fig. 18c to be strongly influenced by the amount of surface suction which is applied, with the skin friction 
generally increasing as the suction parameter a, increases. Fig. 18d shows the behavior of the skin friction 
in the vicinity of the trailing edge, where the flow is observed to remain separated for both values of the 
suction parameter, with the length of the separated region decreasing as a, increases. 

The total drag coefficient and its individual components are given in Table 2 below. 

TABLE 2 
Drag coefficients for NACA 0006 with full-chord suction 

a, CD x io3 cD, x io3 CD, x io3 

0.0 4.654 2.354 2.300 
-0.5 4.560 1.262 3.298 
-1.0 5.482 1.184 4.299 

The total drag initally undergoes a slight decrease, but then rises as the suction velocity is further 
increased. The  increase in the total drag is clearly seen to be due to the pronounced increase in the friction 
drag accompanying the increasing suction velocity (Fig. 18c). The decrease in the pressure drag due to the 
decreasing extent of separation is not sufficient t o  counteract the increasing friction drag. 

The goal of applying boundary-layer control is t o  improve the performance of the airfoil, which translates 
in the present study to a reduction in the drag. The use of full-chord suction is observed to be ineffective in 
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achieving a significant reduction in the total drag because of the large penalty incurred due to the increase 
in the friction drag. Therefore, in order to achieve the desired improvement in the airfoil performance, a 
reduction in the pressure drag component is sought without a concomitant increase in the friction drag. In 
an attempt to  determine if this is possible, additional calculations have been performed with suction applied 
along a slot which spans a small fraction of the airfoil chord, in contrast to the full-chord suction applied 
above. 

The NACA 0006 airfoil is again considered for the slot suction calculations. The values of x1 and z2 
defining the slot location have been chosen so as to  bracket the predicted location of the separation point for 
the case where no suction is applied, namely, XI = 0.75 and x2 = 0.79. Two values of the suction parameter 
a, are utilized, a, = -1.0 and a, = -3.0. The local distribution of the suction velocity for the two cases 
is shown in Fig. 19. 

The airfoil and displacement body calculated for the slot suction cases are shown in Fig. 20a, along 
with the displacement body resulting from the calculation without suction. The effect of slot suction upon 
the displacement body is significant, however the displacement body is not reduced to the extent observed 
when full-chord suction is applied (cf. Fig. 18a). The pressure distributions are given in Fig, 20b, and show 
a reduction in the extent of the pressure plateau as the suction parameter is increased, although the plateau 
remains considerably more pronounced than in the case of full-chord suction (cf. Fig. 18b). The skin friction 
distributions in the vicinity of the trailing edge are given in Fig. 20c. Upstream of the trailing-edge region 
the distributions are almost unaffected by the application of slot suction, in contrast to the effect which 
full-chord suction has on the skin friction distribution over the entire chord of the airfoil. The skin friction 
initially increases near the slot, followed by a decrease and subsequent separation. The extent of separation 
is observed to decrease as the suction parameter increases. 

In Table 3 below, the total drag coefficient and its individual components are given. 

TABLE 3 
Drag coefficients for NACA 0006 with slot suction 

a, CD x io3 cD, x io3 CD, x io3 

0.0 4.654 2.354 2.300 
-1.0 3.705 1.331 2.373 
-3.0 3.852 1.338 2.514 

AS in the case of full-chord suction, the initial decrease in the total drag is followed by an increase as 
the suction parameter increases, however here the level of the drag is significantly lower than that observed 
with full-chord suction a t  comparable values of a,. The lower total drag which results when slot suction 
is applied is due to  the significantly smaller increase in the friction drag associated with slot suction as 
compared to  full-chord suction, since in the former case the skin friction only increases locally, near the 
slot. At the same time, the pressure drag reduction is comparable to that obtained with full-chord suction, 
leading to an overall decrease in the drag coefficient. The improved drag reduction obtained by application 
of slot suction as opposed t o  full-chord suction is achieved with an order of magnitude less mass removed 
from the boundary layer; for the sinusoidal suction distribution used here, the ratio of mass removal of the 
full-chord to  slot suction case is proportional to the ratio of the chord length to the slot length for a given 
value of a,, which for the aforementioned cases is 25:l. 

In order to further demonstrate the applicability of the present boundary-layer control analysis to  
separated flow problems, a case which has more extensive separation than is predicted for the NACA 0006 
airfoil has been studied. The thickness of the NACA 0006 airfoil is below the critical value a t  which cut-off 
occurs, so that it is still in the class of locally separated flows, although the separation bubble is an appreciable 
percentage of the airfoil chord when no suction is applied. A significantly more severe case is represented by 
the NACA 0007 airfoil, since in this case the flow is predicted by the interacting boundary-layer analysis to 
be massively separated. 

The parameters specified for the NACA 0007 calculation are as follows; the slot endpoints are at x1 = .68 
and 2 2  = .76, which places the slot downstream of the separation point determined using the massive 
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separation analysis with no suction, and the value of the suction parameter has been set to a, = -10. The 
distribution of the suction velocity is given in Fig. 21. The results of the calc~lat~ions with and without 
suction are compared below. The case without suction was calculated using the MS mode and the case with 
suction was calculated using the LSI mode. 

The airfoil and displacement body for the cases with and without suction, along with the location of 
the separation point, are shown in Fig. 22a. The effect of suction is seen to be dramatic, with the massive 
separation eddy reduced to  a local separation bubble with the application of mild slot suction. As expected, 
with the suppression of massive separation by the application of suction, the parabolic downstream growth 
of the displacement thickness which occurs in the massively separated case is no longer observed; instead, 
the displacement thickness decreases as the flow proceeds downstream. 

The pressure and skin friction distributions are shown in Figs. 22b and 22c, respectively, for the NACA 
0007 airfoil with and without slot suction. Without suction, the massive separation solution exhibits a 
pressure plateau extending over approximately the last 30 percent of the airfoil chord (Fig. 22b). The 
application of suction reduces the pressure plateau considerably and leads to a positive peak pressure in the 
vicinity of the trailing edge, near the bubble closure point. The skin friction distributions are shown in Fig. 
22c. Upstream of aprroximately mid-chord, the skin friction is affected only slightly by the application of the 
slot suction. In the case without suction, separation occurs at about 60 percent of chord from the leading 
edge, while it is delayed until approximately 90 percent of chord with suction applied. A large increase in the 
skin friction is observed in the vicinity of the slot in the latter case, which is followed by a very rapid drop 
commencing immediately after the slot, and becoming less severe as the separation point is approached. 

Because the NACA 0007 airfoil represents a more severe case than the NACA 0006 airfoil, it was found 
that a larger amount of mass removal from the boundary layer is necessary in the former case to unstall the 
airfoil and produce a locally separated flow. 

The relative effect of the application of suction upon the drag is not presented for the NACA 0007 airfoil 
because the two calculations were performed using the two different IBL modes, since the case without suction 
is massively separated and the suction case has a local separation bubble. As discussed earlier with reference 
to Fig. 11, the drag results obtained using the two methods cannot be compared in a meaningful way 
unless the appropriate level of the eddy pressure is specified in the massive separation calculation, since the 
pressure cannot be predicted as part of the present massive separation technique. In the case of the massive 
separation calculation performed for the NACA 0007 airfoil, the eddy pressure was set to the freestream 
value, which is probably too low, hence the drag will be underpredicted in this case. 

Tangential Injection 

In addition to surface suction, another form of boundary-layer control which is sometimes used is the 
injection of a tangential jet of air along a portion of the airfoil surface. This technique is intended to  take 
advantage of the so-called Coanda effect, whereby a tangentially injected jet of fluid tends to adhere to a 
curved surface. This phenomenon has been utilized by injecting air along the curved surface of a flap which 
is deflected downward. The jet of air and the ambient fluid entrained along with it are guided downward by 
the surface of the flap, and an additional component of lift is generated. The principal use of this technique 
has been in applications to  short take-off and landing (STOL) aircraft. 

Tangential injection like that described above can be simulated, albeit somewhat crudely, by applying 
a specified slip (or moving wall) boundary condition over some portion of the airfoil surface, which is what 
has been done in the present study. The boundary condition is modified by replacing the right-hand side of 
Eq. (26a) with the specified value of F(<,O) = F,(<), which is implemented by setting the recursion relation 
coefficient 21 in Eq. (62a) to F, and the remaining coefficients in Eq. (62a) to zero at the surface (j=1). 
For this investigation F, is given by 

so that the distribution is sinusoidal, being zero upstream of x1 and at the trailing edge. This distribution 
was not chosen with the intention of simulating the distribution of the tangential velocity which might be 
found in a realistic case, but rather to demonstrate the capability for calculating such cases, and to illustrate 
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the effect which tangential injection can have on a configuration for which extensive separation is observed 
without injection. 

The airfoil chosen for this study is again the NACA 0006 airfoil, the Reynolds number is lo6 and the 
flow is assumed to  be laminar. For the present calculations, 21 has been chosen to  be 0.75 and the injection 
parameter a, has been set to three different values, a, = 0.05, 0.15 and 0.50. The distributions of the 
surface tangential injection velocity are shown in Fig. 23. 

The calculated displacement body is plotted along with the airfoil profile and the separation point in Fig. 
24a for each of the cases. The application of tangential injection is seen to significantly reduce the thickness 
of the displacement body in the vicinity of the trailing edge. The corresponding pressure distributions are 
displayed in Fig. 24b. Increasing the injection parameter decreases the extent of the pressure plateau and 
increases the magnitude of the peak pressure in the trailing edge region. The skin friction distributions 
are shown in Fig. 24c. The slip condition at the surface causes an increase in the skin friction there. As 
expected, separation is suppressed by tangential injection. 

In T&!P 4 he!ew, the total 4ra.g coefficient and its individual components are given for the cases of 
tangential injection considered. 

TABLE 4 
Drag coefficients for NACA 0006 with tangential injection 

a,  CD x io3 CD, x io3 CD, x io3 

0.0 4.654 2.354 2.300 
0.05 4.222 1.371 2.851 
0.15 5.225 1.363 3.862 
0.50 8.425 1.309 7.117 

The pressure drag CD, for all non-zero values of a, is approximately constant, and is considerably less 
than the friction drag calculated for the baseline case (without injection). The friction drag CD, is affected 
significantly by the value of the injection parameter, increasing as a, increases. Because of the latter effect, 
the total drag CD is seen to decrease slightly over the baseline value for the smallest value of the injection 
parameter, but it is larger than the baseline value for the two largest values of a,, since the lower value of 
CD, cannot compensate for the large increase in CD,. 
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CONCLUDING REMARKS 

The principal goal of the present study has been to initiate an investigation of the crossover process by 
which the flow structure evolves from a locally separated to a massively separated flow on realistic airfoil 
geometries as the airfoil thickness is increased. An understanding of the phenomenon of massive separation 
is necessary in order to develop techniques for controlling or eliminating massive separation on airfoils in 
external and internal flow, and thereby improve the performance and extend the safe operating range of 
aircraft and turbomachinery. 

The present analysis of the crossover process has been performed using two methods, one which applies 
for the asymptotic condition of infinite Reynolds number and utilizes triple-deck theory, and the second 
which is applicable to finite Reynolds number flow and employs interacting boundary-layer theory. The latter 
method utilizes two models for the inviscid flow. The first model, which employs the usual Cauchy integral 
for thin-airfoil theory, is used within the “local strong-interaction” analysis to calculate flows with a localized 
region of strong viscous-inviscid interaction including flows with a relatively small separation bubble. The 
second inviscid model, the Cheng-Rott generalized thin-airfoil integral, is utilized in the “massive separation” 
analysis and is based on the assumption of a constant pressure region downstream of the separation point. 

The principal conclusion of the present study is that the interacting boundary-layer approach provides 
a useful and efficient method for the prediction of separated flows occurring on realistic airfoils. In par- 
ticular, interacting boundary-layer theory has been demonstrated to be capable of analyzing the crossover 
process between local, small-scale separation and massive separation, and to thus provide a vehicle for the 
comprehensive analysis of airfoil aerodynamic performance. The utility of the present approach has been 
demonstrated by the relative ease with which the effects of turbulence and boundary-layer control on airfoil 
separation have been incorporated. 

The interacting boundary-layer approach utilized in the present study has been developed to provide a 
reasonable finite Reynolds number theory which is firmly rooted in triple-deck theory, a rational asymptotic 
theory that applies in the limit of infinite Reynolds number. An important result of the present investi- 
gation has been the demonstration that qualitative agreement between the results of the triple-deck and 
the interacting boundary-layer analyses exists in the predictions for the crossover behavior occurring for 
realistic airfoils. A consequence of the observed qualitative agreement between the results of triple-deck and 
interacting boundary-layer theory is the recognition that the asymptotic theory can enhance the understand- 
ing of the crossover behavior which is predicted at finite Reynolds number by interacting boundary-layer 
theory. In addition, triple-deck theory provides the scalings that must be observed in generating mesh dis- 
tributions for accurate numerical solutions of the finite Reynolds number crossover problem, whether by an 
interacting boundary-layer approach or a large scale computation using the Navier-Stokes equations, or some 
intermediate equation set. Since interacting boundary-layer theory provides efficient solutions, even on fine 
meshes, an analysis like that presented herein can be very helpful in providing guidance in the development 
of Navier-Stokes solution techniques for the investigation of massive separation and the crossover process, 
and can provide a basis of comparison for the results of such analyses. 

A majority of the present study has been concerned with the crossover from local t o  massive separation 
when the flow is laminar. However, since most real boundary-layer flows are turbulent over at least a portion 
of the airfoil surface, it is important t o  consider the effect of turbulence upon the crossover process; thus 
turbulence has been introduced into the present interacting boundary-layer analysis. Turbulence has been 
verified to strongly suppress the initial onset of separation, thereby delaying stall considerably in comparison 
with a fully laminar flow. The extent of turbulent separation is observed to  decrease as the Reynolds number 
increases for a fixed airfoil geometry, which is opposite to the trend that is observed for laminar separation. 

The present analysis of the crossover process for realistic airfoils has verified the resistance of the 
boundary-layer t o  separation in the presence of turbulence. Calculations have been performed which demon- 
strate, however, that if the airfoil thickness is increased sufficiently, massive separation can occur even if 
the boundary layer is turbulent. The massively separated flow past a bluff body, namely, a circular cylinder 
with a trailing-edge splitter plate, has been calculated using the present finite Reynolds number analysis. 
Both laminar and transitional flow results have been obtained and they both agree reasonably well with the 
experimentally measured pressure distribution for that configuration, despite the fact that the present inter- 
acting boundary-layer analysis was not developed with the intention of being applied to  massive separation 

44 



on a bluff-body. 
The analysis of the crossover from local to massive separation which has been carried out herein provides 

a means for better understanding the crossover phenomenon, but more importantly, the present interacting 
boundary-layer analysis has been demonstrated to be a useful tool with which to study methods for the 
control and elimination of massive separation. The present interacting boundary-layer analysis has been 
used to conduct a limited scope study of the effect of boundary-layer control, in the form of suction and 
tangential injection, upon separated flow and the crossover process. Boundary-layer control techniques have 
been shown to be effective in suppressing or eliminating both local and massive separation. In particular, 
the judicious application of slot suction has been shown to yield significant reductions in the drag in cases 
for which the flow has a large separated region prior to the application of boundary-layer control. 

Future Directions 

Seyeia! r c c o m ~ e ~ d a t i ~ ~ ~  fer f ~ t ~ r e  directin~s m e  prnyidcc! herein, based i~pnn the rnnrl i isinns of the  
present study. The present effort has resulted in the development of an efficient analytical tool with which 
separated flow over airfoils can be analyzed. Further development of various aspects of the present technique 
would expand the present capability to allow the analysis of a broader range of problems than can currently 
be addressed, and would permit more accurate modeling of the physical processes occurring in separated 
flows. Some of the areas which should be considered in future work are discussed below. 

The Kirchoff eddy model utilized in the present analysis is a reasonable model for the local body scale 
flow, but does not provide a means for predicting the constant pressure level in the eddy, which currently 
has to be assumed or obtained from experimental data. It is evident that a better model for the eddy, in 
particular, one which would allow the eddy pressure to be determined as part of the solution, should be 
pursued. 

The second suggested area for future study is in the development of a capability to treat lifting airfoils. 
The present study has been limited to non-lifting airfoils, while in practice massive separation is usually 
associated with operation of an airfoil at  a high angle of attack. The capability to analyze lifting airfoils 
would make it possible, particularly in conjunction with the development of a better model for the eddy, to 
address realistic problems in massive separation. 

It has been demonstrated that the effects of boundary-layer control can be studied for airfoils up to  and 
beyond separation using the present interacting boundary-layer analysis; therefore, future research into the 
area of boundary-layer control techniques for the control of separation should exploit the efficient tool which 
the present approach represents. 

The method of analysis which has been developed herein for the study of airfoil separation up to and 
beyond stall provides the foundation upon which it will be possible to build an analytical tool with the 
capability to treat increasingly more realistic problems in the future. 
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APPENDIX A: SOLUTION OF THE TRTPLE-DECK PROBLEM 

In order to  solve the triple-deck problem, the solution to the equation 

is required for f(x) of the form 

f ( x )  = aoz1/2 + a12 + a2x2 + a3t3 + a4x4 ( A 4  

The trailing edge is located at 2 = 1. Because of the singularity in the integrand at  xo, and the infinite 
slope a t  the leading edge, the integral cannot be directly evaluated for the given function, f(x). To avoid the 
difficulties associated with the endpoints, the integral from zero to to is broken into two separate integrals. 
Let I be equal to the right-hand side of (A.1) and define 1 = i, + I b  where 1, is iIikgrated fioiii 0 to ill 
(0 < 21 < 2,) and spans the remaining interval from x1 to  2, (z, < 1). Then 

(A.3a) 

and the singularity a t  2, is analytically removed from I* by adding and subtracting f’(2,) from the numerator 
of the integrand; the result is integrated by parts twice to yield 

After substitution of Eq. (A.2) and integration, I ,  is given by 

and the integral term in Eq. (A.3b) results in 

The remaining terms in l a  are evaluated using the analytical expressions for the derivatives - of f(x). 
An inverse procedure is employed to evaluate (A.1); Le., instead of solving for 2, given h, 2, is specified - 

and h is determined. In addition to being much more straightforward to solve as an inverse problem, h is a 
unique function of z,, whereas the converse is not necessarily true. 

The quantity x1 can be chosen arbitrarily, but must be less than x,, and 2 1  can be placed very close to  
the nose, generally without difficulty. The only problem associated with the placement of 2 1  is due to the 
possible introduction of roundoff error as x1 + 0, however in this study values of 2 1  as small as 0.001 were 
used without any difficulty. 

Once x is determined, the value of b, the coefficient of the parabolic term in Eq. (10) describing the 
asymptotic downstream growth of the free streamline, must be evaluated. The value of b is determined by 
analytically integrating Eq. ( lo) ,  which is restated here for convenience, 

- 
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to yield 

Recall that b = 0 corresponds to wake cut-off Newton’s method applied to  (A.6) with b equal to zero yields 
the cut-off value of 2,. Also, note that for values of x ,  which result in b < 0, this analysis is not applicable; 
since it does not apply after the eddy has collapsed, Le., below cut-off. 

1 
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APPENDIX B: TURBULENCE MODEL 

The turbulence model used in the present study is an algebraic model which is based upon the eddy- 
viscosity concept. Turbulence must be modeled for a boundary layer on a solid surface and for a symmetric 
wake. The turbulence model applied within the surface boundary layer is based upon that developed by 
Cebeci and Smith (Ref. 37). The reader is referred to Ref. 37 for details of the turbulence model; in this 
appendix the eddy-viscosity coefficient is given in its final form obtained after applying the boundary-layer 
transformation to Gortler variables. 

In terms of the present nondimensionalization, the total viscosity, which is the sum of the molecular 
plus the eddy viscosity, is given (for an incompressible flow) by 

P t = I t E  (B.1)  
Ir? the Ceheci-Sm-ith mode! t.he honndary layer is viewed as consisting of two regions: an inner and an 

is ‘outer region. In the inner region, which is adjacent to the body surface, the eddy viscosity coefficient 
given by 

= -(q)‘[l - e;cp(-y/A)]’ 

where 

(B.2a) 

(B.2b) 

fi = (1 - 1 1 . 8 ~ + ) ~ / ~  (B .2c) 

and 

(B.2d) 

The subscript “max” denotes that the quantity used is the maximum calculated value occurring across the 
profile at  the given [-location. The quantity K: is the von Karman constant, equal to 0.40 in the present 
investigation, and A+ is the van Driest damping coefficient, equal here to the usual value of 26. The only 
difference between this definition of the inner eddy-viscosity coefficient and that given by Cebeci and Smith 
(Ref. 37) is the present use of the maximum value of d F / d q  instead of the wall value used in Ref. 37. This is 
done in order to  avoid possible difficulties in the turbulence model near separation and reattachment points 
caused by the vanishingly small skin friction there. This modification to the model of Cebeci and Smith was 
introduced by Carter and Wornom (Ref. 34). 

The eddy-viscosity coefficient in the outer region is given by 

9 
7 

E ,  = -&u,ae 
where a is the Clauser constant, taken here to be the usual value of 0.0168, and 6 is the momentum thickness, 
defined by Eq. (B.4). This modification to the usual definition of the outer eddy-viscosity coefficient of 
Cebeci and Smith (Ref. 37), which uses the displacement thickness in place of the momentum thickness, 
was introduced by Edwards, et  al. (Ref. 38) based upon observations of experimentally measured data in 
a turbulent separated flow. The 9/7 factor is present so that the usual value of the outer-eddy viscosity 
coefficient is recovered when the flow reduces to a zero pressure gradient (flat-plate) flow. 

The inner eddy-viscosity coefficient is applied from the body surface until the the smallest q-location at 
which ~i exceeds E , ;  above this location E ,  is applied. 

The turbulence model which is adopted for the wake flow is that presented by Chang, et al. (Ref. 30) 
where the eddy-viscosity coefficient a t  a given by the expression 
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where I 

c,,, = 0.064&j6’Ue 9 (B.4b) 

The subscripts “TE” and “w” denote a quantities evaluated at the trailing-edge station and along the wake, 
respectively, and Ow is the momentum thickness across half of the symmetric wake, where the momentum 
thickness is defined by the expression 

I 
I 
1 
I 

( B  .4c) 1 

I The momentum thickness has been substituted for the displacement thickness used in the original model 
presented in Ref. 38 for consistency with the turbulence model applied along the airfoil surface. 
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APPENDIX C: BOUNDARY-LAYER EQUATION COEFFICIENTS 

The coefficients of the finite-difference form of the continuity and momentum equations are defined 
below. For the continuity equation, (39), the coefficients are given at  i,j - 1/2 (see Fig. 4) by 

and 

Qj = &-(Fi-l,j All- + Fi-1,j-1) 

For the momentum equation, (45), the coefficients a t  i , j  are given by 

(C.la) 

(C.lb) 

(C.2a) 

(C.2b) 

(C.2c) 

( C. 2d) 

(C.2e) 

:c.u 1 

(C.2g) 

where the asterisk denotes a "guessed" value of the quantity, usually taken from the previous global iteration 
at  the same i ,  j location, the overbar denotes an average value given by the general notation for a quantity 
!I, 

1 
~ j f 1 / 2  = T ( q j  + qj*l) 

and the q derivatives are defined by 

(C.2i) 

qq,*l,2 = r(qj - qj&l)/Av* ( C W  

The quantity w is the FLARE coefficient (Ftef. 31) which, if FLARE is employed, is set to zero when F{j < 0, 
otherwise w is equal to  one. The quantity Fis the weighting function for nonuniform 11-grids, defined by Eq. 
(43). 
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APPENDIX D: BOUNDARY-LAYER EQUATION SOLUTION 

The boundary-layer equations written in finite-difference form constitute a linear system of coupled 
algebraic equations which can be written as a block tridiagonal matrix where each block is 2 x 2. An efficient 
inversion algorithm can be developed based upon an extension of the Thomas algorithm for a single equation. 
The inversion scheme is developed by assuming that the solution for the dependent variables F and V can 
be expressed as recursion relations in the form 

and 

v . . - z .  a , j  - 23 + P~jFi,j+1 + Q~jVi , j+l  + R2jP1,  (D. lb)  

By substituting from the recursion relations for Fi,j-1 and K,,-l into the continuity and momentum equa- 
tions those equations can be written in the form 

and 

respectively, where 

and 

Equations (D.2a) and (D.2 
coefficients: 

(D.2u) 

(D.2b) 

(D.2c) 

(D.2d) 

(D.2e) 

(D.2h) 

(D.24 

) can be solved simultaneously for Fi,j and K , j  t o  give L e  recursion relation 

(D.3a) 

(D.3b) 

(D.3c) 



In order to determine the recursion relation coefficients, they are initialized at the surface/wake- 
centerline boundary using the appropriate physical boundary conditions. On the body surface the slip 
and specified injection boundary conditions are applied, i.e., f i , 1  = Fw(&), K,1 = V, (&) ,  so that at j = 1 all 
of the coefficients in Eqs. (D.l)  are zero except for 21 and 2 2 ,  which are equal to F, and V,, respectively. 
If the lower boundary is located at a symmetric wake centerline, then K,1 = 0, so that the four coefficients 
in (D.lb) are zero at j = 1. The wake centerline condition is written in the form of Eq. (47b), where the 
coefficients in that equation are defined by 

W 
c o  = G4:l 

(D.4b) 

( D  .4c) 

Do = 1 (D.4d) 

and 

(D.4e) 

This equation is of the form of Eq. (D.la), so that the recursion relation coefficients at j = 1 are on a 
symmetric wake centerline by 

z1, = EOIAO (D.5a) 

PI ,  = -Bo/Ao (D.5b) 

and 

(D.5d) 



With the above expressions for the recursion relation coefficients a t  the lower boundary ( j  = l), the 
remaining coefficients can be determined across the entire boundary layer. The solution for the dependent 
flow variables cannot be completed until the viscous outer edge condition is imposed at j = N J in conjunction 
with the coupling of the viscous and inviscid flow regions. This condition is given by Eq. (48) which is 
rewritten, after substitution from the governing inviscid law for the edge velocity, either Eq. (52) or (57) 
expressed in the form (56c), as 

where 

(D.6b) 

y = V N J I A V  (D.6d) 

and 

(D.6e) 

The quantity lJe, in Eq. (56c) has been eliminated in favor of F;,NJ using the edge relation for F ,  Eq. 
(49), and the resulting expression has then been used to  eliminate Uei  in (48). In the above relations 
AV = v N J  - 7 N J - i .  

The final relation needed to solve for the unknowns at  the edge of the boundary layer is obtained by 
writing the momentum equation there noting that the edge condition (27) is attained exponentially, so that 
all of the derivatives of F go to zero at the edge of the boundary layer. The momentum equation can be 
written in the form of Eq. (50) where the coefficients are defined by 

- 
= F;NJ/AV (D.7b) 

and 
- 

= F{NJ(K:NJ  - K:NJ-1)/A7] + (l - pO,)F{%J (D.7d) 

Using the edge boundary conditior, on V (Eq. D.6a), the momentum equation (50), the two recursion 
relations, (D.la) and (D.lb), and the continuity equation (39)  written at  N J  - 112, a set of five equations 
in 5 unknowns results at the edge of the boundary layer. This set is solved yielding F and V a t  i, N J  and 
i ,  N J  - 1 and P I , .  Having F;,NJ in turn yields Ue,  and (UeS*); .  With the edge values of the dependent 
variables F and V known, the remaining unknown variables are obtained by sweeping the recursion relations 
from j = N J  to j = 1. 
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A P P E N D I X  E: INVISCID I N T E G R A L  REPRESENTATION C O E F F I C I E N T S  

The coefficients appearing in the discrete forms of the inviscid integrals are given in this appendix. In 
addition, the inviscid integral spanning the region downstream of the strong-interaction region is evaluated 
for specified analytical behavior of the displacement thickness distribution there. 

In the present investigation only blunt-nosed bodies are considered, for which the upstream behavior 
of the displacement thickness distribution cannot be specified in a known analytical form. Therefore the 
strong-interaction region begins at the leading edge where a stagnation point similarity solution is assumed 
to give the correct boundary-layer starting profile. All of the geometries considered in this study are finite 
bodies, and the local strong-interaction calculations are performed with the strong-interaction region ending 
in the wake. In the massive separation calculations, the downstream region is completely accounted for 
within the inviscid integral spanning 2 = 0 to 1: = z0, so that there is no downstream integral, in contrast 
with the local strong-interaction procedure. 

Therefore all of the results presented in this appendix are developed assuming that the baseline coordinate 
is a parabola. Note that as a consequence the Gortler variable < appears in place of z; the latter would be 
used if the z-axis were the baseline coordinate curve. Note, however, that for a parabola baseline e is equal 
to the Cartesian z value corresponding to  the given location on the baseline surface. 

In order to recover the results for the z-axis baseline coordinate, in the relations presented below replace < by the Cartesian 2, set U,, equal to one and, in the local-strong interaction calculations f is the distance 
from the z-axis to  the body surface, therefore f is zero in the wake. 

It is assumed in the local strong-interaction calculations that the downstream end of the strong- 
interaction calculation domain is aft of the trailing edge. 

Q---,20- - 1 1  ,f tho h , A ; o o  - m - l . , n n A  h a m a  h-.m h l . - - t  -enno th- ,,--h,l- h - m o l ; m o  *nn-A:" -4o  ,,t;l;-nA 
YbbUUUb UII W L  u u r  " W U I b "  U**U'Jubu llrlr &I-.- " A U I l "  "11- yU'U"w'U "cob***lb " W W I U I I I U U b  1- U " L ' f i U b U .  

Coeficients of Compact Discretized Inviscid Equation 

The general compact discrete form for the inviscid integrals given by Eq. (57c) is rewritten, for the case 
where a baseline coordinate is employed which does not coincide with the z-axis, in the form 

The coefficients e and 5 appearing in the above equation are defined below. 
For the local strong-interaction calculations and 5 are determined from (57b) to  be 

j # a  

and 

- Dij D .  - - 
' -  *a 

In (E.2) the term is obtained from Eq. (56) with = 0: 

For the massive-separation calculations the coefficients in (E.l) are determined from (61): 

and 
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where 

pj = T ( S o )  + (Sj  - S o ) T ' ( S o )  
The term gi in (E.5) is defined by 

where ( I / U e o ) i  is defined by Eq. (36c). 

Downstream Contribution to  Inviscid Integral 

The contribution to the inviscid integral used in the local strong-interaction procedure is evaluated below 
for a baseline curve which does not coincide with the x-axis. The boundary-layer displacement thickness in 
the wake downstream of a finite body is assumed to behave, when the flow is laminar, as predicted for a 
Goldstein wake. In the wake downstream of the body the inviscid edge velocity recovers t o  the freestream 
velocity so that Ue = 1 + O(c) ,  therefore the product of the edge velocity and the displacement thickness are 
assumed to  behave in the same way as the displacement thickness alone, so that one can write 

(Ve6*)(x) = 0.664 + C1x-1/2 (E.9a) 

The unknown coefficient Cl is determined in a manner which insures that the displacement thickness down- 
stream of the strong-interaction region merges continuously with that upstream, which is accomplished by 
evaluating (E.9a) at the final boundary-layer calculation point at i = IE using the known value of Ue6* 
there, which yields 

C1 = [(Ue6"),, - 0.6641 & 
The ultimate goal is to evaluate the integral I d  defined by 

(E.9b) 

(E.10) 

Upon substitution of the definition of T ,  Eq. (53), with (E.9a) applied, into (E.10), evaluation of the resulting 
integral yields 

(E.ll) 

where in the region downstream of to it has been assumed that U,, is very close to  one, which is satisfied very 
well when the baseline parabola is thin, as is the case for most of the airfoils analyzed here. The remaining 
integral in (E.11) is evaluated for the parabola baseline coordinate, for which f is given by 

f (S)  = - pro€ + 2) 112 (E.12) 

where ro is the nose radius of both the airfoil and the parabola. The result of the integration is 

(E.13) 
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Note that, since the coefficient C1 involves (Ueb*)rE, the contribution to the term (Ueb*)IE can be implicitly 
incorporated into the integral over the strong-interaction region by extracting it from (E.11) and modifying 
the influence coefficients D;,IE which multiply (UeS"),, in Eq. (55a). This is done in the present analysis. 

If the flow is turbulent, the displacement thickness in the wake decays like a Goldstein wake, with the 
displacement thickness a function of x-l/', however the constant coefficient 0.664 in Eq. (E.9a) must be 
determined from the upstream solution for each problem, rather than being specified. In the turbulent flow 
calculations performed in the present study using the local strong-interaction procedure, the above analysis 
to determine the downstream contribution to the Cauchy integral is repeated with (E.9a) replaced by the 
relation 

(Ueb*)(t) = CO + c'<-'/~ (E .  14a) 

where the coefficients CO and C1 are determined by evaluating (E.14a) for Ueb* a t  i = I E  and i = IE - 1 
and are given by 

( E .  14b) 

and 

The integrations are carried out as before which yields 

where 

and 

( E . 1 5 ~ )  

(E.15b) 

(E .  15c) 

As is done for the laminar wake, the contributions to the term UeS* at i = IE and i = IE - 1 are implicitly 
included in the solution within the strong-interaction domain by modifying the influence coefficients for those 
terms, D ~ J E  and D ~ , I E - ~ ,  accordingly. 

Downstream Displacement Thickness Distribution for  Massive Separation 

Once a converged massive separation solution for a particular geometry has been obtained, the displace- 
ment thickness distribution in the region downstream of to can be obtained by integrating Eq. (36b), which 
is restated below for convenience, using Eq. (53): 

(E.lG) 

The term I (<)  in (E.16) is not the same when t > to as that given by Eq. (3Gc) for t < to. Its form 
in the former case has not been determined here, because it was found that this term can be neglected 
in (E.16) without inducing any anomalies in the displacement thickness distribution in region immediately 
downstream of to. Therefore the integration is carried out below neglecting the term I (<).  

Integrating both sides of (E.16) yields 
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which, after a good deal of algebra gives the final result 

2 
T ( € )  = W O )  + ;IT 

where 

(E.17) 

(E.18a) 

with 

- (E .  18c) 

The summation appearing on the right-hand side of Eq. (E.18b) results from the integration over the strong- 
interaction domain, which must be done numerically, and is performed on the same grid used for the original 
boundary-layer calculations. 

tj = (€j + €j+1)/2 

60 



xS 

TRAILING EDGE I 
J.  

I 
I 
I 
I 
I 
I 

/ 
\ I / 

'r 

LOCATION OF SEPARATION AND REATTACHMENT POINTS, xs and x,. 

Fig. 1 Sketch of Separation and Reattachment Point 
Locations for Wedge-Shaped Trailing-Edge 
Airfoil from Triple-Deck Theory (Adapted 
From Ref. 17) 

61 



tJ= 
a 
IJJ 
I- 
W 
5 
a: 
a 
cn cn 
W z 
Y 

I 
I- 

a 
a 

II 

d 
? 
5 

i’ 
TRAILING EDGE I 

I s. 
I 

LOCATION OF SEPARATION AND REATTACHMENT POINTS, xs and xr 

Fig. 2 Sketch of Separation and Reattachment Point 
Locations for Cusped Trailing-Edge Airfoil 
From Triple-Deck Theory (Adapted From 
Ref. 17) 

62 



I 

BASELINE (SHEAR-LAYER) 
COORDINATE SURFACE 

Fig. 3 Definition of Coordinate Systems 

63  



t 

1 I2 

112 

.t 
i - 1  i 

Fig. 4 Nomenclature for Boundary-Layer Finite-Difference Mesh 

64  



Tj-1 

-r- 

x1 I Xj-1 
I 

ij - 

+ 
'i 

I - - I 
x j - l  "j + 1 

- I 

0 . .  

I 
xF 

- 
STRONG-INTERACTION REGION 

Fig. 5 Nomenclature for Inviscid Finite-Difference Mesh 

65 



n ~ 

"0 0.25 0.50 0.75 1 .oo 
DISTANCE FROM LEADING EDGE, x 

Fig. 6a NACA 0012 Airfoil Profile 

66 



0.50 

0.40 

0.30 

0.20 

0.10 

0 I 1 I 

SEPARATION POINT, xo 

Fig. 6b Asymptotic Behavior of Separation Paint Location 
for NACA OOXX Airfoil 

67 



1 

h 

iGi 

e X 

2 
X 

B 0.1 - 

.. 
0 0.25 0.50 0.75 1 .oo 

DISTANCE FROM LEADING EDGE, x 

Fig. 7a Garabedian and Korn 70-10-13 Airfoil Profile 

68 



1 I I 
0 0.25 0.50 0.75 1. 

SEPARATION POINT, xo 

Fig. 7b Asymptotic Behavior of Separation Point Location 
for GK 70-1 0-XX Airfoil 

69 



0.74 

a- 
v) 
W z 
Y 
0 

0.72 

n 
W 
2 0.71 s: 

0.70 
0.54 0.56 0.58 0.60 0.62 

SEPARATION POINT, xo 

Fig. 7c Detail of Asymptotic Behavior of Separation Point Location 
for GK 70-10-XX Airfoil 

70 



> 

G. 
e X 

E 
0 

w 
0 
Z 

I- 

X 

E 

a 

0.2 

0.1 

0 
0.25 0.50 0.75 1 .oo 

DISTANCE FROM LEADING EDGE, x 

Fig. 8a NACA 65-010 Airfoil Profile 

7 1  



1.5 v 

0 ,  I I I 

Fig. 8b Asymptotic Behavior of Separation Point Location 
for NACA 65-OXX Airfoil 

72  
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An Analysis of the Crossover Between Local and Massive 
Separation on Airfoils 

the phenomenon of crossover between local separation and massive separation on realistic airfoil geometries 
induced by airfoil thickness is investigated for low speed (incompressible) flow. The  problem is studied both 
for the asymptotic limit of infinite Reynolds number using triple-deck theory, and for finite Reynolds number 
using interacting boundary-layer theory. 

Numerical results are presented which follow the evolution of the flow as it develops from a mildly 
separated s ta te  to one dominated by the massively separated flow structure as the  thickness of the airfoil 
geometry is systematically increased. T h e  results of the triple-deck and the interacting boundary-layer 
analyses of the two airfoils which are considered are  found to be in qualitative agreement. 

The effect of turbulence upon the evolution of the  flow is considered, and the impact is significant, with 
the principal effect being the suppression of the onset ofseparation. A turbulent massively separated solution 
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