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NOMENCLATURE

In this document, all equations assume angles in radians, while the text and the figures give angles
in degrees.

ap normal accelerometer output, g

axsay,ay longitudinal, lateral, and vertical accelerometer 6utput, g
b reference span, m or ft

CesChmsCh coefficients of roll, pitch, and yaw moment
CL,Cp coefficients of 1ift and drag

Cn.Ca coefficients of normal and axial force
Cx,Cy,Cz coefficients of longitudinal, lateral, and vertical force
c reference chord, m or ft

F external applied force, Nor 1b

Fx,Fy,Fz components of external applied force, N or 1b
f(.) system state function

GG* measurement noise covariance

g(.) system observation function

g acceleration of gravity, m/sec2 or ft/sec?
H altitude, m or ft

h angular momentum vector

Ix,ly,I; moments of inertia, kg-m2 or slug-ft2

I,(e engine moment of inertia, kg-m2 or s]ug-ft2
InysIxzslyz cross products of inertia, kg-m2 or slug-ft2
J(.) cost function

KasKg upwash and sidewash factors

Lg,Ls ) dimensional rolling moment derivatives

M external applied moment, N-m or ft-1b

m mass, kg or slug

m\E prior mean of &

Ma,MG,Mq,Mb dimensional pitching moment derivatives

N engine speed, rad/sec

Ng,Ns dimensional yawing moment derivatives

P prior covariance of £

p roll rate, rad/sec or deg/sec

Ps static pressure, N/m2 or 1b/ft2

q pitch rate, rad/sec or deg/sec

a dynamic pressure, N/m2 or 1b/ft2

r yaw rate, rad/sec or deg/sec



vi

s reference area, m2 or ft2

T thrust, N or 1b

t time, sec

u system input; or body X-axis wind-relative velocity, m/sec or ft/sec
v total wind-relative velocity, m/sec or ft/sec
v velocity vector, components in m/sec or ft/sec
v body Y-axis wind-relative velocity, m/sec or ft/sec
Wy, Wy horizontal wind components, m/sec or ft/sec

Wy vertical wind component, m/sec or ft/sec

w body Z-axis wind-relative velocity, m/sec or ft/sec
X spatial x position, m or ft

X system state

XasXBsXaysXay+Xap sensor X-axis positions, m or ft

Y spatial y position, m or ft

Ya’Yvaax,Yay’Yan sensor Y-axis positions, m or ft

z system response

Za»2852aysZay22ap sensor Z-axis positions, m or ft

Lo, dimensional vertical force derivatives

o angle of attack, rad or deg

af flank angle of attack, rad or deg

8 angle of sideslip, rad or deg

Y flightpath angle, rad or deg

A sample interval, sec

§ generic control

83 aileron deflection, rad or deg

Se elevator deflection, rad or deg

Sp rudder deflection, rad or deg

nj . measurement noise

<] pitch attitude, rad or deg

] roll attitude, rad or deg

13 vector of unknown parameters

o air density, kg/m3 or slug/ft3

T lag time constant, sec

¥ heading angle, rad or deg

w angular velocity vector, components in rad/sec



Subscripts
b

ref
wind
z

a,B,8

Superscripts

~

bias, or body axes
corrected

earth axes

flight

measured

minimum valve

vii

subscripting an aerodynamic coefficient, derivative with respect to the subscript

times b/2V

subscripting an aerodynamic coefficient, derivative with respect to the subscript

times c/2V
reference
wind axes

observation

subscripting an aerodynamic coefficient, derivative with respect to the subscript

estimated

average



1.0 INTRODUCTION

This document examines the practical application of parameter estimation techniques to the problem of
estimating aircraft stability and control derivatives from flight test data.

The field of aircraft stability and control exemplifies a successful application of system iden-
tification technology. Workers in the industry accept and use system identification techniques on a
routine production basis. There certainly are isolated problems (primarily in extending the application
to more difficult situations), but there is 1ittle doubt that the basic application is highly successful.
Major factors contributing to this success include the following: a well-understood, physically derived
model form that is reasonably representative of the true vehicle in most flight regimes; high-quality
measurements of several relevant parameters; the ability to apply inputs specifically for system
identification; and engineers familiar with both system identification and aircraft stability and
control.

Contrast aircraft stability and control with economics, for instance. Economic models are of dubious
validity, at best. The measurements are little better than the models (for example, whose numbers for
the inflation rate are best) and are often biased by political situations (like lowering the federal
budget deficit by redefining methods for computing the deficit). Economic controls are not subject to
manipulation for system identification experiments, even assuming that the controls are known. Some econ-
omists insist that the Federal Reserve Bank controls major portions of the economy; others insist that it
has little influence and merely responds to existing conditions. (In either case, it is not practical to
shut down the Federal Reserve Bank for three months to see what happens, changing nothing else for the
next four years to avoid confusing the issue.)

1.1 SCOPE AND BASIS

This document does not survey the large number of parameter estimation techniques applicable to
aircraft stability and control, but rather thoroughly examines a single approach. This concentration
allows us to cover the entire parameter estimation process in some detail, from planning the flight test
program to evaluating the results. We discuss the kinds of difficulties encountered in practice, with
extensive examples using real flight data. We intend this detailed treatment to serve both as an intro-
duction to the problem and as a guide for practicing engineers. We hope to promote a more complete
understanding than that provided by texts that present only brief examples with "correct" answers, or
that provided by field education, which often amounts to "Here's a computer program to solve the prob-
lem — sometimes it works." :

The problems and solutions that we discuss are all real and are based on our own experience at the
Dryden Flight Research Facility of NASA's Ames Research Center (Ames-Dryden). Although we sometimes
illustrate the principles with simulated data, we have encountered all these issues in real situations.
We omit discussions of numerous potentially important issues that have not yet troubled us. For example,
although finite computer word length may be an important issue on a smaller machine (we do most of our
work on a 60-bit computer) or for a different application, we have yet to encounter finite word length
difficulties that did not stem from more basic sources, such as poorly written problem statements. We
decline to artificially create difficulties for experimentation. Others have encountered these issues
and treated them elsewhere, and we have little to add to the discussion.

By restricting our discussion to the scope of our own experience, we achieve a strength that we feel
is lacking in many reports, even those purporting to be practically oriented. We offer a self-critical
first-hand view of the estimation process, including numerous mundane problems encountered along the way.
Most reports omit mentioning “stupid" errors and other trivial problems that are not relevant to the
final reported results, but these problems can account for the majority of the time spent.

In the flight test environment, results are subject to detailed critical review. If our resuits
disagree with predictions, someone will ask where we erred; we need to convincingly defend our results
before an often skeptical audience. If we suggest that the simulator be revised based on our results,
we must demonstrate why the update is worth the work (and hope the pilot notices that the revised simu-
lator flies more like the airplane). If we suggest that instrumentation errors have occurred, someone
will test it and contradict us. If we request more test data, the schedulers will complain about mile-
stones and cost. In some flight regimes the controls and handling qualities group wants assurance that
our results are very accurate because they have 1ittle margin for error; in other flight regimes they
may insist that we must be wrong, because if our results are correct, the control system needs to be
redesigned. Throughout this process, few people care if we have an elegant, sophisticated, and innova-
tive method; they simply want good results and they want them immediately.

This flight test environment fosters a self-critical attitude; it is this attitude, more than any
specific issue, that we try to promote in this document. It is a corrollary of Murphy's law that
although there may be several ways to arrive at acceptable results, there are more ways to get incorrect
results. We have seen too many papers (with impressive claims about having analyzed some complicated
nonlinear problem) where cursory inspection has shown the results to be wrong (they had, as claimed,
analyzed the problem, but the analysis was wrong). We certainly do not claim to be free of errors. In
fact, a principal advantage of our experience is that we have made (and fixed) more mistakes than most
people. We hope that this document will help achieve the goals of the practicing engineer: to avoid
problems where possible, to fix the problems that cannot be avoided, and to recognize the problems that
cannot be fixed,

This document emphasizes areas of mature technology. The techniques we discuss have become widely
accepted, based on a broad background of practical applications. We avoid detailed discussion of
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emerging areas of technology, where there are only a few isolated examples of application (even when
some examples are from our own experience). Material on emerging areas rapidly becomes dated and is
inappropriate for this document. Such emerging areas of technology include filter-error algorithms,
optimal input design, automatic model structure determination, nonlinear and unsteady aerodynamics, and
helicopter applications. There are examples of application in these areas, to both simulated and real
data, but their appropriate role in routine use is not yet clear. The reference 1ist includes numerous
papers addressing these areas.

1.2 OUTPUT-ERROR METHOD

We begin by briefly reviewing the form of the output-error parameter estimation method. (See
Maine and I1iff (1984) for a complete treatment of the development and implications of the following
equations.)

The aircraft is a continuous-time dynamic system. We will assume that measurements are made at
discrete time intervals for analysis on a digital computer. The system equations, in general form, are

x{tp) = xo(&) (1.2-1a)
x(t) = fIx(t),u(t),t,&] (1.2-1b)
z(tq) = glx(tj),u(ti),ti,&1 + ny (1.2-1c)

where x is the state, u the input, and z the response of the system. We assume that the measurement
noise n is a sequence of independent Gaussian random vectors with zero mean and covariance GG*. The
output-error method does not account for any process noise. We assume that the forms of the f and g
functions are known. The parameter estimation task is to estimate the value of the unknown-parameter
vector E&.

The output-error estimate of & is the value that minimizes the cost function

J(8) = %—1§a [z(tq) - Zg(t5)I%(G6*)-1lz(t5) - Z.(t4)] + %-(e - mg)*P-1(g - m,) (1.2r2)
where 25 is the computed response obtained from
g (to) = xo(8) (1.2-3a)
ig(t) = f[ig(t),u(t),t,zl (1.2-3b)
Zg(ty) = LR (tg),u(ti) ty,E] (1.2-3c)

The value m. in the cost function is the mean of the prior distribution of &, and P is the covariance.
If there is no prior distribution to be considered, then the last term of the cost function is omitted.

The Gauss-Newton algorithm is an effective means of minimizing this cost function (Maine and
I1iff, 1984).

1.3 AIRCRAFT STABILITY AND CONTROL APPLICATION

Aircraft stability and control involves controlling the attitude and flightpath of an aircraft. The
desired attitude and flightpath are defined by agents external to the stability and control system:
pilots, guidance and navigation systems, or autoland systems, for instance. In the simplest systems,
pilots decide on a desirable attitude and flightpath and move the control wheels, sticks, pedals, and
other controls in a manner that they anticipate will give the desired results. Mechanical cables connect
the pilot's controls to movable control surfaces on the airframe or to engine control actuators. Moving
the control surfaces changes the aerodynamic forces and moments on the aircraft, thus changing its atti-
tude and flightpath. There is no feedback inherent in these simple control systems; the pilot provides
external feedback by monitoring the aircraft response using the cockpit instruments, the view out the
window, and the "feel" of the airplane, and by appropriately changing the control stick motions.

In a more complicated system, a guidance and navigation computer generates attitude or flightpath
commands needed to maintain the desired trajectory. These commands are in the form of analog or digital
signals, which are sent to the stability and control computer (or possibly to a different program running
on the same computer). The stability and control computer determines the control surface positions
needed to achieve the commanded attitude or flightpath and sends commands to electric or hydraulic sur-
face actuators, which move the aircraft control surfaces. Sensors measure the vehicle motions and feed
back this information to the stability and control computer, which modifies its control surface commands
accordingly.

The descriptions of these two types of systems are oversimplified, and there are numerous other com-
binations and variants of the system elements. We make no attempt to cover design or analysis of control
systems in this document. That is a major subject in its own right, and there are several references on
the subject (Ogata, 1970). The generalizations here are intended only to establish the background and
purpose of stability and control parameter estimation.



Stability and control analysis is concerned with the aircraft system at several levels of integra-
tion. The first level involves an open-loop study of how the aircraft would respond to given control
surface motions. A study at this level ignores all issues of feedback; it involves only vehicle aero-
dynamics and kinematics. The second level adds considerations of the control system feedbacks, if any.
These considerations include issues of sensor characteristics, control system logic, and actuator char-
acteristics. The result of a study at this level is an understanding of how the vehicle and control
system, operating together, respond to commands. A third level includes the pilot as part of the system.
The aircraft designer must ensure that a pilot can reasonably control the aircraft.

We normally estimate the stability and control derivatives using only the open-loop, bare airframe
model. We look at the control surface motions and the aircraft response. The causes of the control sur-
face motions are irrelevant. In particular, the model applies whether or not the control surface motions
are a result of feedback at some higher level. There are several related reasons for using the open-loop
model. The central reason is that this is the simplest system. The simpler the system, the more likely
it is that we can get good estimates. Furthermore, the feedback systems are superfluous to our estima-
tion problem. Maine and ITiff (1984) pointed out that we need to take maximum advantage of previous
information in constructing our system model. We should use parameter estimation techniques only to
fi1ll the gaps in our knowledge.

The gap that we are filling here is in our knowledge of the aircraft's aerodynamics. Relative to
our knowledge of the aerodynamics, we have good models of most components of the feedback systems. We
can get accurate data on most actuator and sensor characteristics from both ground and flight test data
without using complicated parameter estimation techniques; in exceptional cases, we may need to include
the actuator or sensor models as parts of the system identification task. If the control system analysts
do not know the control logic, there are very basic problems, which system identification techniques are
not likely to solve.

Another big gap is in our knowledge of the pilot model. We can make some general statements about
piloting techniques, but accurate quantitative pilot models are as unattainable as good economic models.
There have been attempts to use system identification techniques for pilot modeling, but we are not aware
of any convincing results. We do not discuss the pilot modeling problem in this document. Whereas we
exclude automatic feedbacks from our analysis because simpler techniques are appropriate, we exclude the
pilot model because it makes the problem too difficult. Including dubious pilot models in our system
would simply corrupt the quality of the stability and control derivative estimates.

This document also ignores, as far as possible, the response of the aircraft structure and propulsion
system. The aircraft structure and propulsion system are appropriate areas for the use of system iden-
tification techniques, and several applications have been made in these areas. However, we consider them
as separate applications that we will not treat extensively in this document. In some cases we cannot
separate the structural, propulsion system, and aerodynamic system responses. We must then consider
these issues in more detail, and the problem is considerably more difficult.

In summary, we use an open-loop model for estimating aircraft stability and control derivatives. The
model ignores structural and propulsion system responses to the extent possible. The model includes kine-
matics and the aerodynamic forces and moments acting on the aircraft. The kinematics are well known; we
estimate only the aerodynamic forces and moments.

The preceding discussions point out the importance of defining the scope of the estimation prob-
Tem. A complete model of all aspects of an aircraft response would be intractable; we therefore have
restricted the scope of the aircraft stability and control problem to that which we can reasonably hope
to handle. The other elements of the aircraft are handled separately; designers and control system
analysts can assemble the different element models. Many system identification failures stem from
poorly defining the scope in the original problem statement, posing a problem that is intractable from
the start.

1.4 PURPOSE

As the first step in any practical application, we must establish the purpose of the estimation.
The intended use of the results influences every aspect of system identification, including model selec-
tion, choice of estimation algorithms, experiment design, and evaluation of the adequacy of the results.
In this section we mention some common uses of aircraft stability and control derivative estimates. A
particular application can involve several of these and other uses.

One of the earliest uses of aircraft stability and control derivative estimation was in validating
wind-tunnel or analytical predictions. Although comprehensive wind-tunnel and analytical testing can
give a reasonable estimate of the flight vehicle aerodynamics, there are several potential sources of
misprediction, sometimes minor and sometimes major: The wind-tunnel models used for most of the testing
are often slightly different from the actual flight vehicle because of last-minute configuration changes.
It is difficult or impossible to precisely match actual flight conditions with scaled wind-tunnel models.
Reynolds number differences are a standard explanation for discrepancies between flight and wind-tunnel
results. Support system (sting) effects are almost always an issue in wind-tunnel tests; major discrep-
ancies have been traced to sting effects in several programs (Ericsson, 1981). Minimization of support
effects is still more of an art than a science. Funding and time constraints necessitate shortcuts in
the wind-tunnel tests (and in the flight tests). For these and numerous other reasons, it is always
wise to at least spot-check wind-tunnel and analytical predictions with flight test data, even for
simple configurations.



Typical reporting practices (the tendency to emphasize positive results) play down the role of flight
test validation of predictions. After all, the use of flight data in this role is a tool for finding
errors. It is natural (and appropriate in many places) to emphasize the consistency of the results after
all the errors are corrected rather than to discuss how the errors were found and corrected. The errors
can be as simple as typographic or arithmetic mistakes. More complicated errors include failure to
account for (or incorrectly accounting for) Reynolds number effects, sting effects, wind-tunnel wall
effects, flexibility effects, or propwash (or jetwash) effects. In some cases the data needed to make an
accurate prediction have been available before flight; they simply have not been used. For instance,
often there are two disagreeing sets of wind-tunnel data, one of which is discarded based on some judgment
(funding and time typically prohibit running a third independent wind-tunnel test); in some such cases we
have found that the flight results agreed with the discarded set. In most of the situations mentioned in
this paragraph, final reports will emphasize that the wind-tunnel data (appropriately corrected) are in
good agreement with the flight data.

The tendency to emphasize agreement between data sets is appropriate if the consistency of the
results is being used to support the thesis that the values are accurate. To evaluate the utility of
estimating the stability and control derivatives from flight data, it is valuable to Took at a comparison
that is seldom published: the predicted data exactly as used before the first flight compared with the
best estimates combining flight data and predictions after the flight test program is completed. Such
comparisons would reveal that stability and control derivative estimation from flight data has an impor-
tant role in correcting simple oversights and otherwise validating predictions. Because of this role,
stability and control derivative estimation from flight data is indispensable in any major new aircraft
test program, regardless of how thorough the wind-tunnel test was. In spite of the most thorough wind-
tunne)l and analytical test program in history, the flight data for the space shuttle exhibited signifi-
cant disagreements with preftight predictions.

Do not take the preceding discussion of prediction errors as refiecting our position on the ubiqui-
tous question of whether wind-tunnel or flight test data are better; in general, we regard the question
as irrelevant. It suits our purpose in this section to briefly allude to potential problems with predic-
tions, but we devote several subsequent chapters to the potential problems with flight data analysis.

For purposes of our current discussion, the roles of flight and wind-tunnel data are symmetric: The :
flight data can be useful in finding problems with the wind-tunnel data, and the wind-tunnel data can .
be useful in finding problems with the flight data. Having the most confidence in the results requires °
both wind-tunnel and flight data. Thus, flight data are useful in improving confidence, even if they -
can be summarized by stating that they agree with predictions. ‘

In some test programs, a complete aerodynamic data base must be built using only flight data. This
can occur if there are no wind-tunnel tests or if there are such major deficiencies in the wind-tunnel
data as to make it easier to discard then and use only the flight data (as, for instance, with the highly
maneuverable aircraft technology (HiMAT) program; Matheny and Pangeas, 1981; I1iff and Maine, 1982). In
this case much better coverage of the flight envelope is needed. It is no longer sufficient to spot-
check a few flight conditions and say that the predictions look reasonable. The end uses of the flight-
estimated stability and control derivatives are similar, whether they are used alone or in conjunction
with predictions.

Flight estimates of stability and control derivatives play an important role in envelope expansion
and safety of flight during flight test programs. As the demonstrated flight envelope of an aircraft
expands, engineers examine stability and control derivative estimates for unexpected trends that might
make flight unsafe in some regimes. This monitoring can be done during the flight or between flights.

Computer programs for analyzing aircraft stability, handling qualities, and control systems make
direct use of stability and control derivative estimates. These programs can analyze the aircraft as
it is, or they can analyze the effects of proposed changes in the control system.

High-fidelity simulators are increasingly necessary in modern flight research and test programs and
in operational use. For many years, simulators have been used for flight planning and pilot training,
both to save expensive flight time and to minimize risky flight operations, such as training for emer-
gency conditions. As aircraft become more complex and as flight envelopes expand to include unconven-
tional regimes, the need becomes greater for using simulators as integral parts of the flight test
programs. Control systems and, to the extent possible, handling qualities must be tested on simulators
before committing to flight. The design and refinement of complex modern control systems operating over
large flight envelopes require higher-fidelity simulators than were needed for pilot training. These
high-fidelity simulations require complete stability and control data that give an accurate representa-
tion of the actual flight vehicle. For many years, every major flight project at Ames-Dryden involving
stability, control, or flying qualities has included a high-fidelity simulator updated with flight-
determined stability and control derivatives.

For most of these purposes, we care little about the phenomenology of the aerodynamics; we need only
know the end result of how the aircraft responds. Thus, we may be relatively indifferent to some model
distinctions. For instance, the parameters Cmq and Cm& both affect aircraft damping in pitch. In many

flight regimes, the aircraft responses are identical (within the accuracy of our measurements) whether
the damping arises from Cmq or Cm&. Therefore, if we are restricted to such flight regimes and if our

purpose is solely to construct an accurate simulation, we need only estimate the sum Cmq + Cpge To



attempt to separately estimate the two components would not only be a waste of time, it could well
degrade the results.

For other purposes, however, the phenomenology might be of primary interest. We might be using the
stability and control derivative estimates as an aid to understanding aerodynamic flow phenomena. In
such a case, Cmq and Cps are quite distinct because they arise from different flow phenomena. This

simple example illustrates how a choice of model form (Cmq and Cm& summed or distinct) can depend on the
purpose of the estimation.

1.5 FLIGHT TEST PROGRAM

In this section we give an overview of the flight test procedure for estimating stability and control
derivatives. This overview also serves as an outline of the subjects covered in the rest of this docu-
ment. Figure 1.5-1 illustrates the major steps of a flight test program. The individual items are
elaborated below.

You need to develop a test plan that addresses all the issues mentioned in this section. This plan
need not be a formal written document. It may be unreasonable to make detailed plans for the entire pro-
ject before it starts. For instance, you probably will need to examine some of the raw data before
making final decisions about data filtering and preprocessing. -At a minimum, you need to make a mental
checklist of what needs to be accomplished at each stage of the project. Otherwise it is easy to omit
small but important items, such as measuring the instrument positions.

The first element of the test plan is a statement of the objectives. In Section 1.4 we discuss the
importance of the objectives and the influence that the objectives can have on the approach. A statement
of objectives should be concrete and should include acceptable forms of the results. For instance, it
is important to know whether a single model, which describes the aircraft over its entire envelope, is
required, or a set of models, each valid in a part of the envelope, is acceptable.

You must establish the requirements for predicted derivatives and a source of data to meet these
requirements. You may also need to determine how to obtain the aircraft mass characteristics. Chap-
ter 5 discusses mass characteristics and preflight predictions.

You need to define the necessary flight maneuvers, as described in Chapter 6. Chapters 7 and 8
discuss the requirements for instrumentation and data systems adequate for stability and control analy-
sis. Establishing and implementing instrumentation requirements are among the long-lead-time processes
and must be addressed early in the flight test program. Preprocessing of the measured flight data to get
it in a form usable for analysis can be a major effort.

You need to define the appropriate equations and analysis methods. Basic forms and some variants of
the aircraft equations of motion are discussed in Chapters 2 and 3; analysis methods are discussed
throughout this document.

As the final step of the estimation process, you must evaluate and present the results. The form
of presentation should be tied to the acceptable forms established in the statement of objectives.
Chapter 9 discusses issues related to evaluating and presenting results.

An important facet of the entire process is the interplay between steps. Although we lay out the
steps in a linear fashion, the steps can seldom be separated so neatly in practice. Results from each
step influence decisions in other steps. In many cases, you will need to revise earlier decisions based
on later results. For instance, unexpected trends in the estimates might justify extra instrumentation,
additional maneuvers, or alternative analysis methods. Inflexibility and refusal to reevaluate previous
decisions invite poor results.

Any realistic flight test plan should include generous allowances for unexpected problems. The
positive-sounding term “success-oriented" philosophy is a currently popular management euphemism for
jgnoring problems and hoping they will go away, usually an attempt to avoid admitting that the program is
over budget, behind schedule, and under performance. (A more traditional description of this philosophy
is overoptimistic).

In an extreme case, the success-oriented program starts with the lowest quality data system that
someone can argue should be acceptable; the test program consists of a quick series of flights with one
maneuver at each of a few questioned flight conditions; then the instrumentation is removed, and the
airplane is sent off for other uses before any data are analyzed. Such a plan minimizes projected cost
and time in the unlikely event that nothing goes wrong. Unfortunately, there is little or no allowance
for error. Problems that would have been minor in a better-planned program (perhaps only requiring an
extra flight) can completely invalidate the data in a success-oriented program. For example, if the data
recorder were to fail (as happened to some recorders on a few shuttle flights), more time and money could
have been saved by forgetting about the tests in the first place. More likely, the data will be full of
obvious inconsistencies (or worse, unobvious ones). If the data are analyzed and the results are dif-
ferent than predicted, the extreme success-oriented program would disregard the results anyway, hoping
that an error was made or that it might not matter. If a test program does not merit better treatment
than this, it is not worth doing.



Rather, flight test plans should reflect a problem-oriented philosophy. Assume that there will be
problems, and design the tests to maximize the chances of finding and fixing the problems. Much of this
document reflects such problem-oriented philosophy. We point out the kinds of problems that commonly
occur, how to identify them, and how to fix them or work around them. Our experience is that such a
probtem-oriented approach is the best way to ensure success, while a success-oriented approach is the
best way to ensure lasting problems.

Figure 1.5-2 shows relationships among several of the major areas of aircraft stability and control
estimation: input, vehicle, measurements, and analysis. We discuss all of these in this document. The
following 1ist of AGARD documents relates to the areas depicted in Figure 1.5-2. The bibliography at the
end of this document 1ists these and other references in the field.

A: INPUT Flight/ground testing
AGARD, 1976, Nos. 6, 8, 13
Optimal input design AGARD, 1983, Nos. 3B, 15, 16, 17A
AGARD, 1979b, No. 3
AGARD, 1975, No. 12 Dynamic stability parameters
AGARD, 1978, Nos. 14, 15, 17, 18
Flight test program design AGARD, 1981, No. 10

AGARD, 1977, Nos. 5, 11, 12, 13
C: MEASUREMENTS

B: VEHICLE
Flight test instrumentation
Fixed-wing aircraft AGARD, 1979b, No. 4
AGARD, 1979b, No. 6 AGARD, 1972-1983, Vol. 1
Rotorcraft Signal filtering
AGARD, 1979, No. 7 AGARD, 1972-1983

AGARD, 1983, No. 16

Wind-tunnel and free-flight modeis D: ANALYSIS
AGARD, 1979b, No. 10

AGARD, 1983, No. 17A - Maximum likelihood methods
AGARD, 1979, No. 2
Extreme flight regimes Maine and IT1iff, 1984
AGARD, 1979b, No. 8
AGARD, 1979a, Nos. 1, 14 Flightpath reconstruction
linear regression methods
Closed-1oop aspects AGARD, 1979, No. 5

AGARD, 1979b, No. 11
Frequency domain methods
Aeroelastic flight testing AGARD, 1979, No. 2
AGARD, 1972-1983, No. 9
AGARD, 1983, Nos. 18, 19, 20
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Figure 1.5-1. Steps of a Figure 1.5-2. Aireraft stability and control
flight test program. estimation.



2.0 AIRCRAFT EQUATIONS OF MOT10N

This chapter defines the signals pertinent to aircraft stability and control analysis and derives the
atrcraft equations of motion. These equations form the basis for aircraft stability and control analysis.
The derivations of this chapter assume that the aerodynamic characteristics are known. Chapter 3 dis-
cusses the application of parameter identification to these equations in order to estimate the stability
and control derivatives. ’

2.1 SIGNAL DEFINITIONS

In this section, we define the dnput, state, output, and other signals pertinent to the aircraft sta-
bility and control probliem.

2.1.1 Control Surfaces

The usual inputs to the aircraft stability and conrol equations are the control surface positions.
The basic aircraft control surfaces, illustrated in Figure 2.1-1, are the elevator (8g), ailerons (6a),
and rudder (8r). The elevator and ailerons can be separate surfaces or can represent symmetric and anti-
symmetric deflections of a single pair of surfaces usually called elevons (from elevator and aileron).
Control surface arrangement is highly configuration dependent: Various combinations of flaps, spoilers,
canards, reaction control jets, or other control devices are possible, in addition to or instead of the
basic three controls. Events, such as weight dropping, can also constitute inputs.

Our usual conventions for control surfaces are as follows: All surface positions are angular deflec-
tions measured normal to the hinge line. Positive deflection is trailing edge down or trailing edge left
(port), depending on the surface orientation (as shown in Figure 2.1-1). Ajleron deflections and other
antisymmetric control combinations are defined as left surface position minus right surface positijon.
These conventions are not universal; in particular, some authors define aileron deflection as one-half of
our definition or with the opposite sign. Sign conventions are worth verifying on each aircraft because
there is no universal standard.

2.1.2 Body-Axis System

Most of the quantities of interest to us are referenced to aircraft geometric body axes, shown in
Figure 2.1-2. The origin of the body-axis system is at the center of gravity (we could work from some
other origin, but placing the drigin at the center of gravity significantly simplifies the model). The
positive X axis points forward, out the nose of the aircraft; its exact orientation is defined for each
aircraft model. The positive Y axis points to the right, and the positive Z axis points down to complete
a right-handed axis system. The entire axis system moves and rotates with the aircraft.

2.1.3 Euler Angles

The aircraft attitude with respect to the earth is defined by the three Euler angles ¥ (heading
angle), @ (pitch attitude or pitch angle), and ¢ (roll attitude or roll angle). These angles define the
rotations that transform earth-fixed axes to aircraft body axes at any particular instant of time. The
order of rotation is important. Start from earth-fixed axes, where X1 is north, Yy east, and Zj down.

Rotate first by the angle ¥ about the Z] axis to define the rotated axis system (X2,Y2,Z2) (Zp is iden-
tical to Z;). If we imagine an aircraft attached to the axis system as it rotates, zerc ¥ is nose north,
and positive ¥ rotation is clockwise. Then rotate by the angle © about the Y2 axis to define a third
axis system (X3,Y3,Z3) (Y3 is identical to Yp). Note that the © rotation is about Yp, not Yj. Zero © is
nose level, and positive © is nose up. Finally rotate by the angle ¢ about the X3 axis to arrive at the
aircraft body axes (X,Y,Z) (X is identical to X3). Zero ¢ is wings level, and positive ¢ is right wing
down. Figure 2.1-3 illustrates the Euler angles.

These definitions allow multiple solutions for (¥,0,¢) for any given aircraft attitude; for instance,
it is easy to see that a (¥,0,¢) of (0°,0°,0°) is equivalent to (180°,180°,180°). We normally define ©
to lie in the range (-90°,90°). The Euler angles are then unique except when © is exactly 90° or -90°.

The transformation of a vector from earth axes Vo to body axes Vy is the product of the three rota-
tion matrices.

1 0 0 cos O 0 -sin @ cos ¥ siny¥ O
Vb = [0 cos ¢ sin ¢ 0 1 0 -sin ¥ cos ¥ O Ve
0 -sin & «cos ¢fJ(sin© O cos © 0 0 1

T cos © cos ¥ cos @ sin ¥ -sin ©

sin @& sin © cos ¥ sin ¢ sin © sin ¥ sin ¢ cos © v (2.1-1)
= - ¢cos ¢ sin ¥ + cos @ cos ¥ e

cos ¢ sin © cos ¥ " cos ¢ sin O sin ¥ cos ¢ cos ©

+ sin ¢ sin ¥ - sin @ cos V¥



The inverse transformation is

cos ¥ -sin¥ O cos © 0 sin o 1 0 0
Vo = |sin ¥ cos ¥ 0 0 1 0 0 «cos ¢ -sin ¢ |V

0 0 1 -sin @ 0 cos © 0 siné cos ¢
cos ¥ cos © cos ¥ sin @ sin ¢ cos ¥ sin © cos ¢
- sin ¥ cos ¢ + sin ¥ sin ¢
= | sin ¥ cos © sin ¥ sin © sin ¢ sin ¥ sin 6 cos & | Vp (2.1-2)
+ cos ¥ cos ¢ - cos ¥ sin ¢
-sin © cos O sin ¢ cos © cos ¢

2.1.4 Angular Rates

We define the body-axis aircraft angular rates as projections of the angular velocity vector (with
respect to inertial space) on the body axes. This definition may seem a little awkward in that it first
defines the vector in inertial space; this is because the angular velocity of the aircraft- with respect
to the body axes is zero by definition and thus is not a useful quantity. The roll rate p, pitch rate q,
and yaw rate r are the components of the angular velocity in the body X, Y, and Z directions, respec-
tively. The sign conventions follow a right-hand rule: Positive roll rate is right wing moving down;
positive yaw rate is nose moving right; positive pitch rate is nose moving up.

2.1.5 Wind-Relative Velocity

For stability and control analysis, we are seldom interested in the velocity of the aircraft relative
to earth. The velocity of the aircraft relative to the air, called the wind-relative velocity, is of
central importance. It is often convenient to consider this as the velocity with which the relative wind
hits the aircraft (the sign convention is then that the vector points in the direction from which the i
relative wind comes). These two definitions are equivalent. The components of this vector in the X, Y,
and Z body axes are u, v, and w, respectively.

For many purposes, it is more convenient to express the wind-relative velocity in a spherical co-

ordinate system instead of by the Cartesian components u, v, and w. In the spherical system, the total
wind-relative velocity is

V=VuZ + v2 + w2 (2.1-3)

The angle of attack a and the angle of sideslip B are defined by

a = tan-1

cl=

(2.1-4a)

g = sin-1 (2.1-4b)

<|<

Figure 2.1-4 shows the geometry of these definitions.

The angle of sideslip defined by Equation (2.1-4b) is not exactly the quantity measured by a normal
sideslip vane (see Section 8.5). A sideslip vane measures the flank angle of attack, defined by

of = tan-1 %— (2.1-5)

The flank angle of attack is related to the angle of sideslip by the equation
tan B = tan af cos a (2.1-6)

We use the angle of sideslip in the equations derived in this document. It is possible to derive
corresponding equations in terms of the flank angle of attack.

We can invert Equations {(2.1-3) and (2.1-4) to give

u =V cos a cos B (2.1-7a)
v = Vsin 8 (2.1-7b)
w =V sin a cos B (2.1-7¢)

Note that Equation (2.1-7) can be written in the form

u cos a 0 -sin alf{cos B -sin B 0 v
v] = 0 1 0 sin 8 cos 8 0f]0 (2.1-8)
w sin a 0 cos a 0 0 1 0



which is a product of two rotation matrices and the velocity vector in a relative-wind-oriented coor-
dinate system (called wind axes). The order of the two rotations is important.

2.1.6 Linear Accelerations

The definition of body-axis linear accelerations is similar to that of the body-axis angular rates.
The body-axis linear accelerations of any point on the aircraft are the projections of the acceleration
vector of the point (with respect to inertial space) on the body axes. Note that the accelerations,
unlike the angular rates, are different for different points on a rigid aircraft. When the term accel-
eration is not qualified with a position, it usually refers to acceleration of the center of gravity.

Linear accelerometers are important sensors for stability and control data analysis and for control
system feedback. Such accelerometers measure the body-axis accelerations, excluding the component of
acceleration due to gravity or other internal forces. Equivalently, we could say that an accelerometer
measures the externally applied force on the accelerometer case. Thus, an accelerometer will indicate
1 g of upward acceleration for an aircraft in steady level flight. The actual acceleration in steady
level flight is zero, composed of 1 g of upward acceleration from 1ift plus 1 g of downward accelera-
tion from gravity; an accelerometer will measure only the acceleration from 1ift in this situation.

For many purposes, accelerometer measurements are actually more useful than true acceleration measure-
ments would be; if we had measurements of the true acceleration, we would often need to subtract the
gravity contribution.

Aeronautical engineers (including ourselves) often inaccurately use the term "accelerations" for the
linear accelerometer outputs, implying that the second derivative of position is the acceleration plus
the gravity contribution. The usage is sloppy, but there is not an accepted better term. Terms like
"accelerometer output" are awkward; the term "specific force" is used occasionally but is not universal.

The three components of accelerometer output are ap, ay, and ay. The a, component, called normal
acceleration, is positive upward; note that this is in the negative Z direction. Occasionally you will
see az, positive down, substituted for an in order to make the accelerometers consistent in sign.with
the axis system. However, the use of a, is far more common, 1ift always being thought of as positive
upward, and we adopt ap in this document. The ay component, called longitudinal acceleration, is positive

forward, along the X axis. The ay component, called lateral acceleration, is positive to the right,
along the Y axis.

2.2 SIX-DEGREE-OF-FREEDOM EQUATIONS OF MOTION

In this section we briefly outline the derivation of the aircraft equations of motion. Most aircraft
dynamics texts (Etkin, 1959) give more detailed versions of these derivations, starting from the equations
for a point mass. Gainer and Hoffman (1972) present a more general set of equations than we use here.

2.2.1 Newtonian Mechanics

We take as a starting point the nonrelativistic, rigid-body equations of motion in a nonrotating
inertial axis system. This coordinate system could be fixed with respect to either the earth or the air
(assuming that the wind velocity is constant in both time and space); for our purposes here, it is best
to use a coordinate system fixed relative to the air. The basic equations are the linear momentum and
angular momentum equations:

_d v _
F =9 (i) (2.2-1)
_d -
M=o (h) (2.2-2)

where F is the external applied force, M the external applied moment about the center of gravity, V the
velocity vector, and h the angular momentum vector about the center of gravity. Nonrotating coordinates
are somewhat awkward because our measurements are made primarily in the rotating body-axis system;
furthermore, the inertia tensor is a rapidly changing function of time in the nonrotating system.

We need to transform Equations (2.2-1) and (2.2-2) to the rotating aircraft body-axis system. Let w
be the angular velocity vector of the body-axis system with respect to inertial space. The rules for
transforming vector derivatives into rotating coordinate systems give

F = %E-(mﬁ) + w0 x (mV) (2.2-3)

M= %E-(h) + @ xh (2.2-4)
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where all quantities are in the rotating body-axis system. The &/6t operator denotes the vector of deri-
vatives of the vector components; in a rotating axis system this is not the same as the derivative of the
vector, because the components in the rotating axis system change due to this rotation even if the vector
is constant in inertial space.

The angular momentum is given by

Iy -lyy  -Ixz
ho=|-Ixy Iy “lyz | (2.2-5)
Iz -lyz Iz

The matrix in Equation (2.2-5) is the inertia tensor (Etkin, 1959) expressed in the body-axis system.
The components of w in the body-axis system are (p,q,r) by definition. The components of V in the body-
axis system are (u,v,w) by definition. For aircraft stability and control applications, we can neglect
time derivatives of m and the inertia tensor. With these substitutions, we can write Equations (2.2-3)
and (2.2-4) in scalar form as

Fx = m(u + qw - rv) (2.2-6a)
Fy = m(v + ru - pw) (2.2-6b)
Fz = m(w + pv - qu) (2.2-6¢)
My = ply - Glyxy - Flgz + ar(lz - Iy) + (r2 - q2)Iy; - paly, + rplyy (2.2-7a)
My = -plgy + qly - rlyz + rp(Ix - 17) + (p2 - r2)Ixz - qrlyy + paly, (2.2-7b)
Mz = -plxz - Qlyz + Fl; + pq(ly = I,) + (a2 = p2)Ixy - rply; + arly, (2.2-7c)

where Fy, Fy, and Fz are the components of the external applied forces; My, My, and Mz are the com-

ponents of the external applied moments. The angular velocities in these equations are in radians
per second.

2.2.2 External Forces and Moments

Let us now examine the external forces and moments. We consider two components of the external
moment (for more complete equations, see Gainer and Hoffman (1972)). The most significant component is
the aerodynamic moment. We write the aerodynamic moments in terms of the nondimensional coefficients
(Etkin, 1959):

MXaepo = dSbCg (2.2-8a)
MYaero = A5cCn (2.2-8b)
MZaero = asbCp (2.2-8¢)

where q is the dynamic pressure, s the reference area, c the reference chord, b the reference span, and
Cg, Cp» and C, are the coefficients of rolling, pitching, and yawing moments. These coefficients are
functions of the aircraft state (see Section 2.4).

The other component of the moment that we consider is the gyroscopic moment from the rotating
machinery in the engine. We must consider this as an external applied moment because Equations (2.2-3)
to (2.2-5) assume that the vehicle is a rigid body with no internal moving parts. The engine gyroscopic
coupling is significant for some aircraft. The following equations assume that the engine is oriented
along the X axis. Generalization to arbitrary orientation is easy. The total applied moments are

Mx = qsbCy (2.2-9a)
My = gscCp + Nrlye (2.2-9b)
M7z = gsbCp - Nqlyxe (2.2-9c)

where Iye is the moment of inertia of the rotating mass of the engine and N the engine speed in radians
per second.



We consider three components of the applied forces.

in terms of the nondimensional coefficients they are

where Cx, Cy, and C; are the coefficients of X force,

FXaero = AsCx
FYaero = 9sCy

FZaero = 45Cz

Y force, and Z force.

The first component is the aerodynamic forces;

(2.2-10a)

(2.2-10b)

(2.2-10c)

tions of the aircraft state (see Section 2.4). It is also common to work in terms of the coefficient of
normal force Cy and the coefficient of axial force Cp defined as

The second force component is gravity, which exerts a force mg along the earth Z axis.
Equation (2.1-1), we can transform the gravity force into body axes:

Cn = -Cz
Cp = -Cy

Fxgrav = -mg sin ©
FYgrav =mg sin ¢ cos ©
Fzgrav =mg cos & cos ©

(2.2-11a)
(2.2-11b)

Using

(2.2-12a)
(2.2-12b)

(2.2-12c)

The third force component is the engine thrust T, which we assume is along the body X axis.:

Generalization to arbitrary orientation is easy. The total applied forces are then

2.2.3 Euler Angles

Fx = qsCx - mg sin 0 + T
Fy = gsCy + mg sin @ cos ©

Fz = qsCz + mg cos & cos ©

(2.2-13a)
(2.2-13b)

(2.2-13¢)

11

These coefficients are func-

Since body-axis forces are functions of the Euler angles, we will need the equations for evolution of
the Euler angles. Assuming a flat, nonrotating earth, the total angular velocity of the aircraft

can be expressed as the sum of @, é, and & components.

These components are not mutually orthogonal:

The ¥ component is in the earth-axis Z direction, the o component is in the Y2 direction, and the & com-

ponent is in the body-axis X direction.

p S 1
ql =10 +|0 co
1 0 0 -si
1 0
=|0 cos ¢
L O -sin ¢

Inverting this equation gives

0] 0
s & sin
nd cos

-sin ©
sin ¢ cos
cos ¢ cos

Oe e
n

[N
1

—01 1 0 0

ol |d]+{o0 cos & sin @

%] [0 0 -sin & cos ¢
i3

ollé

o L¥]

p +q tan © sin & + r tan © cos ¢

gcos & - r sin @

rcos ¢ sec @+ q sin ¢ sec 0

e O O

We transform all these components into the body-axis system
and equate the sum to the body-axis components of the angular velocity as follows (see Equation (2.1-1)):

(2.2-14)

(2.2-15a)
(2.2-15b)

(2.2-15¢)
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2.2.4 Polar Coordinate Velocity Form

For many purposes, it is more convenient to have the equations in terms of «, B, and V than in terms
of u, v, and w. The aerodynamic forces and moments are easier to visualize and express in terms of a,
8, and V. Furthermore, we can directly measure flow angles closely related to « and g. We do almost
all of our analysis in the «, 8 and V coordinates. The primary disadvantage of the (a,B,V) system is
that it is singular at zero velocity, where o and B are not defined; therefore the (a,B,V) system is
inappropriate for hover conditions. The («,8,V) system also has singularities at 8 of 90°, but these
are seldom of concern.

To derive the (a,8,V) equations, first differentiate Equations (2.1-3) and (2.1-4) to obtain

V= % (Ul + v + ww) (2.2-16a)

o uw - wi

5 - (2.2-16b)
u? + w2

Ba_ Wl (u? w2V - v - vud (2.2-16c)

v2N(1 - v2pv2) 2V (u? + w?)

Substituting for U, v, and w from Equation (2.2-6) and for u, v, and w from Equation (2.1-7) gives

. F F F
V= ﬁi cos a cos B + ﬁl sin B + Ez-sin a cos B (2.2-17a)
. 1 -y ;

=t (F -F +q - + .2
o mVCOSB(ZCOSa x sin a) + q - (tan B)(p cos a + r sin a) (2.2-17b)
g = E%%_ﬁ Fy + p sin @ - r cos o - 5%%~E (Fz sin a« + Fx cos a) (2.2-17d)

Substituting from Equation (2.2-13) for Fy, Fy, and F7 gives

v=- %ﬁ'cnwind + g{cos ® cos © sin a cos B + sin & cos © sin B8 - sin © cos « cos B) (2.2-18a)

+ %»cos o Cos B

a = - ——9§—————CL +q - (tan B)(p cos a + r sin a)

mV cos B
+— 9 (cos & coS © cos a + sin © sin a) - LSIN &_ (2.2-18b)
V cos B mV cos B
g = %%’CYwind + psina-rcos at+ %-cos B sin ¢ cos ©
+ §i$—§-(g oS a Sin 6 - g sin « cos & cos © + 1 cos a) (2.2-18c)
m
where the stability-axis force coefficients are
CL = -C7 cos a + Cy sin «a (2.2-19a)
Cp = -Cx cos a - C7 sin a (2.2-19b)
and to simplify the form of the equations, we have defined the wind-axis coefficients
CDying = Cp cos B - Cy sin 8 (2.2-20a)

CYying = Cy cos B + Cp sin B (2.2-20b)
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2.2.5 Collected Equations

We have now derived the body-axis six-degree-of-freedom equations of motion. We have two equivalent
forms of the equations, depending on whether the air-relative velocity is expressed in rectangular or
polar coordinates. For the rectangular coordinate form, collect Equations (2.2-6), (2.2-7), and (2.2-15),
substituting from Equations (2.2-9) and (2.2-13).

u = gE-CX - QW+ rv -gsinoe+ % (2.2-21a)
v = %E-Cy - ru + pw + g sin ¢ cos © (2.2-21b)
w = gE’CZ - pv + qu + g cos & cos © (2.2-21c)
Plx - qlxy - Flyz = gsbCg + ar(ly - Iz) + (a2 - r2)Iy; + pqly; - rplyy (2.2-21d)

Plxy + qly - Fly; = gscCp + rp(I; - Iy) + (r2 - p2)Iy; + qrlxy - palyz + Nrlye  (2.2-2le)

-plyz - lyz + Fl; = gsbCp + pa(Iy = Iy) + (p2 - q2)Ixy + rPly; - qriy; - Nglye  (2.2-21f)

® = p +q tan © sin &.+ r tan © cos ¢ (2.2-21q)
6=qcos d-rsine (2.2-21h)
¥ =r cos ¢ sec @+ q sin ¢ sec © (2.2-211)

For the polar coordinate form, use Equation (2.2-18) in place of Equations (2.2-21a) to (2.2-21c), giving

Vo= - %E'Cﬂwind + g(cos & cos © sin a cos B + sin & cos O sin B
- sin © cos a cos B) + %—cos a cos B (2.2-22a)

da=-—-9___ ¢ +q- (tan B)(p cos a + r sin a)

mV cos B
+ V—%s (cos & cos © cos a + sin © sin a) - %gsas (2.2-22b)
B = %%’CYwind +p sin a - r cos a + %»cos B sin & cos ©
+ §i%~§ (g cos o sin © - g sin a cos ¢ cos © + %—cos a) (2.2-22c)
Plx - dlyy = Flxz = qsbCq + qr(ly - Ip) + (a2 - r2)Iy; + pqlyz - rplyy (2.2-22d)

“plyy *+ qly - Ply; = qscCp + rp(l; = L) + (r2 - p2)Ix; + arlyy - pqly; + Nrlge  (2.2-22)

-Plxz - alyz + ;Iz = ashCy + pq(Iy - Iy) + (p2 - qz)lxy + rplyy - qrix; - Nqlye  (2.2-22f)

$=p+qtan ©sin &+ r tan 0 cos ¢ (2.2-22g)
6=qcos ®-rsino (2.2-22h)

¥ =r cos ¢ sec ©+ q sin ¢ sec 9 (2.2-221)
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Either of these systems of nine coupled nonlinear differential equations describes the aircraft
motion. The inertia tensor is always an invertible matrix (it is usually nearly diagonal), and thus
Equations (2.2-21d) to (2.2-21f) are solvable for the derivatives of p, q, and r. The explicit inver-
sion is messy, and it is more convenient to write the equations in the form shown here and use a numer-
ical inversion routine for the solution.

The equations assume nonrelativistic mechanics, a rigid vehicle, and a flat, nonrotating earth. The
equations are valid in a constant wind but do not account for wind shears or fluctuations. The time rate
of change of mass and inertia is assumed negligible, and fuel sloshing effects are ignored. There are no
small-angle approximations, but the equations have singularities at © = +90°, The polar coordinate form
also has singularities at zero velocity and at 8 = *90°. Engine inertia and thrust terms are included,
assuming that the engine alignment and thrust vectors are along the X axis. The equations are given in
terms of body axes referenced to the vehicle center of gravity.

The force and moment coefficients are functions of the aircraft state. We must know these functions
before we can integrate the equations, but we will put off that issue until Section 2.4.

2.2.6 Spatial Position

Each set of equations in the previous section included only 9 of the 12 differential equations
describing the rigid-body motion of the aircraft. Three differential equations for the spatial posi-
tion are needed for a complete set. Although the spatial position equations are seldom relevant to
aircraft stability and control analysis, we present them here for completeness. These equations are
necessary for simulations that include navigational considerations. In special situations, such as in
ground effect or with an autopilot driven by navigational signals, the spatial position equations can
also become pertinent to stability and control.

To derive the spatial position equations, simply use Equation (2.1-2) to transform the body-axis
velocity (u,v,w) into earth axes. We will also allow for a constant wind. Let X and Y be the position
in the earth-fixed X and Y coordinates. For the third spatial position variable, we use altitude H, .
which increases in the negative Z direction. The resulting (X,Y,H) coordinate system is not right-handed
and therefore invites sign errors. Unfortunately, the (X,Y,Z) coordinate system also invites sign errors
from people falsely assuming the positive Z direction is up, which seems natural. The equations are

X =u cos ¥ cos @+ v(cos ¥ sin © sin ¢ - sin ¥ cos @)

+ w(cos ¥ sin © cos & + sin ¥ sin @) + Wy (2.2-23a)
¥ = u(sin ¥ cos @) + v(sin ¥ sin © sin & + cos ¥ cos ?)

+ w(sin ¥ sin © cos ¢ - cos ¥ sin ¢) + Wy (2.2-23b)
fl=usino-vcos osiné-wcos 0cos ¢+ Wy (2.2-23c)

where Wy and wy are the wind components blowing toward the north and east, respectively, and Wy is the
vertical wind component, positive for updrafts. If the polar coordinate form of the wind-relative velo-
cities is used, then substitute from Equation (2.1-7) for the u, v, and w in Equation (2.2-23) to obtain

X =V cos a cos B cos ¥ cos © + V(sin B)(cos ¥ sin © sin & - sin ¥ cos @)

+ V(sin a cos B)(cos ¥ sin © cos ¢ + sin ¥ sin @) + Wy (2.2-24a)

<.
1]
<<

cos a cos B sin ¥ cos O + V(sin B)(sin ¥ sin © sin & + cos ¥ cos &)

+ V(sin a cos 8)(sin ¥ sin © sin ¢ - cos ¥ sin &) + Wy (2.2-24b)

e
i}

V cos a cos B sin © -~ V sin B cos @ sin ¢ - V sin a cos B cos © cos ¢ + W, (2.2-24c)

A common quantity related to spatial position is the flight path angle vy, defined by

sin ¥ = oo b (2.2-25)

V2 + ¥2 4+ 2
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2.3 OBSERVATION EQUATIONS

The measurable aircraft response variables are a, B, V, P, G, Iy O, @, ¥, an, ay, ays Pr ds > X, Y,
and H. The spatial positions (X,Y, and H) are of little relevance to most stability and control analy-
sis, so we usually omit them from our equations. {There are exceptions, most notably for H.) We also
usually ignore the V response equation, instead using measured velocity. The simplest set of observation
equations assumes that the instruments are at the center of gravity (or the measurements have been
corrected to it), are perfectly aligned and calibrated, and have no dynamics. It also ignores the
distinction between the flank angle of attack and the angle of sideslip. We then have

Gy = a (2.3-16)
Bz = B (2.3-1b)
Pz =P (2.3-1c)
9z = q (2.3-1d)
rz=r (2.3-1e)
9, = 0 (2.3-1f)
¢z = ¢ (2.3-1g)
‘i‘z =Y (2.3-1h)
an = _;1% o (2.3-1i)
ax = - Loy + L (2.3-13)
X mg A mg . J
ay = % oy C O (2.3-1k)
Pz = p (2.3-12)
dz = q (2.3-1m)
Fz = 1 (2.3-1n)

where the subscript z distinguishes observations (elements of the z vector of Equation (1.2-1c)) from
corresponding state variables.

We seldom have sensors exactly at the center of gravity (particularly flow-angle sensors, which
must be exposed to the airflow). For a rigid aircraft, the sensed attitudes, rates, and angular
accelerations are independent of the sensor position, but the sensed flow angles and Tinear accelerations
vary with sensor position. The effects of sensor position can be included in the observation equations
as shown in Equation (2.3-2).

Calibration bias and slope errors, known or unknown, can also be included in the observation
equations. For the most part, we advise against using parameter estimation for estimating calibration
slope errors. Calibrating the instruments in the lab gives more accurate data and avoids identifiability
problems. For the following equations, we allow unknown biases on all measurements.

The observation equations, with arbitrary instrument positions, scale factors on angles of attack and
sideslip, and biases on all measurements, are

X
az = Kgla - Vﬁ q+ %ﬁ p) + op (2.3-2a)
z X
B, = Kg(B - V—B p +V—B r) + 8p (2.3-2b)
Pz =P * Pb (2.3-2¢)
dz = q + qp (2.3-2d)
o=ty (2.3-2e)

0; =0+ Op (2.3-2f)
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o7 = ¢ + By (2.3-2g)
Y, = ¥+ ¥y (2.3-2h)
- X z y
s an . a ap . .
an = %g‘CN + ~§n~q + ~§ﬂ-(q2 + p2) - _aﬂ-p + ap, (2.3-2i)
- z X Ya
- .8 DAxe o 22y T T -
ay mg Ca + g 9 5 (g + re) PRET IR (2.3-23)
b Za Xay - Ya
_gs y ¢ y e Yy
ay = ??Tg R L s (P2 + r2) + ayy (2.3-2)
Py = p + py (2.3-21)
dz = q + ap (2.3-2m)
Pz =r+rp (2.3-2n)

The subscript b indicates biases (éb is the bias of q, not the derivative of qdp). Note that ﬁz is

the observation of p, not the derivative of p; (there is a difference because of the biases). The quan-
tities xg, Yos Xgs 285 Xans> Yans Zapn» Xax» Yax: Zay: xay, yay, and Zay are the instrument positions rela-
tive to the center of gravity. The Ky and Kg parameters are upwash factors on the angles of attack and
sideslip. It is debatable whether the position corrections for a and 8 should be multiplied by the
upwash factors or not; neither alternative is completely correct, but the effect is second order. The
angular rate corrections to o and B in Equation (2.3-2) use small-angle approximations, which are ade-
quate for most situations.

Note that B in these equations is angle of sideslip, not the flank angle of attack measured by typi-
cal B vanes. If a B vane measuring flank angle of attack is used, substitute Equation (2.1-6) into
Equation (2.3-2b) and use a small-angle approximation to obtain

af = —B_. <3 - EV_B_ p o+ ’\‘/_B_ ,~> + By (2.3-3)

Alternatively, the measurements can be preprocessed, multiplying the vane reading by cos a to obtain an
equivalent measurement of B.

There are many other terms that can enter the observation equations in special situations. For
instance, the observation equations can be modified to reflect sensor misalignments or cross-axis
sensitivity, known or unknown (preferably known). Known misalignments can alternatively be corrected in
the data preprocessing; where to handle such corrections is largely a matter of convenience.

Instrumentation lags are a major issue in some projects. Such lags can be incorporated into the
system model by adding extra lag states. For instance, a lag in the sensed angle of attack might be
modeled by the equations

. X
ag = %':Ka<<x - V—a— q+ y\l‘q p) + ap - ag] (2.3-4a)
oz = ag (2.3-8b)

where ag stands for o lagged and t is a time constant, known or unknown. In most cases it is preferable
to precorrect sensor lags rather than introduce the complication of lag states.

If the (u,v,w) form of the state equations is used instead of the («,8,V) form, replace the a, 8, and
V in the observation equations by substitutions from Equations (2.1-3) to (2.1-5). Alternatively, u, v,
and w "measurements" can be precomputed from the measured a, B, and V. We discuss this impliementation
issue in Chapter 3.

2.4 AERODYNAMIC MODELS

The coefficients Ca, CN, Cy, Cg, Cp, and C, in the equations of motion are functions of the aircraft
states and controls. Estimating these functions is the primary objective of the stability and control
tests. In general, the functions are nonlinear, but in this section we largely restrict ourselves to
simple linearized forms of the functions adequate for small perturbations about stabilized conditions in
nonseparated flow. (Etkin (1959) discusses the aerodynamics behind the equations.)
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For the simplest equations, we assume that the longitudinal aerodynamic coefficients are functions
only of angle of attack, pitch rate, and longitudunal control surface positions; likewise, we assume that
the lateral-directional aerodynamic coefficients are functions only of angle of sideslip, roll rate, yaw
rate, and lateral-directional control surface positions. The local linear expansions of the longitudinal
coefficients are then ’

- C
CN = CNgx + Cpg gV + Cngs + Oy (2.4-1a)
- C
CA = Cage + Cpg gV + Cpgd + Cpp (2.4-1b)
C
Cn = Cmgo + cmq ﬂ‘zv + CmgS * Cpy (2.4-1c)
and those of the lateral-directional coefficients are
_ b rb _
Cy = CygB + Cy, g.v + Cyp oy + Cygé + Cyy (2.4-2a)
Co = Cga +Co PRy, T2y 6+ (2.4-2b)
2 2g L 9y Lr Gy L8 b .
Cn o= CrgB + Cn P2 w g Dy 6+ C (2.4-2¢)
n ng NP 2V ne 2V ng 4] .

where, following common notation for aircraft stability and control, the subscripts indicate a .derivative
with respect to the subscript quantity (for instance Cmy 1s the derivative of Cp with respect to a).

Etkin (1959) discusses the reasons for the c/2V and b/2V factors in the rate terms; the notation is incon-
sistent, but it is standard. The § in these equations is a generic notation for controls; add one term
of the form shown for each relevant control. The subscripted quantities in these equations are called

the stability and control derivatives and are the primary parameters to be estimated.

The subscript b indicates biases. These biases are closely related to, but not identical to, the
often-used O-subscript coefficients. For example, CNb is related to CNo as commoniy defined. The

CNO notation is sometimes used for both quantities, but that invites confusion. Figure 2.4-1 illus-
trates the relationship in one dimension (o dependence only). The coefficient Cng s the value of Cy

at « = 0 and 6§ = 0. (Some authors (Etkin, 1959) alternatively define perturbation equations in which
CNg is the value of Cy at a reference a and 6.) The coefficient Cyy is a linear extrapolation from

the average a and & of the maneuver to the zero point. The quantities Cyy and Cnp are equal if Cy is

linear between zero and the conditions of the maneuver. Corresponding comments apply to the other b-
subscript coefficients.

Equations (2.4-1) and (2.4-2) assume that the aircraft is symmetric and flying at zero sideslip
and that any lateral-directional motions are small enough to have negligible effect on the longitu-
dinal aerodynamics, and conversely. We therefore neglect the dependence of the longitudinal aero-
dynamic coefficients on lateral-directional parameters and the dependence of the lateral-directional
aerodynamic coefficients on longitudinal parameters. If these assumptions are violated, we can add
cross derivatives to the expansions. In adding lateral-directional terms to the longitudinal expan-
sions, we must consider whether the modeled effects should be symmetric, antisymmetric, or neither.
We would expect longitudinal 8 effects to be symmetric for symmetric aircraft in most situations
(there are exceptions; Orlik-Rickemann, 1977). Therefore, derivatives with respect to|e| or 82
are usually more appropriate than derivatives with respect to B.

Equations (2.4-1) and (2.4-2) also assume that during a maneuver the Mach number, Reynolds number,
dynamic pressure, velocity, engine parameters, and other flight condition parameters change little
enough that their effects on the nondimensional coefficients are negligible. Note that we are con-
cerned here only with the effects on nondimensional coefficients. The dimensional coefficients (Etkin,
1959) are directly proportional to dynamic pressure, for instance, but the nondimensional coefficients
are usually insensitive to dynamic pressure over large ranges (until high dynamic pressure causes struc-
tural deflections).

Equations (2.4-1) and (2.4-2) omit a and & terms such as Cmg for the reasons outlined in Section 1.4.

This does not constitute neglect of the & and B terms; their effects are subsumed in the other terms.

Explicit & and B derivatives can be added to these equations when appropriate. (Maine and I1iff (1979)
discusses this issue in more detail.)
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The final assumption in Equations (2.4-1) and (2.4-2) is that of Tinearity. Over large ranges of
the parameters, particularly angle of attack, the aerodynamics will not be Tinear. The equations there-
fore restrict the allowable maneuvers to those small enough for a locally linear model to be a reason-
able approximation. The range of applicability can be expanded by adding nonlinear terms to Equa-
tions (2.4-1) and (2.4-2); subsequent chapters discuss the advantages and problems of modeling non-
linearities in this way. In some situations, notably in separated flow, local linearity is not a good
assumption even for very small maneuvers; the coefficients in separated flow can be discontinuous func-
tions and can exhibit hysteresis. Thus, conditions of separated flow can require significantly different
forms than these equations.

Equations (2.4-1) and (2.4-2) are starting points from which you can expand as needed, adding terms
for any parameter that has a measurable effect on the aircraft dynamics during the maneuver.

Given the body-axis coefficients CN, Ca, and Cy, the coefficients Cp, Cp,;.4> and Cy, . appearing
in Equation (2.2-22) are given by Dwind wind

CL =Cncos a-Cpsina (2.4-3a)
CDying = CA €0s a cos B + Cy sin a cos B - Cy sin 8 (2.4-3b)
CYying = Cy cos B + Cp cos a sin g + Cy sin a sin B (2.4-3c)

We could conversely expand Ci, CDwind’ and CYwind as functions of the parameters and write Cy, Cp,
and Cy as

CN = CL cos a + Cpying Sin @ cos B + Cy . 4 sin a sin 8 (2.4-4a)
CA = CDyinq €0 @ cos B + Cy ;4 cos a sin B - C sin a (2.4-4b)
CY = Cyying €05 B - CDying SiN 8 (2.4-4c¢)

Note that if Cy, Cp, and Cy are linear in a, then by Equation (2.4-3) Cp, Cp,j,qs and C¥ying are
nonlinear; conversely, if C, chind’ and chind are linear in a, then Cy, Cj, and Cy are nonlinear.

Therefore, the body-axis and wind-axis expansions are not completely equivalent, although they are close.
One might be valid over a larger a range than the other.
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Figure 2.1-1. Control surfaces.
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Figure 2.1-3. Euler angles.

Figure 2.1-4. Flow angles.

iearized approximation to CN(a)

a
average x
1

\——CNO

a

Figure 2.4-1. Relationship of Cyy and Cry:






21

3.0 SIMPLIFYING THE EQUATIONS

Chapter 2 introduces the aircraft stability and control problem and develops the basic system
equations describing aircraft motion. In Chapter 3 we discuss application of parameter estimation
methods to these equations. We simplify the general nonlinear equations of Chapter 2, obtaining forms
amenable to practical use.

The six-degree-of-freedom equations derived in Chapter 2 are much too complicated for convenient
application of parameter estimation. Although it is certainly possible to work with the full set of
equations, we seldom wish to do so in practice. Recall our emphasis on the importance of simple model
forms. One of the most important engineering judgments in parameter estimation lies in striking a
balance between models that are too complicated to analyze and models that are too simple to represent
the system. The full six-degree-of-freedom equations lead toward models too complex for most of our pur-
poses. Therefore, we investigate several simplifications of these equations.

Several of the simplification techniques that we use are common to many fields and require little
elaboration here. We separate the equations into (nearly) independent subsets, linearize, neglect small
terms, and restrict the maneuvers so as to keep more terms small enough to neglect.

Many of the implementation issues are strongly interconnected and must be considered together from a
systems viewpoint. You will not get very far considering each implementation issue divorced from the
others. The process of implementation is iterative, rather than linear. You make tentative decisions on
early issues and see how the ideas fit together. You will likely later find that some of the tentative
decisions merit revision. The structure of this chapter somewhat reflects the interdependent nature of
the implementation decisions. For instance, we need to define a coordinate system before we can write
much of anything concrete, yet the choice of coordinate system is strongly affected by the ease of
linearizing the equations, which is one of the last issues addressed. Because of this interrelationship
there is a significant amount of forward referencing in this chapter for details.

Throughout this chapter we assume the use of an output-error estimator. The equations of Chapter 2
form the basis for all analysis methods. Several of the recommendations of this chapter, however, are
strongly dependent on the choice of analysis method. For example, the issue of whether to include
various terms in the output equation or in the data preprocessing is irrelevant to output-equation error
analysis (often just called equation error; Maine and I1iff, 1984); the two approaches are equivalent in
output-equation error. The equations presented in this chapter are not necessarily good choices for ana-
lysis using an output-equation error estimator.

3.1 NONLINEAR VERSUS LINEARIZED IMPLEMENTATIONS

There are numerous trigonometric and multiplicative nonlinearities in the aircraft stability and
control equations derived in Chapter 2. If we use the (a,B,V) equations instead of the (u,v,w) equa-
tions, there are also inversions of V. The dynamic pressure G, which multiplies all the aerodynamic
coefficients, hides another nonlinearity because it is defined as

pV2 (3.1-1)

We have not yet even considered the nonlinearities in the aerodynamic coefficients.

There are two significantly different approaches to applying the output-error method to nonlinear
systems. The first approach is to use an output-error program designed for analysis of nonlinear
systems. There are no assumptions of linearity inherent in the output-error method. Several programs
capable of handling general nonlinear systems exist (Jategaonkar and Plaetschke, 1983).

The second approach is to linearize the equations for use in an output-error program designed for
linear systems. Several widely used output-error programs are restricted to linear (or linearized)
systems; for applications where linearization is feasable, these programs are more efficient and easier
to use.

Both nonlinear and linearized implementations of output error have roles in practical analysis.
Programs restricted to linearized models are appropriate for routine batch analysis of large amounts of
data in cruise flight regimes. In such circumstances, computational efficiency is important, and non-
linearities play a minimal role. The general nonlinear programs are appropriate for intensive interactive
analysis of data where nonlinear effects are important, such as at high angles of attack. In such
situations, computational efficiency is less important than the ease of implementing nonlinearities.

This chapter emphasizes the linearized implementation of output error, which is the more difficult of
the two approaches. We specifically treat the use of the IlTiff-Maine code, MMLE3 (Maine and I1iff,
1980), although the principles discussed are applicable to most output-error programs for linear systems.
Several of the issues discussed are important to both nonlinear and linearized implementations, par-
ticularly the uncoupling of the state equations, the treatment of biases and initial conditions, and the
handling of sensor corrections. Just because it is easy, for instance, to implement the full six-degree-
of-freedom equations in a nonlinear program does not mean that it is a good idea. Section 3.7 is largely
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irrelevant to analysis with nonlinear programs. The choice of axis systems, discussed several places in
the chapter, is significantly influenced by linearization considerations; therefore, the best choice
might be different for nonlinear analysis.

3.2 COORDINATE SYSTEMS

The choice of coordinate systems is a major decision affecting the implementation of the air-
craft equations of motion. In this section we outline some of the issues to be considered in making
this decision.

There is little debate about the best choice of coordinate system for rotational degrees of freedom.
The body-axis angular rates and the Euler angles are the most naturally measured quantities. The choice
of these quantities as states allows the use of the trivial observation equations (2.3-2c) to (2.3-2h)
and (2.3-22) to (2.3-2n). Furthermore, the state equations (2.2-21d) to (2.2-21f) are reasonably simple
in this coordinate system. Although the state equations may at first appear complicated, they simplify
considerably under reasonabie conditions (see Section 3.4).

The choice of coordinate systems for the translational degrees of freedom is more difficult. The
normally used measurements are expressed in two different coordinate systems. Wind-relative velocity is
most commonly measured in terms of «, B, and V; this naturally suggests the use of the (a,B8,V) form of
the state equations (2.2-22), which involve wind-axis force coefficients. The accelerations, on the
other hand, are measured in the body-axis system, therefore Equation (2.3-2) involves body-axis force
coefficients. This suggests the use of the (u,v,w) form of the state equations (2.2-21), which likewise
involve body-axis force coefficients.

Thus, both the («,8,V) and the (u,v,w) forms of the state equations have objectionable features when
used with the usually available measurements. The (a,B8,V) form gives simple observation equations for a,"
B, and V, but introduces a nonlinear relationship between the wind-axis force coefficients in the state .
equations and the body-axis coefficients in the acceleration observation equations. The (u,v,w) form
results in consistent use of all force coefficients in the body-axis system, but gives nonlinear obser-
vation equations for «, B, and V.

In principle, either the (e,8,V) or the (u,v,w) form is usable. The nonlinearities somewhat compli-
cate the implementation, but these complications can be handled in several ways. (Sections 3.5.2 and
3.7.2 discuss this issue further.) Of course, with a program designed for nonlinear systems, the nonli-
nearities present no inherent problems. Neither form stands out as the obvious best choice for all
conceivable situations.

In this document we concentrate on the use of the (a,B,V) form of the state equations, although many
of the principles apply equally well to the (u,v,w) form. Our output-error program for linear systems
more naturally accommodates the tinearizations necessary in the (a,B,V) form than those necessary in the
(u,v,w) form. We have found the (a,B,V) form adequate for all applications we have addressed.

In many cases, the (u,v,w) form should be equally suitable, but we have not had the need to try it
extensively. Ross and Foster (1976) presents one of the several computer programs that have been suc-
cessfully applied with the (u,v,w) form. For hovering flight, the (u,v,w) form is required because of
the singularities in the (a,8,V) form.

3.3 SIMPLIFICATION USING MEASURED DATA

One simplification technique that merits discussion is the use of measured data. In this tech-
nique we eliminate the equations required to compute some variable and substitute the measured value
of that variable wherever it appears in other equations. This technique requires that measured data
be available; it thus does not generally apply to simplifying simulators, design studies, or many
other uses of the equations of motion. However, it can be a powerful tool in simplifying parameter
estimation problems.

The use of measured data is closely related to the equation-error method of parameter estimation. We
use measurements as though they were exact noise-free values. The method is therefore sensitive to noise
in the measurements so used. As we eliminate more differential equations in favor of measured values,
the algorithm takes on more characteristics of equation error.

Our general approach is a compromise. We use our knowledge of aircraft dynamics to identify the few
equations that dominate the characteristics we are studying, and we center our analysis around these
equations. Substituting measured data is one of the tools used to eliminate the equations peripheral to
the study.

For example, aircraft velocity is only weakly related to the longitudinal short-period mode. The
short-period characteristics definitely depend on the velocity, so we must consider velocity in short-
period analysis. The coupling, however, is almost entirely static; there is little dynamic coupling be-
tween the velocity and the short-period mode. Therefore, we use measured velocity in our short-period

analysis, accounting for the velocity effects without integrating the v equation.
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The validity of this example, as with several of the simplifications we introduce in this chapter, is
configuration dependent. In a configuration with very low wing loading, such as a human-powered or
solar-powered aircraft, the velocity might be closely coupled with the short-period mode; indeed there
might not be conventional short-period and phugoid modes. We will emphasize the simplifications that can
be made for conventional flight vehicies. For unconventional configurations, many of the assumptions
must be reevaluated on a case-by-case basis. This continual reevaluation is an unavoidable consequence
of making assumptions and simplifications. Unfortunately, any set of equations general enough to handle
all conceivable situations will be so complicated as to be unusable. Careful reevaluation of assumptions
and examination of the data for potential violations of the assumptions are two of the hallmarks of
thorough data analysis as opposed to uncritical number crunching.

3.4 UNCOUPLED STATE EQUATIONS

Most aircraft are symmetric about the X-Z plane and fly at small sidesiip angles. We can use this
symmetry and small-angle approximations to separate the equations of motion into two largely independent
sets describing the longitudinal and lateral-directional motions of the aircraft. The unknown parameters
also separate into longitudinal and lateral-directional sets. Thus, the stability and control derivative
estimation problem reduces to two smaller problems, each with about half as many differential equations
and half as many unknowns as the combined problem. The simplifications from this separation are so great
that we go to considerable length to find ways to use the separated forms, even when they superficially
appear inapplicable. The separation is important to both nonlinear and linearized implementations of
output error.

3.4.1 Longitudinal Equations

The longitudinal motions are rotations about the body Y axis and translations along the X and Z axes.
The longitudinal aerodynamic coefficients are thus Cy, Cp (or equivalently, C_, Cp), and Cy. The longi-
tudinal state equations are (2.2-22a), (2.2-22b), (2.2-22d), and (2.2-22h). We can separate théese
equations from the others by making the following assumptions: Assume that the vehicle is symmetric
about the X-Z plane; thus, Ixy and Iyz are zero. Further assume that during the maneuver analyzed, B, p,
r, and & are all constant at zero (or small enough to be unimportant). Then

a = - %%-CL +q + % cos (0-a) - I;Eﬁglli (3.4-1a)
qly = gscCy (3.4-1b)
6 =q (3.4-1c)
U =-8%cp+gsin(a-0) + 1 cos a (3.4-1d)

In many cases, the restrictions on the applicability of Equation (3.4-1) are too severe. These
equations do not apply, for instance, in a steady turn. The use of measured data for the lateral-
directional signals allows us to eliminate the lateral-directional differential equations without
assuming that the lateral-directional motions are negligible. A more widely applicable set of longi-
tudinal equations is thus

& =-—9__¢c_+q - (tan B)(p cos a + r sin a)

mV cos B
9 ; : _Tsin o _
+ Veos B (cos & cos © cos a + sin © sin a) TV Cos B (3.4-2a)
- 5Ixy + 61y - FIyZ = asch +rp(ly - Iy) + (r2 - p2)1xz + qrlyy - palyz + Nrlye (3.4-2b)
6=qcos @ -rsine (3.4-2¢)
v - .88
v m CDwind

+ g(cos & cos © sin a cos B + sin @ cos © sin B - sin © cos a cos B)

+ %-cos a cos B (3.4-2d)
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where we use measured data for the lateral-directional signals 8, p, r, and ¢. Although Equation (3.4-2)
eliminates the lateral-directional differential equations, it does not completely eliminate the lateral-
directional aerodynamic coefficients and is thus not yet adequately separated from the lateral-directional
problem. The coefficient CDwind in Equation (3.4-2d) is not purely longitudinal, because it involves

the lateral force coefficient Cy (see the definition of CDwind‘i" Equation (2.2-20)). To complete the

separation of the longitudinal and lateral-directional problems, we assume that 8 is small enough that
Cp can be substituted as an approximation for Cp,;.q in Equation (3.4-2d). MWith this approximation,

Equation (3.4-2) allows us to concentrate on longitudinal analysis, even in the presence of substantial
lateral-directional motions. The only assumption required, in addition to the availability of appropriate
lateral-directional measured data, is that B be small enough for the Cp approximation to be reasonable.

We can often further reduce the longitudinal equations by eliminating the v equation. In most cases,
longitudinal stability and control maneuvers predominantly excite the short-period mode and not the phu-
goid mode; thus, V is essentially constant during the maneuver. If V does change noticeably, we can use
the measured velocity where needed to avoid integrating the V equation. In addition to reducing the

number of differential equations, this eliminates the issue of approximating CDwind by Cp because that
approximation is required only in the V equation.

Further simplification is possible by eliminating the 6 equation and substituting measured ©. The
pitch attitude © does change during a typical longitudinal maneuver, but the effect of the motion on the

short-period dynamics is small. The © variable enters only the gravity terms in the aand V equations.

The V equation is eliminated by the use of measured V, and for many maneuvers, the gravity term in the a
equation is well approximated by setting © equal to a. Alternatively, we can use measured © in the gra-
vity terms. :

The simplest usable set of longitudinal state equations comes from Equation (3.4-1), eliminating the v
and 0 equations, approximating © by a in the gravity term, and neglecting thrust. This gives

5o _3as +qg+9 -3
o - CL +q v (3.4-3a)
dly = gscCm ' (3.4-3b)

using measured q and V.

We most commonly base our analysis on the following equations, using measured data for V, 4, 8, p, I,
and ¢:

- %%’CL +q - (tan 8)(p cos a + r sin a)

& =
+39 (cos & cos @ cos a + sin © sin a) - Isina (3.4-4a)

v mV
G = gscCm + rp(ly - I) + (r2 - p2)Ixy + Nrlge (3.4-4p)
o= qcos & - r sin ¢ (3.4-4c¢)

These equations assume a symmetrical vehicle and drop some cos B factors from the a equation; they
assume small 8 (up to 10° is generally acceptable) but otherwise allow arbitrary lateral-directional
motion. For a nonsymmetric vehicle, extra terms can be added to Equation (3.4-4b).

The equations presented in this section assume the use of the (a,8,V) form of the state equations.
If the (u,v,w) form of the state equations is used, similar simplifications apply, with the u equation
substituted for the V equation and the w equation substituted for the « equation.

3.4.2 Llateral-Directional Equations

The lateral-directional motions are rotations about the body X and 7 axes and translations along the
body Y axis. The lateral-directional aerodynamic coefficients are thus Cy, Cg, and C,. The lateral-

directional state equations are (2.2-22c), (2.2-22d), (2.2-22f), (2.2-22g), and (2.2-22i). It is not
realistically possible to have purely lateral-directional motion, even with a symmetric aircraft. There

will be some q excitation from the rp and rZ - p2 terms in Equation (2.2-22e) unless Iyx; = 0 and I, = I,
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which are unlikely conditions. There will be o and © excitation in Equations (2.2-22b) and (2.2-22h)
regardless of the inertias. For moderate lateral-directional motions, however, the longitudinal excita-
tions will be small.

To get a workable set of lateral-directional equations, we must approximate chind in Equa-

tion (2.2-22c) by Cy. This approximation is similar in purpose and effect to the approximation of
*CDying DY Cp in the longitudinal equations. The coefficient CYwind’ as defined in Equation (2.2-20),

involves the longitudinal coefficient Cp. The Cp involvement is harder to avoid here than was the Cy

involvement in the longitudinal equations because B is important to the lateral-directional dynamics, so
eliminating the 8 equation is seldom reasonable. The maneuvers must have small g8 for the approximation to
be reasonable. This restriction is seldom a problem, because it is difficult for most aircraft to achieve
B8 large enough for the approximation to fail, even if you try.

We usually also neglect the sin B term in Equation (2.2-22c) as not being worth the bother; it is not
really difficult to include, it just adds extra algebra. The heading angle ¥ adds very little information
and does not feed back into any of the other state equations, so we usually ignore Equation (2.2-22i).

For a symmetric vehicle, several terms in Equations (2.2-22d) and (2.2-22f) drop out.

These simplifications give the lateral-directional state equations in the form that we most commonly

use:
é=ﬂ%CY+psin<x-r‘c05a+%s1'n<bcose (3.4-5a)

ﬁIx - FIxz = asbcz + qr(Iy - 1) + pqlyy (3.4-5b)

ri, - 5Ixz = qsbCp + pq(Iy - Iy) - qriy; - Nqlye (3.4-5¢)

®=p+qtan 05sin & + r tan 0 cos ¢ " (3.4-5d)

These equations use measured data for the longitudinal variables «, q, ©, V, and q. For nonsymmetric
vehicles, extra terms can be added to Equations (3.4-5b) and (3.4-5c).

Equation (3.4-5) is based on the use of the (o,B,V) coordinates for wind-relative velocity. The

(u,v,w) equations simplify in a similar manner, the v equation substituting for the é equation. The
issue of approximating Cy . . by Cy does not arise in the (u,v,w) form.

3.5 OBSERVATION EQUATIONS

Section 2.3 presents the basic observation equations, both longitudinal and lateral directional, for
the aircraft stability and control problem. We discuss some issues of implementation throughout this
document. The actual sensor measurements are sometimes complicated functions of the vehicle states. The
main implementation issues concern whether to precompute signals corresponding to a simple sensor model or
to use a complicated sensor model more representative of the actual measurements. Several of these issues
are related to specific sensor characteristics and are treated in more detail in Chapter 8.

In general, whether to use raw sensor data or to precompute more convenient forms depends on several
factors, including the complexity of the functions, how well the functions are known, the number of sensors
involved, and the general signal qualities and noise levels. This decision also depends on the analysis
technique (which may be influenced by similar factors). 1In particular, the question is moot for output-
equation error analysis, where the two choices are equivalent. The discussions in this section assume the
use of an output-error method.

The advantages of precomputation are in simplifying the observation equations (or in some cases, the
state equations). Precomputation is sometimes the only practical approach for sensors that are extremely
complicated functions of the vehicle states and for systems that involve multiple raw sensors to compute
one signal. An example of such complication is sensing angle of attack using pressure ports (see Sec-
tion 8.5.3); the raw sensor data are pressure measurements, not angle of attack. In this case it is
preferable to precompute a single angle-of-attack "measurement" from the pressure data rather than to
use the raw pressure measurements in the analysis.

The disadvantages of precomputation surface when there are sensor problems. Sensor problems are much
easier to diagnose using the raw sensor data rather than some quantity computed as a complicated function
of data from several sensors. Complete failure of a sensor is often obvious in either case. The dif-
ficulties arise when there are more subtle sensor problems. Precomputation that combines data from
several sensors also has the problem that the computed signal tends to combine the worst characteristics
of the constituent measurements. Data combined from seven perfect sensors and one noisy sensor often pro-
duce a noisy computed signal. The extreme case is that if one of the sensors fails, you cannot do the
computation and thus can make no use of the good data from the others. (You can sometimes get around such
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problems, but it usually means a lot of work.) If you are using raw sensor data, or at least if the pre-
computations do not combine data from different sensors, then the failure of one sensor does not alter
your ability to use other sensors.

Instrument calibration errors, misalignments, cross-axis sensitivity, and similar factors are usually
easiest to manage by precorrecting the data unless the exact corrections are unknown. The corrections are
usually small enough that they do not change the basic character of the signals. Sensor problems will
seldom be disguised by the small correction terms. The choice of where to resolve these errors is
mostly a matter of convenience. We discuss the subjects of sensor position and coordinate transformation
in Sections 3.5.1 and 3.5.2. (Instrument biases present special problems discussed in Section 3.6.)

3.5.1 Sensor Position

Several of the observation signals used in aircraft stability and control analysis are functions of
the position of the sensors in the aircraft. The simplest equations (such as Equation (2.3-1)) assume
that the sensors are exactly at the aircraft center of gravity; in a real airplane we are seldom so for-
tunate. Equation (2.3-2) shows the major effects of sensor position on the data.

There are two approaches to accommodating sensors offset from the center of gravity. The first
approach is to correct the sensor measurements for the offset, giving a signal that simulates a measure-
ment at the center of gravity. This approach works well with angle-of-attack measurements because the
correction terms are proportional to pitch rate and roll rate, for which we generally have accurate, low-
noise measurements. The largest accelerometer corrections, however, are proportional to the angular
accelerations. The measurements of angular accelerations are often noisy, if they are acceptable at all.
We can differentiate the angular rates, but such differentiation accentuates noise and causes several
other problems. Therefore, careless Tinear accelerometer corrections can introduce unacceptable noise.

The second approach is to include the effects of sensor position in the observation equations. This
approach avoids the use of possibly noisy measured angular accelerations to correct the measured linear
accelerations. Instead, we use the computed angular accelerations to correct the computed linear accel-
erations to the actual sensor positions. The computed angular accelerations are relatively noise-free
because they result from integrating the system equations; they do not involve numerical differentiation.
There are two other relatively minor benefits of this approach. First, it is more representative of the -
real instrumentation system. This benefit shows up mainly when you have instrumentation problems. If a
rate gyro fails, you lose only one signal; it does not also corrupt the linear accelerations. For similar
reasons, instrumentation problems are easier to diagnose. The second benefit of modeling the sensor posi-
tion in the observation equations is that, in principle, we can treat unknown instrument positions (the
instrument position simply being another parameter to estimate). In most situations it is far better to
measure the sensor position and treat it as known (an application of the general principle of minimizing
the number of parameters to estimate). There are occasions, however, where the ability to estimate sensor
positions proves useful.

We generally find it more convenient to model the instrument position in the observation equation than
to correct the measurements to the center of gravity, but we have used both approaches successfully.

3.5.2 Coordinate Transformation

Another type of precomputation is the transformation of sensor data to a coordinate system other than
that of the raw measurements. We prefer to avoid such transformations because of the previously described
difficulties in diagnosis and management of sensor problems. Sensor coordinate transformations can,
however, significantly simplify some of the observation equations. This advantage can outweigh the dis-
advantages in some situations. This section discusses two possible sensor coordinate transformations
that give alternatives to the equations we usually use.

The first possibility is to transform the wind-relative velocity from the usually measured (a,B,V)
form into the (u,v,w) form. The basic equation for the transformation is Equation (2.1-7). Trans-
forming the wind-relative velocity into (u,v,w) coordinates allows the use of the (u,v,w) form of the
state equations without resorting to nonlinear observation equations for o, B, and V. The nonlinearities
are transferred from the observation equations, where they cause analysis difficulties, to the data
preprocessing, where managing nonlinearities is straightforward in principle (assuming perfect measure-
ments). The disadvantages lie in the mixing of the data from the o, B, and V sensors. The flow-angle
sensors typically have different problems than the pressure sensors used for velocity measurements (see
Chapter 8). The computed u, v, and w signals combine the problems of both sensors.

The apparent simplicity of Equation (2.1-7) is deceptive. Al1 quantities in this equation relate to
the free-stream relative wind at the center of gravity. Application of this transformation is complicated
in practice by the fact that the a, 8, and V sensors measure local flow conditions relative to the sensor
positions. Further, each of the sensors is at a different position (although the position differences are
sometimes small enough to neglect). Before applying Equation (2.1-7), you should correct the sensors for
local flow effects (upwash and sidewash) and transform the data to the center of gravity. A simple bias
error in the angle-of-attack measurement takes on a more complicated character after passing through the
nonlinear transformation into (u,v,w) coordinates.

For small-perturbation maneuvers at low angles of attack, the issue of whether to use the measurements
in (a,B,V) or (u,v,w) form is largely moot. Implementation is equally easy with or without the transfor-
mation. For these conditions, the transformation is nearly linear, as are the observation equations for
a, B, and V. This obviates many of the problems of using the transformation and also many of the prob-
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Tems the transformation is intended to solve. The issues become pressing only at high angles of attack
and sideslip.

The second transformation we will consider has a similar objective: to eliminate the nonlinearities
in the observation equations. This transformation, however, assumes the use of the («,8,V) form of the
state equations. The principal observation nonlinearities of this form are in the accelerations. The
transformation that removes these nonlinearities is the rotation of the body-axis acceleration measure-
ments to the wind-axis coordinate system.

Although this transformation sounds attractive, its practical problems are severe, and we recommend
against its use. Before applying the rotation, you must correct the accelerometers to a common reference
point, preferably the center of gravity. (Any other body-fixed point has wind-axis coordinates that are a
function of the angles of attack and sideslip; this dependence can be handled, but is a nuisance.) The
problems of correcting accelerometer measurements for sensor position are discussed in Section 3.5.1.

The most severe problems, however, 1ie in the fact that the axis transformation equations use angles
of attack and sideslip. Accelerometers are reliable, good-quality, high-frequency sensors with excellent
linearity and accurate calibrations (see Section 8.4). The transformation corrupts the accelerometer
measurements with the biases, scale factor errors, and other problems of the flow-angle measurements (see
Section 8.5).

3.6 BIASES AND INITIAL CONDITIONS

Biases and initial conditions are usually nuisance parameters. A nuisance parameter is an unknown
parameter that is not really of interest. In many cases you must estimate the value of the nuisance para-
meter, whether you care about its value or not, in order to get usable estimates of the other parameters.
You must carefully consider the treatment of biases and initial conditions, nuisance parameters or not.
Poor treatment of biases and initial conditions is a common source of problems, common enough to merit
this separate section on the issue., The initial-condition problem is discussed in general terms in
section 8.2 of Maine and I1iff (1984). As we see in the following discussion, initial conditions and
biases are closely related. )

Although you must estimate some bias and initial-condition terms in order to get reasonable stability
and control derivative estimates, you cannot estimate all such terms, because of an identifiability
problem. To see the problem, consider the time-invariant system

x = Ax + sp (3.6-1a)
z = Cx + zp (3.6-~1b)
x{0) = xg (3.6-1c)

with unknown state equation bias sp, measurement bias zp, and initial condition xg. This system is un-
identifiable because we can define an equivalent system with state x” by letting

X" =X - Xp (3.6-2)
for any constant xp. Then, substituting Equation (3.6-2) into Equation (3.6-1),

., -

x* = Ax” + s (3.6-3a)

z = Cx™ + zf} (3.6-3b)

X0 = xQ - Xp (3.6-3c)
where

Sh = sp + Axp (3.6-4a)

zZ5 = zp + Cxp (3.6-4b)

x) = xg - xp (3.6-4c)

Therefore, you can expect to estimate only some subset of the initial conditions and biases. For a
system with £ states and m observations, there are 22 + m parameters in sp, zp, and xg. This argument
shows that you can independently estimate no more than £ + m such parameters. In Sections 3.6.1 and 3.6.2
we will present two classes of reasonable subsets for aircraft stability and control analysis; we have
used variants of both on various occasions.
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3.6.1 Perturbation Equations

The first subset results from the use of perturbation equations. Define xp = xg, so that x{ is zero;
then estimate s§ and z§. This is the simplest choice in many ways and is applicable to almost any time-
invariant linear system. The main disadvantage is that you must work with x” instead of x. Therefore,
if the state x consists of physically meaningful parameters, you lose some of the meaning. The method
also does not extend well to nonlinear or time-varying systems (sometimes it can be done, but it creates
complications).

Specifying xg is sufficient to eliminate bias indentifiability problems in most cases. In some cir-
cumstances, you can further reduce the number of nuisance bias parameters without causing problems. The
main reason for doing this is to save computer time, not to improve identifiability; with xg fixed, the

remaining bias parameters are usually among the best conditioned parameters in the problem. We discuss
three ways of reducing the number of bias parameters in the perturbation equations.

First, if x( is zero and the measurement noise at the first time point is small, you can fix the value
of z{ at the first measurement; you can apply this idea to a subset of the elements zp if some of the
measurements are noisy. You must watch for the occasional wild point if you use this idea; then either
remove the wild point, let z{ be unknown, or (often the easiest solution if it is really an isolated wild
point) start your maneuver one point later. You can use a host of other similar methods to arrive at a
fixed value for zf (for instance, average the first five measurements); however, remember that you are

just trying to save time and make the problem simpler. Our attitude is that more complicated methods are
not worth the trouble; if the first-point method is inadequate, let z§ be unknown.

Second, you can subtract the initial measurement from all the measured data and fix zf§ at zero; this

is equivalent to fixing zf at the initial measured value, except that you must keep track of the dif-

ference between your perturbation measurements and the real measurements. The choice of this method or
the first is one of preference and convenience; we find it more convenient to use the real measurements.

Third, you can reduce the number of bias nuisance parameters to estimate by fixing sp at zero provided
that x§ is zero, the manuever starts at nearly steady state, and the system is stable (neutral stability
is not sufficient). We generally advise against this practice because you do not want to restrict your-
self to carefully stabilized maneuvers with steady initial conditions. One big advantage of statistical
parameter estimation over some of the earlier hand techniques for estimating stability and control deriva-
tives is that the newer methods have less stringent maneuver requirements; you can get more maneuvers in
less time and with less pilot workload. Note also that if you use © as a state, the system has a
neutrally stable eigenvalue (or very close to neutral depending on the exact implementation), and fixing
sf, is asking for trouble (which is usually much more effective than asking for help).

3.6.2 Physical States

For aircraft stability and control analysis, the states are usually physically meaningful measurable
quantities. We would like the model states to be close to the true physical states. This makes it easier
to handle state nonlinearities because it eliminates the necessity of transforming back and forth between
physical and model states (and inevitably using the wrong one somewhere). We can accept small differences
(for instance, on the order of the measurement biases in a reasonably calibrated instrumentation system).
This suggests the following scheme as an alternative to the perturbation methods discussed in Sec-
tion 3.6.1.

Choose the subset of the observation vector that represents direct state measurements. We assume
that there is such a subset (it could be the entire observation vector). The subset is obvious in Equa-
tion (2.3-2): it is the longitudinal measurements oy, gqm, and Oy and the lateral-directional measure-
ments Bm, Pm. Mm» and ®m. We could abstractly discuss known invertible partitions of the C matrix, or

even introduce pseudoinverses, but if the relevant subset is not obvious, there is probably little bene-
fit to the approach. Define xp such that the corresponding subset of zp is zero (xp is unknown); we

can do this as long as the corresponding partition of C is invertible {(which trivially is true for Equa-
tion (2.3-2)). This sounds more complicated than it is; all it means is that we ignore the longitudinal
quantities op, gp, and O and the lateral-directional quantities Bp, pp, rp, and o.

Specifying this subset of the zf vector is sufficient to resolve most bias identifiability problems.
It is completely equivalent to specifying xg as zero in the perturbation equation approach; the results

from either of these two approaches can be transformed into the other form.

The best way to further reduce the number of bias unknowns is to fix x( based on the first measure-

ment. The same cautions apply here as when using the first measurement to fix values in the perturbation
equations; the measurement noise on the first point must be small, and you must watch out for wild points.
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With this approach, it is not practical to fix sy at known values, as we could with perturbation
equations. This is not a significant limitation, because we recommend against fixing sp with either
approach.

3.6.3 Special Considerations

The preceding discussions of biases and initial conditions are fairly general. You really need to
reexamine bias and initial-condition treatment for each new model form, considering the special situation
presented by each model. We cannot present every case here; we do discuss two simple situations represen-
tative of problems you might encounter.

For the first situation, consider a simple set of longitudinal state equations with states a, q, and
©; control inputs, lateral-directional coupling, and thrust are irrelevant to this argument, so we assume
all such terms are zero. In matrix form, we have

a Zo, 1 0]fa %+zb
ql=1Ms Mg qi+ Mb (3.6-5)
) 0 1 o0jle 0

In the sp vector, Zy and My are unknown, but there is a known zero in the third element. It is
tempting to do the estimation in exactly this form, with the third element of sy fixed at zero. Although

you can sometimes get by with this, we strongly recommend against trying. The © state equation is an
open-loop integration of q. This is neutrally stable and thus quite sensitive to small errors. ~Unfor-
tunately, several small errors are inevitable. One such small error is the difference between sy and

sf in the physical state approach. This difference is usually small (the measurement noise on the first

poing) but is not zero. Because the difference is small, it is easy to forget that our model 1is in terms
of sp instead of sp. Although sp has a third element fixed at zero, sp does not; in fact the third ele-

ment of sf; should equal the negative of the bias in the pitch rate measurement. Even a very small bias,

negligible in most other places, generates significant errors in an open-loop integration. Even if all
the measurements are perfect (an unlikely event), the imperfection of numerically integrating the equation
can introduce noticeable drift in © unless you go to a lot of trouble to avoid it.

In most situations, the O state equation adds little information, and you can get along quite well
using measured © instead. If you do use a © state, be sure to allow an unknown bias in the state
equation; otherwise the extra state is more likely to degrade the results than to improve them. The
unknown bias will not eliminate the problems of neutral stability, particularly if the maneuver is long,
but will help reduce the biggest errors.

This discussion has assumed the use of an output-error method. If you use a filter-error method, the
measurement feedback makes the filter stable (not just neutrally stable). The filter-error method is
therefore considerably less sensitive to small errors, and the preceding discussion does not completely
apply. With an equation-error method, you never use a © state equation, so the discussion is moot.

Similar principles apply to the @ state equation in lateral-directional models, except that ¢ is
important to the lateral dynamics and you are less likely to be satisfied with using measured ¢.

The second situation we consider arises when the Ky of Equation (2.3-2a) is unknown. If Kq is unknown

and you are using physical states, the initial condition of a must also be unknown; you cannot just set
the initial condition equal to the measured a. (You could reasonably approximate the initial condition by
the measured o divided by the unknown K4, but that is a nuisance to implement. It is easier to let the

initial condition be an independent unknown.) This point may seem obvious and unworthy of mention, but we
have seen the error made several times (we too have made it once or twice). It is easy to fall into the
trap of only adding one more unknown (K4) without rethinking the initial-condition treatment.

This error is insidious in that the results can appear quite reasonable. If you say that the initial
condition is known to equal the initial measured value, this strongly implies that K, is quite close to

unity. The computer program, obedient to your specification of the problem, will (assuming the program
works correctly) give an estimate close to unity and a high degree of confidence in the estimate. This
conclusion usually is at least plausible; thus, you might be convinced that you had learned something.
In fact, one of the symptoms of this problem is estimates more consistent than you should reasonably
have expected.

Consider, for example, Figure 3.6-1(a). This figure is a sketch of a typical measured angle-of-attack
signal and a corresponding computed signal for a longitudinal maneuver. This computed signal assumes that
Ke = 1 and the angle-of-attack initial condition is 10°. The shape of the computed signal is similar to
that of the measured one, but the amplitude of the computed signal is significantly smaller. Such an
angle-of-attack fit, when combined with good fits on the other signals, suggests that the value of Ky used
in the computed data might be too small.
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If we recompute the computed time history of Figure 3.6-1(a) using Ky = 2, while leaving the angle-
of-attack initial condition at 10°, the revised response is as shown in Figure 3.6-1(b). This fit is far
worse than that with Ky = 1 as shown in Figure 3.6-1(a). Thus, if the initial condition is fixed at 10°,
the estimator will choose a value of K, close to unity. 1If the-initial condition is free to vary, the
best attainable fit will be with Ky = 2 and an initial condition of 5°, shown in Figure 3.6-1(c).

The two situations discussed in this section represent two large classes of similar errors. In both
of these situations, the error is omitting a bias or initial-condition term that should be estimated.
In the case of the © state equation, it is usually quite obvious that something is wrong if you omit a
necessary bias. The Ky problem is more insidious in that the results appear reasonable and can lead to
false conclusions. You cannot avoid bias problems by estimating all biases and initial conditions as
unknowns, because you will then encounter identifiability problems.

Although there are many potential problems due to mishandling biases and initial conditions, most of
these problems are easy to avoid; many are as trivial as the K, example. The difficulties arise mostly
through neglect; biases are treated lightly because they are nuisance parameters. For each potential
bias or initial condition, you should ask what the consequences of neglecting it would be and what iden-
tifiability problems you might introduce by estimating it. If you treat biases with the same care as you
should accord all other parameters, you will seldom go wrong because biases, basically, are easy.

3.6.4 Aerodynamic Biases

We use the term "aerodynamic bias" to refer to coefficients like the Zy or Mp of Equation (3.6-5) or

their nondimensional equivalents. These are nuisance parameters in some stability and control analyses;
as such, we are not particularly concerned about "true" values. An adequate estimate of a nuisance para-.
meter is one that does not cause problems with the important parameters. For some analyses, particularly
in the performance area, the aerodynamic bias coefficients might be of specific interest, rather than :
being nuisance parameters.

If you desire reasonable estimaEes of aerodynamic bias parameters, you must be particularly conscious
of the differences between sp and sp as defined by Equation (3.6-4). The aerodynamic bias parameters are
in sy and zp, but we obtain estimates of s{ and zj. Because of the identifiability problem mentioned
in the introduction to Section 3.6, we cannot accurately estimate sy and zp without making some assump-
tions. The most common such assumption is that the measurement biases are negligibie. Any neglected
measurement biases will directly cause biases (errors) in the estimates of the aerodynamic biases.
Measurement biases have only second-order effects on the estimates of coefficients in the A matrix and
other places (no effect if the system is strictly linear); therefore we are often somewhat cavalier
about accurately correcting measurement biases. If, however, you want to accurately estimate aerody-
namic biases, you first need to be very careful about removing instrument biases.

3.7 LINEARIZED EQUATIONS

The state and observation equations described in Sections 3.4 to 3.6, combined with the aerodynamic
models of Section 2.4, define system models. Even though we have assumed linear aerodynamics, these
models are nonlinear because of the trigonometric terms in the state equations and the quadratic terms in
the observation equations. Although we could use the nonlinear models as given, linearizing greatly redu-
ces the computational effort and complexity. Most of the kinematic nonlinearities play only a minor role
in the dynamics.

This entire section (3.7) is irrelevant to nonlinear implementations of output error and to output-
equation error approaches.

3.7.1 Linearization Using Measured Data

We linearize many of the nonlinear terms in the system by using the measured data, similar to the way
we eliminate differential equations using measured data. There are four approaches to such linearization,
depending on whether we use measured values at each time point or average values and whether we use a
zero-order (constant) or first-order (linear) expansion about the measured values.

The first and simplest approach is to use a zero-order expansion about the average measured value;
that is, substitute the average measured value as a constant in all nonlinear terms. Before substituting
the measured angle of attack, it must be corrected to the center of gravity. The model is time invariant
with this approach, allowing very efficient computation. Equation (3.4-2) is an example of this approach
with the additional restriction that Equation (3.4-2) assumes the average values are zero. For this
approach to work well, the nonlinear terms must be nearly constant during the maneuver; the approach is
therefore practically restricted to small angles and steady flight (or nearly so).

A second and slightly more general approach is to use a first-order expansion about the average
measured values. For example, with this approach the trigonometric factor in the gravity term of
Equation (3.4-3a) is linearly approximated by
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cos & cos O cos a + sin @ sin « 2 cos Iy cos @ cos oy + sin O sin ap
+ (sin B, cos &m - cos 3y cos By sin ap)(a - op)
+ (cos 8y sin ay - cos Iy sin By cos ap)(0 - By) (3.7-1)

where a bar over a symbol indicates average measured vaiue. We do not include a (¢ - Em) term because
there is no computed ¢ in the lTongitudinal equations. The o used in this equation should ideally be
corrected to the center of gravity.

The correction of oy to the center of gravity is not as crucial as in the first approach, because the

measured o is used here only as a point about which to expand the equation; as Tong as the measured « is
close to the computed o, the expansion will be reasonable. This approach is valid for larger maneuvers
than the first approach because we approximate the nonlinear terms by linear functions instead of
constants. The cost is its somewhat greater complexity. The model with this approach is still time
invariant, and although Equation (3.7-1), for instance, may look complicated, it is easy to implement.

The third and fourth approaches are similar to the first two except that we use point-by-point
measured values instead of averages. These two approaches are valid for large variations in the values
(within the constraints of linearized aerodynamics). For instance, we have analyzed longitudinal maneu-
vers during 360° aileron rolls (Maine and I1iff, 1979). These two approaches result in time-varying
linear medels, which require substantially more computer time than time-invariant models (a factor of
about 2 or 3 in our program). For the most part, the time-varying models are no more complicated to
program than the time-invariant ones; they just run more slowly.

You can combine these four approaches, using different approaches for different terms. Generally,
the simpler approaches are adequate for the less important terms. For instance, there is little reason
to bother with first-order expansions of the q2 terms in Equation (2.3-2). These centrifugal force terms
are usually too small to measure; we include them for some special cases and because they have negligible
cost and are so easy to 1mp1ement with zero-order expansions.

3.7.2 Axis Transformations

By far the most complicated nonlinearity to implement is the innocuous-looking axis transformation
of Equation (2.4-3a). The reason for the complication is that Cy and Cp must be expanded as in Equa-
tion (2.4-1), and several of the unknown stability and control derivatives enter into the nonlinearity.
In principle, any of the four linearization methods apply to this nonlinearity; application is simply a
matter of doing the algebra. The I1iff-Maine code MMLE3 (Maine and I1iff, 1980; Maine, 1981b), cannot
use point-by-point values in this linearization. We could extend the program’s capability but have not
yet encountered requirements sufficient to justify the complication. To date we have not found this
restriction a serious limitation, because the linear aerodynamics of Equation (2.4-1) are valid only
over limited ranges of o.

We can make a significant simplification in Equation (2.4-3a) for low angles of attack. The simpli-
fication is

CL = CpN (3.7-2)

which will actually work over a larger angle-of-attack range than you would initially expect. We
generally have success with the simplification at conditions up to 20° angle of attack, and it was
adequate at 45° angle of attack on the space shuttle at hypersonic speeds. The approximation holds
up so well because the C_ term in Equation (2.2-22b) (the only place C_ appears) usually plays a

secondary role. The dominant term in Equation (2.2-22b) is g, particularly at high speeds, as in the
shuttle case. Therefore, we can be fairly sloppy about C| without introducing significant errors,

At low speeds and high angles of attack, the C_ term is more important, and the approximation of Equa-
tion (3.7-2) is inappropriate.

Another way of stating this argument is that the identifiability of the C_ terms in Equation (2.2-22b)

is poor. We do not normally estimate these derivatives independently, but rather we compute them from
the Cy and Cp derivatives in the observation equation. Because of this poor identifiability, avoid the

temptation to estimate Cp derivatives if an ay measurement is not available. Theoretically, the distinc-
tion between the Cy derivatives in the a, observation equation and the Cy derivatives in the a state
equation gives information about Cp derivatives. We have tried it and, as expected, obtained ridiculous

results; you would need much better a measurements than we ever have to make such an idea work. The use-
ful Cy and Cp information comes from the observation equations.

Other possible ways around this nonlinearity include using the (u,v,w) form of the state equations,
which introduces different nonlinearities in the o, B, and V observations, or doing the measurement coor-
dinate transformations discussed in Section 3.5.2.
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3.8 COLLECTED EQUATIONS

Portions of the aircraft stability and control equations are spread over several of the preceding
sections in various forms. This section collects some useful forms of the equations.

3.8.1 Longitudinal Equations

We present two sets of longitudinal equations. The first set (Equations (3.8-1) to (3.8-5)) is ade-
quate for much analysis at low angles of attack. It uses the approximation that C_ = Cy, linearizes the

trigonometric gravity terms by substituting measured o and ©, and omits the © state equation. Although
we write the ay observation equation in this section, we often omit ay when using these simplified

equations (we then do not estimate Cp derivatives). We omit thrust and all but the most important
lateral-directional coupling terms.

The state equations are

a= - %%—+ (CL + op) +q +-% (cos & cos €y €oS oe + sin 6y sin oc) (3.8-1a)
qly = qscCy (3.8-1b)

The observation equations are

X
oz = Ka(a - ng (3.8-2a) |
qz = ¢ (3.8-2b)
d X .
ap =395 ¢y + 22N 3.8.2
n =g N+ g d (3.8.2c)
- Zov o
a, = - 35 + 2ax .8-
X mg CA* g d (3.8-2d)
éz = & + ab (3.8.2¢)
The aerodynamic coefficient expansions are
CN = Cngo + CpngS + Cng (3.8-3a)
CA = Caga + Cpgl + Cpy (3.8-3b)
c
Cm = Cmo@ * Cngd + Cmg gV + Cryy (3.8-3c)
and we approximate
CL = CN (3.8-4)

The quantities q, V, Op, and ¢ are all measured data in these equations. They can be either average or

point-by-point measurements as required (point-by-point measurement gives better fidelity but requires
more computer time). To reduce the number of subscripts, we omit the subscript m from those quantities
where no value is defined other than the measurement. The quantity ac is measured angle of attack,

corrected for upwash and sensor position. The unknown parameter vector is

£ = (CNQ’ CNG’ CA(!’ CA!S’ Cma, Cmc’ Cmq, CNb, CAb, Cmb, CLb + ap, CIb) (3.8—5)

Other commonly used, unknown parameters include Ky and the a and g initial conditions.

Note that Cpp, Cyys Cay> and Cpp . as used in these equations, include measurement bias effects in

addition to the aerodynamic biases. See Section 3.6.4 for a discussion of this issue. For instance,
there is no separate ap, unknown, because ap, is subsumed in Cy, . To keep the notation simple, we
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include the aerodynamic CNb and measurement bias effects in the same symbol because both are nuisance
parameters and we cannot independently estimate both anyway. We do explicitly indicate measurement bias

effects added to C| (we use the notation &b, indicating a bias in the P4 equation) to make it clear that
the measurement bias effects subsumed in CLb are different from those subsumed in CNb (for instance, anp
affects CNb but not CLb). The implementation in this case is simpler than the notation; we simply treat

CNb and CLb as being independent.

Equations (3.8-1) to (3.8-5) are adequate for most longitudinal maneuvers at low angle of attack.
The second set of Tongitudinal equations (Equations (3.8-6) to (3.8-12)) distinguishes C_ from Cy, as

needed at high angle of attack. It also includes the © state, thrust (aligned with the X axis), and more
of the kinematic lateral-directional coupling terms (still assuming symmetry). This set of equations
Tinearizes about measured values in the gravity term and the transformation of Cy and Cp into Cp; this

allows you to get by with quite rough measurements of o and ©, even during large-amplitude maneuvers.

The state equations are based on linearizing Equation (3.4-4)

o = - ﬁ%’(CL + &b) +q - (tan B)(p cos ac + r sin o)

T sin o  dgp dgp
-—_ 4y 2 - + — - + 3.8-6
v g le-ac) + = (0 - 6m) +gp (3.8-6a)
oo = 2 2 ”
qly = qscCq + rp(Iz - Ix) + (r° - p")Ixz + Nriye .(3.8-6b)
&=qcos ¢ -rsine+d " (3.8-6¢)
where the gravity term components are
gh = %~(cos Om €OS ¢ cos ac + sin Oy sin ag) (3.8-7a)
dgp g . .
de V¥ (-cos & cos Op Sin ac + sin Oy cos o¢) (3.8-7b)
a
dgb _ g . .
56-= V—(-cos ® sin On cos ac + coS Op sin ac) (3.8-7c)

Note the important bias term éb in Equation (3.8-6c). Section 3.6.4 discusses the reasons for this term.
The observation equations are

Ay = Ka((x —V—q +—V—p) (3.8-83)
z = g (3.8-8b)
0, = @ (3.8-8¢)
3 Xap .  Zap 2 Ya, . '
an=§%CN+an +—-g—(qm+p2) -—gﬂp (3.8-8d)
a Za, . Xa 2 Yay .
ay = - %S-CA + —55-q - ~§5.(qm +r2) - —aﬁ ro+ %ﬁ (3.8-8e)
az = q+dp (3.8-8f)

The aerodynamic coefficient expansions are

CN = CNga + CNg8 + Cpp (3.8-9a)

CA = Ca,a + Cagd + Cpy (3.8-9b)

Cm = Cmg *+ Cmgb + Cng _;L\C/ + Cmy, (3.8-9¢)
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The linearized expression for Cp is

CL = C[_aa + CLGG + CLb (3.8-10)
where
CLa = CNa cos a. - CAQ sin a. - Cp (3.8-11a)
CL6 = CN@ cos ac - Cp, sin ac (3.8-11b)
and
Cp = Cp cos ac + Cy sin a¢ (3.8-12)

We could write a complicated expression for CLb in terms of the Cy and Cp derivatives, but this is

Y . . . .
unneccessary because we end up estimating CLb + o as an independent unknown for the same reasons as in

the simpler longitudinal equations. The Cp in Equation (3.8-11a) must be evaluated using only measured
values, or the system will not be linear.

As with the simpler longitudiral equations, measured data can be evaluated with either averages or
point-by-point measurements. The I1iff-Maine code MMLE3 does not allow the use of point-by-point data in
Equation (3.8-11), but this is a limitation of the program rather than of the method.

The vector of unknowns is the same as for the simpler longitudinal equations, with the addition of
the bias ©p.

The two sets of equations presented in this section cover a large range of applications. There are
numerous other reasonable sets of equations intermediate to these sets. There are essentially an infi-
nite number of terms that you can add to accommodate special situations; nonsymmetric aircraft come to
mind as a case requiring extra terms.

3.8.2 Lateral-Directional Equations

We present a single set of lateral-directional equations adequate for most applications. The state
equations come from Equation (3.4-5), linearizing the gravity term about the measured ¢, linearizing
other terms by substituting measured values, and adding bias unknowns:

B = g%-(cY + Bp) + plap + sin ac) - r cos ac

+ %—sin ¢y COS O + %»cos oy cos © (¢ - o) (3.8-13a)
plx - rlxz = asbCq + qrm(ly - I7) + pmalxz (3.8-13b)
Fl; - Plyz = GsbCp + prally - Iy) - arplyz - Nqlye (3.8-13¢c)

$=p+rtan ©sin oy + q tan 6 cos oy (3.8-13d)

The observation equations are
z X

Bz = Kg(B - VB' p o+ VB‘ r) (3.8-14a)
Pz =p (3.8-14b)
ryo=r (3.8-14c)
o = ¢ (3.8-14d)

- z X y

s ay ay o a 2 2

ay = %a-Cy -G Pt ~§X-r - ~§¥~<pm - n (3.8-14e)
Pm = D * Db (3.8-14f)

Pm =r +rp (3.8-14q)



The aerodynamic coefficient expansions are

Cy = CYBB + CY55 + CYb (3.8-15a)
Co = Cogh + Cog8 + Cop B2 gy 22wy (3.8-15b)
Cn = Cngh + Cngb + Cny B+ Co 2+ Coy (3.8-15¢)

We include the term éb in Equation (3.8-13a) for the same reasons that &b is included in Equa-

tion (3.8-1a); the effect is that the Cy, in Equation (3.8-13a) is independent of that in Equa-

tion (3.8-14e). The parameter ap in Equation (3.8-13a) also deserves mention: This parameter allows
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for an unknown bias in the corrected a measurement. We usually do not account for biases in the measured

data used to linearize the equations {we account only for biases in the observations we are matching).
Biases usually have small effects on the linearizations; accounting for all such biases would entail
significant complication and give negligible improvement (indeed, degradation due to identifiability
problems would be likely). For instance, we ignore biases in the measured © or q used in Equations
(3.8-13) and (3.8.14). The (p sin a) term in Equation (3.8-13a) is the one place where we feel that
such biases are important. This is because p can be quite large compared with 8 in aileron maneuvers;
therefore, small errors in measured o« can have important effects on this term. For instance, the use of

average measured o instead of point-by-point values could introduce enough error to be important.

recommend allowing an unknown bias in this term, as shown in Equation (3.8-13a). It is possible to use
this term to estimate the angle-of-attack calibration, but the results usually have too much scatter

(several degrees) to be very useful for most purposes.

The vector of unknown parameters is

g = (CYB’ CY(S’ Cgsa C'Q'(S’ Cg,p, C,q,r., cnss cnas Cnp’ Cnr’ CYb’ Clb’ Cnb’ CYb + Bps s ¥y Pps f'b)

(3.8-16)

The equations presented in this section are adequate for most applications. You can add terms as

appropriate for special situations.
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Figure 3.6-1. Angle-of-attack fit.
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4,0 DETAILED COMPUTATIONAL ESTIMATION EXAMPLES

In Chapters 2 and 3 we discuss the governing equations that are used for the bulk of the aircraft
stability and control estimation that is discussed in the remainder of this document. This chapter deals
with the actual estimation of parameters from dynamic data. The purpose of this chapter is to present
the parameter estimation steps in enough detail so that someone previously unfamiliar with parameter
estimation can fully grasp the method. We begin with a brief description of the computer program used
for parameter estimation throughout this document. We then analyze a short computed time history in suf-
ficient detail so that anyone can repeat the steps and obtain the same answers with a simple computer
program or even with a pocket calculator. After several variants of this example are discussed, the
chapter concludes with a discussion of actual flight data analysis.

4.1 DESCRIPTION OF THE MMLE3 PROGRAM

The Iliff-Maine code (MMLE3 program) is used throughout the remainder of this document to estimate
the coefficients of the differential equations of motion. The algorithms used are defined in Maine and
ITiff (1984, chapters 7 and 8). The bulk of the arnalysis in this document is for the estimation of sta-
bility and control derivatives from aircraft maneuvers; the MMLE3 program includes the implementation of
the aircraft equations described in Chapter 3. The program is fully described in Maine (1981b). Docu-
mentation of all the available options and the use of the program are detailed in Maine and ITiff (1980).

Figure 4.1-1 illustrates the maximum likelihood estimation concept for aircraft data as used by MMLE3.
The measured response of the aircraft is compared with the estimated response, and the difference between
these responses is called the response error. The Gauss-Newton computational algorithm (Maine and INiff,
1984, section 2.5.2) is used to find the coefficient values that maximize the 1ikelihood functional. Each
iteration of this algorithm provides revised estimates of the unknown coefficients based on the response
error. These revised estimates of the coefficients are then used to update the mathematical model of the
aircraft, providing a revised estimated response and therefore a revised response error. The mathematical
model is updated iteratively until a convergence criterion is satisfied. The estimates resulting from
this procedure are the maximum likelihood estimates.

The maximum likelihood estimator also provides a measure of reliability of each estimate based on the
information obtained from each dynamic maneuver. This measure of reliability, analogous to the standard
deviation, is called the Cramdr-Rao bound (Maine and I1iff, 198la; Maine and I1iff, 1984) or the uncer-
tainty level. The Cramér-Rao bound as computed by current programs should generally be used as a measure
of relative accuracy rather than absolute accuracy. The bound is obtained from H, the approximation of
the information matrix. The information matrix equals the approximation to the second gradient given by
Maine and I1iff (1984, equation (8.3-3)). The bound for each unknown is the square root of the corre-
sponding diagonal element of H; that is, for the ith unknown, the Cramér-Rao bound is VH(i,7). The MMLE3
program scales the estimate of the Cramér-Rao bound for the observed noise amplitude by first multiplying
the H matrix by a scalar (discussed further in Section 4.3.2).

4,2 EQUATIONS FOR A SIMPLE EXAMPLE

The basic concepts involved in a parameter estimation problem can be illustrated by a simple example
representative of a realistic aircraft problem. The example chosen here is representative of an aircraft
that exhibits pure rolling motion from an aileron input. This example, although simplified, typifies the
motion exhibited by many aircraft in particular flight regimes, such as the F-14 aircraft flying at high
dynamic pressure, the F-111 aircraft at moderate speed with the wing in the forward position, and the
T-37 aircraft at low speed.

Deriving an equation that describes this motion is straightforward. Figure 4.2-1 depicts an aircraft

with the X axis perpendicular to the plane of the figure (positive forward on the aircraft). The rolling
moment L”, roll rate p, and aileron deflection &3 are positive as shown. For this example, the only

state is p and the only control is §3. The result of summing moments is

Iep = L°(p,6a) (4.2-1)
The first-order Taylor expansion then becomes

P =Lpp + Ls,8, (4.2-2)

where
L7= I4L

Since the aileron is the only control, it is notationally simpler to use § for 83 in discussing this
example. Equation (4.2-2) can then be written as

P =Lpp + Lgb C (4.2-3)

NOT PILIMED
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An alternative approach that results in the same equation is to combine Equations (3.8-13b) and (3.8-15b)
(substituting for Cg) and then eliminate the terms that are zero for our example. This yields

Ply = asb(Czp %%‘* czas) (4.2-4)

where p is the roll rate and & the aileron deflection. The equation can be put into the dimensional
derivative form of Equation (4.2-3) by rearranging terms.

Equation (4.2-3) is a simple aircraft equation in which the forcing function is provided by the
aileron and the damping by the damping-in-roll term Lp. In Sections 4.2 to 4.4 we examine in detail the
parameter estimation problem where Equation (4.2-3) describes the system. For this single-degree-of-
freedom problem, the maximum likelihood estimator is used to estimate either Lp or Ls, or both, for a
given computed time history.

Now that we have specified the equations describing our simple model, we can examine the characteris-
tics of maximum likelihood estimation in this simple case. Maine and I1iff (1984, chapters 2, 7, and 8)
describes in detail maximum likelihood estimation for the general case; for our simple example, we need
only some of those results. Where, as in our example, there is no state noise and the equations of
motion are linear, the equations are

X0 (4.2-5)

x{tg) =
x(t) = Ax{(t) + Bu(t) (4.2-6)
z(ti) = Cx{tj) + Du(tj) + Gnj (4.2-7)

where x is the state vector, z the observation vector, u the control vector, and the stability and
control derivatives defined in Chapter 3 are contained primarily in the A and B matrices.

If there is no state noise and the matrix G is known, then the maximum likelihood estimator minimizes
the cost function

N
JE) = ‘EAEZ(ti) - 2,(t1) IX(GE*) - 10z(tq) - Z.(t4)] (4.2-8)
i=

N[

where GG* is the measurement noise covariance matrix and Zg(ti) is the computed response estimate of z at

t; for a given value of the unknown parameter vector &. The cost function is a function of the differ-
ence between the measured and computed time histories.

For the no-state-noise case, the ZE(ti) term of Equation (4.2-8) can be approximated by

e (to) = xp(g) (4.2-9)
Re(tien) = oR (t5) + ¥lu(ti) +ultia)l/2 (4.2-10)
Z (ty) = Cx (t) + Du(ty) (4.2-11)
where
& = exp[A(ti+1 - ty)] (4.2-12)
v =.]Zti+lexp(AT) dr B (4.2-13)
i

To minimize the cost function J(£), we can apply the Newton-Raphson algorithm, which chooses suc-
cessive estimates of the vector of unknown coefficients £. Let L be the iteration number; the L +1
estimate of £ is then obtained from the L estimate as

gL+1 = éL - [V§J<EL)}-1[VEJ(EL)J (4.2-14)

The first and second gradients are defined as

N
v () = - 1g:l[z(ti) - 2 (e1)]* (66%)-1 v E (t4)] (4.2-15)
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= 5 Y i *)~- 4 . - Y -3 ) % *x)- 5 . -
Vgd(€) 1§1[V£zg(t1)] (GG*) [vgzg(h)] 12:1 [z(t.,) zE(t1)] (GG*) [vgzg(h)] (4.2-16)
The Gauss-Newton approximation to the second gradient is
N
2 o - - 5 (ts -
ale) = igl[vgzg(ti)jl*(a(i*) 1[V£z€(t,)] (4.2-17)

The Gauss-Newton approximation is computationally much simpler than the Newton-Raphson algorithm
because the second gradient of the innovation never needs to be calculated. In addition, the Gauss-
Newton approximation can speed the convergence of the algorithm, as is discussed in Section 4.4.1.

Equation (4.2-8) then gives the cost function for maximum likelihood estimation. The weighting GG*
is unimportant for this problem, so set GG* = 1. For our example, Equations (4.2-6) and (4.2~7) reduce
to xi = pj and zj = xj. Therefore, Equation (4.2-8) becomes

N

I(Lp,Ls) = [pi - Billp, Lg)12 (4.2-18)

1
2 i=1

where pj is the value of the measured response p at time t; and 51(Lp,L5) is the computed time history of
p at time tj for Lp = Ly and Lg = Lg. Where computed (not flight) data are used in the remainder of

this chapter, the measured time history refers to pj, and the computed time history refers to ﬁi(Lp,Ls).

The computed time history is a function of the current estimates of Lp and Lgs, but the measured time
history is not. .

The most straightforward method of obtaining P is to use Equations (4.2-9) and (4.2-10). In terms
of the notation just defined,

Bi+1 = of; + ¥(8; + 8541)/2 (4.2-19)
where
@ = exp(Lpa) (4.2-20)
A - 1 - LyA
¥ =/ exp(lpt) dt Lg = Ll exp P )3 (4.2-21)
0 Lp

and A is the length of the sample interval (tj+1 - ty). Simplifying the notation,
8i+1/2 = (61 + 8i+1)/2 (4.2-22)
then
Pi+1 = ofi + ¥6i+1/2 (4.2-23)
The maximum likelihood estimate is the value that minimizes Equation (4.2-18). The Gauss-Newton
method described previously is used for this minimization. Equation (4.2-14) is used to determine suc-
cessive values of the estimates of the unknowns during the minimization.

The first and second gradients are defined by Equations (4.2-15) and (4.2-16). The only term
from Equations (4.2-14), (4.2-15), and (4.2-16) remaining to be defined is ngg(ti) or, for our case,
Vgﬁi- Equation (24) of Maine and I1iff (1981b) is a corresponding approximation for our problem. In

our notation,

VePiap = OBy * ‘y[(veLP)le/z + (VEL5)6H1/2] (8.2-24)
For this simple example, the equations can be concisely written in terms of partial derivatives as
3pi 3P
L) o () ¥pi+1/2 (4.2-25)
o, L,
3P4 +1 34
< 3 >= % <—a‘3 + ¥8i+1/2 (4.2-26)

where

. o *
Vep = [‘p— ‘B‘] (4.2-27)

&P slp  dlg
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For this simple example, £ = [fp, fsj*, and successive estimates of fp and f5 are determined by

iterating Equation (4.2-14). The first and second gradients of Equation (4.2-14) are defined by Equa-
tions (4.2-15) and (4.2-17). The complete set of equations is given in Maine and ITiff (1980).

We can now write the entire procedure for obtaining the maximum 1ikelihood estimates for this simple
example. To start the algorithm, initial estimates of Lp and Lg are needed; these are the value EO-
From Equation (4.2-14), 21 and subsequently éL are defined by using the first and second gradients of

J(Lp,Ls) from Equation (4.2-18). The gradients for this particular example from Equations (4.2-15) and
(4.2-17) are

N N

Ved(g) = -121(% - Bi) Vi (4.2-28)

o N

Ved(g) = _21(‘7561)*(\7&51) (4.2-29)
i=

Expanded into partial derivative forms, these become

~

N a"'.
" Pi
> (pi - Bi) 5
. o T
VeI(EL) = \ (4.2-30)
> (pi - Fi) 2
Li=1 ! Ve
[ g(aﬁf § (zr;> 351>
» - i=1 \%p i=1 \%p \?Ls
vad(gL) = (4.2-31)
§(2)owi)  § (Y
51 \p ks ) 451 \3bs

These terms are completely defined for i and the partial derivative of pj by Equations (4.2-23),
(4.2-25), and (4.2-26).

4.3 COMPUTATIONAL DETAILS OF MINIMIZATION

In Section 4.2 we specify the equations for a simple example and describe the procedure for obtain-
ing estimates of the unknowns from a dynamic maneuver. In this section we give the computational details
for obtaining the estimates. Some basic concepts of parameter estimation are best illustrated by using
computed data, where the correct answers are known; therefore, in this section we study two examples
involving computed time histories. The first example (Section 4.3.1) is based on data that have no
measurement noise; in this case resulting estimates equal the correct values. The second example (Sec-
tion 4.3.2) is based on data that have significant measurement noise added; consequently, the estimates
do not equal the correct values. Throughout this chapter the term "no-noise case" is used for the case
with no noise added and "noisy case" for the case where noise has been added.

We desire to keep these examples simple enough so that some or all of the calculations can be com-
pleted on a home computer or, with some labor, on a calculator; therefore, we will use only a very small
number of data points. For these computed examples, 10 points (time samples) are used. The simulated
data (which we call measured data) are based on Equation (4.2-3). We use the same correct values of Lp
and Lg (-0.2500 and 10.0, respectively) for both examples. In addition, the same aileron input § is
used for both examples, the sample interval A is 0.2 sec, and the initial conditions are zero. Tables of
all significant intermediate values are given for each example. We report these values to 4 significant
digits; however, to obtain exactly the same values with a computer or calculator requires the use of 13
significant digits (as we used in computing these tables). If the 4-digit numbers are used in the com-
putation, the answers will differ by a few tenths of a percent, but they will sti]]Aserve to illustrate
the minimization accuracy. In both examples, the initial values of Lp and Lg (or &) are -0.5 and 15.0,
respectively.

4.3.1 Example With No Measurement Noise

The measurement time history for the no-noise case is shown in Figure 4.3-1. The aileron input
starts at zero, changes to a fixed value, and then returns to zero. The resulting roll-rate time
history is also shown. The values of the measured roll rate are given in Table 4.3-1 along with the
aileron input.
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Table 4.3-2 lists the essential intermediate values for the terms in Equation (4.2-14) for the first
four iterations. Except for columns 8 to 12, the columns are self explanatory. Columns 8 and 9 are the
intermediate values of the summation for the first gradient terms of Equation (4.2-30). For example, the
fifth row is the summation for i = 1 to 5. Likewise, columns 10 to 12 are the intermediate values of the
second gradient terms in Equation (4.2-31).

We can obtain gL for each value of L (the iteration number) by using Equation (4.2-14) and the values
in the last row of the last five columns for each iteration. For the first iteration (from L = 0 to
L = 1), we can use Cramér's rule to obtain

[3.701 —33.5]

[ng(g)] -1 _ Bgzég 3358?] -1 . -33,5  352.4 - [(_)60%)24 -0.1841] (4.3-1)
. . (352.4)(3.701) - (33.50)(33.50) .1841  1.936
vi(£g) = [:}2}52] (4.3-2)
Equation (4.2-14) becomes
R A R b I it o R R -3 (0.5.3)

Again, although these equations display 4 significant digits, we have used 13-digit accuracy in
the computation.

Table 4.3-3 shows the values for fp, CG, and J for each iteration, along with the values of ¢ and ¥
needed for calculating fj. In three iterations the algorithm converges to the correct values (to four

significant digits) for both L, and Lsg. The value of Es overshoots slightly on the first iteration and
then quickly arrives at the correct answer. The value of Lp overshoots slightly on the second iteration.

In Figure 4.3-2 the measured data are compared with the computed data for each of the first three
iterations. The match is very good after two iterations and nearly exact after three iterations.

Because we are looking for the maximum 1ikelihood estimate, we expect the value of the gradient to go
to zero at the estimate. The gradient is given in Table 4.3-2, in the direction of Lp in column 8 and in
the direction of Lg in column 9. The gradient should go to zero in each of these directions at the maxi-
mum Tikelihood estimate. The gradients for the entire maneuver are shown in Table 4.3-2 as the last row
for each iteration in columns 8 and 9; they rapidly approach zero as the algorithm converges. If we con-
tinued to iterate, the algorithm would eventually generate very small values.

Although the algorithm converged with four-digit accuracy in Lp and Ls, the value of the cost func-
tion J continued to decrease rapidly between the third and fourth iterations. This is a consequence
of using the maximum likelihood estimator on data having no measurement noise. Theoretically, with
infinite-accuracy computation, the value of J at the minimum should be zero. However, with finite
accuracy, the value of J becomes small but never reaches zero. The value of J is a function of the
number of significant digits being used. For this example, using 13-digit accuracy, the cost eventually
decreases to approximately 0.3 x 10-28,

4,3.2 Example With Measurement Noise

The data used in the noisy case are the same as those used in the no-noise case, except that pseudo-
Gaussian noise has been added to the roll rate. The time history is shown in Figure 4.3-3. The signal-
to-noise ratio is quite low in this example, as is readily apparent by comparing Figures 4.3-1 and 4.3-3.
The values of the time history (to 13-digit accuracy) are shown in Table 4.3-4. Table 4.3-5 shows inter-
mediate values for the terms in Equation (4.2-14) for L =1 to 4 in the same manner described in Sec-

tion 4.3-1. The succeeding values of Ep and EG are obtained as described previously. The values of Ep,
Ea, ¢, ¥, and J for each iteration are shown in Table 4.3-6. The algorithm converges in four iterations.
The behavior of the coefficients as they approach convergence isﬁmuch like that in the no-noise case.

The most notable result of this case is the converged values of Lp and fs, which are somewhat different

from the correct values. The match between the measured and computed time histories is shown in Fig-
ure 4.3-4 for each iteration. No change is apparent for the last two iterations. The match is very
good considering the level of measurement noise.

In Figure 4.3-5, the computed time history for the no-noise estimates of Lp and Lg is compared with

that for the noisy-case estimates. In the noisy case the algorithm converged to values somewhat dif-
ferent than the correct values, so the two computed time histories are simitar but not identical.
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Table 4.3-5 shows the values of the cost function and the values of the gradients with respect to Lp
and Lg. The values of J for the third and fourth iterations are the same to four significant digits.

The gradients in each direction are correspondingly small, indicating that the algorithm has converged.
The values of the gradients shown in Table 4.3-5 for L = 4 demonstrate an interesting characteristic
that arises from having a very small number of samples for a maneuver with a low signal-to-noise ratio:
Between i = 9 and 10 the value of the gradient goes from a fairly large number to a small number. This
indicates that with a different noise signal or with more samples the gradient would probably be zero at
some values of Lp and Lg significantly different than those shown for this particular case.

The accuracy of the converged elements can be assessed by examing the Cramér-Rao inequality (Maine
and I1iff, 1980, 1981b) discussed previously. The value of the Cramér-Rao bound for each unknown is the
square root of the corresponding element in the H matrix. A slightly different approach is used to
obtain the Cramér-Rao bound for flight-measured data than is used for computed data, because the measure-
ment covariance matrix GG* is unknown for flight data. In general, the expected value of Jpip is

2(N-1)/2, where & is the dimension of GG* and N is the number of data points. For measured data, if
Jmin is not approximately £(N-1)/2, then the original estimate of GG* is probably not good. A first

approximation to correcting GG* is to multiply GG* by 2Jpin/&(N-1), which has the effect of multiplying H
by a factor of 2Jpin/%2(N-1). For the scalar case we are studying here, & = 1; so the correction term is
2Jmin/ (N-1). Since we are treating our simulated data similarly to how actual flight data would be

treated, we will make the correction to the bound. Thus, the Cramér-Rao bound can be obtained from the
following approximation to the information matrix:

H = 2(Jm1n)(v§J)'1/(N-1) (4.3-4)

The Cramér-Rao bounds for Lp and Lg are the square roots of the diagonal elements of the H matrix, or
VH(1,1) and VH{2,2), respectively. The Cramér-Rao bounds are 0.1593 and 1.116 for Lp and Lg, respec-
tively. The errors in Lp and E5 are less than the bounds.

4.4 COST FUNCTIONS

In Section 4.3 we obtain maximum 1ikelihood estimates for computed time histories by minimizing the
values of the cost function. To understand fully what occurs in this minimization, we must study in more
detail the form of the cost functions and some of their more important characteristics. The same two
time histories studied Section 4.3 are examined in this section: The cost function for the no-noise case
is discussed briefly; the cost function for the noisy case is then discussed in more detail. The noisy
case is more interesting because it has a meaningful Cramér-Rao bound and is more representative of
aircraft flight data.

First, we look at the one-dimensional case, where Lg is fixed at the correct value, because it is

easier to grasp some of the characteristics of the cost function in one dimension. Then we look at the
two-dimensional case, where both Lp and Lg are varying. The cost functions are based on computed time
histories defined by Equation (4.2-18). For every time history we might choose (computed or flight
data), a complete cost function is defined. For the case of n variables, the cost function defines a
hypersurface of n + 1 dimensions. Constructing this surface and looking for the minimum (avoiding the
use of the minimization algorithm) is not a reasonable approach, because in general the number of
variables is greater than two. Therefore, the cost function can be described mathematically but not pic-
tured graphically.

4.4,1 One-Dimensional Case

To illustrate the many interesting aspects of cost functions, it is easiest to look first at cost
functions having one variable. This section studies the one-variable cost function J(Lp), with Lg = 10;

this cost function is more interesting than J(Lg). Figure 4.4-1 shows the cost function plotted as a

function of L for the no-noise case. As expected for this case, the minimum cost is zero and occurs at
the correct value of Lp = -0.2500. The cost increases much more slowly for a more negative Lp than for a
positive Lp. Physically this makes sense: The more negative values of Lp represent cases of high
damping, and the positive Lp represents an unstable system. Therefore, the pj for positive Lp becomes
increasingly different from the measured time history for small positive increments in Lp-

Figure 4.4-2 shows the no-noise response for the correct Lp (-0.2500) compared with those obtained
for Lp values of -0.25 and 0.75. The response for Lp = -0.7500 is closer to the correct response than
is the response for Lp = 0.2500. The differences affect the cost function even more strongly then they

affect the responses because the cost function is proportional to the square of the differences in the
responses (Equation (4.2-18)). For very large damping (very negative Lp), the system would show essen-

tially no response. Therefore, large increases in damping change the value of J(Lp) relatively little.
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In Figure 4.4-3, the cost function based on the noisy case time history is plotted as a function of
Lp. The correct L, value (-0.2500) and the Lp value (-0.3218) at the cost minimum (3.335) are both indi-
cated on the figure. The general shape of the cost function in Figure 4.4-3 is similar to that shown in
Figure 4.4-1. In Figure 4.4-4, the cost functions based on the noisy and no-noise cases are compared.
The comments relating to the cost function of the no-noise case also apply to the cost function based on
the noisy case. Figure 4.4-4 shows clearly that the two cost functions are shaped similarly but shifted
in both the Lp and J directions. Only a small difference in the value of the cost would be expected far

from the minimum because the estimated time history is so far from the measured time history that it
becomes irrelevant as to whether the measured time history has noise added. This point is clearly seen
in Figure 4.4-5, where the response for Lp = 0.2500 is compared with the response for the correct values

of Lp for the no-noise and noisy cases. The cost function is the sum of the squares of the difference

between the measured and estimated responses (Equation (4.2-18)). In some cases the difference at a
given point is smaller for the no-noise response than it is for the noisy case, and sometimes it is
larger. However, these differences are small compared with the distance between the correct and esti-
mated responses. Therefore, the value of the cost function J is large for both the no-noise and the
noisy cases, and the difference in the two cost functions is small compared with the total cost.

Figure 4.4-6 shows the gradient of J(Lp) as a function of Lp for the noisy case. We discuss finding

the zero of this function (or equivalently, the minimum of the cost function) using the Gauss-Newton
method. The gradient is zero at Lp = -0.3218, which gives the minimum value of J(Lp).

The difference between the Newton-Raphson method (Equation (4.2-16)) and the Gauss-Newton method
(Equation (4.2-17)) of minimization is mentioned in Section 4.2. For this simple one-dimensional case,
we can easily compute the second gradient both with the second term of Equation (4.2-16) (Newton-Raphson)
and without the second term (Gauss-Newton, Equation (4.2-17)). The Newton-Raphson and the Gauss-Newton
approximation second gradients are compared in Figure 4.4-7. The Gauss-Newton second gradient (dashed
1ine) always remains positive because it is the sum of quadratic terms (squared for the one-dimensional
example). The Newton-Raphson second gradient can be positive or negative, depending upon the value of
the second partial derivative with respect to Lp. Other than the difference in sign for the more nega-
tive Lp, the two curves have similar shapes.

As stated previously, the Gauss-Newton method is superior to the Newton-Raphson method in certain
cases; we can demonstrate obvious cases of this with our example. Problems with the Newton-Raphson
method will occur where the second gradient (slope of the gradient) is near zero or negative; Fig-
ure 4,4-6 shows such a region near Lp = -1.0. If we choose a point where the gradient slope is exactly
zero, we are forced to divide by zero in Equation (4.2-14) with the Newton-Raphson method: such a point
is at Lp = -1.13 in Figure 4.4-7. If the value of the slope of the gradient is negative, then the

Newton-Raphson method will generate very negative values of Ly. For very negative values of L., the
p p

cost becomes asymptotically constant, and the gradient becomes nearly zero. In that region, the Newton-
Raphson algorithm diverges to negative infinity. If the slope of the gradient is positive but small, we
still have a problem with the Newton-Raphson method. Figure 4.4-8 shows the first iteration, starting

from Lp = -0.95, for both Gauss-Newton and Newton-Raphson methods. The Newton-Raphson method selects a

point where the tangent of the gradient at Lp = -0.95 intersects the zero line. This results in the
selection of Lp 2 2.6 in the first iteration. Many iterations are required to progress from that value
to the actual minimum. On the other hand, the Gauss-Newton method selects Lp = -0.09 and converges to
the minimum (to four-digit accuracy) in two more iterations. With more complex examples, a comparison of
the convergence properties of the two algorithms becomes more difficult to visualize, but the problems
are generalizations of those illustrated here.

The usefulness of the Cramér-Rao bound is discussed in Section 4.3-2. We now digress briefly to
discuss some of the ramifications of the Cramér-Rao bound for the one-dimensional case. The Cramér-Rao
bound has meaning only for the noisy case. In the noisy example, the estimate of Lp is -0.3218 and the

Cramér-Rao bound is 0.0579. The calculation of the Cramér-Rao bound is defined in Section 4.3.2 for
both the one-dimensional and two-dimensional examples. The scatter in the estimates of Lp should be

about the same magnitude as the Cramér-Rao bound. For the one-dimensional case discussed here, the
range (Lp = -0.3218 plus or minus the Cramér-Rao bound 0.0579) nearly includes the correct value of

Lp = -0.2500. If noisy cases are generated for many time histories {adding different measurement noise

to each time history), then the sample mean and sample standard deviation of the estimates for these
cases can be calculated. Table 4.4-1 Tists the sample mean, sample standard deviation, and the standard
deviation of the sample mean (standard deviation divided by the square root of the number of cases) for
5, 10, and 20 cases. The sample mean, as expected, gets closer to the correct value of -0.2500 as the
number of cases increases. This is also reflected by the decreasing values in the third column of

Table 4.4-1, which 1ists estimates of the error in the sample mean. The second column of Table 4.4-1
shows the sample standard deviations, which indicate the approximate accuracy of the individual esti-
mates. This standard deviation, which stays more or less constant, is approximately equal to the
Cramér-Rao bound for the noisy case being studied here. In fact, the Cramér-Rao bounds for each of the
20 noisy cases (not shown in the table) differ little from the values found for the noisy case being
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studied. Both of these results are in good agreement with the theoretical characteristics (Maine and
I1iff, 1981b) of the Cramér-Rao bounds and maximum l1ikelihood estimators in general.

These examples indicate the value of obtaining more sample time histories (maneuvers). Having more
samples increases confidence in the estimate of the unknowns. This also holds true when analyzing actual
flight data. Thus, it is always advisable to obtain data from several maneuvers at a given flight con-
dition to improve the best estimate of each derivative.

The magnitudes of the Cramér-Rao bounds and of the error between the correct and estimated values of
Lp are determined to a large extent by the length of the time history and the amount of noise added to

the correct time history. For the case being studied, it is apparent from Figure 4.3-3 that the amount
of noise being added to the time history is large. The effect of the measurement noise power (GG*,
Equations (4.2-6) and (4.2-7)) on the estimate of Lp for the time history is summarized in Table 4.4-2.

The estimate of Lp is much improved by decreasing the measurement noise power. A reduction in the value
of G to one-tenth of the value in the noisy case being studied yields an acceptable estimate of Lp. For
flight data, the measurement noise is reduced by improving the accuracy of the output sensors.

4.4.2 Two-Dimensional Case

In this section the cost function dependent on both Lp and Lg is studied. The no-noise case is
examined first, followed by the noisy case.

Although the cost function is a function of only two unknowns, it is much more difficult to visualize
than is the one-dimensional J(Lp). The cost function over a reasonable range of Lp and Lg is shown in
Figure 4.4-9. The cost increases very rapidly in the region of positive Lp and large values of Ls. The
reason for this sharp increase is just an extension of the argument involving positive Lp given in Sec-

tion 4.4.1. The shape of the surface can be depicted in greater detail if we examine only the values of
the cost function J(Lp,Ls) < 200 for Lp < 1.0. Figure 4.4-10 depicts this restricted surface viewed

from the upper end of the surface. The minimum must 1ie in the curving valley that gets broader toward
the far side of the surface. Given this picture of the surface, we can look at the isoclines of constant
cost on the Lp-Lg plane (Figure 4.4-11). The steepness of the cost function in the positive Ly direction
is once again apparent. The cost function minimum is indicated by a cross. The more nearly elliptical
shape inside the closed isocline indicates that the cost function is nearly quadratic there, so fairly
rapid convergence would be expected in this region. The Lp axis becomes an asymptote for the cost func-

tion as Lg approaches zero. The cost is constant for Lg = O because no response would result from ény
aileron input; the estimated response is zero for all values of Lp, resulting in constant cost.

Figure 4.4-12 shows an expanded view of the cost function near its minimum, which (as seen in the
earlier example, Table 4.3-3) occurs at the correct values of Lp = -0,2500 and Lg = 10. This is also
evident by looking at the cost function surface shown in Figure 4.4-12. The surface has its minimum at
the correct values. As expected, the value of the cost function at the minimum is zero.

As in the one-dimensional case, the primary difference between the cost functions for the no-noise
and noisy cases is a shift in the cost function. In the one-dimensional case, the cost function for the
noisy case shifted so that the minimum was at a higher cost and a more negative value of Lp. In the two-
dimensional case, the cost function exhibits a similar shift in both the Lp and Lg directions. The shift
is small enough that the difference is not visible at the scale shown in Figure 4.4-9 or from the per-
spective of Figure 4.4-10. Figure 4.4-13 shows the isoclines of constant cost for the noisy case, which
look much like the isociines for the no-noise case shown in Figure 4.4-11. The difference is a shift of
about 0.1 in Lp. Intuitively, it can be seen that this would hold true for cases with more than two
unknowns ; the primary difference between the two cost functions is near the minimum.

We next examine the cost function near the minimum. Figure 4.4-14 shows the same view of the cost
function for the noisy case as shown in Figure 4.4-12 for the no-noise case. The shape is roughly the
same as that in Figure 4.4-12, but the surface is shifted such that its minimum lies over Lp = -0,3540

and Ls = 10.24, and it is shifted upward to a cost function value of approximately 3.3.

To get a more precise idea of the cost function of the noisy case near the minimum, we once again
examine the iscolines. The isoclines in this region (Figure 4.4-15) resemble ellipses much more than
those in Figures 4.4-11 and 4.4-13. The estimates from the first few iterations in Table 4.3-6 are also
shown in Figure 4.4-15, The first iteration (L = 1) brought the values of Lp and Lg very close to the

values at the minimum, and the second essentially arrived at the minimum (viewed at this scale). One of
the reasons the convergence is so rapid in this region is that the isociines are nearly elliptical,
demonstrating that the cost function is very nearly quadratic in this region. If we had started the
Gauss-Newton algorithm at a point where the isoclines are much less elliptical (as in some of the border
regions of Figure 4.4-13), the convergence would have progressed more slowly initially, but it would have
proceeded at much the same rate as it entered the nearly quadratic region of the cost function.

Before concluding our examination of the two-dimensional case, we will examine the Cramér-Rao bound.
Figure 4.4-16 shows the uncertainty ellipsoid, which is based on the Cramér-Rao bounds defined in Sec-
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tion 4.3.2. The relationships between the Cramér-Rao bound and the uncertainty ellipsoid are discussed
in Maine and ITiff (1981b). The uncertainty ellipsoid almost encloses the correct values of Lp and Lg.
The Cramér-Rao bound for Lp and Lg can be determined by projecting the uncertainty ellipsoid onto the Lp

and Lg axes. This should give the same values as analytically calculated in Section 4.3.2, which were
Lp = 0.1593 and Lg = 1.116,

4.5 ESTIMATION USING FLIGHT DATA

In Sections 4.2 to 4.4 we examine the basic process of obtaining maximum likelihood estimates from
computed examples with one or two unknown parameters. Now that these basics have been established, we
can explore the estimation of stability and control derivatives from actual flight data. For the com-
putationally much more difficult situation usually encountered using actual flight data, we obtain the
maximum likelihood estimates with the I1iff-Maine code (MMLE3 program) (Maine and I1iff, 1980). The
equations of motion that are of interest are presented in Chapter 3; the remainder of the equations are
given in Maine and IN1iff (1980).

In general, flight data estimation is fairly complex, and codes such as the I1iff-Maine code must
usually be used to assist in the analysis. However, one must still be cautious about accepting the
results; that is, the estimates must fit the phenomenology, and the match between the measured and com-
puted time histories must be acceptable. This is true in all flight regimes, but particularly in poten-
tial problem situations such as (1) separated flow at high Mach numbers or high angle of attack, (2)
unusual aircraft configurations, such as the oblique wing (Maine, 1978), or (3) modern high-performance
aircraft with high-gain feedback loops. In any of these cases, even small anomalies in the match may
indicate ignored terms in the equations of motion, separated flow, nonlinearities, sensor problems, or
any of a large number of other problems. Some of these difficulties are discussed in later chapters.

The brief examples described in Sections 4.5.1 to 4.5.3 are intended to show how the caveats given in
the preceding paragraph and the computed examples of previous sections can be used to assist in the
analysis. In the computed example, we show the desirability of having Tow-noise sensors, an adequate
model, and several maneuvers at a given flight condition.

4,5.1 Hand Calculation Example

Sometimes evaluation of a fairly complex flight maneuver can be augmented with a simple hand calcula-
tion. One example can be taken from a flight of the space shuttle. The space shuttle's entry control
system consists of 12 vertical reaction-control-system (RCS) jets (6 up-firing and 6 down-firing), 8 hor-
izontal RCS jets (4 left-firing and 4 right-firing), 4 elevon surfaces, a body flap, and a split rudder
surface. The locations of these devices are shown in Figure 4.5-1, The vertical jets and the elevons
are used for both pitch and roll control. The jets and elevons are used symmetrically for pitch control
and asymmetrically for roll control.

The shuttle example we use here is obtained from a maneuver at a Mach number of approximately 21 and
an angle of attack of approximately 40°., The controls used for this lateral-directional maneuver are the
differential elevons and the side-firing jets (yaw jets). The maneuver is depicted in Figure 4.5-2,
Equations (3.8-13) to (3.8-15) describe the equations of motion. Some of the derivatives can be deter-
mined by hand using a simplified approach that has been used since the beginning of dynamic analysis of
flight maneuvers. In particular, for this maneuver, the slope of the rates can be used to determine the
yaw jet control derivatives. This is possible, even for this example, which includes a high-gain feed-
back system, because the yaw jets are essentially step functions, and the slopes of rates p and r can be
determined before the vehicle and differential elevon (aileron) responses become significant. The
rolling moment due to yaw jet Lyj is particularly important for the shuttle and is generally more dif-

ficult to obtain than the more dominant yawing moment due to yaw jet. Therefore, as an example, we
determine Lyjy by hand. Figure 4.5-3 shows yaw jets and smoothed roll rate plotted using expanded scales.

The equation for Lyg is given by

plx
L = 4.5.1
L. (number of yaw jets) ( )
pox 2P - 20.07 . ¢ 4.5-2
Po% T57.3 ( )

Therefore, given that Iy = 900,000 slug-ftZ and the number of yaw jets is 4, then Lyg = -2750 ft-1b
per jet.

The same maneuver was analyzed with MMLE3, and the resulting time-history comparison is shown in
Figure 4.5-4. The match is very good except for a small mismatch in p at about 6 sec. This small
mismatch was studied separately with MMLE3 and found to be caused by a nonlinearity in the aileron
derivative. The value from MMLE3 for Lyg is -2690 ft-1b per jet, which (for the accuracy used here) is
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essentially the same value as that obtained by the simplified method. It would be difficult to determine
the aileron derivatives as accurately as the yaw jet derivatives. Although accurate estimates can seldom
be obtained with the slope method discussed here, rough estimates can usually be obtained to gain some
insight into values obtained with MMLE3 (or any other maximum Tikelihood program). These rough estimates
can then be used to help explain unexpected values of estimates from an estimation program.

Sometimes a flight example becomes too complex to hand calculate anything other than qualitative
estimates. Determining the rudder derivative for the F-8 aircraft with the yaw augmentation system on
illustrates this difficulty. Figure 4.5-5 shows an example of this difficulty for F-8 aircraft data.
This example, taken from Shafer (1982a), includes an aileron pulse and a rudder pulse. Although an inde-
pendent pilot rudder pulse is input during the maneuver, the rudder is primarily responding to the lat-
eral acceleration feedback. When the rudder is moving, several other variables are also changing, which
makes it difficult to use the simplified approach. However, Cnsr can be roughly estmated when the rudder

moves, approximately 1.7 sec from the start of the maneuver. Most of the yaw acceleration is caused by
the rudder input, but a poor estimate would be obtained by the hand calculation method.

4,5.2 Cost Function for Full Aircraft Problem

The analysis of a lateral-directional maneuver obtained in flight typically involves 15 to 25 unknown
parameters (as shown in Equations (3.8-13) to (3.8-15)), in contrast with one or two unknowns in the
simple aircraft example. This makes detailed examples unwieldy and any graphic presentation of the cost
function impossible. Therefore, in this section we examine primarily the estimation procedure and the
process of minimization.

For a typical flight example, we examine a lateral-directional maneuver, with both aileron and rudder
inputs, that has 17 unknown parameters. The data are from the oblique-wing aircraft (Maine, 1978) with
the wing at 0° skew during the maneuver. The time history of the data and the subsequent output of MMLE3
are presented in Maine (1981b). The results of the analysis are shown in Table 4.5-1. The match between
the measured time history and the estimated (calculated) time history is shown as a function of iteration
in Figure 4.5-6. Figures 4.5-6(a) to 4.5-6(e) correspond to iterations 0 to 4. Table 4.5-1 shows that
the cost remains unchanged after four iterations. A similar result was obtained for the two-dimensional
simple aircraft example in Figure 4.3-4 and Table 4.3-3. :

Two of the many things the analyst must consider in obtaining estimates are how good the match is
and how good the convergence is. A satisfactory match and monotonic convergence are desirable, but
not sufficient, conditions for a successful analysis. Figure 4.5-6(e) is a very good match, although
not perfect. The convergence can best be evaluated by examining the normalized cost in the last row of
Table 4.5-1; the cost rapidly and monotonically converges in four iterations, and it remains at the con-
verged value. These factors are convincing evidence that convergence is complete. Therefore, the match
and convergence criteria are satisfied in our example. In some cases we might encounter cost that does
not converge rapidly (in four to six iterations) or monotonically, or stay “exactly" at the minimum
value. These conditions usually indicate that there is at least a small problem in the analysis. These
problems can usually be traced to a data problem, an inadequate mathematical model, or a maneuver that
contains a marginal amount of information.

Table 4.5-1 also shows that the starting values of all coefficients for the control and bias vari-
ables are zero. Wind-tunnel estimates could have been used for starting values, but the convergence
of the algorithm is not very dependent on the starting values of these coefficients. As part of the
startup algorithm, the MMLE3 program normally holds the derivatives of the state variables constant until
after the first iteration, as is evident from Table 4.5-1.

Figure 4.5-6(a) shows a comparison of the measured and computed data for the starting values. The
match is very poor because the starting values for the control derivatives are all zero, so the only
motion is in response to the initial conditions. The control derivatives and biases are determined on
the first iteration, resulting in the much improved match shown in Figure 4.5-6(b). The match after two
iterations, shown in Figure 4.5-6(c), is improved as the program further modifies the control derivatives
and, for the first time, adjusts the derivatives affecting the natural frequency (Cn8 and CQB)- By

the third iteration (Figure 4.5-6(d)), where minor adjustments to the frequency are made and the damping
derivatives are changed, the match is almost perfect. Figure 4.5-6(e) shows the match when all but the
most minor derivatives have ceased to change.

Several general observations can be made based on this well-behaved example. The most important
coefficients essentially converged in three iterations. The same effect was seen in the simple example;
that is, Ls converged faster than L, (Table 4.3-6). Some of the less important or second-order coef-
ficients converged only to two significant digits after three iterations and were still changing in the
fourth significant digit at the end of six iterations. Also, even though the sign is wrong after the
first iteration for some coefficients (Czr, Cn5a’ and Clsr)’ the algorithm quickly selects reasonable

values once the important derivatives have stabilized.

In general, if the analysis of a maneuver goes well, we do not need to spend much time inspecting a
table analogous to Table 4.5-1. However, if there are problems in convergence or in the quality of the
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fit, a detailed inspection of such a table may be necessary. The table may show that an important coef-
ficient becomes unstable in early iterations, which' could cause problems later. If the starting values
are grossly in error, the algorithm may generate very unreasonable values and then, for many reasons, not
hehave well. Occasionally the algorithm selects alternately from two diverse sets of values of two or
more coefficients on successive iterations, behaving as if the shape of the cost function were a narrow
multidimensional valley analogous to, but more extreme than, the two-dimensional valley shown in Fig-
ures 4.4-13 and 4.4-15. :

4.5.3 Cramér-Rao Bounds

Sections 4.3 and 4.4 regarding the computed example show that Cramér-Rao bounds are good indicators
of the accuracy of estimated parameters. Cramér-Rao bounds can be used in a similar, but somewhat more
qualitative, fashion on flight data. The Cramér-Rao bounds included in MMLE3 (as well as in many other
maximum likelihood estimation programs) have been useful in determining whether estimates are good or
bad. The aircraft example we discuss here has been reported previously (for example, in I1iff (1978b)
and Maine and I1iff (1981b)): however, this example of the use of the Cramér-Rao bound in the assessment
of flight-derived estimates is pertinent to this document. Figure 4.5-7 shows estimates of Cnp as a

function of angle of attack for the PA-30 twin-engine general aviation aircraft (Fink and Freeman, 1969)
at three flap settings. There is significant scatter, which reduces confidence in the Cnp information.

The data shown are the estimates from the MMLE3 program, which also provides the Cramér-Rao bounds for
each estimate. Experience has shown (I1iff, 1978b) that if the Cramér-Rao bound is multiplied by a scale
factor (the result sometimes being called the uncertainty level (Maine and I1iff, 1981b) and plotted as

a vertical bar with the associated estimate, then the interpretation of flight-determined results is
facilitated. Figure 4.5-8 shows the same data as Figure 4.5-7, with the uncertainty levels included as
vertical bars. The best estimates are those with the smallest uncertainty levels (Cramé&r-Rao bounds).
The fairing shown in Figure 4.5-8 is drawn through the estimates with small Cramér-Rao bounds and ignores
the estimates with large bounds. One can have great confidence in the fairing because it is well defined
and consistent when the Cramér-Rao bound information is included. In this particular instance, the esti-
mates with small bounds were from maneuvers where the aileron forced the motion, and those with large
bounds were from maneuvers where the rudder forced the motion. Therefore, in addition to aiding in the
fairing of the estimates, the Cramér-Rao bounds help show that aileron-forced maneuvers are superior for
estimating Cnp for the PA-30 aircraft.

This example illustrates that Cramér-Rao bounds are useful tools for assessing flight-determined
estimates, just as they were found useful for the simple aircraft example with computed data.

4.6 SUMMARY

The computed simple aircraft example shows the basics of minimization and the general concepts of
cost functions themselves. In addition, this simple example demonstrates the advantages of low measure-
ment noise and multiple estimates at a given condition, the use of Cramér-Rao bounds, and the quality of
the match between measured and computed data. The flight data show that many of these concepts apply
even though the multidimensional cost function is impossible to plot or visualize.
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0
0.9754115099857
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TABLE 4.3-2. — INTERMEDIATE VALUES FOR CALCULATING TERMS IN EQUATION (4.2-14) WITH NO MEASUREMENT NOISE

1 2 3 4 5 6 7 8 9 10 11 12
. . 3pj 3pj vJ[o, t v2J[0, t
T Siv1y2 Pi Pi Ji —_ — (0, ¢ [0, ¢l
dLp alg —~ - a2 a2 A A
alp alg alp al§ alpals
1] 0.5 0 0 0 0 0 0 0 0 0 0
2| 1 0.9754 | 1.427 0.01022 0.1358 | 0.09516 -0.06140 -0.04302 0.01845 | 0.009956 | 0.01293
311 2.879 4,146 0.9058 0.6533 | 0.2764 -0.8897 -0.3935 0.4453 0.08547 0.1935
4| 1 4.689 6.607 2,745 1.614 0.4405 -3.986 -1.238 3.052 0.2795 0.9046
51 1 6.411 8.833 5.677 2.930 0.5889 -11,08 -2.664 11.64 0.6262 2.630
6| 1 8.049 | 10.85 9,592 4,524 0.7231 -23.74 -4,687 32.10 1.149 5,902
71 o.5 9,608 | 12.67 14.28 6.332 0.8447 -43,13 -7.274 72.19 1.863 11.25
s | o 10.11 12.89 18.14 8.161 0.8594 -65.79 -9,661 138.8 2.601 18.26
9] 0 9.621 | 11.66 20.22 9.722 0.7777 -85.66 -11.25 233,3 3.206 25.82
0] 0 9.152 | 10.55 21.21 10.91 0.7037 -101.0 -12.24 352.4 3,701 33,50
1| 0.5 0 0 0 0 0 0 0 0 0 0
2] 1 0.9754 | 0.9596 | 1.124 x 10-4 0.09314 |- 0.09705 0.001468 0.001530 0.008675 | 0.009420 | 0.009040
3] 1 2.879 2.823 0.001675 0.4548 | 0.2855 0.02680 0.01743 0.2155 0.09093 0.1389
4| 1 4,689 4,578 0.007890 1.147 0.4630 0.1546 0.06905 1.530 0.3053 0.6697
51 1 6.411 6.230 0.02433 2.129 0.6301 0.5406 0.1833 6.061 0.7022 2.011
6| 1 8.049 7.786 0.05906 3.365 0.7874 1.427 0.3908 17.38 1.322 4.660
7] 0.5 9.608 9,251 0.1226 4,822 0.9356 3.147 0.7245 40.63 2.198 9.172
8| 0 10.11 9.671 0.2209 6.377 0.9781 5,975 1.158 81.30 3.154 15.41
9| o 9.621 9,107 0.3531 7.828 0.9210 10.00 1.632 142.6 4.003 22.62
0] 0 9.152 8.576 0.5191 9.087 0.8673 15.24 2.131 225.2 4,755 30.55
1] 0.5 0 0 0 0 0 0 0 0 0 0
2| 1 0.9754 | 0.9753 | 8.095 x 10-9 0.09515 | 0.09756 | 1.210 x 10-5 | 1.242 x 10-5 0.009054 | 0.009519 | 0.009284
3] 1 2.879 2.879 | 1.167 x 10-8 0.4666 | 0.2880 | -2.737 x 10-5 | -1.195 x 10-5 0.2267 0.09245 0.1437
41 1 4.689 4,690 | 7.128 x 10-7 1.183 0.4692 -0.001428 -5.676 x 10-4 1.625 0.3126 0.6985
51 1 6.411 6.417 | 5.471 x 10-6 2.209 0.6417 -0.008241 -0.002547 6.504 0.7243 2.116
6| 1 8.049 8.055 | 2.175 x 10-5 3.514 0.8058 -0.02829 -0.007145 18.85 1.374 4,947
71 0.5 9.608 9.617 | 6.201 x 10-5 5.068 0.9620 -0.07377 -0.01578 44,54 2.299 9.823
8| o 10.11 10.13 1.458 x 10-4 6.750 1.013 -0.1612 -0.02889 90.10 3.326 16.66
91 o 9.621 9.638 | 2.919 x 10-4 8.352 0.9642 -0.3039 -0.04537 159.9 4,255 24,71
1] o 9.152 9.173 | 5.083 x 10-4 9,784 0.9176 -0.5075 -0.06447 255.6 5.097 33.69
1| 0.5 0 0 0 0 0 0 0 0 0 0
2] 1 0.9754 | 0.9754 | 1.084 x 10-11 | 0.09514 | 0.09754 | 4.429 x 10-7 | 4.541 x 10-7 0.009052 | 0.009514 | 0.009280
3] 1 2.879 2.879 | 9.377 x 10-11 | o0.4664 | 0.2879 6.450 x 10~6 | 4,162 x 10-6 0.2266 0.09238 0.1436
sl 1 4,689 4,689 | 2,748 x 10-10 | 1.182 0.4689 2.894 x 10-5 | 1.308 x 10-5 1.623 0.3123 0.6977
51 1 6.411 6.411 | 5.457 x 10-10 | 2,207 0.6411 8.031 x 10-5 | 2.801 x 10-5 6.494 0.7233 2.113
6 1 8.049 8.049 | 8.787 x 10-10 | 3.510 0.8049 1.709 x 10-4 | 4.878 x 10-5> | 18.81 1.371 4,938
7 0.5 9.608 9,608 | 1.237 x 10-9 5.061 0.9608 3.064 x 1074 | 7.450 x 10-5 | 44.43 2.294 9.800
8| o 10.11 10.11 1.471 x 10-9 6.738 1.011 4.523 x 10-4 | 9.640 x 10-5 | 89.82 3.317 16.82
9] o 9.621 9.621 | 1.539 x 10-9 8.334 0.9621 5.497 x 10~4-] 1.076 x 10-% | 159.3 4,243 24.63
101 0 9,152 9.152 | 1.543 x 10-9 9,759 0.9152 5.754 x 10-4 | 1.101 x 10-4 | 254.5 5.081 33.57
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TABLE 4.3-3.

— PERTINENT VALUES AS A FUNCTION OF ITERATION

L Cp(L) Ca(L) o(L) ¥(L) JL

0 -0.5000 15.00 0.9048 | 2.855 21.21

1 -0.3005 9.888 | 0.9417 1.919 0.5191

2 -0.2475 9.996 | 0.9517 1.951 | 5.083 x 10-4
3 | -0.2500 10.00 0.9512 1.951 1.543 x 10-9
4 -0.2500 10.00 0.9512 1.951 1.062 x 10-14

TABLE 4.3-4, — VALUES OF COMPUTED TIME
HISTORY WITH ADDED MEASUREMENT NOISE

-

§, deg

p, deg/sec

CWOWONO B WHN =
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OO RFRFRF MmO

0
0.4875521781881
3.238763570696
3.429117357944
6.286297353361
6.953798550097

10.80572930119
9.739367269447
9.7888445254950
7.382568353168
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TABLE 4.3-5. — INTERMEDIATE VALUES FOR CALCULATING

TERMS IN EQUATION (4.2-14) WITH MEASUREMENT NOISE

2 3 5 6 7 8 9 10 11 12
p; 3p; v2
8i+1/2 Pi Jj ;%l ;%l v, ¢ Ji0, ¢
P s oL, a(% o5 o(§ alpals
1| 0.5 0 0 0 0 0 0 0 0 0
2 | 1 0.4876 0.4417 | 0.1358 | 0.09516 | -0.1277 -0.08944 0.01845 | 0.009055 | 0.01293
3|1 3.239 0.8537 | 0.6533 | 0.2764 -0.7207 -0.3404 0.4453 | 0.08547 | 0.1935
4|1 3.429 5.902 | 1.614 | 0.4405 -5.851 -1.740 3.052 0.2795 0.9046
5 | 1 6.286 9.145 | 2.930 | 0.5889 | -13.31 -3.240 11.64 0.6262 2.630
6 | 1 6.954 16.72 4.524 | 0.7231 | -30.93 -6.055 32.10 1.149 5.902
7| 0.5 | 10.81 18.46 6.332 | 0.8447 | -32.73 -7.63 72.19 1.863 11.25
8 | o 9.739 23.43 8.161 | 0.8594 | -68.46 -10.34 138.8 2.601 18.26
g | o 9.789 25.19 9.722 | 0.7777 | -86.69 -11.80 233.3 3.206 25.82
10| o 7.383 30.22 | 10.91 0.7037 | -121.3 -14.03 352.4 3.701 33.50
1] 0.5 0 0 0 0 0 0 0 0 0
2 |1 0.4876 0.1203 | 0.09414 | 0.09626 | -0.04618 | -0.04721 0.008863 | 0.009265 | 0.009062
3|1 3.239 0.1913 | 0.4568 | 0.2816 0.1260 0.05895 0.2175 | 0.08859 | 0.1377
4|1 3.429 0.8842 | 1.142 | 0.4533 -1.218 -0.4747 1.521 0.2941 0.6553
5 | 1 6.286 0.8863 | 2.100 | 0.6123 -1.082 -0.4351 5,930 0.6690 1.941
6 | 1 6.954 1.178 | 3.286 | 0.7595 -3.592 -1.015 16.73 1.246 4.437
7 | 0.5 | 10.81 2.628 | 4.662 | 0.8959 4.346 0.5102 38.46 2.048 8.613
8 | 0 9.739 2.683 | 6.099 | 0.9259 6.369 0.8172 75.66 2.906 14.26
9 | 0 9.789 3.263 | 7.392 | 0.8572 14.33 1.741 130.3 3.641 20.60
0] 0 7.383 3.497 | 8.460 | 0.7940 8.534 1.197 201.9 4.271 27.31
1] o0 0 0 0 0 0 0 0 0 0
2 |1 0.4876 0.1253 | 0.09544 | 0.09656 | -0.04778 | -0.04835 0.009106 | 0.009324 | 0.009324
3|1 3.239 0.1835 | 0.4642 | 0.2831 0.1106 0.04825 0.2246 | 0.08949 | 0.1406
s |1 3.429 0.9624 | 1.164 | 0.4570 -1.342 -0.5221 1.580 0.2984 0.6726
5 |1 6.286 0.9636 | 2.148 | 0.6191 -1.449 -0.5528 6.195 0.6816 2.003
6 | 1 6.954 1.394 | 3.375 | 0.7702 -4.582 -1.268 17.59 1.275 4.602
7 | 0.5 | 10.81 2.494 | 4.807 | 0.9110 2.547 0.08320 40.70 2.105 8.982
8 | o 9.739 2.499 | 6.316 | 0.9456 2.937 0.1415 80.59 2.999 14.95
9 | o 9.789 2.791 | 7.692 | 0.8814 8.850 0.8190 139.8 3.776 21.73
10 | o 7.383 3.316 | 8.852 | 0.8215 -0.2214 | -0.002276 218.1 4.450 29.01
1] 0.5 0 0 0 0 0 0 0 0 0
2 | 1 0.4876 0.1258 | 0.09549 | 0.09654 | -0.04789 -0.04842 0.009117 | 0.009320 | 0.009218
3 |1 3.239 0.1833 | o0.4644 | 0.2830 0.1096 0.04757 0.2247 | 0.08942 | 0.1406
4 |1 3.429 0.9649 | 1.164 | 0.4567 -1.346 -0.5235 1.580 0.2980 0.6724
5 |1 6.286 0.9662 | 2.148 | 0.6186 -1.456 -0.5551 6.195 0.6806 2.001
6 | 1 6.954 1.397 | 3.374 | 0.7693 -4.588 -1.269 17.58 1.272 4.597
7| 0.5 | 10.81 2.499 | 4.804 | 0.9098 2.545 0.08155 40.66 2.100 8.967
8 | o 9.739 2.501 | 6.309 | 0.9441 2.967 0.1448 80.46 2.991 14.92
9 | o 9.789 2.804 | 7.681 | 0.8795 8.944 0.8291 139.5 3.765 21.68
0] o 7.383 3.316 | 8.836 | 0.8193 0.004819 | 2.057 x 10-4 | 217.5 4.436 28.92

0%




TABLE 4.3-6. — PERTINENT VALUES
AS A FUNCTION OF ITERATION

L Cp(L) Cs(L) (L) ¥(L) JL

0 | -0.5006 | 15.00 | 0.9048 | 2.855 | 30.22

1 | -0.3842 | 10.16 | 0.9260 | 1.956 3.497
2 | -0.3518 | 10.23 | 0.9321 | 1.976 3.316
3 | -0.3543 | 10.25 | 0.9316 | 1.978 3.316
4 | -0.3542 | 10.24 | 0.9316 | 1.978 3.316
5 | -0.3542 | 10.24 | 0.9316 | 1.978 3.316

TABLE 4.4-1. — MEAN AND STANDARD DEVIATIONS FOR ESTIMATES OF Lp

Number of Sample mean, Sample standard igﬂgliizﬁaggane
cases, N ) ‘At 3 ~
u(Lp) deviation, o(Lp) mean, o(Lp)/VN
5 -0.2668 0.0739 0.0336
10 -0.2511 0.0620 0.0196
20 -0.2452 0.0578 0.0129

TABLE 4.4-2. — ESTIMATE OF Ly AND

CRAMER-RAG BOUND AS A FUNCTION OF
THE SQUARE ROOT OF NOISE POWER

Square root of | Estimate | Cramér-Rao
noise power, G of Lp bound
0 -0.2500 -—-

0.01 -0.2507 0.00054
0.05 -0.2535 0.00271
0.1 -0.2570 0.00543
0.2 -0.2641 0.0109
0.4 -0.2783 0.0220
0.8 -0.3071 0.0457
1.0 -0.3218 0.0579
2.0 -0.3975 0.1248
5.0 -0.6519 0.3980
10.0 -1.195 1.279




52

10L°Y 10L°Y 10L°Y 928°Y €e1l 00°99 ST 1EL (1 - N/
9061°0 908170 90G1°0 287170 9291°0 1212°0 0 q?
691£00°0 691.00°0 SL1L00°0 0¥1£00°0 00€£00° ¥98500°0 0 quO
820200°0- 820200°0- 1€0200 0~ 120¢00°0- 629100°0- 960.000°0~ 0 qZD
991100~ 96T110°0- LST10°0- LTT10°0- 0/£10°0- 0/€€070- 0 q? + qAD
02t20°0- 61%20°0- 022070~ ¢9€20°0- 169¢0°0- 60150°0- 0 Wy
196800070~ 1968000°0- 21680000~ §/88000°0- €€€6000°0- 62€£000°0- 0 J9u3
§S0T000°0 6501000°0 6501000°0 €¥0T000°0 ¥9£50000°0 89050000°0~ 0 Jg’ﬂ
8%5100°0 8¥5100°0 9610070 95%100°0 ¥90200°0 §€6500°0 0 J9A3
69010000°0 8901000070 960T0000°0 6¢110000°0 [-01x98("°9 ¥09¥0000°0- 0 99“3
690100°0 690100°0 69010070 £90100°0 000100°0 6008000°0 0 p97’3
2901°0- ¢901°0- §901°0- €€01°0" L2ET°0" 00080°0- 00080°0~ J”D
¥£690°0 €4690°0 ¢[690°0 ¥¥0£40°0 06£90°0 000S0°0~ 0005070~ J’Q
009%0°0- 665¥0°0- ¢19%0°0- LES0°0- 95€v0°0- 00620°0- 006¢0°0- dUD
185€°0- 189€°0- 18G9€°0- ¥85€°0- €6€€°0- 005¢°0- 0052°0- d“a
0€2100°0 0€2100°0 0€2100°0 £42100°0 64110070 00010070 000T100°0 guﬂ
TLSE000°0~ 1£S€000°0- 2.5€000°0- 285€000°0- I¥1€000°0- 0052000°0- | 00S2000°0- 973
¥9€800°0- $9€800°0~ G/€800°0- L¥£800°0- 656.00°0~ 00$800°0- 00$800°0- gAQ
9 S 4 € I 1 0

7 “NOILVY3LI

Y3ANINYW LHIIT4 404 NOILVYILI 40

SNOILONNA SV SIATLVAIYIA TOYINOD ONY ALITIAVLS — °T1-G°v 376Vl




Control
input

Turbulence Noise
Measured
Test response
aircraft ~
Estimated

»| Mathematical model

of aircraft
(state estimator)

response —
Response

Oz

Roll rate (p) ,
Rolling moment (L)

AF

error Right aileron
deflection (d3)
Gauss- Maximum —\
Newton likelihood |
computational cost h
algorithm functional y

! !

Maximum likelihood
estimate of
aircraft parameters

Left ailero\
deflection (da)

AF

Figure 4.1-1.

Maximum likelihood estimation
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Figure 4.2-1. Simplified aireraft nomenclature.
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Figure 4.3-3. Time history
with measurement noise.
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Figure 4.3-5. Comparison
of estimated roll rate
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of Lp for no-noise case.
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5.0 PREFLIGHT DATA

In this chapter we discuss the data gathered from sources other than flight tests. You normally
gather the majority of these data before the flight tests, although scheduling problems, configuration
changes during the flight tests, rechecking questionable data, or other reasons can necessitate some data
gathering between flights or after the flight test program.

We discuss three types of preflight data: predicted aerodynamic characteristics, aircraft mass
characteristics, and atmospheric conditions. There are, of course, many other things you need to know
about the aircraft prior to flight, but most of these subjects are inextricably tied to discussions in
other chapters. For instance, you need a thorough understanding of the instrumentation system, but
gathering data about the instrumentation system is an integral part of designing an instrumentation
system or evaluating the adequacy of an existing system, subjects covered in Chapters 7 and 8.
Similarly, you need to know a lot about the aircraft control system to design flight maneuvers, as
discussed in Chapter 6.

We give only general descriptions of the uses and sources of preflight data. Detailed discussions of
computational aerodynamics or wind-tunnel techniques, for instance, are outside the scope of this docu-
ment.

5.1 PREDICTED AERODYNAMIC CHARACTERISTICS

You will need a source of predicted aerodynamic characteristics for almost every flight test program.
We use the phrase "predicted aerodynamic characteristics” as a catchall for any aerodynamic data other
than that from the current flight tests; the source could be wind-tunnel tests, computations, independent
flight tests, or combinations of these.

5.1.1 Uses

The uses of predicted aerodynamic characteristics are varied. In some cases the need for aerodynamic
predictions is obvious from the statement of objectives; a common objective of flight testing is the
validation of the predictions.

Predictions are also important in validating flight test results; you always want at least a rough
jdea of what would be reasonable ranges for the flight test results. If you are investigating new flight
test methods, validation of the flight test results, partially by comparison with predictions, might be a
major objective.

Many estimation methods require predicted aerodynamic characteristics as starting values for itera-
tive algorithms. There are ways to get around these requirements, but you can generally expect better
performance and fewer problems if you have a reasonable set of starting values.

There are numerous uses of predicted aerodynamics in planning flight tests. Before the first flight,
of course, predicted aerodynamics are the only data available for such areas as control system design,
simulation, and test maneuver design. You will often use predictions to select potential problem areas
meriting extensive flight testing.

5.1.2 Theoretical Computations

Theoretical computation is one source of predicted aerodynamic characteristics. Theoretical com-
putation comes in several forms. At one extreme are the large computational aerodynamics computer
programs for solving the Navier-Stokes equations (the basic equations of fluid flow). Computational
aerodynamics is an area of extensive current research activity; some computational aerodynamics problems
strain or exceed the capacity of the largest computers in existence.

Some theoretical computations, in contrast, are almost trivially simple. For many purposes, you can
get acceptable values with a hand calculator, a sketch of the wing, tail, and control surface planforms,
and a few rule-of-thumb equations from elementary aerodynamics texts (Etkin, 1959). Maine and INiff
(1979), for instance, uses such hand calculations.

Between these extremes are many computer programs using various simplifying assumptions, approxima-
tions, and rules of thumb. Such programs are common sources of predictions of damping derivatives.
Well-known programs of this type include DATCOM (Williams and Vukelich, 1979), VORTEX-LATTICE (Margason
and Lamar, 1971), and PAN AIR (Derbyshire and Sidwell, 1982).

5.1.3 Wind-Tunnel Tests

Wind-tunnel tests are the major source of predicted aerodynamic characteristics for most large
flight test programs. The flight data analyst often has little influence on the wind-tunnel test program
(particularly on large programs) but rather must use what is available.

Static data from wind-tunnel tests are often combined with dynamic derivatives from theoretical com-
putations to provide a complete set of predicted aerodynamic characteristics. The use of dynamic wind-
tunnel testing (AGARD, 1978) is also becoming increasingly important. One technique of dynamic wind-
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tunnel testing involves free-flying, remotely piloted wind-tunnel models (Hafer, 1978; Krag, 1978a,b;
Subke, 1978; Hamel and Krag, 1979; Wilhelm and Verbrugge, 1982); this technique uses the same parameter
estimation algorithms as full-scale flight testing.

If you use data from a large wind-tunnel test program, anticipate a significant effort in trans-
forming the data into a form usable for your needs (you might be fortunate, but anticipate a significant
effort unless you have specific reason to believe otherwise). If the wind-tunnel tests are extensive,
the first large part of the effort might be finding the data pertinent to your analysis amidst volumes of
other data.

You might also need to transform the data into a form suitable for your analysis programs. For
instance, Figure 5.1-1 shows a typical plot of Cp, C_, and Cp as functions of angle of attack for several

elevator positions. It takes some work to obtain Cmse and Cma’ quantities your analysis programs might

need, from these data: The first step is finding the trim elevator position for a given angle of attack.
Then Cp, is the slope of the Cy curve as a function of angle of attack for that elevator position. To

obtain Cmse, you must difference the pitching moment values for elevator positions around the trim point.

So far we have assumed that you want small perturbation values about trim conditions. If the data show
nonlinearity, you might prefer to get derivatives for typical maneuver amplitudes instead of small ampli~
tudes. If the nonlinearities are large enough to justify explicitly modeling them or if you want to ana-
lyze off-trim conditions, then it is much more difficult to decide on an appropriate model form and fit
the data to it. This is essentially a system identification problem applied to the wind-tunnel data; you
have a large amount of data in tablular form and want a relatively simple model that fits the data.

This example illustrates only a few of the kinds of problems you might encounter in a relatively
simple case. For some vehicles with multiple surfaces and complex control systems, the first step of
finding the trim condition can be difficult. Even simple data handling can be time consuming if the
volume of data is Targe and the data are not in computer-readable form.

There are numerous manipulations of wind-tunnel data that may be required, and the details vary from
program to program. It therefore avails us little to go into much detail here. The important message
is that to estimate the effort required to use wind-tunnel data, you must determine exactly what form the
available wind-tunnel data take, what form your analysis requires, and what transformations are necessary
to obtain the needed form. It is not sufficient merely to determine that wind-tunnel data exist.

5.1.4 Independent Flight Tests

Independent flight tests are often a good source of predicted aerodynamic characteristics. If you
are testing modifications to an airplane (for instance, stores testing), flight tests of the unmodified
airplane usually provide a good starting point.

For rough approximations, you can use estimates from a different airplane with generally similar
geometry. Even aircraft with quite dissimilar geometry often give values adequate for starting estimates
in iterative algorithms (provided you are not using an MAP estimator, which gives estimates dependent on
the starting values). We have, for instance, done such apparently silly things as using high-performance
fighter results as starting values for general aviation aircraft, simply for reasons of convenience. If
we have data files for one airplane set up exactly in the required format, the easiest way to start anal-
ysis of another airplane is to use the existing files for starting values. We pay a penalty in that con-
vergence is often worse than it would be with better starting values; starting values from a different
airplane, however, are usually much better than no starting values at all. We often use such existing
files to get started in a hurry, before the wind-tunnel data for the new airplane are available in the
required form.

You can also get independent flight test results by using different estimation techniques during the
same flight test program. Such results cannot be completely independent, because they use the same
instrumentation system, the same mass data, and possibly (depending on the methods involved) the same
maneuvers. Nonetheless, using different estimation techniques during the same flight is a valuable
check. The more different the techniques, the better the check. Classical static methods (Perkins and
Hage, 1949; Greenberg, 1951; Klein, 1977) are quite different from output-error methods and thus could be
considered to give fairly independent results. On the other hand, using an equation-error method and an
output-error method on the same maneuvers does not give a particularly good check; both methods are sub-
ject to similar modeling errors and might give similar but wrong results. However, this comparison does
provide a check for some errors and is better than nothing.

5.1.5 Reference Geometry

The predicted aerodynamic characteristics are invariably in nondimensional form. They are thus
associated with a particular set of reference geometry values: the reference area, span, and chord. The
predictions are also defined relative to a reference point. To make use of the predictions, you need to
know the reference geometry values and the reference point, as well as the derivative values.

The main point of this section is that the reference area, span, and chord are just reference values.
Although it is conventional, for instance, that the reference chord be the mean aerodynamic chord of the
wing, there is no strict requirement that the reference values be tied directly to specific aircraft
geometry. In principle, the reference chord could be defined to equal the body length (this is done on
the space shuttle orbiter) or anything else that scales with the vehicle. The most important thing is to
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be consistent in the use of the reference values; always use the same reference values that were used for
the predicted data base (unless you are prepared to adjust the predictions to the revised references and
live with the resulting confusions). For instance, if the predictions use the root chord for the
reference value (a practice we have seen), resist the temptation to "correct" this error by doing your
analysis with the mean aerodynamic chord for a reference; the inconsistency thereby introduced creates
problems and solves nothing.

For variable-geometry aircraft, some projects establish reference geometry values that change as a
function of configuration. Other projects establish a single set of reference values used with all con-
figurations. There are arguments for both approaches, but you should simply adhere to the conventions
established by the project.

5.2 AIRCRAFT MASS CHARACTERISTICS

Accurate mass distribution data are important to flight test analysis. The aircraft mass charac-
teristics relevant to rigid-body motions are weight, center of gravity, and moments of inertia. Weight
and longitudinal center-of-gravity position are easy to measure and are routinely monitored during both
test and operational flights. Moments of inertia and vertical and lateral center-of-gravity positions
require special tests, which are an important part of the flight test program.

In some restrictive circumstances (discussed in detail in Section 5.2.1) you can get by without much
of the mass data, but such circumstances are the exception rather than the rule. Assume that you will
need mass data unless it is demonstrated otherwise.

The flight test plan should provide for accurate monitoring of the mass characteristics throughout
the flight test program. This monitoring can require significant time, money, and effort, particularly
for large aircraft; therefore, if you neglect to plan sufficient resources for the task, you may be
forced to accept either poor flight results or cost and schedule overruns. In preparing for each test
flight you should verify that you have all the required mass data for the flight. You cannot reliably
reconstruct mass data after the flight test program is completed, the configuration is changed, equipment
in the aircraft is moved, and the records of vehicle changes and loadings are lost (if they ever existed).
If you have inaccurate mass data, you will have inaccurate test results, so the mass data deserve the same
care and attention to detail as the flight instrumentation system.

There are four principal uses of aircraft mass characteristics for stability and control derivative
estimation, having different levels of importance and different accuracy requirements. Sections 5.2.1 to
5.2.4 discuss these uses, and Section 5.2.5 discusses sources of mass data.

5.2.1 Nondimensionalization

The most important use of aircraft mass characteristics is for nondimensionalization of the deriva-
tives. Let us use a simple form of the q state equation to illustrate this use:

_ qsc gsc /
4 ST Cm %y_ (Cmgox + CmgS + Cmg % Cmy ) (5.2-1)

Defining the dimensional derivatives

Mg = %ﬁ Cmg (5.2-2a)
y
Mg =%£cm(S (5.2-2b)
y
2
Mg = I5¢ ¢ (5.2-2¢)
q m,
vy ™
Mp = %ic— Cmp (5.2-2d)
y
we can write Equation (5.2-1) as
q = Moo + Mg8 + Mg + My (5.2-3)

There are no mass data appearing explicitly in Equation (5.2-3). In similar manner, we can write all
of the equations of motion in terms of dimensional derivatives (primed dimensional derivatives for
lateral-directional equations, as discussed later in this section), eliminating the explicit appearance
of mass data in the equations (provided we neglect gyroscopic effects). Therefore, assuming that the
dimensional derivatives are constant during a maneuver, we can estimate the dimensional derivatives from
the flight data alone, without considering mass data.
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Given the dimensional derivative estimates, the inverse of Equation (5.2-2) gives the nondimensional
estimates; for instance,

I
Cny = = M

o = Fac Mo (5.2-4)

£O1

The nondimensional derivative estimates are directly proportional to the moments of inertia; therefore,
any given percentage error in the inertia data will directly cause the same percentage errors in the non-
dimensional derivative estimates. By this mechanism, errors in I, Iy, I, and weight cause proportional
errors in nondimensional derivative estimates.

Through a similar mechanism, errors in Iy, cause errors in the nondimensional derivative estimates.
(Errors in other cross products of inertia would have similar effects, but Iy, is the only important

cross product for most aircraft.) To see this effect, start with a simple form of the p and r state
equations.

PIx - rlxz = qsbCy = qsb(CgpB + Cggd + ...) (5.2-5a)
-plyz + rl; = qsbCq = asb(CpgB + Cpgd + ...) (5.2-5b)
The corresponding dimensional equations are 3
o W1
p-r I—XZ_ = LgB + Lgs + ... (5.2-6a)
X
. o I
r-p I—XZ- = Ng8 + Ng& + ... (5.2-6b)
¥4

Equation (5.2-6) still has explicit mass data on the left side. The form independent of mass data is the
primed derivative form,

P =Lg8 + L§s + ... (5.2-7a)

"

Fo= NAB + N§& + ... (5.2-7b)
where the primed derivatives are defined by the equivalence between Equations (5.2-6) and (5.2-7). To

get equations for the primed derivatives, solve Equation (5.2-6) for 6 and r and equate matching terms.
For example,
NG = Ng + lexzf}z

2
T - Ixz/(Ix1z)

(5.2-8)

The estimates of the primed derivatives are independent of the mass data.

Given the estimates of the primed derivatives, we can find the estimates of the nondimensional deri-

vatives by substituting Equation (5.2-7) for 5 and r in Equation (5.2-5) and matching terms. In par-
ticular, matching the 8 terms gives

I I
Cop = =2 (L5 - 22 Ng 5.2-9a
2§ Fsb s T, 8) ( )
Iz . Ixz .
Cns = =2 (N - X2 | 5.2-9b
ns = Zep (Ns T, 8) ( )

For ailerons, the two terms subtracted in Equation (5.2-9b) may nearly cancel; typically Ixz is much
smaller than I, but L&a is much larger than Nga. The result is that small errors in Iy, can cause large

percentage errors, or even changes of sign, in the Cnaa estimates. By similar reasoning, Cgsr estimates
are sensitive to errors in Iy;. The estimates of Cgsa and Cnﬁr are not measurably influenced by Iyz,

because in these cases the Iy; term is negligible compared to the other term.

We have explained the mechanisms by which errors in the mass data cause errors in the estimates of
the nondimensional derivatives. Any such errors in the nondimensional derivative estimates will be con-
sistent for almost all flight conditions, maneuvers, and analysis techniques. It is seldom practical to
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find mass data errors based on internal evidence in the flight data (consistent disagreements with pre-
dictions are the best clues that such errors exist). Because of this, you must be particularly careful
about checking the computations of the mass data enough so that you are confident that the data are
accurate. You cannot try out the data to see how they work.

Ross (1980) documents a case in which the initial analysis used erroneous inertia values.
Consistent differences between the predicted moment derivatives and those estimated in flight led to
suspicion of possible errors in the inertia values used. Subsequent ground-based tests verified signifi-
cant errors in the moments and cross products of inertia; the roll moment of inertia was in error by
about 30 percent, and Iy; had the wrong sign. Ross then used equations similar to those in this section

to correct the initial derivative estimates. The revised nondimensional estimates agreed significantly
better with the predictions than had the initial estimates.

For some purposes, dimensional derivative estimates might be adequate, in which case you might get by
with far less data on mass characteristics. In particular, if dimensional derivative estimates are suf-
ficient, you probably do not need moment-of-inertia data (unless gyroscopic effects are important, and
even then accuracy requirements are less stringent). If your sole objective is to model the aircraft
motions at exactly the same configuration, flight condition, and loading as tested, then dimensional
derivative estimates can satisfy this objective. We have seen test programs, analyses, and simulators
based solely on dimensional derivatives. The dimensional approach is most 1ikely to be appropriate for a
program with limited objectives.

For most programs, estimation of dimensional derivatives is unacceptable for three reasons. First,
all comparisons with values from any other source require nondimensional derivatives. The dimensional
derivatives are useless for comparing with wind-tunnel or computed values (unless you dimensionalize the
wind-tunnel or computed values, which requires knowledge of the mass data). Dimensional values early and
late in the same flight are different, even at the same flight condition, because of fuel usage. It is
difficult to present meaningful plots of dimensional data because there are fewer comparable points on
any one plot, and of course you need many more plots, or more complexity on each plot, to describe the
loading applicable to each point.

The second, closely related, reason is that dimensional derivatives are difficult to extrapolate to
other conditions and loadings (unless you know the mass data, which gets back to the nondimensionaliza-
tion problem). Thus, you need to test more conditions, and you have less preflight assurance that a test
at a new condition will be safe than if you used nondimensional derivatives.

The third reason for using nondimensional derivatives is that test maneuver requirements for esti-
mating dimensional derivatives are much more stringent. Dimensional derivatives are strong functions of
dynamic pressure and velocity. Therefore, if dynamic pressure or veldcity change much during a maneuver,
then the dimensional derivatives are not constant and cannot be accurately estimated by most parameter
estimation techniques. Changes of as little as 1 or 2 percent in dynamic pressure can sometimes cause
noticeable problems in longitudinal cases; a 5 percent change is usually tolerable for lateral-directional
cases. (You can work with somewhat larger variations than these, but you must spend a lot more time on
the analysis and will get more scatter in the results.) These requirements demand carefully designed and
accurately controlled maneuvers initiated from stabilized flight. The nondimensional derivatives are
insensitive to dynamic pressure and velocity over large ranges; we have successfully analyzed maneuvers
where dynamic pressure varied by a factor of two or more. In principle, these same comments apply to
variations in weight and inertia during a maneuver, but such variations are important only in a few spe-
cial circumstances (like sweeping the wings during a maneuver).

Admittedly, it is possible to separate dynamic pressure and velocity effects from weight and inertia
effects, defining partially dimensionalized derivatives that would be insensitive to velocity and dynamic
pressure. Equivalently, you can use nominal mass data when accurate mass data for the vehicle tested are
unavailable. We have used nominal mass data as a last resort or to start analysis before accurate mass
data were available. This solves only a few of the problems of dimensional derivatives. For most
programs, the necessity for accurate nondimensional derivative estimates is a primary factor in the
requirements for accurate mass data. We typically require the mass and moments of inertia accurate
within 2 or 3 percent. Inertia errors much larger than this would become the dominant error source of
the more accurate nondimensional derivatives.

5.2.2 Moment Reference

The second use of mass data is to define the moment reference point of the flight estimates. The
equations of Chapters 2 and 3 are valid only in an axis system referenced to the aircraft center of
gravity. A1l estimated moment coefficients are thus referenced to the aircraft center of gravity (the
reference point is irrelevant to force coefficients).

The moment coefficients from two flight maneuvers with different centers of gravity are not directly
comparable. Similarly, the moment coefficients from a flight maneuver are not directly comparable with
predictions unless the reference point for the predictions coincides with the flight center of gravity.
To compare moment data from different sources, you must first transform them all to a common refer-
ence point.
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For most aircraft, there is little variation in the lateral and vertical center-of-gravity positions
for various allowed loadings, and you can safely neglect the lateral and vertical reference translations.
You will run into lateral trim problems long before lateral center-of-gravity motion causes measurable
changes in the stability and control derivatives (except for the nuisance bias parameters). Gainer and
Hoffman (1972) gives complete transformation equations in three axes. To apply the transformations, you
first need to know the flight center-of-gravity position; if you are neglecting the vertical and lateral
transformations, it is sufficient to know the longitudinal component of the flight center-of-graviy posi-
tion.

For longitudinal translation of the reference point, the most important transformations are

~ Xpref = Xf1t
CMaper = Cmagre ¥ ¢ CNg (5.2-10a)

Xref = Xf1t
C =C + ———= 5.2-10b
NBref  “MBfIt b Ye ( )

where the subscript f1t indicates a value referenced to the flight center of gravity and ref indicates a
value referenced to any other reference point. The values xfit and Xxpef are the longitudinal positions
of the flight center of gravity and the reference point, respectively, in the same units as b and c; xfit
and xpef can be measured from any arbitrary point because they are subtracted, but they must be measured
with the positive direction to the rear of the aircraft. This sign convention for center-of-gravity
position is universal, so we will use it even though it is opposite to our X axis. (This difference
probably arose from conventional axis systems for different disciplines; aircraft construction jigs
define X axes positive rearward). The transformation of Cma and CnB is crucial to aircraft stability,

and you can never neglect it. It is one of the major factors determining the safe range of flight
center-of-gravity positions.

Transformations of control derivatives are occasionally important:

Xref = Xfit
C = —_— ez C .2-
MSpef Cnsere ¥ c Ne (5.2-112)
Xref - Xflt
———Cy

c = .2-
Nopef - CMeft 5 s (5.2-11b)

The equations for transforming damping derivatives are more complicated, but we have never seen fiight
estimates of damping derivatives accurate enough to justify transforming them (unless the reference point
is ridiculous, like outside the vehicle). See Gainer and Hoffman (1972) for these equations. To compare
flight and predicted values, either transform the flight values to the reference point of the predictions
or transform the predicted values to the flight center of gravity. Both options have small, but some-
times troublesome, problems.

The problem with transforming the predictions to the flight center of gravity is obvious: The flight
center of gravity can be different for each maneuver, making presentation difficult. If the flight
center-of-gravity positions are essentially coincident for most or all of the test maneuvers, this objec-
tion does not apply, and the approach works well. This is often the case for unpowered aircraft. This
approach is also good for looking at results from individual maneuvers.

Presentation is simplified if you transform the flight values to the single reference point of the
predictions. The problem with this approach is that it can introduce extra bias and scatter in the
flight data. To see the source of the extra scatter, look at Equation (5.2-10a). The flight estimate of
Cma, translated to the reference point, consists of two terms: the raw flight estimate of Cma and a

translation term proportional to CNa' Therefore, the error in the transltated Cmu equals the error in the
raw Cma plus the error in the translation term. If the reference point is far from the flight center of

gravity and the flight estimates of CNa are biased or scattered, then the translation can add large bias

and scatter to the flight Cma estimates. We observe this problem, for instance, on the space shuttle

orbiter at hypersonic speeds, where the force derivatives have a lot more scatter than the moment deriv-
atives. If the reference point is close to the flight center of gravity or if the flight estimates of
Cn, are accurate, then the translation will cause no problems.

There are two compromise approaches to avoid or alleviate these problems. One compromise is to
define a reference point in the middle of the flight center-of-gravity range and translate both flight
and predicted data to this reference. This minimizes the magnitude of the translation term for the
flight data and thus minimizes the errors added by the translation. The cost of this improvement is the
possible confusion caused by the use of a reference point different from that used for other purposes.

Of course, it may be that the reference point of the predictions is already near the middle of the flight
center-of-gravity range, in which case you probably have few translation problems (unless the flight
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center-of-gravity range is large). This compromise helps primarily when the reference point for the pre-
dictions is something unreasonable, like the tip of the nose.
Another compromise is to use the predicted CNa or fairings of the CNa flight estimates to translate

the flight estimates to the reference point. This is appropriate when the individual flight estimates of
CNa have a lot of scatter. The disadvantage of this approach is that it confuses matters by mixing esti-

mates from individual flight maneuvers with predicted data or fairings of flight data. You no Tonger
have a simple comparison of predictions with the data from each flight maneuver.
We have concentrated on Cma because the Cma translation is usually the most important longitudinal

one and thus the one where most problems occur. The same comments apply to all the translations that are
big enough to be important. The lateral-directional derivative most affected by translation is C"B' We

have emphasized potential problems because there is not much to say about situations in which there are
no problems. You might analyze many test aircraft and never have problems with translating data to the
reference point of the predictions (the most common approach). If your flight data are all at one center-
of-gravity position, the reference point of the predictions is at the same position, and the flight Cn,

estimates are accurate, then this entire section (5.2.2) is somewhat moot. You should be aware, however,
of the potential problems so you will recognize them if they do arise.

5.2.3 Sensor Reference

In addition to its role as the reference point for the aerodynamic moments, the aircraft center of
gravity is also the reference point for the sensor measurements. The angle-of-attack and angle-of-
sideslip vanes and the linear accelerometers sense values that are dependent on the sensor locations.
Equation (2.3-2) shows the form of this dependence. The sensor positions in Equation (2.3-2) and the
similar equations in Chapter 3 are all in terms of the distance from the sensor to the flight center of
gravity.

Whether you model the sensor positions in the observation equations or you correct the sensor data to
the center of gravity, you need the same information: position of the sensors relative to the center of
gravity. This generally requires knowledge of the sensor position and the center-of-gravity position ex-
pressed in the same fixed reference frame. Because the effects of sensor position and center-of-gravity
position are so related, we discuss them together here; consistent errors in all the instrument positions
have the same effect as an error in the center-of-gravity position.

The sensor position relative to a fixed frame is easy to measure (unless you forget to do it until
the sensor package is removed or the aircraft becomes inaccessible to you). You usually know the x com-
ponent of the center of gravity accurately. The y component of the center of gravity is usually very
close to zero and is, in any event, relatively easy to measure.

The z component of the center of gravity can cause serious problems but is often ignored because it
is relatively difficult to measure (at least compared with the x and y components) and has only a small
effect on the open-loop aircraft stability and control. If you ask what the center of gravity is, you
are likely to get only the x component unless you explicitly ask for all three components (and if you ask
for all three components, a common response is to question your need for the data and point out how dif-
ficult it will be to measure the vertical component}).

Fortunately, the vertical component of the center of gravity usually changes little with different
loadings, which somewhat simplifies keeping track of it. In many cases, it is safe to use a single value
for the vertical component of the center-of-gravity position, independent of loading. You cannot, how-
ever, blindly assume that the sensors are at the same height as the center of gravity.

You should always be alert to the possibility of errors in the measured center-of-gravity or sensor
positions. Such errors occur regularly enough that you should make it a rule to examine the data speci-
fically looking for indications of them. You should check for such errors as soon as feasible after
the start of the test program and after any major changes in sensor positions or the flight center of
gravity. You should also check for errors after major changes in the bookkeeping that keeps track of
or accounts for these positions. For instance, if you have been getting raw sensor data, and someone
upstream of you in the data handling "improves" the data by correcting it to the center-of-gravity posi-
tion, then you better check for several possible sources of error. Check that they are using the same
values for positions, that they are using all three axes (not just x position), and that they are cor-
recting to the flight center-of-gravity position (not the reference position). Also check that they are
using the same equations for the correction. It is easy to get the signs wrong; the sign of the term for
correcting the data is the opposite of that in the observation equation, and there are often inconsistent
sign conventions for such things as vertical position. There seems to be about a 50 percent chance of
getting the sign of any given correction term right the first time, no matter how careful you are (well,
not quite that bad, but it sometimes seems Tike it). You need to do these checks soon enough that you
can recheck the instrument positions and the center of gravity before something significant changes on
the vehicle or it becomes innaccessible to you (for example, it crashes or it completes testing and is
transferred elsewhere). In checking the reasonableness of quoted sensor positions, there is no substi-
tute for going to the airplane and looking at the sensor package.

Errors in the measured center-of-gravity or sensor positions result in characteristic errors in
the matches of flight and estimated time histories; the primary method of checking for errors in the
measured center-of-gravity or sensor positions is to look for the associated characteristics in the time
history matches.
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To deduce what the time history errors should look Tike, Took at the terms that correct for sensor
position in the observation. For the major terms, which are the only ones with measurable effects, the
correction term is proportional to one of the states or state derivatives. The error in the time history
match should thus be roughly proportional to the same signal. The error is not exactly proportional,
even in an idealized case with no noise, because the estimator adjusts the parameter estimates to take
out as much of the fit error as possible; the fit is based on these estimated parameters rather than the
true values, which are unknown. 1In spite of the distortion in the fit error introduced by the estimator,
the general character of the error remains similar and is recognizable by visual inspection. We look for
an error signal that is large where the correction term is large, large and of opposite sign where the
correction term is large and of opposite sign, and small where the correction term is small. The sign of
the error can be either the same as or the opposite of the correction term, but it must be consistent.
Additive bias or long-term error trends can somewhat confuse the issue but seldom distort the charac-
teristic shape beyond recognition.

Figure 5.2-1 illustrates the fit of flight and estimated time history data resulting from an erro-
neous specification of instrument position (the figure shows only the relevant signals). These data are
from the first flight of the 3/8-scale, remotely piloted F-15 aircraft (I1iff et al., 1976). The data
and the problem are both real; we made the mistake illustrated here in our first attempts to analyze the
data. Not all cases showed the problem as clearly as this one; because this was one of the cases with
the most obvious discrepancies, we chose to investigate it in detail. Choosing cases that exhibit the
worst symptoms is an important early step in tracing problems.

The match between the measured and estimated roll rate is excellent. The estimated lateral accel-
eration generally follows the measurement but has a few areas of discrepancy. Some investigators would
refer to this match as being a good one (particularly if it were plotted on a less sensitive scale,
making the discrepancies less obvious); we have seen much worse fits described as excellent in the pub-
1ished 1iterature. Our general experience is that even small fit errors are grounds for suspecting that
something is wrong. We look for some identifying characteristics of the errors as clues to their causes.

In the case of Figure 5.2-1, we noticed (after investigating several unproductive hypotheses) some
correlation between the slope of p and the fit errors in lateral acceleration. At about 1.3 sec into the
maneuver, p has a large negative siope, and there is a significant negative error in lateral accelera-
tion. The slope of p becomes positive just after 2 sec, where there is a positive lateral acceleration
error. Just before 4 sec, the slope of p becomes sharply negative, as does the lateral acceleration
error. The correlation is not perfect; between 3 and 4 sec there is a large positive p slope with no
corresponding error, and there is some error in lateral acceleration just before 2 sec, where the p slope
is small. There is enough correlation, however, to establish a strong suspicion; distortions introduced
by the estimator could account for the uncorrelated errors.

Figure 5.2-1 also shows the computed ﬁ. Although there was no measured 5 for this airplane, the com~
puted signal is useful for this kind of debugging. The computed 5 plot shows clearly that ay looks a

lot like p {(with changes in sign, scale, and bias). The aileron signal (not shown in the figure) also
correlates strongly with ay, but significant side force directly caused by the aileron is physically
unlikely (and in any event, we were already estimating side force due to aileron as an unknown). The
derivative of p, however, affects ay through the term for sensor vertical position in Equation (2.3-2k).

Let us check the magnitude of this vertical position correction term. The peak values of p are about
1.5 rad/sec2. Dividing by g = 10 m/sec? gives a peak ay error of about 0.15 g per meter of vertical

position error. Fit errors of up to 0.03 g are evident; these would require about 0.2 meter of vertical
position error. This value is at least plausable enough to merit further investigation. The sensed ay

is quite sensitive to even small changes in vertical position because there are large p values in typical
lateral maneuvers. This conclusion holds for most aircraft.

Motivated by this plausability check, we asked for vertical center-of-gravity and sensor position
data. We found that the lateral accelerometer was 15 cm below the center of gravity. Our initial analy-
sis had relied on a statement that the accelerometers were essentially at the same height as the center
of gravity. Figure 5.2-2 shows the match that results from reanalyzing the data with the correct value
for the vertical position of the Tateral accelerometer. The fit of ay is much improved. There is also a

slight improvement in the p fit, but the p fit of Figure 5.2-1 is good enough that the difference is hard
to see.

This 15-cm error in the assumed position of the ay sensor had a significant effect on several of

the derivative estimates. The largest effects were on the side force derivatives (which is no great
surprise). Figure 5.2-3 shows the flight estimates of side force due to sideslip with both the correct
and the incorrect values of accelerometer position. Figure 5.2-3(a) shows data from the initial anal-
ysis, which used the incorrect accelerometer position. The dashed line is a fairing of this data. Fig-
ure 5.2-3(b) shows data obtained using the correct accelerometer location. The solid line is a fairing
of this data, and the dashed 1ine is copied from Figure 5.2-3(a) for reference. Correcting the assumed
accelerometer location increased the magnitude of the CyB estimates by about 50 percent at low angles

of attack. The estimates with the correct accelerometer position agree much better with predictions
{not shown).

These consistent errors in the side force derivatives suggest a second diagnostic indicator of sensor
position errors (the first indicator is the characteristic time history mismatches). If you have good
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agreement with predictions of moment derivatives but see consistent bias differences between predictions
and flight estimates of side force derivatives, then be suspicious of an erroneous value of the vertical
position of the ay sensor or the center of gravity. Similar differences in the normal force derivatives

can indicate erroneous values of the longitudinal position of the ap sensor.

Thus, we see that a relatively small error in the vertical position of the ay accelerometer resulted

in moderate discrepancies in the time history match and dramatic errors in the estimated side force
derivatives. We learn two Tessons from this result., First, it emphasizes our statement that you need
accurate measurements of the center-of-gravity and sensor positions in all three axes.

Second, you must be critical of your results. Assume that there are errors in your first analysis of
an aircraft (this assumption is probably more accurate than most). Take an actively negative attitude,
and Took for the errors (it is much less embarassing to find your own errors before other people use the
results). Recall that the case shown here was one of those with the most obvious discrepancies; in other
cases you might miss the discrepancy unless you actively look for it. Even if you noticed the discrep-
ancy, an optimistic attitude might tempt you to dismiss it as a “pretty good fit;" considering that most
of the fits were better, you might rationalize that this maneuver had an instrumentation problem or tur-
bulence. (We have collected a long Tist of such rationalizations suitable for explaining almost any
data.) Discrepancies like those in Figure 5.2-1 merit thorough investigation, and it is risky to dismiss
them lightly.

5.2.4 Kinematics

We use the term "kinematics" to describe the basic dynamics of rigid-body motion. This specifically
excludes characterizations of the aerodynamic forces acting on the vehicle. The kinematics largely
derive from the geometry of the vehicle and the reference axes. For instance, the differential equations
for the Euler angles (Equations (2.2-22g) to (2.2-22i)) derive purely from the geometry of the axis trans-
formations and thus are kinematic equations. The kinematics also include such effects as gyroscopic and
Coriolis terms, which depend on angular rates and moments of inertia but not on aerodynamics. It is
these gyroscopic and Coriolis terms that interest us in this section, because they require knowledge of
the moments of inertia.

For most stability and control maneuvers, the gyroscopic and similar terms are small; many of the
terms are zero for symmetric airplanes. Most of the other terms are usually negligible because they are
proportional to products of small angular rates and also to small cross products of inertia. The two
terms most likely to be important are the Ixz; terms on the left sides of Equations (2.2-22e) and

(2.2-22f). For most aircraft, Ixz is the only significant cross product of inertia.

The longitudinal analysis of the first flight of the space shuttle (I1iff et al., 1981) illustrates
one of the exceptional situations in which several of the normally negligible gyroscopic terms are signi-
ficant. There were no intentional stability and control maneuvers on the first flight and little longi-
tudinal maneuvering of any kind. There were several lateral bank maneuvers for trajectory control.
Kinematic coupling resulted in some longitudinal motion during these bank maneuvers. Small though they
were, these longitudinal motions provided the only longitudinal data available in some regimes of the
entry. The shuttle had a flight instrumentation package with sufficient resolution to measure these
small motions. Figure 5.2-4 shows a time history match of one of these maneuvers. Although the data
from these maneuvers were of marginal quality for several reasons, they were adequate to establish rough
approximations of aerodynamic derivative values for safety-of-flight purposes. The small gyroscopic
effects played a central role in these maneuvers.

Gyroscopic moments from a rotating engine can be significant in some configurations, particularly
those with high power-to-weight ratios. The terms proportional to Iye in Equations (2.2-22e) and

(2.2-22f) model this effect; for multiengine planes and multispool engines, the equations are slightly
more complicated but similar in form. Inclusion of these terms requires knowledge of the moments of
inertia of the rotating parts of the engines; you need the moments of inertia only about the axes of
rotation. Your accuracy requirements for the engine inertia data can be fairly loose because the engine
gyroscopic moment is small enough that an error of a few percent is negligible. The accuracy require-
ments vary depending on the magnitude of the engine gyroscopic terms, but as a general guideline, engine
inertias accurate to 10 percent should suffice for all but the most exceptional cases. In many cases you
need only know the order of magnitude so that you can establish that the term is negligible.

5.2.5 Sources

In this section, we briefly 1ist the common sources of aircraft mass data {details can be found in
the references).

Our most common source of mass data is ground-based measurements. The weight and the longitudinal
and Tateral components of the center of gravity can be accurately measured by scales under each wheel.
The vertical component can be measured by tilting the aircraft while on the same scales or by suspending
the aircraft. Swing tests measure the moments of inertia, using springs with known spring constants.
Wolowicz and Yancey (1974) gives the details of these and other ground-based measurement techniques. We
restrict the discussion here to a few general comments about using the results of the ground-based tests.

The first consideration in using ground-based tests is the necessity of adjusting the data to reflect
any differences between the ground test and flight configurations. Some of the most obvious differences
are the fuel and cargo loadings; the ground-based tests might be done with fuel tanks empty, full, or



74

both. Safety considerations often preclude tests with partially full tanks. (Partially full tanks are
actually a greater fire hazard than full tanks because of the fuel/air mixture in the empty portion of
the tanks.) You need to extrapolate or interpolate the data to the fuel loadings of each flight
maneuver. This process varies in complexity, depending on the accuracy required and the available
instrumentation. A typical scheme uses fuel quantity gauges on each tank, recorded either in the instru-
mentation data stream or on a pilot lap sheet. A more complex scheme might use fuel flow meters on each
of several tanks, corrected by comparing integrated fuel flows with postflight measured quantities (fuel
flow meters, so corrected, are usually more accurate than fuel quantity meters). This scheme can be
further complicated if fuel is transferred between tanks during flight. In some cases you can get by with
no fuel instrumentation at all, perhaps by starting a flight with full tanks and using a predicted fuel
flow rate.

Other adjustments to the ground test data include adjustments for cargo, passengers, stores, equip~
ment changes, and configuration. The adjustments are generally straightforward. These are mostly items
with accurately known weights and locations. The greatest difficulty is simply keeping track of exactly
what the flight loadings are. It is easy to forget to record something trivial like how many pilots were
on a particular flight. Landing gear position is a common configuration difference between ground-based
tests and flight. Some ground-based tests are practical only with the landing gear extended. The
adjustment for landing gear is small enough that you can approximate it, knowing the total landing gear
weight, without special tests. (The largest effect is on the vertical center of gravity.) You can also
approximate the effects of minor configuration changes like clipping wing tips.

As an example of the kind of data you might use, Table 5.2-1 shows some mass data tables used for a
remotely piloted oblique-wing vehicle (Maine, 1978). Table 5.2-1(a) shows the empty weight data as a
function of wing skew angle. With the wing skewed, this vehicle has a nonzero Iyy, but Iyz is still
zero and thus not shown. Iyp is the moment of inertia of the propeller, the most significant portion
of the rotating mass of the propulsion system. Table 5.2-1(b) shows fuel loading data as a function
of time from start of the takeoff roll (fuel consumption during warmup is assumed negligible). This
table assumes a constant known fuel flow rate and uses the known positions of the two fuel tanks. The
A values in Table 5.2-1(b) add to the empty weight data of Table 5.2-1(a); there is a small amount of
unusable fuel in the tanks even when the "all fuel expended" condition occurs, which explains the non-
zero A at that condition. All the inertia data in these tables are referenced to a nominal center of
gravity of 29.3 percent of the reference chord. The vertical center of gravity is not significantly
affected by skew or fuel, and the lateral center of gravity is on the vehicle centerline.

The final adjustment to ground-based measurements is translating the moments of inertia to the flight
center of gravity. Our equations of motion require moments of inertia about the center of gravity for
each maneuver, not about some arbitrary reference point. The translation is simple (Wolowicz and
Yancey, 1974), but it is easy to accidentally omit.

We have mentioned being "careful" about measuring mass characteristics. It is difficult to expli-
citly state what you do to be "careful" in all regards, but the handling of reference points provides a
specific and pertinent example. You should always explicitly indicate the reference point of all data
that are dependent on a reference point; moments of inertia are in this class of data. Assuming that
everyone understands what reference point you are using constitutes careless data handling and invites
errors. If we receive inertia data without an explicit indication of its reference point, we take it as
a warning of carelessness, and we feel compelled to review the processing of the inertia test data,
starting from its raw form. Errors arise easily when, for example, one group assumes that everyone knows
they are using the wind-tunnel reference point, a second group assumes that the data are referenced to
the flight center of gravity, a third group forgets that a reference point is important, and the data are
really referenced to the pivot point of the test fixture. We can broadly generalize this principle:
Write out what you mean explicitly rather than assuming that others will know. The worst that can result
is that you present redundant data, a small price to pay for getting the results right.

Writing out assumptions also helps insure that your own analysis is internally consistent. The
hypothetical group that forgets the relevance of the reference point is in fact too large to ignore.
Such negligence can result in equations with errors or internal inconsistencies; it is this possibility
that makes us dubious when we receive data without a labeled reference point. Subsequent assurances that
“we always use the wind-tunnel reference point" do little to assuage our doubts (particularly if the
source cannot tell us exactly where the wind-tunnel reference point is).

A second good source of mass data is manufacturer's records of component buildup. If the manufac-
turer keeps meticulous records of the weight, position, and mass distribution of each component in the
aircraft, these records can give total aircraft moment-of-inertia data that are more accurate than those
from a swing test. As a flight data analyst, you will have little choice as to whether such records are
kept. To be worthwhile, these records must have been kept from the start and integrated with the pro-
duction change procedures. For a completed airplane, do not consider reconstructing the mass distribu-
tion component by component. On the other hand, if the manufacturer has maintained a serious weight
control and monitoring program from the initial design stages, this is probably the most accurate source
of mass distribution data available.

The use of manufacturer component buildup data is much like the use of ground-based test data. You
need to adjust the data to the exact configuration and loading of each flight maneuver and then translate
the data to the flight center of gravity. If the manufacturer is not specific about what configuration,
equipment, loading and reference point the data apply to, then the data probably are not worthwhile.

You can roughly estimate inertias from simple data like aircraft weight, wing span, general con-
figuration, and inertias of similar aircraft. Such estimates are good primarily for reasonability
checks.
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As a last resort, there are several ways of estimating mass characteristics from flight data, but for
flight test purposes, it is better to use other sources for mass data. Methods of estimating mass
characteristics from flight data span a wide range of complexity. Some of the simplest methods are the
most useful in some situations. Unfortunately, many of the simple methods presume knowledge of the
aircraft aerodynamics and are thus inappropriate for flight test, where their use amounts to circular
reasoning. For instance, you can trivially deduce the aircraft weight from the dynamic pressure and the
coefficient of 1ift. Unfortunately, in flight test you cannot assume that you know the coefficient of
1ift for a given flight condition; you are more likely to be interested in deducing the coefficient of
1ift from the weight and dynamic pressure. Similarly, if you know the pitching moment characteristics,
you can deduce the Tongitudinal center-of-gravity position from the control surface positions required to
trim at a given flight condition. The more knowledge you are willing to assume about the aircraft aero-
dynamics, the more readily you can deduce mass characteristics from flight data, but methods based on
knowledge of the aerodynamics have only minimal utility in flight test.

A class of methods more appropriate to flight test requirements involve applying known forces or
moments to the vehicle. Any time you apply a known force or moment, you can deduce information about
mass characteristics. For instance, suppose you drop a large known weight from the aircraft in Tevel
flight (the weight having been stored in some way that does not affect the aerodynamics). One way (not
the only way, and probably not even the best) to deduce the aircraft weight from this drop is to maintain
the same configuration and flight condition (except for ap) as before the drop. The aircraft weight

after the drop is
Wa = Wd/(an-1) (5.2-12)

where Wy is the weight dropped and an is the normal acceleration after the drop. This equation does
ignore several small effects, like aerodynamic changes due to the changes in normal acceleration.

You are unlikely to use methods like Equation (5.2-12) to determine aircraft weight because you will
get better accuracy with less difficulty by simply weighing the aircraft on the ground. Flight measure-
ment of mass characteristics is a last resort, and you will use it only for quantities, like moments of
inertia and vertical center-of-gravity position, difficult to measure with available ground equipment.

There are numerous methods of applying known moments and forces. We already mentioned dropping known
weights. Similar principles apply to moving a known weight within the vehicle (perhaps pumping a known
amount of fuel from one tank to another). You can externally apply known forces and moments with rocket
engines (although you must be careful to avoid plume impingement and flow interference). Poulter (1972)
uses drag chutes instrumented with strain gauges.

It is possible (but seldom advisable) to estimate center-of-gravity position simultaneously with the
aerodynamic coefficients. The offsets of the instruments from the center of gravity are simply included
as additional unknown parameters to be estimated.

5.3 ATMOSPHERIC DATA

Useful atmospheric data include static pressure, density, and temperature as functions of altitude.
These data are needed to obtain true altitude by comparing onboard pressure measurements with the
atmospheric data tables. They also provide a possible substitute for onboard static pressure and tem-
perature measurements if the altitude is independently known (perhaps from radar). Atmospheric data are
seldom critical, but they can make the analysis easier and provide redundant data for cross checking.

Atomospheric data can be obtained from several sources. One of the most common sources is balloon
flights. For rough values, you can sometimes use a standard atmosphere, corrected based on ground-level
conditions.



TABLE 5.2-1. — OBLIQUE-WING AIRCRAFT MASS DATA

(a) Empty weight data

Wing skew angle, deg

0 15 30 45
Ix, kg-m2 | 314 302 262 211
Iy, kg-m¢ | 602 622 648 718
17, kg-m? | 824 824 824 824
Ixz, kg-m2 | 69 69 69 69
Ixy, kg-m2 | 0 -54 -94 -108
Ixp, kg-m2 | 0.241 0.241 0.241 0.241

(b) Fuel loading data

Time, Event Total mass,2 | Center of gravity, | Aly and Alz,b | alxz,b
min kg percent ¢ kg-m2 kg-m2
0 Start of takeoff roll 414 28.0 54 3
36 Forward fuel expended 400 31.5 12 3
78 Al11 fuel expended 383 33.2 3 0

aAssumes a fuel flow rate of 0.39 kg/min.

bThe values in these columns are added to the empty weight data in Table 5.2-1(a) to obtain
the data adjusted for fuel loading.
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6.0 FLIGHT TEST MANEUVERS

The flight test maneuvers are the part of stability and control testing that is most visible to
people outside the specialty area. The entire test team and interested outsiders generally watch the
test flights. During the second space shuttle entry, for instance, the stability and control maneuvers
drew significant media attention (there were no intentional test maneuvers on the first flight). Mun-
dane details such as instrumenting the vehicle and analyzing the data are secondary, mentioned only
when explaining the purpose of the maneuvers. These external viewpoints distort the modern flight test
process; flight test no longer consists solely of flying the airplane in various conditions to see if
it breaks. We must acknowledge, though, that in spite of all the other work involved, flying the air-
plane is the basic element of flight testing.

This chapter discusses the kinds of flight maneuvers you use for stability and control derivative
estimation. The discussion ranges from flight scheduling to design of individual maneuvers. A complete
flight test program will include numerous other maneuvers for testing things such as performance, han-
dling qualities, static and dynamic structural characteristics, system operation, and mission suit-
ability. A major part of flight test planning is the integration of the various maneuver requirements
and flight restrictions arising from different disciplines. In some cases, a single maneuver can meet
the requirements of more than one discipline (Mulder et al., 1979).

6.1 THE FLIGHT ENVELOPE

The flight envelope is the set of all conditions at which the aircraft can safely fly. The flight
envelope includes combinations of Mach number, altitude, velocity, dynamic pressure, angle of attack,
normal acceleration, weight, center of gravity, flap position, wing sweep, engine power settings, and
other parameters.

6.1.1 Envelope Coverage

No single test maneuver can possibly explore the complete flight envelope of an aircraft. The first
step in planning flight test maneuvers is determining the flight envelope your tests must cover. This
decision, more than anything else, determines the duration of the flight program. For some purposes,
testing at a single flight condition is adequate (for instance, if your purpose is just to try a new
identification algorithm rather than to learn anything new about the airplane). A few maneuvers in a
single flight may be adequate for testing at a single flight condition.

For flight testing a new airplane design, you will need to test at a matrix of aerodynamic con-
ditions covering the entire flight envelope. For a high-performance airplane with a large flight enve-
lope, this testing usually spans hundreds of maneuvers, dozens of flights, and months of time. Some of
the parameters defining the flight envelope do not directly affect aerodynamics and thus can be omitted
from the test matrix. For instance, weight is always a factor in defining the safe flight envelope, but
it has little to do with aerodynamics. Structural deformations related to weight affect the aerodynamics
in principle, but the effects are too small to measure in most cases.

Requirements may vary in different parts of the flight envelope, depending on operational require-
ments and predicted problems. If small errors in the predicted aerodynamics would result in unacceptable
characteristics {(or if they are unacceptable as predicted) at a normal operating condition, where full
aircraft capability is required, then you will need extensive data near the problem flight condition. If
the predicted aerodynamics indicate docile behavior at a flight condition encountered only in an emer-
gency, where the only requirement is to come back in one piece, then a cursory flight check for gross
errors in the predictions is adequate. You should do at least a cursory flight check in all areas of the
aerodynamic flight envelope, no matter how benign the predicted behavior; one of the things you are
looking for in flight test is errors in the predictions. A corollary of Murphy's law states that if you
omit all flight testing at a condition predicted to be benign, then the predictions will prove to be wrong
at that condition.

The form of the flight envelope to be covered also influences how you will have to organize and pre-
sent results. When the aerodynamics are a function of many parameters, a coherent presentation of the
meters. Considerations of how to present the results can influence exactly what flight conditions you
request for test maneuvers.

6.1.2 Envelope Expansion

Testing a new airplane design is significantly different from testing a previously flown configuration
(we have participated in both types of test programs). A major factor in testing a new aircraft design is
expansion of the flight envelope. It is imprudent to take the airplane to the predicted limit of its per-
formance on the first flight. Instead, you restrict the first flight to the most benign conditions pos-
sible. From this point, you gradually expand the demonstrated and tested flight envelope to the 1limits of
the airplane's capabilities. This expansion of the flight envelope intrinsically involves extrapolating
data outside of the previously tested envelope to determine whether the first test flights into new
regimes will be safe. To minimize the effects of possible extrapolation errors, the envelope expansion
proceeds in small steps, requiring a large number of maneuvers and flights.

The envelope expansion process places special demands and constraints on the test maneuvers. You can
do maneuvers only in the cleared portions of the flight envelope. Near the extremes and in newly explored
parts of the envelope, you may be restricted in the magnitude and type of maneuvers allowed until there is
more confidence in those areas.
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There is a quandary in these restrictions in that you need good quality maneuvers to gain the con-
fidence that you need before you are allowed to do the good quality maneuvers. The solution involves
designing the best maneuvers possible within the constraints, getting the most information out of the
avatlable flight data, and then relaxing the constraints to the extent consistent with flight safety.
In critical flight regimes, this confidence building can be a slow process. After five space shuttle
flights through some regimes there were still constraints on the allowable maneuvers in those regimes.

Time is a major constraint in envelope expansion because results from some maneuvers are needed
to clear the airplane for subsequent flights. In a fast-paced envelope expansion program, you will
be extremely conscious of the tradeoff between timeliness and thoroughness. To meet schedule demands,
you will be forced to put out a preliminary data analysis that is adequate for safety clearance.
After the envelope expansion phase, when you have time for a more thorough analysis, you can publish
refined results.

The constraints on testing a previously flown configuration or a minor modification of a previously
_flown configuration are much less stringent. We are often involved in such tests to obtain data for
control system studies, simulators, or other purposes. After a few initial flights to test the data
system, you can get hundreds of maneuvers, covering the entire flight envelope, in one or two flights.
Furthermore, the test flight conditions can be spaced farther apart than in an envelope expansion program
because interpolation is more reliable than extrapolation.

6.1.3 Scheduling

We leave to management texts the job of discussing critical paths, program evaluation and review
technique (PERT), and such management tools for scheduling. On any project large enough to use such
formal tools, the flight data analyst will have Tittle influence on planning the schedule. This does
not mean that scheduling is an issue you can ignore. Indeed, scheduling can be a crucial factor in
whether you get usable data or not, and you should be aware of the potential problems so that you are
better equipped to avoid them. The less influence you have on the schedule, the more attention you
have to pay to ensuring that you get usable data (see Section 1.5 regarding success-oriented programs).

In the ideal flight test program (from the data analyst's point of view), you fly one or two checkout
flights and then ground the airplane until you have done enough analysis to tell whether there are data
system problems. Realize that every flight made with a bad data system might have to be reflown. Flights
made with "small" data system problems could require several times the expected analysis effort to find
and fix the problems with confidence (our definition of a small problem is one that is fixable). For
these reasons, you want to minimize the number of flights with an unvalidated data system. You can
achieve this either by slowing down the flight schedule or by speeding up the data system validation (it
will probably be easier to influence the latter). If you are forced into a rush flight schedule, you
must place high priority on rapid validation of the data system; cut those corners necessary to process
and analyze some data as rapidly as possible. The analysis need not be detailed enough to publish, even
as preliminary data; it just needs to identify whether there are data problems.

Even after the data system is checked out, the data from any particular maneuver can be bad because of
poor maneuver execution, data dropouts, sensor failures, turbulence, aircraft characteristics signifi-
cantly different than predicted, or other reasons. Therefore, you should continue to allow for repeat
maneuvers. The safest policy is to fly every maneuver at least twice and critical maneuvers three or four
times. Even then you should allow contingency time for other maneuvers in case analysis reveals generic
problems (and the analysis must be far enough along to reveal such problems while you still have the
option of flying more maneuvers). You can then afford to lose some data. If you are fortunate enough to
have good data for all the maneuvers, the duplicate data will help give confidence in the results.

If you complete the entire flight program before analyzing any data, and you perform no repeat
maneuvers, then you have a miniscule chance of getting good data and a somewhat larger chance of get-
ting useless data; but the most 1ikely outcome is that you will spend many times the anticipated time
in analyzing the data, and you will get inconclusive results. You might be convinced that the results
are probably good, but you will be unlikely to stake your career on them.

6.2 SMALL-PERTURBATION MANEUVERS

Section 6.1 discusses general issues relating to the number of maneuvers and the selection of flight
conditions. We now begin consideration of the design of individual maneuvers. We concentrate first on
the design of small-perturbation maneuvers. A small-perturbation maneuver is a maneuver to obtain data at
a single flight condition. The aircraft motions are constrained to relatively small changes from the
reference condition. This section discusses influences on the use and design of small-perturbation
maneuvers. The issue of identifiability, which is an important infiuence on the maneuver design, merits
special emphasis and is covered in Section 6.3.

6.2.1 Reasons for Small-Perturbation Maneuvers

There are several reasons for our emphasis on small-perturbation maneuvers. The most important is that
small-perturbation maneuvers are naturally suited to locally linearized models of the aerodynamics. Large
maneuvers exceed the range of validity of locally linearized models and thus necessitate the use of non-
linear aerodynamic models. Nonlinear models are much more difficult to work with than linear models,
for reasons we discuss elsewhere (Maine and I1iff, 1984; and others). Therefore, except where there are
compelling arguments for nonlinear models, we prefer to use linear aerodynamic models and thus small-
perturbation maneuvers. Conversely, nonlinear aerodynamic models require large maneuvers to identify
the nonlinearities; this point is moot if the requirement for a nonlinear model arises from inability
to stabilize the airplane well enough to do a small-perturbation maneuver.
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The second reason for emphasizing small-perturbation maneuvers is the difficulty of designing adequate
large-amplitude maneuvers. Even if you have tools to handle the nonlinear estimation problem, the design
of adequate large maneuvers is itself a formidable task. You will find sufficient challenge in the design
of good small-perturbation maneuvers.

The third reason for emphasizing small-perturbation maneuvers is sometimes so important as to make
all other arguments irrelevant: Safety considerations do not allow large amplitude maneuvers in new
aircraft designs or untested flight regimes. No matter how convincing your arguments, you may find that
small maneuvers are all that you are allowed; you must then design maneuvers to get the best data possi-
ble within the constraints of flight safety. If you are working with a proven airplane or on a high-risk
unmanned project, you will have considerably more freedom in maneuver design.

6.2.2 Signal-to-Noise Ratio

The most obvious question about small-perturbation maneuvers is how small they should be. The answer
to this simple question varies widely from case to case and is a compromise between conflicting pressures.
In this section we examine signal-to-noise ratio, one of the conflicting factors influencing the choice
of maneuver size; in Section 6.2.3 we examine other factors.

The signal-to-noise ratio is the amplitude of a signal divided by the amplitude of the noise. The
most precise definitions would use root-mean-square amplitude, but we typically use eyeball estimates of
peak amplitudes, which are adequate for the purposes here. Each of the aircraft sensors will have a dif-
ferent signal-to-noise ratio for a maneuver.

The definition and evaluation of the signal amplitude are relatively straightforward and need no
elaboration. A useful definition of the noise amplitude is more oblique. For our current purposes, the
noise is anything not accounted for by the deterministic part of the system model. This noise includes,
among other things, effects of sensor resolution and accuracy, quantization, atmospheric disturbances,
vibration (in the flight environment, not in the lab), and unmodeled nonlinearities. The relative sizes
of the various effects vary greatly.

It is important to consider the frequency content of the noise. Coherent high-frequency noise,
usually from structural vibration, is seldom a real problem. Such high-frequency noise is easy to filter
out. Aliasing of the high-frequency noise can cause problems, as discussed in Section 7.3, but these
problems are avoidable.

Figure 6.2-1 (duplicated from Section 7.3) shows some data contaminated by high-frequency structural
noise. The apparent signal-to-noise ratios of q and particularly of a, are low. The noise amplitude on

ap is larger than the signal. Figure 6.2-2 (also duplicated from Section 7.3) shows the same data after
filtering. The noise amplitude is reduced by over an order of magnitude; it is barely perceptible on ap

and is imperceptible on q. The apparently poor signal-to-noise ratio of Figure 6.2-1 is misleading
because the clean signals shown in Figure 6.2-2 can be obtained from the data. Section 7.3 discusses
these data in more detail.

Only the noise in the same general frequency range as the system response constitutes a problem.
Such noise is difficult to distinguish from system response and thus causes estimation errors. High-
frequency noise is readily distinguishable from system response and does not cause significant estimation
errors when properly handled. Therefore, to get a useful measure of the signal-to-noise ratio, you
should consider only the noise near the system frequencies. This avoids the misleading values
illustrated by Figure 6.2-1.

The signal-to-noise ratio is the primary factor favoring large maneuvers. If the noise is indepen-
dent of the maneuver size and if the system is perfectly linear, then larger maneuvers result in larger
signal-to-noise ratios, and thus better parameter estimates; the variance of the estimates is inversely
proportional to the square of the amplitude of the maneuver, all other things being equal. Of course,
neither of these assumptions is strictly true, but this idealization shows the general mechanism by which
larger maneuvers give better estimates. The assumptions break down severely at large amplitudes, but
signal-to-noise considerations place a definite Tower bound, dependent on the noise level of the data, on
the usable maneuver amplitudes. As a rough quantitative guide, a signal-to-noise ratio of 100 is about
the best you can realistically expect. The most important signals should have a signal-to-noise ratio
of at least 10 to get good results.

Figure 6.2-3 shows the time history of a tiny longitudinal maneuver during the first space shuttle
entry (I1iff et al., 1981). To minimize the risks of this first entry, there were no intentional sta-
bility and control maneuvers (the extreme case of a limitation imposed by safety considerations). The
airplane was flown as smoothly as possible throughout the entry; transients the size of those in Figure
6.2-3 are unavoidable with the existing shuttle control system. This maneuver would be too small to ana-
lyze with typical aircraft instrumentation; the 0.1-deg/sec peak pitch rate of the maneuver is only a few
times the typical pulse code modulation (PCM) resolution for a pitch rate gyro channel. However, the
shuttle has a high-resolution data package, the aerodynamic coefficient identification package (ACIP),
specifically designed for stability and control analysis.

Even with this high-resolution data system, the maneuver shown in Figure 6.2-3 is about the lower
1imit of what we can reasonably analyze on the shuttle. The limitation arises from the instrument noise
and vibration Tevel (as the package is currently installed), which is significantly larger than the reso-
Tution. The signal-to-noise ratio of the pitch rate and angle of attack is about 10; that of ap is dif-

ficult to estimate but is probably about 1. The signal size in angle of attack is the 0.5° motion of the
signal during the maneuver, not the 40° total value. The dynamic signal in ap is difficult to see; the
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steady increase during the maneuver is due mostly to increasing dynamic pressure and does not constitute
a response to the dynamics of the maneuver. We got reasonable (not excellent, but reasonable) pitch co-
efficient estimates from maneuvers of this amplitude but marginal to poor normal force coefficient esti-
mates; such qualities are about what we expect from examining the signal-to-noise ratio of Figure 6.2-3.

6.2.3 Other Sizing Considerations

Small-amplitude nonlinearities can define lower bounds on acceptable maneuver size. We normally
think more of large-amplitude nonlinearities, but there are some dead-band and hysteresis effects that
are apparent only for small motions. For instance, a control surface might have Tittle effectiveness
until it deflects far enough to get out of the wing boundary layer or a small area of separated flow.
There is speculation, as yet unverified, that a similar small-amplitude nonlinearity could explain the
space shuttle's small oscillations between Mach 1 and Mach 2 and the apparently contradictory well-damped
response to larger inputs in the same regime.

Several factors favor small maneuvers. The first such factor is the requirement of linearity. As
the maneuver magnitude increases, the locally linearized model of the aerodynamics loses its validity.
The estimates gradually become poorer representations of the airplane, eventually passing an il1l1-defined
border between acceptability and unacceptability. For extremely large maneuvers, there is little we can
do except abandon either the maneuver or the linear model. For maneuvers near the border of accepta-
bility, there are several approaches to improving the quality of the estimates.

A closely related factor favoring small maneuvers is the necessity to maintain a nearly constant
flight condition. The locally linearized model applies only at a specific flight condition. If the
maneuver is large enough that the flight condition changes significantly, the linear model may become
inadequate. For example, you must control Mach number precisely for maneuvers at transonic conditions;
the aerodynamic coefficients at Mach 0.95 could be radically different from those at Mach 0.98. The
linear model is more flexible about changes in some flight condition parameters than in others. We can
tolerate large changes in dynamic pressure if we linearize using point-by-point measured values of
dynamic pressure (see Section 3.7); this adds significantly to the computer costs but not to the com-
plexity of the data analysis.

A maneuver can be quite large in some senses, while still meeting the requirements of a small-pertur-
bation maneuver. Figure 6.2-4 shows a maneuver designed for estimating Cmg. Maine and I1iff (1979) dis-

cuss the details of the design of this maneuver. For now, let us note that the maneuver includes a 360°
aileron roll, with large changes in altitude, attitude, acceleration, and dynamic pressure. However, the
angle of attack, elevator position, and sideslip angle (not shown) stay within relatively small limits.
This is a small-perturbation maneuver, and it was successfully analyzed with a Tinear model.

The final factor limiting the size of the maneuvers is flight safety. The maneuver shown in Figure
6.2-4 would be unacceptable in an envelope expansion program or on a large transport plane.

These considerations place lower and upper bounds on the acceptable maneuver amplitude. For most
aircraft, the range between the lower and upper bounds will be large, the best maneuver amplitudes being
those near the middle of the acceptable range.

This discussion has been more descriptive than quantitative. Table 6.2-1 gives a few specific num-
bers for reasonable maneuver amplitudes. We must emphasize, however, the severe limitations of these
rough numbers. First the numbers are oriented towards high-performance airplanes such as fighters; this
is the class of airplane with which we have the most experience (though we do have experience on a wide
variety of aircraft). For a large transport, you will generally use about the same displacement angles,
but smaller rates than these numbers indicate. Second, even for a given airplane, the maneuver ampli-
tudes will vary with flight condition. Finally, the magnitudes shown in the table for different signals
will often be inconsistent; a 2° angle-of-attack change might imply a 1-g change in normal acceleration
for a high-speed condition.

6.2.4 Design Constraints

There are several practical constraints on the design of stability and control test maneuvers. This
section briefly lists the kinds of constraints we have most commonly encountered. Some of the constraints
are precisely defined; such constraints include control surface position limits and actuator rate Timits.
The hardware is incapable of exceeding these limits.

Other constraints relate to the control system. It might be impossible to independently define the
position of each control surface without redesigning the control system. For instance, a single lateral
stick command often results in a blend of inboard aileron, outboard aileron, spoiler, and rudder motions
{or whatever combinations of surfaces the particular airplane has); in this case a maneuver with only out-
board aileron motion is not possbile. The control system often has feedback loops that are impossible or
unsafe to turn off. Such feedback loops present special problems, discussed in Section 6.3.4 You might
also encounter filters, electronic or mechanical, in the control system that limit your ability to make
sharp inputs.

Combinations of the aerodynamics and the control system can prevent stabilization at extreme
flight conditions. This can happen either because there is insufficient control power to trim at the
desired condition or because the airplane, though having enough raw power, is too poorly behaved to
stabilize at the condition. Extreme off-trim conditions may be impossible to reach safely, even in a
transient maneuver.
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Some constraints are vaguely defined. Many maneuver magnitude constraints, whether due to safety or
linearity considerations, have some flexibility. A maneuver with a brief transient beyond the stated
boundaries might be acceptable, while another maneuver that closely approaches several safety boundaries
could be judged as too risky for the expected return. In general, there are degrees of acceptability
rather than simple definite boundaries.

The requirement to maintain a constant flight condition falls in the flexible class. Section 6.2.3
discusses the distinction between flight condition parameters that can vary widely and those that must be
precisely controlled. The exact amount of acceptable deviation is seldom defined. This requirement is
often a major factor in maneuver design. Figure 6.2-5 shows a maneuver dominated by the requirements of
maintaining Mach number constant at 0.9 and angle of attack constant at 12° during a lateral-directional
maneuver. The airplane had insufficient thrust to maintain these conditions in Tevel flight,.

In more conventional flight regimes (level cruise flight) you often choose the order and sign of
inputs to minimize changes in the flight condition. If the first part of a lateral-directional maneuver
starts the aircraft rolling to the right, you might choose the sign of the latter part of the maneuver to
counter the right roll. Another approach is to delay until the end of a maneuver those inputs likely to
result in the largest upsets of the flight condition. This allows you to choose the time segment actualtly
used in the analysis so as to exclude the large flight condition changes.

One good approach to minimize the flight condition changes during a maneuver is to start from a non-
steady condition. For instance, if the maneuver will cause the aircraft to accelerate, start from a
decelerating condition. Figure 6.2-4 shows an example of applying this idea, which in this case reflects
pilot common knowledge: It is best to pull the nose up before starting a roll. The dynamic pressure
change in this maneuver would have been much larger were the maneuver initiated from level flight.

6.2.5 Pilot Involvement

Unless you have the capability of programming automatic inputs, the maneuvers must be such that a
pilot can fly them with the required precision. This constraint is best addressed by discussing the pro-
posed maneuvers with the pilot early in the planning stage. Kleingeld (1974) demonstrates precise execu-
tion of a demanding maneuver; extensive simulator training aided this task. The maneuver shown in Figure
6.2-5 illustrates extremely precise control in spite of demanding physical conditions (over 4 g) and
unusual attitudes.

A knowledgeable test pilot can often suggest alternative strategies for obtaining the data you need.
The suggestions sometimes can be as simple as restating the maneuver description in different terms. For
instance, an impractical maneuver requirement of starting an aileron pulse 1.8 * 0.1 sec after a rudder
pulse takes on a more reasonable appearance when restated to require the aileron pulse at the time of peak
positive sideslip angle. Besides being easier on the pilot, the latter statement is probably a more
robust statement of your requirements, considering possible differences between your predictions and the
actual aircraft response. You may find that the pilot has an excellent instinctive feel for things that
sound complicated, like what kinds of inputs will excite the Dutch-roll mode (a subject 1ikely to be of
much interest to you; see Section 6.3.2).

The maneuvers shown in Figures 6.2-4 and 6.2-5 were designed in close consuitation with the test
pilot, who had a good understanding of the engineering objectives and made major contributions towards
designing a maneuver to meet the objectives. If you have good test pilots, take advantage of their
skills to help you design good maneuvers, rather than giving them yes/no choices. Flying test maneuvers
is, after all, their area of expertise. Even if you have automatically programmed inputs, the pilots
are likely to be helpful in designing the inputs.

A side benefit of actively involving the pilots in maneuver design is that they are then better
equipped to adjust to unexpected situations. You might have more stringent safety limitations than
expected because of in-flight failures or aircraft characteristics different than expected; a pilot
familiar with your objectives might be able to modify the maneuver to meet the new constraints instead
of abandoning the maneuver as impossible. The necessary modifications are sometimes so simple as to
be obvious if the pilot has a simple understanding of the objectives. Suppose, for instance, you
requested that a maneuver be initiated at 12° angle of attack, but the airplane is unexpectedly limited
to a maximum of 10° angle of attack. If the pilot has no more information than that, you will probably
lose a maneuver. If the pilot understands that your objectives just require the highest practical angle
of attack, estimated as 12°, the pilot might get you usable data by starting the maneuver at a 9° or 10°
angle of attack.

You can encounter unexpected opportunities, as well as unexpected limitations. Even in the most
tightly packed flight programs, unforeseen limitations encountered in flight can force cancellation of
many of the activities planned for a flight, leaving idle time. If the limitations do not affect the
stability and control maneuvers {for instance, if only the flutter instrumentation fails on a flight
planned to gather flutter data), you have a good opportunity to gather extra data. Much of the cost of
a test flight is incurred getting the airplane in the air; the savings from ending a flight early are
usually negligible compared to the cost of the flight. Therefore, you want to get as much data as pos-
sible out of each flight as long as the airplane is safe to fly. A pilot with a good understanding of
your requirements can often improvise useful maneuvers on the spot instead of landing early for lack of
better things to do. Such improvised maneuvers need not be ideal, just useful.
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6.3 IDENTIFIABILITY

Identifiability is the central issue in the design of maneuvers for parameter estimation. The issues
discussed in Section 6.2 place important constraints on the maneuver design, but they serve a secondary
role as modifiers to the primary goal of identifiability. The objective of the stability and control
test maneuver is to provide good identifiability within the constraints imposed.

The unknown parameters of a system are said to be identifiable if it is possible to identify their
values based on measurements of the system inputs and outputs. Although it is common to talk loosely of
the system being identifiable, the definition depends inherently on the parameterization of the system.
Almost any system can be made unidentifiable by allowing enough of its parameters to be unknown; con-
versely, a system can often be made identifiable by specifying known values for enough of its parameters.
Therefore, it is more reasonable to talk about the parameters of the system being identifiable than about
the system itself being identifiable.

As we use the term, identifiability is defined for a specific input (thus the relevance to this
chapter on maneuver design). It is trivial to demonstrate systems that have unidentifiable parameters
for all possible inputs; the most trivial examples are systems with no outputs. Therefore, input design
is obviously not the only factor in identifiability. The system structure and parameterization are the
primary factors, and they define the limits of what is achievable by maneuver design. In this chapter we
focus primarily on maneuver design. Naturally, the subjects of maneuver design and identifiability are
closely related; you cannot definitively settle one without considering the other.

We leave formal discussion of identifiability to other sources. Maine and INiff (1984, chapter 11)
discusses several aspects of identifiability. Plaetschke and Schulz (1979) compares several proposed
methods of automatically designing maneuvers to "optimize" identifiability. You can design maneuvers with
good identifiability by following a few general principtes (discussed in Sections 6.3.1 to 6.3.4). Our
emphasis is on criteria that are easy to evaluate in practical situations; in some cases the answers are
obvious by inspection, with the appropriate insight. Most practically encountered identifiability
problems are simplte, often trivially simple. Avoid burying your head so deeply in a morass of pedagogical
detail that you miss what is obvious to the unsophisticated.

6.3.1 Independent Inputs

You must have independent inputs on every control surface for which you intend to estimate deriva-
tives. Part of this requirement is obvious at first glance: You cannot estimate rudder derivatives
if the rudder does not move. The requirement that the inputs be independent, although simple to explain,
is a major source of confusion and error. If the motion of one surface is directly proportional to the
motion of another, then there is no way to distinguish the effects of the two individual surfaces.
Aileron-to-rudder interconnects give a classic example of this problem. Suppose the pilot moves the
lateral stick in an airplane with an aileron-to-rudder interconnect. Not only does the rudder motion not
help the data, it actually destroys the aileron effectiveness information. You can estimate neither
aileron nor rudder derivatives  from such a maneuver, even though both surfaces move, because the motions
of the two surfaces are not independent. The best you can do is estimate an equivalent combined effec-
tiveness, ignoring the question of how much of the effect comes from each surface.

There are many circumstances in which surfaces move together, as in the aileron-to-rudder interconnect
example. In some cases, the combined equivalent derivative is all you need. In large airplanes you some-
times find that a single control surface is physically split into two or more segments, each driven by a
separate actuator. In normal operation you do not care how much of the effectiveness comes from each
segment, because all the segments move together within the accuracy of the actuators. (In any event,
superpositioning individual segment effects may not work well, because of interference effects of the adja-
cent segments.) Therefore, except in failure-mode testing, you do not need maneuvers with independent
inputs on each segment.

Multiple surfaces moving together for roll control are common. These surfaces can include inboard
ailerons near the wing root, outboard ailerons near the wing tip, differential horizontal stabilizers,
asymmetric spoilers, and others. In this case, the ratios of surface motions often depend on flight
condition; the outboard ailerons, for instance, are often held fixed during high-speed cruise flight. The
ratios can also depend on amplitude; the spoilers sometimes have a dead band so that they deflect only for
large stick motions. Furthermore, it may be desirable to examine the effects of control system changes
that involve different ratios of surface motions. You usually want independent inputs on each of these
control surfaces; otherwise you must estimate combined equivalent derivatives, which have Timited utility.

It is acceptable for surfaces to move together during part of a maneuver as long as there is inde-
pendent motion elsewhere in the maneuver. The independence requirement applies to the maneuver as a
whole, not to portions of the maneuver. Figure 6.3-1, for instance, illustrates a reasonable aileron and
rudder input. The second pulse provides rudder information, and the first pulse provides combined
rudder-aileron information. Using both pulses, we can reasonably expect to estimate both rudder and
ajleron derivatives. Thus, as long as the pilot does both a lateral stick pulse and a rudder pedal pulse
in each maneuver (a good idea anyway, as discussed in Section 6.3.2), the aileron-to-rudder interconnect
does not degrade the results.

You cannot get acceptable independence from actuator nonlinearities, noise, small lags, dead bands,
or other minor differences between the motions of different surfaces. A likely effect of such minor dif-
ferences is that instead of failing with a divide-by-zero error, the minimization algorithm will diverge
or give ridiculous answers (often wrong by several orders of magnitude). Useful independent inputs must
have large independent components.
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Indeed, the worst inputs are those with fairly small differences. If the inputs have large inde-
pendent components, then you can estimate independent derivatives. If two inputs are dependent or so
nearly dependent that you can neglect the difference, then you can at least estimate combined equivalent
derivatives, which have some utility, albeit Timited. It is usually safe to neglect differences due
to such small problems as noise, actuator errors, and quantization. Your worst problems occur when two
inputs are different enough that you cannot neglect the difference, yet not different enough to allow
good independent estimates.

Nonlinear control laws are a common source of such troublesome differences. On the space shuttle, for
instance, the reaction control jets are inherently nonlinear, each jet being either on or off. There is a
blend of rudder and yaw-jet control in some flight regimes. Although the rudder motions and jet pulses
have characteristically different shapes, they tend to operate in the same direction at the same time.
This type of data is extremely difficult to analyze. Neither independent derivatives nor combined equiva-
lent derivatives work well. In fact, there is no approach that reliably works well, except to get dif-
ferent maneuvers with greater independence. The results are sensitive to small errors in modeling,
measurements, and predictions. You can get wide ranges of results from minor changes in maneuver times,
weightings, and other details. Therefore, the results are likely to reflect more the analyst's personal
judgments than objective deductions from the data. With data like these, you are likely to spend many
months getting questionable results; you might be well advised to abandon the effort at the start and
declare the data unusable.

6.3.2 Modal Excitation

Your inputs must significantly excite all the modes of the model you are analyzing and should minimize
excitation of unmodeled modes. This is probably the single most important principle of input design for
parameter estimation; it applies to any system (aerospace, economic, biological, or other). If you can
devise an input that excites the appropriate modes, you are over the biggest obstacle to designing a good
input; the rest of the design process consists mostly of modifying the input to meet constraints.

This principle is more a restatement of the problem than a solution. It does not indicate how to
design an input to excite the appropriate modes. The restatement does present the problem in terms more
understandable to people familiar with the dynamics of the system. The test pilot, for instance, can
probably suggest how to excite the longitudinal short-period mode without exciting the phugoid.

The design of inputs for good modal excitation separates into two issues: selecting appropriate
control surfaces or other control devices to use and specifying the shape of the input signals as a func~
tion of time.

Controllability is the theoretical basis for the selection of which control surface to use. To get
excitation of a mode, you must select control surfaces that make the mode controllable. A classic exam-
ple of a controllability problem is a structural shaker positioned at a nodal point. Such a shaker can-
not excite the mode that has a node at the shaker.

For aircraft stability and control analysis, the surface selection problem is relatively straight
forward. You are seldom in a position to specify the design and placement of control surfaces to be
used in testing. The decision reduces to which of the existing control surfaces to use. The selection
options are further reduced by the considerations of Section 6.3.1, often to the point of leaving no
decision to make.

In many cases you will have a choice between designing several maneuvers, each using one of the
control surfaces, or designing a single maneuver using all the control surfaces. If more than two sur-
faces are involved, compromise choices are also possible. Although other constraints can affect this
decision, adequate modal excitation is usually easier to ensure when you use several different surfaces
in the same maneuver. (However be sure to make the inputs independent, as discussed in Section 6.3.1.)
Section 6.4.2 gives a specific example of the advantages of maneuvers that use multiple control surfaces.

We can give Tittle universally useful advice about how to specify the shape of the input signals for
achieving good modal excitation. For the specific case of the aircraft stability and control models that
we normally use, Section 6.4 gives examples of inputs that we have used with good results. For more
general situations and where there is less previous experience to draw from, the frequency content ideas
of Section 6.3.3 are helpful.

6.3.3 Frequency Content

The system modes are best excited by frequencies near the system natural frequencies. Input frequen-
cies much higher than the system natural frequencies result in negligible response (or excite higher fre-
quency unmodeled modes). Very low input frequencies result in essentially static data. Therefore, good
inputs should have most of their energy in frequencies near the system natural frequencies.

Taking this principle to the extreme suggests inputs consisting of sine waves at the system natural
frequencies. Such narrow-band inputs, however, cause several problems. Such design is overly sensitive
to errors in the predictions of the system natural frequencies. More serious is the fact that narrow-band
inputs tend to degrade identifiability. You cannot accurately characterize a system based on data
generated by input at a single frequency.

An ideal input would have a fairly broad spectrum, covering the range of system natural frequencies
and decreasing outside of that range. A frequency sweep is an obvious signal form meeting these require-
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ments. Frequency sweep inputs are often used in structural testing. Figure 6.3-2 shows a frequency sweep
maneuver on a 3/8-scale F-15 aircraft model (IT1iff et al., 1976). We obtained good results from this and
similar maneuvers.

Koehler and Wilhelm (1977) presents an input design, which they call a 3211 input, based on these fre-
quency content ideas. Their design is retatively easy for a pilot to fly, compared with something like a
frequency sweep, which is best performed with an automatic maneuver system. Figure 6.3-3 shows a 3211
input from Plaetschke and Schulz (1979). The input is a series of four contiguous steps with alternating
signs, lasting for 3, 2, 1, and 1 time units. The length of the time unit is adjustable to center the
frequency band of the input around the system natural frequencies. We have tried 3211 inputs on several
aircraft and have obtained good results. Plaetschke et al. {1983) compares flight data results from
3211 inputs with those from several different inputs that were designed based on optimality criteria.

6.3.4 Feedback Systems

Automatic feedback systems are often a source of identifiability problems. We discuss two kinds
of identifiability problems caused by feedback, along with several approaches to the solutions of
these problems.

The easiest solution to feedback problems is to turn the feedback system off during the stability and
control maneuvers. You need only turn off the feedbacks in the axes of the maneuver. Lateral-directional
feedbacks do not degrade longitudinal maneuvers. The lateral-directional feedbacks often improve longitu-
dinal maneuvers by helping to stabilize unwanted lateral-directional oscillations; conversely, longitudi-
nal feedbacks often improve lateral-directional maneuvers.

If turning the system off is impractical (for instance, if the open-loop airplane is unstable or if
there is no mechanism for turning the feedbacks off), then reducing the feedback gains can alleviate some
of the problems. If gain reduction is impractical or inadequate, you need to 1ook more specifically at
the nature of the problems.

The first problem is that feedback systems often make it difficult to excite the dynamics of the
system. With some high-gain feedback systems, the aircraft motion decays without oscitlation almost
immediately after the input stops. Such deadbeat response is the aim of the feedback system, but it-
gives 1ittle data on which to base parameter estimates. There is high control surface activity, but
it is of small amplitude, highly correlated, and concentrated at high frequencies. Any feedback system
will result in closed-loop response characteristics different from the aircraft open-loop characteristics.
This difference is not necessarily a problem in itself; it becomes a problem only when the closed-loop
response is deadbeat.

If you cannot turn the feedback system off or reduce the gains, the next best solution to the problem
of deadbeat response is to use persistently exciting inputs. You should also pay particular attention to
getting a relatively broad frequency spectrum in the input. The usual pulse-type inputs often give insuf-
ficient response for analysis. We suggest frequency-sweep inputs as a good choice for this situation if
you have the capability to do them. A series of 3211 inputs might also work well (Marchand, 1977)., In
any event, the input should persist for almost the entire planned duration of the maneuver because the
aircraft response will stop soon after the input stops.

The second identifiability problem caused by feedback systems is linear dependence (Koehler and
Wilhelm, 1979). Consider a simple example in which yaw rate is fed back to the rudder to augment the yaw
damping. The rudder position is then directly proportional to the yaw rate during aileron maneuvers. In
this event, there is no way to distinguish rudder effects from yaw rate effects. This is similar to the
dependence problems mentioned in Section 6.3.1, except that the dependence discussed there is between two
control surfaces. As the feedback system becomes more complicated, the problem becomes more compli-
cated, but it retains the same basic character. If a control surface position is a direct function of
several vehicle state variables, then you will be unable to distinguish the control surface effects from
combinations of the state variable effects. As discussed in Section 6.3.1, tags and other small differen-
ces usually make such dependence problems more difficult to resolve instead of easier.

The solution to dependence problems caused by feedback is simple in principle and is the same as that
suggested in Section 6.3.1: Add an independent input signal to each control surface that moves during a
maneuver. It does not then matter whether the control surface position also has a component due to feed-
back. If it is impractical to add an independent input signal (for instance, if the control surface is
dedicated solely to feedback functions and this is not easy to change), then you will probably be forced
to assume that some of the derivatives are known from other sources or to use some form of equivalent or
combined derivatives.

There is a common misconception that any analysis of maneuvers with a feedback system on will give
equivalent closed-loop derivatives. This misconception is based on earlier hand-computation methods of
analysis (which are still useful for some purposes). There are no such equivalent derivatives in our
model; we normally get estimates of the bare-airframe open-loop derivatives whether the feedback system is
on or off (Koehler and Marchand, 1979). We are forced to use a model with equivalent derivatives only
when we cannot get adequate maneuvers by the methods discussed previously or when control surface measure-
ments are missing.

The reason that our analysis gives open-loop derivative estimates is that actual control surface posi-
tions are inputs to the model. The effect of feedback is to change the input to the model, not to change
the model's inner structure. If we used pilot stick position as the input, then the feedback loops would
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be internal to the model, and we would anticipate estimating equivalent closed-loop derivatives. This
is one of the reasons (Section 8.2 discusses others) that we use control surface position measurements
in preference to measurements of pilot stick position.

6.4 SAMPLE MANEUVERS

In this section we show sample small-perturbation maneuvers designed for aircraft stability and
control analysis. We give several empirical rules used to design these maneuvers. We do not claim
that the maneuvers or rules of this section are optimum, but they have given adequate results in a
wide variety of circumstances.

The maneuvers are based primarily on adaptations of standard piloting tasks and flight test maneu-
vers previously used for other purposes, rather than on mathematical derivations of good input signal
shapes. The design of the maneuvers is largely a refinement task; given that some simple standard maneu-
ver comes reasonably close to our requirements, we can place restrictions on the maneuver or slightly
modify it to better achieve our purposes. This design philosophy is the reason for the predominance of
pulse-type inputs.

6.4.1 Longitudinal Maneuvers

Longitudinal inputs are usually easy to design. Our usual longitudinal models include only the short-
period longitudinal mode. This mode can be excited by a simple pulse or doublet on the elevator or other
longitudinal control surface. The exact shape of the pulse is unimportant. For best excitation, pulse
duration should approximately equal natural period of the short-period mode. The constraints mentioned in
Section 6.2 determine the best pulse size and whether singlets or doublets are best. Large longitudinatl
pulses can result in significant flight condition changes.

Figures 6.4-1 to 6.4-6 show typical longitudinal test maneuvers from several aircraft: a JetStar
(Brenner et al., 1978), an F-111A (Brenner et al., 1978), a Beech-99 (Tanner and Montgomery, 1979), a
T-37 (Maine, 1981b), a 3/8-scale F-15 model (I1iff and Maine, 1975), and a Piper PA-30 (Brenner et al.,
1978). Other longitudinal maneuvers are illustrated throughout this document.

6.4.2 Lateral-Directional Maneuvers

Our usual lateral-directional models include the Dutch roll, roll, and spiral modes. The best way to
ensure adequate excitation of all modes is to have both aileron {(or other primary roll control) and rudder
input during the maneuver. It is certainly possible to excite all the modes with aileron input only or
with rudder input only, but these approaches require careful input design and execution, varying from
aircraft to aircraft. It is our general experience that a simple rudder doublet, combined with an aileron
doublet in the same maneuver, is easy to execute and gives consistently good excitation.

If you must use data with the aileron and rudder inputs in separate maneuvers, the best way to avoid
problems is to pair aileron and rudder maneuvers from similar flight conditions (assuming that you have
such matching maneuvers). You can analyze the set of two (or more) maneuvers together, obtaining a single
set of estimates that applies to both maneuvers. We call this approach double-maneuver (or multiple-
maneuver) analysis.

Figures 6.4-7 and 6.4-8 show separate rudder and aileron maneuvers from a Piper PA-30 aircraft.
Figure 6.4-9 shows estimates of Cnp from several such maneuvers on the PA-30. The data exhibit large

scatter, with both positive- and negative-valued estimates, although there is significant clumping of
points with small Cramér-Rao bounds near the center of the scatter band.

Figure 6.4-10 shows the same data segregated into rudder and aileron maneuvers. The aileron maneuvers
are obviously superior for estimating Cnp; they give less scatter and smaller Cramér-Rao bounds. Foster

(1977) documents a similar conclusion. The advantage of using the aileron maneuver for estimating p de-
rivatives is fairly clear from looking at the maneuver time histories shown in Figures 6.4-7 and 6.4-8.
The aileron maneuver gives large-amplitude roll rates with shapes characteristically different from the
other signals; the roll rate from the rudder maneuver is smaller and is similar in shape to 8. The
rudder maneuvers, however, are better for estimating some other derivatives; the rudder input gives far
better excitation of the Dutch roll mode.

Figure 6.4-11 shows the Cnp estimates from multiple-maneuver analysis of the same data. Every case

analyzed included one or more rudder maneuvers and one or more aileron maneuvers, paired by flight con-
dition. This analysis combines the advantages of both the rudder and the aileron maneuvers, giving good
estimates of all the derivatives.

Although you can use multiple-maneuver analysis in this way to pair aileron and rudder maneuvers, you
will have fewer problems if you include both aileron and rudder inputs in each maneuver flown. This
avoids the problems of pairing maneuvers, small flight condition mismatches, and additional initial con-
ditions (you must consider the initial condition of each part of a multiple maneuver).

The order and timing of the aileron and rudder pulses are largely influenced by the requirement to
minimize flight condition changes. There have been several studies on varying the number, order, and
timing of the pulses (Cannaday and Suit, 1977). For pulse-type maneuvers, most of these studies agree
that there is little noticeable effect on the identifiability of the derivatives as long as there are
both aileron and rudder inputs.
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Figures 6.4-12 to 6.4-15 show some typical combined rudder-aileron inputs from several aircraft: an
F-8C (Steers and I1iff, 1975), an oblique-wing airplane (Maine and I1iff, 1981b), an HL-10 lifting body
(Brenner et al., 1978), and an F-111A (I1iff and Maine, 1975). Other lateral-directional maneuvers are

illustrated throughout this document.
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7.0 DATA ACQUISITION SYSTEM

The data acquisition system is an important part of stability and control flight testing. To do a
good job, the data analyst must have a detailed understanding of how the data get from the sensor to the
analysis program. This chapter discusses the classes of data acquisition systems and the problems that
arise in data acquisition.

If you are unaware of details like how the data were filtered, digitized, time tagged, and recorded,
then you cannot truly claim to understand exactly what the data tell about the airplane. Analyzing the
gross characteristics of the aircraft requires few of these details, but the more information you try to
extract from the test data, the more details you need to know about the data. If you have nothing to
work from but a data tape and a list of the signals on the tape (straits we have seen many people in,
and occasionally have occupied ourselves) avoid making grandiose promises or placing great confidence
in your results.

You need to take a systems approach to analyzing the data system; that is, you need to Took at the
entire system, from the input to the output. The system includes sensors, recording system, postflight
processing, and the connections between these parts. The connections and interactions between the com-
ponents can be as important to the overall system performance as the individual components.

There is strong synergism among the negative effects of data system problems. Two problems, nei-
ther of which alone would unacceptably degrade results, can result in unusable data when they occur
in combination. This is an area where simulation is often overused and misapplied; a 1ittle experi-
ence with real flight data is far more valuable. We often see simulation used to pick the minimum
usable sample rate, resolution, and other specifications; this almost invariably results in severe
analysis difficulties.

Indeed, we prefer to avoid the whole idea of the minimum acceptable data system. A minimum accept-
able data system too often becomes unacceptable in practice, due to overreliance on misleading simula-
tions, neglect of the synergism of data system problems, and unforeseen circumstances. The process of
getting usable data from a minimum acceptable data system is typically lengthy and Tabor intensive, when
it is possible at all. It is our observation that questions about minimum acceptable data quality por-
tend a project destined to have unusable data; these questions often arise in connection with success-
oriented philosophies (see Section 1.5), which ignore the fact that although it is theoretically possible
to get by with the proposed system, the odds are against it. We are much more encouraged when a project
starts with discussions of what kind of data system would do the best job, followed by a determination of
how close to this ideal we can get.

Because the subject is so large, we devote two chapters to the data system. This chapter discusses
the recording system and the connection of the sensors to the recording system. Some of the issues raised
are also pertinent to other parts of the data system. Chapter 8 covers the instrumentation, which is the
front end of the data system.

7.1 TYPES OF RECORDING SYSTEMS

There are several different means of recording flight data for analysis. The characteristics of the
data recording system strongly influence the use of the data for stability and control derivative estima-
tion. This section lists and describes the characteristics of some of the recording methods. The list is
incomplete, reflecting the most common methods. The discussion is brief and general; this document is not
the place for a detailed treatment of data recording methods.

The most common type of recording system used at Ames-Dryden is pulse code modulation (PCM). Figure
7.1-1 illustrates the major components of a simplified PCM system. PCM systems are inherently digital.
The analog signal from each sensor first undergoes signal conditioning as required; this typically
involves presample filtering and scaling to the voltage range of the analog-to-digital converter. The
analog-to-digital converter samples each conditioned signal at regular intervals and outputs a digital
scaled integer value. The units of this scaled integer are called counts.

The counts values are stored in digital form on an onboard tape or telemetered to the ground for simi-
lar tape storage {usually we store both onboard and telemetered data for redundancy). Postflight computer
programs read the PCM tapes and convert the counts values into appropriate engineering units for analysis.

We find PCM systems to be a reliable means of recording high-quality data. The digital recording
format has the advantage of not being subject to distortion. You may lose bits of data if there are
transmission or media problems, but such dropouts are easy to detect. You do not find your data dis-
torted by such subtle problems as temperature-dependent nonlinearities or tape drive speed, wow, or
flutter. Of course, the sensor itself can have temperature or other environmental dependencies, but once
the data are digitized you can be confident that it is subject to no further distortions. We recommend
PCM systems as the primary data recording method for all serious test programs. Many of the discussions
in this and later chapters emphasize the types of data problems common to PCM systems.

Our second most common form of data recording is at the other extreme of complexity — handwritten
notes. These are often called pilot lap notes, although they can be made by other crew members or ground
support personnel. The frequency response and time correlation of the hand-recorded data make their use
obviously impractical for dynamic signals. In some cases, hand recording is practical but inconvenient
compared with automatic recording systems, which do not misread dials or forget to record the value and
which can automatically supply data to analysis programs. However, handwritten notes are sometimes the
only practical means of recording numerous parameters. Basically anything that remains essentially
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constant during a maneuver is suitable for hand recording; typical hand-recorded items include cargo
loading, fuel weights, configuration, control system modes, altitude, airspeed, air temperature, engine
speeds, and subjective turbulence level.

The most important point about hand-recorded data is to remember to record it. Do not confuse com-
plexity with importance. Something 1ike permanently recording the number and seating of crew members and
their approximate weights may seem so trivial as to be unworthy of mention on the flight plans and data
requests; it will not seem so trivial six months later when you have to throw out all the data from the
flight because you cannot accurately reconstruct the weight and center of gravity.

Analog recording systems that we have used include frequency modulation, oscillograph charts, pulse-
ampTitude modulation, and pulse-duration modulation. Some of these methods have been used at Ames-Dryden
in the past and are still in use at some installations. We generally regard these systems as inferior to
PCM systems because of the noise and distortion inherent in analog systems.

Data are occasionally recorded by video cameras. We have, on occasion, acquired dynamic data by
reading cockpit guages from video recordings. This is simitar in many ways to hand-recorded data, except
that the video method allows higher frequency data and better time correlation. This type of data gath-
ering is labor intensive and (luckily) rare in stability and control analysis.

7.2 TIME TAGS

A1l practical methods for estimating aircraft stability and control derivatives assume exact knowl-
edge of the relative time of each measurement. There are always, however, some small errors in our real
knowledge of the times. Our real requirement is that any such errors be small enough to have negligible
effect on the derivative estimates. This section investigates the effects of time errors to determine
how much error we can tolerate. ‘

We use the phrase "time tag" to refer to the information about the time of each measurement. The
time tag can have several forms. In many cases the time tag is actually data recorded with each measure-
ment or group of measurements. A simple example of such a recorded time tag is the time read from a
watch written on hand-recorded notes. PCM or other automatic data systems often record time as a data
channel. Video records are sometimes time tagged with an image of a digital clock on each frame.

Implicit time-tagging methods contrast with these explicit methods. A common form of implicit time
tagging is to assume that the measurements come at a known regular sample rate and that the time of each
measurement is thus a known increment after the time of the preceding measurement. Implicit time tagging
can be as accurate as, if not more accurate than, explicit time tagging, but it provides no good way to
merge data from two independent data streams.

We discuss aerodynamic coefficient identification package (ACIP) on the space shuttle to illustrate
data time tagging. We present this simplified picture of the ACIP system only as one example of how data
can be time tagged; different data systems use different time-tagging methods. The ACIP system uses a
mixture of explicit and implicit time tagging. Figure 7.2-1 shows the layout of the ACIP PCM system
for the initial flights. The system has a constant bit rate of 64,000 bits/sec. There are 8 bits/word,
giving a word rate of 8000 words/sec, and there are 46 words per data frame, giving a frame rate of
173.9 frames/sec. There are 64 frames per data cycle, giving a cycle rate of about 2.7 data cycles
per second.

Words 1 to 3 of each frame are used for synchronization and do not concern us here. The 19 high-
sample-rate dynamic parameters are in words 9 to 46 of each frame. The counts values for each of these
parameters occupy two consecutive 8-bit words. These parameters are recorded every frame, so their
sample rate is the same as the frame rate of 173.9 samples/sec.

Word 8 contains the low-sample-rate data, mostly temperatures and other environmental data. The
counts values for these parameters need only one 8-bit word. Word 8 contains a different one of these
parameters for each of the 64 frames of the data cycle; thus there is room for 64 parameters in this
word, each sampled at the cycle rate of 2.7 samples/sec. This method of recording several low-sample-
rate parameters in the same word is called subcommutation. Word 4 contains the frame number (0 to 63),
which distinguishes among the parameters subcommutated in word 8. Each of the subcommutated parameters
is assigned a particular frame number.

Words 5 to 7 of each frame contain time data from a system clock. The exact form of the data is
irrelevant here. These data constitute an explicit time tag for each frame of data. The time recorded
is that at the start of the frame. The data signals are digitized one at a time as they are recorded, not
at the start of the frame. To determine the sample time of each measurement, you must add the word
number divided by 8000 to the time recorded at the start of the frame (minus a small time for the analog-
to-digital conversion). Thus, the time of each measurement is the sum of the explicit time tag for the
frame plus the increment implicit in the word position.

The absolute times of the data are irrelevant. It does not matter whether you express the time in
Greenwich Mean Time, elapsed time from takeoff, or any other convenient time base. What does matter is
that you know the relative times of any two measurements. If you merge two or more independent data
sources, however, they must be referenced to the same time base; this requires system clocks synchronized
to some agreed-upon standard.

It is important to distinguish between requirements on the times of the measurements and requirements
on our knowledge of these times. The emphasis of this section is on the knowledge. We are not overly
concerned, for instance, with requiring all of the signals to be sampled simultaneously. Almost all
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analysis programs assume such simultaneous sampling; generalization is possible in principle, but it is
awkward and time consuming. As long as we know the time of each measurement, we can interpolate all the
signals to give the effect of simultaneous sampling. Interpolation does introduce errors, which could be
avoided by using a system with simultaneous sampling, but such errors are usually negligible. The prob-
Tems resuiting from misinformation about the times of the measurements are far worse.

Errors in time tags can come from several sources. Any physical sensor has some time lag inherent in
its response. The signal conditioning and analog-to-digital conversion introduce further lags. None of
these lags are problems intrinsically, provided that you remember to account for them and that you have
accurate values for them.

Most time-tagging errors result from carelessness and poor understanding of what the time tags
mean. A typical error would be to use the ACIP time as the time for every measurement in the frame,
as though the sampliing were simultaneous, the instruments had instantaneous response, and there were
no presample filters. The only way to ensure that you have avoided time errors is to understand exactly
how the data get from the sensor to you, what the timing is for each step, and how the time-tag infor-
mation is obtained.

We cannot give a universal formula for how to interpret time tags, because time-tagging methods
differ so much. Some systems do sample all signals simultaneously or nearly simultaneously (Renz et
al., 1981); such sample-and-hold techniques give the most easily interpreted time tags. At the other
extreme, the space shuttle data system includes signals (not in the ACIP system) for which the data
are digitized and stored in a buffer at 6.25 samples/sec but time tagged and recorded at 5 samples/sec.
We eventually gave up trying to accurately time tag some of the shuttle measurements for which the
timing depends on a flight computer that can be interrupted by higher priority tasks (like controlling
the vehicle).

Figure 7.2-2 (from Steers and INiff (1975)), illustrates some of the effects of time-tagging errors.
These data are all based on one maneuver, with the data artificially time shifted to create timing
errors. Each point on the figure represents an estimate of Lg using data with either p, B, or 8a shifted
by the indicated amount. A positive shift is defined such that the shifted signal lags the other
signals. The figure shows Tittle effect of B shifts on the Lg estimates for this maneuver, but shifts in
p and Sa have large effects. A positive shift of 0.1 sec in 6a or a negative shift of 0.1 sec in p
results in about a 50-percent change in the Lg estimate. Time errors of 0.1 sec or more have occurred in
several programs in our experience. An intuitive explanation for the sensitivity to such shifts is that
if S8a has a positive shift or p has a negative shift, then the p motion appears to precede the §a input.
Such apparently autonomous p motion looks Tike an instability, resulting in large effects on the deriva-
tive estimates. Steers and I1iff (1975) shows data similar to those in Figure 7.2-2 for other deriva-
tives and other airplanes.

The conclusion from Figure 7.2-2 and similar data is that some of the derivative estimates are
extremely sensitive to time shifts in some of the signals. The more complicated the model, the more sen-
sitive it will be to time shifts. Our empirical rule for aircraft stability and control analysis is that
time errors of more than 10 msec may cause problems and should be rectified. Errors of less than 10 msec
are probably unimportant, and errors of less than 1 msec are certainly unimportant. We tend to ask for
data accurate to 1 msec and settle for accuracy of 10 msec. For signals like altitude and airspeed, which
have little dynamic content, the timing requirements are less stringent; accuracy of 20 to 50 msec is
usually adequate for these signals.

7.3 ALIASING AND PREFILTERING

Digital recording systems such as PCM sample the continuous-time signals at discrete time points.
Regardless of the recording method, you must digitize the data at some point in the processing in order
to analyze the data on a digital computer. This digitization raises obvious questions of sample rate and
resolution, dealt with in Sections 7.4 and 7.5. This section addresses signal aliasing, a subtler and
often misunderstood aspect of the digitization. Every engineer working with digitized data should be
aware of the general nature of aliasing because it can distort data beyond recognition if you are care-
less. This section briefly outlines the concept of aliasing. Oppenheim and Shafer (1975) gives a more
thorough treatment.

A1l systems of which we are aware sample the data for each signal at regularly spaced time points,
that is, at a constant sample rate. We henceforth assume such regular sampling; otherwise many of our
analysis tools would be inapplicable.

The Nyquist sampling theorem (Oppenheim and Shafer, 1975) is perhaps the most basic principle of
sampled signal theory and is the source of our current concern. This theorem states that a signal with a
regular sample interval of A sec (a sample rate of 1/A samples/sec) can contain no information at a fre-
quency higher than 1/(24) Hz. This is a loose statement of the theorem but is adequate for our purposes.
This 1limit frequency is called the Nyquist frequency or the half-sample frequency (because it is half the
sampie rate).

A continuous-time signal can, in principle, contain data at any frequency. Realistically, the data
in any physical signal are restricted to a finite bandwidth, but the bandwidth is 1ikely to be in the
kilohertz range or higher, several orders of magnitude above aircraft stability and control frequencies.

At first glance, the Nyquist limit does not seem like a great problem to us. Frequency limits of
12.5 or 25 Hz (25 or 50 sample/sec data) are high enough to include virtually all useful aircraft sta-
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bility and control data. The higher frequency data in the continuous-time signal is a combination of
structural resonance, ac power frequencies, engine vibration, thermal noise, and other nuisance data. It
is tempting to conclude that sampling actually improves the data by removing the unwanted junk above the
Nyquist frequency; unfortunately, this optimistic conclusion is completely false.

When you digitize the continuous-time signal, the data above the Nyquist frequency do not innocuously
disappear. Instead, the high-frequency data shifts to an apparent lower frequency. This frequency shift
is called aliasing or frequency folding. If the Nyquist frequency is N, a continuous-time signal of fre-
quency f aliases to

mod (f,2N) mod(f,2N) < N

falias = { (7.3-1)
2N - mod(f,2N) mod(f,2N) > N

Figure 7.3-1 gives a simple illustration of aliasing of a constant-frequency signal. The solid line is

a presumed continuous-time signal. The crosses mark sampling times. The frequency of the signal is
slightly less than twice the Nyquist frequency; thus Equation (7.3-1) gives an alias frequency of slightly
greater than zero. The dashed line is the alias, the Tow-frequency apparent signal of the sampled data.
This alias signal is obviously a poor representation of the true continuous-time signal. Note that if

the sample rate were decreased slightly, the alias signal would be a constant (zero frequency).

The effect of aliasing is that all the high-frequency noise, rather than conveniently disappearing,
shifts to Tower frequencies and contaminates the stability and control data. After you sample the data,
there is no way to separate the original Tow-frequency component from the contaminating aliased data.

The same principles of aliasing apply to thinning digital data to Tower sample rates. Figure 7.3-2
shows a time history of 200-sample/sec data from the oblique-wing vehicle (Maine, 1978). Figure 7.3-3
shows the power spectral density (PSD) of the normal acceleration signal. The large hump below 1 Hz in
the PSD contains the useful stability and control data. The general noise level is about three orders of
magnitude in spectral density below the stability and control data, but there are strong signals at 17.7,
60, and 80 Hz. The peaks at 17.7 and 80 Hz are from structural vibration, and the 60-Hz peak is from the
propeller rotating at 3600 rpm. The 17.7-Hz signal is evident in Figure 7.3-2.

Figure 7.3-4 shows the PSD of a 25-sample/sec thinned normal acceleration signal. The structural
and propeller response data are folded down and spread over the spectrum between 0 and 12.5 Hz, with the
result that the spectrum is nearly white. The response peaks no Tonger stand out clearly, and the low-
frequency data are significantly contaminated.

The only effective solution to aliasing is presample filtering, often called antialias filtering.
Filter the continuous-time data to effectively remove the high-frequency components before sampling (and
before thinning). This filtering must be done before the sampling or thinning step; there is no way to
undo the aliasing after the data are sampled or thinned.

Figure 7.3-5 shows the PSD of the 200-sample/sec normal acceleration after a prethinning filter con-
sisting of a 17.7-Hz notch and a third-order 20-Hz low-pass filter. This filter reduces the structural
and propeller response to at or below the general noise level, Tow enough that their aliases will not
significantly degrade the stability and control data. Figure 7.3-6 shows a time history of the filtered
data. Thinning these data to 25 samples/sec gives a good signal for stability and control analysis.

Figure 7.3-7 shows the roll rate PSDs from the same data before and after filtering. Some of the
same peaks appear in the unfiltered roll rate as in the normal acceleration. These peaks are almost
imperceptible in the filtered roll rate. Figure 7.3-8 shows the angle-of-attack PSDs before and after
filtering. None of the peaks observed in the other two signals are in the angle-of-attack spectrum.
There is, however, evidence of a nose boom bending mode at about 4.5 Hz. We verified that this was a
boom mode by hand plucking the boom and visually estimating the response frequency (this is a prime
example of the kind of test that is trivial if the airplane is still around in the flight test
configuration). The filter does not attenuate this mode, but the frequency and amplitude are such that
the boom mode does not create problems. The boom mode is perceptible in Figures 7.3-2 and 7.3-6, barely
larger than the resolution (look particularly near the end of the time history in Figure 7.3-6 and notice
that the apparent bit noise is fairly coherent at that frequency).

Any data system design process should include careful consideration of presample filter requirements.
We have occasionally seen good data from systems with no presample filtering other than that from stray
capacitance and the sensors' inherent response characteristics, but do not count on such fortuitous cir-
cumstances. As a general rule, a low-pass filter at 40 percent of the Nyquist frequency is reasonable.
For systems with high sample rates, a first-order filter is usually adequate; higher order filters may be
necessary in low-sample-rate systems. You should, however, consider individual requirements in detail,
rather than universally applying these rules. We do not cover details of filter and specification design
in this document. See Williams (1981) for such a discussion.

As a user of a data system, you should know what presample filtering is done to the data. Presample
fiiters are a major and often overlooked source of time lags, which need to be corrected in time tagging
the data (see Section 7.2).

You may have to ask very specific questions to get information about the presample filtering in a
data system (and it may take a while to find the right person to ask in a large project). The people
responsible for the data system might take presample filtering so much for granted that they forget to
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tell you about it. More than once we have explicitly asked whether there were any filters on a signal
and been told that there were none, only to discover later that the response meant no filters other
than, of course, the presample filter. We now habitually ask specifically about presample antialias
filters. If the response is a blank stare or the equivalent, you have not yet found the right person
to ask. (If the person responsible for data system design has not heard of antialiasing, you have
serious problems.)

A systems approach is crucial to the design and description of antialias filters {(or filters in
general). Always look at the filter in context, not as an isolated component. For instance, the break
frequency of a passive filter depends on the source impedance loading. The quoted break frequencies are
at zero load; the actual break frequency under load can be significantly lower. The characteristics
under actual Toading conditions are what really interest you.

7.4 SAMPLE RATE

The sample rate of the digitized data is an important data system specification. This section dis-
cusses the considerations affecting the choice of sample rates. The discussion is closely related to
that of Section 7.3 on presample filters.

The higher the sample rate, the better the digital data represent the continuous-time signal. The
improvement eventually reaches a point of diminishing returns where it fails to justify the extra data
processing and analysis time. There is certainly little point in sampling much faster than the sensor
can respond. Data system bandwidth places upper bounds on practically achievable sample rates.

We have observed no benefit from analyzing aircraft stability and control data at more than 25 or 50
samples/sec. However, we often find it prudent to request the digitized data at 100 or 200 samples/sec;
we then digitally filter and thin the data to 25 or 50 samples/sec for analysis. Although it requires
higher bandwidth, more processing time, and extra processing steps, there are several advantages to
obtaining the digitized data at higher sample rates than needed for analysis.

The first advantage is the flexibility of digital filtering. Analog presample filters must be
designed before flight and are difficult to change. If you digitize data at 25 samples/sec, say, the
Nyquist frequency is 12.5 Hz (see Section 7.3). To filter out noise above the Nyquist frequency, you
need a presample low-pass filter with a break frequency near 5 Hz, based on our criterion of 40 percent
of the Nyquist frequency. The filter roll-off must be steep enough to eliminate any strong structural
resonances in the 20 to 30 Hz area, which folds down into the critical 0 to 5 Hz area after sampling.
Such a high-order low-frequency filter would introduce significant distortion in the stability and
control data.

If you digitize data at 100 samples/sec, the analog presample filter would have a break frequency
around 20 Hz, which is high enough to avoid significant distortion. Before thinning the data to 25
samples/sec, you can examine the spectrum of the digitized data and design digital notch filters for any
troublesome low-frequency structural resonances. With these resonances removed, you can probably get by
with a prethinning low-pass filter with a break frequency around 10 Hz. This combination of a notch and
a Tow-pass filter introduces less distortion than the stronger low-pass filter otherwise required. In
principle, you could design an analog notch and low-pass to achieve the same effect, allowing you to
sample at 25-samples/sec, omitting the intermediate 100-sample/sec data. The difference is that the
analog notch must be designed based on predictions and cannot be changed after the flight.

We could summarize this argument by saying that any information lost or contaminated in analog pre-
filtering and digitization is irretrievable. The only way to fix mistakes is to revise the system and
fly again. Hardware revisions and extra test flights are much more expensive than a little extra data
processing, so it is best to digitize at a higher sample rate than you really need, 1eaving some room for
error. Regard the extra processing time as insurance.

The second advantage of digitizing at 100 or 200 samples/sec is that it lessens the potential prob-
lems with time skews caused by nonsimultaneous sampling. This advantage is not as important as the fil-
tering issue, because known time skews can be handled by interpolation. With the higher sampling rate,
the skews may be small enough to safely ignore, saving a step in processing and thus partially compen-
sating for the extra filtering step. More important, any errors in evaluating and correcting the skews
will Tikely have smaller effects at the higher sample rates because the terms are smaller.

The lower 1limits on acceptable sample rates are determined by the necessity to accurately represent
the continuous signals. Sample rates around 10 samples/sec have proven adequate on several aircraft
(Brenner et al., 1978). When using low-sample-rate data, consider several factors. First, the motion
of the aircraft control surfaces can have frequency content well above the aircraft natural response fre-
quencies. The sample rate must be adequate for the control position measurements as well as the response
measurements. This consideration reduces the differences between sample rates required for large and
small aircraft. The sample rate requirements for stability and control analysis of the space shuttle,
for instance, are dominated by considerations of the reaction control jets. Although the vehicle natural
frequencies are low during the early part of entry, the reaction control jets can fire in 80 msec bursts.
Sample rates lower than 25 samples/sec would unacceptably distort the jet signals.

Second, low sample rates accentuate the effects of other problems such as time skews, noise, low
resolution, and modeling error. If you choose the lowest sample rate that works well on simulated data,
we can almost guarantee poor results from flight.

In summary, we usually ask for sample rates of 100 to 200 samples/sec, digitally filter the data, and
thin it to 25 to 50 samples/sec for analysis. You can usually get by with digitization at 25 or 50
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samples/sec, provided you are careful about filtering; this approach leaves less room for error.
Sample rates as low as 10 samples/sec have occasionally proven adequate, but we recommend against
such marginal rates.

7.5 RESOLUTION

Another issue raised by digitization is the resolution or quantization level of the digitized signal.
The digitized signal is an integer number of counts. The resolution of this signal is exactly one count,
which corresponds to some number of engineering units that depends on the sensor calibration.

If the resolution magnitude is much smaller than the noise level of the digitized data, then you can
ignore the issue. This is the case, for instance, for the ACIP system on the space shuttle, discussed in
Sections 6.2.2 and 7.2. The ACIP lateral acceleration, in specific, uses a 14-bit digital signal to

cover the £ 0,5-g range. The resolution is thus 17214 = 0.00006 g. Structural vibration causes a noise
level of about 0.01 g, so we can safely ignore any resolution problems.

The stairstep appearance of the o and © signals in Figure 7.3-2 is typical of data where the resolu-
tion is coarser than or comparable to the noise level. Note that digital filtering (but not analog
filtering) can disguise this characteristic appearance, as in Figure 7.3-6.

The discussion of signal-to-noise levels in Section 6.2.2 applies to the issue of establishing accep-
table resolution limits. A resolution of about 1/10 of the maneuver size is about the poorest you can
ever accept. In this case, anticipate the immediately obvious potential for derivative errors on the
order of 10 percent; actual errors in some derivative estimates might be much larger. Resolution of
1/100 of the maneuver size is fairly good. Exact criteria vary from system to system and even signal to
signal. You can get by with much Tower resolution in relatively unimportant signals (like bank angle)
than in critical signals (1ike roll rate or aileron position).

We have most commonly used 10-bit PCM systems, giving a resolution of 1/1024 of full range. The
small-perturbation stability and control maneuvers typically cover only a small part of the full instru-
ment range, so the resolution is not 1/1024 of the maneuver size. The worst resolution is often on Euler
angles, which are scaled over 360°, giving about 1/3° resolution; this can be near our cited minimum of
1/10 of the maneuver size. The Euler angles are among the least critical signals, so this low resolution
is acceptable.

We have successfully used 8- and 9-bit PCM systems on some programs. Such systems require specific
tailoring of the data ranges to achieve acceptable resolution for stability and control data. This
tailoring often involves duplicating several signals on two or more channels with different ranges, as
described in the following.

To provide data on large maneuvers or emergencies, scale a coarse channel for the full flight enve-
lope. You want a full-range data channel in a flight test of a new vehicle, even if you intend to fly in
only a small portion of the range. If a loss of control or other unexpected emergency results in flight
at extreme conditions, you must be able to study the data thoroughly to find out what happened, how to
prevent it from happening again, and how any emergency recovery procedure worked. Full-range data chan-
nels for such purposes are usually considered a mandatory safety requirement. This coarse-resolution
channel may have unacceptable resolution for small-perturbation stability and control maneuvers; for
example, an Euler angle scaled over 360° in an 8-bit PCM system has a resolution of about 1.4°, not worth
using for most small maneuvers.

A second channel records the same signal, scaled to a smaller range to obtain better resolution.
Choose the range of this high-resolution channel to be slightly larger than the small-perturbation
maneuvers, allowing margin for error. If you scale an 8-bit channel for twice the expected maneuver size
(a healthy margin for error), the resolution is 1/128 of the maneuver size.

Wallace-0-Leonard sensors use another method of combining data from two channels to get better reso-
lution than that obtainable from a single channel. These sensors use a multiturn potentiometer, each
turn corresponding to a different calibration. A second coarser channel determines which calibrations to
use for the fine channel. Section 8.7 presents some data from a Wallace-O-Leonard sensor.

Using one of these channel duplication schemes, you can get good resolution from even an 8-bit PCM
system. Note that range tailoring requires either that you give up the full range data or that you use
extra data channels. We occasionally find channel duplication necessary even on 10-bit PCM systems for
high-performance aircraft. A highly maneuverable fighter is 1ikely to need a range of about -5 to +10 g
on normal acceleration. With a 10-bit system, this gives a resolution of 0.015 g, which is perhaps
acceptable but not as good as we like.

In several recent programs we have used PCM systems ranging from 11 to 16 bits of resolution. Such
high-resolution systems simplify data system design considerably. You seldom need to make design compro-
mises or kludges like duplicating channels to improve resolution. Note that duplicating a 10-bit channel
results in the use of 20 bits to effectively achieve resolution comparable to an 11- or 12-bit channel. A
true 11- or 12-bit system achieves this resolution with much more efficient use of the data bandwidth;
furthermore, it eliminates the analyst's problem of whether to use one of the duplicate signals or some
combination of them.

We used four maneuvers from a Piper PA-30 aircraft to study the effects of reduced resclution.
Figure 7.5-1 shows a fit of one of the maneuvers. The data were sampled at 200 samples/sec and thinned
to 50 samples/sec for analysis. These data came from a 9-bit PCM system. Table 7.5-1 gives the resolu-
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tions of the signals in the figure. Most of the signals have resolutions in the neighborhood of 1/50 to
1/100 of the maneuver size. The worst resolution is that of ay at about 1/20 of the maneuver size, and

the best is that of 63 at about 1/200 of the maneuver size. We simulated the effect of reduced reso-
lTution data systems by quantizing the data of Figure 7.5-1 at levels of 2, 4, 8, 16, and 32 times poorer
resolution. Figure 7.5-2 shows the data of Figure 7.5-1 with the resolution reduced by a factor of 16.
The ay signal is obviously worthless. There is recognizable signal content in B8, p, r, and ¢, although

the resolution is from 1/3 to 1/6 of the maneuver size, worse than our cited minimum acceptable Tevel of
1/10 of the maneuver size. The resolution on 83 is barely within the acceptable range.

Figure 7.5-3 shows the estimates of three derivatives as a function of the resolution reduction fac-
tor (to aid visualization, the symbols are slightly offset from the exact factors of 1, 2, 4, 8, 16, and
32). Errors resulting from the poor resolution are significant at a resolution reduction factor of 8
and larger at a factor of 16, corresponding to Figure 7.5-2. The data at a resolution reduction factor
of 32 are completely unacceptable. These results roughly verify our cited minimum resolution level of
1/10 of the maneuver size.

Do not expect results in most cases to be as good as those shown in this example. This example
represents the most benign situation in several regards. First, the best resolution is on the control
surface, which is one of the most resolution-critical signals. Second, the data quality is excellent,
except for the resolution: The noise level is low, the sample rate is high, the sensors are of good
quality, and the system was carefully calibrated. Third, the maneuver is mild, and the aircraft is quite
linear in this flight regime.

TABLE 7.5-1. — PIPER PA-30
DATA RESOLUTION

Signal Resolution
B, deg 0.1
p, deg/sec 0.25
r, deg/sec 0.15
¢, deg 0.75
ay, g 0.003
83, deg 0.1
Sensors Signal Multiplexer Analog-to- PCM Onboard
conditioning digital encoder recorder
converter

J*D

Telemetry
transmitter

£

Ground Telemetry
recorder receiver

Figure 7.1-1. Simplified PCM system.
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Figure 7.3-1. Example of aliasing.

10

OL
20

o, deg 10

2071

q, degisec 0

-20
12

a, deg 8

—_

0 5 1.0 15 20 25 3.0 35 40 45 5.0
Time, sec

Figure 7.3-2. Oblique-wing 200-sample/sec data.
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Figure 7.3-3. Power spectral density of 200-sample/sec normal acceleration.
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Figure 7.3-5. Power spectral density of filtered normal acceleration.



116

b, deg

o, deg

q, deg/sec

a, deg

10

20

10+

20

Figure 7.3-6.

Time, sec

Time history of filtered data.

|
-
L
5 L0 15 20 25 3.0 35 40 45

5.0



107 [

10

10

PSDof p

10

117

17.7Hz 60 Hz

| 1 1 }

Figure 7.3-7.

107 10° 10! 10
Frequency, Hz
(a) Unfiltered roll rate.

Power spectral densities of unfiltered and filtered roll rates.



118

1001

100 [

107

PSD of p

10

1071

i 1

17.7 Hz 60 Hz

107! 10°

Frequency, Hz

(b) Filtered roll rate.

Figure 7.3-7. Concluded.
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Figure 7.3-8. Concluded.
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8.0 INSTRUMENTATION

In this chapter we examine the instrumentation transducers. We 1list the signals useful for air-
craft stability and control analysis and discuss the uses and relative importance of the signals. The
signals range in importance from virtually indispensable to convenient for record keeping. We discuss
the kinds of transducers used for each signal and the general characteristics of the transducers.

The virtually indispensable signals are time, control positions, angular rates, and linear accelera-
tions. Although it is theoretically possible to obtain estimates without some of these signals, we con-
sider these to be a minimum practical set of measurements (ay is optional in some cases). Section 7.2
discusses the measurement of time; problems related to time tagging are quite different from problems
with the other measurements, which this chapter covers.

Other useful signals discussed in this chapter are flow angles, Euler angles, angular accelerations,
air data, engine parameters, configuration parameters, and fuel and loading data. This 1list is roughly
in order of decreasing importance, although there is variation from case to case; you really should have
measurements of flow angles and Euler angles, whereas configuration and loading data are just for book-
keeping convenience.

8.1 GENERAL TRANSDUCER CHARACTERISTICS

This section discusses some broad classes of transducer characteristics pertinent to almost all
transducers. Other characteristics may also be pertinent to specific transducers.

Transducer range, resolution, accuracy, and dynamic response are basic issues. The transducer itself
has a rated range and resolution, which is often different from the range and resolution of the digitized
signal. Of course, the digitized signal can never improve on the transducer characteristics, but it is
common for the digitized signal to have a smaller range or poorer resolution than the transducer.

Accuracy is defined in so many different ways that we seldom find accuracy specifications useful.
In any event, you need more details about the characteristics of the transducer errors than just a single
number bounding the amplitude. Regard accuracy specifications as little more than a summary of detailed
data. For many of the signals used in aircraft stability and control analysis, resolution is more impor-
tant than absolute accuracy; do not confuse the two. It is important only to accurately measure the
change in some signals. For other signals, unbiased values are critical (Marchand, 1974).

Linearity is a desirable characteristic in any transducer. Many transducers are reasonably linear
except at the extremes of their ranges; thus, you can get smaller deviations from linearity if you do not
need the full range. Linearity (although helpful) is not an absolute requirement; it just makes it
easier to calibrate the instrumentation and process the data.

Repeatability, the characteristic of always giving the same output for identical inputs at different
times, is a critical transducer specification. Two broad categories of repeatability problems are
environmental dependencies and drift (however, we make no claim that these categories include all
repeatability problems). The magnitudes of the transducer errors due to problems in either of these
categories depend largely on how much effort you are willing to invest.

Environmental factors, such as temperature, can cause changes in transducer output. Other environ-
mental factors likely to affect transducers include pressure, vibration, acceleration, magnetic fields,
and power supply voltage and frequency; the following discussion of temperature effects applies equally
to these other environmental factors. Of course, if the transducer is supposed to measure temperature,
then temperature effects do not constitute repeatability problems.

You can minimize environmental dependence problems by controlling the environment. It is par-
ticularly common to put sensors and electronics in temperature-controlled enclosures. Vibration effects
can be minimized by an appropriate choice of mounting locations and methods. The best approach to
environmental dependence problems is a combination of environmental control and the use of high-quality
sensors having minimal environmental dependence.

You can lessen repeatability problems due to temperature by measuring, or otherwise deducing, the
Tocal temperature and correcting the data for the temperature effects. For this approach to work at all,
you need specific, quantitive, verifiable data on the temperature effects. This involves extensive and
costly testing; better quality transducers or temperature-controlled environments are usually cheaper.

We generally recommend against environmental corrections for stability and control purposes because
we have seldom (if ever) seen acceptable data on which to base such corrections to flight-control-grade
sensors (inertial-grade sensors have more consistent characteristics). These corrections require con-
siderable time and effort, which are justifiable only if they make a definite improvement in the deriva-
tive estimates. Note in this regard that the largest temperature effect is often a bias, which is only
of minor importance for -much of our data.

There seems to be a common philosophy that the more correction terms you add to the data, the better
results you will get. Our experience is diametrically opposed to this philosophy; we emphasize the vir-
tues of simplicity. Findlay (1981) shows that a major effort in making corrections to the space shuttle
data appeared to make the data worse instead of better. This is the almost inevitable result of using
correction terms (Bendix Corp., 1980) for which the uncertainty is larger than the value. These correc-
tion terms, normally necessary for inertial navigation, were inappropriate for application to these
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flight-control-grade sensors. If you cannot convincingly demonstrate that a given correction will
improve the data, then do not make the correction.

We use the term "drift" to label changes not directly related to environmental factors. Nearly
neutral stability in the sensor can cause drift; the directional gyro is a classic case of drift. Long-
term drift can also result from aging of the sensor components.

You can minimize errors from drift by recalibrating the system regularly. Slow drift from sensor
aging over months and years is easy to account for and may even be irrelevant to a short test program.
Sensors that drift significantly during a flight are troublesome. You need a procedure to calibrate them
in flight; you need to include this procedure in the flight planning; and you will likely need to figure
out how to handle data that are not immediately preceded by a recalibration. For instance, depending on
the stability of the gyros and the duration of the test flights, you might need to erect the gyros
severail times in a flight, and you should always allow for the possibility of small bias errors.

Crosstalk is the response of a transducer or the data system to signals in addition to the intended
signal. We use the term in a broad sense to include any phenomenon having the same end effect, be the
phenomenon electrical crosstalk, mechanical sensor cross~axis sensitivity, misalignment, or something
else. A simple example of crosstalk is a pitch rate gyro that is slightly misaligned and therefore
responds also to roll and yaw rates. Even a perfectly aligned gyro has some degree of crosstalk inher-
ent in its design. You can correct the data for crosstalk if you know the amount present. Treat such
corrections with the same precautions as the previously mentioned environmental corrections; it is better
not to correct for the crosstalk than to apply the corrections with questionable data.

Many important transducer characteristics are not evident in static calibrations. The most basic
dynamic specifications are in terms of the transducer frequency response, the Bode plot of the transducer
gain and lag as a function of frequency. The bandwidth required for stability and control data is low
enough that transducer gain characteristics are seldom a problem; the only cases where we recall needing
to account for transducer gain as a function of frequency involved pressure sensors. Transducer lag is
more often important because of the sensitivity of the derivative estimates to small lags. A constant
time lag (linear phase lag) is an adequate approximation to the frequency response of most transducers in
the frequency ranges pertinent to aircraft stability and control analysis.

Other transducer characteristics include dead bands, hysteresis loops, "stickiness," and rate limits.
You can seldom do much to correct data for these problems, even if you have quantitative information
about them. The main thing to do is to collect appropriate data to ensure that these problems are small
enough not to cause difficulties; otherwise you need better transducers.

Some transducers have characteristic glitches passing through specific signal levels. The solution
to such glitches is usually to smooth through them with a spike remover. This can be a laborious process
if there are many glitches because simple automated spike-detection algorithms are not adequate for the
shapes of some glitches (they can have slow onsets, unlike spikes).

Finally, any transducer has a certain random noise level. The noise statistics are useful to know,
but we caution against using them as a measure of the noise in the system model. The "noise" in our
system modeis is a combination of many things, including modeling error and the transducer errors men-
tioned previously; the actual transducer noise is typically a small portion of the total.

8.2 CONTROL POSITIONS

You must have measurements of any control surfaces or other control devices that move during a
maneuver. The terminology of our discussion emphasizes control surfaces, which constitute the large
majority of control devices, but the principles apply in general. Measurements of control surfaces that
remain unchanged during a maneuver are useful, if only to verify that the surface remained fixed, but are
not required. Some control surfaces may also count as configuration parameters {Section 8.9), which are
useful to record for bookkeeping purposes.

Derivative estimates are extremely sensitive to time-tagging errors in the control position measure-
ments, so your selection of measurement strategies should strongly consider possible timing errors.

The best control position measurements are direct measurements of the surface hinge angles because
the less well defined the relationship between the measurement and the actual surface position, the more
work you need to do to evaluate the surface position and the more error you are likely to have. Actuator
push-rod positions are often reasonable measurements, although not as good as direct surface measure-
ments; the surface position is a nonlinear function of actuator push-rod position, and there is a finite
amount of play in the rod attachment.

Actuator command measurements are one step further removed from the actual surface position and thus
one step poorer. To use such measurements, you must model the actuator response. This response always
has some lag, which should not be ignored.
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Control stick (or wheel or pedal) position measurements are the worst alternative, usually suitable
only for rough work. Even in the simplest mechanical system, there are dead bands, hysteresis tloops,
backlash, cable stretch, and nonlinearities in the connection of the control stick to the surface
(Foster, 1977). It is impractical to accurately model all these effects; they just constitute error
sources. For a more complicated airplane, you must simulate a complete control system, including
filters, 1imits, feedback, sampling effects, actuators, flight condition schedules, and other logic, in
order to determine the surface position from the control stick motions. Direct control surface position
measurements, or something closely approximating direct measurements, are the key to keeping such control
system models out of stability and control derivative estimation. This in turn is one of the simplifica-
tions that keeps our system models tractable. If you need to estimate control system parameters, the
control stick positions are useful, but we try to avoid this complication, as discussed in Chapter 1.

Control position transducers (CPTs) are simple, reliable, mechanical devices. They have negligible
lag and few problems of any kind. Only once have we had strong suspicion of a problem with a control
position transducer, and that suspicion is unverified.

8.3 ANGULAR RATES

The angular rates are the most important response variable measurements. You can conceivably get
reasonable estimates of moment derivatives with only control surface and angular rate measurements.
Conversely, the loss of even a single angular rate measurement is a serious problem that significantly
diminishes the odds of getting acceptable results. Angular rate measurements (or reconstructions of such
measurements) are mandatory for equation-error estimation methods. Output-error and filter-error methods
can in principie work without angular rate measurements, but expect severely degraded results.

Fortunately, rate gyros, the transducers used to measure angular rates, produce excellent-quality
signals for stability and control analysis. A typical instrumentation-quality single-axis rate gyro is
an inexpensive, lightweight, self-contained unit in an approximately 1l-in cube. The gyros have good fre-
quency response, nearly linear calibrations, good repeatability, and virtually imperceptible noise level.

Rate gyros are also quite reliable. We have learned to take rate gyro data seriously, even when it
seems anomalous at first glance. Figure 8.3-1 shows a time history, from a scaled F-15 model (I1iff
et al., 1976), that we were convinced was conclusive evidence of a rate gyro failure. The sharp peaks in
the measured roll rate signal at 1 and 3.5 sec Took unreasonable. They imply extremely large rolling
moments with no apparent cause. There is no evidence of such a large event in the other measurements;
the figure shows a reasonable fit with a linear aerodynamic model. Armed with this evidence, we
requested an examination of the roll rate gyro. When static calibration tests Tooked good, we requested
extensive dynamic testing. The dynamic tests also showed excellent gyro behavior.

Stil11 convinced that something was wrong with the gyro, we tried to gather more evidence by differen-
tiating the Euler angle measurements and using Equation (2.2-14) to get an independently derived roll rate
signal. Although we were unsure whether the Euler angle measurements were good enough for this task, it
was worth trying. To our great embarrassment (considering the effort spent checking our assertion that
something must have been wrong with the rate gyro) this independently derived roll rate clearly verified
the rate gyro measurement. The rate gyro was good. (We later found that powerful vortices were shed
from the forebody at the flight condition of this maneuver. These vortices impinging on the vertical tail
caused sudden large moments far in excess of what would otherwise be considered reasonable magnitudes.)

The only significant problem with rate gyro measurements is alignment. Section 5.2.1 shows the sen-
sitivity of some derivative estimates, particularly C"da and str, to errors in the measurement of Iy ..

Errors in gyro alignment have closely related effects. Suppose a maneuver has a peak roll rate of

50 deg/sec and a peak yaw rate of 5 deg/sec (reasonable values for an aileron pulse on a fighter), and
suppose that the yaw rate gyro is misaligned by 1° in the roll-sensitive direction. The yaw rate gyro
will sense about 2 percent of the roll motion. The misalignment thus causes yaw rate measurement errors
of up to 1 deg/sec or 20 percent of the peak yaw rate; this error level is completely unacceptable.

Some data from the first space shuttle entry were even more sensitive to alignment errors. We
attempted to analyze tiny longitudinal motions (see Section 6.2.2), with peak pitch rates of about
0.1 deg/sec, during bank reversals with yaw and roll rates of about 5 deg/sec; in these circumstances,
a 1° misalignment in the pitch rate gyro would generate errors of 100 percent in the sensed pitch rate.
We generally obtained results of marginal quality from these maneuvers; misalignment may have been one
of the contributing factors. We tried to estimate the misalignment and obtained some inconclusive
results suggesting alignment errors as large as 0.5°.

Our standard criterion is to request alignment within about 0.1° (0.2 percent crosstalk), which is
probably near the practical limit. In-flight airframe deformations make it difficult to define alignment
with greater precision, regardless of the precision of the equipment. Since even a perfectly aligned
gyro has some degree of crosstalk inherent in its design, it is useful to include crosstalk tests of the
assembled gyro package in your calibration procedure.
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Although the alignment of rate gyros is important, their position in the aircraft is not. The
angular rates of a rigid body are independent of the reference point. The main consideration in
selecting gyro location is a good rigid attachment point.

In inertial navigation units, rate gyros are routinely corrected for effects like g-sensitive bias,
dynamic misalignment, g-sensitive drift, anisoelastic drift, and temperature. For stability and control
analysis, we have found these corrections to be imperceptible (usually less than the resolution); they
are more likely to cause problems through misapplication than to help. Stability and control analysis
requirements are drastically different than inertial navigation requirements; even the best rate gyros we
have used are almost useless for inertial navigation.

Strap-down laser gyros show promise of being useful both for inertial navigation and for stability
and control purposes. As yet we have no first-hand experience with laser gyros. Second-hand reports and
specification sheets are encouraging. Laser gyros are quite expensive when compared with flight-control-
grade rate gyros, but not when compared with inertial system costs.

8.4 LINEAR ACCELERATIONS

We consider linear accelerometer data to be mandatory for acceptable stability and control derivative
estimates. You can sometimes get by without ay, provided that you do not need Cp derivative estimates,
but apn and ay are crucial. Virtually all the force derivative information is in the accelerometer data,
and the accelerometer data also help the moment derivative estimates.

We loosely refer to linear accelerometers as measuring acceleration, but this is not strictly true;
accelerometers ignore the component of acceleration due to gravity. See Section 2.1.6 for further
discussion.

Acceleration is a second derivative quantity. Because derivative operations amplify high-frequency
signals, accelerometer measurements intrinsically contain significant high-frequency structural data.
For rigid-body stability and control analysis, these structural data constitute unwanted noise. The
solution to the structural noise problem is in two parts: First, you must select a good attachment point
and method for the accelerometer package. The attachment point should be structurally strong and rigid
and should be in an area of the vehicle where the major structural modes have small amplitudes. The best
locations are usually on major structural members near the center of gravity; wingtips are probably the
worst locations. (Stability and control accelerometer requirements are drastically different from those
of structural dynamics in this and other factors; the odds of meeting both sets of requirements with the
same accelerometer are negligible, so do not even try). The attachment should be rigid, with no free
play. Do not use shock isolation attachments as a way of minimizing structural noise; this may Le a good
idea for some applications, but not for ours. Shock isolation attachments introduce poorly quantified
lags.

Second, you must filter out the structural noise. Presample filters are virtually mandatory. You
often get the best results by sampling at a relatively high rate (with, of course, a presample fiiter),
digitally filtering the high-rate data, and then thinning to the sample rate chosen for analysis.
Sections 7.3 and 7.4 discuss these ideas. The shock isolation attachments discussed previously amount
to mechanical filters; digital or analog electronic filters have more precisely measurable charac-
teristics and can be better tuned to your specific requirements. Whatever filtering method you use, be
sure to account for the filter lags in your time tagging.

Instrumentation-quality linear accelerometers are small units, about the same size and weight as rate
gyros. They are reliable, and the signal quality is generally good for stability and control analysis,
provided that you take adequate care in mounting and filtering.

Like rate gyros, accelerometers are subject to alignment errors. It is often advisable to mount
the gyros and accelerometers on a common baseplate so that you can run combined alignment tests on the
assembly and so that you have only a single assembly to align relative to the airplane.

Unlike rate gyros, accelerometers are sensitive to mounting location. The ideal location is at the
airplane's center of gravity, but that would be an unreasonable requirement, particularly when the
center-of-gravity location changes during flight. Your primary consideration in selecting mounting loca-
tions should be using rigid attachment points where the major structural mode amplitudes are small.
Mounting locations far from the center of gravity are prone to bending problems. Good mounting loca-
tions will often be near the center of gravity, but this is not an intrinsic part of the requirements.
Either you can include the accelerometer position in your measurement model or you can correct the accel-
erometer measurements to the center of gravity. Section 3.5 discusses these alternatives. For either
approach, you need accurate measurements of the positions of the accelerometers relative to the center of
gravity. Section 5.2.3 discusses the problems of erroneous accelerometer position data.

The comments in Section 8.3 about the inadvisability of using miniscule correction terms are also
applicable to accelerometers. Instrumentation-quality accelerometers have excellent linearity; a simple
1inear calibration, with a bias and a slope, gives data as accurate as typical data system resolution
allows. Static alignment corrections are reasonable if you have precise data to base them on. Either
correcting or modeling the transducer positions is mandatory. We generally advise against any other
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corrections; if other corrections are significant to stability and control analysis, you probably need
better quality accelerometers.

8.5 FLOW ANGLES

We highly recommend that you obtain measurements of angle of attack and angle of sideslip, collec-
tively called flow angles. Flow angles are not on our list of mandatory measurements, and we have
occasionally obtained good results without using flow-angle measurements. Nonetheless, flow-angle
measurements are of major benefit in obtaining good derivative estimates and should be part of any
serious stability and control tests. Without flow-angle measurements, you are largely restricted to
small-perturbation maneuvers from well-stabilized flight; your analysis task is also more difficult.
Flow-angle measurements, or reconstructions of such measurements, are mandatory for equation-error esti-
mation methods.

8.5.1 Uses

We describe six different uses for angle-of-attack measurements, citing the uses roughly in order of
importance. Only the first of these uses is relevant to angle of sidestip; the remainder apply only to
angle of attack.

The first use, and probably the most important, is as observations. Flow-angle observations greatly
contribute to obtaining good o and 8 derivative estimates; this should be no surprise. (The surprising
fact is that they are not mandatory for output-error or filter-error methods.) Accurate estimates of a
and B derivatives indirectly help in the estimation of the other derivatives.

The second use of flow-angle measurements, primarily applicable to angle of attack, is in the
evaluation of flight condition. Angle of attack is an important flight condition parameter. Predic-
tions are commonly expressed as functions of angle of attack. You need to know the angle of attack to
select the appropriate predicted values both for starting and for comparing with the derivative esti-
mates from flight. Even if no predictions are available, you will want to present your estimates as
functions of angle of attack. Results presented without any indication of the flight condition to
which they apply are virtually useless. If you do not have an angle-of-attack measurement or recon-
struction, you have two other options: You can compute angle of attack from other data such as pitch
attitude and flightpath angle in steady flight, or you can plot data as a function of something related,
such as 1ift coefficient.

The third use of angle-of-attack measurements is in the kinematic term (p sin @ - r cos a) in the B
state equation. This term is relevant whether you have a B observation or not. The importance of the a
measurement to this term is a debatable issue. The lateral dynamics are quite sensitive to the value of
a used in the (p sin o) part of this term; this implies that an accurate measurement of a is crucial.
Our experience is that this term is so sensitive that we cannot rely on the o measurement being accurate
enough. Therefore, we normally estimate a bias in the (sin ) term as one of the unknowns in each
lateral-directional case. This means we do not really need a measured o for this purpose.

Estimating this bias is, in fact, one way to estimate « without a direct measurement. Figure 8.5-1
shows estimates of sin o obtained by this means from a 3/8-scale F-15 model (I1iff et al., 1976). The
estimates are plotted as functions of measured angle of attack over a range of -20° to 55°. The solid
line is the curve of perfect agreement. This figure shows that the sin o estimates from the B state
equation are adequate to give a rough approximation of the angle of attack, but there is a scatter band
of several degrees. For this vehicle, the scatter is larger outside the range of ~15° to +30°.

If the angle of attack varies significantly during a lateral-directional maneuver, you need a
measured o to track the time variation, although you can allow a constant unknown bias, as shown in
Equation (3.8-13a).

The fourth use of angle-of-attack measurements is in the transformation of the Cy and Cp derivatives
into the Cp derivatives used in the o state equation. The measurement does not have to be particularly
accurate for this purpose, so rough approximations based on other data can often substitute adequately
for an « measurement. For cruise conditions, zero is often an adequate approximation for the angle of
attack; this approximation simplifies the equations significantly (see Section 3.7). The transformation
is most important at high angles of attack and low speeds.

The fifth use of angle-of-attack measurements is in the gravity term in the o state equation. The
reason you need an o measurement here is that the term is nonlinear. For a nonlinear term, you cannot
blithely subtract the initial condition and work only with perturbation quantities. Section 3.7 describes
methods for dealing with nonlinearities. In general, if the maneuver is large, you will need point-by-
point measurements or reconstructions of a. For small maneuvers, you can get by with average values of
angle of attack, perhaps approximated from other data.

The sixth use of angle-of-attack measurements is in the thrust term in the o state equation. The
same comments apply to this nonlinear term as to the gravity term.
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8.5.2 Vanes

There are several methods for measuring flow angles. No single method is clearly optimum in all
situations. Al1 the methods have some shortcomings; do not expect flow-angle measurements to be of the
same high quality as surface position, angular rate, or linear acceleration measurements. It requires
work, both in transducer installation and in analysis, to compensate for the inherent measurement
problems and get good flow-angle data.

Most test programs at Ames-Dryden obtain flow-angle measurements from boom-mounted vanes. The boom
is most commonly attached to the aircraft nose, but we have occasionally used booms attached to wingtips
or other places. We consider boom-mounted vanes to be generally the best means of measuring flow angles,
provided that you can put an adequate boom on the aircraft without influencing the aerodynamics.

Ideally, the boom should be long enough to position the vanes in the free stream, completely outside
the area of measurable flow patterns around the aircraft. This ideal is unrealistic. A more practical
goal is to position the vanes far enough from the aircraft that the flow influence of the aircraft is
small enough and simple enough in form to correct for. Our empirical rule for nose booms is that boom
Tength should be 2.5 to 3 times the fuselage diameter.

Boom-mounted vanes are invariably far from the aircraft center of gravity. Therefore, the obser-
vation terms involving the offset of the sensor from the center of gravity are important. You must know
the vane locations to evaluate these terms. Either you can correct the measured data to the center of
gravity or you can include the position effects in the observation equations; Section 3.5 discusses
this choice.

Flow-angle vanes require considerable calibration to determine the effect of the flow field around
the aircraft. You need to calculate this effect in order to subtract it and leave the desired free-
stream flow angles (or in order to include it in the observation equation). The calibration data can
come from theoretical computations, wind-tunnel tests, or flight tests. The effects get smaller as the
vanes move farther from the aircraft, but it requires unreasonable boom lengths to make the effects
negligible. For moderate flow angles, a reasonable model of the effects is

ag = Kgof + ap (8.5-1)

where ag is the local angle of attack of the flow stream passing by the vane, af the free-stream angle of
attack at the vane location, Ky the upwash factor, and ap the bias. Wolowicz (1966) discusses calibra-
tion of flow-angle vanes. Section 3.6.3 discusses some aspects of estimating K, from flight maneuvers.

We do not go into detail here, but note only that accurate vane calibration can require considerable
flight and analysis time.

Other possible complications of boom-mounted vanes include boom and vane dynamics. Although boom
dynamics are often detectable as in Figure 7.3-9, they seldom constitute serious problems if the boom
is designed with reasonable strength. The dynamic modes of a well-designed vane are imperceptible in
flight. Static effects such as vane warping (with balsa vanes) or bending {with metal vanes) cause large
problems. Careful handling can prevent bending of metal vanes. Humidity-induced warping of balsa vanes
is more difficult to avoid. Boom bending can be a problem at high load factors. Finally, vanes are sub-
ject to a variety of mechanical difficulties such as friction and grit in the bearings. Some analysts
apply data corrections for problems such as boom bending. We recommend a cautious, conservative approach
to such corrections; carelessly applied corrections sometimes cause more problems than they solve, par-
ticularly when the original problems are negligible.

In spite of these problems, we generally consider boom-mounted vanes to be the best source of
flow-angle measurements. We prefer this source unless boom installation is ruled out. The cost and
complexity of installing an adequate boom is prohibitive in some test programs. There are also situa-
tions where booms are unacceptable, regardless of cost. For instance, a nose boom can have a large
effect on the aerodynamics, particularly vortex flow at high angles of attack.

Body-mounted vanes avoid the necessity of installing booms to measure flow angles. Such vanes are
typically mounted on both sides of the forward fuselage or nose. Although body-mounted vanes avoid the
problems associated with booms, they introduce a serious problem of their own. The flow patterns near
the aircraft surface, where the body-mounted vanes are located, are extremely complicated. For instance,
nonlinear effects of yaw rate and roll rate are plausible. Averaging vane measurements on the left and
right sides will not eliminate nonlinear effects. It is essentially impossible to accurately account for
all such effects, so you should anticipate measurements from bcdy-mounted vanes having errors correlated
with the other states, regardless of how much effort you spend on calibrating the vanes. The purpose of
a boom is to reduce the size and complexity of the flow effects to a manageable level. Body-mounted
vanes can give adequate flow-angle measurements for some purposes, particularly in steady flight, where
there are fewer influences to consider. You can use body-mounted vanes in analyzing dynamic stability
and control maneuvers, but recognize that the signal quality will probably be marginal and watch for
potential problems from the correlated errors.
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8.5.3 Pressure Ports

Pressure ports are an alternative to vanes for measuring flow angles (Wuest, 1980). The pressure
patterns over the vehicle are strongly affected by flow angles. Thus, if you know these functions, you
can deduce the flow angles from measurements of the pressure at several locations. (Three locations is a
minimum to deduce the flow angle in one axis.) Siemers et al. (1983) and Foster (1980) describe speci-
fics of this technique for measuring flow angles. We comment here only on some of the general charac-
teristics of the method.

You must know the pressure patterns corresponding to different flow angles in order to deduce the
flow angles from pressure measurements. This is an impractical requirement if the pressure port loca-
tions are arbitrary. You need locations specifically selected to make the job easier.

The space shuttle provides an example of two typical arrangements. Figure 8.5-2 shows the shuttle
side probes. There are two of these side probes, one on each side. Each probe has three pressure ports,
one each on the center, top, and bottom of the front of the probe, plus two static pressure ports farther
back. The side probes are retracted during the hypersonic part of the entry, when they would burn off if
extended. They extend at about Mach 3.5, a higher Mach than would be practical for vanes. In other
vehicles, such probes could be boom mounted.

Figure 8.5-3 shows the shuttle entry air data system {SEADS) ports, planned for installation on
future shuttle flights. The ports in this system will be built into the nose of the vehicle itself,
allowing data gathering throughout the entire entry.

Pressure port measurements of flow angles have two major problems. First is the difficulty of
calibration. No matter how well positioned the ports are, the relationship between flow angles and
pressures is complicated. Accurate calibration of pressure port measurements of flow angles requires
extensive work, combining theoretical analysis, wind-tunnel tests, and flight tests.

The second problem is the lag inherent in pressure sensors. Section 8.7 discusses such pressure
lags. The predominant frequencies of the flow-angle signals in dynamic maneuvers are higher than those
of the air-data signals, so lags in the flow-angle measurements are more critical. The pressure lag
problem is further complicated for flow-angle measurements because each of the several pressure ports
involved can conceivably have a different lag.

It is possible to overcome the difficulties of pressure measurement of flow angles, but it requires a
1ot of work, often a prohibitive amount. Pressure ports are seldom a viable option on small projects;
even on large projects, you will mostly consider pressure ports when they are already installed for other
purposes or when the use of vanes is precluded.

8.5.4 Other Sources

Another source of flow-angle information is inertial integration. By this term we mean any process
of estimating the aircraft velocity vector by integrating accelerometer measurements. This could involve
a specialized inertial navigation unit; at the other extreme, it could be merely integrating linearized
equations of motion using the stability and control accelerometers and gyros as inputs.

Inertial integration using the stability and control instrumentation does not add new information.
It is really a reconstruction rather than an independent measurement. It is reasonable to treat flow
angles from inertial navigation units as independent measurements because the inertial navigation unit
uses sensors different from the stability and control sensors; furthermore, the sensors have dramatically
different characteristics.

There are three problems with using inertial integration to obtain flow-angle time histories for
stability and control analysis. The first problem is drift in the open-loop integration of the neu-
trally stable equations. The drift in integrating typical instrumentation-quality accelerometer measure-
ments can be large, even during a single maneuver, unless you use special tricks to reduce the drift
(1ike adjusting biases to match reasonable end conditions). The drift in any inertial navigation unit
used for more than spare parts will be too small to measure during a single maneuver.

The second problem is one of response to dynamic maneuvers. Inertial navigation units are not
designed to track the relatively high-frequency motion of a dynamic maneuver; the navigation problem con-
centrates in a much lower frequency range. Inertial navigation data tend to be heavily low-pass
filtered, in some cases by the intrinsic characteristics of the transducer. Thus, although the steady-
state data before and after a maneuver are extremely accurate, the inertial navigation unit may be of
little value in tracking the dynamic response of a stability and control maneuver. It is possible to
modify some inertial navigation units to obtain higher-frequency data, alleviating this problem. The
problem does not apply to inertial integration using the stability and control sensors. Strap-down iner-
tial systems typically have better dynamic response than do gimbaled inertial systems.

The third problem is intrinsic to all inertial integration methods: 1In the pure form, these methods
ignore the effects of winds. Figure 8.5-4 shows sideslip angle from the space shuttle inertial naviga-
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tion unit during the second entry. The large motions near the end of the entry are errors from
neglecting winds; the true sideslip angle remained near zero.

There are several methods of accounting for winds in inertial navigation, but none really solve the
problem. You can subtract known winds measured by balloons or other techniques, but such measurements
can give only large-scale general patterns. No external sensor can accurately measure the winds encoun-
tered by the aircraft, particularly the small-scale phenomena.

Pressure ports, vanes, or other flow-angle and air-data measurements can be used to deduce winds by
comparing the inertial integration flow angles and velocities with the measured flow angles and air data.
This is a reasonable way to incorporate wind data into an inertial navigation system; the space shuttle
system uses such an idea to adjust inertial velocity and angle of attack (but not angle of sideslip)
after the side probes extend. This does not much help our quest for a means of inertially measuring flow
angles, however; the inertial system here uses flow-angle measurements, it does not create them.

The final method of measuring flow angles is to deduce the flow angle required to get the measured
accelerations. This method assumes knowledge of the force coefficient functions. After you have
verified the force coefficient functions in flight test, this may be an excellent method of estimating
flow angles on production vehicles, where you may want to remove the boom used in testing. For flight
test use, where you are trying to determine force coefficients, it is circular to use flow-angle measure-
ments based on knowledge of the force coefficients. You use such self-perpetrated data only at the
severe risk of obtaining misleading results.

8.6 EULER ANGLES

We highly recommend that you obtain measurements of the Euler angles © and ¢ unless your test program
is completely restricted to small-perturbation maneuvers from steady wings-level flight. The Euler angle
¥, on the other hand, is of 1ittle value in estimating stability and control derivatives.

The most important use of Euler angle measurements is in the gravity term in the o« and g state
equations. The Euler angle ¥ does not enter into these terms, which is why measurement of ¥ is less
important than measurement of © and ¢. For small-perturbation maneuvers from wings-level flight, you can
get by with small-angle approximations that do not require Euler angle measurements. For any other con-
ditions, you will need measurements of © and ¢ to get adequate results.

This is one place where equation-error methods can get by with less data than output-error methods.
Since equation-error methods do not involve integration of the state equations, they do not directly
need the Euler angles in this role. (They might, however, use Euler angles for data reconstruction
and checking.)

Euler angles are also used as observations. Their value in this role is minimal. They add little
to the angular rate data, which are generally of much higher quality. This role applies to all three
Euler angles, but ¥ adds so little information that we seldom bother to use it, even if measurements
are available.

Euler angles are usually measured by platform attitude gyros. Relative to other stability and
control instrumentation, attitude gyros are bulky and use considerable power. They are also less
reliable than accelerometers and rate gyros. The biggest problem with attitude gyros is drift. The
gyros will typically drift significantly during flight. This means that the gyros must regularly be
reset (often referred to as erecting the gyros). It also means that small bias errors, varying from
maneuver to maneuver, are to be expected. Neither of these effects are disabling, but you should be
aware of them so that you do not expect more from the attitude gyros than is realistic.

You should also be aware of the gyro erection procedure on your airplane and the possible effects of
this procedure. Some aircraft have erection circuits that amount to high-pass filters. This means that
the Euler angle data might be distorted in long, slow maneuvers if the erect circuit is active and the
break frequency is high enough. You should know at least enough about the gyro erection in your airplane
to determine whether this is a potential problem.

Another potential problem with most attitude gyros is gimbal lock. This is seldom a problem for sta-
bility and control maneuvers. Gimbal lock usually occurs only when the aircraft nose is pointed nearly
straight up or down. These are rare (though not completely unheard of) conditions for stability and
control maneuvers. We have encountered gimbal lock during tests of fighter airplanes.

The resolution of Euler angle measurements is often poor. This is not because of any limitations of
the attitude gyros, but because of the large signal range and the small fraction of this range used in
typical maneuvers. Section 7.5 gives some examples of Euler angle measurement resolutions. The poor
resolution of the Euler angles is seldom a serious problem. None of the uses of the Euler anglies require
high resolution; the Euler angles are among the least resolution-critical signals. For instance,
although we prefer better, we can usually accept Euler angles with the 1.4° resolution implied by scaling
an 8-bit PCM channel over a full 360° range.
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Strap-down inertial systems can obtain Euler angle data without using gimbaled platform gyros.
Although we have had no experience in using strap-down inertial systems, they should be superior to gim-
baled gyros.

8.7 AIR DATA

The term "air data" refers to the properties of the air in the vicinity of the airplane and the rela-
tive motion of the airplane and the air. The air-data parameters of most interest to us are angles of
attack and sideslip, air-relative velocity, dynamic pressure, and Mach number. Related parameters such
as Reynolds number are sometimes pertinent. The measurement of the flow angles presents somewhat dif-
ferent issues than the other air-data parameters; flow-angle measurement is separately discussed in
Section 8.5.

The air-relative velocity, dynamic pressure, and Mach number are closely related by the equation

g == oV2 = 0,7PgM2 (8.7-1)

N

This section concentrates on these three parameters.

Dynamic pressure and velocity are used in the nondimensionalization of the stability and control
derivatives. Therefore some form of dynamic pressure and velocity data is mandatory for most applica-
tions. Section 5.2.2 discusses the importance of nondimensionalization. Errors in dynamic pressure and
velocity measurement cause proportional errors in the nondimensional derivative estimates. If your
application requires only dimensional derivative estimates and if the dynamic pressure and velocity are
constant during each maneuver, then you can dispense with dynamic pressure and velocity measurements, but
this situation is rare.

The dynamic pressure measurement is particularly critical for normal force derivatives. This arises
from the relatively large normal force in level cruise flight (equal to the airplane weight). Suppose
that dynamic pressure changed by 10 percent during a maneuver where the normal acceleration varied
between 0.9 and 1.1 g. The dynamic pressure change would directly cause a 0.1-g change in the normal
acceleration. Therefore, if dynamic pressure measurements were unavailable, you would have modeling
errors on the order of 50 percent of the perturbation in the normal force. Dynamic pressure effects
on normal acceleration are amplified because the dynamic pressure effects are proportional to the total
normal force, which is much larger than the perturbation.

Figure 8.7-1 shows a typical example of the problems that arise from negliecting the changes of dy-
namic pressure during a maneuver. Although dynamic pressure measurements were available, this analysis
used only the constant average value (use of a constant value often divides computer time by a factor of
2 or 3). Note the fit error in the low-frequency range in normal acceleration and the correlation of
this error with dynamic pressure.

A secondary use for velocity measurements is in the gravity term of the « and B state equations.
Precise measured values are of less importance in these terms. On occasion we have even estimated these
terms as unknowns, usually as a diagnostic tool to check the velocity measurement.

Mach number measurements are necessary to define the flight conditions of transonic and supersonic
airplanes. The Mach number is needed for looking up starting values and for comparing with other esti-
mates. Constant Mach number is a requirement for usable transonic data; a Mach number measurement is
needed to evaluate how well each maneuver adheres to this model. The Mach number is not used in the
estimation process itself.

The air-data parameters are usually derived from three basic measurements: static pressure, total
pressure, and temperature. A direct measurement of differential pressure (total minus static) often
substitutes for the total pressure measurement. Gracey (1980) and Wuest {1980) give comprehensive treat-
ments of these air-data measurements.

The total pressure (or differential pressure) measurement is the most important; you should make
every effort to record a total or differential pressure measurement on a data tape in order to allow
modeling of the effects of dynamic pressure changes during a maneuver. The pilot's airspeed gauge really
measures differential pressure, so lap notes of indicated airspeed are a potential alternative form of
these data. Although we have used such lap notes on occasion, we recommend them only as a last resort.
The use of lap note airspeed data forces you to assume constant dynamic pressure during a maneuver and
provides no good way to check the validity of the assumption. The maneuver requirements are therefore
considerably more stringent. Lap notes are also less accurate and more susceptible to error than auto-
matic data systems.

There are several acceptable alternatives for static pressure and temperature data. The preferred
approach is to record static pressure and air temperature probe measurements on the data tape. Static
pressure and temperature are essentially constant during most (but not all) reasonable stability and
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control maneuvers. Therefore, lap note recording of pressure altitude and outside air temperature
gauges is often acceptable. For stability and control analysis, you can probably even get by with
approximations, like using ground-level temperature minus a standard lapse rate to extrapolate to
temperature at altitude.

Calibration of air-data sensors is too broad a subject to reasonably cover here. This calibration
can be a major consideration in a flight test program. Gracey (1980), Herrington et al. (1966), and
Wolowicz (1966) discuss air-data sensor calibration in more detail.

Pressure lags in air-data sensors are often large. Lags are commonly on the order of several tenths
of a second, and are sometimes longer than a second. For most stability and control maneuvers, the air-
data lags present no problems, because the air-data parameters are nearly constant during the maneuvers.
Pressure lags are important, however, in analyzing maneuvers such as that shown in Figure 6.2-2 involving
large, rapid changes in static and dynamic pressure.

Figure 8.7-2 shows data from a step response test of the air-data sensors of the airplane that flew
the maneuver shown in Figure 6.2-2. The test began with 50 1b/ft2 of suction applied to the static port.

The total pressure port was at ambient conditions in the hangar, giving a 50-1b/ftZ differential pressure.
We then suddenly removed the suction from the static port and recorded the instrument response to this
step change in pressure. The static pressure response is plain, showing an approximately exponential

rise from the reduced pressure to ambient conditions. The time constant of this rise is about 0.4 sec.
The digital resolution is apparent in the stairstep appearance.

The response of the differential pressure sensor requires a little more explanation. The differen-
tial pressure transducer has a multiturn potentiometer; any particular digital counts value can cor-
respond to several different engineering units values, depending on which turn the potentiometer is on
(you determine the correct turn by examining a coarse measurement). The data in Figure 8.7-2 are in raw,
uncalibrated counts. The 50-1b/ft2 pressure change crosses several complete turns, which is the cause of
the sawtooth appearance. The sudden jumps at about 0.5, 1.0, and 1.8 sec are the turn changes. The

engineering units decrease monotonically from 50 to O 1b/ft2,

Discounting the turn jumps, the response appears to consist of two segments of constant slope,
changing from the higher slope to its lower slope at about 1.2 sec. The constant slope before 1.2 sec
is from the sensor rate Timit. The apparent constant slope after 1.2 sec is an artifact of the highly
nonlinear sensor calibration; the engineering units here have a more nearly exponential shape, as we
should expect. Finally, the sensor reaches the lower calibration 1imit of the lowest turn at 1.8 sec
and then stays limited there.

Gracey (1980) and Herrington et al. (1966) give data on pressure lags. It is important to note that
pressure lags are strongly affected by density; the lags are much larger at altitude than at ground level,
up to four times larger for reasonable cruise altitudes. Therefore, be sure to ask what altitude the data
apply to when you look at pressure lag figures. A system with acceptably small lags in the hangar may be
unusable for the maneuvers you plan at cruise altitudes.

Inertial navigation systems or radar tracking are possible alternative sources of velocity measure-
ments; assuming some source of density and static pressure data, Equation (8.7-1) gives dynamic pressure
and Mach number. Wind effects are a major obstacle to these methods. If you know the winds, you can
easily account for them, but accurate wind data are difficult to obtain. Accurate static pressure and
density data are also a problem at extreme altitudes.

8.8 ANGULAR ACCELERATIONS

Angular acceleration measurements are useful but are not required. The primary use of angular accel-
erometer measurements is as an observation. You can also use angular accelerometer measurements to
correct linear accelerometers to the center of gravity if you choose that approach to dealing with
instrument position (see Section 3.5).

In our experience, the quality of angular accelerometers usually varies from marginal to unusable for
stability and control analysis. We have seen a few good angular accelerometers, but they are more the
exception than the rule. Many angular accelerometers are extremely noisy, to the extent that the
response to a stability and control maneuver is lost in the noise. Figure 5.2-4 shows such data from the
space shuttle. The noise sensitivity is the worst in buffet and turbulence. Those angular accelerome-
ters that have reasonably low noise levels often have large lags and severe distortion at frequencies of
interest for stability and control analysis.

It is fairly common practice, when angular accelerometer data are unavailable or of poor quality, to
substitute differentiated angular rates, smoothed as necessary to alleviate noise problems in the dif-
ferentiation. The merits of this practice depend on the intended use of the data. Regression methods
require angular acceleration data, justifying the differentiation of the angular rates if that is the
best (or only) source of such data. Differentiated angular rates are acceptable for use in correcting
lTinear accelerometers to the center of gravity, provided that the differentiated signal has a low noise
level. However, modeling of Tinear accelerometer positions in the observation equation is less suscep-
tible to noise and is thus generally preferable to correcting the data using differentiated signals.
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We usually advise against using differentiated angular rates as observations for output-error or
filter-error methods. Such use seldom causes problems (unless the differentiated data are excessively
noisy or are distorted by poorly chosen filtering) but seldom helps. The main effect is to spend extra
effort and computer time without measurably changing the resulting derivative estimates. This waste
arises from a mistaken impression that just because output-error methods can use angular acceleration
observations, such observations are required. Angular acceleration data are required for regression
methods but not for output-error methods. We have done more stability and control analysis without
angular acceleration data than with them.

In output-error methods, angular rates and anguilar accelerations are largely mutually redundant. If
you have truly independent angular rate and angular acceleration data, they are not redundant and you
have more information than from either signal alone. If the angular acceleration signal is derived by
differentiating the angular rate signal, it adds no new information; it only repeats the same information
in a different form.

This change in form can be useful. The differentiated signal emphasizes the high-frequency content
of the data, possibly limited by any filtering done with the differentiation. Whether this emphasis is
helpful or detrimental depends on specific circumstances. In many cases, the useful data are all at
relatively low frequencies, and the high-frequency content is 1ittle more than noise. In other cir-
cumstances, the high-frequency part of the data gives good control derivative information. This occurs
when there are sharp control inputs and the random noise level and quantization level of the rate gyros
are Tow. If, in addition, the low-frequency response is distorted by drift and small modeling errors
(Targe modeling errors would make the analysis unacceptable), then the high-frequency part of the data
can contain the best control derivative information. In such situations, the emphasis change caused by
using differentiated rate gyro signals improves the results.

In summary, the use of differentiated rate gyro measurements is sometimes justifiable, but we rec-
ommend against indiscriminant use without specific benefits in mind. If you have no useful angular
accelerometer measurements and no specific reasons for using differentiated rate gyro measurements,
then simply remove the angular accelerations from the observation vector. Avoid differentiating angular
rates just because they are there.

8.9 ENGINE PARAMETERS

Engine thrust and engine speed measurements are useful in some applications, but they can be ignored
in most stability and control work.

The primary need for engine thrust data is in determining drag coefficients. Without some means of
subtracting the thrust component, you can only estimate the sum of the thrust and drag forces. The
thrust also appears in the a state equation, but that term is usually of minor importance. The impor-
tance of obtaining thrust measurements is directly related to the importance of the thrust to the vehicle
stability and control. Thrust data are critical, for instance, for vectored-thrust configurations.

Inclusion of engine gyroscopic effects requires measurement of engine speed. Such effects are often
small enough to ignore in small-perturbation stability and control maneuvers; they are most Tikely to be
important in small high-powered airplanes. Large gyroscopic effects cause coupling between the longitu-
diral and lateral-directional motions, which is detrimental to the handling qualities.

Methods for measuring engine thrust are outside the scope of this document. Signals required to
compute engine thrust are likely to include pressures and temperatures at various places in the pro-
pulsion system, rotational speeds, fuel flows, and engine control settings. Calibration of engine
thrust measurement is a major portion of a flight test program.

8.10 CONFIGURATION PARAMETERS

The vehicle configuration parameters are the positions of all flaps, canards, landing gear, wings
(sweep or skew), engine controls, external stores, and other items that affect the aerodynamic or control
characteristics of the vehicle and are constant during a maneuver. Changeable control system charac-
teristics, such as control system modes and gains, are also part of the configuration data.

It is important to know the configuration to which the flight data apply. For small, simple pro-
grams, lap notes or other manual records are adequate for configuration data. For large programs with
many configurations and maneuvers, digital recording of configuration variables is advisable to lessen
the chances of confusion and error. Digitally recording configuration data also aids automated handling
of large quantities of data.

Such digital recording can be a great convenience, but it is not a requirement. Hand recording
is adequate for parameters that remain constant during a maneuver. Any parameter that changes value
during a maneuver is more properly classified as a control than as a configuration parameter. There is
obviously some overlap in these classifications. Flap position can be a configuration parameter for some
maneuvers and a control in others. We can even have, for instance, the average elevator position during
a maneuver as a configuration parameter, with perturbation in elevator position as a control in the same
maneuver. In such cases of overlap, the requirements for measuring control positions apply.



134

8.11 LOADING DATA

The loading data are those measurements needed to define the mass characteristics of the vehicle
during each flight maneuver. These data include fuel weights in various tanks (or fuel flow rates, from
which you deduce remaining fuel weights by integration) and payload weights and positions. Geometric
configuration parameters are also necessary to define the mass distribution. Section 5.2 discusses the
importance of knowing the vehicle mass characteristics.

Digital recording of loading data is a great convenience to automated data handling but is seldom a
requirement. Hand-recorded data are adequate in most cases. Automated recording of fuel flow is
necessary if your method of measuring fuel weights involves integrating fuel flows.
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9.0 EVALUATION OF RESULTS

This chapter treats the evaluation of the results of the parameter estimation process. There is some
discussion of evaluation throughout this document because of the closed-Toop nature of the analysis pro-
cess. Evaluating the results is an integral part of the analysis process, not something that waits until
the analysis is done. You must investigate the reasons for poor or questionable results and endeavor to
acquire new data or reanalyze the existing data to improve the results.

Maine and I1iff (1984, chapter 11) discusses many of the general principles of evaluating parameter
estimation results. The evaluation tools presented include the Cramér-Rao bound, bias, scatter, and
engineering judgment. We do not repeat those general discussions here.

In this chapter we address specific issues of computing the Cramér-Rao bound, which is the primary
analytical tool for evaluating the accuracy of the estimates. We use the Cramér-Rao bound in other chap-
ters, but this chapter considers the practical aspects of its computation in detail. This chapter also
shows several examples of evaluating data using the Cramér-Rao bound in conjunction with other tools.
Finally, we briefly discuss the importance of considering modeling issues in evaluation.

9.1 COMPUTATION OF THE CRAMER-RAO BOUND

The Cramér-Rao bound is one of the primary analytical tools for evaluating parameter identification
results; it gives an approximation to the variance of the estimates. Maine and IT1iff (1984, chapter 11)
shows the derivation of the Cramér-Rao bound.

Because of the numerous qualifications involving modeling error and noise statistics, it is necessary
to validate the theoretical properties of the computed Cramér-Rao bounds before much confidence can be
placed in them. Comparing the Cramér-Rao bounds and the sample standard deviations obtained from the
data scatter gives a good indication of the adequacy of the assumptions made in the theoretical develop-
ment. It has long been known that such comparison shows significant discrepancies in actual flight data.
This section examines these discrepancies and explains their cause. We also suggest and evaluate an
approximate correction for these effects.

9.1.1 Discrepancy in the Cramér-Rao Bound

We choose data from a Piper PA-30 aircraft (Figure 9.1-1) to evaluate the Cramér-Rao bounds.
Eighteen maneuvers were obtained from this vehicle. Each maneuver consisted of an aileron input
initiated from steady flight. The derivatives were estimated by the MMLE3 program using an output-
error maximum likelihood method. Figure 9.1-2 shows a typical time history match.

Figure 9.1-3 presents the estimates of CnB and ClB and the Cramér-Rao bounds obtained from these

maneuvers. The vertical scales in these plots are exaggerated in order to show the scatter, and the a
scale is exaggerated in order to separate the maneuvers. No significant differences in the derivatives
are expected over this small angle-of-attack range; you can regard the 18 maneuvers as being at essen-
tially the same flight condition. The Cramér-Rao bounds on this plot are so small that they are dif-
ficult to see; they are roughly the same size as the symbols. The data scatter is much larger than
indicated by the Cramér-Rao bounds. Quantitatively, the sample standard deviation is about nine times
the average Cramér-Rao bound.

This discrepancy between the data scatter and the Cramér-Rao bound has long been known. It has
become a common practice to multiply the Cramér-Rao bounds by an empirically derived "fudge factor" of 5
to 10 (I1iff and Maine, 1975). The resulting values have proven useful for evaluating the accuracy of
estimates, but the necessity of the unexplained fudge factor has detracted from the confidence. Because
of this problem with the Cramér-Rao bounds, several reports have used the estimated correlations as pri-
mary indicators of accuracy (Wells and Ramachandran, 1976; Suit, 1972) in spite of the previously men-
tioned problems with the correlations. The estimated correlations are based on the same theoretical
foundation as the Cramér-Rao bounds and thus should be equally suspect if errors are known to exist.
Other reports have ignored the fudge factor and quoted overly optimistic values of the accuracy (Williams
and Suit, 1974); discrepancies larger than the quoted accuracy were then attributed to various effects
without sufficient data points to establish whether the observed differences were significant or lay
within the scatter band.

The evaluation of accuracy measures on actual flight data is complicated by the impossibility of
establishing true values for comparison and by the inevitable presence of unmodeled effects. Although
tests on actual flight data are necessary for final validation, simulated data provides a more controlled
environment, which may aid preliminary work. We therefore repeated the preceding experiment with simu-
lated data.

To mimic the flight data experiment as closely as feasable, we used the control inputs measured
from the flight data to create the simulated data. We created 18 simulated maneuvers using the same
flight conditions as those of the 18 actual maneuvers. The same model was used for the simulation
as for the estimation. The same true values of the nondimensional derivatives were used for all 18
maneuvers. We used a pseudorandom noise generator to add simulated white Gaussian measurement noise to
the responses. The measurement noise power for each signal was proportional to the average residual
power observed on the flight data for that signal. We adjusted the proportionality constant to obtain
the same magnitude of scatter in the estimates from the simulated data as was observed in the estimates
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from the flight data. The derivatives and Cramér-Rao bounds were estimated from these simulated data
using the same program as for the flight data. Figure 9.1.4 shows a typical time history match.

The estimates of CnB and CﬁB from the simulated data are shown in Figure 9.1-5 plotted to the same
scale as in Figure 9.1-4. The true values are Cyg = 0.001 and Ceg = -0.0007.

The scatter on this plot is about the same as for the flight data because the simulated noise power
was adjusted to achieve this scatter. The Cramér-Rao bounds differ drastically on the flight and simu-
lated data. The Cramér-Rao bounds on the simulated data are about 10 times those of the flight data and
agree well with the observed scatter. For the 11 derivatives estimated (not including bias terms), the
ratios of the sample standard deviations to the Cramér-Rao bounds range from 0.68 to 1.32. This is
excellent agreement for a sample of only 18 maneuvers.

The Cramér-Rao bound thus agrees well with the scatter on simulated data, but disagrees drastically
on flight data. Sections 9.1.2 and 9.1.3 examine the reasons for this discrepancy.

9.1.2 Previous Attempts at Explanation

Researchers have advanced several ideas attempting to resolve the discrepancy in the Cramér-Rao
bound. Few of these ideas have been discussed extensively in the literature because of their speculative
nature. Maine and I1iff (198la) examined these proposals and showed that none of them provided a satis-
factory explanation for discrepancies of the magnitude observed in practice.

The excellent performance of the Cramér-Rao bound on simulated data refutes many conceivable explana-
tions of the discrepancy: One is the possibility of an error in the formulation or computer programming;
such an error would have shown up in the simulated as well as the flight results, since the same computer
program was used. A second refuted explanation is the fact that the Cramér-Rao bound is only a lower
bound. The maximum likelihood estimator is proven to be asymptotically efficient, that is, the Cramér-
Rao inequality approaches an equality as time approaches infinity. For finite time, the equality does
not hold. However, intuition, which can be backed up by analysis in this case, suggests that a few
periods of the natural frequency should be enough that the asymptotic result is closely approached. The
fact that the scatter of the simulated data agrees so well with the Cramér-Rao bound verifies that the
time was long enough to make the equality a very good approximation.

These attempts to explain the discrepancy between the Cramér-Rao bounds and the scatter implicitly
assume that the scatter is a reasonable measure of the accuracy. For the simulated data, where the true
values are known to be constant, the scatter almost defines the accuracy for an unbiased estimator. For
the flight data, other possibilities must be considered. Recall that the simulated data noise level was
chosen to make the scatter match that of the flight data, and the resulting Cramér-Rao bounds of the
simulated data were larger than those of the flight data. As is evident by comparing Figures 9.1-2 and
9.1-4, the noise power in this simulated data is much larger than that of the flight data residuals. The
difference in the Cramér-Rao bounds arises directly from the difference in the noise power. If the simu-
lated data noise power were lowered to the same level as that of the flight data residuals, the simulated
and flight Cramér-Rao bounds would be the same. Of course, the scatter of the simulated data would be
much less than that of the flight data.

This suggests the possibility that instead of the Cramér-Rao bounds being too small, the scatter is
too large in the flight data to properly represent the accuracy. It might be true, for instance, that
the individual estimates are as accurate as indicated by the Cramér-Rao bounds and that the scatter
reflects actual changes in the coefficients. In principle, this would explain the discrepancy. How-
ever, there is no physical reason to suspect such large variations in the aerodynamic derivatives at
essentially the same flight condition. Furthermore, no ascertainable pattern can be detected in the
scatter that relates to any flight condition parameter. Although only a single example is shown here,
the same discrepancy is noted on every class of vehicle tested, including small general aviation air-
craft like the PA-30 shown here, airliners (Tanner and Montgomery, 1979), military fighters (I1iff et
at., 1978; Foster, 1977), large supersonic aircraft (Powers, 1977), and unconventional vehicles
(Sim, 1976; Maine, 1978). The universality of the discrepancy argues strongly against the possibility of
apparently random changes in the actual derivatives.

A related possibility is that the scatter in the estimates results from unmodeled errors that would
not be reflected in the Cramér-Rao bounds. An obvious example of such a problem would be an error in the
measurement of the flight condition. For instance, if the dynamic pressure measurement were inaccurate,
the Cramér-Rao bound and the estimates of the dimensional derivatives would not be affected. The non-
dimensional derivatives, however, would have larger errors than otherwise predicted. The occurrence of
the same discrepancy in data from many different aircraft and data systems argues strongly against this
as a cause. We believe that most of the data systems used are accurate enough to eliminate problems of
errors in the flight condition.

None of these possibilities has proven to be a satisfactory explanation of the discrepancy observed
in the flight data. For several years, the necessity for the fudge factor on flight data was left essen-
tially without explanation. It was argued that modeling errors existed that invalidated the Cramér-Rao
bound. Such modeling errors, of course, were not present in the simulated data. Although this argument
is virtually irrefutable, it does little to explain the problem. The subject of what types of modeling
errors might exist that would have such effects was not addressed. This argument, amounting to a dis-
missal of the problem, does not give any basis for confidence in the use of the fudge factor. Although
some authors found the values to be of empirical use when the fudge factor was applied, others rejected
the Cramér-Rao bound as invalid.
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This situation has more far-reaching implications than the invalidation of the Cramér-Rao bound for
use with flight data. The theoretical derivation of the Cramér-Rao bound rests on the likelihood func-
tional. If this theory is found inadequate, the theoretical justification for the use of maximum likeli-
hood estimators must also be questioned since the estimator is based on the same 1ikelihood functional.
Thus, an invalidation of the Cramér-Rao bound might imply an invalidation of the estimates, leaving us
with nothing theoretically worthwhile.

9.1.3 Explanation of the Discrepancy

I11iff and Maine (1977) advanced the first satisfactory explanation of the discrepancy in the
Cramér-Rao bound. The discrepancy was traced to the theoretical assumptions about independence of the
noise samples.

The long period of time that elapsed before this explanation was advanced points out the necessity
for researchers who are well grounded in both theory and practice, because the problem lay essentially in
a lack of communication between the theoreticians and the practitioners. The theory is most naturally
developed assuming independence of the noise samples, and it had been passed to the practitioners in this
form. Experienced practitioners were well aware that residual spectra are seldom even close to white,
but they accepted the assumptions as being necessary to the theory. In fact, the theory can easily give
much information about the effects of colored noise. The theoreticians were unaware that the results
were needed, and the practitioners were unaware that helpful theory was available.

The exact discrete-time theory of estimation in the presence of colored noise is trivial when the
spectral shape of the noise is known. The application is also easy in the frequency domain, but con-
siderations such as nonlinearities and time variation severely limit the application of frequency domain
estimation. The time domain application of the exact theory of estimation with colored noise is overly
cumbersome. The effort is not justified by the small benefits expected. Furthermore, the noise spectral
characteristics are seldom precisely known, and incorrect specification could actually make the estimates
worse. Estimating spectral characteristics is possible in principle, but adds further unacceptable com-
putational complications. The theory of estimation with colored noise has therefore been largely rele-
gated to textbook examples.

Abandoning the exact approach, we recognize that approximating the effects of colored noise can
still provide more useful results than ignoring the issue. For a first approximation, assume that the
noise is band-limited white with band 1imit B. Rather than derive a maximum likelihood estimator for
this system, we analyze the performance of the white-noise-based estimator when the actual noise is
colored as described. The results of this analysis agree well with intuitive expectations. As long
as the noise bandwidth is much larger than the system bandwidth, there is negligible effect on the esti-
mates. Stated loosely, the estimation errors are caused by the noise near the natural system frequen-
cies; the estimator will always mistake some percentage of this noise for actual system response and
some percentage of the actual system response for noise. Noise far above the system bandwidth is readily
identified as noise rather than as system response. A good estimator should be 1little influenced by such
high-frequency noise.

This result is easy to generalize. It is obvious that the exact shape of the noise roll-off was of
little consequence in the preceding analysis. We could repeat the analysis with different types of roll-
off characteristics and would obtain the same results. In short, the high-frequency characteristics of
the noise do not materially affect the estimates.

This conclusion is a welcome validation of the practice of using the maximum likelihood estimator
based on independent noise samples even though the actual residuals are known to be significantly corre-
lated. The quantitative interpretation of "high" frequency is somewhat difficult, and skepticism is pru-
dent when the noise bandwidth nears the system bandwidth, as often occurs. Nonetheless, this theory
provides a much stronger base than totally ignoring the question.

Since the estimates are essentially unaffected by high-frequency noise, it immediately follows that
all functions of the estimates are equally unaffected. Thus, in particular, the same expression for the
Cramér-Rao bound should still be valid. This would seem to refute the thesis that the discrepancy in the
Cramér-Rao bound is related to the noise spectrum; in fact, the relationship is so elementary that it has
been overlooked.

In stating that the estimates are essentially unaffected by high-frequency noise, we are comparing
noise spectra that are the same at low frequencies. The high-frequency spectra, and thus the total noise
power, will differ. The low-frequency spectral density, rather than the total power, is the important
statistic. All the programs in use are written in terms of the total noise power (or equivalently, the
noise variance). Programs based on the continuous-time theory use the spectral density, but the spectral
density is estimated in practice by dividing the discrete total power estimate by the Nyquist frequency.

Let us consider the effects of using the total power instead of the spectral density. Imagine a
system with total noise power R. If the noise samples are independent, the classic analysis is valid,
and the Cramér-Rao bounds should be correct. The noise power spectral density of this system is 2RAt
because the noise spectrum is flat up to the Nyquist frequency 1/24t. Now imagine a second system with
the same total power, but with a one-sided noise bandwidth of B. Figure 9.1-6 shows the noise spectra of
these two systems.
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The Cramér-Rao inequality for both systems is

. N
var(g) > {2 (Vgi*)R'l(Vgi*)*}'l (9.1-1)
=1

where Vgi* does not depend on the noise statistics. Since the total power R is the same for both

systems, the same values are computed for Cramér-Rao bounds. This is the computation used by current
programs. Expressed in terms of the power spectral density GG*, the Cramér-Rao inequality should be
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For the first system, [1/(2at)] GG* = R, so this computation is the same as the previous one. For
the second system, however, [1/(2at)] GG* = [1/(2Bat)] R, thus
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The Cramér-Rao bound computation based on the total power was therefore too small by a factor of

1/(2BAt) in the variance (or V1/(2Bat) in the standard deviation). The Cramér-Rao bound computation
based on the power assumes that the power is evenly spread over the Nyquist range as in the first case.

Thus, in Equation (9.1-3), B is assumed to be 1/(2at). If this assumption is incorrect, the resulting
variance computation will be proportionally incorrect.

These results excellently explain the discrepancies previously observed. The noise samples on the
simulated data were independent, and thus the corresponding Cramér-Rao bound computations were valid.
Modern flight test instrumentation is accurate enough that the largest component of the residual error in
flight data is from modeling error rather than true measurement error. The "measurement noise" statistics
must include all such unmodeled effects. The philosophical question of precisely what can be included in
measurement noise is addressed in Maine and I1iff (1984). Since our theory contains only the linear
system model and measurement noise, any effects not included in the system model must contribute to the
measurement noise (otherwise our theory is denying their existence; such a solipsistic approach seems
unwise). The measurement noise in real flight test data therefore tends to be quite colored. Figure 9.1-7
shows power spectral density plots of the residuals from the flight test data used in Figure 9.1-3. A
precise break point is not obvious, but a value near 0.3 Hz seems reasonable. The Nyquist frequency for
these 50-sample/sec data is 25 Hz, so the computed Cramér-Rao bounds should be increased by a factor of
about VZS?O.% = 9, The sample standard deviations were about nine times the Cramér-Rao bounds before this
correction. The agreement is now quite reasonable considering the vaguely defined value of the break fre-
quency. The noise break frequency is close enough to the system frequencies that the approximations in
the theory are subject to question, but the experimental results hold up well.

As a verification of the theoretical results of this section, a new set of simulated data was created.
The noise for these data was created by passing the pseudorandom independent noise through a fifth-order
Chebyshev filter with a break frequency of 1 Hz; this filter has a sharp break at 1 Hz as shown by Fig-
ure 9.1-8, which is a power spectral density of one of the resulting measurement noise signals.

Figure 9.1-9 shows a typical time history match to these data. Note that this match exhibits
deterministic-appearing characteristics, such as phase shift and flattened peaks. The matches of B,
p, r, and ¢ are more typical of flight data than are the simulations shown in Figure 9.1-4., Accel-
erometers, by their nature, have more high-frequency noise than such instruments as rate gyros. There-
fore, the flight accelerometer matches tend to be of a character intermediate between that of Fig-
ures 9.1-4 and 9.1-9. Figure 9.1-10 shows the Cramér-Rao bounds and estimates of CnB and C“B from the

simulated data with filtered noise. We have succeeded in duplicating the discrepancy with simulated data
by using band-limited noise. The band 1imit is well defined here, and when the Cramér-Rao bounds are
corrected for the colored noise, they agree excellently with the scatter.

These results support the conclusion that the discrepancy in the Cramér-Rao bound has now been ade-
quately explained by the presence of colored noise. An important consideration is that in order to
accurately reflect flight data scatter, the noise statistics used in computing the Cramér-Rao bound must
represent the entire residual error including modeling error contributions (which may be much larger than
the actual instrumentation error). Therefore, studies made solely on the basis of instrumentation charac-
teristics (Hodge and Bryant, 1975; Sorensen, 1972; Gupta and Hall, 1978) are likely to be extremely
overoptimistic. Colored noise would also be expected to affect the insensitivities, but it should not
directly affect the correlations. The correlations might, however, be affected by the fact that the noise
contributions from modeling error on the various signals tend to be correlated.

9.1.4 Suggested Implementations

Section 9.1.3 explains the reasons for the discrepancies observed in the Cramér-Rao bounds. It
remains to discuss practical implementation of a corrected computation of the bound. We consider
three approaches.
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The first approach is to continue the use of fudge factors. The Cramér-Rao bounds, computed
ignoring noise coloring and then multiplied by a fudge factor of 5 to 10, have proven useful in practice.
The objection to this approach has not been to its utility but rather to its ad hoc nature and total lack
of theoretical justification. Now that the theory has provided an understanding of the need for an extra
term, it is not unreasonable to use a value that is based on past experience rather than analytically
computed for each maneuver. It could be regarded as an empirically determined spectral adjustment factor
instead of as a mysterious fudge factor. The factor has been observed to be relatively constant over
large classes of cases, further justifying this approach. The advantages to this approach are the
simplicity and the fact that no changes to current programs are required. The disadvantage is that the
engineer must watch for changes in the vehicle or in the analysis that might significantly affect the
spectral characteristics of the residuals and thus the factor used. If such changes occur or if discrep-
ancies are noted, it may be necessary to adjust the factor used. The approach is subject to criticism on
the basis of arbitrariness, but when considered as a tool to aid the engineer's evaluation, instead of as
an absolute value of accuracy, it can continue to be useful, as it has been in the past.

The second approach is to examine (manually or automatically) the actual spectrum of the residuals.
The break frequency can be evaluated, or the spectral density can be used directly. This method has the
advantage of providing the most information. The spectral characteristics of each signal can be adjusted
separately, instead of using a single factor for all the signals. The entire spectral shape can be
examined for peculiarities such as resonant modes. The disadvantages are twofold: First, this is the
most complex approach. A Fourier transform routine must be included in the analysis program if the
adjustment is to be automatic; appropriate plotting routines will also be required. It is always a good
practice to examine at least a few sample residual power spectral density plots anyway, but it is
simplest to create the power spectral density plots in a separate program. The second disadvantage is
that the value to use for the spectral density or the break frequency is not usually obvious from the
plot. Figure 9.1-7 shows a typical example of this problem. The spectrum does not exhibit an obvious
filat area followed by a well-defined break. Picking a specific value from the plot can be as much of
an art as picking a value for the spectral adjustment factor from experience.

The third approach is a compromise between the first two; it obtains information from the actual
residuals but keeps the programming relatively simple. This approach uses the total power of low-pass-
filtered residuals. A simple single-pole filter is used with a break frequency two or three times the
system natural frequency. The power of the filtered residuals is then divided by the filter break fre-
quency to give the average power spectral density at frequencies near and below the system natural fre-
quencies. This method does not provide the complete spectral information of a power spectral density
plot, but with very little work it does pull out a reasonable estimate of the single value we are after.
The bulk of the implementation is in filtering the residuals, which is done in the same time loop that com-
putes them.

The method is somewhat approximate and requires picking a value for the filter break frequency. The
obvious approximations include the assumption that the noise spectrum is flat at least to the filter
break frequency, the choice of filter break frequency, and the use of a first-order filter. In practice,
the noise tends to be closely concentrated around the system natural frequencies. This violates the
requirement that the noise bandwidth be well above the system frequencies. Because of these approxima-
tions, the method should not be regarded as giving a precise measure of the expected scatter; our only
claim is that the method is an improvement over previous computations. Furthermore, some of the pro-
posals of Section 9.1.3, although unable to explain discrepancies of a factor of 10, might contribute
measurably to smaller discrepancies. The approximations in the proposed approach are such that a factor
of about 2 typically remains to be multiplied, based on empirical observation.

The method might therefore seem to provide 1ittle improvement over the first approach since an
empirically determined factor remains (aithough the factor is now smaller). The advantage is that this
approach will approximately account for large changes in the spectral characteristics. If the spectral
characteristics of all the maneuvers are similar, the results from this and the first approach are
equally applicable.

Figure 9.1-11 shows the flight data from Figure 9.1-3 with Cramér-Rao bounds computed from the
filtered residuals. A break frequency of 0.5 Hz was used for the filters. The correction factors com-
puted from the filtered residual power ranged from 3 to 6, and a remaining empirical factor of 2 was
used. The magnitudes of the Cramér-Rao bounds on this plot are reasonable and give a good visual indica-
tion of the estimate accuracy. Although this plot shows no outstandingly good or poor maneuvers, there
is a noticeable tendency for the estimates near the center of the scatter band to have smaller Cramér-Rao
bounds than the outliers. This approach results in a useful estimate of the accuracy.

9.2 EXAMPLES OF APPLICATION

This section presents several examples of application of the Cramér-Rao bound to actual flight data.
The examples illustrate the kinds of information that can be deduced with the aid of the bounds.

9.2.1 Example 1

The first example uses data from a remotely piloted oblique-wing vehicle (Maine, 1978) shown in
Figure 9.2-1. Cross-coupling derivatives between the longitudinal and lateral-directional modes were
of significant interest for this nonsymmetric vehicle. Figure 9.2-2 shows the estimates of two such
derivatives, Cya and Cmr' An empirically determined spectral adjustment factor of 5 was used in the
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Cramér-Rao bounds shown. The Cya data show relatively small scatter and correspondingly good Cramér-Rao

bounds. The effect of this derivative is readily identified from the flight data, and it agrees well with
the predictions.

For Cp., on the other hand, the scatter and Cramér-Rao bounds are about the same magnitude as the
estimates. There is very 1ittle information about the value of Cmr in the flight data. With the wing
skewed 15° to 45°, the data show that Cmr is positive and probably somewhere in the range of 0.1 to 0.3.
It cannot be estimated better than this from the data available.

This example illustrates the use of the scatter and the Cramér-Rao bounds to determine which deriva-
tives can be accurately estimated from the data. Confidence in the determination is improved by using
both the scatter and the Cramér-Rao bounds to support the conclusion.

9.2.2 Example 2

The second example uses data from a remotely piloted 3/8-scale F-15 model (I1iff et al., 1976)
shown in Figure 9.2-3. A spectral adjustment factor of 5 was used for these data. Figure 9.2-4 shows
the estimates of Cmq- The behavior around 25° angle of attack is of particular interest. It is dif-

ficult to justify the fairing shown based on the data scatter alone. The fairing was based mostly on the
.data points with small Cramér-Rao bounds. In particular, the cluster of points near 25° angle of attack
showing Cmq near O have small Cramér-Rao bounds, while the points at the same angle of attack showing

Cmq values of -3 and -4 have larger bounds. The fairing therefore goes to 0 at 25° angle of attack. The
estimates of Cmu in Figure 9.2-5 unambiguously show a similar shape near 25° angle of attack. Subsequent
results have tended to verify the validity of the Cmq fairing.

In this example, the Cramér-Rao bounds provide more information than the scatter alone. The bounds
indicate that some points have good accuracy, even though the overall scatter is large because of a few
poor estimates. The Cramér-Rao bounds indicate that some of the estimates above 35° angle of attack
and also some near -10° are quite unreliable even though the scatter is not large (see example 5, Sec-
tion 9.2.5, for more on this point).

9.2.3 Example 3

Figure 9.2-6 shows estimates of C”B taken from the same 3/8-scale F-15 data as in example 2, Sec-

tion 9.2.2, using the same spectral adjustment factor of 5. The scatter above 35° angle of attack is
quite large, as are most of the Cramér-Rao bounds. A few points with small Cramér-Rao bounds form the
basis for the fairing used. It is interesting that the three points (shaded) farthest from the fairing
were obtained immediately before aircraft upsets. These more negative values of C”B may be an early
manifestation of the aerodynamic phenomenon causing the upsets.

9.2.4 Example 4

The fourth example uses data from an F-111A airplane shown in Figure 9.2-7. Figure 9.2-8 shows esti-
mates of Cp  for the F-111A at 26° of wing sweep (ITiff et al., 1978). The Cramér-Rao bounds were

multiplied by an empirically determined factor of 10 to correct for the effects of colored noise. The
factor was chosen to make the Cramér-Rao bounds of about the same magnitude as the scatter for most of the
derivatives. The scatter on Cma is much larger than the Cramér-Rao bounds, even after using the factor.

The M = 0.9 points are particularly puzzling. Since using the same factor resulted in good agreement of
the Cramér-Rao bounds and the scatter for the other derivatives, the Cma estimates deserve careful study.

To study these results, we replotted the data as a function of Mach number (Figure 9.2-9). The
reason for the apparent discrepancies was then evident. As shown by the fairing in Figure 9.2-9 the
data show a significantly less stable Cma in a region around Mach 0.85. In Figure 9.2-8 the data were

rounded to the nearest M = 0.7, 0.8, or 0.9. The points near Mach 0.85 were all automatically rounded

to Mach 0.9 (they were slightly above 0.85). This merging of the Mach 0.85 and 0.9 data made the Mach
effect Took like an inconsistency. Figure 9.2-10 shows the same data as Figure 9.2-8 with the points near
Mach 0.85 shaded and fairings of the flight data added. The scatter about these fairings is reasonable.

In this example, the Cramér-Rao bound did not directly indicate the nature of the problem, but it did
draw attention to an area that needed more careful study. The ensuing study disclosed the unanticipated
Mach effect.

9.2.5 Example 5

Figure 9.2-11 shows estimates of Cgr for the F-111A airplane at 35° of wing sweep. A spectral

adjustment factor of 10 was used, as described in example 4, Section 9.2.4. The data in this figure
were gathered in an effort to investigate derivative changes as a function of normal acceleration;
such changes could be caused by structural deformation. The solid line is a fairing of previous 1-g
flight data.
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This figure has characteristics the opposite of those in example 4; the adjusted Cramé&r-Rao bounds
are much larger than the data scatter. The estimates are all very close to the fairing of the previous
data. This behavior is typical of a problem that can occur when you use an a priori weighting (that is,
when you use an MAP estimator).

Convergence difficulties were encountered in analyzing several of the elevated-g maneuvers, which
were often not well-stabilized maneuvers. Therefore, an a priori weighting was used to improve the con-
vergence. The a priori values are indicated by the solid line in Figure 9.2-11,

The effect of the a priori weighting is to hold estimates near the a priori values unless there is
significant evidence that the a priori values are incorrect; the level of significance required can be
adjusted. The a priori weighting thus tends to eliminate large estimate changes that are based on mini-
mal information. This can improve convergence if the information content of the manuever is poor.

The Cramér-Rao bounds in Figure 9.2-11 indicate that the maneuvers contained very little information
about the derivative Cgr. The small scatter is probably due almost entirely to the a priori weighting,

rather than to information from the maneuvers. Thus, the data in Figure 9.2-11 do not verify the pre-
vious flight data, a conclusion that might be mistakenly drawn if the Cramé&r-Rao bounds were not con-
sidered. Instead, Figure 9.2-11 indicates that the new data do not have sufficient information to
contradict or verify the a priori values. In such a case, the estimator holds near the a priori values
when an a priori weighting is used.

This example also illustrates an important fact about the computation of the Cramér-Rao bound when
an a priori weighting is used. The Cramér-Rao bounds are computed from an approximation to the second
gradient of the cost function. When an a priori weighting is used, a penalty function is added to the
cost function. To estimate the information content of the flight maneuver, the matrix used for the
Cramér-Rao bound must be computed based only on the original cost function; it should not have a term
added for the second gradient of the penalty function. If the second gradient of the peralty function
were added into the computation of the bound, the bound would reflect the sum of the information from the
maneuver and from the a priori weighting. The phenomenon in Figure 9.2-11 would not be observed (the
Cramér-Rao bounds in the figure would be much smaller).

There are applications where you want to use the information from both sources and to have a cor-
responding accuracy estimate. The Cramér-Rao bound with the second gradient of the penalty function
included is a possible source for such an accuracy estimate. However, it gives no hint as to how much
of the information was obtained from the maneuver and how much was obtained from the prior information.
Knowing how much of the information came from each source helps avoid misinterpretations.

9.2.6 Example 6
Figure 9.2-12 shows the estimates of C"Gr obtained from the same flight data used in example 5,

Section 9.2.5. As in example 5, the data scatter is small and agrees well with the fairing of the pre-
vious flight data. A4 priori weighting was used for both examples. In this example, however, the
Cramér-Rao bounds are small and are consistent with the scatter. It can be concluded that the maneuvers
contain significant information about the derivative Cnér' Therefore, the data shown give positive veri-

fication of the a priori values. This contrasts with example 5, where we could only conclude that the
new data did not contradict the a priori values.

9.3 MODELING CONSIDERATIONS

In this document and in Maine and I1iff (1984), we have emphasized issues of modeling. All the
analysis and evaluation tools depend to some degree on assumptions of model validity. If the assumed
model is inappropriate, then the parameter estimates are of little value. Evaluation tools such as the
Cramér-Rao bound will sometimes detect modeling errors, but they cannot be relied on for such purposes.
Critical consideration of model adequacy must pervade the entire estimation process.

In evaluating and using results, it is not sufficient to know that the estimates came from an ade-
quate model. For any given problem, there are numerous adequate model forms. It is important to know
precisely which model was used so that you can evaluate the parameter estimates in the context of that
model. Estimates obtained with one model structure may not be directly comparable with values derived
using different model assumptions. This need not mean that either set of values is wrong. It does mean
that knowledge of the parameter values alone is insufficient; you also need to know what model the para-
meters apply to.

A classic example concerns estimates of q and « derivatives. Consider the following simplified
longitudinal model, obtained from Equation (3.4-3):
.=-§_S..C + + S_-gic ) 9.3-1a
o iy L+t 9 vV o mv Lo ( )
I—&=c a+C, 9 4+ ¢ (9.3-1b)
gsc Mo Mg 2y mo



144

Suppose, now, that we want to expand this model by the addition of a Cm- term. Equation (9.3-la) is
unaffected, and Equation (9.1-1b) 1is replaced by
I a
Y g=¢ +C, € 40 +C. -
qSC q mua mq 2V mg My, ZV (9.3 2)

Substituting Equation (9.3-1la) into Equation (9.3-2) and rearranging gives

& = -ﬁCLa“ +q+ %_ ﬁ%cLo (9.3-3a)
Iy 3 3
Y _q = - 9sc .\ 9¢ . g _4as -
dsc g <Cm“ omv2 Cmg, CL )a * (C m“) v " Cmo * cm“ 2v < mvV CL0> (9.3-30)

For current purposes, we will assume that the value of Cm& is known. This avoids an identifiability
problem, which, although important, is not relevant to the current discussion.

The sum Cmq + Cpe, in Equation (9.3-3) plays the same role as the term Cmq in Equation (9.3-1).

Parameter estimates based on these two models will reflect this equivalence. The estimates of
Cmq obtained using the model of Equation (9.3-1) will equal the sum of the estimates Cmq + Cm& obtained

using the model of Equation (9.3-3). Unless Cm& is zero, this implies that the Cmq estimate from Equa-

tion (9.3-1) is not equal to that from Equation (9.3-3); analysis based on such an equivalence will give
unreasonable results. Similarly, the Cm“ from Equation (9.3-1) is not directly comparable with that from

Equation (9.3-3); however, the numerical difference between these two Cm,, values is small for most con-
ventional aircraft configurations, and it is usually neglected.
The issue of model comparability often arises in comparing wind-tunnel and flight estimates. Models

like Equation (9.3-1) are often used in flight data analysis, whereas Equation (9.3-3) is more represent-
ative of most wind-tunnel test methods. The result is that wind-tunnel Cy, estimates are significantly

different from flight Cmq estimates obtained using Equation (9.3-1). This difference does not mean that

either of the models or their corresponding derivative values are wrong. Both can be useful models of
aircraft behavior. The important thing is that Cmq estimates from Equation 9.3-1 apply only to that

model; it is incorrect to use them in Equation 9.3-3. This is what we mean by the statement that you
must evaluate parameter estimates in the context of the assumed model structure.

If you apply estimated parameter values to a different model structure, you must consider the effects
of the changed structure. In some cases there is no effect, and the same parameter values apply. In
other cases there are simple equivalence relationships, such as the one derived here between Cmq and

Cmq + Cm&- Finally, there are cases where the model structures are too different for the parameter to be
meaningfully translated.

The first, and most crucial, step in considering the effects of model differences is to recognize
when a model difference exists. This requires you to be conscious of what model was used in the estima-

tion and what model you are using in application or evaluation. Several misapplications of parameter
estimates have arisen from failure to consider model structure as an issue.



Figure 9.1-1. The PA-30 airplane (dimensions in meters).
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Figure 9.2-7. F-1114 airplane (dimensions in meters).
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10.0 CONCLUDING REMARKS

This document has examined the practical application of parameter estimation methodology to the
problem of estimating aircraft stability and control derivatives from flight test data. We have con-
centrated on the output-error method in order to provide a focus for detailed examination. There are,
however, other viable approaches not covered in this document. It is not realistically possible for one
document both to survey the wide variety of feasible approaches and to treat each in the depth that we
have attempted here. ’

Parameter estimation plays a major role in current flight test programs. Parameter estimation
results are considered a major test objective required for successful completion of flight test pro-
grams. Although parameter estimation research continues in several areas, it is no longer purely a
research topic.

In this document we first derived the aircraft equations of motion as used for stability and control
derivative estimation. Successful application of parameter estimation techniques requires careful con-
sideration of what effects to include in the equations. Such complications as pilot and control system
models are peripheral to the purpose of estimating aerodynamic characteristics; the most successful
models avoid such peripheral issues where possible.

We next discussed simplifying the general equations of motion and adapting them to a specific com-
puter program. Although the precise details may vary for different programs, the process we examined is
always important. Numerous attempted applications have floundered because of such mundane issues as the
treatment of biases. We presented an idealized example using computed data, simplified in order to help
gain an intuitive grasp of the estimation process.

We discussed the role of aircraft mass distribution data and predicted derivative data in the para-
meter estimation process. We particularly emphasized the effects of errors in these data and the various
requirements for different objectives.

The design of flight test maneuvers involves trade-offs between many conflicting criteria. We
discussed maneuver size, flight safety considerations, and pilot involvement. We examined identifi-
ability as a practical issue involving independent inputs, modal excitation, and frequency content, more
than as an abstract notion relating to singularity of the information matrix. We also considered flight
scheduling issues and allowances for instrumentation failures and other contingencies.

We discussed the data acquisition system in detail. This discussion included consideration of time
tagging, frequency aliasing, filtering, sample rates, and resolution. We also discussed the various sen-
sors, their characteristics, and their relative merits.

Finally, we considered evaluation of the parameter estimation results. The tools used for evaluation
include the Cramér-Rao bounds, scatter, correlations, bias, and engineering judgment. We discussed the
roles of these various tools, their relative merits, and their interplay. We specifically emphasized the
use of the Cramér-Rao bound as the primary analytic measure of accuracy, while recognizing that no
analytic tool can substitute for the application of sound engineering judgment.

We also emphasized the iterative nature of the evaluation process. Evaluation of the results must be
accompanied by a consideration of how they might be improved — by better instrumentation, modeling,
maneuvers, analysis methods, or whatever. To obtain good results, it is mandatory to thoroughly review
the entire estimation process for errors of equipment, judgment, or fact. Without such a conscious
review, it is almost certain that some such errors will exist, corrupting the validity of the results.
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