
NASA
Reference
Publication
1168

1986

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

Application of Parameter
Estimation to Aircraft

Stability and Control

The Output-Error Approach

Richard E. Maine
and Kenneth W. Iliff

Ames Research Center

Dryden Flight Research Facility

Edwards, California



TABLE OF CONTENTS

iii

Page

NOMENCLATURE ........................................ v

1.0 INTRODUCTION ........................................ 1

1,1 SCOPE AND BASIS ..................................... I
1.2 OUTPUT-ERROR METHOD .................................. 2

1.3 AIRCRAFT STABILITY AND CONTROL APPLICATION ....................... 2

1.4 PURPOSE ........................................ 3
1.5 FLIGHT TEST PROGRAM .................................. 5

2.0

3.0

AIRCRAFT EQUATIONS OF MOTION ................................ 7
2.1 SIGNAL DEFINITIONS ................................... 7

2.1.1 Control Surfaces ................................ 7

2.1.2 Body-Axis System ................................ 7

2.1.3 Euler Angles .................................. 7

2.1.4 Angular Rates .................................. 8
2,1.5 Wind-Relative Velocity ............................. 8
2.1.6 Linear Accelerations 9,°.,...°°e,o*..°ooeeoooooo°eeo

2.2 SIX-DEGREE-OF-FREEDOM EQUATIONS OF MOTION ....................... 9

2.2.1 Newtonian Mechanics ............................... 9
2,2.2 External Forces and Moments ........................... 10

2.2.3 Euler Angles .................................. ii

2.2.4 Polar Coordinate Velocity Form ......................... 12
2.2.5 Collected Equations ............................... 13

2.2,6 Spatial Position ................................ 14
2.3 OBSERVATION EQUATIONS ................................. 15
2,4 AERODYNAMIC MODELS 16

.,..,°..,e°.,..,,.oo.**o**.oo...o.

SIMPLIFYING THE EQUATIONS .................................. 21

3.1 NONLINEAR VERSUS LINEARIZED IMPLEMENTATIONS ...................... 21
3.2 COORDINATE SYSTEMS .............................. ; .... 22

3,3 SIMPLIFICATION USING MEASURED DATA ........................... 22

3.4 UNCOUPLED STATE EQUATIONS ............................... 23
3.4.1 Longitudinal Equations ............................. 23

3.4.2 Lateral-Directional Equations .......................... 24

3.5 OBSERVATION EQUATIONS ................................. 25
3.5.1 Sensor Position ................................. 26

3.5.2 Coordinate Transformation ............................ 26

3.6 BIASES AND INITIAL CONDITIONS ............................. 27

3.6.1 Perturbation Equations ............................. 28
3.6.2 Physical States ................................. 28

3.6.3 Special Considerations ............................. 29
3.6.4 Aerodynamic Biases ............................... 30

3,7 LINEARIZED EQUATIONS .................................. 30
3,7.1 Linearization Using Measured Data ........................ 30
3.7.2 Axis Transformations .............................. 31

3.8 COLLECTED EQUATIONS .................................. 32

3.8.1 Longitudinal Equations ............................. 32
3.8.2 Lateral-Directional Equations .......................... 34

4.0 DETAILED COMPUTATIONAL ESTIMATION EXAMPLES ......................... 37

4.1 DESCRIPTION OF THE MMLE3 PROGRAM ............................ 37

4.2 EQUATIONS FOR A SIMPLE EXAMPLE ............................. 37

4.3 COMPUTATIONAL DETAILS OF MINIMIZATION ......................... 40

4.3.1 Example With No Measurement Noise ........................ 40

4.3.2 Example With Measurement Noise ......................... 41

4.4 COST FUNCTIONS ..................................... 42

4.4.1 One-Dimensional Case .............................. 42

4.4.2 Two-Dimensional Case .............................. 44

4.5 ESTIMATION USING FLIGHT DATA .............................. 45

4.5.1 Hand Calculation Example ............................ 45

4.5.2 Cost Function for Full Aircraft Problem ..................... 46

4.5.3 Cram_r-Rao Bounds ................................ 47

4.6 SUMMARY ......................................... 47

5.0 PREFLIGHT DATA ....................................... 65

5.1 PREDICTED AERODYNAMIC CHARACTERISTICS ......................... 65

5.1.1 Uses ...................................... 65

5.1.2 Theoretical Computati6ns ............................ 65

5.1.3 Wind-Tunnel Tests ................................ 65

5.1.4 Independent Flight Tests ............................ 66

5.1.5 Reference Geometry ............................... 66

5.2 AIRCRAFT MASS CHARACTERISTICS ............................. 67

5.2.1 Nondimensionalization .............................. 67

5.2.2 Moment Reference ................................ 69

5.2.3 Sensor Reference ................................ 71

5.2.4 Kinematics ................................... 73

5.2.5 Sources ..................................... 73

5.3 ATMOSPHERIC DATA .................................... 75



iv

6.0

7.0

FLIGHTTESTMANEUVERS.................................... 81
6.1 THEFLIGHTENVELOPE.................................. 81

6.1.1 EnvelopeCoverage................................ 81
6.1.2 EnvelopeExpansion............................... 81
6.1.3 Scheduling.................. ................. 82

6.2 SMALL-PERTURBATIONMANEUVERS.............................. 82
6.2.1 Reasonsfor Small-PerturbationManeuvers.................... 82
6.2.2 Signal-to-NoiseRatio .............................. 83
6.2.3 OtherSizingConsiderations........................... 84
6.2.4 DesignConstraints ............................... 84
6.2.5 Pilot Involvement................................ 85

6.3 IDENTIFIABILITY.................................... 86
6.3.1 IndependentInputs ............................... 86
6.3.2 ModalExcitation ................................ 87
6.3.3 FrequencyContent................................ 87
6.3.4 FeedbackSystems................................ 88

6.4 SAMPLEMANEUVERS.................................... 89
6.4.1 LongitudinalManeuvers............................. 89
6.4.2 Lateral-DirectionalManeuvers.......................... 89

DATAACQUISITIONSYSTEM................................... 105
7.1 TYPESOFRECORDINGSYSTEMS............................... 105
7.2 TIMETAGS....................................... 106
7.3 ALIASINGANDPREFILTERING............................... 107
7.4 SAMPLERATE...................................... 109
7.5 RESOLUTION....................................... 110

8.0 INSTRUMENTATION....................................... 123

9.0

8.1 GENERALTRANSDUCERCHARACTERISTICS........................... 123
8.2 CONTROLPOSITIONS. .................................. 124
8.3 ANGULARRATES..................................... 125
8.4 LINEARACCELERATIONS.................................. 126
8.5 FLOWANGLES...................................... 127

8.5.1 Uses ...................................... 127
8.5.2 Vanes...................................... 128
8.5.3 PressurePorts ................................. 129
8.5.4 OtherSources.................................. 129

8.6 EULERANGLES...................................... 130
8.7 AIRDATA........................................ 131
8.8 ANGULARACCELERATIONS................................. 132
8.9 ENGINEPARAMETERS................................... 133
8.10CONFIGURATIONPARAMETERS................................ 133
8.11LOADINGDATA...................................... 134
EVALUATIONOFRESULTS.................................... 137
9.1 COMPUTATIONOFTHECRAMER-RAOBOUND.......................... 137

9.1.1 Discrepancyin theCram_r-RaoBound....................... 137
9.1.2 PreviousAttemptsat Explanation........................ 138
9.1.3 Explanationof theDiscrepancy......................... 139
9.1.4 SuggestedImplementations............................ 140

9.2 EXAMPLESOFAPPLICATION................................ 141

9.3

9.2.1Example1 .................................... 141
9.2.2Example2 .................................... 142
9.2.3Example3 .................................... 142
9.2.4Example4 .................................... 142
9.2.5Example5 .................................... 142
9.2.6Example6 .................................... 143
MODELINGCONSIDERATIONS................................ 143

10.0CONCLUDINGREMARKS..................................... 153

BIBLIOGRAPHY........................................ 155



v

NOMENCLATURE

In this document,all equationsassumeanglesin radians,whilethetext andthefiguresgiveangles
in degrees.

an

ax,ay,az
b

C_,Cm,Cn

CL,CD

CN,CA

CX,Cy,Cz

c
F

Fx,Fy,Fz
f(.)
GG*

g(.)

g
H
h

Ix,ly,Iz

Ixe
Ixy,lxz,lyz
J(.)

K_,KB

LB,L6
M

m

m_

M_,M6,Mq,Mb
N

NB,N6

P

P

Ps

q

r

normal accelerometer output, g

longitudinal, lateral, and vertical accelerometer output, g

reference span, m or ft

coefficients of roll, pitch, and yaw moment

coefficients of lift and drag

coefficients of normal and axial force

coefficients of longitudinal, lateral, and vertical force

reference chord, m or ft

external applied force, N or lb

components of external applied force, N or Ib

system state function

measurement noise covariance

system observation function

acceleration of gravity, m/sec2 or ft/sec 2

altitude, m or ft

angular momentum vector

moments of inertia, kg-m 2 or slug-ft 2

engine moment of inertia, kg-m 2 or slug-ft 2

cross products of inertia, kg-m 2 or slug-ft 2

cost function

upwash and sidewash factors

dimensional rolling moment derivatives

external applied moment, N-m or ft-lb

mass, kg or slug

prior mean of

dimensional pitching moment derivatives

engine speed, rad/sec

dimensional yawing moment derivatives

prior covariance of

roll rate, rad/sec or deg/sec

static pressure, N/m 2 or Ib/ft 2

pitch rate, rad/sec or deg/sec

dynamic pressure, N/m2 or Ib/ft 2

yaw rate, rad/sec or deg/sec
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S

T

t

U

V

V

Wx,Wy

Wv

W

X

X

x(z,xB,Xax,Xay,Xan

Y

Ya,Y B ,Yax ,Yay ,Yan

Z

z(_, z B , Zax, Zay, Zan

Z(_,ZIB

_f

Y

A

_a

6e

6r

ni

B

P

T

Y

reference area, m2 or ft 2

thrust, N or Ib

time, sec

system input; or body X-axis wind-relative velocity, m/sec or ft/sec

total wind-relative velocity, m/sec or ft/sec

velocity vector, components in m/sec or ft/sec

body Y-axis wind-relative velocity, m/sec or ft/sec

horizontal wind components, m/sec or ft/sec

vertical wind component, m/sec or ft/sec

body Z-axis wind-relative velocity, m/sec or ft/sec

spatial x position, m or ft

system state

sensor X-axis positions, m or ft

spatial y position, m or ft

sensor Y-axis positions, m or ft

system response

sensor Z-axis positions, m or ft

dimensional vertical force derivatives

angle of attack, rad or deg

flank angle of attack, rad or deg

angle of sideslip, rad or deg

flightpath angle, rad or deg

sample interval, sec

generic control

aileron deflection, rad or deg

elevator deflection, rad or deg

rudder deflection, rad or deg

measurement noise

pitch attitude, rad or deg

roll attitude, rad or deg

vector of unknown parameters

air density, kg/m3 or slug/ft 3

lag time constant, sec

heading angle, rad or deg

angular velocity vector, components in rad/sec
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vii

bias, or body axes

corrected
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flight
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minimum valve

subscripting an aerodynamic coefficient, derivative with respect to the subscript
times b/2V

subscripting an aerodynamic coefficient, derivative with respect to the subscript
times c/2V

reference
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estimated
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1.0 INTRODUCTION

This document examines the practical application of parameter estimation techniques to the problem of

estimating aircraft stability and control derivatives from flight test data.

The field of aircraft stability and control exemplifies a successful application of system iden-

tification technology. Workers in the industry accept and use system identification techniques on a
routine production basis. There certainly are isolated problems (primarily in extending the application

to more difficult situations), but there is little doubt that the basic application is highly successful.

Major factors contributing to this success include the following: a well-understood, physically derived
model form that is reasonably representative of the true vehicle in most flight regimes; high-quality

measurements of several relevant parameters; the ability to apply inputs specifically for system

identification; and engineers familiar with both system identification and aircraft stability and
control.

Contrast aircraft stability and control with economics, for instance. Economic models are of dubious

validity, at best. The measurements are little better than the models (for example, whose numbers for
the inflation rate are best) and are often biased by political situations (like lowering the federal

budget deficit by redefining methods for computing the deficit). Economic controls are not subject to

manipulation for system identification experiments, even assuming that the controls are known. Some econ-

omists insist that the Federal Reserve Bank controls major portions of the economy; others insist that it

has little influence and merely responds to existing conditions. (In either case, it is not practical to
shut down the Federal Reserve Bank for three months to see what happens, changing nothing else for the
next four years to avoid confusing the issue.)

1.1 SCOPE AND BASIS

This document does not survey the large number of parameter estimation techniques applicable to
aircraft stability and control, but rather thoroughly examines a single approach. This concentration

allows us to cover the entire parameter estimation process in some detail, from planning the flight test
program to evaluating the results. We discuss the kinds of difficulties encountered in practic_ with
extensive examples using real flight data. We intend this detailed treatment to serve both as an intro-

duction to the problem and as a guide for practicing engineers. We hope to promote a more complete
understanding than that provided by texts that present only brief examples with "correct" answers, or

that provided by field education, which often amounts to "Here's a computer program to solve the prob-
lem -- sometimes it works."

The problems and solutions that we discuss are all real and are based on our own experience at the

Dryden Flight Research Facility of NASA's Ames Research Center (Ames-Dryden). Although we sometimes
illustrate the principles with simulated data, we have encountered all these issues in real situations.

We omit discussions of numerous potentially important issues that have not yet troubled us. For example,
although finite computer word length may be an important issue on a smaller machine (we do most of our

work on a 60-bit computer) or for a different application, we have yet to encounter finite word length

difficulties that did not stem from more basic sources, such as poorly written problem statements. We
decline to artificially create difficulties for experimentation. Others have encountered these issues
and treated them elsewhere, and we have little to add to the discussion.

By restricting our discussion to the scope of our own experience, we achieve a strength that we feel

is lacking in many reports, even those purporting to be practically oriented. We offer a self-critical
first-hand view of the estimation process, including numerous mundane problems encountered along the way.

Most reports omit mentioning "stupid" errors and other trivial problems that are not relevant to the
final reported results, but these problems can account for the majority of the time spent.

In the flight test environment, results are subject to detailed critical review. If our results

disagree with predictions, someone will ask where we erred; we need to convincingly defend our results
before an often skeptical audience. If we suggest that the simulator be revised based on our results,

we must demonstrate why the update is worth the work (and hope the pilot notices that the revised simu-
lator flies more like the airplane). If we suggest that instrumentation errors have occurred, someone

will test it and contradict us. If we request more test data, the schedulers will complain about mile-

stones and cost. In some flight regimes the controls and handling qualities group wants assurance that
our results are very accurate because they have little margin for error; in other flight regimes they

may insist that we must be wrong, because if our results are correct, the control system needs to be
redesigned. Throughout this process, few people care if we have an elegant, sophisticated, and innova-

tive method; they simply want good results and they want them immediately.

This flight test environment fosters a self-critical attitude; it is this attitude, more than any

specific issue, that we try to promote in this document. It is a corrollary of Murphy's law that

although there may be several ways to arrive at acceptable results, there are more ways to get incorrect
results. We have seen too many papers (with impressive claims about having analyzed some complicated

nonlinear problem) where cursory inspection has shown the results to be wrong (they had, as claimed,

analyzed the problem, but the analysis was wrong). We certainly do not claim to be free of errors. In
fact, a principal advantage of our experience is that we have made (and fixed) more mistakes than most

people. We hope that this document will help achieve the goals of the practicing engineer: to avoid

problems where possible, to fix the problems that cannot be avoided, and to recognize the problems that
cannot be fixed.

This document emphasizes areas of mature technology. The techniques we discuss have become widely

accepted, based on a broad background of practical applications. We avoid detailed discussion of



emerging areas of technology, where there are only a few isolated examples of application (even when

some examples are from our own experience). Material on emerging areas rapidly becomes dated and is

inappropriate for this document. Such emerging areas of technology include filter-error algorithms,

optimal input design, automatic model structure determination, nonlinear and unsteady aerodynamics, and

helicopter applications. There are examples of application in these areas, to both simulated and real

data, but their appropriate role in routine use is not yet clear. The reference list includes numerous

papers addressing these areas.

1.2 OUTPUT-ERROR METHOD

We begin by briefly reviewing the form of the output-error parameter estimation method. (See
Maine and lliff (1984) for a complete treatment of the development and implications of the following

equations.)

The aircraft is a continuous-time dynamic system. We will assume that measurements are made at

discrete time intervals for analysis on a digital computer. The system equations, in general form, are

x(to) : xo(_ )

_(t) : f[x(t),u(t),t,_]

z(ti) : g[x(ti),u(ti),ti,_ ] + n i

where x is the state, u the input, and z the response of the system.

(I.2-Ia)

(1.2-Ib)

(1.2-Ic)

We assume that the measurement

noise n is a sequence of independent Gaussian random vectors with zero mean and covariance GG*. The

output-error method does not account for any process noise. We assume that the forms of the f and g
functions are known. The parameter estimation task is to estimate the value of the unknown-parameter
vector _.

The output-error estimate of _ is the value that minimizes the cost function

1 N i

J(_) = _- _ [z(ti) - _(ti)]*(GG*)-l[z(ti) - _(ti)] + _ (_ - m_)*P-l(_ - m_)
i=I

where _ is the computed response obtained from

_(to) = xo(_ )

x_(t) = f[_(t),u(t),t,_]

(1.2_2)

The value m_
If there is no prior distribution to be considered, then the last term of the cost function is omitted.

(1.2-3a)

(1.2-3b)

_(ti) = g[_c(ti),u(ti),ti,_ ] (i.2-3c)

in the cost function is the mean of the prior distribution of _, and P is the covariance.

The Gauss-Newton algorithm is an effective means of minimizing this cost function (Maine and
lliff, 1984).

1.3 AIRCRAFT STABILITY AND CONTROL APPLICATION

Aircraft stability and control involves controlling the attitude and flightpath of an aircraft. The

desired attitude and flightpath are defined by agents external to the stability and control system:

pilots, guidance and navigation systems, or autoland systems, for instance. In the simplest systems,

pilots decide on a desirable attitude and flightpath and move the control wheels, sticks, pedals, and
other controls in a manner that they anticipate will give the desired results. Mechanical cables connect

the pilot's controls to movable control surfaces on the airframe or to engine control actuators. Moving
the control surfaces changes the aerodynamic forces and moments on the aircraft, thus changing its atti-

tude and flightpath. There is no feedback inherent in these simple control systems; the pilot provides
external feedback by monitoring the aircraft response using the cockpit instruments, the view out the

window, and the "feel" of the airplane, and by appropriately changing the control stick motions.

In a more complicated system, a guidance and navigation computer generates attitude or flightpath
commands needed to maintain the desired trajectory. These commands are in the form of analog or digital

signals, which are sent to the stability and control computer (or possibly to a different program running

on the same computer). The stability and control computer determines the control surface positions
needed to achieve the commanded attitude or flightpath and sends commands to electric or hydraulic sur-

face actuators, which move the aircraft control surfaces. Sensors measure the vehicle motions and feed
back this information to the stability and control computer, which modifies its control surface commands

accordingly.

The descriptions of these two types of systems are oversimplified, and there are numerous other com-
binations and variants of the system elements. We make no attempt to cover design or analysis of control

systems in this document. That is a major subject in its own right, and there are several references on
the subject (Ogata, 1970). The generalizations here are intended only to establish the background and

purpose of stability and control parameter estimation.



Stability andcontrolanalysisis concernedwiththeaircraft systemat severallevelsof integra-
tion. Thefirst level involvesanopen-loopstudyof howtheaircraft wouldrespondto givencontrol
surfacemotions.Astudyat this level ignoresall issuesof feedback;it involvesonlyvehicleaero-
dynamicsandkinematics.Thesecondleveladdsconsiderationsof thecontrolsystemfeedbacks,if any.
Theseconsiderationsincludeissuesof sensorcharacteristics,controlsystemlogic, andactuatorchar-
acteristics. Theresultof a studyat this level is anunderstandingof howthevehicleandcontrol
system,operatingtogether,respondto commands.Athird level includesthe pilot aspartof thesystem.
Theaircraft designermustensurethat a pilot canreasonablycontroltheaircraft.

Wenormallyestimatethestability andcontrolderivativesusingonlytheopen-loop,bareairframe
model.Welookat thecontrolsurfacemotionsandtheaircraft response.Thecausesof thecontrolsur-
facemotionsareirrelevant. In particular,themodelapplieswhetheror not thecontrolsurfacemotions
area resultof feedbackat somehigherlevel. Thereareseveralrelatedreasonsfor usingtheopen-loop
model.Thecentralreasonis that this is thesimplestsystem.Thesimplerthesystem,themorelikely
it is that wecangetgoodestimates.Furthermore,the feedbacksystemsaresuperfluousto ourestima-
tion problem.Maineandlliff (1984)pointedout that weneedto takemaximumadvantageof previous
informationin constructingoursystemmodel.Weshoulduseparameterestimationtechniquesonlyto
fill the gapsin ourknowledge.

Thegapthat wearefilling hereis in ourknowledgeof theaircraft's aerodynamics.Relativeto
ourknowledgeof theaerodynamics,wehavegoodmodelsof mostcomponentsof thefeedbacksystems.We
cangetaccuratedataonmostactuatorandsensorcharacteristicsfrombothgroundandflight test data
withoutusingcomplicatedparameterestimationtechniques;in exceptionalcases,wemayneedto include
theactuatoror sensormodelsaspartsof thesystemidentificationtask. If thecontrolsystemanalysts
donotknowthecontrollogic, thereareverybasicproblems,whichsystemidentificationtechniquesare
not likely to solve.

Another big gap is in our knowledge of the pilot model. We can make some general statements about

piloting techniques, but accurate quantitative pilot models are as unattainable as good economic models.

There have been attempts to use system identification techniques for pilot modeling, but we are not aware

of any convincing results. We do not discuss the pilot modeling problem in this document. WhereBs we

exclude automatic feedbacks from our analysis because simpler techniques are appropriate, we exclude the

pilot model because it makes the problem too difficult. Including dubious pilot models in our system

would simply corrupt the quality of the stability and control derivative estimates.

This document also ignores, as far as possible, the response of the aircraft structure and propulsion
system. The aircraft structure and propulsion system are appropriate areas for the use of system iden-

tification techniques, and several applications have been made in these areas. However, we consider them

as separate applications that we will not treat extensively in this document. In some cases we cannot
separate the structural, propulsion system, and aerodynamic system responses. We must then consider

these issues in more detail, and the problem is considerably more difficult.

In summary, weuse an open-loop model for estimating aircraft stability and control derivatives. The

model ignores structural and propulsion system responses to the extent possible. The model includes kine-

matics and the aerodynamic forces and moments acting on the aircraft. The kinematics are well known; we

estimate only the aerodynamic forces and moments.

The preceding discussions point out the importance of defining the scope of the estimation prob-
lem. A complete model of all aspects of an aircraft response would be intractable; we therefore have

restricted the scope of the aircraft stability and control problem to that which we can reasonably hope

to handle. The other elements of the aircraft are handled separately; designers and control system
analysts can assemble the different element models. Many system identification failures stem from

poorly defining the scope in the original problem statement, posing a problem that is intractable from
the start.

1.4 PURPOSE

As the first step in any practical application, we must establish the purpose of the estimation.
The intended use of the results influences every aspect of system identification, including model selec-

tion, choice of estimation algorithms, experiment design, and evaluation of the adequacy of the results.

In this section we mention some common uses of aircraft stability and control derivative estimates. A
particular application can involve several of these and other uses.

One of the earliest uses of aircraft stability and control derivative estimation was in validating

wind-tunnel or analytical predictions. Although comprehensive wind-tunnel and analytical testing can

give a reasonable estimate of the flight vehicle aerodynamics, there are several potential sources of

misprediction, sometimes minor and sometimes major: The wind-tunnel models used for most of the testing

are often slightly different from the actual flight vehicle because of last-minute configuration changes.

It is difficult or impossible to precisely match actual flight conditions with scaled wind-tunnel models.

Reynolds number differences are a standard explanation for discrepancies between flight and wind-tunnel

results. Support system (sting) effects are almost always an issue in wind-tunnel tests; major discrep-

ancies have been traced to sting effects in several programs (Ericsson, 1981). Minimization of support

effects is still more of an art than a science. Funding and time constraints necessitate shortcuts in

the wind-tunnel tests (and in the flight tests). For these and numerous other reasons, it is always

wise to at least spot-check wind-tunnel and analytical predictions with flight test data, even for

simple configurations.



Typical reporting practices (the tendency to emphasize positive results) play down the role of flight
test validation of predictions. After all, the use of flight data in this role is a tool for finding

errors. It is natural (and appropriate in many places) to emphasize the consistency of the results after
all the errors are corrected rather than to discuss how the errors were found and corrected. The errors

can be as simple as typographic or arithmetic mistakes. More complicated errors include failure to

account for (or incorrectly accounting for) Reynolds number effects, sting effects, wind-tunnel wall
effects, flexibility effects, or propwash (or jetwash) effects. In some cases the data needed to make an

accurate prediction have been available before flight; they simply have not been used. For instance,
often there are two disagreeing sets of wind-tunnel data, one of which is discarded based on some judgment

(funding and time typically prohibit running a third independent wind-tunnel test); in some such cases we

have found that the flight results agreed with the discarded set. In most of the situations mentioned in

this paragraph, final reports will emphasize that the wind-tunnel data (appropriately corrected) are in

good agreement with the flight data.

The tendency to emphasize agreement between data sets is appropriate if the consistency of the
results is being used to support the thesis that the values are accurate. To evaluate the utility of

estimating the stability and control derivatives from flight data, it is valuable to look at a comparison
that is seldom published: the predicted data exactly as used before the first flight compared with the
best estimates combining flight data and predictions after the flight test program is completed. Such

comparisons would reveal that stability and control derivative estimation from flight data has an impor-

tant role in correcting simple oversights and otherwise validating predictions. Because of this role,
stability and control derivative estimation from flight data is indispensable in any major new aircraft

test program, regardless of how thorough the wind-tunnel test was. In spite of the most thorough wind-
tunnel and analytical test program in history, the flight data for the space shuttle exhibited signifi-

cant disagreements with preflight predictions.

Do not take the preceding discussion of prediction errors as reflecting our position on the ubiqui-

tous question of whether wind-tunnel or flight test data are better; in general, we regard the question
as irrelevant. It suits our purpose in this section to briefly allude to potential problems with predic-
tions, but we devote several subsequent chapters to the potential problems with flight data analysis.

For purposes of our current discussion, the roles of flight and wind-tunnel data are symmetric: The _

flight data can be useful in finding 9roblems with the wind-tunnel data, and the wind-tunnel data can
be useful in finding problems with the flight data. Having the most confidence in the results requires

both wind-tunnel and flight data. Thus, flight data are useful in improving confidence, even if they •

can be summarized by stating that they agree with predictions.

In some test programs, a complete aerodynamic data base must be built using only flight data. This

can occur if there are no wind-tunnel tests or if there are such major deficiencies in the wind-tunnel
data as to make it easier to discard then and use only the flight data (as, for instance, with the highly

maneuverable aircraft technology (HiMAT) program; Matheny and Pangeas, 1981; lliff and Maine, 1982). In

this case much better coverage of the flight envelope is needed. It is no longer sufficient to spot-

check a few flight conditions and say that the predictions look reasonable. The end uses of the flight-
estimated stability and control derivatives are similar, whether they are used alone or in conjunction

with predictions.

Flight estimates of stability and control derivatives play an important role in envelope expansion

and safety of flight during flight test programs. As the demonstrated flight envelope of an aircraft
expands, engineers examine stability and control derivative estimates for unexpected trends that might

make flight unsafe in some regimes. This monitoring can be done during the flight or between flights.

Computer programs for analyzing aircraft stability, handling qualities, and control systems make
direct use of stability and control derivative estimates. These programs can analyze the aircraft as

it is, or they can analyze the effects of proposed changes in the control system.

High-fidelity simulators are increasingly necessary in modern flight research and test programs and

in operational use. For many years, simulators have been used for flight planning and pilot training,
both to save expensive flight time and to minimize risky flight operations, such as training for emer-
gency conditions. As aircraft become more complex and as flight envelopes expand to include unconven-

tional regimes, the need becomes greater for using simulators as integral parts of the flight test

programs. Control systems and, to the extent possible, handling qualities must be tested on simulators
before committing to flight. The design and refinement of complex modern control systems operating over

large flight envelopes require higher-fidelity simulators than were needed for pilot training. These

high-fidelity simulations require complete stability and control data that give an accurate representa-
tion of the actual flight vehicle. For many years, every major flight project at Ames-Dryden involving

stability, control, or flying qualities has included a high-fidelity simulator updated with flight-
determined stability and control derivatives.

For most of these purposes, we care little about the phenomenology of the aerodynamics; we need only
know the end result of how the aircraft responds. Thus, we may be relatively indifferent to some model

distinctions. For instance, the parameters Cmq and Cm_ both affect aircraft damping in pitch. In many

flight regimes, the aircraft responses are identical (within the accuracy of our measurements) whether

the damping arises from Cmq or Cm_. Therefore, if we are restricted to such flight regimes and if our

purpose is solely to construct an accurate simulation, we need only estimate the sum Cmq + Cm_. To



attempt to separately estimate the two components would not only be a waste of time, it could well

degrade the results.

For other purposes, however, the phenomenology might be of primary interest. We might be using the

stability and control derivative estimates as an aid to understanding aerodynamic flow phenomena. In

such a case, Cmq and Cm_ are quite distinct because they arise from different flow phenomena. This

simple example illustrates how a choice of model form (Cmq and Cm_ summed or distinct) can depend on the
purpose of the estimation.

1.5 FLIGHT TEST PROGRAM

In this section we give an overview of the flight test procedure for estimating stability and control

derivatives. This overview also serves as an outline of the subjects covered in the rest of this docu-

ment. Figure 1.5-i illustrates the major steps of a flight test program. The individual items are

elaborated below.

You need to develop a test plan that addresses all the issues mentioned in this section. This plan

need not be a formal written document. It may be unreasonable to make detailed plans for the entire pro-

ject before it starts. For instance, you probably will need to examine some of the raw data before

making final decisions about data filtering and preprocessing. At a minimum, you need to make a mental

checklist of what needs to be accomplished at each stage of the project. Otherwise it is easy to omit

small but important items, such as measuring the instrument positions.

The first element of the test plan is a statement of the objectives. In Section 1.4 we discuss the

importance of the objectives and the influence that the objectives can have on the approach. A statement

of objectives should be concrete and should include acceptable forms of the results. For instance, it

is important to know whether a single model, which describes the aircraft over its entire envelope, is

required, or a set of models, each valid in a part of the envelope, is acceptable.

You must establish the requirements for predicted derivatives and a source of data to meet these

requirements. You may also need to determine how to obtain the aircraft mass characteristics. Chap-

ter 5 discusses mass characteristics and preflight predictions.

You need to define the necessary flight maneuvers, as described in Chapter 6. Chapters 7 and 8

discuss the requirements for instrumentation and data systems adequate for stability and control analy-

sis. Establishing and implementing instrumentation requirements are among the long-lead-time processes

and must be addressed early in the flight test program. Preprocessing of the measured flight data to get

it in a form usable for analysis can be a major effort.

You need to define the appropriate equations and analysis methods. Basic forms and some variants of

the aircraft equations of motion are discussed in Chapters 2 and 3; analysis methods are discussed

throughout this document.

As the final step of the estimation process, you must evaluate and present the results. The form

of presentation should be tied to the acceptable forms established in the statement of objectives.

Chapter 9 discusses issues related to evaluating and presenting results.

An important facet of the entire process is the interplay between steps. Although we lay out the

steps in a linear fashion, the steps can seldom be separated so neatly in practice. Results from each

step influence decisions in other steps. In many cases, you will need to revise earlier decisions based

on later results. For instance, unexpected trends in the estimates might justify extra instrumentation,

additional maneuvers, or alternative analysis methods. Inflexibility and refusal to reevaluate previous

decisions invite poor results.

Any realistic flight test plan should include generous allowances for unexpected problems. The

positive-sounding term "success-oriented" philosophy is a currently popular management euphemism for

ignoring problems and hoping they will go away, usually an attempt to avoid admitting that the program is

over budget, behind schedule, and under performance. (A more traditional description of this philosophy

is overoptimistic).

In an extreme case, the success-oriented program starts with the lowest quality data system that

someone can argue should be acceptable; the test program consists of a quick series of flights with one

maneuver at each of a few questioned flight conditions; then the instrumentation is removed, and the

airplane is sent off for other uses before any data are analyzed. Such a plan minimizes projected cost

and time in the unlikely event that nothing goes wrong. Unfortunately, there is little or no allowance

for error. Problems that would have been minor in a better-planned program (perhaps only requiring an

extra flight) can completely invalidate the data in a success-oriented program. For example, if the data

recorder were to fail (as happened to some recorders on a few shuttle flights), more time and money could

have been saved by forgetting about the tests in the first place. More likely, the data will be full of

obvious inconsistencies (or worse, unobvious ones). If the data are analyzed and the results are dif-

ferent than predicted, the extreme success-oriented program would disregard the results anyway, hoping

that an error was made or that it might not matter. If a test program does not merit better treatment

than this, it is not worth doing.



Rather, flight test plans should reflect a problem-oriented philosophy. Assume that there will be
problems, and design the tests to maximize the chances of finding and fixing the problems. Much of this

document reflects such problem-oriented philosophy. We point out the kinds of problems that commonly
occur, how to identify them, and how to fix them or work around them. Our experience is that such a

problem-oriented approach is the best way to ensure success, while a success-oriented approach is the
best way to ensure lasting problems.

Figure 1.5-2 shows relationships among several of the major areas of aircraft stability and control
estimation: input, vehicle, measurements, and analysis. We discuss all of these in this document. The

following list of AGARD documents relates to the areas depicted in Figure 1.5-2. The bibliography at the
end of this document lists these and other references in the field.

A: INPUT

Optimal input design
AGARD, 1979b, No. 3

AGARD, 1975, No. 12

Flight test program design

AGARD, 1977, Nos. 5, 11, 12, 13

B: VEHICLE

Fixed-wing aircraft

AGARD, 1979b, No. 6

Rotorcraft

AGARD, 1979b, No. 7

AGARD, 1983, No. 16

Wind-tunnel and free-flight models

AGARD, 1979b, No. 10
AGARD, 1983, No. 17A

Extreme flight regimes
AGARD, 1979b, No. 8

AGARD, 1979a, Nos. 1, 14

Closed-loop aspects

AGARD, 1979b, No. 11

Aeroelastic flight testing

AGARD, 1972-1983, No. 9
AGARD, 1983, Nos. 18, 19, 20

Flight/ground testing

AGARD, 1976, Nos. 6, 8, 13

AGARD, 1983, Nos. 3B, 15, 16, 17A

Dynamic stability parameters

AGARD, 1978, Nos. 14, 15, 17, 18

AGARD, 1981, No. 10

C: MEASUREMENTS

Flight test instrumentation
AGARD, 1979b, No. 4

AGARD, 1972-1983, Vol. I

Signal filtering
AGARD, 1972-1983

D: ANALYSIS

Maximum likelihood methods

AGARD, 1979b, No. 2
Maine and lliff, 1984

Flightpath reconstruction
linear regression methods

AGARD, 1979b, No. 5

Frequency domain methods

AGARD, 1979b, No. 2

Develop plan and establish objectives

Obtain predicted derivatives

Determine mass characteristics

Perform flight maneuvers

Measure and record data

Preprocess data

Analyze data

Evaluate results

, A:,nput :veh,c,e
D: Analysis I_

Figure 1.5-1. Steps of a Eigure 1.5-2. Aircraft stability and control

flight test program, estimation.



2,0 AIRCRAFT EQUATIONS OF MOTION

This chapter defines the signals pertinent to aircraft stability and control analysis and derives the

aircraft equations of motion. These equations form the basis for aircraft stability and control analysis.

The derivations of this chapter assume that the aerodynamic characteristics are known. Chapter 3 dis-

cusses the application of parameter identification to these equations in order to estimate the stability
and control derivatives.

2.1 SIGNAL DEFINITIONS

In this section, we define the input, state, output, and other signals pertinentto the aircraft sta-

bility and control problem.

2.1.1 Control Surfaces

The usual inputs to the aircraft stability and conrol equations are the control surface positions.

The basic aircraft control surfaces, illustrated in Figure 2.1-1, are the elevator (6e) , ailerons (6a),

and rudder (6r). The elevator and ailerons can be separate surfaces or can represent symmetric and anti-

symmetric deflections of a single pair of surfaces usually called elevons (from elevator and aileron).

Control surface arrangement is highly configuration dependent: Various combinations of flaps, spoilers,

canards, reaction control jets, or other control devices are possible, in addition to or instead of the

basic three controls. Events, such as weight dropping, can also constitute inputs.

Our usual conventions for control surfaces are as follows: All surface positions are angular deflec-

tions measured normal to the hinge line. Positive deflection is trailing edge down or trailing edge left
(port), depending on the surface orientation (as shown in Figure 2.1-1). Aileron deflections and other

antisymmetric control combinations are defined as left surface position minus right surface position.

These conventions are not universal; in particular, some authors define aileron deflection as one-half of

our definition or with the opposite sign. Sign conventions are worth verifying on each aircraft:because
there is no universal standard.

2.1.2 Body-Axis System

Most of the quantities of interest to us are referenced to aircraft geometric body axes, shown in

Figure 2.1-2. The origin of the body-axis system is at the center of gravity (we could work from some

other origin, but placing the drigin at the center of gravity significantly simplifies the model). The

positive X axis points forward, out the nose of the aircraft; its exact orientation is defined for each

aircraft model. The positive Y axis points to the right, and the positive Z axis points down to complete

a right-handed axis system. The entire axis system moves and rotates with the aircraft.

2.1.3 Euler Angles

The aircraft attitude with respect to the earth is defined by the three Euler angles _ (heading

angle), 0 (pitch attitude or pitch angle), and ¢ (roll attitude or roll angle). These angles define the

rotations that transform earth-fixed axes to aircraft body axes at any particular instant of time. The

order of rotation is important. Start from earth-fixed axes, where X1 is north, Y1 east, and Z I down.

Rotate first by the angle _ about the Z 1 axis to define the rotated axis system (X2,Y2,Z2) (Z2 is iden-

tical to Z1). If we imagine an aircraft attached to the axis system as it rotates, zero • is nose north,

and positive _ rotation is clockwise. Then rotate by the angle 0 about the Y2 axis to define a third

axis system (X3,Y3,Z3) (Y3 is identical to Y2)" Note that the 0 rotation is about Y2, not YI- Zero 0 is

nose level, and positive 0 is nose up. Finally rotate by the angle @ about the X3 axis to arrive at the

aircraft body axes (X,Y,Z) (X is identical to X3). Zero ¢ is wings level, and positive @ is right wing

down. Figure 2.1-3 illustrates the Euler angles.

These definitions allow multiple solutions for (_,0,¢) for any given aircraft attitude; for instance,

it is easy to see that a (_,0,_) of (0°,0°,0°) is equivalent to (180°,180°,180°). We normally define 0

to lie in the range (-90°,90°). The Euler angles are then unique except when 0 is exactly 90 ° or -90 °.

The transformation of a vector from earth axes Ve to body axes Vb is the product of the three rota-
tion matrices.

Vb =Eio 0]FCOoO0sin ][coisini]cos @ sin l 0 -si _ cos _ Ve
-sin @ cos Lsin e 0 cos 0

COS 0 COS _ COS 0 sin _ -sin 0 liVeJsin ¢ sin 0 cos _ sin ¢ sin 0 sin _ sin ¢ cos

= - cos ¢ sin _ + cos ¢ cos

cos ¢ sin 0 cos ¢ cos ¢ sin 0 sin _ cos ¢ cos
+ sin ¢ sin _ sin ¢ cos

(2.1-1)



Theinversetransformationis

i]Fooo 0 o],sin cosy 1 0 cos.sinVe=

0 L-sin 0 0 cos 0 sin ¢ cos

Vb

cos _ cos o

cos _ sin 8 sin @

- sin _ cos @

sin V sin 8 sin

+ cos _ cos

cos e sin

cos I sin ® cos i]]

+ sin _ sin ¢

sin v sin e cos

- cos _ sin ¢

cos ® cos

Vb (2.1-2)

2.1.4 Angular Rates

We define the body-axis aircraft angular rates as projections of the angular velocity vector (with

respect to inertial space) on the body axes. This definition may seem a little awkward in that it first

defines the vector in inertial space; this is because the angular velocity of the aircraft_with respect

to the body axes is zero by definition and thus is not a useful quantity. The roll rate p, pitch rate q,

and yaw rate r are the components of the angular velocity in the body X, Y, and Z directions, respec-

tively. The sign conventions follow a right-hand rule: Positive roll rate is right wing moving down;

positive yaw rate is nose moving right; positive pitch rate is nose moving up.

2.1.5 Wind-Relative Velocit_

For stability and control analysis, we are seldom interested in the velocity of the aircraft relative

to earth. The velocity of the aircraft relative to the air, called the wind-relative velocity, is of

central importance. It is often convenient to consider this as the velocity with which the relative wind

hits the aircraft (the sign convention is then that the vector points in the direction from which the

relative wind comes). These two definitions are equivalent. The components of this vector in the X, Y,:

and Z body axes are u, v, and w, respectively.

For many purposes, it is more convenient to express the wind-relative velocity in a spherical co-

ordinate system instead of by the Cartesian components u, v, and w. In the spherical system, the total

wind-relative velocity is

V =Vu2 + v2 + w 2 (2.1-3)

The angle of attack _ and the angle of sideslip B are defined by

= tan-1 _ (2.1-4a)
u

B = sin-I v (2.1-4b)
V

Figure 2.1-4 shows the geometry of these definitions.

The angle of sideslip defined by Equation (2.1-4b) is not exactly the quantity measured by a normal

sideslip vane (see Section 8.5). A sideslip vane measures the flank angle of attack, defined by

v (2.1-5)_f = tan-I u

The flank angle of attack is related to the angle of sideslip by the equation

tan 8 = tan _f cos _ (2.1-6)

We use the angle of sideslip in the equations derived in this document. It is possible to derive

corresponding equations in terms of the flank angle of attack.

We can invert Equations (2.1-3) and (2.1-4) to give

u = V cos _ cos B (2.1-7a)

v=Vsin 8 (2.1-7b)

w = V sin _ cos B (2.1-7c)

Note that Equation (2.1-7) can be written in the form

Lsin
o°Sin ][c°slcos°SlnosiOcOSo!][i] (2.1-8)



which is a product of two rotation matrices and the velocity vector in a relative-wind-oriented coor-

dinate system (called wind axes). The order of the two rotations is important.

2.1.6 Linear Accelerations

The definition of body-axis linear accelerations is similar to that of the body-axis angular rates.

The body-axis linear accelerations of any point on the aircraft are the projections of the acceleration

vector of the point (with respect to inertial space) on the body axes. Note that the accelerations,

unlike the angular rates, are different for different points on a rigid aircraft. When the term accel-

eration is not qualified with a position, it usually refers to acceleration of the center of gravity.

Linear accelerometers are important sensors for stability and control data analysis and for control

system feedback. Such accelerometers measure the body-axis accelerations, excluding the component of

acceleration due to gravity or other internal forces. Equivalently, we could say that an accelerometer

measures the externally applied force on the accelerometer case. Thus, an accelerometer will indicate

1 g of upward acceleration for an aircraft in steady level flight. The actual acceleration in steady

level flight is zero, composed of 1 g of upward acceleration from lift plus l g of downward accelera-

tion from gravity; an accelerometer will measure only the acceleration from lift in this situation.

For many purposes, accelerometer measurements are actually more useful than true acceleration measure-

ments would be; if we had measurements of the true acceleration, we would often need to subtract the

gravity contribution.

Aeronautical engineers (including ourselves) often inaccurately use the term "accelerations" for the

linear accelerometer outputs, implying that the second derivative of position is the acceleration plus

the gravity contribution. The usage is sloppy, but there is not an accepted better term. Terms like

"accelerometer output" are awkward; the term "specific force" is used occasionally but is not universal.

The three components of accelerometer output are an, ax, and ay. The an component, called normal

acceleration, is positive upward; note that this is in the negative Z direction. Occasionally you will

see a z, positive down, substituted for a n in order to make the accelerometers consistent in sign with

the axis system. However, the use of an is far more common, lift always being thought of as positive

upward, and we adopt an in this document. The a x component, called longitudinal acceleration, is positive

forward, along the X axis. The ay component, called lateral acceleration, is positive to the right,
along the Y axis.

2.2 SIX-DEGREE-OF-FREEDOM EQUATIONS OF MOTION

In this section we briefly outline the derivation of the aircraft equations of motion. Most aircraft

dynamics texts (Etkin, 1959) give more detailed versions of these derivations, starting from the equations

for a point mass. Gainer" and Hoffman (1972) present a more general set of equations than we use here.

2.2.1 Newtonian Mechanics

We take as a starting point the nonrelativistic, rigid-body equations of motion in a nonrotating

inertial axis system. This coordinate system could be fixed with respect to either the earth or the air

(assuming that the wind velocity is constant in both time and space); for our purposes here, it is best
to use a coordinate system fixed relative to the air. The basic equations are the linear momentum and
angular momentum equations:

F : _- (mV) (2.2-1)
dt

M = d (h) (2.2-2)
dt

where F is the external applied force, M the external applied moment about the center of gravity, V the

velocity vector, and h the angular momentum vector about the center of gravity. Nonrotating coordinates

are somewhat awkward because our measurements are made primarily in the rotating body-axis system;

furthermore, the inertia tensor is a rapidly changing functiofi of time in the nonrotating system.

We need to transform Equations (2.2-I) and (2.2-2) to the rotating aircraft body-axis system. Let

be the angular velocity vector of the body-axis system with respect to inertial space. The rules for

transforming vector derivatives into rotating coordinate systems give

6_
F = (mV) + m x (mV)

at
(2.2-3)

M = _ (h) + m x h (2.2-4)
at



I0

where all quantities are in the rotating body-axis system. The 6/6t operator denotes the vector of deri-
vatives of the vector components; in a rotating axis system this is not the same as the derivative of the

vector, because the components in the rotating axis system change due to this rotation even if the vector
is constant in inertial space.

The angular momentum is given by

I lx -Ixy -Ixz 1h = -Ixy ly -lyz m (2.2-5)

L-Ixz -lyz Iz ]

The matrix in Equation (2.2-5) is the inertia tensor (Etkin, 1959) expressed in the body-axis system.
The components of m in the body-axis system are (p,q,r) by definltion. The components of V in the body-

axis system are (u,v,w) by definition. For aircraft stability and control applications, we can neglect

time derivatives of m and the inertia tensor. With these substitutions, we can write Equations (2.2-3)
and (2.2-4) in scalar form as

FX = m(u + qw - rv) (2.2-6a)

Fy = m(_ + ru - pw) (2.2-6b)

F z : m(w + pv - qu) (2.2-6c)

Mx = pl x - qlxy - rlxz + qr(l z - ly) + (r 2 - q2)ly z - pqlxz + rplxy (2.2-7a)

My =-Plxy + qly - _ly z + rp(l x - Iz) + (p2 _ r2)ixz _ qrlxy + pqly z (2.2-7b)

Mz = -Plxz - qly z + _I z + pq(ly - Ix) + (q2 _ p2)ixy _ rply z + qrlx z (2.2-7c)

where FX, Fy, and FZ are the components of the external applied forces; M X, My, and MZ are the com-

ponents of the external applied moments. The angular velocities in these equations are in radians

per second.

2.2.2 External Forces and Moments

Let us now examine the external forces and moments. We consider two components of the external

moment (for more complete equations, see Gainer and Hoffman (1972)). The most significant component is

the aerodynamic moment. We write the aerodynamic moments in terms of the nondimensional coefficients

(Etkin, 1959):

MXaero = qsbC£ (2.2-8a)

MYaero = qscC m (2.2-8b)

MZaer o = qsbC n (2.2-8c)

where q is the dynamic pressure, s the reference area, c the reference chord, b the reference span, and

C_, Cm, and Cn are the coefficients of rolling, pitching, and yawing moments. These coefficients are

functions of the aircraft state (see Section 2.4).

The other component of the moment that we consider is the gyroscopic moment from the rotating

machinery in the engine. We must consider this as an external applied moment because Equations (2.2-3)

to (2.2-5) assume that the vehicle is a rigid body with no internal moving parts. The engine gyroscopic

coupling is significant for some aircraft. The following equations assume that the engine is oriented
along the X axis. Generalization to arbitrary orientation is easy. The total applied moments are

MX : qsbC_ (2.2-9a)

My = qscC m + Nrlxe (2.2-9b)

MZ = qsbC n - Nqlxe (2.2-9c)

where Ixe is the moment of inertia of the rotating mass of the engine and N the engine speed in radians

per second.
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We consider three components of the applied forces. The first component is the aerodynamic forces;
in terms of the nondimensional coefficients they are

FXaero = qsC X (2.2-I0a)

FYaer o = qsCy (2.2-10b)

FZaero = qsC Z (2.2-i0c)

where CX, Cy, and CZ are the coefficients of X force, Y force, and Z force. These coefficients are func-

tions of the aircraft state (see Section 2.4). It is also common to work in terms of the coefficient of

normal force C N and the coefficient of axial force CA defined as

CN = -C Z

CA = -C x

The second force component is gravity, which exerts a force mg along the earth Z axis.
Equation (2.1-1), we can transform the gravity force into body axes:

FXgra v = -mg sin o

Fygra v = mg sin ¢ cos 0

FZgra v = mg cos ¢ cos 0

(2.2-iia)

(2.2-iib)

Using

(2.2-12a)

(2.2-12b)

(2.2-12c)

The third force component is the engine thrust T, which we assume is along the body X axis.:

Generalization to arbitrary orientation is easy. The total applied forces are then

F X = qsC x - mg sin O + T

Fy = qsCy + mg sin _ cos e

(2.2-13a)

(2.2-13b)

FZ = qsC Z + mg cos ¢ cos 0 (2.2-13c)

2.2.3 Euler Anqles

Since body-axis forces are functions of the Euler angles, we will need the equations for evolution of
the Euler angles. Assuming a flat, nonrotating earth, the total angular velocity of the aircraft

can be expressed as the sum of _, 0, and _ components. These components are not mutually orthogonal:

The _ component is in the earth-axis Z direction, the 0 component is in the Y2 direction, and the @ com-

ponent is in the body-axis X direction. We transform all these components into the body-axis system

and equate the sum to the body-axis components of the angular velocity as follows (see Equation (2.1-1)):

[!] [!] [! 0 0 ] I! ] [! 0 0 ] Fco_ E) 0 -sin C)IIO0]
: + cos ¢ sin + cos @ sin I 0

-sin _ cos -sin @ cos Lsin e 0 cos eJL@]

[i 0 -sin 0 _] [i]
: cos ¢ sin _ cos

-sin _ cos _ cos

(2.2-14)

Inverting this equation gives

= p + q tan 0 sin @ + r tan 0 cos (2.2-15a)

: q cos _ - r sin ¢ (2.2-15b)

= r cos @ sec e + q sin ¢ sec e (2.2-15c)
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2.2.4 Polar Coordinate Velocity Form

For many purposes, it is more convenient to have the equations in terms of a, B, and V than in terms
of u, v, and w. The aerodynamic forces and moments are easier to visualize and express in terms of a,

B, and V. Furthermore, we can directly measure flow angles closely related to a and B. We do almost
all of our analysis in the e, B and V coordinates. The primary disadvantage of the (a,B,V) system is

that it is singular at zero velocity, where m and B are not defined; therefore the (m,B,V) system is

inappropriate for hover conditions. The (a,B,V) system also has singularities at B of ±90 ° , but these
are seldom of concern.

To derive the (m,B,V) equations, first differentiate Equations (2.1-3) and (2.1-4) to obtain

1 (uu + v_ + wv_) (2.2-16a)_:V

• u_ - wG
a - (2.2-16b)

u 2 +w 2

= V_ - vV = (u 2 + w2)_ - vww - vuu

V2V(1 - v2/V 2) V2V(u 2 + w2)

(2.2-16c)

Substituting for G, _, and w from Equation (2.2-6) and for u, v, and w from Equation (2.1-7) gives

F x Fy F Z
=_---cos m cos B +_--sin B +_sin _ cos B (2.2-17a)

• = 1 (FZ cos _ - FX sin _) + q - (tan B)(p cos _ + r sin _) (2,2-17b)
mV cos B

= cos B Fy + p sin _ - r cos _ - sin B (FZ sin _ + F x cos _)
mV mV

Substituting from Equation (2.2-13) for FX, Fy, and FZ gives

(2.2-17d)

= - _ CDwin d + g(cos ¢ cos 0 sin a cos B + sin ¢ cos 0 sin B - sin 8 cos a cos B) (2.2-18a)

T
+ _ cos _ cos 13

= -_ C L + q - (tan B)(p cos a + r sin _)
mV cos B

+_g (cos ¢ cos e cos _ + sin 0 sin a) - T sin a
V cos B mV cos B

(2.2-18b)

= qs CYwind + P sin a - r cos _ + g cos B sin ¢ cos o
mV V

+ sin_ (g cos _ sin 0 - g sin a cos ¢ cos 0 + _ cos a)
V m

(2.2-18c)

where the stability-axis force coefficients are

CL = -C Z cos a + Cx sin a

CD : -Cx cos _ - CZ sin a

(2.2-19a)

(2.2-19b)

and to simplify the form of the equations, we have defined the wind-axis coefficients

CDwin d = CD cos B - Cy sin B (2.2-20a)

CYwin d = Cy cos B + C D sin B (2.2-20b)
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2.2.5 Collected Equations

We have now derived the body-axis six-degree-of-freedom equations of motion. We have two equivalent

forms of the equations, depending on whether the air-relative velocity is expressed in rectangular or
polar coordinates. For the rectangular coordinate form, collect Equations (2.2-6), (2.2-7), and (2.2-15),

substituting from Equations (2.2-9) and (2.2-13).

= qs CX - qw + rv - g sin 0 + _ (2.2-21a)
m m

o

v = _L_ Cy - ru + pw + g sin ¢ cos 0
m

w =_-C z - pv + qu + g cos ¢ cos 0
m

pl x - qlxy - _Ixz = qsbC_ + qr(ly - Iz) + (q2 _ r2)lyz + pqlx z _ rplxy

Plxy+ qly - _ly z = qscC m + rp(l z - I x ) + (r 2 - p2)Ixz + qrlxy - pqlyz + Nrlxe

-Plxz - qly z + _I z = qsbC n + pq(l x - ly) + (p2 _ q2)Ixy + rply z - qrlxz - Nqlxe

= p + q tan c) sin @ + r tan 0 cos @

= q cos ¢ - r sin ¢

= r cos @ sec 0 + q sin ¢ sec 0

(2.2-21b)

(2.2-21c)

(2.2-21d)

(2.2-21e)

(2.2-21f)

(2.2-21g)

(2.2-21h)

(2.2-21i)

For the polar coordinate form, use Equation (2.2-18) in place of Equations (2.2-21a) to (2.2-21c), giving

= - _#-mCDwind + g(cos ¢ cos 0 sin _ cos B + sin ¢ cos 0 sin

 ixz- _Ixy -

- Ixy+GIy- ;lyz

 Ix, GIyz+ ;Iz

$

mV cos

T
- sin o cos _ cos B) + _ cos m cos

CL + q - (tan B)(p cos m + r sin m)

+ g (cos _ cos 0 cos m + sin 0 sin a) - T sin
V cos _ mV cos

=_S_ + sin r cos + _ cos _ sin ¢ cos 0
mV CYwind P _ _ V

+ sin B (g cos _ sin 0 - g sin _ cos ¢ cos 0 + _ cos m)
V m

= qsbC_ + qr(ly iz ) + (q2 _ r2)lyz + pqlx z _ rplxy

= qscC m + rp(l z - Ix) + (r 2 - p2)Ixz + qrlxy - pqly z + Nrlxe

= qshC n + pq(l x - ly) + (p2 _ q2)ixy + rply z _ qrlxz _ Nqlxe

= p + q tan 0 sin @ + r tan 0 cos

= q cos ¢ - r sin ¢

= r cos ¢ sec o + q sin ¢ sec o

(2.2-22a)

(2.2-22b)

(2.2-22c)

(2.2-22d)

(2.2-22e)

(2.2-22f)

(2.2-22g)

(2.2-22h)

(2.2-22i)
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Either of these systems of nine coupled nonlinear differential equations describes the aircraft

motion. The inertia tensor is always an invertible matrix (it is usually nearly diagonal), and thus

Equations (2.2-21d) to (2.2-21f) are solvable for the derivatives of p, q, and r. The explicit inver-

sion is messy, and it is more convenient to write the equations in the form shown here and use a numer-
ical inversion routine for the solution.

The equations assume nonrelativistic mechanics, a rigid vehicle, and a flat, nonrotating earth. The

equations are valid in a constant wind but do not account for wind shears or fluctuations. The time rate

of change of mass and inertia is assumed negligible, and fuel sloshing effects are ignored. There are no

small-angle approximations, but the equations have singularities at 0 = ±90 ° . The polar coordinate form

also has singularities at zero velocity and at B = ±90 ° • Engine inertia and thrust terms are included,

assuming that the engine alignment and thrust vectors are along the X axis. The equations are given in

terms of body axes referenced to the vehicle center of gravity.

The force and moment coefficients are functions of the aircraft state. We must know these functions

before we can integrate the equations, but we will put off that issue until Section 2.4.

2.2.6 _atial Position

Each set of equations in the previous section included only 9 of the 12 differential equations

describing the rigid-body motion of the aircraft. Three differential equations for the spatial posi-

tion are needed for a complete set. Although the spatial position equations are seldom relevant to

aircraft stability and control analysis, we present them here for completeness. These equations are

necessary for simulations that include navigational considerations. In special situations, such as in

ground effect or with an autopilot driven by navigational signals, the spatial position equations can

also become pertinent to stability and control.

To derive the spatial position equations, simply use Equation (2.1-2) to transform the body-axis

velocity (u,v,w) into earth axes. We will also allow for a constant wind. Let X and Y be the position

in the earth-fixed X and Y coordinates. For the third spatial position variable, we use altitude H,

which increases in the negative Z direction. The resulting (X,Y,H) coordinate system is not right-handed

and therefore invites sign errors. Unfortunately, the (X,Y,Z) coordinate system also invites sign errors

from people falsely assuming the positive Z direction is up, which seems natural. The equations are

= u cos _ cos e + v(cos _ sin e sin ¢ - sin _ cos ¢)

+ w(cos _ sin 0 cos @ + sin _ sin @) + Wx (2.2-23a)

= u(sin _ cos e) + v(sin _ sin 0 sin @ + cos _ cos @)

+ w(sin _ sin 0 cos _ - cos _ sin ¢) + Wy (2.2-23b)

= u sin e - v cos 0 sin @ - w cos e cos @ + W v (2.2-23c)

where Wx and Wy are the wind components blowing toward the north and east, respectively, and Wv is the

vertical wind component, positive for updrafts. If the polar coordinate form of the wind-relative velo-

cities is used, then substitute from Equation (2.1-7) for the u, v, and w in Equation (2.2-23) to obtain

= V cos _ cos B cos ? cos e + V(sin B)(cos _ sin e sin ¢ - sin • cos ¢)

+ V(sin a cos B)(cos _ sin o cos ¢ + sin _ sin @) + Wx (2.2-24a)

= V cos e cos B sin _ cos 0 + V(sin B)(sin _ sin 0 sin ¢ + cos _ cos ¢)

+ V(sin e cos B)(sin _ sin 0 sin ¢ - cos _ sin @) + Wy (2.2-24b)

= V cos _ cos (3 sin 0 - V sin B cos 0 sin @ - V sin _ cos 13 cos 0 cos @ + Wv (2.2-24c)

A common quantity related to spatial position is the flight path angle T, defined by

sin T ................

_/_2 + i2 + 82

(2.2-25)
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2.3 OBSERVATION EQUATIONS

The measurable aircraft response variables are a, 6, V, p, q, r, e, @, v, an, ax, az, p, q, _, X, Y,
and H. The spatial positions (X,Y, and H) are of little relevance to most stability an8 control analy-
sis, so we usually omit them from our equations. (There are exceptions, most notably for H.) We also

usually ignore the V response equation, instead using measured velocity. The simplest set of observation

equations assumes that the instruments are at the center of gravity (or the measurements have been
corrected to it), are perfectly aligned and calibrated, and have no dynamics. It also ignores the

distinction between the flank angle of attack and the angle of sideslip.

Otz = Ct

6z = 6

Pz = P

qz = q

r z = r

Oz = 0

@Z = _

_FZ = _

We then have

2.3-Ia)

2.3-1b)

2.3-1c)

2.3-1d)

2.3-1e)

2.3-1f)

(2.3-1g)

(2.3-1h)

a n : _ CN (2.3-ii)

ax = - _ CA + Tmg (2.3-Ij)

ay = mg_gCy (2.3-ik)

Pz = P (2.3-i_)

qz : q (2.3-Im)

_z = _ (2.3-in)

where the subscript z distinguishes observations (elements of the z vector of Equation (1.2-1c)) from

corresponding state variables.

We seldom have sensors exactly at the center of gravity (particularly flow-angle sensors, which

must be exposed to the airflow). For a rigid aircraft, the sensed attitudes, rates, and angular
accelerations are independent of the sensor position, but the sensed flow angles and linear accelerations

vary with sensor position. The effects of sensor position can be included in the observation equations

as shown in Equation (2.3-2).

Calibration bias and slope errors, known or unknown, can also be included in the observation

equations. For the most part, we advise against using parameter estimation for estimating calibration
slope errors. Calibrating the instruments in the lab gives more accurate data and avoids identifiability

problems. For the following equations, we allow unknown biases on all measurements.

The observation equations, with arbitrary instrument positions, scale factors on angles of attack and

sideslip, and biases on all measurements, are

xot Yot

a z = K_(a - _- q + _-- p) + %
(2.3-2a)

z6 x6
6z = K6($ - _ P + _- r) + 6b (2.3-2b)

Pz = P + Pb (2.3-2c)

qz = q + qb (2.3-2d)

rz = r + r b (2.3-2e)

ez = e + eb (2,3-2f)
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@z= @+ @b (2.3-2g

_z= _ + _b (2.3-2h

Xan Zan Yan_ +an=_- CN+-_- q +--g--(q2+ p2)__g- anb (2.3-2i

Zax Xax Yax T
ax=-_ggCA+_-- q ---g--(q2+ r2) _____ +_ + axb (2.3-2j

ay=_]-_-Cy_L__Y__ + Xay _ Yay___ _ _g_ (p2 + r 2) + ay b (2.3-2k)

Pz = P + Pb (2.3-2_)

qz = q + qb (2.3-2m)

_z : _ + _b (2.3-2n)

The subscript b indicates biases (qb is the bias of q, not the derivative of qb)- Note that Pz is

the observation of p, not the derivative of Pz (there is a difference because of the biases). The quan-

tities xm, ym, xB, zB, Xan, Yan, Zan, Xax, Yax, Zax' Xay, Yay, and Zay are the instrument positions rela-

tive to the center of gravity. The Ks and K B parameters are upwash factors on the angles of attack and

sideslip. It is debatable whether the position corrections for m and B should be multiplied by the

upwash factors or not; neither alternative is completely correct, but the effect is second order. The
angular rate corrections to m and B in Equation (2.3-2) use small-angle approximations, which are ade-

quate for most situations.

Note that B in these equations is angle of sideslip, not the flank angle of attack measured by typi-
cal B vanes. If a B vane measuring flank angle of attack is used, substitute Equation (2.1-6) into

Equation (2.3-2b) and use a small-angle approximation to obtain

_f _ K_ (_ _ z_ x_ r 1cos _ V- p + V-- + Bb (2.3-3)

Alternatively, the measurements can be preprocessed, multiplying the vane reading by cos m to obtain an

equivalent measurement of B.

There are many other terms that can enter the observation equations in special situations. For

instance, the observation equations can be modified to reflect sensor misalignments or cross-axis
sensitivity, known or unknown (preferably known). Known misalignments can alternatively be corrected in

the data preprocessing; where to handle such corrections is largely a matter of convenience.

Instrumentation lags are a major issue in some projects. Such lags can be incorporated into the

system model by adding extra lag states. For instance, a lag in the sensed angle of attack might be

modeled by the equations

_ = _ - _- q +V- P + _b - _

_z = _Z (2.3-4b)

where m_ stands for m lagged and T is a time constant, known or unknown. In most cases it is preferable

to precorrect sensor lags rather than introduce the complication of lag states.

If the (u,v,w) form of the state equations is used instead of the (a,B,V) form, replace the m, B, and

V in the observation equations by substitutions from Equations (2.1-3) to (2.1-5). Alternatively, u, v,

and w "measurements" can be precomputed from the measured _, B, and V. We discuss this implementation

issue in Chapter 3.

2.4 AERODYNAMIC MODELS

The coefficients CA , CN, Cy, C_, Cm, and Cn in the equations of motion are functions of the aircraft

states and controls. Estimating these functions is the primary objective of the stability and control

tests. In general, the functions are nonlinear, but in this section we largely restrict ourselves to

simple linearized forms of the functions adequate for small perturbations about stabilized conditions in
nonseparated flow. (Etkin (1959) discusses the aerodynamics behind the equations.)
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Forthesimplestequations,weassumethat the longitudinalaerodynamiccoefficientsare functions
onlyof angleof attack,pitch rate, andlongitudunalcontrolsurfacepositions;likewise,weassumethat
the lateral-directionalaerodynamiccoefficientsarefunctionsonlyof angleof sideslip,roll rate,yaw
rate, andlateral-directionalcontrolsurfacepositions. Thelocal linearexpansionsof the longitudinal
coefficientsarethen

qc + CN66 +CN = CNa_ + CNq 2V CNb
(2.4-1a)

CA = CAms + CAq 2_VV+ CA66 + CAb
(2.4-1b)

+ Cm_ +Cm = Cm_ + Cmq 2V Cmb
(2.4-ic)

and those of the lateral-directional coefficients are

rb + Cy66 +Cy = CyBB + Cyp 2P_V+ CYr _ CYb (2,4-2a)

rbC_ = C_BB + C_p + C_r _ + C_6 + C_b
(2.4-2b)

pb rb (2.4-2c)
Cn = CnBB + Cnp _ + Cnr _ + Cn66 +Cnb

where, following common notation for aircraft stability and control, the subscripts indicate a derivative

with respect to the subscript quantity (for instance Cmm is the derivative of Cm with respect to m).

Etkin (1959) discusses the reasons for the c/2V and b/2V factors in the rate terms; the notation is incon-

sistent, but it is standard. The 6 in these equations is a generic notation for controls; add one term
of the form shown for each relevant control. The subscripted quantities in these equations are called

the stability and control derivatives and are the primary parameters to be estimated.

The subscript b indicates biases. These biases are closely related to, but not identical to, the

often-used O-subscript coefficients. For example, CNb is related to CNo as commonly defined. The

CNo notation is sometimes used for both quantities, but that invites confusion. Figure 2.4-1 illus-

trates the relationship in one dimension (m dependence only). The coefficient CNo is the value of CN

at m = 0 and a = O. (Some authors (Etkin, 1959) alternatively define perturbation equations in which

CNo is the value of CN at a reference a and 5.) The coefficient CNb is a linear extrapolation from

the average m and 6 of the maneuver to the zero point. The quantities CNo and CNb are equal if CN is

linear between zero and the conditions of the maneuver. Corresponding comments apply to the other b-

subscript coefficients.

Equations (2.4-1) and (2.4-2) assume that the aircraft is symmetric and flying at zero sideslip

and that any lateral-directional motions are small enough to have negligible effect on the longitu-
dinal aerodynamics, and conversely. We therefore neglect the dependence of the longitudinal aero-

dynamic coefficients on lateral-directional parameters and the dependence of the lateral-directional

aerodynamic coefficients on longitudinal parameters. If these assumptions are violated, we can add
cross derivatives to the expansions. In adding lateral-directional terms to the longitudinal expan-

sions, we must consider whether the modeled effects should be symmetric, antisymmetric, or neither.

We would expect longitudinal B effects to be symmetric for symmetric aircraft in most situations

(there are exceptions; Orlik-Rackemann, 1977). Therefore, derivatives with respect to IBI or B2

are usually more appropriate than derivatives with respect to 8.

Equations (2.4-1) and (2.4-2) also assume that during a maneuver the Mach number, Reynolds number,
dynamic pressure, velocity, engine parameters, and other flight condition parameters change little

enough that their effects on the nondimensional coefficients are negligible. Note that we are con-
cerned here only with the effects on nondimensional coefficients. The dimensional coefficients (Etkin,
1959) are directly proportional to dynamic pressure, for instance, but the nondimensional coefficients

are usually insensitive to dynamic pressure over large rangRs (until high dynamic pressure causes struc-

tural deflections).

Equations (2.4-I) and (2.4-2) omit _ and _ terms such as Cm_ for the reasons outlined in Section 1.4.

This does not constitute neglect of the _ and B terms; their effects are subsumed in the other terms.

Explicit _ and B derivatives can be added to these equations when appropriate. (Maine and lliff (1979)
discusses this issue in more detail.)
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Thefinal assumptionin Equations(2.4-1)and(2.4-2)is that of linearity. Overlargerangesof
the parameters,particularlyangleof attack,theaerodynamicswill notbelinear. Theequationsthere-
forerestrict the allowablemaneuversto thosesmallenoughfor a locally linearmodelto bea reason-
ableapproximation.Therangeof applicabilitycanbeexpandedbyaddingnonlineartermsto Equa-
tions (2.4-1)and(2.4-2);subsequentchaptersdiscusstheadvantagesandproblemsof modelingnon-
linearities in this way. In somesituations,notablyin separatedflow, local linearity is nota good
assumptionevenfor verysmallmaneuvers;thecoefficientsin separatedflowcanbediscontinuousfunc-
tionsandcanexhibithysteresis.Thus,conditionsof separatedflowcanrequiresignificantlydifferent
formsthantheseequations.

Equations(2.4-1)and(2.4-2)arestartingpointsfromwhichyoucanexpandasneeded,addingterms
for anyparameterthat hasa measurableeffectontheaircraft dynamicsduringthemaneuver.

Giventhebody-axiscoefficientsCN,CA,andCy,the coefficientsCL, CDwind,andCYwind appearing
in Equation(2.2-22)aregivenby

CL : CNcose - CAsin a

CDwin d = CA cos _ cos B + CN sin _ cos B - Cy sin B

CYwin d = Cy cos 6 + CA cos _ sin 6 + CN sin _ sin

(2.4-3a)

(2.4-3b)

(2.4-3c)

We could conversely expand CL, CDwind, and CYwin d as functions of the parameters and write CN, CA ,
and Cy as

(2.4-4a)CN = CL cos _ + CDwin d sin _ cos B + CYwin d sin _ sin

(2.4-4b):CA = CDwind cos _ cos 6 + CYwind cos _ sin 6 - CL sin

(2.4-4c)Cy = CYwin d cos 6 - CDwin d sin 6

Note that if CN, CA, and Cy are linear in e, then by Equation (2.4-3) CL, CDwin d, and CYwin d are

nonlinear; conversely, if CL, CDwind, and CYwin d are linear in _, then CN, CA, and Cy are nonlinear.

Therefore, the body-axis and wind-axis expansions are not completely equivalent, although they are close.

One might be valid over a larger _ range than the other.

Figure 2.1-1. Control surfaces.
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Figure 2.1-2. Body-axis system.
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Figure 2.1-3. Euler angles.
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Figure 2.1-4. Flow angles.
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Figure 2.4-1. Relationship of CNb and CNO.
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Chapter 2 introduces the aircraft stability and control problem and develops the basic system
equations describing aircraft motion. In Chapter 3 we discuss application of parameter estimation

methods to these equations. We simplify the general nonlinear equations of Chapter 2, obtaining forms
amenable to practical use.

The six-degree-of-freedom equations derived in Chapter 2 are much too complicated for convenient

application of parameter estimation. Although it is certainly possible to work with the full set of
equations, we seldom wish to do so in practice. Recall our emphasis on the importance of simple model
forms. One of the most important engineering judgments in parameter estimation lies in striking a

balance between models that are too complicated to analyze and models that are too simple to represent

the system. The full six-degree-of-freedom equations lead toward models too complex for most of our pur-

poses. Therefore, we investigate several simplifications of these equations.

Several of the simplification techniques that we use are common to many fields and require little

elaboration here. We separate the equations into (nearly) independent subsets, linearize, neglect small
terms, and restrict the maneuvers so as to keep more terms small enough to neglect.

Many of the implementation issues are strongly interconnected and must be considered together from a
systems viewpoint. You will not get very far considering each implementation issue divorced from the

others. The process of implementation is iterative, rather than linear. You make tentative decisions on

early issues and see how the ideas fit together. You will likely later find that some of the tentative
decisions merit revision. The structure of this chapter somewhat reflects the interdependent nature of

the implementation decisions. For instance, we need to define a coordinate system before we can write

much of anything concrete, yet the choice of coordinate system is strongly affected by the ease of
linearizing the equations, which is one of the last issues addressed. Because of this interrelationship

there is a significant amount of forward referencing in this chapter for details.

Throughout this chapter we assume the use of an output-error estimator. The equations of Chapter 2
form the basis for all analysis methods. Several of the recommendations of this chapter, however, are

strongly dependent on the choice of analysis method. For example, the issue of whether to include
various terms in the output equation or in the data preprocessing is irrelevant to output-equation error

analysis (often just called equation error; Maine and lliff, 1984); the two approaches are equivalent in

output-equation error. The equations presented in this chapter are not necessarily good choices for ana-

lysis using an output-equation error estimator.

3.1 NONLINEAR VERSUS LINEARIZED IMPLEMENTATIONS

There are numerous trigonometric and multiplicative nonlinearities in the aircraft stability and

control equations derived in Chapter 2. If we use the (m,6,V) equations instead of the (u,v,w) equa-

tions, there are also inversions of V. The dynamic pressure q, which multiplies all the aerodynamic

coefficients, hides another nonlinearity because it is defined as

I
= _- pV 2 (3.1-I)

We have not yet even considered the nonlinearities in the aerodynamic coefficients.

There are two significantly different approaches to applying the output-error method to nonlinear

systems. The first approach is to use an output-error program designed for analysis of nonlinear
systems. There are no assumptions of linearity inherent in the output-error method. Several programs

capable of handling general nonlinear systems exist (Jategaonkar and Plaetschke, 1983).

The second approach is to linearize the equations for use in an output-error program designed for

linear systems. Several widely used output-error programs are restricted to linear (or linearized)
systems; for applications where linearization is feasable, these programs are more efficient and easier

to use.

Both nonlinear and linearized implementations of output error have roles in practical analysis.

Programs restricted to linearized models are appropriate for routine batch analysis of large amounts of
data in cruise flight regimes. In such circumstances, computational efficiency is important, and non-

linearities play a minimal role. The general nonlinear programs are appropriate for intensive interactive

analysis of data where nonlinear effects are important, such as at high angles of attack. In such

situations, computational efficiency is less important than the ease of implementing nonlinearities.

This chapter emphasizes the linearized implementation of output error, which is the more difficult of

the two approaches. We specifically treat the use of the lliff-Maine code, MMLE3 (Maine and lliff,
1980), although the principles discussed are applicable to most output-error programs for linear systems.
Several of the issues discussed are important to both nonlinear and linearized implementations, par-

ticularly the uncoupling of the state equations, the treatment of biases and initial conditions, and the

handling of sensor corrections. Just because it is easy, for instance, to implement the full six-degree-
of-freedom equations in a nonlinear program does not mean that it is a good idea. Section 3.7 is largely

I I¢;H3C_S_LNG _'AC_I_ ' .....
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irrelevant to analysis with nonlinear programs. The choice of axis systems, discussed several places in

the chapter, is significantly influenced by linearization considerations; therefore, the best choice

might be different for nonlinear analysis.

3.2 COORDINATE SYSTEMS

The choice of coordinate systems is a major decision affecting the implementation of the air-

craft equations of motion. In this section we outline some of the issues to be considered in making
this decision.

There is little debate about the best choice of coordinate system for rotational degrees of freedom.

The body-axis angular rates and the Euler angles are the most naturally measured quantities. The choice

of these quantities as states allows the use of the trivial observation equations (2.3-2c) to (2.3-2h)
and (2.3-2_) to (2.3-2n). Furthermore, the state equations (2.2-21d) to (2.2-21f) are reasonably simple

in this coordinate system. Although the state equations may at first appear complicated, they simplify

considerably under reasonable conditions (see Section 3.4).

The choice of coordinate systems for the translational degrees of freedom is more difficult. The

normally used measurements are expressed in two different coordinate systems. Wind-relative velocity is
most commonly measured in terms of m, B, and V; this naturally suggests the use of the (m,_,V) form of

the state equations (2.2-22), which involve wind-axis force coefficients. The accelerations, on the
other hand, are measured in the body-axis system, therefore Equation (2.3-2) involves body-axis force

coefficients. This suggests the use of the (u,v,w) form of the state equations (2.2-21), which likewise

involve body-axis force coefficients.

Thus, both the (_,_,V) and the (u,v,w) forms of the state equations have objectionable features when

used with the usually available measurements. The (m,_,V) form gives simple observation equations for m,

B, and V, but introduces a nonlinear relationship between the wind-axis force coefficients in the state

equations and the body-axis coefficients in the acceleration observation equations. The (u,v,w) form
results in consistent use of all force coefficients in the body-axis system, but gives nonlinear obsem-

vation equations for m, B, and V.

In principle, either the (m,B,V) or the (u,v,w) form is usable. The nonlinearities somewhat compli-
cate the implementation, but these complications can be handled in several ways. (Sections 3.5.2 and
3.7.2 discuss this issue further.) Of course, with a program designed for nonlinear systems, the nonli-

nearities present no inherent problems. Neither form stands out as the obvious best choice for all
conceivable situations.

In this document we concentrate on the use of the (_,B,V) form of the state equations, although many

of the principles apply equally well to the (u,v,w) form. Our output-error program for linear systems

more naturally accommodates the linearizations necessary in the (m,B,V) form than those necessary in the

(u,v,w) form. We have found the (m,_,V) form adequate for all applications we have addressed.

In many cases, the (u,v,w) form should be equally suitable, but we have not had the need to try it
extensively. Ross and Foster (1976) presents one of the several computer programs that have been suc-

cessfully applied with the (u,v,w) form. For hovering flight, the (u,v,w) form is required because of

the singularities in the (m,B,V) form.

3.3 SIMPLIFICATION USING MEASURED DATA

One simplification technique that merits discussion is the use of measured data. In this tech-

nique we eliminate the equations required to compute some variable and substitute the measured value
of that variable wherever it appears in other equations. This technique requires that measured data

be available; it thus does not generally apply to simplifying simulators, design studies, or many

other uses of the equations of motion. However, it can be a powerful tool in simplifying parameter

estimation problems.

The use of measured data is closely related to the equation-error method of parameter estimation. We

use measurements as though they were exact noise-free values. The method is therefore sensitive to noise
in the measurements so used. As we eliminate more differential equations in favor of measured values,

the algorithm takes on more characteristics of equation error.

Our general approach is a compromise. We use our knowledge of aircraft dynamics to identify the few

equations that dominate the characteristics we are studying, and we center our analysis around these

equations. Substituting measured data is one of the tools used to eliminate the equations peripheral to

the study.

For example, aircraft velocity is only weakly related to the longitudinal short-period mode. The

short-period characteristics definitely depend on the velocity, so we must consider velocity in short-

period analysis. The coupling, however, is almost entirely static; there is little dynamic coupling be-
tween the velocity and the short-period mode. Therefore, we use measured velocity in our short-period

analysis, accounting for the velocity effects without integrating the V equation.
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Thevalidity of this example,aswithseveralof thesimplificationsweintroducein this chapter,is
configurationdependent.In aconfigurationwithverylowwingloading,suchasa human-poweredor
solar-poweredaircraft, the velocitymightbecloselycoupledwith theshort-periodmode;indeedthere
mightnotbeconventionalshort-periodandphugoidmodes.Wewill emphasizethesimplificationsthat can
bemadefor conventionalflight vehicles. Forunconventionalconfigurations,manyof the assumptions
mustbereevaluatedona case-by-casebasis. Thiscontinualreevaluationis anunavoidableconsequence
of makingassumptionsandsimplifications. Unfortunately,anyset of equationsgeneralenoughto handle
all conceivablesituationswill besocomplicatedasto beunusable.Carefulreevaluationof assumptions
andexaminationof thedatafor potentialviolationsof theassumptionsaretwoof thehallmarksof
thoroughdataanalysisasopposedto uncriticalnumbercrunching.

3.4 UNCOUPLEDSTATEEQUATIONS

Mostaircraft aresymmetricabouttheX-Zplaneandfly at smallsideslipangles.Wecanusethis
symmetryandsmall-angleapproximationsto separatetheequationsof motioninto twolargelyindependent
setsdescribingthelongitudinalandlateral-directionalmotionsof theaircraft. Theunknownparameters
alsoseparateinto longitudinalandlateral-directionalsets. Thus,thestability andcontrolderivative
estimationproblemreducesto twosmallerproblems,eachwithabouthalf asmanydifferential equations
andhalf asmanyunknownsasthecombinedproblem.Thesimplificationsfromthis separationaresogreat
that wegoto considerablelengthto findwaysto usetheseparatedforms,evenwhentheysuperficially
appearinapplicable.Theseparationis importantto bothnonlinearandlinearizedimplementationsof
outputerror.

3.4.1 Longitudinal Equations

The longitudinal motions are rotations about the body Y axis and translations along the X and Z axes.

The longitudinal aerodynamic coefficients are thus CN, CA (or equivalently, CL, CD), and Cm. The longi-

tudinal state equations are (2.2-22a), (2.2-22b), (2.2-22d), and (2.2-22h). We can separate th_se
equations from the others by making the following assumptions: Assume that the vehicle is symmetric

about the X-Z plane; thus, Ixy and ly z are zero. Further assume that during the maneuver analyzed, 6, p,

r, and @ are all constant at zero (or small enough to be unimportant). Then

= - q_c L + q + _ cos(@-a) ....
mV V

T sin a

mV
(3.4-1a)

qly = qscC m (3.4-ib)

= q (3.4-ic)

_ T
= _s_ CD + g sin(a-C)) + _ cos a

m
(3.4-Id)

In many cases, the restrictions on the applicability of Equation (3.4-1) are too severe. These

equations do not apply, for instance, in a steady turn. The use of measured data for the lateral-

directional signals allows us to eliminate the lateral-directional differential equations without
assuming that the lateral-directional motions are negligible. A more widely applicable set of longi-

tudinal equations is thus

= ---_--- CL + q - (tan 6)(p cos m + r sin m)
mV cos 6

V cos 6
(cos ¢ cos e cos a + sin @ sin a) T sin a- m_ cos B

-Plxy + qly - _ly z = qscC m + rp(Iz - Ix) + (r2 - p2)Ixz + qrlxy - pqlyz + Nrlxe

= q cos @ - r sin @

(3.4-2a)

(3.4-2b)

(3.4-2c)

= _ _ CDwind

+ g(cos ¢ cos @ sin a cos 6 + sin ¢ cos @ sin B - sin e cos a cos 6)

+_T cos a cos 6
m

(3.4-2d)
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whereweusemeasureddatafor the lateral-directionalsignalsB,p, r, and¢. AlthoughEquation(3.4-2)
eliminatesthe lateral-directionaldifferential equations,it doesnotcompletelyeliminatethe lateral-
directionalaerodynamiccoefficientsandis thusnotyet adequatelyseparatedfromthe lateral-directional
problem.ThecoefficientCDwind in Equation(3.4-2d)is notpurelylongitudinal,becauseit involves
thelateral forcecoefficientCy(seethedefinitionof CDwindin Equation(2.2-20)). Tocompletethe
separationof the longitudinalandlateral-directionalproblems,weassumethat Bis smallenoughthat
CDcanbesubstitutedasanapproximationfor CDwind in Equation(3.4-2d). Withthis approximation,
Equation(3.4-2)allowsusto concentrateonlongitudinalanalysis,evenin thepresenceof substantial
lateral-directionalmotions.Theonlyassumptionrequired,in additionto theavailabilityof appropriate
lateral-directionalmeasureddata,is that _ besmallenoughfor theCDapproximationto bereasonable.

WecanoftenfurtherreducethelongitudinalequationsbyeliminatingtheVequation. In mostcases,
longitudinalstability andcontrolmaneuverspredominantlyexcitetheshort-periodmodeandnotthe phu-
goidmode;thus, Vis essentiallyconstantduringthemaneuver.If Vdoeschangenoticeably,wecanuse
themeasuredvelocitywhereneededto avoidintegratingthe Vequation.In additionto reducingthe
numberof differential equations,this eliminatestheissueof approximatingCDwind byCDbecausethat
approximationis requiredonlyin theVequation.

Furthersimplificationis possiblebyeliminatingthe0 equationandsubstitutingmeasured0. The
pitchattitude0 doeschangeduringa typical longitudinalmaneuver,but theeffectof themotiononthe
short-perioddynamicsis small. The@variableentersonlythegravitytermsin the_ andVequations.
TheVequationis eliminatedbytheuseof measuredV,andfor manymaneuvers,thegravitytermin the
equationis well approximatedbysetting@equalto m. Alternatively,wecanusemeasured0 in thegra-
vity terms.

Thesimplestusablesetof longitudinalstateequationscomesfromEquation(3.4-1),eliminatingthe
and0 equations,approximating0 by_ in thegravityterm,andneglectingthrust. Thisgives

= - _- CL+ q +g- (3.4-3a)mV V

qly =qscCm (3.4-3b)

usingmeasuredq andV.

Wemostcommonlybaseouranalysisonthefollowingequations,usingmeasureddatafor V,q, B,p, r,
and¢:

= -_CL + q - (tan B)(p cos _ + r sin m)
mV

+ # (cos ¢ cos C) cos m + sin @ sin a) - Tsin _
V mV

(3.4-4a)

= qscC m + rp(l z - Ix) + (r2 - p2)Ixz + Nrlxe (3.4-4b)

= q cos ¢ - r sin (3.4-4c)

These equations assume a symmetrical vehicle and drop some cos B factors from the m equation; they

assume small B (up to i0 ° is generally acceptable) but otherwise allow arbitrary lateral-directional
motion. For a nonsymmetric vehicle, extra terms can be added to Equation (3.4-4b).

The equations presented in this section assume the use of the (_,B,V) form of the state equations.

If the (u,v,w) form of the state equations is used, similar simplifications apply, with the u equation

substituted for the V equation and the w equation substituted for the _ equation.

3.4.2 Lateral-Directional Equations

The lateral-directional motions are rotations about the body X and Z axes and translations along the

body Y axis. The lateral-directional aerodynamic coefficients are thus Cy, C£, and Cn. The lateral-

directional state equations are (2.2-22c), (2.2-22d), (2.2-22f), (2.2-22g), and (2.2-22i). It is not

realistically possible to have purely lateral-directional motion, even with a symmetric aircraft. There

will be some q excitation from the rp and r2 - p2 terms in Equation (2.2-22e) unless Ixz = 0 and I x = I z,
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whichareunlikelyconditions.Therewill bemand8excitationin Equations(2.2-22b)and(2.2-22h)
regardlessof the inertias. Formoderatelateral-directionalmotions,however,the longitudinalexcita-
tionswill besmall.

Togeta workableset of lateral-directionalequations,wemustapproximateCYwind in Equa-
tion (2.2-22c)byCy. Thisapproximationis similar in purposeandeffect to theapproximationof
CDwind byCDin the longitudinalequations.ThecoefficientCYwind,asdefinedin Equation(2.2-20),
involvesthelongitudinalcoefficientCD. TheCDinvolvementis harderto avoidherethanwastheCy
involvementin the longitudinalequationsbecauseBis importantto the lateral-directionaldynamics,so
eliminatingthe Bequationis seldomreasonable.ThemaneuversmusthavesmallBfor theapproximationto
bereasonable.Thisrestrictionis seldoma problem,becauseit is difficult for mostaircraft to achieve

largeenoughfor theapproximationto fail, evenif youtry.

Weusuallyalsoneglectthe sin Btermin Equation(2.2-22c)asnotbeingworththebother;it is not
really difficult to include,it just addsextraalgebra.Theheadingangle_ addsVerylittle information
anddoesnot feedbackinto anyof theotherstateequations,soweusuallyignoreEquation(2.2-22i).
Fora symmetricvehicle,severaltermsin Equations(2.2-22d)and(2.2-22f)dropout.

Thesesimplificationsgivethelateral-directionalstateequationsin theformthat wemostcommonly
use:

=-_S-cy+ p sin _ - r cos_ +_ sinQcos0mV V 3.4-5a)

plx - _Ixz= qsbC_+ qr(ly - Iz) + pqlxz 3.4-5b)

_Iz - Plxz= qsbCn + pq(lx - ly) - qrlxz - Nqlxe

= p+ q tan 8sin Q+ r tanOcos

3.4-5c)

3.4-5d)

These equations use measured data for the longitudinal variables m, q, 0, V, and q. For nonsymmetric

vehicles, extra terms can be added to Equations (3.4-5b) and (3.4-5c).

Equation (3.4-5) is based on the use of the (_,8,V) coordinates for wind-relative velocity. The

(u,v,w) equations simplify in a similar manner, the _ equation substituting for the _ equation. The

issue of approximating CYwin d by Cy does not arise in the (u,v,w) form.

3.5 OBSERVATION EQUATIONS

Section 2.3 presents the basic observation equations, both longitudinal and lateral directional, for

the aircraft stability and control problem. We discuss some issues of implementation throughout this

document. The actual sensor measurements are sometimes complicated functions of the vehicle states. The
main implementation issues concern whether to precompute signals corresponding to a simple sensor model or

to use a complicated sensor model more representative of the actual measurements. Several of these issues

are related to specific sensor characteristics and are treated in more detail in Chapter 8.

In general, whether to use raw sensor data or to precompute more convenient _orms depends on several

factors, including the complexity of the functions, how well the functions are known, the number of sensors
involved, and the general signal qualities and noise levels. This decision also depends on the analysis

technique (which may be influenced by similar factors). In particular, the question is moot for output-

equation error analysis, where the two choices are equivalent. The discussions in this section assume the
use of an output-error method.

The advantages of precomputation are in simplifying the observation equations (or in some cases, the

state equations). Precomputation is sometimes the only practical approach for sensors that are extremely

complicated functions of the vehicle states and for systems that involve multiple raw sensors to compute
one signal. An example of such complication is sensing angle of attack using pressure ports (see Sec-

tion 8.5.3); the raw sensor data are pressure measurements, not angle of attack. In this case it is

preferable to precompute a single angle-of-attack "measurement" from the pressure data rather than to
use the raw pressure measurements in the analysis.

The disadvantages of precomputation surface when there are sensor problems. Sensor problems are much

easier to diagnose using the raw sensor data rather than some quantity computed as a complicated function

of data from several sensors. Complete failure of a sensor is often obvious in either case. The dif-
ficulties arise when there are more subtle sensor problems. Precomputation that combines data from

several sensors also has the problem that the computed signal tends to combine the worst characteristics

of the constituent measurements. Data combined from seven perfect sensors and one noisy sensor often pro-
duce a noisy computed signal. The extreme case is that if one of the sensors fails, you cannot do the

computation and thus can make no use of the good data from the others. (You can sometimes get around such
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problems,but it usuallymeansa lot of work.) If youareusingrawsensordata,or at least if thepre-
computationsdonotcombinedatafromdifferent sensors,thenthefailure of onesensordoesnotalter
yourability to useothersensors.

Instrumentcalibrationerrors,misalignments,cross-axissensitivity, andsimilarfactorsareusually
easiestto managebyprecorrectingthedataunlesstheexactcorrectionsareunknown.Thecorrectionsare
usuallysmallenoughthat theydonotchangethebasiccharacterof thesignals. Sensorproblemswill
seldombedisguisedbythesmallcorrectionterms. Thechoiceof whereto resolvetheseerrorsis
mostlyamatterof convenience.Wediscussthesubjectsof sensorpositionandcoordinatetransformation
in Sections3.5.1and3.5.2. (Instrumentbiasespresentspecialproblemsdiscussedin Section3.6.)
3.5.1 SensorPosition

Severalof theobservationsignalsusedin aircraft stability andcontrolanalysisarefunctionsof
the positionof thesensorsin theaircraft. Thesimplestequations(suchasEquation(2.3-1))assume
that thesensorsareexactlyat theaircraft centerof gravity; in a real airplaneweareseldomsofor-
tunate. Equation(2.3-2)showsthemajoreffectsof sensorpositiononthedata.

Therearetwoapproachesto accommodatingsensorsoffset fromthecenterof gravity. Thefirst
approachis to correctthe sensormeasurementsfor theoffset, givingasignalthat simulatesa measure-
mentat thecenterof gravity. Thisapproachworkswellwithangle-of-attackmeasurementsbecausethe
correctiontermsareproportionalto pitch rateandroll rate, for whichwegenerallyhaveaccurate,low-
noisemeasurements.Thelargestaccelerometercorrections,however,areproportionalto theangular
accelerations.Themeasurementsof angularaccelerationsareoftennoisy,if theyareacceptableat all.
Wecandifferentiatethe angularrates,butsuchdifferentiationaccentuatesnoiseandcausesseveral
otherproblems.Therefore,carelesslinearaccelerometercorrectionscanintroduceunacceptablenoise.

Thesecondapproachis to includetheeffectsof sensorpositionin theobservationequations.This
approachavoidstheuseof possiblynoisymeasuredangularaccelerationsto correctthemeasuredlinear
accelerations.Instead,weusethecomputedangularaccelerationsto correctthecomputedlinearaccel-
erationsto theactualsensorpositions. Thecomputedangularaccelerationsarerelativelynoise-free
becausetheyresult fromintegratingthe systemequations;theydonotinvolvenumericaldifferentiation.
Therearetwootherrelativelyminorbenefitsof this approach.First, it is morerepresentativeof the
real instrumentationsystem.Thisbenefitshowsupmainlywhenyouhaveinstrumentationproblems.If a
rategyrofails, youloseonlyonesignal; it doesnotalsocorruptthe linearaccelerations.Forsimilar
reasons,instrumentationproblemsareeasierto diagnose.Thesecondbenefitof modelingthesensorposi-
tion in theobservationequationsis that, in principle,wecantreat unknowninstrumentpositions(the
instrumentpositionsimplybeinganotherparameterto estimate). In mostsituationsit is far betterto
measurethe sensorpositionandtreat it asknown(anapplicationof thegeneralprincipleof minimizing
thenumberof parametersto estimate).Thereareoccasions,however,wheretheability to estimatesensor
positionsprovesuseful.

Wegenerallyfind it moreconvenientto modelthe instrumentpositionin theobservationequationthan
to correctthemeasurementsto thecenterof gravity,butwehaveusedbothapproachessuccessfully.
3.5.2 Coordinate Transformation

Another type of precomputation is the transformation of sensor data to a coordinate system other than
that of the raw measurements. We prefer to avoid such transformations because of the previously described

difficulties in diagnosis and management of sensor problems. Sensor coordinate transformations can,
however, significantly simplify some of the observation equations. This advantage can outweigh the dis-

advantages in some situations. This section discusses two possible sensor coordinate transformations

that give alternatives to the equations we usually use.

The first possibility is to transform the wind-relative velocity from the usually measured (_,6,V)

form into the (u,v,w) form. The basic equation for the transformation is Equation (2.1-7). Trans-
forming the wind-relative velocity into (u,v,w) coordinates allows the use of the (u,v,w) form of the

state equations without resorting to nonlinear observation equations for _, B, and V. The nonlinearities
are transferred from the observation equations, where they cause analysis difficulties, to the data

preprocessing, where managing nonlinearities is straightforward in principle (assuming perfect measure-

ments). The disadvantages lie in the mixing of the data from the _, B, and V sensors. The flow-angle
sensors typically have different problems than the pressure sensors used for velocity measurements (see

Chapter 8). The computed u, v, and w signals combine the problems of both sensors.

The apparent simplicity of Equation (2.1-7) is deceptive. All quantities in this equation relate to

the free-stream relative wind at the center of gravity. Application of this transformation is complicated

in practice by the fact that the _, _, and V sensors measure local flow conditions relative to the sensor
positions. Further, each of the sensors is at a different position (although the position differences are
sometimes small enough to neglect). Before applying Equation (2.1-7), you should correct the sensors for

local flow effects (upwash and sidewash) and transform the data to the center of gravity. A simple bias
error in the angle-of-attack measurement takes on a more complicated character after passing through the
nonlinear transformation into (u,v,w) coordinates.

For small-perturbation maneuvers at low angles of attack, the issue of whether to use the measurements

in (_,6,V) or (u,v,w) form is largely moot. Implementation is equally easy with or without the transfor-
mation. For these conditions, the transformation is nearly linear, as are the observation equations for

_, B, and V. This obviates many of the problems of using the transformation and also many of the prob-
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lemsthetransformationis intendedto solve. Theissuesbecomepressingonlyat highanglesof attack
andsideslip.

Thesecondtransformationwewill considerhasa similarobjective: to eliminatethenonlinearities
in theobservationequations.Thistransformation,however,assumestheuseof the (_,_,V)formof the
stateequations.Theprincipalobservationnonlinearitiesof this formarein theaccelerations.The
transformationthat removesthesenonlinearitiesis therotationof the body-axisaccelerationmeasure-
mentsto thewind-axiscoordinatesystem.

Althoughthis transformationsoundsattractive, its practicalproblemsaresevere,andwerecommend
againstits use. Beforeapplyingtherotation,youmustcorrecttheaccelerometersto a commonreference
point, preferablythecenterof gravity. (Anyotherbody-fixedpointhaswind-axiscoordinatesthat area
functionof the anglesof attackandsideslip;this dependencecanbehandled,but is anuisance.)The
problemsof correctingaccelerometermeasurementsfor sensorpositionarediscussedin Section3.5.1.

Themostsevereproblems,however,lie in thefact that theaxistransformationequationsuseangles
of attackandsideslip. Accelerometersare reliable, good-quality,high-frequencysensorswithexcellent
linearity andaccuratecalibrations(seeSection8.4). Thetransformationcorruptstheaccelerometer
measurementswith thebiases,scalefactorerrors,andotherproblemsof theflow-anglemeasurements(see
Section8.5).

3.6 BIASESANDINITIALCONDITIONS

Biasesandinitial conditionsareusuallynuisanceparameters.Anuisanceparameteris anunknown
parameterthat is not really of interest. In manycasesyoumustestimatethevalueof the nuisancepara-
meter,whetheryoucareaboutits valueor not, in orderto getusableestimatesof theotherparameters.
Youmustcarefullyconsiderthetreatmentof biasesandinitial conditions,nuisanceparametersor not.
Poortreatmentof biasesandinitial conditionsis a commonsourceof problems,commonenoughto merit
this separatesectionontheissue. Theinitial-conditionproblemis discussedin generaltermsin
section8.2of Maineandlliff (1984).Asweseein the followingdiscussion,initial conditionsand
biasesarecloselyrelated.

Althoughyoumustestimatesomebiasandinitial-conditiontermsin orderto getreasonablestability
andcontrolderivativeestimates,youcannotestimateall suchterms,becauseof anidentifiability
problem.Toseetheproblem,considerthetime-invariantsystem

= Ax+ sb

z = Cx+ zb

x(O) = x0

with unknown state equation bias Sb, measurement bias Zb, and initial condition x O.

identifiable because we can define an equivalent system with state x" by letting

x*=x -Xb

for any constant x b. Then, substituting Equation (3.6-2) into Equation (3.6-1),

(3.6-ia)

(3.6-1b)

(3.6-Ic)

This system is un-

(3.6-2)

where

_ = Ax * + s_

z = Cx * + Zb

x6 = xo - Xb

s_ = Sb + Axb

z_ = z b + Cx b

x_ = xo - Xb

Therefore, you can expect to estimate only some subset of the initial conditions and biases.

(3.6-3a)

(3.6-3b)

(3.6-3c)

(3.6-4a)

(3.6-4b)

(3.6-4c)

For a

system with £ states and m observations, there are 24 + m parameters in Sb, Zb, and xo. This argument

shows that you can independently estimate no more than _ + m such parameters. In Sections 3.6.1 and 3.6.2

we will present two classes of reasonable subsets for aircraft stability and control analysis; we have
used variants of both on various occasions.
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3.6.1 PerturbationEquations
Thefirst subsetresultsfromtheuseof perturbationequations.Definexb = xo, sothat x6 is zero;

thenestimates_andz_. Thisis thesimplestchoicein manywaysandis applicableto almostanytime-
invariantlinearsystem.Themaindisadvantageis that youmustworkwithx_ insteadof x. Therefore,
if thestatex consistsof physicallymeaningfulparameters,youlosesomeof themeaning.Themethod
alsodoesnotextendwell to nonlinearor time-varyingsystems(sometimesit canbedone,but it creates
complications).

Specifyingx0 is sufficientto eliminatebiasindentifiability problemsin mostcases. In somecir-
cumstances,youcanfurther reducethenumberof nuisancebiasparameterswithoutcausingproblems.The
mainreasonfor doingthis is to savecomputertime,not to improveidentifiability; withx0fixed, the
remainingbiasparametersareusuallyamongthebestconditionedparametersin theproblem.Wediscuss
threewaysof reducingthenumberof biasparametersin theperturbationequations.

First, if x6 is zeroandthemeasurementnoiseat the first timepointis small,youcanfix thevalue
of z_at the first measurement;youcanapplythis ideato a subsetof theelementsz_if someof the
measurementsarenoisy. Youmustwatchfor theoccasionalwild pointif youusethis idea;theneither
removethewild point, let z_beunknown,or (oftentheeasiestsolutionif it is reallyanisolatedwild
point) start yourmaneuveronepointlater. Youcanusea hostof othersimilarmethodsto arriveat a
fixedvaluefor z_(for instance,averagethefirst five measurements);however,rememberthatyouare
just trying to savetimeandmaketheproblemsimpler. Ourattitudeis that morecomplicatedmethodsare
notworththetrouble;if thefirst-point methodis inadequate,let z_beunknown.

Second,youcansubtractthe initial measurementfromall themeasureddataandfix z_at zero;this
is equivalentto fixing z_at the initial measuredvalue,exceptthat youmustkeeptrackof thedif-
ferencebetweenyourperturbationmeasurementsandthe realmeasurements.Thechoiceof this methodor
the first is oneof preferenceandconvenience;wefind it moreconvenientto usethe realmeasurements.

Third,youcanreducethenumberof biasnuisanceparametersto estimatebyfixing s_at zeroprovided
that xo is zero,themanueverstartsat nearlysteadystate, andthesystemis stable(neutralstability
is not sufficient). Wegenerallyadviseagainstthis practicebecauseyoudonotwantto restrict your-
self to carefullystabilizedmaneuverswithsteadyinitial conditions.Onebig advantageof statistical
parameterestimationoversomeof theearlier handtechniquesfor estimatingstability andcontrolderiva-
tives is that thenewermethodshavelessstringentmaneuverrequirements;youcangetmoremaneuversin
lesstimeandwith lesspilot workload.Notealsothat if youuse0 asa state,thesystemhasa
neutrallystableeigenvalue(or verycloseto neutraldependingontheexactimplementation),andfixing
s_is askingfor trouble(whichis usuallymuchmoreeffectivethanaskingfor help).

3.6.2 Physical States

For aircraft stability and control analysis, the states are usually physically meaningful measurable

quantities. We would like the model states to be close to the true physical states. This makes it easier
to handle state nonlinearities because it eliminates the necessity of transforming back and forth between

physical and model states (and inevitably using the wrong one somewhere). We can accept small differences
(for instance, on the order of the measurement biases in a reasonably calibrated instrumentation system).
This suggests the following scheme as an alternative to the perturbation methods discussed in Sec-

tion 3.6.1.

Choose the subset of the observation vector that represents direct state measurements. We assume
that there is such a subset (it could be the entire observation vector). The subset is obvious in Equa-

tion (2.3-2): it is the longitudinal measurements em, qm, and Om and the lateral-directional measure-

ments Bm, Pm, rm, and _m- We could abstractly discuss known invertible partitions of the C matrix, or

even introduce pseudoinverses, but if the relevant subset is not obvious, there is probably little bene-
fit to the approach. Define x b such that the corresponding subset of z b is zero (x b is unknown); we

can do this as long as the corresponding partition of C is invertible (which trivially is true for Equa-

tion (2.3-2)). This sounds more complicated than it is; all it means is that we ignore the longitudinal

quantities _b, qb, and 0 b and the lateral-directional quantities Bb, Pb, rb, and Cb.

Specifying this subset of the z_ vector is sufficient to resolve most bias identifiability problems.
It is completely equivalent to specifying x 0 as zero in the perturbation equation approach; the results

from either of these two approaches can be transformed into the other form.

The best way to further reduce the number of bias unknowns is to fix x6 based on the first measure-

ment. The same cautions apply here as when using the first measurement to fix values in the perturbation

equations; the measurement noise on the first point must be small, and you must watch out for wild points.
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With this approach, it is not practical to fix sb at known values, as we could with perturbation

equations. This is not a significant limitation, because we recommend against fixing Sb with either

approach.

3.6.3 Special Considerations

The preceding discussions of biases and initial conditions are fairly general. You really need to
reexamine bias and initial-condition treatment for each new model form, considering the special situation

presented by each model. We cannot present every case here; we do discuss two simple situations represen-

tative of problems you might encounter.

For the first situation, consider a simple set of longitudinal state equations with states _, q, and

e; control inputs, lateral-directional coupling, and thrust are irrelevant to this argument, so we assume

all such terms are zero. In matrix form, we have

3.6-5)

In the s b vector, Zb and Mb are unknown, but there is a known zero in the third element. It IS

tempting to do the estimation in exactly this form, with the third element of s b fixed at zero. Although

you can sometimes get by with this, we strongly recommend against trying. The 0 state equation is an

open-loop integration of q. This is neutrally stable and thus quite sensitive to small errors. Unfor-
tunately, several small errors are inevitable. One such small error is the difference between _b and

s_ in the physical state approach. This difference is usually small (the measurement noise on the first

point) but is not zero. Because the difference is small, it is easy to forget that our model is in terms
of s_ instead of s b. Although s b has a third element fixed at zero, s_ does not; in fact the third ele-

ment of s_ should equal the negative of the bias in the pitch rate measurement. Even a very small bias,

negligible in most other places, generates significant errors in an open-loop integration. Even if all
the measurements are perfect (an unlikely event), the imperfection of numerically integrating the equation

can introduce noticeable drift in e unless you go to a lot of trouble to avoid it.

In most situations, the e state equation adds little information, and you can get along quite well

using measured e instead. If you do use a ¢ state, be sure to allow an unknown bias in the state

equation; otherwise the extra state is more likely to degrade the results than to improve them. The
unknown bias will not eliminate the problems of neutral stability, particularly if the maneuver is long,

but will help reduce the biggest errors.

This discussion has assumed the use of an output-error method. If you use a filter-error method, the

measurement feedback makes the filter stable (not just neutrally stable). The filter-error method is

therefore considerably less sensitive to small errors, and the preceding discussion does not completely

apply. With an equation-error method, you never use a e state equation, so the discussion is moot.

Similar principles apply to the @ state equation in lateral-directional models, except that @ is

important to the lateral dynamics and you are less likely to be satisfied with using measured @.

The second situation we consider arises when the Km of Equation (2.3-2a) is unknown. If Km is unknown

and you are using physical states, the initial condition of m must also be unknown; you cannot just set
the initial condition equal to the measured _. (You could reasonably approximate the initial condition by

the measured m divided by the unknown Km, but that is a nuisance to implement. It is easier to let the

initial condition be an independent unknown.) This point may seem obvious and unworthy of mention, but we
have seen the error made several times (we too have made it once or twice). It is easy to fall into the

trap of only adding one more unknown (Km) without rethinking the initial-condition treatment.

This error is insidious in that the results can appear quite reasonable. If you say that the initial

condition is known to equal the initial measured value, this strongly implies that K_ is quite close to

unity. The computer program, obedient to your specification of the problem, will (assuming the program
works correctly) give an estimate close to unity and a high degree of confidence in the estimate. This
conclusion usually is at least plausible; thus, you might be convinced that you had learned something.

In fact, one of the symptoms of this problem is estimates more consistent than you should reasonably

have expected.

Consider, for example, Figure 3.6-1(a). This figure is a sketch of a typical measured angle-of-attack

signal and a corresponding computed signal for a longitudinal maneuver. This computed signal assumes that

Km = 1 and the angle-of-attack initial condition is 10 ° . The shape of the computed signal is similar to

that of the measured one, but the amplitude of the computed signal is significantly smaller. Such an

angle-of-attack fit, when combined with good fits on the other signals, suggests that the value of Km used
in the computed data might be too small.
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If we recompute the computed time history of Figure 3.6-1(a) using K s = 2, while leaving the angle-

of-attack initial condition at 10 °, the revised response is as shown in Figure 3.6-1(b). This fit is far

worse than that with Ks = i as shown in Figure 3.6-1(a). Thus, if the initial condition is fixed at 10 ° ,

the estimator will choose a value of K s close to unity. If the initial condition is free to vary, the

best attainable fit will be with K s = 2 and an initial condition of 5° , shown in Figure 3.6-1(c).

The two situations discussed in this section represent two large classes of similar errors. In both

of these situations, the error is omitting a bias or initial-condition term that should be estimated.

In the case of the o state equation, it is usually quite obvious that something is wrong if you omit a

necessary bias. The K s problem is more insidious in that the results appear reasonable and can lead to

false conclusions. You cannot avoid bias problems by estimating all biases and initial conditions as

unknowns, because you will then encounter identifiability problems.

Although there are many potential problems due to mishandling biases and initial conditions, most of

these problems are easy to avoid; many are as trivial as the K s example. The difficulties arise mostly

through neglect; biases are treated lightly because they are nuisance parameters. For each potential

bias or initial condition, you should ask what the consequences of neglecting it would be and what iden-

tifiability problems you might introduce by estimating it. If you treat biases with the same care as you

should accord all other parameters, you will seldom go wrong because biases, basically, are easy.

3.6.4 Aerodynamic Biases

We use the term "aerodynamic bias" to refer to coefficients like the Zb or M b of Equation (3.6-5) or

their nondimensional equivalents. These are nuisance parameters in some stability and control analyses;

as such, we are not particularly concerned about "true" values. An adequate estimate of a nuisance para-

meter is one that does not cause problems with the important parameters. For some analyses, particularly

in the performance area, the aerodynamic bias coefficients might be of specific interest, rather than

being nuisance parameters.

If you desire reasonable estimates of aerodynamic bias parameters, you must be particularly conscious
of the differences between s b and s_ as defined by Equation (3.6-4). The aerodynamic bias parameters are

in s b and z b, but we obtain estimates of s_ and z_. Because of the identifiability problem mentioned

in the introduction to Section 3.6, we cannot accurately estimate s b and z b without making some assump-

tions. The most common such assumption is that the measurement biases are negligible. Any neglected

measurement biases will directly cause biases (errors) in the estimates of the aerodynamic biases.
Measurement biases have only second-order effects on the estimates of coefficients in the A matrix and

other places (no effect if the system is strictly linear); therefore we are often somewhat cavalier

about accurately correcting measurement biases. If, however, you want to accurately estimate aerody-

namic biases, you first need to be very careful about removing instrument biases.

3.7 LINEARIZED EQUATIONS

The state and observation equations described in Sections 3.4 to 3.6, combined with the aerodynamic

models of Section 2.4, define system models. Even though we have assumed linear aerodynamics, these
models are nonlinear because of the trigonometric terms in the state equations and the quadratic terms in

the observation equations. Although we could use the nonlinear models as given, linearizing greatly redu-

ces the computational effort and complexity. Most of the kinematic nonlinearities play only a minor role

in the dynamics.

This entire section (3.7) is irrelevant to nonlinear implementations of output error and to output-

equation error approaches.

3.7.1 Linearization Using Measured Data

We linearize many of the nonlinear terms in the system by using the measured data, similar to the way

we eliminate differential equations using measured data. There are four approaches to such linearization,

depending on whether we use measured values at each time point or average values and whether we use a
zero-order (constant) or first-order (linear) expansion about the measured values.

The first and simplest approach is to use a zero-order expansion about the average measured value;

that is, substitute the average measured value as a constant in all nonlinear terms. Before substituting

the measured angle of attack, it must be corrected to the center of gravity. The model is time invariant
with this approach, allowing very efficient computation. Equation (3.4-2) is an example of this approach

with the additional restriction that Equation (3.4-2) assumes the average values are zero. For this

approach to work well, the nonlinear terms must be nearly constant during the maneuver; the approach is
therefore practically restricted to small angles and steady flight (or nearly so).

A second and slightly more general approach is to use a first-order expansion about the average

measured values. For example, with this approach the trigonometric factor in the gravity term of

Equation (3.4-3a) is linearly approximated by
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cos@coso cos_+ sin c)sin _ = cos@mcos(_mcos_m+ sin _)msin _m

+ (sin °mcos_ - cos_mcos°msin _m)(_- _m)

+ (cos°msin _m- cos_msin °mcos_m)(e- °m) (3.7-1)

wherea barovera symbolindicatesaveragemeasuredvalue. Wedonot includea (9- @m)termbecause
thereis nocomputed¢ in the longitudinalequations.TheC_nusedin this equationshouldideally be
correctedto thecenterof gravity.

Thecorrectionof omto thecenterof gravityis notascrucialasin thefirst approach,becausethe
measured_ is usedhereonlyasa pointaboutwhichto expandtheequation;aslongasthemeasured_is
closeto the computed_, theexpansionwill bereasonable.Thisapproachis valid for largermaneuvers
thanthe first approachbecauseweapproximatethe nonlineartermsbylinear functionsinsteadof
constants.Thecostis its somewhatgreatercomplexity.Themodelwith this approachis still time
invariant,andalthoughEquation(3.7-1),for instance,maylookcomplicated,it is easyto implement.

Thethird andfourthapproachesaresimilarto the first twoexceptthat weusepoint-by-point
measuredvaluesinsteadof averages.Thesetwoapproachesarevalid for largevariationsin thevalues
(withintheconstraintsof linearizedaerodynamics).Forinstance,wehaveanalyzedlongitudinalmaneu-
versduring360° aileronrolls (Maineandlliff, 1979).Thesetwoapproachesresult in time-varying
linearmodels,whichrequiresubstantiallymorecomputertimethantime-invariantmodels(a factorof
about2 or 3 in ourprogram).Forthemostpart, thetime-varyingmodelsarenomorecomplicatedto
programthanthetime-invariantones;theyjust runmoreslowly.

Youcancombinethesefour approaches,usingdifferentapproachesfor different terms.Generally,
the simplerapproachesareadequatefor the lessimportantterms. Forinstance,thereis little reason
to botherwith first-orderexpansionsof theq2termsin Equation(2.3-2). Thesecentrifugalforceterms
areusuallytoo smallto measure;weincludethemfor somespecialcasesandbecausetheyhavenegligible
costandaresoeasyto implementwithzero-orderexpansions.
3.7.2 Axis Transformations

By far the most complicated nonlinearity to implement is the innocuous-looking axis transformation

of Equation (2.4-3a). The reason for the complication is that CN and CA must be expanded as in Equa-

tion (2.4-1), and several of the unknown stability and control derivatives enter into the nonlinearity.

In principle, any of the four linearization methods apply to this nonlinearity; application is simply a

matter of doing the algebra. The lliff-Maine code MMLE3 (Maine and lliff, 1980; Maine, 1981b), cannot
use point-by-point values in this linearization. We could extend the program's capability but have not

yet encountered requirements sufficient to justify the complication. To date we have not found this
restriction a serious limitation, because the linear aerodynamics of Equation (2.4-1) are valid only

over limited ranges of _.

We can make a significant simplification in Equation (2.4-3a) for low angles of attack. The simpli-
fication is

CL _ CN (3.7-2)

which will actually work over a larger angle-of-attack range than you would initially expect. We

generally have success with the simplification at conditions up to 20 ° angle of attack, and it was
adequate at 45 ° angle of attack on the space shuttle at hypersonic speeds. The approximation holds

up so well because the CL term in Equation (2.2-22b) (the only place CL appears) usually plays a

secondary role. The dominant term in Equation (2.2-22b) is q, particularly at high speeds, as in the

shuttle case. Therefore, we can be fairly sloppy about CL without introducing significant errors.

At low speeds and high angles of attack, the CL term is more important, and the approximation of Equa-

tion (3.7-2) is inappropriate.

Another way of stating this argument is that the identifiability of the CL terms in Equation (2.2-22b)

is poor. We do not normally estimate these derivatives independently, but rather we compute them from
the CN and CA derivatives in the observation equation. Because of this poor identifiability, avoid the

temptation to estimate CA derivatives if an a x measurement is not available. Theoretically, the distinc-

tion between the CN derivatives in the a n observation equation and the CL derivatives in the _ state

equation gives information about CA derivatives. We have tried it and, as expected, obtained ridiculous

results; you would need much better _ measurements than we ever have to make such an idea work. The use-

ful CN and CA information comes from the observation equations.

Other possible ways around this nonlinearity include using the (u,v,w) form of the state equations,
which introduces different nonlinearities in the _, B, and V observations, or doing the measurement coor-
dinate transformations discussed in Section 3.5.2.
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3.8 COLLECTEDEQUATIONS
Portionsof the aircraft stability andcontrolequationsarespreadoverseveralof thepreceding

sectionsin variousforms.Thissectioncollectssomeusefulformsof theequations.

3.8.1 Longitudinal Equations

We present two sets of longitudinal equations. The first set (Equations (3.8-1) to (3.8-5)) is ade-

quate for much analysis at low angles of attack. It uses the approximation that CL = CN, linearizes the

trigonometric gravity terms by substituting measured _ and O, and omits the Q state equation. Although

we write the ax observation equation in this section, we often omit ax when using these simplified

equations (we then do not estimate CA derivatives). We omit thrust and all but the most important

lateral-directional coupling terms.

The state equations are

= _ qs + (C L + _b) + q + _ (cos _ cos 0m cos _c + sin 0m sin ec) (3.8-Ia)
mV V

qly = qscC m

The observation equations are

(3.8-Ib)

_z = K_(_- xa q) (3.8-2a)

qz : q (3.8-2b)

Xan G (3.8.2c)an =_g CN +--_-

Zaxax = - _ CA +-T
3.8-2d)

Gz:G 3.8.2e)

The aerodynamic coefficient expansions are

CN : CN_ + CN6_ + CNb

CA = CA_ + CAaa + CAb

3.8-3a)

3.8-3b)

qc +

Cm = Cm_ + Cmaa + Cmq 2V Cmb
(3.8-3c)

and we approximate

CL _ CN (3.8-4)

The quantities q, V, Qm, and @ are all measured data in these equations. They can be either average or

point-by-point measurements as required (point-by-point measurement gives better fidelity but requires

more computer time). To reduce the number of subscripts, we omit the subscript m from those quantities
where no value is defined other than the measurement. The quantity _c is measured angle of attack,

corrected for upwash and sensor position. The unknown parameter vector is

= (CN_, CNa, CA_, CA a, Cm_, Cma, Cmq, CNb, CAb , Cmb, CL b + _b, qb) (3.8-5)

Other commonly used, unknown parameters include K_ and the a and q initial conditions.

Note that CLb, CNb, CAb, and Cmb, as used in these equations, include measurement bias effects in

addition to the aerodynamic biases. See Section 3.6.4 for a discussion of this issue. For instance,

there is no separate anb unknown, because anb is subsumed in CNb. To keep the notation simple, we
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include the aerodynamic CNb and measurement bias effects in the same symbol because both are nuisance

parameters and we cannot independently estimate both anyway. We do explicitly indicate measurement bias

effects added to CL (we use the notation _b, indicating a bias in the _ equation) to make it clear that

the measurement bias effects subsumed in CLb are different from those subsumed in CNb (for instance, anb

affects CNb but not CLb). The implementation in this case is simpler than the notation; we simply treat

CNb and CLb as being independent.

Equations (3.8-1) to (3.8-5) are adequate for most longitudinal maneuvers at low angle of attack.

The second set of longitudinal equations (Equations (3.8-6) to (3.8-12)) distinguishes C L from C N, as

needed at high angle of attack. It also includes the 8 state, thrust (aligned with the X axis), and more

of the kinematic lateral-directional coupling terms (still assuming symmetry). This set of equations

linearizes about measured values in the gravity term and the transformation of CN and CA into CL; this

allows you to get by with quite rough measurements of _ and 8, even during large-amplitude maneuvers.

The state equations are based on linearizing Equation (3.4-4)

= -_ (CL + _b) + q - (tan _)(p cos _c + r sin _c)
mV

T sin _c dgb dgb

mV + --d_ (_ - c_c) + _- (e - Orn) + gb (3.8-6a

qly = qscC m + rp(l z - Ix) + (r 2 - p2)Ixz + Nrlxe

_) = q cos ¢ - r sin _ + _)b

where the gravity term components are

gb = -_ (cos em cos @ cos _c + sin 8m sin _c)

dgb = g-- (-cos ¢ cos E)m sin _c + sin em cos _c)
d_ V

dgb = g-- (-cos ¢ sin em cos _c + cos em sin _c)
de V

Note the important bias term eb in Equation (3.8-6c).

The observation equations are

x_ y_

_z = Ks(_ - _ q + _- P)

qz = q

@Z = e

- Xa n Za n 2 Yan .

an = m_g CN +_q +-_-- (qm + P2) - g P

Za x

a x = _ _ CA +

Gz: + Gb

The aerodynamic coefficient expansions are

CN = CN_ + CN6a + CN b

CA = CAe_ + CA66 + CA b

_+
Cm = Cm_ + Cm66 + Cmq 2V Cmb

.(3.8-6b

(3.8-6c)

(3.8-7a)

(3.8-7b)

( 3.8-7c )

Section 3.6.4 discusses the reasons for this term.

Xa x 2 Yax T

- --g-- (qm + r2) - W _ + m_g

( 3.8-8a )

(3.8-8b)

(3.8-8c )

(3.8-8d)

(3.8-8e

(3.8-8f

(3.8-9a

(3.8-9b

(3.8-9c)
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The linearized expression for C L is

where

and

C L = CLa_ + CL66 + CLb (3.8-10)

CL_ = CNa cos ac - CAa sin ac - C D (3.8-11a)

CLa : CN6 cos _c - CAa sin _c (3.8-11b)

C D = C A cos ac + CN sin a c (3.8-12)

We could write a complicated expression for CLb in terms of the C N and CA derivatives, but this is

unneccessary because we end up estimating CLb + _b as an independent unknown for the same reasons as in

the simpler longitudinal equations. The CD in Equation (3.8-11a) must be evaluated using only measured

values, or the system will not be linear.

As with the simpler longitudinal equations, measured data can be evaluated with either averages or

point-by-point measurements, The Iliff-Maine code MMLE3 does not allow the use of point-by-point data in

Equation (3.8-11), but this is a limitation of the program rather than of the method.

The vector of unknowns is the same as for the simpler longitudinal equations, with the addition of

the bias eb.

The two sets of equations presented in this section cover a large range of applications. There are

numerous other reasonable sets of equations intermediate to these sets. There are essentially an infi-

nite number of terms that you can add to accommodate special situations; nonsymmetric aircraft come to

mind as a case requiring extra terms.

3.8.2 Lateral-Directional Equations

We present a single set of lateral-directional equations adequate for most applications. The state

equations come from Equation (3.4-5), linearizing the gravity term about the measured ¢, linearizing

other terms by substituting measured values, and adding bias unknowns:

= qs (Cy + Ab) + P(ab + sin ac) - r cos ac
mV

+ _V sin Cm cosO + _ cos Cm cos 0 (@ - Cm) (3.8-13a)

pl x - ;Ixz = qsbC;_ + qrm(ly - Iz) + pmqlxz (3.8-13b)

_I z - Plxz = qshC n + pmq(Ix - ly) - qrmlxz - Nqlxe (3.8-13c)

: p + r tan 8 sin @m + q tan 0 cos Cm (3.8-13d)

The observation equations are

zB xB

Bz = KB(B - _ P + V r) (3.8-14a)

Pz=p (3.8-14b)

r z = r (3.8-14c)

@z = (3.8-14d)

ay : _g Cy---g-- zay p + --g--xay ; --g--YaY (p2 _ rm2) (3.8-14e)

Pm : P + Pb (3.8-14f)

_'m : ; + _h (3.8-14g)
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The aerodynamic coefficient expansions are

Cy = CyBB + Cyaa + CYb

rb

C_ = C_BB + C_ + C_p 2_V + C_r-_+ C_b

(3.8-15a)

(3.8-15b)

rb
Cn = CnBB + Cna6 + Cnp 2_V + Cnr- _ +Cnb (3.8-15c)

We include the term Ab in Equation (3.8-13a) for the same reasons that _b is included in Equa-

tion (3.8-1a); the effect is that the CYb in Equation (3.8-13a) is independent of that in Equa-

tion (3.8-14e). The parameter ab in Equation (3.8-13a) also deserves mention: This parameter allows

for an unknown bias in the corrected a measurement. We usually do not account for biases in the measured

data used to linearize the equations (we account only for biases in the observations we are matching).

Biases usually have small effects on the linearizations; accounting for all such biases would entail

significant complication and give negligible improvement (indeed, degradation due to identifiability

problems would be likely). For instance, we ignore biases in the measured 0 or q used in Equations

(3.8-13) and (3.8.14). The (p sin a) term in Equation (3.8-13a) is the one place where we feel that

such biases are important. This is because p can be quite large compared with B in aileron maneuvers;

therefore, small errors in measured a can have important effects on this term. For instance, the use of

average measured a instead of point-by-point values could introduce enough error to be important. We

recommend allowing an unknown bias in this term, as shown in Equation (3.8-13a). It is possible to use

this term to estimate the angle-of-attack calibration, but the results usually have too much scatter

(several degrees) to be very useful for most purposes.

The vector of unknown parameters is

= (CyB, Cy_, C_B, C_, C_p, C_r, CriB, Cn6, Cnp, Cnr, CYb, C_b, Cnb, Cy b + Bb, ab, Cb, Pb, _b)

(3.8-16)

The equations presented in this section are adequate for most applications. You can add terms as

appropriate for special situations.
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Figure 3.6-1. Angle-of-attack fit.
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4.0 DETAILED COMPUTATIONAL ESTIMATION EXAMPLES
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In Chapters 2 and 3 we discuss the governing equations that are used for the bulk of the aircraft
stability and control estimation that is discussed in the remainder of this document. This chapter deals

with the actual estimation of parameters from dynamic data. The purpose of this chapter is to present

the parameter estimation steps in enough detail so that someone previously unfamiliar with parameter
estimation can fully grasp the method, We begin with a brief description of the computer program used

for parameter estimation throughout this document. We then analyze a short computed time history in suf-
ficient detail so that anyone can repeat the steps and obtain the same answers with a simple computer

program or even with a pocket calculator. After several variants of this example are discussed, the

chapter concludes with a discussion of actual flight data analysis.

4.1 DESCRIPTION OF THE MMLE3 PROGRAM

The lliff-Maine code (MMLE3 program) is used throughout the remainder of this document to estimate
the coefficients of the differential equations of motion. The algorithms used are defined in Maine and

lliff (1984, chapters 7 and 8). The bulk of the analysis in this document is for the estimation of sta-

bility and control derivatives from aircraft maneuvers; the MMLE3 program includes the implementation of

the aircraft equations described in Chapter 3. The program is fully described in Maine (1981b). Docu-
mentation of all the available options and the use of the program are detailed in Maine and lliff (1980).

Figure 4.1-1 illustrates the maximum likelihood estimation concept for aircraft data as used by MMLE3.

The measured response of the aircraft is compared with the estimated response, and the difference between

these responses is called the response error. The Gauss-Newton computational algorithm (Maine and lliff,
1984, section 2.5.2) is used to find the coefficient values that maximize the likelihood functional. Each

iteration of this algorithm provides revised estimates of the unknown coefficients based on the response
error. These revised estimates of the coefficients are then used to update the mathematical model of the

aircraft, providing a revised estimated response and therefore a revised response error. The mathematical

model is updated iteratively until a convergence criterion is satisfied. The estimates resulting from
this procedure are the maximum likelihood estimates.

The maximum likelihood estimator also provides a measure of reliability of each estimate based on the

information obtained from each dynamic maneuver. This measure of reliability, analogous to the standard
deviation, is called the Cram_r-Rao bound (Maine and lliff, 1981a; Maine and lliff, 1984) or the uncer-

tainty level. The Cram_r-Rao bound as computed by current programs should generally be used as a measure
of relative accuracy rather than absolute accuracy. The bound is obtained from H, the approximation of

the information matrix. The information matrix equals the approximation to the second graffient given by

Maine and lliff (1984, equation (8.3-3)). The bound for each unknown is the square root of the corre-

sponding diagonal element of H; that is, for the ith unknown, the Cram_r-Rao bound is _rH-(i,i). The MMLE3
program scales the estimate of the Cram_r-Rao bound for the observed noise amplitude by first multiplying

the H matrix by a scalar (discussed further in Section 4.3.2).

4.2 EQUATIONS FOR A SIMPLE EXAMPLE

The basic concepts involved in a parameter estimation problem can be illustrated by a simple example

representative of a realistic aircraft problem. The example chosen here is representative of an aircraft
that exhibits pure rolling motion from an aileron input. This example, although simplified, typifies the

motion exhibited by many aircraft in particular flight regimes, such as the F-14 aircraft flying at high

dynamic pressure, the F-Ill aircraft at moderate speed with the wing in the forward position, and the
T-37 aircraft at low speed.

Deriving an equation that describes this motion is straightforward. Figure 4.2-i depicts an aircraft
with the X axis perpendicular to the plane of the figure (positive forward on the aircraft). The rolling

moment L', roll rate p, and aileron deflection 6 a are positive as shown. For this example, the only

state is p and the only control is 6a. The result of summing moments is

IxP = L'(P,_a)

The first-order Taylor expansion then becomes

(4.2-1)

= Lpp + Laa_ a (4.2-2)

where

L'= IxL

Since the aileron is the only control, it is notationally simpler to use a for 6a in discussing this

example. Equation (4.2-2) can then be written as

= Lpp + Lsa (4.2-3)

p-R;E_-E:DING PA.(}B BI.J&_-'__.;_ ,,. ,,,,
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An alternative approach that results in the same equation is to combine Equations (3.8-13b) and (3.8-15b)

(substituting for C_) and then eliminate the terms that are zero for our example. This yields

where p is the roll rate and a the aileron deflection. The equation can be put into the dimensional

derivative form of Equation (4.2-3) by rearranging terms.

Equation (4.2-3) is a simple aircraft equation in which the forcing function is provided by the

aileron and the damping by the damping-in-roll term Lp. In Sections 4.2 to 4.4 we examine in detail the

parameter estimation problem where Equation (4.2-3) describes the system. For this single-degree-of-

freedom problem, the maximum likelihood estimator is used to estimate either Lp or La, or both, for a

given computed time history.

Now that we have specified the equations describing our simple model, we can examine the characteris-

tics of maximum likelihood estimation in this simple case. Maine and Iliff (1984, chapters 2, 7, and 8)

describes in detail maximum likelihood estimation for the general case; for our simple example, we need

only some of those results. Where, as in our example, there is no state noise and the equations of

motion are linear, the equations are

x(to ) = xo (4.2-5)

x(t) = Ax(t) + Bu(t) (4.2-6)

z(ti) = Cx(t i) + Du(t i) + Gni (4.2-7)

where x is the state vector, z the observation vector, u the control vector, and the stability and

control derivatives defined in Chapter 3 are contained primarily in the A and B matrices.

If there is no state noise and the matrix G is known, then the maximum likelihood estimator minimizes

the cost function

1 _[z(ti ) _ _(ti)].(GG.)_l[z(ti ) _ _c(ti) ]
J(_) : 2 i=i

(4.2-8)

where GG* is the measurement noise covariance matrix and Z_(ti) is the computed response estimate of z at

t i for a given value of the unknown parameter vector {. The cost function is a function of the differ-

ence between the measured and computed time histories.

For the no-state-noise case, the _c(ti) term of Equation (4.2-8) can be approximated by

_c(to): x0(_)

Rc(ti+l) = @_(ti) + _[u(t i) + u(ti+l)]/2

_{(ti) = C_(ti) + Du(ti)

(4.2-9)

(4.2-10)

(4.2-11)

where

= exp[A(ti+ 1 - ti) ] (4.2-12)

Iti+lexp(A_ )= d_ B

Jti

(4.2-13)

To minimize the cost function J(_), we can apply the Newton-Raphson algorithm, which chooses suc-

cessive estimates of the vector of unknown coefficients _. Let L be the iteration number; the L + 1

estimate of _ is then obtained from the L estimate as

(4.2-14)

The first and second gradients are defined as

v_J({): -

N

Z[z(til ( G*Il[v   ctil]
i=1

(4.2-15)
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The Gauss-Newton approximation to the second gradient is

The Gauss-Newton approximation is computationally much simpler than the Newton-Raphson algorithm

because the second gradient of the innovation never needs to be calculated. In addition, the Gauss-

Newton approximation can speed the convergence of the algorithm, as is discussed in Section 4.4.1.

Equation (4.2-8) then gives the cost function for maximum likelihood estimation. The weighting GG*
is unimportant for this problem, so set GG* = i. For our example, Equations (4.2-6) and (4.2-7) reduce

to x i = Pi and z i = x i, Therefore, Equation (4.2-8) becomes

N

1 _] [Pi- Pi(Lp, L_)] 2 (4.2-18)
J(Lp'L6) = 2 i:l

where Pi is the value of the measured response p at time t i and _i(Lp,La) is the computed time history of

at time t i for Lp = [p and L a = C6- Where computed (not flight) data are used in the remainder of

this chapter, the measured time history refers to Pi, and the computed time history refers to _i(Lp,L_).

The computed time history is a function of the current estimates of Lp and L_, but the measured time

history is not.

The most straightforward method of obtaining Pi is to use Equations (4.2-9) and (4.2-10). In terms

of the notation just defined,

Pi+1 = @#i + _(ai + ai+1)/2 (4.2-19)

where

¢ = exp(LpA) (4.2-20)

_o A La[l - exp(LpA)] (4.2-21)= exp(LpT) dT La = Lp

and A is the length of the sample interval (ti+ 1 - ti). Simplifying the notation,

ai+I/2 = (ai + _i+1)/2 (4.2-22)

then

Pi+l = @Pi + _ai+1/2 (4.2-23)

The maximum likelihood estimate is the value that minimizes Equation (4.2-18). The Gauss-Newton

method described previously is used for this minimization. Equation (4.2-14) is used to determine suc-
cessive values of the estimates of the unknowns during the minimization.

The first and second gradients are defined by Equations (4.2-15) and (4.2-16). The only term

from Equations (4.2-14), (4.2-15), and (4.2-16) remaining to be defined is vcz{(t i) or, for our case,

V_ i. Equation (24) of Maine and lliff (1981b) is a corresponding approximation for our problem. In

our notation,

Vg_i+l : CVg_i + _[(VgLp)#i+l/2 + (VgLa)¢i+I/2] (4.2-24)

For this simple example, the equations can be concisely written in terms of partial derivatives as

= +  4.2-25)
TC_p/ \aLp/ _pi+i/2

(_i+1_ (_i _ (42 26)
BL6 ] : @ \_T6] + _ai+ll2

where

V_I3 = laLa-_p"_L-_]* (4.2-27)
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Forthis simpleexample,_ = [Lp, Ca]*,andsuccessiveestimatesof LpandCaaredeterminedby

iterating Equation(4.2-14). Thefirst andsecondgradientsof Equation(4.2-14)aredefinedbyEqua-
tions (4.2-15)and(4.2-17). Thecompletesetof equationsis givenin MaineandIliff (1980).

Wecannowwrite theentireprocedurefor obtainingthemaximumlikelihoodestimatesfor this simple
example.Tostart thealgorithm,initial estimatesof LpandL6areneeded;thesearethevalue{0-
FromEquation(4.2-14),_1andsubsequentlyELaredefinedbyusingthefirst andsecondgradientsof
J(Lp,L6)fromEquation(4.2-18). Thegradientsfor this particularexamplefromEquations(4.2-15)and
(4.2-17)are

N
V_J(_L)= -i_l(Pi - Pi)V_Pi 4.2-28)

N
v2_j(EL)_ i_1(v_#i)*(v_pi) 4.2-29)

Expanded into partial derivative forms, these become

i (pi - gi) aLp

b= l

4.2-30)

These terms are completely defined for Pi and the partial derivative of Pi by Equations (4.2-23),

(4.2-25), and (4.2-26).

(4.2-31)

4.3 COMPUTATIONAL DETAILS OF MINIMIZATION

In Section 4.2 we specify the equations for a simple example and describe the procedure for obtain-

ing estimates of the unknowns from a dynamic maneuver. In this section we give the computational details

for obtaining the estimates. Some basic concepts of parameter estimation are best illustrated by using

computed data, where the correct answers are known; therefore, in this section we study two examples

involving computed time histories. The first example (Section 4.3.1) is based on data that have no

measurement noise; in this case resulting estimates equal the correct values. The second example (Sec-

tion 4.3.2) is based on data that have significant measurement noise added; consequently, the estimates

do not equal the correct values. Throughout this chapter the term "no-noise case" is used for the case

with no noise added and "noisy case" for the case where noise has been added.

We desire to keep these examples simple enough so that some or all of the calculations can be com-

pleted on a home computer or, with some labor, on a calculator; therefore, we will use only a very small

number of data points. For these computed examples, 10 points (time samples) are used. The simulated

data (which we call measured data) are based on Equation (4.2-3). We use the same correct values of Lp

and L 6 (-0.2500 and 10.0, respectively) for both examples. In addition, the same aileron input 6 is

used for both examples, the sample interval A is 0.2 sec, and the initial conditions are zero. Tables of

all significant intermediate values are given for each example. We report these values to 4 significant

digits; however, to obtain exactly the same values with a computer or calculator requires the use of 13

significant digits (as we used in computing these tables). If the 4-digit numbers are used in the com-

putation, the answers will differ by a few tenths of a percent, but they will still serve to illustrate

the minimization accuracy. In both examples, the initial values of Lp and L6 (or EO) are -0.5 and 15.0,

respectively.

4.3.1 Example With No Measurement Noise

The measurement time history for the no-noise case is shown in Figure 4.3-1. The aileron input

starts at zero, changes to a fixed value, and then returns to zero. The resulting roll-rate time

history is also shown. The values of the measured roll rate are given in Table 4.3-1 along with the

aileron input.



41

Table4.3-2lists theessentialintermediatevaluesfor thetermsin Equation(4.2-14)for thefirst
four iterations. Exceptfor columns8 to 12,thecolumnsareself explanatory.Columns8 and9 arethe
intermediatevaluesof thesummationfor thefirst gradienttermsof Equation(4.2-30). Forexample,the
fifth rowis the summationfor i = 1to 5. Likewise,columns10to 12aretheintermediatevaluesof the
secondgradienttermsin Equation(4.2-31).

Wecanobtain_Lfor eachvalueof L (the iterationnumber)byusingEquation(4.2-14)andthevalues
in the last rowof the last five columnsfor eachiteration. Forthefirst iteration (fromL =0 to
L = 1), we can use Cram_r's rule to obtain

F3.701 -33.57

j(_)-1 F352.4 33.50]-I
L33.50 3.701] = (352.4)(3.701) - (33.50)(33.50) = L-0.1841 1.936] (4.3-1)

vJ( o)FlOlOl
= L-12.24] (4.3-2)

Equation (4.2-14) becomes

[ ] -0.5Lp = [15.0] F0.020340.18417F101.07F0.3005] (4.3-3)
_1 = La 1 - L-0.1841 1.936 ]L-12.24] = L 9.888 ]

Again, although these equations display 4 significant digits, we have used 13-digit accuracy in

the computation.

Table 4.3-3 shows the values for l'p, Za, and J for each iteration, along with the values of @ and

needed for calculating Pi- In three iterations the algorithm converges to the correct values (to four

significant digits) for both Lp and La. The value of Z a overshoots slightly on the first iteration and

then quickly arrives at the correct answer. The value of Lp overshoots slightly on the second iteration.

In Figure 4.3-2 the measured data are compared with the computed data for each of the first three

iterations. The match is very good after two iterations and nearly exact after three iterations.

Because we are looking for the maximum likelihood estimate, we expect the value of the gradient to go

to zero at the estimate. The gradient is given in Table 4.3-2, in the direction of Lp in column 8 and in

the direction of L a in column 9. The gradient should go to zero in each of these directions at the maxi-

mum likelihood estimate. The gradients for the entire maneuver are shown in Table 4.3-2 as the last row

for each iteration in columns 8 and 9; they rapidly approach zero as the algorithm converges. If we con-

tinued to iterate, the algorithm would eventually generate very small values.

Although the algorithm converged with four-digit accuracy in Lp and L a, the value of the cost func-

tion J continued to decrease rapidly between the third and fourth iterations. This is a consequence

of using the maximum likelihood estimator on data having no measurement noise. Theoretically, with

infinite-accuracy computation, the value of J at the minimum should be zero. However, with finite

accuracy, the value of J becomes small but never reaches zero. The value of J is a function of the

number of significant digits being used. For this example, using 13-digit accuracy, the cost eventually

decreases to approximately 0.3 x 10-28.

4.3.2 Example With Measurement Noise

The data used in the noisy case are the same as those used in the no-noise case, except that pseudo-

Gaussian noise has been added to the roll rate. The time history is shown in Figure 4.3-3. The signal-

to-noise ratio is quite low in this example, as is readily apparent by comparing Figures 4.3-1 and 4.3-3.

The values of the time history (to 13-digit accuracy) are shown in Table 4.3-4. Table 4.3-5 shows inter-

mediate values for the terms in Equation (4.2-14) for L = 1 to 4 in the same manner described in Sec-

tion 4.3-1. The succeeding values of [p and C a are obtained as described previously. The values of Lp,

i"a, _, _, and J for each iteration are shown in Table 4.3-6. The algorithm converges in four iterations.

The behavior of the coefficients as they approach convergence is much like that in the no-noise case.

The most notable result of this case is the converged values of ('p and La, which are somewhat different

from the correct values. The match between the measured and computed time histories is shown in Fig-

ure 4.3-4 for each iteration. No change is apparent for the last two iterations. The match is very

good considering the level of measurement noise.

In Figure 4.3-5, the computed time history for the no-noise estimates of Lp and L a is compared with

that for the noisy-case estimates. In the noisy case the algorithm converged to values somewhat dif-

ferent than the correct values, so the two computed time histories are similar but not identical.
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Table 4.3-5 shows the values of the cost function and the values of the gradients with respect to Lp

and L_. The values of J for the third and fourth iterations are the same to four significant digits.

The gradients in each direction are correspondingly small, indicating that the algorithm has converged.

The values of the gradients shown in Table 4.3-5 for L = 4 demonstrate an interesting characteristic
that arises from having a very small number of samples for a maneuver with a low signal-to-noise ratio:

Between i = 9 and I0 the value of the gradient goes from a fairly large number to a small number. This
indicates that with a different noise signal or with more samples the gradient would probably be zero at

some values of Lp and La significantly different than those shown for this particular case.

The accuracy of the converged elements can be assessed by examing the Cram_r-Rao inequality (Maine
and lliff, 1980, 1981b) discussed previously. The value of the Cram_r-Rao bound for each unknown is the

square root of the corresponding element in the H matrix. A slightly different approach is used to
obtain the Cram_r-Rao bound for flight-measured data than is used for computed data, because the measure-
ment covariance matrix GG* is unknown for flight data. In general, the expected value of Jmin is

_(N-I)/2, where _ is the dimension of GG* and N is the number of data points. For measured data, if

Jmin is not approximately _(N-1)/2, then the original estimate of GG* is probably not good. A first

approximation to correcting GG* is to multiply'GG* by 2Jmin/_(N-1), which has the effect of multiplying H

by a factor of 2Jmin/_(N-l). For the scalar case we are studying here, _ = I; so the correction term is

2Jmin/(N-I ). Since we are treating our simulated data similarly to how actual flight data would be

treated, we will make the correction to the bound. Thus, the Cram6r-Rao bound can be obtained from the

following approximation to the information matrix:

H = 2(dmi n) (V_d)-I/(N-I) (4.3-4)

The Cram6r-Rao bounds for Lp and L a are the square roots of the diagonal elements of the H matrix, or •

HI_(1,1) and I/_-2,2), respectively. The Cram6r-Rao bounds are 0.1593 and 1.116 for Lp and La, respec- :

tively. The errors in Lp and La are less than the bounds.

4.4 COST FUNCTIONS

In Section 4.3 we obtain maximum likelihood estimates for computed time histories by minimizing the

values of the cost function. To understand fully what occurs in this minimization, we must study in more
detail the form of the cost functions and some of their more important characteristics. The same two

time histories studied Section 4.3 are examined in this section: The cost function for the no-noise case

is discussed briefly; the cost function for the noisy case is then discussed in more detail. The noisy

case is more interesting because it has a meaningful Cram_r-Rao bound and is more representative of

aircraft flight data.

First, we look at the one-dimensional case, where L 6 is fixed at the correct value, because it is

easier to grasp some of the characteristics of the cost function in one dimension. Then we look at the

two-dimensional case, where both Lp and L 6 are varying. The cost functions are based on computed time

histories defined by Equation (4.2-18). For every time history we might choose (computed or flight
data), a complete cost function is defined. For the case of n variables, the cost function defines a

hypersurface of n + I dimensions. Constructing this surface and looking for the minimum (avoiding the
use of the minimization algorithm) is not a reasonable approach, because in general the number of

variables is greater than two. Therefore, the cost function can be described mathematically but not pic-

tured graphically.

4.4.1 One-Dimensional Case

To illustrate the many interesting aspects of cost functions, it is easiest to look first at cost

functions having one variable. This section studies the one-variable cost function J(Lp), with La : I0;

this cost function is more interesting than J(L6). Figure 4.4-1 shows the cost function plotted as a

function of Lp for the no-noise case. As expected for this case, the minimum cost is zero and occurs at

the correct value of Lp = -0.2500. The cost increases much more slowly for a more negative Lp than for a

positive Lp. Physically this makes sense: The more negative values of Lp represent cases of high

damping, and the positive Lp represents an unstable system. Therefore, the Pi for positive Lp becomes

increasingly different from the measured time history for small positive increments in Lp.

Figure 4.4-2 shows the no-noise response for the correct Lp (-0.2500) compared with those obtained

for Lp values of -0.25 and 0.75. The response for Lp = -0.7500 is closer to the correct response than

is the response for Lp : 0.2500. The differences affect the cost function even more strongly then they

affect the responses because the cost function is proportional to the square of the differences in the

responses (Equation (4.2-18)). For very large damping (very negative Lp), the system would show essen-

tially no response. Therefore, large increases in damping change the value of J(Lp) relatively little.
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In Figure4.4-3,thecostfunctionbasedonthenoisycasetimehistoryis plottedasa functionof
Lp. ThecorrectLpvalue(-0.2500)andthe Lpvalue(-0.3218)at thecostminimum(3.335)arebothindi-
catedonthefigure. Thegeneralshapeof thecostfunctionin Figure4.4-3is similarto that shownin
Figure4.4-1. In Figure4.4-4,thecostfunctionsbasedonthe noisyandno-noisecasesarecompared.
Thecommentsrelatingto thecostfunctionof theno-noisecasealsoapplyto thecostfunctionbasedon
the noisycase. Figure4.4-4showsclearlythat thetwocostfunctionsareshapedsimilarlybutshifted
in boththeLpandJ directions. Onlya smalldifferencein thevalueof thecostwouldbeexpectedfar
fromtheminimumbecausetheestimatedtimehistoryis sofar fromthemeasuredtimehistorythat it
becomesirrelevantasto whetherthemeasuredtimehistoryhasnoiseadded.Thispointis clearlyseen
in Figure4.4-5,wheretheresponsefor Lp: 0.2500is comparedwiththeresponsefor the correctvalues
of Lpfor the no-noiseandnoisycases,Thecostfunctionis thesumof thesquaresof thedifference
betweenthemeasuredandestimatedresponses(Equation(4.2-18)). In somecasesthedifferenceat a
givenpointis smallerfor theno-noiseresponsethanit is for thenoisycase,andsometimesit is
larger. However,thesedifferencesaresmallcomparedwith thedistancebetweenthecorrectandesti-
matedresponses.Therefore,the valueof thecostfunctionJ is largefor boththeno-noiseandthe
noisycases,andthedifferencein thetwocostfunctionsis smallcomparedwiththetotal cost.

Figure4.4-6showsthegradientof J(Lp)asa functionof Lpfor thenoisycase.Wediscussfinding
the zeroof this function(or equivalently,theminimumof the costfunction)usingtheGauss-Newton
method.Thegradientis zeroat Lp= -0.3218,whichgivestheminimumvalueof J(Lp).

ThedifferencebetweentheNewton-Raphsonmethod(Equation(4.2-16))andtheGauss-Newtonmethod
(Equation(4.2-17))of minimizationis mentionedin Section4.2. Forthis simpleone-dimensionalcase,
wecaneasilycomputethesecondgradientbothwith thesecondtermof Equation(4.2-16)(Newton-Raphson)
andwithoutthesecondterm(Gauss-Newton,Equation(4.2-17)). TheNewton-RaphsonandtheGauss-Newton
approximationsecondgradientsarecomparedin Figure4.4-7. TheGauss-Newtonsecondgradient(dashed
line) alwaysremainspositivebecauseit is thesumof quadraticterms(squaredfor theone-dimensional
example).TheNewton-Raphsonsecondgradientcanbepositiveor negative,dependinguponthe valueof
the secondpartial derivativewith respectto Lp. Otherthanthedifferencein signfor themorenega-
tive Lp, thetwocurveshavesimilarshapes.

Asstatedpreviously,theGauss-Newtonmethodis superiorto theNewton-Raphsonmethodin certain
cases;wecandemonstrateobviouscasesof this withourexample.ProblemswiththeNewton-Raphson
methodwill occurwherethesecondgradient(slopeof thegradient)is nearzeroor negative;Fig-
ure4.4-6showssucha regionnearLp= -1.0. If wechoosea pointwherethegradientslopeis exactly
zero,weareforcedto dividebyzeroin Equation(4.2-14)with theNewton-Raphsonmethod:sucha point
is at Lp= -1.13in Figure4.4-7. If thevalueof theslopeof thegradientis negative,thenthe
Newton-Raphsonmethodwill generateverynegativevaluesof Lp. Forverynegativevaluesof Lp,the
costbecomesasymptoticallyconstant,andthegradientbecomesnearlyzero. In that region,the Newton-
Raphsonalgorithmdivergesto negativeinfinity. If theslopeof thegradientis positivebutsmall,we
still havea problemwith theNewton-Raphsonmethod.Figure4.4-8showsthe first iteration, starting
fromLp= -0.95,for bothGauss-NewtonandNewton-Raphsonmethods.TheNewton-Raphsonmethodselectsa
pointwherethetangentof thegradientat Lp= -0.95intersectsthezeroline. Thisresultsin the
selectionof Lp_ 2.6 in the first iteration. Manyiterationsarerequiredto progressfromthat value
to theactualminimum.Ontheotherhand,theGauss-NewtonmethodselectsLp_ -0.09andconvergesto
theminimum(to four-digitaccuracy)in twomoreiterations. Withmorecomplexexamples,a comparisonof
theconvergencepropertiesof thetwoalgorithmsbecomesmoredifficult to visualize,but theproblems
aregeneralizationsof thoseillustratedhere.

Theusefulnessof theCram_r-Raoboundis discussedin Section4.3-2. Wenowdigressbriefly to
discusssomeof the ramificationsof theCram_r-Raoboundfor theone-dimensionalcase. TheCram6r-Rao
boundhasmeaningonlyfor thenoisycase. In thenoisyexample,theestimateof Lpis -0.3218andthe
Cram_r-Rao bound is 0.0579. The calculation of the Cram6r-Rao bound is defined in Section 4.3.2 for

both the one-dimensional and two-dimensional examples. The scatter in the estimates of Lp should be

about the same magnitude as the Cram_r-Rao bound. For the one-dimensional case discussed here, the

range (Lp = -0.3218 plus or minus the Cram6r-Rao bound 0.0579) nearly includes the correct value of

Lp = -0.2500. If noisy cases are generated for many time histories (adding different measurement noise

to each time history), then the sample mean and sample standard deviation of the estimates for these

cases can be calculated. Table 4.4-1 lists the sample mean, sample standard deviation, and the standard

deviation of the sample mean (standard deviation divided by the square root of the number of cases) for

5, 10, and 20 cases. The sample mean, as expected, gets closer to the correct value of -0.2500 as the

number of cases increases. This is also reflected by the decreasing values in the third column of

Table 4.4-1, which lists estimates of the error in the sample mean. The second column of Table 4.4-1

shows the sample standard deviations, which indicate the approximate accuracy of the individual esti-

mates. This standard deviation, which stays more or less constant, is approximately equal to the

Cram6r-Rao bound for the noisy case being studied here. In fact, the Cram6r-Rao bounds for each of the

20 noisy cases (not shown in the table) differ little from the values found for the noisy case being
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studied. Bothof theseresultsarein goodagreementwiththetheoreticalcharacteristics(Maineand
Iliff, 1981b)of the Cram_r-Raoboundsandmaximumlikelihoodestimatorsin general.

Theseexamplesindicatethevalueof obtainingmoresampletimehistories(maneuvers).Havingmore
samplesincreasesconfidencein theestimateof theunknowns.Thisalsoholdstruewhenanalyzingactual
flight data. Thus,it is alwaysadvisableto obtaindatafromseveralmaneuversat a givenflight con-
dition to improvethebestestimateof eachderivative.

Themagnitudesof theCram_r-Raoboundsandof theerrorbetweenthecorrectandestimatedvaluesof
Lparedeterminedto a largeextentbythe lengthof thetimehistoryandtheamountof noiseaddedto
thecorrecttimehistory. Forthecasebeingstudied,it is apparentfromFigure4.3-3that theamount
of noisebeingaddedto thetimehistoryis large. Theeffectof themeasurementnoisepower(GG*,
Equations(4.2-6)and(4.2-7))ontheestimateof Lpfor thetimehistoryis summarizedin Table4.4-2.
Theestimateof Lpis muchimprovedbydecreasingthemeasurementnoisepower.Areductionin thevalue
of Gto one-tenthof thevaluein thenoisycasebeingstudiedyieldsanacceptableestimateof Lp. For
flight data,themeasurementnoiseis reducedbyimprovingtheaccuracyof theoutputsensors.
4.4.2 Two-Dimensional Case

In this section the cost function dependent on both Lp and L 6 is studied. The no-noise case is
examined first, followed by the noisy case.

Although the cost function is a function of only two unknowns, it is much more difficult to visualize

than is the one-dimensional J(Lp). The cost function over a reasonable range of Lp and L6 is shown in

Figure 4.4-9. The cost increases very rapidly in the region of positive Lp and large values of L6. The

reason for this sharp increase is just an extension of the argument involving positive Lp given in Sec-

tion 4.4.1. The shape of the surface can be depicted in greater detail if we examine only the values of

the cost function J(Lp,L6) < 200 for Lp < 1.0. Figure 4.4-10 depicts this restricted surface viewed

from the upper end of the surface. The minimum must lie in the curving valley that gets broader toward

the far side of the surface. Given this picture of the surface, we can look at the isoclines of constant

cost on the Lp-L 6 plane (Figure 4.4-11). The steepness of the cost function in the positive Lp direction

is once again apparent. The cost function minimum is indicated by a cross. The more nearly elliptical

shape inside the closed isocline indicates that the cost function is nearly quadratic there, so fairly

rapid convergence would be expected in this region. The Lp axis becomes an asymptote for the cost func-

tion as L 6 approaches zero. The cost is constant for La = 0 because no response would result from any

aileron input; the estimated response is zero for all values of Lp, resulting in constant cost.

Figure 4.4-12 shows an expanded view of the cost function near its minimum, which (as seen in the

earlier example, Table 4.3-3) occurs at the correct values of Lp = -0.2500 and L 6 = 10. This is also

evident by looking at the cost function surface shown in Figure 4.4-12. The surface has its minimum at

the correct values. As expected, the value of the cost function at the minimum is zero.

As in the one-dimensional case, the primary difference between the cost functions for the no-noise

and noisy cases is a shift in the cost function. In the one-dimensional case, the cost function for the

noisy case shifted so that the minimum was at a higher cost and a more negative value of Lp. In the two-

dimensional case, the cost function exhibits a similar shift in both the Lp and L 6 directions. The shift

is small enough that the difference is not visible at the scale shown in Figure 4.4-9 or from the per-

spective of Figure 4.4-10. Figure 4.4-13 shows the isoclines of constant cost for the noisy case, which

look much like the isoclines for the no-noise case shown in Figure 4.4-11. The difference is a shift of

about 0.1 in Lp. Intuitively, it can be seen that this would hold true for cases with more than two

unknowns; the primary difference between the two cost functions is near the minimum.

We next examine the cost function near the minimum. Figure 4.4-14 shows the same view of the cost

function for the noisy case as shown in Figure 4.4-12 for the no-noise case. The shape is roughly the

same as that in Figure 4.4-12, but the surface is shifted such that its minimum lies over Lp = -0.3540

and L6 = 10.24, and it is shifted upward to a cost function value of approximately 3.3.

To get a more precise idea of the cost function of the noisy case near the minimum, we once again

examine the iscolines. The isoclines in this region (Figure 4.4-15) resemble ellipses much more than

those in Figures 4.4-11 and 4.4-13. The estimates from the first few iterations in Table 4.3-6 are also

shown in Figure 4.4-15. The first iteration (L = 1) brought the values of Lp and La very close to the

values at the minimum, and the second essentially arrived at the minimum (viewed at this scale). One of

the reasons the convergence is so rapid in this region is that the isoclines are nearly elliptical,

demonstrating that the cost function is very nearly quadratic in this region. If we had started the

Gauss-Newton algorithm at a point where the isoclines are much less elliptical (as in some of the border

regions of Figure 4.4-13), the convergence would have progressed more slowly initially, but it would have

proceeded at much the same rate as it entered the nearly quadratic region of the cost function.

Before concluding our examination of the two-dimensional case, we will examine the Cram_r-Rao bound.

Figure 4.4-16 shows the uncertainty ellipsoid, which is based on the Cram_r-Rao bounds defined in Sec-
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tion 4.3.2. The relationships between the Cram6r-Rao bound and the uncertainty ellipsoid are discussed

in Maine and Iliff (1981b). The uncertainty ellipsoid almost encloses the correct values of Lp and La.

The Cram_r-Rao bound for Lp and La can be determined by projecting the uncertainty ellipsoid ohto the Lp

and La axes. This should give the same values as analytically calculated in Section 4.3.2, which were

Lp = 0.1593 and L6 = 1.116.

4.5 ESTIMATION USING FLIGHT DATA

In Sections 4.2 to 4.4 we examine the basic process of obtaining maximum likelihood estimates from
computed examples with one or two unknown parameters. Now that these basics have been established, we

can explore the estimation of stability and control derivatives from actual flight data. For the com-
putationally much more difficult situation usually encountered using actual flight data, we obtain the

maximum likelihood estimates with the lliff-Maine code (MMLE3 program) (Maine and lliff, 1980). The

equations of motion that are of interest are presented in Chapter 3; the remainder of the equations are
given in Maine and lliff (1980).

In general, flight data estimation is fairly complex, and codes such as the lliff-Maine code must

usually be used to assist in the analysis. However, one must still be cautious about accepting the

results; that is, the estimates must fit the phenomenology, and the match between the measured and com-

puted time histories must be acceptable. This is true in all flight regimes, but particularly in poten-
tial problem situations such as (i) separated flow at high Mach numbers or high angle of attack, (2)

unusual aircraft configurations, such as the oblique wing (Maine, 1978), or (3) modern high-performance
aircraft with high-gain feedback loops. In any of these cases, even small anomalies in the match may

indicate ignored terms in the equations of motion, separated flow, nonlinearities, sensor problems, or
any of a large number of other problems. Some of these difficulties are discussed in later chapters.

The brief examples described in Sections 4.5.1 to 4.5.3 are intended to show how the caveats given in

the preceding paragraph and the computed examples of previous sections can be used to assist in the
analysis. In the computed example, we show the desirability of having low-noise sensors, an adequate
model, and several maneuvers at a given flight condition.

4.5.1 Hand Calculation Exampl_

Sometimes evaluation of a fairly complex flight maneuver can be augmented with a simple hand calcula-

tion. One example can be taken from a flight of the space shuttle. The space shuttle's entry control

system consists of 12 vertical reaction-control-system (RCS) jets (6 up-firing and 6 down-firing), 8 hor-
izontal RCS jets (4 left-firing and 4 right-firing), 4 elevon surfaces, a body flap, and a split rudder

surface. The locations of these devices are shown in Figure 4.5-1. The vertical jets and the elevons
are used for both pitch and roll control. The jets and elevons are used symmetrically for pitch control

and asymmetrically for roll control.

The shuttle example we use here is obtained from a maneuver at a Mach number of approximately 21 and

an angle of attack of approximately 40 ° . The controls used for this lateral-directional maneuver are the
differential elevons and the side-firing jets (yaw jets). The maneuver is depicted in Figure 4.5-2.

Equations (3.8-13) to (3.8-15) describe the equations of motion. Some of the derivatives can be deter-
mined by hand using a simplified approach that has been used since the beginning of dynamic analysis of

flight maneuvers. In particular, for this maneuver, the slope of the rates can be used to determine the

yaw jet control derivatives. This is possible, even for this example, which includes a high-gain feed-
back system, because the yaw jets are essentially step functions, and the slopes of rates p and r can be

determined before the vehicle and differential elevon (aileron) responses become significant. The

rolling moment due to yaw jet Lyj is particularly important for the shuttle and is generally more dif-

ficult to obtain than the more dominant yawing moment due to yaw jet. Therefore, as an example, we

determine Lyj by hand. Figure 4.5-3 shows yaw jets and smoothed roll rate plotted using expanded scales.

The equation for Lyj is given by

pIx (4.5.1)
Lyj = (number of yaw jets)

_ _ = -0.07 ÷ 0.1 (4.5-2)
At 57.3

Therefore, given that I x _ 900,000 slug-ft 2 and the number of yaw jets is 4, then Lyj m -2750 ft-lb

per jet.

The same maneuver was analyzed with MMLE3, and the resulting time-history comparison is shown in
Figure 4.5-4. The match is very good except for a small mismatch in p at about 6 sec. This small

mismatch was studied separately with MMLE3 and found to be caused by a nonlinearity in the aileron

derivative. The value from MMLE3 for Lyj is -2690 ft-lb per jet, which (for the accuracy used here) is
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essentiallythesamevalueasthat obtainedbythesimplifiedmethod.It wouldbedifficult to determine
theaileronderivativesasaccuratelyastheyawjet derivatives.Althoughaccurateestimatescanseldom
beobtainedwiththe slopemethoddiscussedhere,roughestimatescanusuallybeobtainedto gainsome
insight into valuesobtainedwithMMLE3(or anyothermaximumlikelihoodprogram).Theseroughestimates
canthenbeusedto helpexplainunexpectedvaluesof estimatesfromanestimationprogram.

Sometimesa flight examplebecomestoo complexto handcalculateanythingotherthanqualitative
estimates.Determiningtherudderderivativefor theF-8aircraft with theyawaugmentationsystemon
illustrates this difficulty. Figure4.5-5showsanexampleof this difficulty for F-8aircraft data.
Thisexample,takenfromShafer(1982a),includesanaileronpulseanda rudderpulse. Althoughaninde-
pendentpilot rudderpulseis inputduringthemaneuver,the rudderis primarilyrespondingto the lat-
eral accelerationfeedback.Whenthe rudderis moving,severalothervariablesarealsochanging,which
makesit difficult to usethesimplifiedapproach.However,Cn6r canberoughlyestmatedwhentherudder
moves,approximately1.7secfromthestart of themaneuver.Mostof theyawaccelerationis causedby
the rudderinput, buta poorestimatewouldbeobtainedbythe handcalculationmethod.
4.5.2 Cost Function for Full Aircraft Problem

The analysis of a lateral-directional maneuver obtained in flight typically involves 15 to 25 unknown
parameters (as shown in Equations (3.8-13) to (3.8-15)), in contrast with one or two unknowns in the

simple aircraft example. This makes detailed examples unwieldy and any graphic presentation of the cost

function impossible. Therefore, in this section we examine primarily the estimation procedure and the
process of minimization.

For a typical flight example, we examine a lateral-directional maneuver, with both aileron and rudder

inputs, that has 17 unknown parameters. The data are from the oblique-wing aircraft (Maine, 1978) with
the wing at 0 ° skew during the maneuver. The time history of the data and the subsequent output of MMLE3
are presented in Maine (1981b). The results of the analysis are shown in Table 4.5-1. The match between
the measured time history and the estimated (calculated) time history is shown as a function of iteration

in Figure 4.5-6. Figures 4.5-6(a) to 4.5-6(e) correspond to iterations 0 to 4. Table 4.5-1 shows that
the cost remains unchanged after four iterations. A similar result was obtained for the two-dimensional

simple aircraft example in Figure 4.3-4 and Table 4.3-3.

Two of the many things the analyst must consider in obtaining estimates are how good the match is

and how good the convergence is. A satisfactory match and monotonic convergence are desirable, but

not sufficient, conditions for a successful analysis. Figure 4.5-6(e) is a very good match, although
not perfect. The convergence can best be evaluated by examining the normalized cost in the last row of
Table 4.5-1; the cost rapidly and monotonically converges in four iterations, and it remains at the con-

verged value. These factors are convincing evidence that convergence is complete. Therefore, the match

and convergence criteria are satisfied in our example. In some cases we might encounter cost that does

not converge rapidly (in four to six iterations) or monotonically, or stay "exactly" at the minimum
value. These conditions usually indicate that there is at least a small problem in the analysis. These

problems can usually be traced to a data problem, an inadequate mathematical model, or a maneuver that
contains a marginal amount of information.

Table 4.5-i also shows that the starting values of all coefficients for the control and bias vari-

ables are zero. Wind-tunnel estimates could have been used for starting values, but the convergence

of the algorithm is not very dependent on the starting values of these coefficients. As part of the
startup algorithm, the MMLE3 program normally holds the derivatives of the state variables constant until
after the first iteration, as is evident from Table 4.5-I.

Figure 4.5-6(a) shows a comparison of the measured and computed data for the starting values. The
match is very poor because the starting values for the control derivatives are all zero, so the only
motion is in response to the initial conditions. The control derivatives and biases are determined on

the first iteration, resulting in the much improved match shown in Figure 4.5-6(b). The match after two

iterations, shown in Figure 4.5-6(c), is improved as the program further modifies the control derivatives

and, for the first time, adjusts the derivatives affecting the natural frequency (Cn8 and C_B). By

the third iteration (Figure 4.5-6(d)), where minor adjustments to the frequency are made and the damping

derivatives are changed, the match is almost perfect. Figure 4.5-6(e) shows the match when all but the

most minor derivatives have ceased to change.

Several general observations can be made based on this well-behaved example. The most important

coefficients essentially converged in three iterations. The same effect was seen in the simple example;

that is, L 6 converged faster than Lp (Table 4.3-6). Some of the less important or second-order coef-

ficients converged only to two significant digits after three iterations and were still changing in the

fourth significant digit at the end of six iterations. Also, even though the sign is wrong after the

first iteration for some coefficients (C_r , Cn6a, and C_ar) , the algorithm quickly selects reasonable

values once the important derivatives have stabilized.

In general, if the analysis of a maneuver goes well, we do not need to spend much time inspecting a

table analogous to Table 4.5-I. However, if there are problems in convergence or in the quality of the
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fit, a detailed inspection of such a table may be necessary, The table may show that an important coef-

ficient becomes unstable in early iterations, which'could cause problems later. If the starting values

are grossly in error, the algorithm may generate very unreasonable values and then, for many reasons, not

behave well. Occasionally the algorithm selects alternately from two diverse sets of values of two or

more coefficients on successive iterations, behaving as if the shape of the cost function were a narrow

multidimensional valley analogous to, but more extreme than, the two-dimensional valley shown in Fig-

ures 4.4-13 and 4.4-15.

4,5.3 Cram_r-Rao Bounds

Sections 4.3 and 4.4 regarding the computed example show that Cram_r-Rao bounds are good indicators

of the accuracy of estimated parameters. Cram_r-Rao bounds can be used in a similar, but somewhat more

qualitative, fashion on flight data. The Cram_r-Rao bounds included in MMLE3 (as well as in many other

maximum likelihood estimation programs) have been useful in determining whether estimates are good or

bad. The aircraft example we discuss here has been reported previously (for example, in lliff (1978b)

and Maine and lliff (1981b)); however, this example of the use of the Cram_r-Rao bound in the assessment

of flight-derived estimates is pertinent to this document. Figure 4.5-7 shows estimates of Cnp as a

function of angle of attack for the PA-30 twin-engine general aviation aircraft (Fink and Freeman, 1969)

at three flap settings. There is significant scatter, which reduces confidence in the Cnp information.

The data shown are the estimates from the MMLE3 program, which also provides the Cram_r-Rao bounds for

each estimate. Experience has shown (lliff, 1978b) that if the Cram_r-Rao bound is multiplied by a scale

factor (the result sometimes being called the uncertainty level (Maine and Iliff, 1981b) and plotted as

a vertical bar with the associated estimate, then the interpretation of flight-determined results is

facilitated. Figure 4.5-8 shows the same data as Figure 4.5-7, with the uncertainty levels included as

vertical bars. The best estimates are those with the smallest uncertainty levels (Cram6r-Rao bounds).

The fairing shown in Figure 4.5-8 is drawn through the estimates with small Cram6r-Rao bounds and ignores

the estimates with large bounds. One can have great confidence in the fairing because it is well defined

and consistent when the Cram_r-Rao bound information is included. In this particular instance, the esti-

mates with small bounds were from maneuvers where the aileron forced the motion, and those with large

bounds were from maneuvers where the rudder forced the motion. Therefore, in addition to aiding in the

fairing of the estimates, the Cram_r-Rao bounds help show that aileron-forced maneuvers are superior for

estimating Cnp for the PA-30 aircraft.

This example illustrates that Cram6r-Rao bounds are useful tools for assessing flight-determined

estimates, just as they were found useful for thesimple aircraft example with computed data.

4.6 SUMMARY

The computed simple aircraft example shows the basics of minimization and the general concepts of

cost functions themselves. In addition, this simple example demonstrates the advantages of low measure-
ment noise and multiple estimates at a given condition, the use of Cram_r-Rao bounds, and the quality of

the match between measured and computed data. The flight data show that many of these concepts apply

even though the multidimensional cost function is impossible to plot or visualize.

TABLE 4.3-1. -- VALUES OF

ROLL-RATE TIME HISTORY

WITH NO MEASUREMENT NOISE

a, deg p, deg/sec

1 0

2 1

3 1

4 1

5 1

6 1

7 1

8 0

9 0

10 0

0

0.9754115099857

2.878663149266

4.689092110779

6.411225409939

8.049369277012

9.607619924937

10.11446228200

9.621174135646

9.151943936071
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TABLE 4.3-2. -- INTERMEDIATE VALUES FOR CALCULATING TERMS IN EQUATION (4.2-14) WITH NO MEASUREMENTNOISE

1 2 3 4

i 6i+i/2 Pi 13i

L= 1 1 0.5
2 1
3 1
4 1
5 1
6 1
7 0.5
8 0
9 0

10 0

L = 2 1 0.5

2 1
3 I
4 1
5 i
6 i
7 0.5
8 0
9 0

i0 0

L = 3 I 0.5

2 i

3 i

4 i

5 i

6 i

7 0.5

8 0

9 0

i0 0

L =4 i 0,5

2 I

3 i

4 i

5 i

6 I

7 0.5
8 0

9 0

i0 0

5 6 7 8 9 10 ii 12

Ji

0 0 0
0.9754 1.427 0.01022
2.879 4.146 0,9058
4.689 6,607 2.745
6.411 8.833 5.677
8,049 10,85 9.592
9.608 12.67 14.28

I0.ii 12,89 18,14
9.621 11.66 20.22
9.152 10.55 21,21

0 0 0

0.9754 0.9596 1.124 x 10-4
2.879 2.823 0.001675
4.689 4.578 0,007890
6,411 6.230 0.02433
8.049 7,786 0.05906
9.608 9.251 0.1226

i0.ii 9.671 0.2209
9.621 9.107 0.3531
9.152 8.576 0.5191

0 0 0

0.9754 0,9753 8.095 x 10-9

2.879 2.879 1.167 x 10-8

4.689 4.690 7,128 x 10-7

6,411 6.417 5.471 x 10-6

8.049 8.055 2.175 x 10-5

9.608 9.617 6.201 x 10-5

I0.ii 10.13 1.458 x 10-4

9.621 9.638 2.919 x 10-4

9.152 9.173 5.083 x 10-4

0 0 0
0,9754 0.9754 1.084 x i0-ii

2.879 2.879 9.377 x i0-ii

4,689 4.689 2.748 x i0-i0

6.411 6.411 5.457 x i0-I0

8,049 8,049 8,787 x i0-i0

9.608 9.608 1.237 × 10 -9

I0.Ii i0.Ii 1,471 x 10-9

9.621 9.621 1.539 x 10-9

9.152 9.152 1.543 x 10-9

aLp

0
0.1358
0.6533
1.614
2.930
4.524
6.332
8.161
9,722

aL_s

0
0.09516
0,2764
0,4405
0.5889
0.7231
0.8447
0.8594
0.7777

vj[o, t]

_Cp

0
-0,06140
-0.8897
-3.986

-11.08
-23,74
-43.13
-65.79
-85.66

_C6

0
-0.04302
-0,3935
-1.238
-2.664
-4.687
-7,274
-9.661

-11.25

0
0,01845
0.4453
3,052

11.64
32.10
72.19

138.8
233.3

V2j[O, t]

0
0.009956
0.08547
0.2795
0.6262
1.149
1.863
2.601
3,206

10.91

0

0,09314
0.4548
1.147
2.129
3.365
4.822
6.377
7,828
9.087

0.7037

0

0.09705
0.2855
0.4630
0,6301
0.7874
0.9356
0.9781
0.9210

-i01.0

0

0.001468
0.02680
0.1546
0,5406
1,427
3.147
5,975

i0.00

-12.24

0

0.001530
0.01743
0.06905
0.1833
0.3908
0.7245
1.158
1.632

0.8673 15.24 2.131

352.4

0

0.008675
0,2155
1.530
6.061

17.38
40.63
81.30

142.6
225.2

3.701

0

0.009420
0.09093
0.3053
0.7"022
1.322
2.198
3.154
4.003

4.755

0

0.09515

0.4666

1,183

2.209

3.514

5,068

6,750

8.352

9.784

0

0,09514

0.4664

1.182

2.207

3.510

5.061

6.738

8.334

9.759

0

0.09756

0.2880

0.4692

0.6417

0.8058

0.9620

1.013

0.9642
0.9176

0

0.09754

0.2879

0.4689

0.6411

0.8049

0.9608

1.011

0.9621

0.9152

0

1.210 x 10-5

-2.737 × 10-5

-0,001428

-0.008241

-0.02829

-0.07377

-0,1612

-0.3039

-0.5075

0
4,429 × 10-7

6.450 x 10-6

2.894 x 10-5

8.031 x 10-5

1.709 x 10-4

3,064 x 10-4

4.523 x 10-4

5.497 x 10-4

5.754 x 10-4

0

1.242 x 10-5

-1,195 x 10-5

-5.676 x 10-4

-0,002547

-0.007145

-0.01578

-0.02889

-0,04537

-0.06447

0
4.541 x 10-7

4.162 x 10-6

1.308 x 10-5

2.801 x 10-5

4.878 x 10-5

7,450 x 10-5

9,640 x 10-5

1.076 x 10-4
i,i01 x 10-4

0 0

0.009054 0.009519

0.2267 0.09245

1.625 0.3126

6.504 0.7243

18.85 1.374

44.54 2,299

90.10 3.326

159.9 4.255

255.6 5.097

0 0

0.009052 0.009514

0.2266 0.09238

1.623 0.3123

6.494 0.7233

18.81 1.371

44.43 2.294

89.82 3.317

159.3 4.243

254.5 5.081

_Cp_C6

0
0,01293
0.1935
0.9046
2.630
5,902

11.25
18.26
25.82
33.50

0

0.009040
0.1389
0.6697
2.011
4,660
9.172

15,41
22.62
30.55

0

0.0O9284

0.1437

0,6985

2.116

4.947

9.823

16,66

24.71

33,69

0

0.009280

0.1436

0.6977

2.113

4.938

9.800

16,82

24.63

33.57

oo
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TABLE 4.3-3. -- PERTINENT VALUES AS A FUNCTION OF ITERATION

L

0 -0.5000

1 -0.3005

2 -0.2475

3 -0.2500

4 -0,2500

[p(L) Ca(L) ¢(L)

15.00

9.888

9.996

10.00

i0.00

_(L) JL

0.9048 2.855 21.21

0.9417 1.919 0.5191

0.9517 1.951 5.083 x 10-4

0.9512 1.951 1.543 × 10 -9

0.9512 1.951 1.062 x 10-14

TABLE 4.3-4. -- VALUES OF COMPUTED TIME

HISTORY WITH ADDED MEASUREMENT NOISE

i 6, deg

1 0

2 1

3 1

4 1

5 1

6 1

7 1

8 0

9 0

10 0

p, deg/sec

0

0.4875521781881
3.238763570696

3.429117357944
6.286297353361

6.953798550097

10.80572930119
9.739367269447

9.788844525490
7.382568353168
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TABLE 4.3-5. -- INTERMEDIATE VALUES FOR CALCULATING TERMS IN EQUATION (4.2-14) WITH MEASUREMENTNOISE

1 2 3 4

i 6i+1/2 Pi Pi

5 6 7 8 9 10 11 12

Ji

L= I 1 0.5 0 0 0
2 1 0.4876 1.427 0.4417
3 1 3.239 4.146 0.8537
4 1 3.429 6.607 5.902
5 i 6.286 8.833 9.145
6 i 6.954 10.85 16.72
7 0.5 10.81 12.67 18.46
8 0 9.739 12.89 23.43
9 0 9.789 11.66 25.19

I0 0 7.383 10.55 30.22

L =2 I 0.5 0 0 0
2 I 0.4876 0.9781 0.1203
3 i 3.239 2.862 0.1913
4 i 3.429 4.606 0.8842
5 i 6.286 6.222 0.8863
6 i 6.954 7.718 1.178
7 0.5 10.81 9.103 2.628
8 0 9.739 9.408 2.683
9 0 9.789 8.712 3.263

I0 0 7.383 8.068 3.497

L :3 i 0 0 0 0
2 i 0.4876 0.9882 0.1253
3 i 3.239 2.898 0.1835
4 I 3.429 4.677 0.9624
5 I 6.286 6.336 0.9636
6 I 6.954 7.882 1.394
7 0.5 10.81 9.323 2.494
8 0 9.739 9.678 2.499
9 0 9.789 9.020 2.791

i0 0 7.383 8.407 3.316

L = 4 i 0.5 0 0 0
2 I 0.4876 0.9891 0.1258
3 i 3.239 2.900 0.1833
4 i 3.429 4.679 0.9649
5 I 6.286 6.337 0.9662
6 i 6.954 7.882 1.397
7 0.5 10.81 9.321 2.499
8 0 9.739 9.672 2.501
9 0 9.789 9.011 2.804

I0 0 7.383 8.394 3.316

aLp

0
0.1358
0.6533
1.614
2.930
4.524
6.332
8.161
9.722

10.91

0
0.09414
0.4568
1.142
2.100
3.286
4.662
6.099
7.392
8.460

0
0.09544
0.4642
1.164
2.148
3.375
4.807
6.316
7.692
8.852

0
0.09549
0.4644
1.164
2.148
3.374
4.804
6.309
7.681

8.836

^

BL6

0
0.09516
0.2764
0.4405
0.5889
0.7231
0.8447
0.8594
0.7777
0.7037

0
0.09626
0.2816
0.4533
0.6123
0.7595
0.8959
0.9259
0.8574
0.7940

0
0.09656
0.2831
0.4570
0.6191
0.7702
0.9110
0.9456
0.8814
0.8215

0
0.09654
O.2830
0.4567
0.6186
0.7693
0.9098
0.9441
0.8795

aLp

0
-0.1277
-0.7207
-5.851

-13.31
-30.93
-42.73
-68.46
-86.69

-121.3

0
-0.04618

0.1260
-1.218
-1.082
-3.592

4.346
6.369

14.33
8.534

0
-0.04778

0.1106
-1.342
-1.449
-4.582

2.547
2.937
8.850

-0.2214

0
-0.04789

0.1096
-1.346
-1.456
-4.588

2.545
2.967
8.944

0.8193

vJ[O, t]

0.004819

0
-0.08944
-0.3404
-1.740
-3.240
-6.055
-7.63

-10.34
-11.80
-14.03

0
-0.04721
0.05895

-0.4747
-0.4351
-1.015

0.5102
0.8172
1.741
1.197

0
-0.04835

0.04825
-0.5221
-0.5528
-1.268

0.08320
0.1415
0.8190

-0.002276

0
-0.04842

0.04757
-0.5235
-0.5551
-1.269

0.08155
0.1448
0.8291

2.057 x 10-4

0
0.01845
0.4453
3.052

11.64
32.10
72.19

138.8
233.3
352.4

0
0.008863
0.2175
1.521
5.930

16.73
38.46
75.66

130.3
201.9

0
0.009106
0.2246
1.580
6.195

17.59
40.70
80.59

139.8
218.1

0
0.009117
0.2247
1.580
6.195

17.58
40.66
80.46

139.5

217.5

V2j[O, t]

0
0.009055
0.08547
0.2795
0.6262
1.149
1.863
2.601
3.206
3.701

0
0.009265
0.08859
0.2941
0.6690
1.246
2.048
2.906
3.641
4.271

0
0.009324
0.08949
0.2984
0.6816
1.275
2.105
2.999
3.776
4.450

0
0.009320
0.08942
0.2980
0.6806
1.272
2.100
2.991
3.765

4.436

_CpaC6

0
0.01293
0.1935
0.9046
2.630
5.902

11.25
18.26
25.82
33.50

0
0.009062
0.1377
0.6553
1.941
4.437
8.613

14.26
20.60
27.31

0
0.009324
0.1406
0.6726
2.003
4.602
8.982

14.95
21.73
29.01

0
0.O09218
0.1406
0.6724
2.001
4.597
8.967

14.92
21.68

28.92
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TABLE 4.3-6. -- PERTINENT VALUES

AS A FUNCTION OF ITERATION

L Lp(L) Ca(L) @(L) I(L) JL

0 -0.5000 15.00 0.9048 2.855 30.22

1 -0.3842 10.16 0.9260 1.956 3.497

2 -0.3518 10.23 0.9321 1.976 3.316

3 -0.3543 10.25 0.9316 1.978 3.316

4 -0.3542 10.24 0.9316 1.978 3.316

5 -0.3542 10.24 0.9316 1.978 3.316

TABLE 4.4-1. -- MEAN AND STANDARD DEVIATIONS FOR ESTIMATES OF Lp

Sample standard
Number of Sample mean, Sample standard deviation of the

cases, N _(_p) deviation, _(£p) mean, _(£p)/_

5 -0.2668 0.0739 0.0336

i0 -0.2511 0.0620 0.0196
20 -0.2452 0.0578 0.0129

TABLE 4.4-2. -- ESTIMATE OF Lp AND

CRAMER-RAO BOUND AS A FUNCTION OF

THE SQUARE ROOT OF NOISE POWER

Square root of Estimate Cram6r-Rao

noise power, G of Lp bound

0

0.01
0.05

0.1
0.2

0.4

0.8

1.0
2.0

5.0

10.0

-0.2500

-0.2507
-0.2535

-0.2570
-0.2641

-0.2783

-0.3071

-0.3218
-0.3975

-0.6519

-1.195

--=

0.00054
0.00271

0.00543
0.0109

0.0220
0.0457

0.0579

0.1248

0.3980

1.279
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Figure 4.1-1. Maximum likelihood estimation

concept.
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Figure 4.2-1. Simplified aircraft nomenclature.
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Figure 4.3-I. Time his-

tory with no measurement
noise.
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Figure 4.3-2. Comparison of measured and

computed datafor each of thefirst three

iterations.
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Figure 4.3-3. Time history

with measurement noise.
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Figure 4.$-4. Comparison of measured and com-

puted data for each iteration.
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Figure 4.$-B. Comparison

of estimated roll rate

from no-noise and noisy

cases.
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Figure 4.4-1. Cost function J(Lp) as a function

of Lp for no-noise case.
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Figure 4.4-2. No-noise response for

correct Lp (-0.2500) compared with the

response for Lp = -0.?5 and Lp = 0.25.
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Figure 4.4-6. Gradient of J(Lp) as a function

of Lp for noisy case.
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Figure 4.4-?. Comparison of Newton-Raphson and

Gauss-Newton values of the second gradient for

the noisy case.
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Gauss-Newton algorithms for the noisy case.
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tion surface.
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5.0 PREFLIGHT DATA

In this chapter we discuss the data gathered from sources other than flight tests. You normally

gather the majority of these data before the flight tests, although scheduling problems, configuration

changes during the flight tests, rechecking questionable data, or other reasons can necessitate some data

gathering between flights or after the flight test program.

We discuss three types of preflight data: predicted aerodynamic characteristics, aircraft mass

characteristics, and atmospheric conditions. There are, of course, many other things you need to know

about the aircraft prior to flight, but most of these subjects are inextricably tied to discussions in

other chapters. For instance, you need a thorough understanding of the instrumentation system, but

gathering data about the instrumentation system is an integral part of designing an instrumentation

system or evaluating the adequacy of an existing system, subjects covered in Chapters 7 and 8.

Similarly, you need to know a lot about the aircraft control system to design flight maneuvers, as

discussed in Chapter 6.

We give only general descriptions of the uses and sources of preflight data. Detailed discussions of

computational aerodynamics or wind-tunnel techniques, for instance, are outside the scope of this docu-
ment.
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5.1 PREDICTED AERODYNAMIC CHARACTERISTICS

You will need a source of predicted aerodynamic characteristics for almost every flight test program.

We use the phrase "predicted aerodynamic characteristics" as a catchall for any aerodynamic data other

than that from the current flight tests; the source could be wind-tunnel tests, computations, independent

flight tests, or combinations of these.

5.1.1 Uses

The uses of predicted aerodynamic characteristics are varied. In some cases the need for aepodynamic

predictions is obvious from the statement of objectives; a common objective of flight testing is the

validation of the predictions.

Predictions are also important in validating flight test results; you always want at least a rough

idea of what would be reasonable ranges for the flight test results. If you are investigating new flight

test methods, validation of the flight test results, partially by comparison with predictions, might be a

major objective.

Many estimation methods require predicted aerodynamic characteristics as starting values for itera-

tive algorithms. There are ways to get around these requirements, but you can generally expect better

performance and fewer problems if you have a reasonable set of starting values.

There are numerous uses of predicted aerodynamics in planning flight tests. Before the first flight,

of course, predicted aerodynamics are the only data available for such areas as control system design,

simulation, and test maneuver design. You will often use predictions to select potential problem areas

meriting extensive flight testing.

5.1.2 Theoretical Computations

Theoretical computation is one source of predicted aerodynamic characteristics. Theoretical com-

putation comes in several forms. At one extreme are the large computational aerodynamics computer

programs for solving the Navier-Stokes equations (the basic equations of fluid flow). Computational

aerodynamics is an area of extensive current research activity; some computational aerodynamics problems

strain or exceed the capacity of the largest computers in existence.

Some theoretical computations, in contrast, are almost trivially simple. For many purposes, you can

get acceptable values with a hand calculator, a sketch of the wing, tail, and control surface planforms,

and a few rule-of-thumb equations from elementary aerodynamics texts (Etkin, 1959). Maine and lliff

(1979), for instance, uses such hand calculations.

Between these extremes are many computer programs using various simplifying assumptions, approxima-

tions, and rules of thumb. Such programs are common sources of predictions of damping derivatives.

Well-known programs of this type include DATCOM (Williams and Vukelich, 1979), VORTEX-LATTICE (Margason

and Lamar, 1971), and PAN AIR (Derbyshire and Sidwell, 1982).

5.1.3 Wind-Tunnel Tests

Wind-tunnel tests are the major source of predicted aerodynamic characteristics for most large

flight test programs. The flight data analyst often has little influence on the wind-tunnel test program

(particularly on large programs) but rather must use what is available.

Static data from wind-tunnel tests are often combined with dynamic derivatives from theoretical com-

putations to provide a complete set of predicted aerodynamic characteristics. The use of dynamic wind-

tunnel testing (AGARD, 1978) is also becoming increasingly important. One technique of dynamic wind-

• r-_,._<.-. 17._ _,_ :__ , _ _: s _;_
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tunnel testing involves free-flying, remotely piloted wind-tunnel models (Hafer, 1978; Krag, 1978a,b;

Subke, 1978; Hamel and Krag, 1979; Wilhelm and Verbrugge, 1982); this technique uses the same parameter
estimation algorithms as full-scale flight testing.

If you use data from a large wind-tunnel test program, anticipate a significant effort in trans-

forming the data into a form usable for your needs (you might be fortunate, but anticipate a significant
effort unless you have specific reason to believe otherwise). If the wind-tunnel tests are extensive,

the first large part of the effort might be finding the data pertinent to your analysis amidst volumes of
other data.

You might also need to transform the data into a form suitable for your analysis programs. For

instance, Figure 5.1-1 shows a typical plot of Cm, CL, and CD as functions of angle of attack for several

elevator positions. It takes some work to obtain Cm_e and Cm_, quantities your analysis programs might

need, from these data: The first step is finding the trim elevator position for a given angle of attack.

Then Cm_ is the slope of the Cm curve as a function of angle of attack for that elevator position. To

obtain Cmae, you must difference the pitching moment values for elevator positions around the trim point.

So far we have assumed that you want small perturbation values about trim conditions. If the data show

nonlinearity, you might prefer to get derivatives for typical maneuver amplitudes instead of small ampli-
tudes. If the nonlinearities are large enough to justify explicitly modeling them or if you want to ana-

lyze off-trim conditions, then it is much more difficult to decide on an appropriate model form and fit

the data to it. This is essentially a system identification problem applied to the wind-tunnel data; you
have a large amount of data in tablular form and want a relatively simple model that fits the data.

This example illustrates only a few of the kinds of problems you might encounter in a relatively

simple case. For some vehicles with multiple surfaces and complex control systems, the first step of
finding the trim condition can be difficult. Even simple data handling can be time consuming if the
volume of data is large and the data are not in computer-readable form.

There are numerous manipulations of wind-tunnel data that may be required, and the details vary from

program to program. It therefore avails us little to go into much detail here. The important message •
is that to estimate the effort required to use wind-tunnel data, you must determine exactly what form the

available wind-tunnel data take, what form your analysis requires, and what transformations are necessary
to obtain the needed form. It is not sufficient merely to determine that wind-tunnel data exist.

5.1.4 Independent Fliqht Tests

Independent flight tests are often a good source of predicted aerodynamic characteristics. If you

are testing modifications to an airplane (for instance, stores testing), flight tests of the unmodified
airplane usually provide a good starting point.

For rough approximations, you can use estimates from a different airplane with generally similar

geometry. Even aircraft with quite dissimilar geometry often give values adequate for starting estimates

in iterative algorithms (provided you are not using an MAP estimator, which gives estimates dependent on
the starting values). We have, for instance, done such apparently silly things as using high-performance

fighter results as starting values for general aviation aircraft, simply for reasons of convenience. If
we have data files for one airplane set up exactly in the required format, the easiest way to start anal-

ysis of another airplane is to use the existing files for starting values. We pay a penalty in that con-

vergence is often worse than it would be with better starting values; starting values from a different
airplane, however, are usually much better than no starting values at all. We often use such existing

files to get started in a hurry, before the wind-tunnel data for the new airplane are available in the
required form.

You can also get independent flight test results by using different estimation techniques during the

same flight test program. Such results cannot be completely independent, because they use the same
instrumentation system, the same mass data, and possibly (depending on the methods involved) the same

maneuvers. Nonetheless, using different estimation techniques during the same flight is a valuable

check. The more different the techniques, the better the check. Classical static methods (Perkins and
Hage, 1949; Greenberg, 1951; Klein, 1977) are quite different from output-error methods and thus could be

considered to give fairly independent results. On the other hand, using an equation-error method and an
output-error method on the same maneuvers does not give a particularly good check; both methods are sub-

ject to similar modeling errors and might give similar but wrong results. However, this comparison does
provide a check for some errors and is better than nothing.

5.1.5 Reference Geometry

The predicted aerodynamic characteristics are invariably in nondimensional form. They are thus

associated with a particular set of reference geometry values: the reference area, span, and chord. The
predictions are also defined relative to a reference point. To make use of the predictions, you need to

know the reference geometry values and the reference point, as well as the derivative values.

The main point of this section is that the reference area, span, and chord are just reference values.

Although it is conventional, for instance, that the reference chord be the mean aerodynamic chord of the

wing, there is no strict requirement that the reference values be tied directly to specific aircraft
geometry. In principle, the reference chord could be defined to equal the body length (this is done on

the space shuttle orbiter) or anything else that scales with the vehicle. The most important thing is to
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be consistent in the use of the reference values; always use the same reference values that were used for

the predicted data base (unless you are prepared to adjust the predictions to the revised references and

live with the resulting confusions). For instance, if the predictions use the root chord for the

reference value (a practice we have seen), resist the temptation to "correct" this error by doing your

analysis with the mean aerodynamic chord for a reference; the inconsistency thereby introduced creates

problems and solves nothing.

For variable-geometry aircraft, some projects establish reference geometry values that change as a

function of configuration. Other projects establish a single set of reference values used with all con-

figurations. There are arguments for both approaches, but you should simply adhere to the conventions

established by the project.

5.2 AIRCRAFT MASS CHARACTERISTICS

Accurate mass distribution data are important to flight test analysis. The aircraft mass charac-

teristics relevant to rigid-body motions are weight, center of gravity, and moments of inertia. Weight

and longitudinal center-of-gravity position are easy to measure and are routinely monitored during both

test and operational flights. Moments of inertia and vertical and lateral center-of-gravity positions

require special tests, which are an important part of the flight test program.

In some restrictive circumstances (discussed in detail in Section 5.2.1) you can get by without much

of the mass data, but such circumstances are the exception rather than the rule. Assume that you will

need mass data unless it is demonstrated otherwise.

The flight test plan should provide for accurate monitoring of the mass characteristics throughout

the flight test program. This monitoring can require significant time, money, and effort, particularly

for large aircraft: therefore, if you neglect to plan sufficient resources for the task, you may be

forced to accept either poor flight results or cost and schedule overruns. In preparing for each test

flight you should verify that you have all the required mass data for the flight. You cannot reliably

reconstruct mass data after the flight test program is completed, the configuration is changed, equipment

in the aircraft is moved, and the records of vehicle changes and loadings are lost (if they ever existed).

If you have inaccurate mass data, you will have inaccurate test results, so the mass data deserve the same

care and attention to detail as the flight instrumentation system.

There are four principal uses of aircraft mass characteristics for stability and control derivative

estimation, having different levels of importance and different accuracy requirements. Sections 5.2.1 to

5.2.4 discuss these uses, and Section 5.2.5 discusses sources of mass data.

5.2.1 Nondimensionalization

The most important use of aircraft mass characteristics is for nondimensionalization of the deriva-

tives. Let us use a simple form of the q state equation to illustrate this use:

:-s___Cm = -s_L_ qc+ )
Iy ly (Cmmm + Cmaa + Cmq 2V Cmb

Defining the dimensional derivatives

(5.2-1)

Mm _ (5.2-2a)
= Iy Cmm

M6 _ (5.2-2b)
= ly Cm6

Mq -s_ (5.2-2c)
= 2Vly Cmq

Mb _ (5.2-2d)
= Iy Cmb

we can write Equation (5.2-1) as

= M_ + M66 + Mqq + Mb (5.2-3)

There are no mass data appearing explicitly in Equation (5.2-3). In similar manner, we can write all

of the equations of motion in terms of dimensional derivatives (primed dimensional derivatives for

lateral-directional equations, as discussed later in this section), eliminating the explicit appearance

of mass data in the equations (provided we neglect gyroscopic effects). Therefore, assuming that the

dimensional derivatives are constant during a maneuver, we can estimate the dimensional derivatives from

the flight data alone, without considering mass data.
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Given the dimensional derivative estimates, the inverse of Equation (5.2-2) gives the nondimensional
estimates; for instance,

ly

Cm_ = _ Ms (5.2-4)

The nondimensional derivative estimates are directly proportional to the moments of inertia; therefore,

any given percentage error in the inertia data will directly cause the same percentage errors in the non-

dimensional derivative estimates. By this mechanism, errors in Ix, ly, Iz, and weight cause proportional
errors in nondimensional derivative estimates.

Through a similar mechanism, errors in Ixz cause errors in the nondimensional derivative estimates.

(Errors in other cross products of inertia would have similar effects, but Ixz is the only important

cross product for most aircraft.) To see this effect, start with a simple form of the p and r state
equations.

Plx - ;Ixz = qsbC_ = qsb(C£BB + C£aa + ...)

-Plxz + ;I z = qsbC n : qsb(CnB6 + Cna6 + ...)

The corresponding dimensional equations are

_-x -= L_ + L_6 + ...

(5.2-5a)

(5.2-5b)

(5.2-6a)

- p Ixz
Iz-z- = NBB + N66 + ... (5.2-6b)

Equation (5.2-6) still has explicit mass data on the left side. The form independent of mass data is the

primed derivative form,

= L_6 + L_6 + ... (5.2-7a)

= N_B + N_a + ... (5.2-7b)

where the primed derivatives are defined by the equivalence between Equations (5.2-6) and (5.2-7). To

get equations for the primed derivatives, solve Equation (5.2-6) for p and _ and equate matching terms.
For example,

N_ _ Na + L6Ixz/l z (5.2-8)

i - l_z/(Ixlz)

The estimates of the primed derivatives are independent of the mass data.

Given the estimates of the primed derivatives, we can find the estimates of the nondimensional deri-

vatives by substituting Equation (5.2-7) for p and _ in Equation (5.2-5) and matching terms. In par-

ticular, matching the a terms gives

Ix Ixz

C_ =_- (k_ -T_-N_) (5.2-9a)

Iz Ixz

Cna =_--_- (N_ -¥z--L_) (5.2-9b)

For ailerons, the two terms subtracted in Equation (5.2-9b) may nearly cancel; typically !xz is much

smaller than Iz, but L_a is much larger than N_a. The result is that small errors in Ixz can cause large

percentage errors, or even changes of sign, in the Cna a estimates. By similar reasoning, C_a r estimates

are sensitive to errors in Ixz. The estimates of C_a a and Cn6 r are not measurably influenced by Ixz,

because in these cases the Ixz term is negligible compared to the other term.

We have explained the mechanisms by which errors in the mass data cause errors in the estimates of

the nondimensional derivatives. Any such errors in the nondimensional derivative estimates will be con-

sistent for almost all flight conditions, maneuvers, and analysis techniques. It is seldom practical to
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find mass data errors based on internal evidence in the flight data (consistent disagreements with pre-

dictions are the best clues that such errors exist). Because of this, you must be particularly careful

about checking the computations of the mass data enough so that you are confident that the data are

accurate. You cannot try out the data to see how they work.

Ross (1980) documents a case in which the initial analysis used erroneous inertia values.

Consistent differences between the predicted moment derivatives and those estimated in flight led to

suspicion of possible errors in the inertia values used. Subsequent ground-based tests verified signifi-

cant errors in the moments and cross products of inertia; the roll moment of inertia was in error by

about 30 percent, and Ixz had the wrong sign. Ross then used equations similar to those in this section

to correct the initial derivative estimates. The revised nondimensional estimates agreed significantly

better with the predictions than had the initial estimates.

For some purposes, dimensional derivative estimates might be adequate, in which case you might get by

with far less data on mass characteristics. In particular, if dimensional derivative estimates are suf-

ficient, you probably do not need moment-of-inertia data (unless gyroscopic effects are important, and

even then accuracy requirements are less stringent). If your sole objective is to model the aircraft

motions at exactly the same configuration, flight condition, and loading as tested, then dimensional

derivative estimates can satisfy this objective. We have seen test programs, analyses, and simulators

based solely on dimensional derivatives. The dimensional approach is most likely to be appropriate for a

program with limited objectives.

For most programs, estimation of dimensional derivatives is unacceptable for three reasons. First,

all comparisons with values from any other source require nondimensional derivatives. The dimensional

derivatives are useless for comparing with wind-tunnel or computed values (unless you dimensionalize the

wind-tunnel or computed values, which requires knowledge of the mass data). Dimensional values early and

late in the same flight are different, even at the same flight condition, because of fuel usage. It is

difficult to present meaningful plots of dimensional data because there are fewer comparable points on

any one plot, and of course you need many more plots, or more complexity on each plot, to describe the

loading applicable to each point.

The second, closely related, reason is that dimensional derivatives are difficult to extrapolate to

other conditions and loadings (unless you know the mass data, which gets back to the nondimensionaliza-

tion problem). Thus, you need to test more conditions, and you have less preflight assurance that a test

at a new condition will be safe than if you used nondimensional derivatives.

The third reason for using nondimensional derivatives is that test maneuver requirements for esti-

mating dimensional derivatives are much more stringent. Dimensional derivatives are strong functions of

dynamic pressure and velocity. Therefore, if dynamic pressure or velocity change much during a maneuver,

then the dimensional derivatives are not constant and cannot be accurately estimated by most parameter

estimation techniques. Changes of as little as 1 or 2 percent in dynamic pressure can sometimes cause

noticeable problems in longitudinal cases; a 5 percent change is usually tolerable for lateral-directional

cases. (You can work with somewhat larger variations than these, but you must spend a lot more time on

the analysis and will get more scatter in the results.) These requirements demand carefully designed and

accurately controlled maneuvers initiated from stabilized flight. The nondimensional derivatives are

insensitive to dynamic pressure and velocity over large ranges; we have successfully analyzed maneuvers

where dynamic pressure varied by a factor of two or more. In principle, these same comments apply to

variations in weight and inertia during a maneuver, but such variations are important only in a few spe-

cial circumstances (like sweeping the wings during a maneuver).

Admittedly, it is possible to separate dynamic pressure and velocity effects from weight and inertia

effects, defining partially dimensionalized derivatives that would be insensitive to velocity and dynamic

pressure. Equivalently, you can use nominal mass data when accurate mass data for the vehicle tested are

unavailable. We have used nominal mass data as a last resort or to start analysis before accurate mass

data were available. This solves only a few of the problems of dimensional derivatives. For most

programs, the necessity for accurate nondimensional derivative estimates is a primary factor in the

requirements for accurate mass data. We typically require the mass and moments of inertia accurate

within 2 or 3 percent. Inertia errors much larger than this would become the dominant error source of

the more accurate nondimensional derivatives.

5.2.2 Moment Reference

The second use of mass data is to define the moment reference point of the flight estimates. The

equations of Chapters 2 and 3 are valid only in an axis system referenced to the aircraft center of

gravity. All estimated moment coefficients are thus referenced to the aircraft center of gravity (the

reference point is irrelevant to force coefficients).

The moment coefficients from two flight maneuvers with different centers of gravity are not directly

comparable. Similarly, the moment coefficients from a flight maneuver are not directly comparable with

predictions unless the reference point for the predictions coincides with the flight center of gravity.

To compare moment data from different sources, you must first transform them all to a common refer-

ence point.
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For most aircraft, there is little variation in the lateral and vertical center-of-gravity positions
for various allowed loadings, and you can safely neglect the lateral and vertical reference translations.

You will run into lateral trim problems long before lateral center-of-gravity motion causes measurable

changes in the stability and control derivatives (except for the nuisance bias parameters). Gainer and

Hoffman (1972) gives complete transformation equations in three axes. To apply the transformations, you
first need to know the flight center-of-gravity position; if you are neglecting the vertical and lateral
transformations, it is sufficient to know the longitudinal component of the flight center-of-graviy posi-

tion.

For longitudinal translation of the reference point, the most important transformations are

Cmeref = Cm_flt + Xref c- Xflt CN_ (5.2-I0a)

Xref - Xflt (5.2-10b)
CnBref = CnBflt + b CyB

where the subscript flt indicates a value referenced to the flight center of gravity and ref indicates a

value referenced to any other reference point. The values Xflt and Xre f are the longitudinal positions

of the flight center of gravity and the reference point, respectively, in the same units as b and c; Xflt

and Xre f can be measured from any arbitrary point because they are subtracted, but they must be measured

with the positive direction to the rear of the aircraft. This sign convention for center-of-gravity
position is universal, so we will use it even though it is opposite to our X axis. (This difference

probably arose from conventional axis systems for different disciplines; aircraft construction jigs

define X axes positive rearward). The transformation of Cm_ and CnB is crucial to aircraft stability,

and you can never neglect it. It is one of the major factors determining the safe range of flight

center-of-gravity positions.

Transformations of control derivatives are occasionally important:

Cm6ref = Cmaflt + Xref c- Xflt CNa (5.2-Iia)

Cnaref = Cnaflt + Xref b- Xflt CYa (5.2-Iib)

The equations for transforming damping derivatives are more complicated, but we have never seen flight
estimates of damping derivatives accurate enough to justify transforming them (unless the reference point
is ridiculous, like outside the vehicle). See Gainer and Hoffman (1972) for these equations. To compare

flight and predicted values, either transform the flight values to the reference point of the predictions
or transform the predicted values to the flight center of gravity. Both options have small, but some-

times troublesome, problems.

The problem with transforming the predictions to the flight center of gravity is obvious: The flight
center of gravity can be different for each maneuver, making presentation difficult. If the flight

center-of-gravity positions are essentially coincident for most or all of the test maneuvers, this objec-
tion does not apply, and the approach works well. This is often the case for unpowered aircraft. This

approach is also good for looking at results from individual maneuvers.

Presentation is simplified if you transform the flight values to the single reference point of the

predictions. The problem with this approach is that it can introduce extra bias and scatter in the

flight data. To see the source of the extra scatter, look at Equation (5.2-I0a). The flight estimate of

Cm_ , translated to the reference point, consists of two terms: the raw flight estimate of Cm_ and a

translation term proportional to CN_. Therefore, the error in the translated Cm_ equals the error in the

raw Cm_ plus the error in the translation term. If the reference point is far from the flight center of

gravity and the flight estimates of CNe are biased or scattered, then the translation can add large bias

and scatter to the flight Cm_ estimates. We observe this problem, for instance, on the space shuttle

orbiter at hypersonic speeds, where the force derivatives have a lot more scatter than the moment deriv-

atives. If the reference point is close to the flight center of gravity or if the flight estimates of

CN_ are accurate, then the translation will cause no problems.

There are two compromise approaches to avoid or alleviate these problems. One compromise is to

define a reference point in the middle of the flight center-of-gravity range and translate both flight
and predicted data to this reference. This minimizes the magnitude of the translation term for the

flight data and thus minimizes the errors added by the translation. The cost of this improvement is the

possible confusion caused by the use of a reference point different from that used for other purposes.
Of course, it may be that the reference point of the predictions is already near the middle of the flight

center-of-gravity range, in which case you probably have few translation problems (unless the flight
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center-of-gravity range is large). This compromise helps primarily when the reference point for the pre-

dictions is something unreasonable, like the tip of the nose.

Another compromise is to use the predicted CN_ or fairings of the CNe flight estimates to translate

the flight estimates to the reference point. This is appropriate when the individual flight estimates of

CN_ have a lot of scatter. The disadvantage of this approach is that it confuses matters by mixing esti-

mates from individual flight maneuvers with predicted data or fairings of flight data. You no longer

have a simple comparison of predictions with the data from each flight maneuver.

We have concentrated on Cm_ because the Cm_ translation is usually the most important longitudinal

one and thus the one where most problems occur. The same comments apply to all the translations that are

big enough to be important. The lateral-directional derivative most affected by translation is CnB. We

have emphasized potential problems because there is not much to say about situations in which there are

no problems. You might analyze many test aircraft and never have problems with translating data to the

reference point of the predictions (the most common approach). If your flight data are all at one center-

of-gravity position, the reference point of the predictions is at the same position, and the flight CNa

estimates are accurate, then this entire section (5.2.2) is somewhat moot. You should be aware, however,

of the potential problems so you will recognize them if they do arise.

5.2.3 Sensor Reference

In addition to its role as the reference point for the aerodynamic moments, the aircraft center of

gravity is also the reference point for the sensor measurements. The angle-of-attack and angle-of-

sideslip vanes and the linear accelerometers sense values that are dependent on the sensor locations.

Equation (2.3-2) shows the form of this dependence. The sensor positions in Equation (2.3-2) and the

similar equations in Chapter 3 are all in terms of the distance from the sensor to the flight center of

gravity.

Whether you model the sensor positions in the observation equations or you correct the sensor data to

the center of gravity, you need the same information: position of the sensors relative to the center of

gravity. This generally requires knowledge of the sensor position and the center-of-gravity position ex-

pressed in the same fixed reference frame. Because the effects of sensor position and center-of-gravity

position are so related, we discuss them together here; consistent errors in all the instrument positions

have the same effect as an error in the center-of-gravity position.

The sensor position relative to a fixed frame is easy to measure (unless you forget to do it until

the sensor package is removed or the aircraft becomes inaccessible to you). You usually know the x com-

ponent of the center of gravity accurately. The y component of the center of gravity is usually very

close to zero and is, in any event, relatively easy to measure.

The z component of the center of gravity can cause serious problems but is often ignored because it

is relatively difficult to measure (at least compared with the x and y components) and has only a small

effect on the open-loop aircraft stability and control. If you ask what the center of gravity is, you

are likely to get only the x component unless you explicitly ask for all three components (and if you ask

for all three components, a common response is to question your need for the data and point out how dif-

ficult it will be to measure the vertical component).

Fortunately, the vertical component of the center of gravity usually changes little with different

loadings, which somewhat simplifies keeping track of it. In many cases, it is safe to use a single value

for the vertical component of the center-of-gravity position, independent of loading. You cannot, how-

ever, blindly assume that the sensors are at the same height as the center of gravity.

You should always be alert to the possibility of errors in the measured center-of-gravity or sensor

positions. Such errors occur regularly enough that you should make it a rule to examine the data speci-

fically looking for indications of them. You should check for such errors as soon as feasible after

the start of the test program and after any major changes in sensor positions or the flight center of

gravity. You should also check for errors after major changes in the bookkeeping that keeps track of

or accounts for these positions. For instance, if you have been getting raw sensor data, and someone

upstream of you in the data handling "improves" the data by correcting it to the center-of-gravity posi-

tion, then you better check for several possible sources of error. Check that they are using the same

values for positions, that they are using all three axes (not just x position), and that they are cor-

recting to the flight center-of-gravity position (not the reference position). Also check that they are

using the same equations for the correction. It is easy to get the signs wrong; the sign of the term for

correcting the data is the opposite of that in the observation equation, and there are often inconsistent

sign conventions for such things as vertical position. There seems to be about a 50 percent chance of

getting the sign of any given correction term right the first time, no matter how careful you are (well,

not quite that bad, but it sometimes seems like it). You need to do these checks soon enough that you

can recheck the instrument positions and the center of gravity before something significant changes on

the vehicle or it becomes innaccessible to you (for example, it crashes or it completes testing and is

transferred elsewhere). In checking the reasonableness of quoted sensor positions, there is no substi-

tute for going to the airplane and looking at the sensor package.

Errors in the measured center-of-gravity or sensor positions result in characteristic errors in

the matches of flight and estimated time histories; the primary method of checking for errors in the

measured center-of-gravity or sensor positions is to look for the associated characteristics in the time

history matches.
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To deduce what the time history errors should look like, look at the terms that correct for sensor

position in the observation. For the major terms, which are the only ones with measurable effects, the

correction term is proportional to one of the states or state derivatives, The error in the time history
match should thus be roughly proportional to the same signal. The error is not exactly proportional,

even in an idealized case with no noise, because the estimator adjusts the parameter estimates to take

out as much of the fit error as possible; the fit is based on these estimated parameters rather than the
true values, which are unknown. In spite of the distortion in the fit error introduced by the estimator,

the general character of the error remains similar and is recognizable by visual inspection. We look for
an error signal that is large where the correction term is large, large and of opposite sign where the

correction term is large and of opposite sign, and small where the correction term is small. The sign of
the error can be either the same as or the opposite of the correction term, but it must be consistent.

Additive bias or long-term error trends can somewhat confuse the issue but seldom distort the charac-
teristic shape beyond recognition.

Figure 5.2-1 illustrates the fit of flight and estimated time history data resulting from an erro-

neous specification of instrument position (the figure shows only the relevant signals). These data are

from the first flight of the 3/8-scale, remotely piloted F-15 aircraft (lliff et al., 1976). The data

and the problem are both real; we made the mistake illustrated here in our first attempts to analyze the

data. Not all cases showed the problem as clearly as this one; because this was one of the cases with

the most obvious discrepancies, we chose to investigate it in detail. Choosing cases that exhibit the

worst symptoms is an important early step in tracing problems.

The match between the measured and estimated roll rate is excellent. The estimated lateral accel-

eration generally follows the measurement but has a few areas of discrepancy. Some investigators would
refer to this match as being a good one (particularly if it were plotted on a less sensitive scale,

making the discrepancies less obvious); we have seen much worse fits described as excellent in the pub-
lished literature. Our general experience is that even small fit errors are grounds for suspecting that
something is wrong. We look for some identifying characteristics of the errors as clues to their causes.

In the case of Figure 5.2-1, we noticed (after investigating several unproductive hypotheses) some
correlation between the slope of p and the fit errors in lateral acceleration. At about 1.3 sec into the

maneuver, p has a large negative slope, and there is a significant negative error in lateral accelera-

tion. The slope of p becomes positive just after 2 sec, where there is a positive lateral acceleration
error. Just before 4 sec, the slope of p becomes sharply negative, as does the lateral acceleration

error. The correlation is not perfect; between 3 and 4 sec there is a large positive p slope with no

corresponding error, and there is some error in lateral acceleration just before 2 sec, where the p slope
is small. There is enough correlation, however, to establish a strong suspicion; distortions introduced
by the estimator could account for the uncorrelated errors.

Figure 5.2-1 also shows the computed p. Although there was no measured p for this airplane, the com-

puted signal is useful for this kind of debugging. The computed p plot shows clearly that ay looks a

lot like _ (with changes in sign, scale, and bias). The aileron signal (not shown in the figure) also

correlates strongly with ay, but significant side force directly caused by the aileron is physically

unlikely (and in any event, we were already estimating side force due to aileron as an unknown). The

derivative of p, however, affects ay through the term for sensor vertical position in Equation (2.3-2k).

Let us check the magnitude of this vertical position correction term. The peak values of p are about

1.5 rad/sec 2. Dividing by g _ 10 m/sec 2 gives a peak ay error of about 0.15 g per meter of vertical

position error. Fit errors of up to 0.03 g are evident; these would require about 0.2 meter of vertical

position error. This value is at least plausable enough to merit further investigation. The sensed ay

is quite sensitive to even small changes in vertical position because there are large p values in typical

lateral maneuvers. This conclusion holds for most aircraft.

Motivated by this plausability check, we asked for vertical center-of-gravity and sensor position

data. We found that the lateral accelerometer was 15 cm below the center of gravity. Our initial analy-

sis had relied on a statement that the accelerometers were essentially at the same height as the center

of gravity. Figure 5.2-2 shows the match that results from reanalyzing the data with the correct value

for the vertical position of the lateral accelerometer. The fit of ay is much improved. There is also a

slight improvement in the p fit, but the p fit of Figure 5.2-1 is good enough that the difference is hard

to see.

This 15-cm error in the assumed position of the ay sensor had a significant effect on several of

the derivative estimates. The largest effects were on the side force derivatives (which is no great
surprise). Figure 5.2-3 shows the flight estimates of side force due to sideslip with both the correct
and the incorrect values of accelerometer position. Figure 5.2-3(a) shows data from the initial anal-

ysis, which used the incorrect accelerometer position. The dashed line is a fairing of this data. Fig-

ure 5.2-3(b) shows data obtained using the correct accelerometer location. The solid line is a fairing
of this data, and the dashed line is copied from Figure 5.2-3(a) for reference. Correcting the assumed

accelerometer location increased the magnitude of the CyB estimates by about 50 percent at low angles

of attack. The estimates with the correct accelerometer position agree much better with predictions
(not shown).

These consistent errors in the side force derivatives suggest a second diagnostic indicator of sensor

position errors (the first indicator is the characteristic time history mismatches). If you have good
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agreement with predictions of moment derivatives but see consistent bias differences between predictions

and flight estimates of side force derivatives, then be suspicious of an erroneous value of the vertical

position of the ay sensor or the center of gravity. Similar differences in the normal force derivatives

can indicate erroneous values of the longitudinal position of the an sensor.

Thus, we see that a relatively small error in the vertical position of the ay accelerometer resulted

in moderate discrepancies in the time history match and dramatic errors in the estimated side force

derivatives. We learn two lessons from this result. First, it emphasizes our statement that you need

accurate measurements of the center-of-gravity and sensor positions in all three axes.

Second, you must be critical of your results. Assume that there are errors in your first analysis of

an aircraft (this assumption is probably more accurate than most). Take an actively negative attitude,

and look for the errors (it is much less embarassing to find your own errors before other people use the

results). Recall that the case shown here was one of those with the most obvious discrepancies; in other

cases you might miss the discrepancy unless you actively look for it. Even if you noticed the discrep-

ancy, an optimistic attitude might tempt you to dismiss it as a "pretty good fit;" considering that most

of the fits were better, you might rationalize that this maneuver had an instrumentation problem or tur-

bulence. (We have collected a long list of such rationalizations suitable for explaining almost any

data.) Discrepancies like those in Figure 5.2-1 merit thorough investigation, and it is risky to dismiss
them lightly.

5.2.4 Kinematics

We use the term "kinematics" to describe the basic dynamics of rigid-body motion. This specifically
excludes characterizations of the aerodynamic forces acting on the vehicle. The kinematics largely

derive from the geometry of the vehicle and the reference axes. For instance, the differential equations
for the Euler angles (Equations (2.2-22g) to (2.2-22i)) derive purely from the geometry of the axis trans-

formations and thus are kinematic equations. The kinematics also include such effects as gyroscopic and
Coriolis terms, which depend on angular rates and moments of inertia but not on aerodynamics, It is

these gyroscopic and Coriolis terms that interest us in this section, because they require knowledge of
the moments of inertia.

For most stability and control maneuvers, the gyroscopic and similar terms are small; many of the
terms are zero for symmetric airplanes, Most of the other terms are usually negligible because they are

proportional to products of small angular rates and also to small cross products of inertia. The two

terms most likely to be important are the Ixz terms on the left sides of Equations (2.2-22e) and

(2.2-22f). For most aircraft, Ixz is the only significant cross product of inertia.

The longitudinal analysis of the first flight of the space shuttle (lliff et al., 1981) illustrates

one of the exceptional situations in which several of the normally negligible gyroscopic terms are signi-

ficant. There were no intentional stability and control maneuvers on the first flight and little longi-
tudinal maneuvering of any kind. There were several lateral bank maneuvers for trajectory control,

Kinematic coupling resulted in some longitudinal motion during these bank maneuvers. Small though they

were, these longitudinal motions provided the only longitudinal data available in some regimes of the
entry, The shuttle had a flight instrumentation package with sufficient resolution to measure these

small motions. Figure 5.2-4 shows a time history match of one of these maneuvers. Although the data

from these maneuvers were of marginal quality for several reasons, they were adequate to establish rough
approximations of aerodynamic derivative values for safety-of-flight purposes. The small gyroscopic
effects played a central role in these maneuvers.

Gyroscopic moments from a rotating engine can be significant in some configurations, particularly

those with high power-to-weight ratios. The terms proportional to Ixe in Equations (2.2-22e) and

(2.2-22f) model this effect; for multiengine planes and multispool engines, the equations are slightly

more complicated but similar in form, Inclusion of these terms requires knowledge of the moments of
inertia of the rotating parts of the engines; you need the moments of inertia only about the axes of

rotation. Your accuracy requirements for the engine inertia data can be fairly loose because the engine

gyroscopic moment is small enough that an error of a few percent is negligible. The accuracy require-
ments vary depending on the magnitude of the engine gyroscopic terms, but as a general guideline, engine
inertias accurate to 10 percent should suffice for all but the most exceptional cases, In many cases you

need only know the order of magnitude so that you can establish that the term is negligible.

5,2,5 Sources

In this section, we briefly list the common sources of aircraft mass data (details can be found in

the references).

Our most common source of mass data is ground-based measurements. The weight and the longitudinal
and lateral components of the center of gravity can be accurately measured by scales under each wheel.

The vertical component can be measured by tilting the aircraft while on the same scales or by suspending
the aircraft, Swing tests measure the moments of inertia, using springs with known spring constants.

Wolowicz and Yancey (1974) gives the details of these and other ground-based measurement techniques, We

restrict the discussion here to a few general comments about using the results of the ground-based tests,

The first consideration in using ground-based tests is the necessity of adjusting the data to reflect
any differences between the ground test and flight configurations. Some of the most obvious differences

are the fuel and cargo loadings; the ground-based tests might be done with fuel tanks empty, full, or
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both. Safetyconsiderationsoftenprecludetestswithpartially full tanks. (Partially full tanksare
actuallya greaterfire hazardthanfull tanksbecauseof the fuel/air mixturein theemptyportionof
thetanks.) Youneedto extrapolateor interpolatethedatato the fuel loadingsof eachflight
maneuver.Thisprocessvariesin complexity,dependingontheaccuracyrequiredandtheavailable
instrumentation.Atypical schemeusesfuel quantitygaugesoneachtank,recordedeitherin the instru-
mentationdatastreamor ona pilot lap sheet. Amorecomplexschememightusefuel flowmetersoneach
of severaltanks,correctedbycomparingintegratedfuel flowswithpostflightmeasuredquantities(fuel
flowmeters,socorrected,areusuallymoreaccuratethanfuel quantitymeters).Thisschemecanbe
furthercomplicatedif fuel is transferredbetweentanksduringflight. In somecasesyoucangetbywith
nofuel instrumentationat all, perhapsbystartinga flight with full tanksandusinga predictedfuel
flow rate.

Otheradjustmentsto thegroundtest dataincludeadjustmentsfor cargo,passengers,stores,equip-
mentchanges,andconfiguration.Theadjustmentsaregenerallystraightforward.Thesearemostlyitems
withaccuratelyknownweightsandlocations. Thegreatestdifficulty is simplykeepingtrackof exactly
whattheflight loadingsare. It is easyto forgetto recordsomethingtrivial like howmanypilots were
ona particularflight. Landinggearpositionis acommonconfigurationdifferencebetweenground-based
tests andflight. Someground-basedtestsarepracticalonlywiththe landinggearextended.The
adjustmentfor landinggearis smallenoughthat youcanapproximateit, knowingthetotal landinggear
weight,withoutspecialtests. (Thelargesteffect is onthevertical centerof gravity.) Youcanalso
approximatetheeffectsof minorconfigurationchangeslike clippingwingtips.

Asanexampleof thekindof datayoumightuse,Table5.2-I showssomemassdatatablesusedfor a
remotelypilotedoblique-wingvehicle(Maine,1978).Table5.2-I(a)showstheemptyweightdataasa
functionof wingskewangle. Withthewingskewed,this vehiclehasa nonzeroIxy, but lyz is still
zeroandthusnotshown.Ixp is themomentof inertia of the propeller,themostsignificantportion
of the rotatingmassof the propulsionsystem.Table5.2-I(b)showsfuel loadingdataasa function
of timefromstart of thetakeoffroll (fuel consumptionduringwarmupis assumednegligible). This
tableassumesa constantknownfuel flowrateandusestheknownpositionsof thetwofuel tanks. The
Avaluesin Table5.2-I(b)addto theemptyweightdataof Table5.2-I(a);thereis a smallamountof
unusablefuel in thetanksevenwhenthe "all fuel expended"conditionoccurs,whichexplainsthenon-
zeroAat that condition.All the inertia datain thesetablesarereferencedto a nominalcenterof
gravityof 29.3percentof the referencechord. Thevertical centerof gravityis notsignificantly
affectedbyskewor fuel, andthelateral centerof gravityis onthe vehiclecenterline.

Thefinal adjustmentto ground-basedmeasurementsis translatingthemomentsof inertia to the flight
centerof gravity. Ourequationsof motionrequiremomentsof inertia aboutthecenterof gravityfor
eachmaneuver,notaboutsomearbitraryreferencepoint. Thetranslationis simple(Wolowiczand
Yancey,1974),but it is easyto accidentallyomit.

Wehavementionedbeing"careful"aboutmeasuringmasscharacteristics.It is difficult to expli-
citly statewhatyoudoto be"careful"in all regards,but thehandlingof referencepointsprovidesa
specificandpertinentexample.Youshouldalwaysexplicitly indicatethereferencepointof all data
that aredependentona referencepoint;momentsof inertia arein this classof data. Assumingthat
everyoneunderstandswhatreferencepointyouareusingconstitutescarelessdatahandlingandinvites
errors. If wereceiveinertia datawithoutanexplicit indicationof its referencepoint,wetakeit as
awarningof carelessness,andwefeel compelledto reviewtheprocessingof the inertia test data,
startingfromits raw form. Errors arise easily when, for example, one group assumes that everyone knows

they are using the wind-tunnel reference point, a second group assumes that the data are referenced to

the flight center of gravity, a third group forgets that a reference point is important, and the data are
really referenced to the pivot point of the test fixture. We can broadly generalize this principle:

Write out what you mean explicitly rather than assuming that others will know. The worst that can result

is that you present redundant data, a small price to pay for getting the results right.

Writing out assumptions also helps insure that your own analysis is internally consistent. The

hypothetical group that forgets the relevance of the reference point is in fact too large to ignore.

Such negligence can result in equations with errors or internal inconsistencies; it is this possibility
that makes us dubious when we receive data without a labeled reference point. Subsequent assurances that

"we always use the wind-tunnel reference point" do little to assuage our doubts (particularly if the

source cannot tell us exactly where the wind-tunnel reference point is).

A second good source of mass data is manufacturer's records of component buildup. If the manufac-

turer keeps meticulous records of the weight, position, and mass distribution of each component in the
aircraft, these records can give total aircraft moment-of-inertia data that are more accurate than those

from a swing test. As a flight data analyst, you will have little choice as to whether such records are

kept. To be worthwhile, these records must have been kept from the start and integrated with the pro-
duction change procedures. For a completed airplane, do not consider reconstructing the mass distribu-

tion component by component. On the other hand, if the manufacturer has maintained a serious weight
control and monitoring program from the initial design stages, this is probably the most accurate source
of mass distribution data available.

The use of manufacturer component buildup data is much like the use of ground-based test data. You

need to adjust the data to the exact configuration and loading of each flight maneuver and then translate
the data to the flight center of gravity. If the manufacturer is not specific about what configuration,

equipment, loading and reference point the data apply to, then the data probably are not worthwhile.

You can roughly estimate inertias from simple data like aircraft weight, wing span, general con-

figuration, and inertias of similar aircraft. Such estimates are good primarily for reasonability
checks.
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As a last resort, there are several ways of estimating mass characteristics from flight data, but for

flight test purposes, it is better to use other sources for mass data. Methods of estimating mass

characteristics from flight data span a wide range of complexity. Some of the simplest methods are the

most useful in some situations. Unfortunately, many of the simple methods presume knowledge of the

aircraft aerodynamics and are thus inappropriate for flight test, where their use amounts to circular

reasoning. For instance, you can trivially deduce the aircraft weight from the dynamic pressure and the

coefficient of lift. Unfortunately, in flight test you cannot assume that you know the coefficient of

lift for a given flight condition; you are more likely to be interested in deducing the coefficient of

lift from the weight and dynamic pressure. Similarly, if you know the pitching moment characteristics,

you can deduce the longitudinal center-of-gravity position from the control surface positions required to

trim at a given flight condition. The more knowledge you are willing to assume about the aircraft aero-

dynamics, the more readily you can deduce mass characteristics from flight data, but methods based on

knowledge of the aerodynamics have only minimal utility in flight test.

A class of methods more appropriate to flight test requirements involve applying known forces or

moments to the vehicle. Any time you apply a known force or moment, you can deduce information about

mass characteristics. For instance, suppose you drop a large known weight from the aircraft in level

flight (the weight having been stored in some way that does not affect the aerodynamics). One way (not

the only way, and probably not even the best) to deduce the aircraft weight from this drop is to maintain

the same configuration and flight condition (except for an) as before the drop. The aircraft weight

after the drop is

Wa : Wd/(an-1) (5.2-12)

where W d is the weight dropped and an is the normal acceleration after the drop. This equation does

ignore several small effects, like aerodynamic changes due to the changes in normal acceleration.

You are unlikely to use methods like Equation (5.2-12) to determine aircraft weight because you will

get better accuracy with less difficulty by simply weighing the aircraft on the ground. Flight measure-

ment of mass characteristics is a last resort, and you will use it only for quantities, like moments of

inertia and vertical center-of-gravity position, difficult to measure with available ground equipment.

There are numerous methods of applying known moments and forces. We already mentioned dropping known

weights. Similar principles apply to moving a known weight within the vehicle (perhaps pumping a known
amount of fuel from one tank to another). You can externally apply known forces and moments with rocket

engines (although you must be careful to avoid plume impingement and flow interference). Poulter (1972)
uses drag chutes instrumented with strain gauges,

It is possible (but seldom advisable) to estimate center-of-gravity position simultaneously with the

aerodynamic coefficients. The offsets of the instruments from the center of gravity are simply included

as additional unknown parameters to be estimated.

5.3 ATMOSPHERIC DATA

Useful atmospheric data include static pressure, density, and temperature as functions of altitude.

These data are needed to obtain true altitude by comparing onboard pressure measurements with the

atmospheric data tables. They also provide a possible substitute for onboard static pressure and tem-

perature measurements if the altitude is independently known (perhaps from radar). Atmospheric data are

seldom critical, but they can make the analysis easier and provide redundant data for cross checking.

Atomospheric data can be obtained from several sources. One of the most common sources is balloon

flights. For rough values, you can sometimes use a standard atmosphere, corrected based on ground-level
conditions.
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TABLE5.2-1.-- OBLIQUE-WINGAIRCRAFTMASSDATA

(a) Emptyweightdata

IX, kg-m2
Iy, kg-m2
IZ, kg-m2
IXZ,kg-m2
IXy,kg-m2
IXp,kg-m2

Wingskewangle,deg
0 15 30 45

314
602
824
69
0
0.241

3O2
622
824
69

-54
0.241

262
648
824
69

-94
0.241

211

718

824

69

-108

0.241

(b) Fuel loading data

Event Total mass, a Center of gravity, AIy and AIz,b

kg percent c kg-m 2

Start of takeoff roll 414 28.0 54

Forward fuel expended 400 31.5 12

All fuel expended 383 33.2 3

Ti me,

min

0

36

78

AIxz, b

kg-m 2

3

3

0

aAssumes a fuel flow rate of 0.39 kg/min.

bThe values in these columns are added to the empty weight data in Table 5.2-I(a) to obtain

the data adjusted for fuel loading.
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The flight test maneuvers are the part of stability and control testing that is most visible to

people outside the specialty area. The entire test team and interested outsiders generally watch the
test flights. During the second space shuttle entry, for instance, the stability and control maneuvers

drew significant media attention (there were no intentional test maneuvers on the first flight). Mun-

dane details such as instrumenting the vehicle and analyzing the data are secondary, mentioned only
when explaining the purpose of the maneuvers. These external viewpoints distort the modern flight test

process; flight test no longer consists solely of flying the airplane in various conditions to see if

it breaks. We must acknowledge, though, that in spite of all the other work involved, flying the air-

plane is the basic element of flight testing.

This chapter discusses the kinds of flight maneuvers you use for stability and control derivative
estimation. The discussion ranges from flight scheduling to design of individual maneuvers. A complete

flight test program will include numerous other maneuvers for testing things such as performance, han-
dling qualities, static and dynamic structural characteristics, system operation, and mission suit-

ability. A major part of flight test planning is the integration of the various maneuver requirements

and flight restrictions arising from different disciplines. In some cases, a single maneuver can meet

the requirements of more than one discipline (Mulder et al., 1979).

6.1 THE FLIGHT ENVELOPE

The flight envelope is the set of all conditions at which the aircraft can safely fly. The flight
envelope includes combinations of Mach number, altitude, velocity, dynamic pressure, angle of attack,

normal acceleration, weight, center of gravity, flap position, wing sweep, engine power settings, and

other parameters.

6.1.1 Envelope Coverage

No single test maneuver can possibly explore the complete flight envelope of an aircraft. The first
step in planning flight test maneuvers is determining the flight envelope your tests must cover. This

decision, more than anything else, determines the duration of the flight program. For some purposes,
testing at a single flight condition is adequate (for instance, if your purpose is just to try a new

identification algorithm rather than to learn anything new about the airplane). A few maneuvers in a

single flight may be adequate for testing at a single flight condition.

For flight testing a new airplane design, you will need to test at a matrix of aerodynamic con-
ditions covering the entire flight envelope. For a high-performance airplane with a large flight enve-

lope, this testing usually spans hundreds of maneuvers, dozens of flights, and months of time. Some of

the parameters defining the flight envelope do not directly affect aerodynamics and thus can be omitted
from the test matrix. For instance, weight is always a factor in defining the safe flight envelope, but

it has little to do with aerodynamics. Structural deformations related to weight affect the aerodynamics

in principle, but the effects are too small to measure in most cases.

Requirements may vary in different parts of the flight envelope, depending on operational require-
ments and predicted problems. If small errors in the predicted aerodynamics would result in unacceptable

characteristics (or if they are unacceptable as predicted) at a normal operating condition, where full
aircraft capability is required, then you will need extensive data near the problem flight condition. If

the predicted aerodynamics indicate docile behavior at a flight condition encountered only in an emer-

gency, where the only requirement is to come back in one piece, then a cursory flight check for gross

errors in the predictions is adequate. You should do at least a cursory flight check in all areas of the
aerodynamic flight envelope, no matter how benign the predicted behavior; one of the things you are

looking for in flight test is errors in the predictions. A corollary of Murphy's law states that if you
omit all flight testing at a condition predicted to be benign, then the predictions will prove to be wrong
at that condition.

The form of the flight envelope to be covered also influences how you will have to organize and pre-

sent results. When the aerodynamics are a function of many parameters, a coherent presentation of the
meters. Considerations of how to present the results can influence exactly what flight conditions you

request for test maneuvers.

6.1.2 Envelope Expansion

Testing a new airplane design is significantly different from testing a previously flown configuration

(we have participated in both types of test programs). A major factor in testing a new aircraft design is

expansion of the flight envelope. It is imprudent to take the airplane to the predicted limit of its per-
formance on the first flight. Instead, you restrict the first flight to the most benign conditions pos-

sible. From this point, you gradually expand the demonstrated and tested flight envelope to the limits of

the airplane's capabilities. This expansion of the flight envelope intrinsically involves extrapolating
data outside of the previously tested envelope to determine whether the first test flights into new

regimes will be safe. To minimize the effects of possible extrapolation errors, the envelope expansion

proceeds in small steps, requiring a large number of maneuvers and flights.

The envelope expansion process places special demands and constraints on the test maneuvers. You can
do maneuvers only in the cleared portions of the flight envelope. Near the extremes and in newly explored

parts of the envelope, you may be restricted in the magnitude and type of maneuvers allowed until there is
more confidence in those areas.

_'_ _,,_ _OT F_L_j_'O pAGE (xO INTENTIONAtLY BI.,1M_-
PRECEDING pAGE _--_,_ ";" _-
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There is a quandary in these restrictions in that you need good quality maneuvers to gain the con-
fidence that you need before you are allowed to do the good quality maneuvers. The solution involves

designing the best maneuvers possible within the constraints, getting the most information out of the

available flight data, and then relaxing the constraints to the extent consistent with flight safety.
In critical flight regimes, this confidence building can be a slow process. After five space shuttle

flights through some regimes there were still constraints on the allowable maneuvers in those regimes.

Time is a major constraint in envelope expansion because results from some maneuvers are needed

to clear the airplane for subsequent flights. In a fast-paced envelope expansion program, you will
be extremely conscious of the tradeoff between timeliness and thoroughness. To meet schedule demands,

you will be forced to put out a preliminary data analysis that is adequate for safety clearance.

After the envelope expansion phase, when you have time for a more thorough analysis, you can publish
refined results.

The constraints on testing a previously flown configuration or a minor modification of a previously
flown configuration are much less stringent. We are often involved in such tests to obtain data for

control system studies, simulators, or other purposes. After a few initial flights to test the data

system, you can get hundreds of maneuvers, covering the entire flight envelope, in one or two flights.

Furthermore, the test flight conditions can be spaced farther apart than in an envelope expansion program
because interpolation is more reliable than extrapolation.

6.1.3 Scheduling

We leave to management texts the job of discussing critical paths, program evaluation and review
technique (PERT), and such management tools for scheduling. On any project large enough to use such

formal tools, the flight data analyst will have little influence on planning the schedule. This does

not mean that scheduling is an issue you can ignore. Indeed, scheduling can be a crucial factor in
whether you get usable data or not, and you should be aware of the potential problems so that you are

better equipped to avoid them. The less influence you have on the schedule, the more attention you
have to pay to ensuring that you get usable data (see Section 1.5 regarding success-oriented programs).

In the ideal flight test program (from the data analyst's point of view), you fly one or two checkout

flights and then ground the airplane until you have done enough analysis to tell whether there are data
system problems. Realize that every flight made with a bad data system might have to be reflown. Flights

made with "small" data system problems could require several times the expected analysis effort to find

and fix the problems with confidence (our definition of a small problem is one that is fixable). For
these reasons, you want to minimize the number of flights with an unvalidated data system. You can

achieve this either by slowing down the flight schedule or by speeding up the data system validation (it

will probably be easier to influence the latter). If you are forced into a rush flight schedule, you
must place high priority on rapid validation of the data system; cut those corners necessary to process

and analyze some data as rapidly as possible. The analysis need not be detailed enough to publish, even
as preliminary data; it just needs to identify whether there are data problems.

Even after the data system is checked out, the data from any particular maneuver can be bad because of

poor maneuver execution, data dropouts, sensor failures, turbulence, aircraft characteristics signifi-

cantly different than predicted, or other reasons. Therefore, you should continue to allow for repeat
maneuvers. The safest policy is to fly every maneuver at least twice and critical maneuvers three or four

times. Even then you should allow contingency time for other maneuvers in case analysis reveals generic

problems (and the analysis must be far enough along to reveal such problems while you still have the
option of flying more maneuvers). You can then afford to lose some data. If you are fortunate enough to

have good data for all the maneuvers, the duplicate data will help give confidence in the results.

If you complete the entire flight program before analyzing any data, and you perform no repeat

maneuvers, then you have a miniscule chance of getting good data and a somewhat larger chance of get-

ting useless data; but the most likely outcome is that you will spend many times the anticipated time

in analyzing the data, and you will get inconclusive results. You might be convinced that the results
are probably good, but you will be unlikely to stake your career on them.

6.2 SMALL-PERTURBATION MANEUVERS

Section 6.1 discusses general issues relating to the number of maneuvers and the selection of flight

conditions. We now begin consideration of the design of individual maneuvers. We concentrate first on
the design of small-perturbation maneuvers. A small-perturbation maneuver is a maneuver to obtain data at

a single flight condition. The aircraft motions are constrained to relatively small changes from the

reference condition. This section discusses influences on the use and design of small-perturbation
maneuvers. The issue of identifiability, which is an important influence on the maneuver design, merits

special emphasis and is covered in Section 6.3.

6.2.1 Reasons for Small-Perturbation Maneuvers

There are several reasons for our emphasis on small-perturbation maneuvers. The most important is that

small-perturbation maneuvers are naturally suited to locally linearized models of the aerodynamics. Large
maneuvers exceed the range of validity of locally linearized models and thus necessitate the use of non-

linear aerodynamic models. Nonlinear models are much more difficult to work with than linear models,
for reasons we discuss elsewhere (Maine and lliff, 1984; and others). Therefore, except where there are

compelling arguments for nonlinear models, we prefer to use linear aerodynamic models and thus small-

perturbation maneuvers. Conversely, nonlinear aerodynamic models require large maneuvers to identify
the nonlinearities; this point is moot if the requirement for a nonlinear model arises from inability

to stabilize the airplane well enough to do a small-perturbation maneuver.
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The second reason for emphasizing small-perturbation maneuvers is the difficulty of designing adequate

large-amplitude maneuvers. Even if you have tools to handle the nonlinear estimation problem, the design

of adequate large maneuvers is itself a formidable task. You will find sufficient challenge in the design

of good small-perturbation maneuvers.

The third reason for emphasizing small-perturbation maneuvers is sometimes so important as to make

all other arguments irrelevant: Safety considerations do not allow large amplitude maneuvers in new

aircraft designs or untested flight regimes. No matter how convincing your arguments, you may find that

small maneuvers are all that you are allowed; you must then design maneuvers to get the best data possi-

ble within the constraints of flight safety. If you are working with a proven airplane or on a high-risk

unmanned project, you will have considerably more freedom in maneuver design.

6.2.2 Signal-to-Noise Ratio

The most obvious question about small-perturbation maneuvers is how small they should be. The answer

to this simple question varies widely from case to case and is a compromise between conflicting pressures.

In this section we examine signal-to-noise ratio, one of the conflicting factors influencing the choice

of maneuver size; in Section 6.2.3 we examine other factors.

The signal-to-noise ratio is the amplitude of a signal divided by the amplitude of the noise. The

most precise definitions would use root-mean-square amplitude, but we typically use eyeball estimates of

peak amplitudes, which are adequate for the purposes here. Each of the aircraft sensors will have a dif-

ferent signal-to-noise ratio for a maneuver.

The definition and evaluation of the signal amplitude are relatively straightforward and need no

elaboration. A useful definition of the noise amplitude is more oblique. For our current purposes, the

noise is anything not accounted for by the deterministic part of the system model. This noise includes,

among other things, effects of sensor resolution and accuracy, quantization, atmospheric disturbances,

vibration (in the flight environment, not in the lab), and unmodeled nonlinearities. The relative sizes

of the various effects vary greatly.

It is important to consider the frequency content of the noise. Coherent high-frequency noise,

usually from structural vibration, is seldom a real problem. Such high-frequency noise is easy to filter

out. Aliasing of the high-frequency noise can cause problems, as discussed in Section 7.3, but these

problems are avoidable.

Figure 6.2-1 (duplicated from Section 7.3) shows some data contaminated by high-frequency structural

noise. The apparent signal-to-noise ratios of q and particularly of an are low. The noise amplitude on

a n is larger than the signal. Figure 6.2-2 (also duplicated from Section 7.3) shows the same data after

filtering. The noise amplitude is reduced by over an order of magnitude; it is barely perceptible on an

and is imperceptible on q. The apparently poor signal-to-noise ratio of Figure 6.2-1 is misleading

because the clean signals shown in Figure 6.2-2 can be obtained from the data. Section 7.3 discusses
these data in more detail.

Only the noise in the same general frequency range as the system response constitutes a problem.

Such noise is difficult to distinguish from system response and thus causes estimation errors. High-

frequency noise is readily distinguishable from system response and does not cause significant estimation

errors when properly handled. Therefore, to get a useful measure of the signal-to-noise ratio, you

should consider only the noise near the system frequencies. This avoids the misleading values

illustrated by Figure 6.2-1.

The signal-to-noise ratio is the primary factor favoring large maneuvers. If the noise is indepen-

dent of the maneuver size and if the system is perfectly linear, then larger maneuvers result in larger

signal-to-noise ratios, and thus better parameter estimates; the variance of the estimates is inversely

proportional to the square of the amplitude of the maneuver, all other things being equal. Of course,

neither of these assumptions is strictly true, but this idealization shows the general mechanism by which

larger maneuvers give better estimates. The assumptions break down severely at large amplitudes, but

signal-to-noise considerations place a definite lower bound, dependent on the noise level of the data, on

the usable maneuver amplitudes. As a rough quantitative guide, a signal-to-noise ratio of 100 is about

the best you can realistically expect. The most important signals should have a signal-to-noise ratio

of at least 10 to get good results.

Figure 6.2-3 shows the time history of a tiny longitudinal maneuver during the first space shuttle

entry (Iliff et al., 1981). To minimize the risks of this first entry, there were no intentional sta-

bility and control maneuvers (the extreme case of a limitation imposed by safety considerations). The

airplane was flown as smoothly as possible throughout the entry; transients the size of those in Figure

6.2-3 are unavoidable with the existing shuttle control system. This maneuver would be too small to ana-

lyze with typical aircraft instrumentation; the O.l-deg/sec peak pitch rate of the maneuver is only a few

times the typical pulse code modulation (PCM) resolution for a pitch rate gyro channel. However, the

shuttle has a high-resolution data package, the aerodynamic coefficient identification package (ACIP),

specifically designed for stability and control analysis.

Even with this high-resolution data system, the maneuver shown in Figure 6.2-3 is about the lower

limit of what we can reasonably analyze on the shuttle. The limitation arises from the instrument noise

and vibration level (as the package is currently installed), which is significantly larger than the reso-

lution. The signal-to-noise ratio of the pitch rate and angle of attack is about 10; that of an is dif-

ficult to estimate but is probably about 1. The signal size in angle of attack is the 0.5 ° motion of the

signal during the maneuver, not the 40 ° total value. The dynamic signal in an is difficult to see; the
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steady increase during the maneuver is due mostly to increasing dynamic pressure and does not constitute

a response to the dynamics of the maneuver. We got reasonable (not excellent, but reasonable) pitch co-
efficient estimates from maneuvers of this amplitude but marginal to poor normal force coefficient esti-

mates; such qualities are about what we expect from examining the signal-to-noise ratio of Figure 6.2-3.

6.2.3 Other Sizing Considerations

Small-amplitude nonlinearities can define lower bounds on acceptable maneuver size. We normally

think more of large-amplitude nonlinearities, but there are some dead-band and hysteresis effects that

are apparent only for small motions. For instance, a control surface might have little effectiveness
until it deflects far enough to get out of the wing boundary layer or a small area of separated flow.

There is speculation, as yet unverified, that a similar small-amplitude nonlinearity could explain the

space shuttle's small oscillations between Mach 1 and Mach 2 and the apparently contradictory well-damped

response to larger inputs in the same regime.

Several factors favor small maneuvers. The first such factor is the requirement of linearity. As

the maneuver magnitude increases, the locally linearized model of the aerodynamics loses its validity.
The estimates gradually become poorer representations of the airplane, eventually passing an ill-defined

border between acceptability and unacceptability. For extremely large maneuvers, there is little we can

do except abandon either the maneuver or the linear model. For maneuvers near the border of accepta-

bility, there are several approaches to improving the quality of the estimates.

A closely related factor favoring small maneuvers is the necessity to maintain a nearly constant
flight condition. The locally linearized model applies only at a specific flight condition. If the
maneuver is large enough that the flight condition changes significantly, the linear model may become

inadequate. For example, you must control Mach number precisely for maneuvers at transonic conditions;

the aerodynamic coefficients at Mach 0.95 could be radically different from those at Mach 0.98. The
linear model is more flexible about changes in some flight condition parameters than in others. We can

tolerate large changes in dynamic pressure if we linearize using point-by-point measured values of
dynamic pressure (see Section 3.7); this adds significantly to the computer costs but not to the com-

plexity of the data analysis.

A maneuver can be quite large in some senses, while still meeting the requirements of a small-pertur-

bation maneuver. Figure 6.2-4 shows a maneuver designed for estimating Cm_. Maine and lliff (1979) dis-

cuss the details of the design of this maneuver. For now, let us note that the maneuver includes a 360 °

aileron roll, with large changes in altitude, attitude, acceleration, and dynamic pressure. However, the

angle of attack, elevator position, and sideslip angle (not shown) stay within relatively small limits.

This is a small-perturbation maneuver, and it was successfully analyzed with a linear model.

The final factor limiting the size of the maneuvers is flight safety. The maneuver shown in Figure

6.2-4 would be unacceptable in an envelope expansion program or on a large transport plane.

These considerations place lower and upper bounds on the acceptable maneuver amplitude. For most

aircraft, the range between the lower and upper bounds will be large, the best maneuver amplitudes being

those near the middle of the acceptable range.

This discussion has been more descriptive than quantitative. Table 6.2-1 gives a few specific num-

bers for reasonable maneuver amplitudes. We must emphasize, however, the severe limitations of these

rough numbers. First the numbers are oriented towards high-performance airplanes such as fighters; this
is the class of airplane with which we have the most experience (though we do have experience on a wide

variety of aircraft). For a large transport, you will generally use about the same displacement angles,
but smaller rates than these numbers indicate. Second, even for a given airplane, the maneuver ampli-

tudes will vary with flight condition. Finally, the magnitudes shown in the table for different signals

will often be inconsistent; a 2° angle-of-attack change might imply a l-g change in normal acceleration

for a high-speed condition.

6.2.4 Design Constraints

There are several practical constraints on the design of stability and control test maneuvers. This

section briefly lists the kinds of constraints we have most commonly encountered. Some of the constraints

are precisely defined; such constraints include control surface position limits and actuator rate limits.

The hardware is incapable of exceeding these limits.

Other constraints relate to the control system. It might be impossible to independently define the

position of each control surface without redesigning the control system. For instance, a single lateral
stick command often results in a blend of inboard aileron, outboard aileron, spoiler, and rudder motions

(or whatever combinations of surfaces the particular airplane has); in this case a maneuver with only out-
board aileron motion is not possbile. The control system often has feedback loops that are impossible or
unsafe to turn off. Such feedback loops present special problems, discussed in Section 6.3.4 You might

also encounter filters, electronic or mechanical, in the control system that limit your ability to make

sharp inputs.

Combinations of the aerodynamics and the control system can prevent stabilization at extreme

flight conditions. This can happen either because there is insufficient control power to trim at the
desired condition or because the airplane, though having enough raw power, is too poorly behaved to

stabilize at the condition. Extreme off-trim conditions may be impossible to reach safely, even in a

transient maneuver.
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Some constraints are vaguely defined. Many maneuver magnitude constraints, whether due to safety or

linearity considerations, have some flexibility. A maneuver with a brief transient beyond the stated

boundaries might be acceptable, while another maneuver that closely approaches several safety boundaries

could be judged as too risky for the expected return. In general, there are degrees of acceptability

rather than simple definite boundaries.

The requirement to maintain a constant flight condition falls in the flexible class. Section 6.2.3

discusses the distinction between flight condition parameters that can vary widely and those that must be

precisely controlled. The exact amount of acceptable deviation is seldom defined. This requirement is

often a major factor in maneuver design. Figure 6.2-5 shows a maneuver dominated by the requirements of

maintaining Mach number constant at 0.9 and angle of attack constant at 12 ° during a lateral-directional

maneuver. The airplane had insufficient thrust to maintain these conditions in level flight.

In more conventional flight regimes (level cruise flight) you often choose the order and sign of

inputs to minimize changes in the flight condition. If the first part of a lateral-directional maneuver

starts the aircraft rolling to the right, you might choose the sign of the latter part of the maneuver to

counter the right roll. Another approach is to delay until the end of a maneuver those inputs likely to

result in the largest upsets of the flight condition. This allows you to choose the time segment actually

used in the analysis so as to exclude the large flight condition changes.

One good approach to minimize the flight condition changes during a maneuver is to start from a non-

steady condition. For instance, if the maneuver will cause the aircraft to accelerate, start from a

decelerating condition. Figure 6.2-4 shows an example of applying this idea, which in this case reflects

pilot common knowledge: It is best to pull the nose up before starting a roll. The dynamic pressure

change in this maneuver would have been much larger were the maneuver initiated from level flight.

6.2.5 Pilot Involvement

Unless you have the capability of programming automatic inputs, the maneuvers must be such that a

pilot can fly them with the required precision. This constraint is best addressed by discussing the pro-

posed maneuvers with the pilot early in the planning stage. Kleingeld (1974) demonstrates precise execu-

tion of a demanding maneuver; extensive simulator training aided this task. The maneuver shown in Figure

6.2-5 illustrates extremely precise control in spite of demanding physical conditions (over 4 g) and

unusual attitudes.

A knowledgeable test pilot can often suggest alternative strategies for obtaining the data you need.

The suggestions sometimes can be as simple as restating the maneuver description in different terms. For
instance, an impractical maneuver requirement of starting an aileron pulse 1.8 ± 0.1 sec after a rudder

pulse takes on a more reasonable appearance when restated to require the aileron pulse at the time of peak

positive sideslip angle. Besides being easier on the pilot, the latter statement is probably a more
robust statement of your requirements, considering possible differences between your predictions and the

actual aircraft response. You may find that the pilot has an excellent instinctive feel for things that
sound complicated, like what kinds of inputs will excite the Dutch-roll mode (a subject likely to be of

much interest to you; see Section 6.3.2).

The maneuvers shown in Figures 6.2-4 and 6.2-5 were designed in close consultation with the test

pilot, who had a good understanding of the engineering objectives and made major contributions towards

designing a maneuver to meet the objectives. If you have good test pilots, take advantage of their
skills to help you design good maneuvers, rather than giving them yes/no choices. Flying test maneuvers

is, after all, their area of expertise. Even if you have automatically programmed inputs, the pilots

are likely to be helpful in designing the inputs.

A side benefit of actively involving the pilots in maneuver design is that they are then better

equipped to adjust to unexpected situations. You might have more stringent safety limitations than

expected because of in-flight failures or aircraft characteristics different than expected; a pilot
familiar with your objectives might be able to modify the maneuver to meet the new constraints instead

of abandoning the maneuver as impossible. The necessary modifications are sometimes so simple as to

be obvious if the pilot has a simple understanding of the objectives. Suppose, for instance, you
requested that a maneuver be initiated at 12 ° angle of attack, but the airplane is unexpectedly limited

to a maximum of i0 ° angle of attack. If the pilot has no more information than that, you will probably
lose a maneuver. If the pilot understands that your objectives just require the highest practical angle

of attack, estimated as 12 ° , the pilot might get you usable data by starting the maneuver at a 9 ° or 10 °

angle of attack.

You can encounter unexpected opportunities, as well as unexpected limitations. Even in the most
tightly packed flight programs, unforeseen limitations encountered in flight can force cancellation of

many of the activities planned for a flight, leaving idle time. If the limitations do not affect the

stability and control maneuvers (for instance, if only the flutter instrumentation fails on a flight
planned to gather flutter data), you have a good opportunity to gather extra data. Much of the cost of

a test flight is incurred getting the airplane in the air; the savings from ending a flight early are

usually negligible compared to the cost of the flight. Therefore, you want to get as much data as pos-
sible out of each flight as long as the airplane is safe to fly. A pilot with a good understanding of

your requirements can often improvise useful maneuvers on the spot instead of landing early for lack of

better things to do. Such improvised maneuvers need not be ideal, just useful.
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6.3 IDENTIFIABILITY

Identifiability is thecentralissuein thedesignof maneuversfor parameterestimation.Theissues
discussedin Section6.2placeimportantconstraintsonthemaneuverdesign,but theyservea secondary
role asmodifiersto theprimarygoalof identifiability. Theobjectiveof thestability andcontrol
test maneuveris to providegoodidentifiability withintheconstraintsimposed.

Theunknownparametersof a systemaresaidto beidentifiableif it is possibleto identify their
valuesbasedonmeasurementsof thesysteminputsandoutputs. Althoughit is commonto talk looselyof
thesystembeingidentifiable, thedefinitiondependsinherentlyonthe parameterizationof the system.
Almostanysystemcanbemadeunidentifiablebyallowingenoughof its parametersto beunknown;con-
versely,a systemcanoftenbemadeidentifiablebyspecifyingknownvaluesfor enoughof its parameters.
Therefore,it is morereasonableto talk abouttheparametersof the systembeingidentifiablethanabout
thesystemitself beingidentifiable.

Asweusetheterm,identifiability is definedfor a specificinput (thusthe relevanceto this
chapteronmaneuverdesign). It is trivial to demonstratesystemsthat haveunidentifiableparameters
for all possibleinputs;themosttrivial examplesaresystemswithnooutputs.Therefore,inputdesign
is obviouslynotthe onlyfactorin identifiability. Thesystemstructureandparameterizationarethe
primaryfactors,andtheydefinethelimits of whatis achievablebymaneuverdesign. In this chapterwe
focusprimarilyonmaneuverdesign.Naturally,the subjectsof maneuverdesignandidentifiability are
closelyrelated;youcannotdefinitively settle onewithoutconsideringtheother.

Weleaveformaldiscussionof identifiability to othersources.Maineandlliff (1984,chapter11)
discussesseveralaspectsof identifiability. PlaetschkeandSchulz(1979)comparesseveralproposed
methodsof automaticallydesigningmaneuversto "optimize"identifiability. Youcandesignmaneuverswith
goodidentifiability byfollowinga fewgeneralprinciples(discussedin Sections6.3.1to 6.3.4). Our
emphasisis oncriteria that areeasyto evaluatein practicalsituations;in somecasestheanswersare
obviousbyinspection,withtheappropriateinsight. Mostpracticallyencounteredidentifiability
problemsaresimple,oftentrivially simple. Avoidburyingyourheadsodeeplyin amorassof pedagogical
detail that youmisswhatis obviousto theunsophisticated.

6.3.1 IndependentInputs
Youmusthaveindependentinputsoneverycontrolsurfacefor whichyouintendto estimatederiva-

tives. Partof this requirementis obviousat first glance:Youcannotestimaterudderderivatives
if the rudderdoesnotmove.Therequirementthat the inputsbeindependent,althoughsimpleto explain,
is amajorsourceof confusionanderror. If themotionof onesurfaceis directly proportionalto the
motionof another,thenthereis nowayto distinguishtheeffectsof thetwoindividualsurfaces.
Aileron-to-rudderinterconnectsgivea classicexampleof this problem.Supposethepilot movesthe
lateral stick in anairplanewithanaileron-to-rudderinterconnect.Notonlydoesthe ruddermotionnot
helpthedata, it actuallydestroystheaileroneffectivenessinformation.Youcanestimateneither
aileronnor rudderderivativesfromsucha maneuver,eventhoughbothsurfacesmove,becausethemotions
of thetwosurfacesarenot independent.Thebestyoucandois estimateanequivalentcombinedeffec-
tiveness,ignoringthequestionof howmuchof theeffect comesfromeachsurface.

Therearemanycircumstancesin whichsurfacesmovetogether,asin theaileron-to-rudderinterconnect
example.In somecases,thecombinedequivalentderivativeis all youneed. In largeairplanesyousome-
timesfind that a singlecontrolsurfaceis physicallysplit into twoor moresegments,eachdrivenbya
separateactuator. In normaloperationyoudonotcarehowmuchof theeffectivenesscomesfromeach
segment,becauseall thesegmentsmovetogetherwithinthe accuracyof theactuators. (In anyevent,
superpositioningindividualsegmenteffectsmaynotworkwell, becauseof interferenceeffectsof theadja-
centsegments.)Therefore,exceptin failure-modetesting,youdonotneedmaneuverswith independent
inputsoneachsegment.

Multiplesurfacesmovingtogetherfor roll controlarecommon.Thesesurfacescanincludeinboard
aileronsnearthewingroot, outboardaileronsnearthewingtip, differential horizontalstabilizers,
asymmetricspoilers,andothers. In this case,the ratiosof surfacemotionsoftendependonflight
condition;theoutboardailerons,for instance,areoftenheldfixedduringhigh-speedcruiseflight. The
ratioscanalsodependonamplitude;the spoilerssometimeshaveadeadbandsothat theydeflectonlyfor
largestick motions.Furthermore,it maybedesirableto examinetheeffectsof controlsystemchanges
that involvedifferent ratiosof surfacemotions.Youusuallywantindependentinputsoneachof these
controlsurfaces;otherwiseyoumustestimatecombinedequivalentderivatives,whichhavelimitedutility.

It is acceptablefor surfacesto movetogetherduringpartof a maneuveras longasthereis inde-
pendentmotionelsewherein themaneuver.Theindependencerequirementappliesto themaneuverasa
whole,not to portionsof themaneuver.Figure6.3-1,for instance,illustrates a reasonableaileronand
rudderinput. Thesecondpulseprovidesrudderinformation,andthe first pulseprovidescombined
rudder-aileroninformation.Usingbothpulses,wecanreasonablyexpectto estimatebothrudderand
aileronderivatives.Thus,as longasthepilot doesbotha lateral stick pulseanda rudderpedalpulse
in eachmaneuver(a goodideaanyway,asdiscussedin Section6.3.2),theaileron-to-rudderinterconnect
doesnotdegradethe results.

Youcannotgetacceptableindependencefromactuatornonlinearities,noise,smalllags,deadbands,
or otherminordifferencesbetweenthemotionsof different surfaces.Alikely effectof suchminordif-
ferencesis that insteadof failing witha divide-by-zeroerror, theminimizationalgorithmwill diverge
or giveridiculousanswers(oftenwrongbyseveralordersof magnitude).Usefulindependentinputsmust
havelargeindependentcomponents.
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Indeed, the worst inputs are those with fairly small differences. If the inputs have large inde-

pendent components, then you can estimate independent derivatives. If two inputs are dependent or so

nearly dependent that you can neglect the difference, then you can at least estimate combined equivalent
derivatives, which have some utility, albeit limited. It is usually safe to neglect differences due

to such small problems as noise, actuator errors, and quantization. Your worst problems occur when two
inputs are different enough that you cannot neglect the difference, yet not different enough to allow

good independent estimates.

Nonlinear control laws are a common source of such troublesome differences. On the space shuttle, for

instance, the reaction control jets are inherently nonlinear, each jet being either on or off. There is a
blend of rudder and yaw-jet control in some flight regimes. Although the rudder motions and jet pulses

have characteristically different shapes, they tend to operate in the same direction at the same time.

This type of data is extremely difficult to analyze. Neither independent derivatives nor combined equiva-

lent derivatives work well. In fact, there is no approach that reliably works well, except to get dif-
ferent maneuvers with greater independence. The results are sensitive to small errors in modeling,

measurements, and predictions. You can get wide ranges of results from minor changes in maneuver times,
weightings, and other details. Therefore, the results are likely to reflect more the analyst's personal

judgments than objective deductions from the data. With data like these, you are likely to spend many

months getting questionable results; you might be well advised to abandon the effort at the start and
declare the data unusable.

6.3.2 Modal Excitation

Your inputs must significantly excite all the modes of the model you are analyzing and should minimize

excitation of unmodeled modes. This is probably the single most important principle of input design for

parameter estimation; it applies to any system (aerospace, economic, biological, or other). If you can

devise an input that excites the appropriate modes, you are over the biggest obstacle to designing a good

input; the rest of the design process consists mostly of modifying the input to meet constraints.

This principle is more a restatement of the problem than a solution. It does not indicate how to

design an input to excite the appropriate modes. The restatement does present the problem in terms more

understandable to people familiar with the dynamics of the system. The test pilot, for instance, can

probably suggest how to excite the longitudinal short-period mode without exciting the phugoid.

The design of inputs for good modal excitation separates into two issues: selecting appropriate

control surfaces or other control devices to use and specifying the shape of the input signals as a func-

tion of time.

Controllability is the theoretical basis for the selection of which control surface to use. To get

excitation of a mode, you must select control surfaces that make the mode controllable. A classic exam-

ple of a controllability problem is a structural shaker positioned at a nodal point. Such a shaker can-
not excite the mode that has a node at the shaker.

For aircraft stability and control analysis, the surface selection problem is relatively straight

forward. You are seldom in a position to specify the design and placement of control surfaces to be

used in testing. The decision reduces to which of the existing control surfaces to use. The selection

options are further reduced by the considerations of Section 6.3.1, often to the point of leaving no

decision to make.

In many cases you will have a choice between designing several maneuvers, each using one of the

control surfaces, or designing a single maneuver using all the control surfaces. If more than two sur-

faces are involved, compromise choices are also possible. Although other constraints can affect this

decision, adequate modal excitation is usually easier to ensure when you use several different surfaces

in the same maneuver. (However be sure to make the inputs independent, as discussed in Section 6.3.1.)

Section 6.4.2 gives a specific example of the advantages of maneuvers that use multiple control surfaces.

We can give little universally useful advice about how to specify the shape of the input signals for

achieving good modal excitation. For the specific case of the aircraft stability and control models that

we normally use, Section 6.4 gives examples of inputs that we have used with good results. For more

general situations and where there is less previous experience to draw from, the frequency content ideas

of Section 6.3.3 are helpful.

6.3.3 Frequency Content

The system modes are best excited by frequencies near the system natural frequencies. Input frequen-

cies much higher than the system natural frequencies result in negligible response (or excite higher fre-

quency unmodeled modes). Very low input frequencies result in essentially static data. Therefore, good

inputs should have most of their energy in frequencies near the system natural frequencies.

Taking this principle to the extreme suggests inputs consisting of sine waves at the system natural

frequencies. Such narrow-band inputs, however, cause several problems. Such design is overly sensitive

to errors in the predictions of the system natural frequencies. More serious is the fact that narrow-band

inputs tend to degrade identifiability. You cannot accurately characterize a system based on data

generated by input at a single frequency.

An ideal input would have a fairly broad spectrum, covering the range of system natural frequencies

and decreasing outside of that range. A frequency sweep is an obvious signal form meeting these require-
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merits. Frequency sweep inputs are often used in structural testing. Figure 6.3-2 shows a frequency sweep
maneuver on a 3/8-scale F-15 aircraft model (lliff et al., 1976). We obtained good results from this and
similar maneuvers.

Koehler and Wilhelm (1977) presents an input design, which they call a 3211 input, based on these fre-
quency content ideas. Their design is relatively easy for a pilot to fly, compared with something like a

frequency sweep, which is best performed with an automatic maneuver system. Figure 6.3-3 shows a 3211

input from Plaetschke and Schulz (1979). The input is a series of four contiguous steps with alternating

signs, lasting for 3, 2, I, and i time units. The length of the time unit is adjustable to center the
frequency band of the input around the system natural frequencies. We have tried 3211 inputs on several

aircraft and have obtained good results. Plaetschke et al. (1983) compares flight data results from
3211 inputs with those from several different inputs that were designed based on optimality criteria.

6.3.4 Feedback Systems

Automatic feedback systems are often a source of identifiability problems. We discuss two kinds

of identifiability problems caused by feedback, along with several approaches to the solutions of
these problems.

The easiest solution to feedback problems is to turn the feedback system off during the stability and
control maneuvers. You need only turn off the feedbacks in the axes of the maneuver. Lateral-directional

feedbacks do not degrade longitudinal maneuvers. The lateral-directional feedbacks often improve longitu-
dinal maneuvers by helping to stabilize unwanted lateral-directional oscillations; conversely, longitudi-

nal feedbacks often improve lateral-directional maneuvers.

If turning the system off is impractical (for instance, if the open-loop airplane is unstable or if

there is no mechanism for turning the feedbacks off), then reducing the feedback gains can alleviate some

of the problems. If gain reduction is impractical or inadequate, you need to look more specifically at
the nature of the problems.

The first problem is that feedback systems often make it difficult to excite the dynamics of the
system. With some high-gain feedback systems, the aircraft motion decays without oscillation almost

immediately after the input stops. Such deadbeat response is the aim of the feedback system, but it
gives little data on which to base parameter estimates. There is high control surface activity, but

it is of small amplitude, highly correlated, and concentrated at high frequencies. Any feedback system

will result in closed-loop response characteristics different from the aircraft open-loop characteristics.
This difference is not necessarily a problem in itself; it becomes a problem only when the closed-loop

response is deadbeat.

If you cannot turn the feedback system off or reduce the gains, the next best solution to the problem

of deadbeat response is to use persistently exciting inputs. You should also pay particular attention to

getting a relatively broad frequency spectrum in the input. The usual pulse-type inputs often give insuf-
ficient response for analysis. We suggest frequency-sweep inputs as a good choice for this situation if

you have the capability to do them. A series of 3211 inputs might also work well (Marchand, 1977). In
any event, the input should persist for almost the entire planned duration of the maneuver because the

aircraft response will stop soon after the input stops.

The second identifiability problem caused by feedback systems is linear dependence (Koehler and

Wilhelm, 1979). Consider a simple example in which yaw rate is fed back to the rudder to augment the yaw
damping. The rudder position is then directly proportional to the yaw rate during aileron maneuvers. In

this event, there is no way to distinguish rudder effects from yaw rate effects. This is similar to the

dependence problems mentioned in Section 6.3.1, except that the dependence discussed there is between two
control surfaces. As the feedback system becomes more complicated, the problem becomes more compli-
cated, but it retains the same basic character. If a control surface position is a direct function of

several vehicle state variables, then you will be unable to distinguish the control surface effects from
combinations of the state variable effects. As discussed in Section 6.3.1, lags and other small differen-

ces usually make such dependence problems more difficult to resolve instead of easier.

The solution to dependence problems caused by feedback is simple in principle and is the same as that

suggested in Section 6.3.1: Add an independent input signal to each control surface that moves during a
maneuver. It does not then matter whether the control surface position also has a component due to feed-

back. If it is impractical to add an independent input signal (for instance, if the control surface is
dedicated solely to feedback functions and this is not easy to change), then you will probably be forced
to assume that some of the derivatives are known from other sources or to use some form of equivalent or
combined derivatives.

There is a common misconception that any analysis of maneuvers with a feedback system on will give

equivalent closed-loop derivatives. This misconception is based on earlier hand-computation methods of

analysis (which are still useful for some purposes). There are no such equivalent derivatives in our
model; we normally get estimates of the bare-airframe open-loop derivatives whether the feedback system is

on or off (Koehler and Marchand, 1979). We are forced to use a model with equivalent derivatives only

when we cannot get adequate maneuvers by the methods discussed previously or when control surface measure-

ments are missing.

The reason that our analysis gives open-loop derivative estimates is that actual control surface posi-

tions are inputs to the model. The effect of feedback is to change the input to the model, not to change
the model's inner structure. If we used pilot stick position as the input, then the feedback loops would
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be internal to the model, and we would anticipate estimating equivalent closed-loop derivatives. This

is one of the reasons (Section 8.2 discusses others) that we use control surface position measurements

in preference to measurements of pilot stick position.

6.4 SAMPLE MANEUVERS

In this section we show sample small-perturbation maneuvers designed for aircraft stability and

control analysis. We give several empirical rules used to design these maneuvers. We do not claim

that the maneuvers or rules of this section are optimum, but they have given adequate results in a
wide variety of circumstances.

The maneuvers are based primarily on adaptations of standard piloting tasks and flight test maneu-
vers previously used for other purposes, rather than on mathematical derivations of good input signal

shapes. The design of the maneuvers is largely a refinement task; given that some simple standard maneu-

ver comes reasonably close to our requirements, we can place restrictions on the maneuver or slightly

modify it to better achieve our purposes. This design philosophy is the reason for the predominance of
pulse-type inputs.

6.4.1 Longitudinal Maneuvers

Longitudinal inputs are usually easy to design. Our usual longitudinal models include only the short-

period longitudinal mode. This mode can be excited by a simple pulse or doublet on the elevator or other
longitudinal control surface. The exact shape of the pulse is unimportant. For best excitation, pulse
duration should approximately equal natural period of the short-period mode. The constraints mentioned in

Section 6.2 determine the best pulse size and whether singlets or doublets are best. Large longitudinal

pulses can result in significant flight condition changes.

Figures 6.4-1 to 6.4-6 show typical longitudinal test maneuvers from several aircraft: a JetStar
(Brenner et al., 1978), an F-111A (Brenner et al., 1978), a Beech-99 (Tanner and Montgomery, 1979), a

T-37 (Maine, 1981b), a 3/8-scale F-15 model (lliff and Maine, 1975), and a Piper PA-30 (Brenner et al.,
1978). Other longitudinal maneuvers are illustrated throughout this document.

6.4.2 Lateral-Directional Maneuvers

Our usual lateral-directional models include the Dutch roll, roll, and spiral modes. The best way to

ensure adequate excitation of all modes is to have both aileron (or other primary roll control) and rudder

input during the maneuver. It is certainly possible to excite all the modes with aileron input only or
with rudder input only, but these approaches require careful input design and execution, varying from

aircraft to aircraft. It is our general experience that a simple rudder doublet, combined with an aileron
doublet in the same maneuver, is easy to execute and gives consistently good excitation.

If you must use data with the aileron and rudder inputs in separate maneuvers, the best way to avoid

problems is to pair aileron and rudder maneuvers from similar flight conditions (assuming that you have
such matching maneuvers). You can analyze the set of two (or more) maneuvers together, obtaining a single

set of estimates that applies to both maneuvers. We call this approach double-maneuver (or multiple-
maneuver) analysis.

Figures 6.4-7 and 6.4-8 show separate rudder and aileron maneuvers from a Piper PA-30 aircraft.

Figure 6.4-9 shows estimates of Cnp from several such maneuvers on the PA-30. The data exhibit large

scatter, with both positive- and negative-valued estimates, although there is significant clumping of

points with small Cram_r-Rao bounds near the center of the scatter band.

Figure 6.4-10 shows the same data segregated into rudder and aileron maneuvers. The aileron maneuvers

are obviously superior for estimating Cnp; they give less scatter and smaller Cram6r-Rao bounds. Foster

(1977) documents a similar conclusion. The advantage of using the aileron maneuver for estimating p de-

rivatives is fairly clear from looking at the maneuver time histories shown in Figures 6.4-7 and 6.4-8.
The aileron maneuver gives large-amplitude roll rates with shapes characteristically different from the

other signals; the roll rate from the rudder maneuver is smaller and is similar in shape to B. The

rudder maneuvers, however, are better for estimating some other derivatives; the rudder input gives far
better excitation of the Dutch roll mode.

Figure 6.4-11 shows the Cnp estimates from multiple-maneuver analysis of the same data. Every case

analyzed included one or more rudder maneuvers and one or more aileron maneuvers, paired by flight con-

dition. This analysis combines the advantages of both the rudder and the aileron maneuvers, giving good
estimates of all the derivatives.

Although you can use multiple-maneuver analysis in this way to pair aileron and rudder maneuvers, you
will have fewer problems if you include both aileron and rudder inputs in each maneuver flown. This

avoids the problems of pairing maneuvers, small flight condition mismatches, and additional initial con-

ditions (you must consider the initial condition of each part of a multiple maneuver).

The order and timing of the aileron and rudder pulses are largely influenced by the requirement to

minimize flight condition changes. There have been several studies on varying the number, order, and

timing of the pulses (Cannaday and Suit, 1977). For pulse-type maneuvers, most of these studies agree
that there is little noticeable effect on the identifiability of the derivatives as long as there are

both aileron and rudder inputs.
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Figures 6.4-12 to 6.4-15 show some typical combined rudder-aileron inputs from several aircraft: an
F-8C (Steers and lliff, 1975), an oblique-wing airplane (Maine and Iliff, 1981b), an HL-IO lifting body
(Brenner et al., 1978), and an F-111A (Iliff and Maine, 1975). Other lateral-directional maneuvers are
illustrated throughout this document.

TABLE 6.2-1. -- TYPICAL
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Signal Peak magnitude

p
q
r

an
ay

2 °

lo

30 deg/sec
10 deg/sec
5 deg/sec
0.25 g
0.10 g

6e, deg

an, g

e, deg

q,deg/sec

a, deg

10

0

-I0

2

I'_'_ _'__ m'_.....'_'LI"_'J'"'_J' _

O"

20

0

2O

-2O

12

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time, sec

Figure 6.2-1. Oblique-wing 200-sample/sec data.

5.0



91

I0

Be,deg

an, g

e, deg

q, deglsec

a, deg

-10

2

:f
20

10

0

20

-20

12

4

I

0 .'5 1:o

Figure 6. _-_.

1:5 Zo 215 31o 315
Time, sec

Time hi_tory of filtered data.

4:0 4:5 5:0



92

Yaw jet,
number

of jets

C_e_

deg

aFl_

g

q_

deglsec

--Measured

--- Estimated

-1

-2

.6

.5

.1

-.1

a_

deg
40

39 I I I I
0 10 20 30 40 50

Time, sec

Figure 6.2-3. Tiny longitudinal maneuver

of the space shuttle.

3500

Altitude, 3000
m

2500

--Measured
--- Estimated

1 L I I I I I I I

deg

200

°I,
- 20

kNIm 2

10

o I

/
/

I I t I I I ]

6el

deg

0

-4__

-8
I I

ax_

g

an_

g
2

o

_t

deg

100

o_'"-_ _.__
I I L IlOO

J

I I

q' 0
deglsec

-20 I

deg

_1oI I I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Time, sec

Figure 6._-4. Small-perturbation maneuver for

estimating Cm_.



93

deg/sec

-- Measured

--- Estimated

1

o

2F1

o I I I I I
deglsec 2

I

200

-200

e, - 20
deg

-40

ay,

g
.0

-,4

8Fan' 4

g
o I I I I I I

(1) 9

deg

100

-100

deg 2°FlO

o I I I I I I

rl

deglsec
0

-10

6a' 10 F /_

deg 0 _,,_-to I I I I

P_

deglsec

too F

_,oi_

,o_,6 r ,
0

deg _ 10 I I I I

0 1 2 3 4 5 6

Time, sec

deg
o

-4
0 1 2 3 4 5 6

Time, sec

Figure 6.2-5. Maneuver at Mach 0.9. _ = 12 ° .

Aileron

input

Rudder

input

Time

Figure 6.3-1. Combined aileron and rudder

input.



94

deg

an_

g

deg

V_

ftlsec

q,

deg/sec

deg/sec

-- Measured

--- Estimated

o

-lO

.8

.4

I I I I I I

I I I I I I I

lO

-10

10

0 1 2 3 4 5 6 7

Time, sec

Figure 6.3-2. Frequency-sweep input.

ax_

m/sec 2

-- Measured

--- Estimated

a z ,

m/sec 2

-3

-13

ql

radlsec

.25

° XJ,--, ,XJ-,-,
-.25

w, 10mlsec
0

rid -.1
-.2 I I I I

111.5 113.5 115.5 117.5 119.5 121.5

Time, sec

Figure 6.3-3. A 3211 input (Plaetschke and

8chultz, 1979).



95

C_e ,

deg

-- Measured

.... Estimated

I I I I I

a n ,

g

deg

8

4

I

I I I I

ql

deglsec

4

I I I 1-4

a_

deg

10

6 I I I
o

Figure 6.4-1.

aircraft.

1 2 3 4 5 6 7

Time, sec

Longitudinal maneuver of a JetStar

_e'

deg

-- Measured

.... Estimated
4

o I I

a n ,

g
1

o

deg
0

-2

q,

deglsec

10

-10

deg 2

I
0 1 2 3 4 5

Time, sec

Figure 6.4-2. Longitudinal maneuver

of an F-111A aircraft.



96

C_e_

deg

--. Measured
--- Estimated

4

,_
-4 I I

a n ,

g

2

0

deg
4

0

q_

deg/sec

10

-10

deg 2

t
0 1 2 3 4 5

Time, sec

Figure 6.4-3. Longitudinal maneu-

ver of a Beech-99 aircraft.

Ib/ft 2

C_e ,

deg

a x ,

g

an_

g

deg

q,

deg/sec

200

100

-- Measured
--- Estimated

o_ I I I I I I I

o

-8 I I I I

.2

-.2

1

o

4

0

10

-10

0/,

deg

10

-10 I I I I I
o 1

Figure 6.4-4.

aircraft.

2 3 4 5 6

Time, sec

Longitudinal maneuver of a _"-37



97

-- Measured

..... Estimated

6e' 0
deg - 20

-40 I

e, o _
deg - 4

-8 I

q' 0
deglsec

-lo I

G, 32
deg 28

24 J

0 1 2 3 4 5

Time, sec

Figure 6.4-5. Longitudinal maneu-

ver of a 3�6-scale F-15 model.

_e'

deg

-- Measured

--- Estimated

_21 I I I I I

an_

g
1.0

.9

deg

10

8_ _b Im_.

6 I I

q,

deglsec

10

o
-10 I I I

0:, 10
deg

8

0 1 2 3 4 5

Time, sec

Figure 6.4-6. Longitudinal maneuver of

a Piper PA-30 aircraft.



98

C_r ,

deg

10

°V,
-lo I

-- Measured

---- Estimated

I I I 1 I I

_'] I I I

C_a_
-1

deg

-2

ay,

deg

.1

--o1

deg
4

o - I I

r_

deglsec

I I I i I i I I I i

P_

deg/sec
A

I r i i I i I I I i

deg

-1
0

Figure 6.4-?.

I I I I I I I i i I
1 2 3 4 5 6 7 8 9 10

Time, sec

Rudder maneuuer on a Piper PA-30 aircraft.



99

C_r ,

-- Measured

.... Estimated

I t_-I I I I I I ; L

1

o
deg

-1

_a'

deg

4O

°I
-40 I I I I I t I I I I

ay,

g
0

--.1

deg

2O

-20

rl

deg/sec

10

I I I I I I I I I-10

P_

deg/sec

_ I I I I I I I I I I

deg 1°F0

-lO
o

I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Time, sec

Figure 6.4-8. Aileron maneuver on a Piper PA-30

aircraft.



100

C
n '

P

per rad

.8 --

.4 --

0 --_

(
-.4 --

-.8 --

-1.2
-2

Figure 6.4-9.

O Flight data

I Cram_r-Rao bound

_r__ ___ng based on Cram_r-Rao bounds

I I I I I
2 4 6 8 10

(:(,deg

Estimates of Cnp on a Piper PA-gO aircraft.

O Flight data
T Cram_r-Rao bound

.8--

.4--

0--_C

np'

per rad -.4 -- .q)l

-1.2

.4 --

C

np' 0

per rad

-.4

-2

Figure 6.4-10.

Rudder maneuvers t

(

I I I I I

Aileron maneuvers

I I I I I
2 4 6 8 i0

a, deg

Estimates of Onp, segregated by maneuver type.

C

np'

per rad

0 Flight data

.4 I I Cram_r-Raobound

o _______________
-.4 | I I I I I

-2 0 2 4 6 8 I0

a, deg

Figure 6.4-11. Estimates of from multiple-
maneuver analysis. Cnp



101

10
F

5r, deg 0 I
-_oI I I I

6a, deg 0

-lo I I I

._

ay, g oI
-.5 I I I
40

,_, deg 0

-40

10

r, deg/sec 0

-- Flight
.... Computed

A
V

I I I I I I

-10

50

p, deg/sec Olive--- - -X,]"_-------
-5ol-- I I- I I I I I I I

'F A
13,deg 0 ---_ = " "

-5 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18

Time, sec

Figure 6.4-12. Lateral-directional maneuver of an

F-SC aircraft.

I I I I I I

I I I I I I



102

0(,

deg

-- Measured

.... Estimated

4

0

Ib/ft 2

2000 F

IO000F I I I I I I I I

C_r ,

deg

I I I I I I I

C_a ,

deg

I I I I I

ay,

g

.1

--.1

deg

2O

-20

r,

deglsec
0

-20

P,

deglsec

4O

- 40

P' o
deg

-10

0 2 4 6 8 10 12 14 16

Time, sec

Figure 6.4-13. Lateral-directional maneuver of an

oblique-wing aircraft.



103

C_r_

deg

C_a_

deg

ay,
deg

deg

r,

deg/sec

P_

deg/sec

-- Measured
--- Estimated

o

-4

o

-lO

o

-.1

lo___o,
-10

10

-10

40

- 40

deg

-2
0 1 2 3 4 5 6

Time, sec

Figure 6.4-14. Lateral-directional maneuper

of an HL-IO lifting body.



104

i0 F

6r, deg 0 __ 7T-
4

6a, deg 0 _- _ ]_/ --

-4 I I I I

ay, g 0 I
-.1oI I I I I

@,deg 20 [ "'_ _r'_"_"e

-200] I - I I I

r, deg/sec 0 -- -'"_-_"_'_'-

-4 I I I I

h
p, deglsec O[ V -V v V v -

-2oI I I I I

6, deg 0 i__/,_.._._./" _

-2 I - I" I "I I

0 4 8 12 16
Time, sec

Flight
.... Estimated

V
I I I I

I I I I

I I I I I

I i 1 I

I I I vI I I

0 4 8 12 16 20
Time, sec

Figure 8.4-15. Lateral-directional double maneuver of an F-111A
aircraft.



7.0 DATA ACQUISITION SYSTEM

105

The data acquisition system is an important part of stability and control flight testing. To do a

good job, the data analyst must have a detailed understanding of how the data get from the sensor to the
analysis program. This chapter discusses the classes of data acquisition systems and the problems that

arise in data acquisition.

If you are unaware of details like how the data were filtered, digitized, time tagged, and recorded,

then you cannot truly claim to understand exactly what the data tell about the airplane. Analyzing the

gross characteristics of the aircraft requires few of these details, but the more information you try to

extract from the test data, the more details you need to know about the data. If you have nothing to

work from but a data tape and a list of the signals on the tape (straits we have seen many people in,

and occasionally have occupied ourselves) avoid making grandiose promises or placing great confidence

in your results.

You need to take a systems approach to analyzing the data system; that is, you need to look at the

entire system, from the input to the output. The system includes sensors, recording system, postflight

processing, and the connections between these parts. The connections and interactions between the com-

ponents can be as important to the overall system performance as the individual components.

There is strong synergism among the negative effects of data system problems. Two problems, nei-

ther of which alone would unacceptably degrade results, can result in unusable data when they occur
in combination. This is an area where simulation is often overused and misapplied; a little experi-

ence with real flight data is far more valuable. We often see simulation used to pick the minimum

usable sample rate, resolution, and other specifications; this almost invariably results in severe
analysis difficulties.

Indeed, we prefer to avoid the whole idea of the minimum acceptable data system. A minimum accept-

able data system too often becomes unacceptable in practice, due to overreliance on misleading simula-

tions, neglect of the synergism of data system problems, and unforeseen circumstances. The process of
getting usable data from a minimum acceptable data system is typically lengthy and labor intensive, when

it is possible at all. It is our observation that questions about minimum acceptable data quality por-

tend a project destined to have unusable data; these questions often arise in connection with success-
oriented philosophies (see Section 1.5), which ignore the fact that although it is theoretically possible

to get by with the proposed system, the odds are against it. We are much more encouraged when a project
starts with discussions of what kind of data system would do the best job, followed by a determination of

how close to this ideal we can get.

Because the subject is so large, we devote two chapters to the data system. This chapter discusses

the recording system and the connection of the sensors to the recording system. Some of the issues raised

are also pertinent to other parts of the data system. Chapter 8 covers the instrumentation, which is the
front end of the data system.

7.1 TYPES OF RECORDING SYSTEMS

There are several different means of recording flight data for analysis. The characteristics of the

data recording system strongly influence the use of the data for stability and control derivative estima-
tion. This section lists and describes the characteristics of some of the recording methods. The list is

incomplete, reflecting the most common methods. The discussion is brief and general; this document is not

the place for a detailed treatment of data recording methods.

The most common type of recording system used at Ames-Dryden is pulse code modulation (PCM). Figure

7.1-1 illustrates the major components of a simplified PCM system. PCM systems are inherently digital.

The analog signal from each sensor first undergoes signal conditioning as required; this typically

involves presample filtering and scaling to the voltage range of the analog-to-digital converter. The

analog-to-digital converter samples each conditioned signal at regular intervals and outputs a digital
scaled integer value. The units of this scaled integer are called counts.

The counts values are stored in digital form on an onboard tape or telemetered to the ground for simi-

lar tape storage (usually we store both onboard and telemetered data for redundancy). Postflight computer
programs read the PCM tapes and convert the counts values into appropriate engineering units for analysis.

We find PCM systems to be a reliable means of recording high-quality data. The digital recording

format has the advantage of not being subject to distortion. You may lose bits of data if there are

transmission or media problems, but such dropouts are easy to detect. You do not find your data dis-

torted by such subtle problems as temperature-dependent nonlinearities or tape drive speed, wow, or
flutter. Of course, the sensor itself can have temperature or other environmental dependencies, but once

the data are digitized you can be confident that it is subject to no further distortions. We recommend
PCM systems as the primary data recording method for all serious test programs. Many of the discussions

in this and later chapters emphasize the types of data problems common to PCM systems.

Our second most common form of data recording is at the other extreme of complexity -- handwritten
notes. These are often called pilot lap notes, although they can be made by other crew members or ground

support personnel. The frequency response and time correlation of the hand-recorded data make their use
obviously impractical for dynamic signals. In some cases, hand recording is practical but inconvenient

compared with automatic recording systems, which do not misread dials or forget to record the value and
which can automatically supply data to analysis programs. However, handwritten notes are sometimes the

only practical means of recording numerous parameters. Basically anything that remains essentially
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constantduringamaneuveris suitablefor handrecording;typicalhand-recordeditemsincludecargo
loading,fuel weights,configuration,controlsystemmodes,altitude, airspeed,air temperature,engine
speeds,andsubjectiveturbulencelevel.

Themostimportantpointabouthand-recordeddatais to rememberto recordit. Donotconfusecom-
plexitywith importance.Somethinglike permanentlyrecordingthe numberandseatingof crewmembersand
their approximateweightsmayseemsotrivial asto beunworthyof mentionontheflight plansanddata
requests;it will notseemsotrivial six monthslater whenyouhaveto throwoutall thedatafromthe
flight becauseyoucannotaccuratelyreconstructtheweightandcenterof gravity.

Analogrecordingsystemsthat wehaveusedincludefrequencymodulation,oscillographcharts,pulse-
amplitudemodulation,andpulse-durationmodulation.Someof thesemethodshavebeenusedat Ames-Dryden
in thepastandarestill in useat someinstallations. Wegenerallyregardthesesystemsasinferior to
PCMsystemsbecauseof the noiseanddistortioninherentin analogsystems.

Dataareoccasionallyrecordedbyvideocameras.Wehave,onoccasion,acquireddynamicdataby
readingcockpitguagesfromvideorecordings.Thisis similar in manywaysto hand-recordeddata,except
that thevideomethodallowshigherfrequencydataandbettertimecorrelation. Thistypeof datagath-
eringis laborintensiveand(luckily) rarein stability andcontrolanalysis.

7.2 TIMETAGS

All practicalmethodsfor estimatingaircraft stability andcontrolderivativesassumeexactknowl-
edgeof the relativetimeof eachmeasurement.Therearealways,however,somesmallerrorsin ourreal
knowledgeof thetimes. Ourreal requirementis that anysucherrorsbesmallenoughto havenegligible
effectonthederivativeestimates.Thissectioninvestigatestheeffectsof timeerrorsto determine
howmucherrorwecantolerate.

Weusethephrase"timetag"to refer to the informationaboutthetimeof eachmeasurement.The
timetagcanhaveseveralforms. In manycasesthetimetagis actuallydatarecordedwitheachmeasure-
mentor groupof measurements.Asimpleexampleof sucha recordedtimetagis thetimereadfroma
watchwrittenonhand-recordednotes. PCMor otherautomaticdatasystemsoftenrecordtimeasadata
channel.Videorecordsaresometimestimetaggedwithanimageof a digital clockoneachframe.

Implicit time-taggingmethodscontrastwiththeseexplicit methods.Acommonformof implicit time
taggingis to assumethat themeasurementscomeat a knownregularsamplerateandthat thetimeof each
measurementis thusa knownincrementafter thetimeof the precedingmeasurement.Implicit timetagging
canbeasaccurateas, if notmoreaccuratethan,explicit timetagging,but it providesnogoodwayto
mergedatafromtwoindependentdatastreams.

Wediscussaerodynamiccoefficientidentificationpackage(ACIP)onthe spaceshuttleto illustrate
datatimetagging. Wepresentthis simplifiedpictureof theAClPsystemonlyasoneexampleof howdata
canbetimetagged;differentdatasystemsusedifferent time-taggingmethods.TheAClPsystemusesa
mixtureof explicit andimplicit timetagging. Figure7.2-1showsthelayoutof the ACIPPCMsystem
for the initial flights. Thesystemhasa constantbit rateof 64,000bits/sec. Thereare8 bits/word,
givingawordrateof 8000words/sec,andthereare46wordsperdataframe,givinga framerateof
173.9frames/sec.Thereare64framesperdatacycle,givinga cyclerateof about2.7datacycles
persecond.

WordsI to 3of eachframeareusedfor synchronizationanddonotconcernushere. The19high-
sample-ratedynamicparametersare in words9 to 46of eachframe. Thecountsvaluesfor eachof these
parametersoccupytwoconsecutive8-bit words.Theseparametersarerecordedeveryframe,sotheir
samplerate is thesameastheframerateof 173.9samples/sec.

Word8 containsthe low-sample-ratedata,mostlytemperaturesandotherenvironmentaldata. The
countsvaluesfor theseparametersneedonlyone8-bit word. Word8containsa differentoneof these
parametersfor eachof the64framesof thedatacycle;thusthereis roomfor 64parametersin this
word,eachsampledat thecyclerateof 2.7samples/sec.Thismethodof recordingseverallow-sample-
rateparametersin thesamewordis calledsubcommutation.Word4 containstheframenumber(0to 63),
whichdistinguishesamongtheparameterssubcommutatedin word8. Eachof the subcommutatedparameters
is assigneda particularframenumber.

Words5to 7of eachframecontaintimedatafromasystemclock. Theexactformof thedatais
irrelevanthere. Thesedataconstituteanexplicit timetagfor eachframeof data. Thetimerecorded
is that at thestart of theframe.Thedatasignalsaredigitizedoneat a timeastheyarerecorded,not
at the start of the frame.Todeterminethe sampletimeof eachmeasurement,youmustaddtheword
numberdividedby8000to thetimerecordedat thestart of the frame(minusa smalltimefor theanalog-
to-digital conversion).Thus,thetimeof eachmeasurementis the sumof theexplicit timetagfor the
frameplusthe incrementimplicit in thewordposition.

Theabsolutetimesof thedataareirrelevant. It doesnotmatterwhetheryouexpressthetimein
GreenwichMeanTime,elapsedtimefromtakeoff,or anyotherconvenienttimebase.Whatdoesmatteris
that youknowthe relativetimesof anytwomeasurements.If youmergetwoor moreindependentdata
sources,however,theymustbereferencedto thesametimebase;this requiressystemclockssynchronized
to someagreed-uponstandard.

It is importantto distinguishbetweenrequirementsonthetimesof themeasurementsandrequirements
onourknowledgeof thesetimes. Theemphasisof this sectionis ontheknowledge.Wearenotoverly
concerned,for instance,with requiringall of thesignalsto besampledsimultaneously.Almostall
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analysis programs assume such simultaneous sampling; generalization is possible in principle, but it is

awkward and time consuming. As long as we know the time of each measurement, we can interpolate all the

signals to give the effect of simultaneous sampling. Interpolation does introduce errors, which could be

avoided by using a system with simultaneous sampling, but such errors are usually negligible. The prob-

lems resulting from misinformation about the times of the measurements are far worse.

Errors in time tags can come from several sources. Any physical sensor has some time lag inherent in

its response. The signal conditioning and analog-to-digital conversion introduce further lags. None of

these lags are problems intrinsically, provided that you remember to account for them and that you have

accurate values for them.

Most time-tagging errors result from carelessness and poor understanding of what the time tags
mean. A typical error would be to use the ACIP time as the time for every measurement in the frame,

as though the sampling were simultaneous, the instruments had instantaneous response, and there were
no presample filters. The only way to ensure that you have avoided time errors is to understand exactly

how the data get from the sensor to you, what the timing is for each step, and how the time-tag infor-
mation is obtained.

We cannot give a universal formula for how to interpret time tags, because time-tagging methods

differ so much. Some systems do sample all signals simultaneously or nearly simultaneously (Renz et

al., 1981); such sample-and-hold techniques give the most easily interpreted time tags. At the other
extreme, the space shuttle data system includes signals (not in the AClP system) for which the data

are digitized and stored in a buffer at 6.25 samples/sec but time tagged and recorded at 5 samples/sec.
We eventually gave up trying to accurately time tag some of the shuttle measurements for which the

timing depends on a flight computer that can be interrupted by higher priority tasks (like controlling
the vehicle).

Figure 7.2-2 (from Steers and lliff (1975)), illustrates some of the effects of time-tagging errors.
These data are all based on one maneuver, with the data artificially time shifted to create timing

errors. Each point on the figure represents an estimate of LB using data with either p, B, or aa shifted

by the indicated amount. A positive shift is defined such that the shifted signal lags the other

signals. The figure shows little effect of B shifts on the LB estimates for this maneuver, but shifts in

p and aa have large effects. A positive shift of 0.1 sec in 6a or a negative shift of 0.1 sec in p
results in about a 50-percent change in the L B estimate. Time errors of 0.1 sec or more have occurred in

several programs in our experience. An intuitive explanation for the sensitivity to such shifts is that
if _a has a positive shift or p has a negative shift, then the p motion appears to precede the _a input.

Such apparently autonomous p motion looks like an instability, resulting in large effects on the deriva-
tive estimates. Steers and lliff (1975) shows data similar to those in Figure 7.2-2 for other deriva-

tives and other airplanes.

The conclusion from Figure 7.2-2 and similar data is that some of the derivative estimates are

extremely sensitive to time shifts in some of the signals. The more complicated the model, the more sen-
sitive it will be to time shifts. Our empirical rule for aircraft stability and control analysis is that

time errors of more than 10 msec may cause problems and should be rectified. Errors of less than 10 msec
are probably unimportant, and errors of less than i msec are certainly unimportant. We tend to ask for

data accurate to I msec and settle for accuracy of 10 msec. For signals like altitude and airspeed, which

have little dynamic content, the timing requirements are less stringent; accuracy of 20 to 50 msec is

usually adequate for these signals.

7.3 ALIASlNG AND PREFILTERING

Digital recording systems such as PCM sample the continuous-time signals at discrete time points.

Regardless of the recording method, you must digitize the data at some point in the processing in order
to analyze the data on a digital computer. This digitization raises obvious questions of sample rate and

resolution, dealt with in Sections 7.4 and 7.5. This section addresses signal aliasing, a subtler and
often misunderstood aspect of the digitization. Every engineer working with digitized data should be

aware of the general nature of aliasing because it can distort data beyond recognition if you are care-
less. This section briefly outlines the concept of aliasing. Oppenheim and Shafer (1975) gives a more

thorough treatment.

All systems of which we are aware sample the data for each signal at regularly spaced time points,

that is, at a constant sample rate. We henceforth assume such regular sampling; otherwise many of our

analysis tools would be inapplicable.

The Nyquist sampling theorem (Oppenheim and Shafer, 1975) is perhaps the most basic principle of

sampled signal theory and is the source of our current concern. This theorem states that a signal with a
regular sample interval of A sec (a sample rate of 1/A samples/sec) can contain no information at a fre-

quency higher than I/(2A) Hz. This is a loose statement of the theorem but is adequate for our purposes.
This limit frequency is called the Nyquist frequency or the hal f-sample frequency (because it is half the

sample rate).

A continuous-time signal can, in principle, contain data at any frequency. Realistically, the data

in any physical signal are restricted to a finite bandwidth, but the bandwidth is likely to be in the
kilohertz range or higher, several orders of magnitude above aircraft stability and control frequencies.

At first glance, the Nyquist limit does not seem like a great problem to us. Frequency limits of

12.5 or 25 Hz (25 or 50 sample/sec data) are high enough to include virtually all useful aircraft sta-
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bility andcontroldata. Thehigherfrequencydatain the continuous-timesignalis a combinationof
structuralresonance,acpowerfrequencies,enginevibration,thermalnoise,andothernuisancedata. It
is temptingto concludethat samplingactuallyimprovesthedatabyremovingtheunwantedjunkabovethe
Nyquistfrequency;unfortunately,this optimisticconclusionis completelyfalse.

Whenyoudigitize thecontinuous-timesignal,thedataabovetheNyquistfrequencydonot innocuously
disappear.Instead,the high-frequencydatashifts to anapparentlowerfrequency.Thisfrequencyshift
is calledaliasingor frequencyfolding. If theNyquistfrequencyis N,a continuous-timesignalof fre-
quencyf aliasesto

mod(f,2N) mod(f,2N)<N= (7.3-1)falias _2N- mod(f,2N) mod(f,2N)>N

Figure7.3-1givesa simpleillustration of aliasingof a constant-frequencysignal. Thesolid line is
a presumedcontinuous-timesignal. Thecrossesmarksamplingtimes. Thefrequencyof thesignalis
slightly lessthantwicetheNyquistfrequency;thusEquation(7.3-1)givesanalias frequencyof slightly
greaterthanzero. Thedashedline is thealias, the low-frequencyapparentsignalof thesampleddata.
Thisalias signalis obviouslya poorrepresentationof thetrue continuous-timesignal. Notethat if
the samplerateweredecreasedslightly, the aliassignalwouldbea constant(zerofrequency).

Theeffect of aliasingis that all thehigh-frequencynoise,ratherthanconvenientlydisappearing,
shifts to lowerfrequenciesandcontaminatesthestability andcontroldata. Afteryousamplethedata,
thereis nowayto separatetheoriginal low-frequencycomponentfromthe contaminatingaliaseddata.

Thesameprinciplesof aliasingapplyto thinningdigital datato lowersamplerates. Figure7.3-2
showsatimehistoryof 200-sample/secdatafromtheoblique-wingvehicle(Maine,1978). Figure7.3-3
showsthepowerspectraldensity(PSD)of thenormalaccelerationsignal. Thelargehumpbelow1Hzin
the PSDcontainsthe usefulstability andcontroldata. Thegeneralnoiselevel is aboutthreeordersof
magnitudein spectraldensitybelowthestability andcontroldata,but therearestrongsignalsat 17.7,
60,and80Hz. Thepeaksat 17.7and80Hzarefromstructuralvibration,andthe 60-Hzpeakis fromthe
propellerrotatingat 3600rpm. The17.7-Hzsignalis evidentin Figure7.3-2.

Figure7.3-4showsthePSDof a 25-sample/secthinnednormalaccelerationsignal. Thestructural
andpropellerresponsedataarefoldeddownandspreadoverthespectrumbetween0and12.5Hz,withthe
result that the spectrumis nearlywhite. Theresponsepeaksnolongerstandoutclearly, andthelow-
frequencydataaresignificantlycontaminated.

Theonlyeffectivesolutionto aliasingis presamplefiltering, oftencalledantialiasfiltering.
Filter thecontinuous-timedatato effectivelyremovethe high-frequencycomponentsbeforesampling(and
beforethinning). Thisfiltering mustbedonebeforethe samplingor thinningstep;thereis nowayto
undothealiasingafter thedataaresampledor thinned.

Figure 7.3-5 shows the PSD of the 200-sample/sec normal acceleration after a prethinning filter con-

sisting of a 17.7-Hz notch and a third-order 20-Hz low-pass filter. This fflter reduces the structural

and propeller response to at or below the general noise level, low enough that their aliases will not

significantly degrade the stability and control data. Figure 7.3-6 shows a time history of the filtered

data. Thinning these data to 25 samples/sec gives a good signal for stability and control analysis.

Figure 7.3-7 shows the roll rate PSDs from the same data before and after filtering. Some of the

same peaks appear in the unfiltered roll rate as in the normal acceleration. These peaks are almost

imperceptible in the filtered roll rate. Figure 7.3-8 shows the angle-of-attack PSDs before and after

filtering. None of the peaks observed in the other two signals are in the angle-of-attack spectrum.

There is, however, evidence of a nose boom bending mode at about 4.5 Hz. We verified that this was a

boom mode by hand plucking the boom and visually estimating the response frequency (this is a prime

example of the kind of test that is trivial if the airplane is still around in the flight test

configuration). The filter does not attenuate this mode, but the frequency and amplitude are such that

the boom mode does not create problems. The boom mode is perceptible in Figures 7.3-2 and 7.3-6, barely

larger than the resolution (look particularly near the end of the time history in Figure 7.3-6 and notice

that the apparent bit noise is fairly coherent at that frequency).

Any data system design process should include careful consideration of presample filter requirements.

We have occasionally seen good data from systems with no presample filtering other than that from stray

capacitance and the sensors' inherent response characteristics, but do not count on such fortuitous cir-

cumstances. As a general rule, a low-pass filter at 40 percent of the Nyquist frequency is reasonable.
For systems with high sample rates, a first-order filter is usually adequate; higher order filters may be

necessary in low-sample-rate systems. You should, however, consider individual requirements in detail,

rather than universally applying these rules. We do not cover details of filter and specification design
in this document. See Williams (1981) for such a discussion.

As a user of a data system, you should know what presample filtering is done to the data. Presample

filters are a major and often overlooked source of time lags, which need to be corrected in time tagging
the data (see Section 7.2).

You may have to ask very specific questions to get information about the presample filtering in a
data system (and it may take a while to find the right person to ask in a large project). The people

responsible for the data system might take presample filtering so much for granted that they forget to
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tell youaboutit. Morethanoncewehaveexplicitly askedwhethertherewereanyfilters ona signal
andbeentold that therewerenone,onlyto discoverlater that theresponsemeantnofilters other
than,of course,the presamplefilter. Wenowhabituallyaskspecificallyaboutpresampleantialias
filters. If the responseis ablankstareor the equivalent,youhavenotyet foundtheright person
to ask. (If the personresponsiblefor datasystemdesignhasnotheardof antialiasing,youhave
seriousproblems.)

Asystemsapproachis crucial to thedesignanddescriptionof antialiasfilters (or filters in
general). Alwayslookat thefilter in context,notasanisolatedcomponent.Forinstance,thebreak
frequencyof a passivefilter dependsonthesourceimpedanceloading. Thequotedbreakfrequenciesare
at zeroload;theactualbreakfrequencyunderloadcanbesignificantlylower. Thecharacteristics
underactualloadingconditionsarewhatreally interestyou.

7.4 SAMPLERATE

Thesamplerateof thedigitizeddatais animportantdatasystemspecification.Thissectiondis-
cussestheconsiderationsaffectingthechoiceof samplerates. Thediscussionis closelyrelatedto
that of Section7.3onpresamplefilters.

Thehigherthe samplerate, the betterthedigital datarepresentthecontinuous-timesignal. The
improvementeventuallyreachesa pointof diminishingreturnswhereit fails to justify theextradata
processingandanalysistime. Thereis certainlylittle pointin samplingmuchfasterthanthesensor
canrespond.Datasystembandwidthplacesupperboundsonpracticallyachievablesamplerates.

Wehaveobservednobenefitfromanalyzingaircraft stability andcontroldataat morethan25or 50
samples/sec.However,weoftenfind it prudentto requestthe digitizeddataat 100or 200samples/sec;
wethendigitally filter andthin thedatato 25or 50samples/secfor analysis. Althoughit requires
higherbandwidth,moreprocessingtime,andextraprocessingsteps,thereareseveraladvantagesto
obtainingthedigitizeddataat highersampleratesthanneededfor analysis.

Thefirst advantageis theflexibility of digital filtering. Analogpresamplefilters mustbe
designedbeforeflight andaredifficult to change.If youdigitize dataat 25samples/sec,say,the
Nyquistfrequencyis 12.5Hz(seeSection7.3). Tofilter outnoiseabovethe Nyquistfrequency,you
needa presamplelow-passfilter witha breakfrequencynear5 Hz,basedonourcriterion of 40percent
of the Nyquistfrequency.Thefilter roll-off mustbesteepenoughto eliminateanystrongstructural
resonancesin the 20to 30Hzarea,whichfoldsdowninto thecritical 0 to 5 Hzareaafter sampling.
Sucha high-orderlow-frequencyfilter wouldintroducesignificantdistortionin the stability and
controldata.

If youdigitize dataat 100samples/sec,the analogpresamplefilter wouldhavea breakfrequency
around20Hz,whichis highenoughto avoidsignificantdistortion. Beforethinningthedatato 25
samples/sec,youcanexaminethespectrumof the digitizeddataanddesigndigital notchfilters for any
troublesomelow-frequencystructuralresonances.Withtheseresonancesremoved,youcanprobablygetby
witha prethinninglow-passfilter witha breakfrequencyaroundI0 Hz. Thiscombinationof a notchand
a low-passfilter introduceslessdistortionthanthestrongerlow-passfilter otherwiserequired. In
principle,youcoulddesignananalognotchandlow-passto achievethesameeffect, allowingyouto
sampleat 25-samples/sec,omittingtheintermediatelO0-sample/secdata. Thedifferenceis that the
analognotchmustbedesignedbasedonpredictionsandcannotbechangedafter the flight.

Wecouldsummarizethis argumentbysayingthat anyinformationlost or contaminatedin analogpre-
filtering anddigitization is irretrievable. Theonlywayto fix mistakesis to revisethesystemand
fly again. Hardwarerevisionsandextratest flights aremuchmoreexpensivethana little extradata
processing,so it is bestto digitize at a highersampleratethanyoureally need,leavingsomeroomfor
error. Regardtheextraprocessingtimeasinsurance.

Thesecondadvantageof digitizing at 100or 200samples/secis that it lessensthe potentialprob-
lemswith timeskewscausedbynonsimultaneoussampling.Thisadvantageis notas importantasthefil-
tering issue,becauseknowntimeskewscanbehandledbyinterpolation. Withthehighersamplingrate,
the skewsmaybesmallenoughto safelyignore,savinga stepin processingandthuspartially compen-
satingfor theextrafiltering step. Moreimportant,anyerrorsin evaluatingandcorrectingtheskews
will likely havesmallereffectsat thehighersampleratesbecausethetermsaresmaller.

Thelowerlimits onacceptablesampleratesaredeterminedbythe necessityto accuratelyrepresent
the continuoussignals. Sampleratesaroundi0 samples/sechaveprovenadequateonseveralaircraft
(Brenneret al., 1978).Whenusinglow-sample-ratedata,considerseveralfactors. First, themotion
of theaircraft controlsurfacescanhavefrequencycontentwell abovetheaircraft naturalresponsefre-
quencies.Thesampleratemustbeadequatefor the controlpositionmeasurementsaswellasthe response
measurements,Thisconsiderationreducesthedifferencesbetweensampleratesrequiredfor largeand
smallaircraft. Thesamplerate requirementsfor stability andcontrolanalysisof the spaceshuttle,
for instance,aredominatedbyconsiderationsof the reactioncontroljets. Althoughthevehiclenatural
frequenciesarelowduringtheearlypart of entry,the reactioncontroljets canfire in 80msecbursts.
Samplerateslowerthan25samples/secwouldunacceptablydistort the jet signals.

Second,lowsampleratesaccentuatetheeffectsof otherproblemssuchastimeskews,noise,low
resolution,andmodelingerror. If youchoosethelowestsampleratethat workswellonsimulateddata,
wecanalmostguaranteepoorresultsfromflight.

In summary,weusuallyaskfor sampleratesof 100to 200samples/sec,digitally filter thedata,and
thin it to 25to 50samples/secfor analysis. Youcanusuallygetbywithdigitization at 25or 50
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samples/sec, provided you are careful about filtering; this approach leaves less room for error.

Sample rates as low as 10 samples/sec have occasionally proven adequate, but we recommend against
such marginal rates.

7.5 RESOLUTION

Another issue raised by digitization is the resolution or quantization level of the digitized signal.

The digitized signal is an integer number of counts. The resolution of this signal is exactly one count,
which corresponds to some number of engineering units that depends on the sensor calibration.

If the resolution magnitude is much smaller than the noise level of the digitized data, then you can

ignore the issue. This is the case, for instance, for the ACIP system on the space shuttle, discussed in

Sections 6.2.2 and 7.2. The AClP lateral acceleration, in specific, uses a 14-bit digital signal to

cover the ± O.5-g range. The resolution is thus 1/214 _ 0.00006 g. Structural vibration causes a noise
level of about 0.01 g, so we can safely ignore any resolution problems.

The stairstep appearance of the _ and 0 signals in Figure 7.3-2 is typical of data where the resolu-

tion is coarser than or comparable to the noise level. Note that digital filtering (but not analog
filtering) can disguise this characteristic appearance, as in Figure 7.3-6.

The discussion of signal-to-noise levels in Section 6.2.2 applies to the issue of establishing accep-

table resolution limits. A resolution of about 1/10 of the maneuver size is about the poorest you can
ever accept. In this case, anticipate the immediately obvious potential for derivative errors on the

order of 10 percent; actual errors in some derivative estimates might be much larger. Resolution of
1/100 of the maneuver size is fairly good. Exact criteria vary from system to system and even signal to

signal. You can get by with much lower resolution in relatively unimportant signals (like bank angle)
than in critical signals (like roll rate or aileron position).

We have most commonly used lO-bit PCM systems, giving a resolution of 1/1024 of full range. The

small-perturbation stability and control maneuvers typically cover only a small part of the full instru-
ment range, so the resolution is not 1/1024 of the maneuver size. The worst resolution is often on Euler

angles, which are scaled over 360 ° , giving about 1/3 ° resolution; this can be near our cited minimum of

i/i0 of the maneuver size. The Euler angles are among the least critical signals, so this low resolution
is acceptable.

We have successfully used 8- and 9-bit PCM systems on some programs. Such systems require specific
tailoring of the data ranges to achieve acceptable resolution for stability and control data. This

tailoring often involves duplicating several signals on two or more channels with different ranges, as
described in the following.

To provide data on large maneuvers or emergencies, scale a coarse channel for the full flight enve-
lope. You want a full-range data channel in a flight test Of a new vehicle, even if you intend to fly in

only a small portion of the range. If a loss of control or other unexpected emergency results in flight
at extreme conditions, you must be able to study the data thoroughly to find out what happened, how to

prevent it from happening again, and how any emergency recovery procedure worked. Full-range data chan-
nels for such purposes are usually considered a mandatory safety requirement. This coarse-resolution

channel may have unacceptable resolution for small-perturbation stability and control maneuvers; for

example, an Euler angle scaled over 360 ° in an 8-bit PCM system has a resolution of about 1.4 ° , not worth
using for most small maneuvers.

A second channel records the same signal, scaled to a smaller range to obtain better resolution.

Choose the range of this high-resolution channel to be slightly larger than the small-perturbation

maneuvers, allowing margin for error. If you scale an 8-bit channel for twice the expected maneuver size
(a healthy margin for error), the resolution is 1/128 of the maneuver size.

Wallace-O-Leonard sensors use another method of combining data from two channels to get better reso-
lution than that obtainable from a single channel. These sensors use a multiturn potentiometer, each
turn corresponding to a different calibration. A second coarser channel determines which calibrations to

use for the fine channel. Section 8.7 presents some data from a Wallace-O-Leonard sensor.

Using one of these channel duplication schemes, you can get good resolution from even an 8-bit PCM

system. Note that range tailoring requires either that you give up the full range data or that you use

extra data channels. We occasionally find channel duplication necessary even on lO-bit PCM systems for
high-performance aircraft. A highly maneuverable fighter is likely to need a range of about -5 to +10 g

on normal acceleration. With a lO-bit system, this gives a resolution of 0.015 g, which is perhaps
acceptable but not as good as we like.

In several recent programs we have used PCM systems ranging from 11 to 16 bits of resolution. Such

high-resolution systems simplify data system design considerably. You seldom need to make design compro-

mises or kludges like duplicating channels to improve resolution. Note that duplicating a lO-bit channel
results in the use of 20 bits to effectively achieve resolution comparable to an 11- or 12-bit channel. A

true Ii- or 12-bit system achieves this resolution with much more efficient use of the data bandwidth;

furthermore, it eliminates the analyst's problem of whether to use one of the duplicate signals or some
combination of them.

We used four maneuvers from a Piper PA-30 aircraft to study the effects of reduced resolution.

Figure 7.5-1 shows a fit of one of the maneuvers. The data were sampled at 200 samples/sec and thinned
to 50 samples/sec for analysis. These data came from a 9-bit PCM system. Table 7.5-1 gives the resolu-
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tions of the signals in the figure. Most of the signals have resolutions in the neighborhood of 1/50 to

1/100 of the maneuver size. The worst resolution is that of ay at about 1/20 of the maneuver size, and

the best is that of aa at about 1/200 of the maneuver size. We simulated the effect of reduced reso-

lution data systems by quantizing the data of Figure 7.5-1 at levels of 2, 4, 8, 16, and 32 times poorer

resolution. Figure 7.5-2 shows the data of Figure 7.5-1 with the resolution reduced by a factor of 16.

The ay signal is obviously worthless. There is recognizable signal content in B, p, r, and ¢, although

the resolution is from 1/3 to 1/6 of the maneuver size, worse than our cited minimum acceptable level of

1/10 of the maneuver size. The resolution on _a is barely within the acceptable range.

Figure 7.5-3 shows the estimates of three derivatives as a function of the resolution reduction fac-

tor (to aid visualization, the symbols are slightly offset from the exact factors of l, 2, 4, 8, 16, and

32). Errors resulting from the poor resolution are significant at a resolution reduction factor of 8

and larger at a factor of 16, corresponding to Figure 7.5-2. The data at a resolution reduction factor

of 32 are completely unacceptable. These results roughly verify our cited minimum resolution level of

1/10 of the maneuver size.

Do not expect results in most cases to be as good as those shown in this example. This example

represents the most benign situation in several regards. First, the best resolution is on the control

surface, which is one of the most resolution-critical signals. Second, the data quality is excellent,

except for the resolution: The noise level is low, the sample rate is high, the sensors are of good

quality, and the system was carefully calibrated. Third, the maneuver is mild, and the aircraft is quite

linear in this flight regime.
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8.0 INSTRUMENTATION

In this chapter we examine the instrumentation transducers. We list the signals useful for air-

craft stability and control analysis and discuss the uses and relative importance of the signals. The
signals range in importance from virtually indispensable to convenient for record keeping. We discuss

the kinds of transducers used for each signal and the general characteristics of the transducers.

The virtually indispensable signals are time, control positions, angular rates, and linear accelera-

tions. Although it is theoretically possible to obtain estimates without some of these signals, we con-
sider these to be a minimum practical set of measurements (a x is optional in some cases). Section 7.2

discusses the measurement of time; problems related to time tagging are quite different from problems
with the other measurements, which this chapter covers.

Other useful signals discussed in this chapter are flow angles, Euler angles, angular accelerations,

air data, engine parameters, configuration parameters, and fuel and loading data. This list is roughly
in order of decreasing importance, although there is variation from case to case; you really should have

measurements of flow angles and Euler angles, whereas configuration and loading data are just for book-

keeping convenience.

8.1 GENERAL TRANSDUCER CHARACTERISTICS

This section discusses some broad classes of transducer characteristics pertinent to almost all

transducers. Other characteristics may also be pertinent to specific transducers.

Transducer range, resolution, accuracy, and dynamic response are basic issues. The transducer itself

has a rated range and resolution, which is often different from the range and resolution of the digitized

signal. Of course, the digitized signal can never improve on the transducer characteristics, but it is
common for the digitized signal to have a smaller range or poorer resolution than the transducer.

Accuracy is defined in so many different ways that we seldom find accuracy specifications useful.

In any event, you need more details about the characteristics of the transducer errors than just a single

number bounding the amplitude. Regard accuracy specifications as little more than a summary of detailed
data. For many of the signals used in aircraft stability and control analysis, resolution is more impor-

tant than absolute accuracy; do not confuse the two. It is important only to accurately measure the
change in some signals. For other signals, unbiased values are critical (Marchand, 1974).

Linearity is a desirable characteristic in any transducer. Many transducers are reasonably linear

except at the extremes of their ranges; thus, you can get smaller deviations from linearity if you do not

need the full range. Linearity (although helpful) is not an absolute requirement; it just makes it
easier to calibrate the instrumentation and process the data.

Repeatability, the characteristic of always giving the same output for identical inputs at different
times, is a critical transducer specification. Two broad categories of repeatability problems are

environmental dependencies and drift (however, we make no claim that these categories include all
repeatability problems). The magnitudes of the transducer errors due to problems in either of these

categories depend largely on how much effort you are willing to invest.

Environmental factors, such as temperature, can cause changes in transducer output. Other environ-

mental factors likely to affect transducers include pressure, vibration, acceleration, magnetic fields,
and power supply voltage and frequency; the following discussion of temperature effects applies equally

to these other environmental factors. Of course, if the transducer is supposed to measure temperature,

then temperature effects do not constitute repeatability problems.

You can minimize environmental dependence problems by controlling the environment. It is par-

ticularly common to put sensors and electronics in temperature-controlled enclosures. Vibration effects

can be minimized by an appropriate choice of mounting locations and methods. The best approach to
environmental dependence problems is a combination of environmental control and the use of high-quality

sensors having minimal environmental dependence.

You can lessen repeatability problems due to temperature by measuring, or otherwise deducing, the
local temperature and correcting the data for the temperature effects. For this approach to work at all,

you need specific, quantitive, verifiable data on the temperature effects. This involves extensive and
costly testing; better quality transducers or temperature-controlled environments are usually cheaper.

We generally recommend against environmental corrections for stability and control purposes because

we have seldom (if ever) seen acceptable data on which to base such corrections to flight-control-grade
sensors (inertial-grade sensors have more consistent characteristics). These corrections require con-

siderable time and effort, which are justifiable only if they make a definite improvement in the deriva-

tive estimates. Note in this regard that the largest temperature effect is often a bias, which is only
of minor importance for much of our data.

There seems to be a common philosophy that the more correction terms you add to the data, the better

results you will get. Our experience is diametrically opposed to this philosophy; we emphasize the vir-

tues of simplicity. Findlay (1981) shows that a major effort in making corrections to the space shuttle
data appeared to make the data worse instead of better. This is the almost inevitable result of using

correction terms (Bendix Corp., 1980) for which the uncertainty is larger than the value. These correc-
tion terms, normally necessary for inertial navigation, were inappropriate for application to these
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flight-control-gradesensors.If youcannotconvincinglydemonstratethat a givencorrectionwill
improvethe data,thendonotmakethecorrection.

Weusetheterm"drift" to label changesnotdirectly relatedto environmentalfactors. Nearly
neutralstability in the sensorcancausedrift; thedirectionalgyrois a classiccaseof drift. Long-
termdrift canalsoresult fromagingof thesensorcomponents.

Youcanminimizeerrorsfromdrift byrecalibratingthesystemregularly. Slowdrift fromsensor
agingovermonthsandyearsis easyto accountfor andmayevenbe irrelevantto a shorttest program.
Sensorsthat drift significantlyduringa flight aretroublesome.Youneedaprocedureto calibratethem
in flight; youneedto includethis procedurein theflight planning;andyouwill likely needto figure
out howto handledatathat arenot immediatelyprecededbya recalibration. Forinstance,dependingon
the stability of the gyrosandthedurationof thetest flights, youmightneedto erectthe gyros
severaltimesin a flight, andyoushouldalwaysallowfor thepossibility of smallbiaserrors.

Crosstalkis the responseof a transduceror thedatasystemto signalsin additionto the intended
signal. Weusethetermin a broadsenseto includeanyphenomenonhavingthesameendeffect, bethe
phenomenonelectrical crosstalk,mechanicalsensorcross-axissensitivity, misalignment,or something
else. Asimpleexampleof crosstalkis a pitch rategyrothat is slightly misalignedandtherefore
respondsalsoto roll andyawrates. Evenaperfectlyalignedgyrohassomedegreeof crosstalkinher-
ent in its design. Youcancorrectthedatafor crosstalkif youknowtheamountpresent.Treatsuch
correctionswith the sameprecautionsasthepreviouslymentionedenvironmentalcorrections;it is better
not to correctfor thecrosstalkthanto applythecorrectionswithquestionabledata.

Manyimportanttransducercharacteristicsarenotevidentin static calibrations. Themostbasic
dynamicspecificationsarein termsof thetransducerfrequencyresponse,theBodeplot of thetransducer
gainandlag asa functionof frequency.Thebandwidthrequiredfor stability andcontroldatais low
enoughthat transducergaincharacteristicsareseldoma problem;theonlycaseswherewerecall needing
to accountfor transducergainasa functionof frequencyinvolvedpressuresensors.Transducerlag is
moreoften importantbecauseof thesensitivity of thederivativeestimatesto smalllags. Aconstant
timelag (linear phaselag) is anadequateapproximationto thefrequencyresponseof mosttransducersin
the frequencyrangespertinentto aircraft stability andcontrolanalysis.

Othertransducercharacteristicsincludedeadbands,hysteresisloops,"stickiness,"andrate limits.
Youcanseldomdomuchto correctdatafor theseproblems,evenif youhavequantitativeinformation
aboutthem. Themainthingto dois to collect appropriatedatato ensurethat theseproblemsaresmall
enoughnot to causedifficulties; otherwiseyouneedbetter transducers.

Some transducers have characteristic glitches passing through specific signal levels. The solution

to such glitches is usually to smooth through them with a spike remover. This can be a laborious process

if there are many glitches because simple automated spike-detection algorithms are not adequate for the

shapes of some glitches (they can have slow onsets, unlike spikes).

Finally, any transducer has a certain random noise level. The noise statistics are useful to know,

but we caution against using them as a measure of the noise in the system model. The "noise" in our

system models is a combination of many things, including modeling error and the transducer errors men-

tioned previously; the actual transducer noise is typically a small portion of the total.

8.2 CONTROL POSITIONS

You must have measurements of any control surfaces or other control devices that move during a

maneuver. The terminology of our discussion emphasizes control surfaces, which constitute the large

majority of control devices, but the principles apply in general. Measurements of control surfaces that

remain unchanged during a maneuver are useful, if only to verify that the surface remained fixed, but are

not required. Some control surfaces may also count as configuration parameters (Section 8.9), which are

useful to record for bookkeeping purposes.

Derivative estimates are extremely sensitive to time-tagging errors in the control position measure-

ments, so your selection of measurement strategies should strongly consider possible timing errors.

The best control position measurements are direct measurements of the surface hinge angles because
the less well defined the relationship between the measurement and the actual surface position, the more

work you need to do to evaluate the surface position and the more error you are likely to have. Actuator

push-rod positions are often reasonable measurements, although not as good as direct surface measure-
ments; the surface position is a nonlinear function of actuator push-rod position, and there is a finite

amount of play in the rod attachment.

Actuator command measurements are one step further removed from the actual surface position and thus

one step poorer. To use such measurements, you must model the actuator response. This response always

has some lag, which should not be ignored.
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Control stick (or wheel or pedal) position measurements are the worst alternative, usually suitable

only for rough work. Even in the simplest mechanical system, there are dead bands, hysteresis loops,
backlash, cable stretch, and nonlinearities in the connection of the control stick to the surface
(Foster, 1977). It is impractical to accurately model all these effects; they just constitute error

sources. For a more complicated airplane, you must simulate a complete control system, including

filters, limits, feedback, sampling effects, actuators, flight condition schedules, and other logic, in

order to determine the surface position from the control stick motions. Direct control surface position
measurements, or something closely approximating direct measurements, are the key to keeping such control

system models out of stability and control derivative estimation. This in turn is one of the simplifica-

tions that keeps our system models tractable. If you need to estimate control system parameters, the
control stick positions are useful, but we try to avoid this complication, as discussed in Chapter 1.

Control position transducers (CPTs) are simple, reliable, mechanical devices. They have negligible

lag and few problems of any kind. Only once have we had strong suspicion of a problem with a control
position transducer, and that suspicion is unverified.

8.3 ANGULAR RATES

The angular rates are the most important response variable measurements. You can conceivably get

reasonable estimates of moment derivatives with only control surface and angular rate measurements.
Conversely, the loss of even a single angular rate measurement is a serious problem that significantly

diminishes the odds of getting acceptable results. Angular rate measurements (or reconstructions of such
measurements) are mandatory for equation-error estimation methods. Output-error and filter-error methods

can in principle work without angular rate measurements, but expect severely degraded results.

Fortunately, rate gyros, the transducers used to measure angular rates, produce excellent-quality

signals for stability and control analysis. A typical instrumentation-quality single-axis rate gyro is
an inexpensive, lightweight, self-contained unit in an approximately 1-in cube. The gyros have good fre-

quency response, nearly linear calibrations, good repeatability, and virtually imperceptible noise level.

Rate gyros are also quite reliable. We have learned to take rate gyro data seriously, even when it
seems anomalous at first glance. Figure 8.3-1 shows a time history, from a scaled F-15 model (lliff

et al., 1976), that we were convinced was conclusive evidence of a rate gyro failure. The sharp peaks in
the measured roll rate signal at I and 3.5 sec look unreasonable. They imply extremely large rolling

moments with no apparent cause. There is no evidence of such a large event in the other measurements;

the figure shows a reasonable fit with a linear aerodynamic model. Armed with this evidence, we

requested an examination of the roll rate gyro. When static calibration tests looked good, we requested
extensive dynamic testing. The dynamic tests also showed excellent gyro behavior.

Still convinced that something was wrong with the gyro, we tried to gather more evidence by differen-

tiating the Euler angle measurements and using Equation (2.2-14) to get an independently derived roll rate
signal. Although we were unsure whether the Euler angle measurements were good enough for this task, it

was worth trying. To our great embarrassment (considering the effort spent checking our assertion that
something must have been wrong with the rate gyro) this independently derived roll rate clearly verified

the rate gyro measurement. The rate gyro was good. (We later found that powerful vortices were shed

from the forebody at the flight condition of this maneuver. These vortices impinging on the vertical tail
caused sudden large moments far in excess of what would otherwise be considered reasonable magnitudes.)

The only significant problem with rate gyro measurements is alignment. Section 5.2.1 shows the sen-

sitivity of some derivative estimates, particularly Cn_ a and C£_ r, to errors in the measurement of Ixz.

Errors in gyro alignment have closely related effects. Suppose a maneuver has a peak roll rate of

50 deg/sec and a peak yaw rate of 5 deg/sec (reasonable values for an aileron pulse on a fighter), and

suppose that the yaw rate gyro is misaligned by 1° in the roll-sensitive direction. The yaw rate gyro
will sense about 2 percent of the roll motion. The misalignment thus causes yaw rate measurement errors

of up to I deg/sec or 20 percent of the peak yaw rate; this error level is completely unacceptable.

Some data from the first space shuttle entry were even more sensitive to alignment errors. We

attempted to analyze tiny longitudinal motions (see Section 6.2.2), with peak pitch rates of about
0.I deg/sec, during bank reversals with yaw and roll rates of about 5 deg/sec; in these circumstances,

a 1 ° misalignment in the pitch rate gyro would generate errors of I00 percent in the sensed pitch rate.
We generally obtained results of marginal quality from these maneuvers; misalignment may have been one

of the contributing factors. We tried to estimate the misalignment and obtained some inconclusive
results suggesting alignment errors as large as 0.5 ° .

Our standard criterion is to request alignment within about 0.1 ° (0.2 percent crosstalk), which is

probably near the practical limit. In-flight airframe deformations make it difficult to define alignment
with greater precision, regardless of the precision of the equipment. Since even a perfectly aligned

gyro has some degree of crosstalk inherent in its design, it is useful to include crosstalk tests of the

assembled gyro package in your calibration procedure.
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Althoughthealignmentof rate gyrosis important,their positionin theaircraft is not. The
angularratesof a rigid bodyareindependentof thereferencepoint. Themainconsiderationin
selectinggyrolocationis agoodrigid attachmentpoint.

In inertial navigationunits, rategyrosareroutinelycorrectedfor effectslike g-sensitivebias,
dynamicmisalignment,g-sensitivedrift, anisoelasticdrift, andtemperature.Forstability andcontrol
analysis,wehavefoundthesecorrectionsto beimperceptible(usuallylessthanthe resolution);they
aremorelikely to causeproblemsthroughmisapplicationthanto help. Stability andcontrolanalysis
requirementsaredrasticallydifferent thaninertial navigationrequirements;eventhebestrategyroswe
haveusedarealmostuselessfor inertial navigation.

Strap-downlasergyrosshow,promiseof beingusefulbothfor inertial navigationandfor stability
andcontrolpurposes,Asyet wehavenofirst-handexperiencewith lasergyros. Second-handreportsand
specificationsheetsareencouraging.Lasergyrosarequiteexpensivewhencomparedwith flight-control-
graderategyros,butnotwhencomparedwith inertial systemcosts.

8.4 LINEARACCELERATIONS

Weconsiderlinear accelerometerdatato bemandatoryfor acceptablestability andcontrolderivative
estimates.Youcansometimesgetbywithoutax, providedthat youdonotneedCAderivativeestimates,
butan andayarecrucial. Virtuallyall theforcederivativeinformationis in theaccelerometerdata,
andtheaccelerometerdataalsohelpthemomentderivativeestimates.

Welooselyrefer to linearaccelerometersasmeasuringacceleration,but this is notstrictly true;
accelerometersignorethe componentof accelerationdueto gravity. SeeSection2.1.6for further
discussion.

Accelerationis a secondderivativequantity. Becausederivativeoperationsamplifyhigh-frequency
signals,accelerometermeasurementsintrinsically containsignificanthigh-frequencystructuraldata.
Forrigid-bodystability andcontrolanalysis,thesestructuraldataconstituteunwantednoise. The
solutionto the structuralnoiseproblemis in twoparts: First, youmustselecta goodattachmentpoint
andmethodfor theaccelerometerpackage.Theattachmentpointshouldbestructurallystrongandrigid
andshouldbein anareaof the vehiclewherethemajorstructuralmodeshavesmallamplitudes.Thebest
locationsareusuallyonmajorstructuralmembersnearthecenterof gravity;wingtipsareprobablythe
worstlocations. (Stability andcontrolaccelerometerrequirementsaredrasticallydifferent fromthose
of structuraldynamicsin this andotherfactors;theoddsof meetingbothsetsof requirementswith the
sameaccelerometerarenegligible,sodonoteventry). Theattachmentshouldberigid, withnofree
play. Donotuseshockisolationattachmentsasa wayof minimizingstructuralnoise;this may_ea good
ideafor someapplications,butnot for ours. Shockisolationattachmentsintroducepoorlyquantified
lags.

Second,youmustfilter outthestructuralnoise. Presamplefilters arevirtually mandatory.You
oftenget thebestresultsbysamplingat a relativelyhighrate (with,of course,a presamplefilter),
digitally filtering thehigh-ratedata,andthenthinningto thesampleratechosenfor analysis.
Sections7.3and7.4discusstheseideas. Theshockisolationattachmentsdiscussedpreviouslyamount
to mechanicalfilters; digital or analogelectronicfilters havemorepreciselymeasurablecharac-
teristics andcanbebettertunedto yourspecificrequirements.Whateverfiltering methodyouuse,be
sureto accountfor the filter lagsin yourtimetagging.

Instrumentation-qualitylinear accelerometersaresmallunits, aboutthesamesizeandweightasrate
gyros. Theyarereliable, andthesignalquality is generallygoodfor stability andcontrolanalysis,
providedthat youtakeadequatecarein mountingandfiltering.

Likerategyros,accelerometersaresubjectto alignmenterrors. It is oftenadvisableto mount
thegyrosandaccelerometersona commonbaseplatesothat youcanruncombinedalignmenttestsonthe
assemblyandsothat youhaveonlya singleassemblyto align relativeto theairplane.

Unlikerategyros,accelerometersaresensitiveto mountinglocation. Theideal locationis at the
airplane'scenterof gravity,but that wouldbeanunreasonablerequirement,particularlywhenthe
center-of-gravitylocationchangesduringflight. Yourprimaryconsiderationin selectingmountingloca-
tionsshouldbeusingrigid attachmentpointswherethemajorstructuralmodeamplitudesaresmall.
Mountinglocationsfar fromthecenterof gravityareproneto bendingproblems.Goodmountingloca-
tions will oftenbenearthecenterof gravity,but this is notanintrinsic partof the requirements.
Eitheryoucanincludetheaccelerometerpositionin yourmeasurementmodelor youcancorrecttheaccel-
erometermeasurementsto thecenterof gravity. Section3.5discussesthesealternatives. Foreither
approach,youneedaccuratemeasurementsof the positionsof theaccelerometersrelativeto thecenterof
gravity. Section5.2.3discussestheproblemsof erroneousaccelerometerpositiondata.

Thecommentsin Section8.3aboutthe inadvisabilityof usingminisculecorrectiontermsarealso
applicableto accelerometers.Instrumentation-qualityaccelerometershaveexcellentlinearity; a simple
linearcalibration,with a biasanda slope,givesdataasaccurateastypical datasystemresolution
allows. Staticalignmentcorrectionsare reasonableif youhaveprecisedatato basethemon. Either
correctingor modelingthetransducerpositionsis mandatory.Wegenerallyadviseagainstanyother
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corrections;if othercorrectionsaresignificantto stability andcontrolanalysis,youprobablyneed
betterqualityaccelerometers,

8.5 FLOWANGLES

Wehighlyrecommendthat youobtainmeasurementsof angleof attackandangleof sideslip,collec-
tively calledflowangles,Flowanglesarenotonourlist of mandatorymeasurements,andwehave
occasionallyobtainedgoodresultswithoutusingflow-anglemeasurements.Nonetheless,flow-angle
measurementsareof majorbenefit in obtaininggoodderivativeestimatesandshouldbepartof any
seriousstability andcontroltests. Withoutflow-anglemeasurements,youarelargelyrestrictedto
small-perturbationmaneuversfromwell-stabilizedflight; youranalysistaskis alsomoredifficult.
Flow-anglemeasurements,or reconstructionsof suchmeasurements,aremandatoryfor equation-erroresti-mationmethods.

8.5.1 Uses

We describe six different uses for angle-of-attack measurements, citing the uses roughly in order of

importance. Only the first of these uses is relevant to angle of sideslip; the remainder apply only to
angle of attack.

The first use, and probably the most important, is as observations. Flow-angle observations greatly
contribute to obtaining good _ and B derivative estimates; this should be no surprise. (The surprising

fact is that they are not mandatory for output-error or filter-error methods.) Accurate estimates of
and B derivatives indirectly help in the estimation of the other derivatives.

The second use of flow-angle measurements, primarily applicable to angle of attack, is in the

evaluation of flight condition. Angle of attack is an important flight condition parameter. Predic-

tions are commonly expressed as functions of angle of attack. You need to know the angle of attack to
select the appropriate predicted values both for starting and for comparing with the derivative esti-
mates from flight. Even if no predictions are available, you will want to present your estimates as

functions of angle of attack. Results presented without any indication of the flight condition to
which they apply are virtually useless, If you do not have an angle-of-attack measurement or recon-

struction, you have two other options: You can compute angle of attack from other data such as pitch

attitude and flightpath angle in steady flight, or you can plot data as a function of something related,
such as lift coefficient.

The third use of angle-of-attack measurements is in the kinematic term (p sin _ - r cos _) in the

state equation. This term is relevant whether you have a B observation or not. The importance of the

measurement to this term is a debatable issue. The lateral dynamics are quite sensitive to the value of
used in the (p sin _) part of this term; this implies that an accurate measurement of _ is crucial.

Our experience is that this term is so sensitive that we cannot rely on the _ measurement being accurate
enough. Therefore, we normally estimate a bias in the (sin _) term as one of the unknowns in each

lateral-directional case, This means we do not really need a measured _ for this purpose.

Estimating this bias is, in fact, one way to estimate _ without a direct measurement. Figure 8.5-i
shows estimates of sin _ obtained by this means from a 3/8-scale F-15 model (lliff et al., 1976). The

estimates are plotted as functions of measured angle of attack over a range of -20 ° to 55 °. The solid
line is the curve of perfect agreement. This figure shows that the sin _ estimates from the B state

equation are adequate to give a rough approximation of the angle of attack, but there is a scatter band

of several degrees. For this vehicle, the scatter is larger outside the range of -15 ° to +30 ° .

If the angle of attack varies significantly during a lateral-directional maneuver, you need a
measured _ to track the time variation, although you can allow a constant unknown bias, as shown in

Equation (3.8-13a).

The fourth use of angle-of-attack measurements is in the transformation of the CN and CA derivatives

into the CL derivatives used in the _ state equation. The measurement does not have to be particularly

accurate for this purpose, so rough approximations based on other data can often substitute adequately
for an _ measurement. For cruise conditions, zero is often an adequate approximation for the angle of

attack; this approximation simplifies the equations significantly (see Section 3.7). The transformation
is most important at high angles of attack and low speeds.

The fifth use of angle-of-attack measurements is in the gravity term in the _ state equation. The
reason you need an _ measurement here is that the term is nonlinear. For a nonlinear term, you cannot

blithely subtract the initial condition and work only with perturbation quantities. Section 3.7 describes

methods for dealing with nonlinearities. In general, if the maneuver is large, you will need point-by-
point measurements or reconstructions of e. For small maneuvers, you can get by with average values of

angle of attack, perhaps approximated from other data.

The sixth use of angle-of-attack measurements is in the thrust term in the _ state equation. The
same comments apply to this nonlinear term as to the gravity term.
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8.5.2 Vanes

Thereareseveralmethodsfor measuringflowangles.Nosinglemethodis clearlyoptimumin all
situations. All themethodshavesomeshortcomings;donotexpectflow-anglemeasurementsto beof the
samehighquality assurfaceposition,angularrate, or linear accelerationmeasurements.It requires
work,bothin transducerinstallationandin analysis,to compensatefor the inherentmeasurement
problemsandgetgoodflow-angledata.

Mosttest programsat Ames-Drydenobtainflow-anglemeasurementsfromboom-mountedvanes.Theboom
is mostcommonlyattachedto theaircraft nose,butwehaveoccasionallyusedboomsattachedto wingtips
or otherplaces. Weconsiderboom-mountedvanesto begenerallythebestmeansof measuringflowangles,
providedthat youcanputanadequateboomontheaircraft withoutinfluencingtheaerodynamics.

Ideally, theboomshouldbelongenoughto positionthe vanesin thefreestream,completelyoutside
theareaof measurableflowpatternsaroundthe aircraft. Thisideal is unrealistic. Amorepractical
goalis to positionthevanesfar enoughfromtheaircraft that the flowinfluenceof theaircraft is
smallenoughandsimpleenoughin formto correctfor. Ourempiricalrule for noseboomsis that boom
lengthshouldbe2.5to 3timesthefuselagediameter.

Boom-mountedvanesareinvariablyfar fromtheaircraft centerof gravity. Therefore,theobser-
vationtermsinvolvingthe offsetof thesensorfromthecenterof gravityareimportant.Youmustknow
the vanelocationsto evaluatetheseterms. Eitheryoucancorrectthemeasureddatato thecenterof
gravityor youcanincludethe positioneffectsin theobservationequations;Section3.5discusses
this choice.

Flow-anglevanesrequireconsiderablecalibrationto determinetheeffect of theflow field around
the aircraft. Youneedto calculatethis effect in orderto subtractit andleavethedesiredfree-
streamflowangles(or in orderto includeit in theobservationequation).Thecalibrationdatacan
comefromtheoreticalcomputations,wind-tunneltests, or flight tests. Theeffectsgetsmallerasthe
vanesmovefarther fromthe aircraft, but it requiresunreasonableboomlengthsto makethe effects
negligible. Formoderateflowangles,a reasonablemodelof the effectsis

m£= Kmmf+ mb (8.5-1)

wheremLis the local angleof attackof theflowstreampassingbythevane,mfthe free-streamangleof
attackat the vanelocation,Kmthe upwashfactor, andab thebias. Wolowicz(1966)discussescalibra-
tion of flow-anglevanes.Section3.6.3discussessomeaspectsof estimatingKmfromflight maneuvers.
Wedonotgointo detail here,butnoteonlythat accuratevanecalibrationcanrequireconsiderable
flight andanalysistime.

Otherpossiblecomplicationsof boom-mountedvanesincludeboomandvanedynamics.Althoughboom
dynamicsareoftendetectableasin Figure7.3-9,theyseldomconstituteseriousproblemsif theboom
is designedwith reasonablestrength. Thedynamicmodesof awell-designedvaneareimperceptiblein
flight. Staticeffectssuchasvanewarping(withbalsavanes)or bending(withmetalvanes)causelarge
problems.Carefulhandlingcanpreventbendingof metalvanes.Humidity-inducedwarpingof balsavanes
is moredifficult to avoid. Boombendingcanbea problemat highloadfactors. Finally, vanesaresub-
ject to a varietyof mechanicaldifficulties suchasfriction andgrit in thebearings.Someanalysts
applydatacorrectionsfor problemssuchasboombending.Werecommenda cautious,conservativeapproach
to suchcorrections;carelesslyappliedcorrectionssometimescausemoreproblemsthantheysolve,par-
ticularly whentheoriginal problemsarenegligible.

In spiteof theseproblems,wegenerallyconsiderboom-mountedvanesto bethebestsourceof
flow-anglemeasurements.Wepreferthis sourceunlessboominstallation is ruledout. Thecostand
complexityof installing anadequateboomis prohibitivein sometest programs.Therearealsositua-
tionswhereboomsareunacceptable,regardlessof cost. Forinstance,a noseboomcanhavea large
effect onthe aerodynamics,particularlyvortexflowat highanglesof attack.

Body-mountedvanesavoidthenecessityof installing boomsto measureflowangles.Suchvanesare
typically mountedonbothsidesof theforwardfuselageor nose.Althoughbody-mountedvanesavoidthe
problemsassociatedwithbooms,theyintroducea seriousproblemof their own.Theflowpatternsnear
the aircraft surface,wherethebody-mountedvanesarelocated,areextremelycomplicated.Forinstance,
nonlineareffectsof yawrateandroll rateareplausible. Averagingvanemeasurementsontheleft and
right sideswill noteliminatenonlineareffects. It is essentiallyimpossibleto accuratelyaccountfor
all sucheffects, soyoushouldanticipatemeasurementsfrombody-mountedvaneshavingerrorscorrelated
with theotherstates,regardlessof howmucheffort youspendoncalibratingthe vanes.Thepurposeof
a boomis to reducethesizeandcomplexityof thefloweffectsto a manageablelevel. Body-mounted
vanescangiveadequateflow-anglemeasurementsfor somepurposes,particularlyin steadyflight, where
therearefewerinfluencesto consider.Youcanusebody-mountedvanesin analyzingdynamicstability
andcontrolmaneuvers,but recognizethat thesignalqualitywill probablybemarginalandwatchfor
potentialproblemsfromthecorrelatederrors.
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8.5.3 Pressure Ports

Pressure ports are an alternative to vanes for measuring flow angles (Wuest, 1980). The pressure

patterns over the vehicle are strongly affected by flow angles. Thus, if you know these functions, you

can deduce the flow angles from measurements of the pressure at several locations. (Three locations is a

minimum to deduce the flow angle in one axis.) Siemers et al. (1983) and Foster (1980) describe speci-

fics of this technique for measuring flow angles. We comment here only on some of the general charac-

teristics of the method.

You must know the pressure patterns corresponding to different flow angles in order to deduce the

flow angles from pressure measurements. This is an impractical requirement if the pressure port loca-

tions are arbitrary. You need locations specifically selected to make the job easier.

The space shuttle provides an example of two typical arrangements. Figure 8.5-2 shows the shuttle

side probes. There are two of these side probes, one on each side. Each probe has three pressure ports,

one each on the center, top, and bottom of the front of the probe, plus two static pressure ports farther

back. The side probes are retracted during the hypersonic part of the entry, when they would burn off if

extended. They extend at about Mach 3.5, a higher Mach than would be practical for vanes. In other

vehicles, such probes could be boom mounted.

Figure 8.5-3 shows the shuttle entry air data system (SEADS) ports, planned for installation on

future shuttle flights. The ports in this system will be built into the nose of the vehicle itself,

allowing data gathering throughout the entire entry.

Pressure port measurements of flow angles have two major problems. First is the difficulty of
calibration. No matter how well positioned the ports are, the relationship between flow angles and

pressures is complicated. Accurate calibration of pressure port measurements of flow angles requires
extensive work, combining theoretical analysis, wind-tunnel tests, and flight tests.

The second problem is the lag inherent in pressure sensors. Section 8.7 discusses such pressure

lags. The predominant frequencies of the flow-angle signals in dynamic maneuvers are higher than those

of the air-data signals, so lags in the flow-angle measurements are more critical. The pressure lag

problem is further complicated for flow-angle measurements because each of the several pressure ports

involved can conceivably have a different lag.

It is possible to overcome the difficulties of pressure measurement of flow angles, but it requires a

lot of work, often a prohibitive amount. Pressure ports are seldom a viable option on small projects;

even on large projects, you will mostly consider pressure ports when they are already installed for other

purposes or when the use of vanes is precluded.

8.5.4 Other Sources

Another source of flow-angle information is inertial integration. By this term we mean any process

of estimating the aircraft velocity vector by integrating accelerometer measurements. This could involve

a specialized inertial navigation unit; at the other extreme, it could be merely integrating linearized

equations of motion using the stability and control accelerometers and gyros as inputs.

Inertial integration using the stability and control instrumentation does not add new information.
It is really a reconstruction rather than an independent measurement. It is reasonable to treat flow

angles from inertial navigation units as independent measurements because the inertial navigation unit
uses sensors different from the stability and control sensors; furthermore, the sensors have dramatically
different characteristics.

There are three problems with using inertial integration to obtain flow-angle time histories for

stability and control analysis. The first problem is drift in the open-loop integration of the neu-

trally stable equations. The drift in integrating typical instrumentation-quality accelerometer measure-

ments can be large, even during a single maneuver, unless you use special tricks to reduce the drift

(like adjusting biases to match reasonable end conditions). The drift in any inertial navigation unit

used for more than spare parts will be too small to measure during a single maneuver.

The second problem is one of response to dynamic maneuvers. Inertial navigation units are not

designed to track the relatively high-frequency motion of a dynamic maneuver; the navigation problem con-

centrates in a much lower frequency range. Inertial navigation data tend to be heavily low-pass

filtered, in some cases by the intrinsic characteristics of the transducer. Thus, although the steady-
state data before and after a maneuver are extremely accurate, the inertial navigation unit may be of

little value in tracking the dynamic response of a stability and control maneuver. It is possible to

modify some inertial navigation units to obtain higher-frequency data, alleviating this problem. The

problem does not apply to inertial integration using the stability and control sensors. Strap-down iner-

tial systems typically have better dynamic response than do gimbaled inertial systems.

The third problem is intrinsic to all inertial integration methods: In the pure form, these methods

ignore the effects of winds. Figure 8.5-4 shows sideslip angle from the space shuttle inertial naviga-
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tion unit during the second entry. The large motions near the end of the entry are errors from

neglecting winds; the true sideslip angle remained near zero.

There are several methods of accounting for winds in inertial navigation, but none really solve the
problem. You can subtract known winds measured by balloons or other techniques, but such measurements
can give only large-scale general patterns. No external sensor can accurately measure the winds encoun-

tered by the aircraft, particularly the small-scale phenomena.

Pressure ports, vanes, or other flow-angle and air-data measurements can be used to deduce winds by

comparing the inertial integration flow angles and velocities with the measured flow angles and air data.

This is a reasonable way to incorporate wind data into an inertial navigation system; the space shuttle

system uses such an idea to adjust inertial velocity and angle of attack (but not angle of sideslip)
after the side probes extend. This does not much help our quest for a means of inertially measuring flow
angles, however; the inertial system here uses flow-angle measurements, it does not create them.

The final method of measuring flow angles is to deduce the flow angle required to get the measured

accelerations. This method assumes knowledge of the force coefficient functions. After you have

verified the force coefficient functions in flight test, this may be an excellent method of estimating

flow angles on production vehicles, where you may want to remove the boom used in testing. For flight
test use, where you are trying to determine force coefficients, it is circular to use flow-angle measure-

ments based on knowledge of the force coefficients. You use such self-perpetrated data only at the
severe risk of obtaining misleading results.

8.6 EULER ANGLES

We highly recommend that you obtain measurements of the Euler angles 0 and @ unless your test program

is completely restricted to small-perturbation maneuvers from steady wings-level flight. The Euler angle
• , on the other hand, is of little value in estimating stability and control derivatives.

The most important use of Euler angle measurements is in the gravity term in the m and B state

equations. The Euler angle _ does not enter into these terms, which is why measurement of _ is less

important than measurement of 0 and ¢. For small-perturbation maneuvers from wings-level flight, you can

get by with small-angle approximations that do not require Euler angle measurements. For any other con-
ditions, you will need measurements of 0 and _ to get adequate results.

This is one place where equation-error methods can get by with less data than output-error methods.

Since equation-error methods do not involve integration of the state equations, they do not directly
need the Euler angles in this role. (They might, however, use Euler angles for data reconstruction
and checking.)

Euler angles are also used as observations. Their value in this role is minimal. They add little

to the angular rate data, which are generally of much higher quality. This role applies to all three
Euler angles, but _ adds so little information that we seldom bother to use it, even if measurements
are available.

Euler angles are usually measured by platform attitude gyros. Relative to other stability and

control instrumentation, attitude gyros are bulky and use considerable power. They are also less
reliable than accelerometers and rate gyros. The biggest problem with attitude gyros is drift. The

gyros will typically drift significantly during flight. This means that the gyros must regularly be

reset (often referred to as erecting the gyros). It also means that small bias errors, varying from
maneuver to maneuver, are to be expected. Neither of these effects are disabling, but you should be

aware of them so that you do not expect more from the attitude gyros than is realistic.

You should also be aware of the gyro erection procedure on your airplane and the possible effects of

this procedure. Some aircraft have erection circuits that amount to high-pass filters. This means that
the Euler angle data might be distorted in long, slow maneuvers if the erect circuit is active and the

break frequency is high enough. You should know at least enough about the gyro erection in your airplane

to determine whether this is a potential problem.

Another potential problem with most attitude gyros is gimbal lock. This is seldom a problem for sta-
bility and control maneuvers. Gimbal lock usually occurs only when the aircraft nose is pointed nearly

straight up or down. These are rare (though not completely unheard of) conditions for stability and
control maneuvers. We have encountered gimbal lock during tests of fighter airplanes.

The resolution of Euler angle measurements is often poor. This is not because of any limitations of
the attitude gyros, but because of the large signal range and the small fraction of this range used in

typical maneuvers. Section 7.5 gives some examples of Euler angle measurement resolutions. The poor

resolution of the Euler angles is seldom a serious problem. None of the uses of the Euler angles require
high resolution; the Euler angles are among the least resolution-critical signals. For instance,

although we prefer better, we can usually accept Euler angles with the 1.4 ° resolution implied by scaling
an 8-bit PCM channel over a full 360 ° raoge.
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Strap-downinertial systemscanobtainEulerangledatawithoutusinggimbaledplatformgyros.
Althoughwehavehadnoexperiencein usingstrap-downinertial systems,theyshouldbesuperiorto gim-
baledgyros.

8.7 AIRDATA

Theterm"air data"refersto thepropertiesof theair in the vicinity of theairplaneandtherela-
tive motionof theairplaneandtheair. Theair-dataparametersof mostinterestto usareanglesof
attackandsideslip, air-relative velocity,dynamicpressure,andMachnumber.Relatedparameterssuch
asReynoldsnumberaresometimespertinent. Themeasurementof theflowanglespresentssomewhatdif-
ferent issuesthantheotherair-dataparameters;flow-anglemeasurementis separatelydiscussedin
Section8.5.

Theair-relative velocity,dynamicpressure,andMachnumberarecloselyrelatedbytheequation

=I
_ pV2 = O.7PsM2 (8.7-1)

Thissectionconcentratesonthesethreeparameters.
Dynamicpressureandvelocityareusedin thenondimensionalizationof the stability andcontrol

derivatives. Thereforesomeformof dynamicpressureandvelocitydatais mandatoryfor mostapplica-
tions. Section5.2.2discussesthe importanceof nondimensionalization.Errorsin dynamicpressureand
velocitymeasurementcauseproportionalerrorsin thenondimensionalderivativeestimates.If your
applicationrequiresonlydimensionalderivativeestimatesandif thedynamicpressureandvelocityare
constantduringeachmaneuver,thenyoucandispensewithdynamicpressureandvelocitymeasurements,but
this situationis rare.

Thedynamicpressuremeasurementis particularlycritical for normalforcederivatives. Thisarises
fromthe relatively largenormalforcein levelcruiseflight (equalto theairplaneweight). Suppose
that dynamicpressurechangedbyI0 percentduringamaneuverwherethenormalaccelerationvaried
between0.9and1.1g. Thedynamicpressurechangewoulddirectly causea Ool-gchangein thenormal
acceleration.Therefore,if dynamicpressuremeasurementswereunavailable,youwouldhavemodeling
errorsontheorderof 50percentof theperturbationin thenormalforce. Dynamicpressureeffects
onnormalaccelerationareamplifiedbecausethedynamicpressureeffectsareproportionalto thetotal
normalforce,whichis muchlargerthanthe perturbation.

Figure8.7-1showsatypical exampleof the problemsthat arisefromneglectingthechangesof dy-
namicpressureduringa maneuver.Althoughdynamicpressuremeasurementswereavailable,this analysis
usedonlytheconstantaveragevalue(useof a constantvalueoftendividescomputertimebya factorof
2 or 3). Notethe fit error in the low-frequencyrangein normalaccelerationandthecorrelationof
this errorwithdynamicpressure.

Asecondaryusefor velocitymeasurementsis in the gravitytermof the eandBstateequations.
Precisemeasuredvaluesareof lessimportancein theseterms. Onoccasionwehaveevenestimatedthese
termsasunknowns,usuallyasa diagnostictool to checkthevelocitymeasurement.

Machnumbermeasurementsarenecessaryto definethe flight conditionsof transonicandsupersonic
airplanes. TheMachnumberis neededfor lookingupstartingvaluesandfor comparingwithotheresti-
mates.ConstantMachnumberis a requirementfor usabletransonicdata;a Machnumbermeasurementis
neededto evaluatehowwell eachmaneuveradheresto this model.TheMachnumberis notusedin the
estimationprocessitself.

Theair-dataparametersareusuallyderivedfromthreebasicmeasurements:static pressure,total
pressure,andtemperature.Adirectmeasurementof differential pressure(total minusstatic) often
substitutesfor thetotal pressuremeasurement.Gracey(1980)andWuest(1980)givecomprehensivetreat-
mentsof theseair-datameasurements.

Thetotal pressure(or differential pressure)measurementis themostimportant;youshouldmake
everyeffort to recorda total or differential pressuremeasurementona datatapein orderto allow
modelingof theeffectsof dynamicpressurechangesduringamaneuver.Thepilot's airspeedgaugereally
measuresdifferential pressure,so lap notesof indicatedairspeedarea potentialalternativeformof
thesedata. Althoughwehaveusedsuchlap notesonoccasion,werecommendthemonlyasa last resort.
Theuseof lap noteairspeeddataforcesyouto assumeconstantdynamicpressureduringa maneuverand
providesnogoodwayto checkthe validity of the assumption.Themaneuverrequirementsaretherefore
considerablymorestringent. Lapnotesarealsolessaccurateandmoresusceptibleto error thanauto-
maticdatasystems.

Thereareseveralacceptablealternativesfor static pressureandtemperaturedata. Thepreferred
approachis to recordstatic pressureandair temperatureprobemeasurementsonthedatatape. Static
pressureandtemperatureareessentiallyconstantduringmost(butnotall) reasonablestability and
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control maneuvers. Therefore, lap note recording of pressure altitude and outside air temperature
gauges is often acceptable. For stability and control analysis, you can probably even get by with

approximations, like using ground-level temperature minus a standard lapse rate to extrapolate to

temperature at altitude.

Calibration of air-data sensors is too broad a subject to reasonably cover here. This calibration

can be a major consideration in a flight test program. Gracey (1980), Herrington et al. (1966), and
Wolowicz (1966) discuss air-data sensor calibration in more detail.

Pressure lags in air-data sensors are often large. Lags are commonly on the order of several tenths
of a second, and are sometimes longer than a second. For most stability and control maneuvers, the air-

data lags present no problems, because the air-data parameters are nearly constant during the maneuvers.

Pressure lags are important, however, in analyzing maneuvers such as that shown in Figure 6.2-2 involving
large, rapid changes in static and dynamic pressure.

Figure 8.7-2 shows data from a step response test of the air-data sensors of the airplane that flew

the maneuver shown in Figure 6.2-2. The test began with 50 Ib/ft 2 of suction applied to the static port.

The total pressure port was at ambient conditions in the hangar, giving a 50-1b/ft 2 differential pressure.
We then suddenly removed the suction from the static port and recorded the instrument response to this

step change in pressure. The static pressure response is plain, showing an approximately exponential
rise from the reduced pressure to ambient conditions. The time constant of this rise is about 0.4 sec.

The digital resolution is apparent in the stairstep appearance.

The response of the differential pressure sensor requires a little more explanation. The differen-

tial pressure transducer has a multiturn potentiometer; any particular digital counts value can cor-
respond to several different engineering units values, depending on which turn the potentiometer is on

(you determine the correct turn by examining a coarse measurement). The data in Figure 8.7-2 are in raw,

uncalibrated counts. The 50-1b/ft 2 pressure change crosses several complete turns, which is the cause of
the sawtooth appearance. The sudden jumps at about 0.5, 1.0, and 1.8 sec are the turn changes. The

engineering units decrease monotonically from 50 to 0 Ib/ft 2.

Discounting the turn jumps, the response appears to consist of two segments of constant slope,

changing from the higher slope to its lower slope at about 1.2 sec. The constant slope before 1.2 sec
is from the sensor rate limit. The apparent constant slope after 1.2 sec is an artifact of the highly

nonlinear sensor calibration; the engineering units here have a more nearly exponential shape, as we
should expect. Finally, the sensor reaches the lower calibration limit of the lowest turn at 1.8 sec

and then stays limited there.

Gracey (1980) and Herrington et al. (1966) give data on pressure lags. It is important to note that
pressure lags are strongly affected by density; the lags are much larger at altitude than at ground level,

up to four times larger for reasonable cruise altitudes. Therefore, be sure to ask what altitude the data

apply to when you look at pressure lag figures. A system with acceptably small lags in the hangar may be
unusable for the maneuvers you plan at cruise altitudes.

Inertial navigation systems or radar tracking are possible alternative sources of velocity measure-

ments; assuming some source of density and static pressure data, Equation (8.7-1) gives dynamic pressure

and Mach number. Wind effects are a major obstacle to these methods. If you know the winds, you can
easily account for them, but accurate wind data are difficult to obtain. Accurate static pressure and

density data are also a problem at extreme altitudes.

8.8 ANGULAR ACCELERATIONS

Angular acceleration measurements are useful but are not required. The primary use of angular accel-

erometer measurements is as an observation. You can also use angular accelerometer measurements to
correct linear accelerometers to the center of gravity if you choose that approach to dealing with

instrument position (see Section 3.5).

In our experience, the quality of angular accelerometers usually varies from marginal to unusable for

stability and control analysis. We have seen a few good angular accelerometers, but they are more the
exception than the rule. Many angular accelerometers are extremely noisy, to the extent that the

response to a stability and control maneuver is lost in the noise. Figure 5.2-4 shows such data from the
space shuttle. The noise sensitivity is the worst in buffet and turbulence. Those angular accelerome-

ters that have reasonably low noise levels often have large lags and severe distortion at frequencies of
interest for stability and control analysis.

It is fairly common practice, when angular accelerometer data are unavailable or of poor quality, to

substitute differentiated angular rates, smoothed as necessary to alleviate noise problems in the dif-
ferentiation. The merits of this practice depend on the intended use of the data. Regression methods

require angular acceleration data, justifying the differentiation of the angular rates if that is the

best (or only) source of such data. Differentiated angular rates are acceptable for use in correcting
linear accelerometers to the center of gravity, provided that the differentiated signal has a low noise

level. However, modeling of linear accelerometer positions in the observation equation is less suscep-
tible to noise and is thus generally preferable to correcting the data using differentiated signals.
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We usually advise against using differentiated angular rates as observations for output-error or

filter-error methods. Such use seldom causes problems (unless the differentiated data are excessively

noisy or are distorted by poorly chosen filtering) but seldom helps. The main effect is to spend extra

effort and computer time without measurably changing the resulting derivative estimates. This waste

arises from a mistaken impression that just because output-error methods can use angular acceleration

observations, such observations are required. Angular acceleration data are required for regression

methods but not for output-error methods. We have done more stability and control analysis without

angular acceleration data than with them.

In output-error methods, angular rates and angular accelerations are largely mutually redundant. If

you have truly independent angular rate and angular acceleration data, they are not redundant and you

have more information than from either signal alone. If the angular acceleration signal is derived by

differentiating the angular rate signal, it adds no new information; it only repeats the same information
in a different form.

This change in form can be useful. The differentiated signal emphasizes the high-frequency content

of the data, possibly limited by any filtering done with the differentiation. Whether this emphasis is

helpful or detrimental depends on specific circumstances. In many cases, the useful data are all at

relatiyely low frequencies, and the high-frequency content is little more than noise. In other cir-

cumstances, the high-frequency part of the data gives good control derivative information. This occurs

when there are sharp control inputs and the random noise level and quantization level of the rate gyros

are low. If, in addition, the low-frequency response is distorted by drift and small modeling errors

(large modeling errors would make the analysis unacceptable), then the high-frequency part of the data

can contain the best control derivative information. In such situations, the emphasis change caused by

using differentiated rate gyro signals improves the results.

In summary, the use of differentiated rate gyro measurements is sometimes justifiable, but we rec-

ommend against indiscriminant use without specific benefits in mind. If you have no useful angular

accelerometer measurements and no specific reasons for using differentiated rate gyro measurements,

then simply remove the angular accelerations from the observation vector. Avoid differentiating angular

rates just because they are there.

8.9 ENGINE PARAMETERS

Engine thrust and engine speed measurements are useful in some applications, but they can be ignored

in most stability and control work.

The primary need for engine thrust data is in determining drag coefficients. Without some means of

subtracting the thrust component, you can only estimate the sum of the thrust and drag forces. The

thrust also appears in the _ state equation, but that term is usually of minor importance. The impor-

tance of obtaining thrust measurements is directly related to the importance of the thrust to the vehicle

stability and control. Thrust data are critical, for instance, for vectored-thrust configurations.

Inclusion of engine gyroscopic effects requires measurement of engine speed. Such effects are often

small enough to ignore in small-perturbation stability and control maneuvers; they are most likely to be

important in small high-powered airplanes. Large gyroscopic effects cause coupling between the longitu-

dinal and lateral-directional motions, which is detrimental to the handling qualities.

Methods for measuring engine thrust are outside the scope of this document. Signals required to

compute engine thrust are likely to include pressures and temperatures at various places in the pro-

pulsion system, rotational speeds, fuel flows, and engine control settings. Calib{ation of engine
thrust measurement is a major portion of a flight test program.

8.10 CONFIGURATION PARAMETERS

The vehicle configuration parameters are the positions of all flaps, canards, landing gear, wings

(sweep or skew), engine controls, external stores, and other items that affect the aerodynamic or control

characteristics of the vehicle and are constant during a maneuver. Changeable control system charac-

teristics, such as control system modes and gains, are also part of the configuration data.

It is important to know the configuration to which the flight data apply. For small, simple pro-

grams, lap notes or other manual records are adequate for configuration data. For large programs with

many configurations and maneuvers, digital recording of configuration variables is advisable to lessen

the chances of confusion and error. Digitally recording configuration data also aids automated handling

of large quantities of data.

Such digital recording can be a great convenience, but it is not a requirement. Hand recording

is adequate for parameters that remain constant during a maneuver. Any parameter that changes value

during a maneuver is more properly classified as a control than as a configuration parameter. There is

obviously some overlap in these classifications. Flap position can be a configuration parameter for some

maneuvers and a control in others. We can even have, for instance, the average elevator position during

a maneuver as a configuration parameter, with perturbation in elevator position as a control in the same

maneuver. In such cases of overlap, the requirements for measuring control positions apply.
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8.11 LOADING DATA

The loading data are those measurements needed to define the mass characteristics of the vehicle

during each flight maneuver. These data include fuel weights in various tanks (or fuel flow rates, from

which you deduce remaining fuel weights by integration) and payload weights and positions. Geometric

configuration parameters are also necessary to define the mass distribution. Section 5.2 discusses the

importance of knowing the vehicle mass characteristics.

Digital recording of loading data is a great convenience to automated data handling but is seldom a

requirement. Hand-recorded data are adequate in most cases. Automated recording of fuel flow is

necessary if your method of measuring fuel weights involves integrating fuel flows.
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9.0 EVALUATION OF RESULTS

This chapter treats the evaluation of the results of the parameter estimation process. There is some

discussion of evaluation throughout this document because of the closed-loop nature of the analysis pro-

cess. Evaluating the results is an integral part of the analysis process, not something that waits until

the analysis is done. You must investigate the reasons for poor or questionable results and endeavor to

acquire new data or reanalyze the existing data to improve the results.

Maine and Iliff (1984, chapter 11) discusses many Of the general principles of evaluating parameter

estimation results. The evaluation tools presented include the Cram_r-Rao bound, bias, scatter, and

engineering judgment. We do not repeat those general discussions here.

In this chapter we address specific issues of computing the Cram_r-Rao bound, which is the primary

analytical tool for evaluating the accuracy of the estimates. We use the Cram6r-Rao bound in other chap-

ters, but this chapter considers the practical aspects of its computation in detail. This chapter also

shows several examples of evaluating data using the Cram_r-Rao bound in conjunction with other tools.

Finally, we briefly discuss the importance of considering modeling issues in evaluation.

9.1 COMPUTATION OF THE CRAMER-RAO BOUND

The Cram_r-Rao bound is one of the primary analytical tools for evaluating parameter identification

results; it gives an approximation to the variance of the estimates. Maine and lliff (1984, chapter 11)

shows the derivation of the Cram_r-Rao bound.

Because of the numerous qualifications involving modeling error and noise statistics, it is necessary

to validate the theoretical properties of the computed Cram_r-Rao bounds before much confidence can be

placed in them. Comparing the Cram_r-Rao bounds and the sample standard deviations obtained from the

data scatter gives a good indication of the adequacy of the assumptions made in the theoretical develop-

ment. It has long been known that such comparison shows significant discrepancies in actual flight data.

This section examines these discrepancies and explains their cause. We also suggest and evaluate an

approximate correction for these effects.

9.1.1 Discrepancy in the Cram_r-Rao Bound

We choose data from a Piper PA-30 aircraft (Figure 9.1-1) to evaluate the Cram_r-Rao bounds.

Eighteen maneuvers were obtained from this vehicle. Each maneuver consisted of an aileron input

initiated from steady flight. The derivatives were estimated by the MMLE3 program using an output-

error maximum likelihood method. Figure 9.1-2 shows a typical time history match.

Figure 9.1-3 presents the estimates of CnB and C_B and the Cram_r-Rao bounds obtained from these

maneuvers. The vertical scales in these plots are exaggerated in order to show the scatter, and the

scale is exaggerated in order to separate the maneuvers. No significant differences in the derivatives

are expected over this small angle-of-attack range; you can regard the 18 maneuvers as being at essen-

tially the same flight condition. The Cram_r-Rao bounds on this plot are so small that they are dif-

ficult to see; they are roughly the same size as the symbols. The data scatter is much larger than

indicated by the Cram_r-Rao bounds. Quantitatively, the sample standard deviation is about nine times

the average Cram_r-Rao bound.

This discrepancy between the data scatter and the Cram_r-Rao

become a common practice to multiply the Cram6r-Rao bounds by an

to 10 (Iliff and Maine, 1975). The resulting values have proven

estimates, but the necessity of the unexplained fudge factor has

of this problem with the Cram_r-Rao bounds, several reports have

bound has long been known. It has

empirically derived "fudge factor" of 5
useful for evaluating the accuracy of
detracted from the confidence. Because

used the estimated correlations as pri-
mary indicators of accuracy (Wells and Ramachandran, 1976; Suit, 1972) in spite of the previously men-

tioned problems with the correlations. The estimated correlations are based on the same theoretical

foundation as the Cram_r-Rao bounds and thus should be equally suspect if errors are known to exist.

Other reports have ignored the fudge factor and quoted overly optimistic values of the accuracy (Williams

and Suit, 1974); discrepancies larger than the quoted accuracy were then attributed to various effects

without sufficient data points to establish whether the observed differences were significant or lay

within the scatter band.

The evaluation of accuracy measures on actual flight data is complicated by the impossibility of

establishing true values for comparison and by the inevitable presence of unmodeled effects. Although

tests on actual flight data are necessary for final validation, simulated data provides a more controlled

environment, which may aid preliminary work. We therefore repeated the preceding experiment with simu-

lated data.

To mimic the flight data experiment as closely as feasable, we used the control inputs measured

from the flight data to create the simulated data. We created 18 simulated maneuvers using the same

flight conditions as those of the 18 actual maneuvers. The same model was used for the simulation
as for the estimation. The same true values of the nondimensional derivatives were used for all 18

maneuvers. We used a pseudorandom noise generator to add simulated white Gaussian measurement noise to

the responses. The measurement noise power for each signal was proportional to the average residual

power observed on the flight data for that signal. We adjusted the proportionality constant to obtain

the same magnitude of scatter in the estimates from the simulated data as was observed in the estimates
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from the flight data. The derivatives and Cram6r-Rao bounds were estimated from these simulated data

using the same program as for the flight data. Figure 9.1.4 shows a typical time history match.

The estimates of CnB and C_B from the simulated data are shown in Figure 9.1-5 plotted to the same

scale as in Figure 9.1-4. The true values are CnB= 0.001 and C_B = -0.0007.

The scatter on this plot is about the same as for the flight data because the simulated noise power

was adjusted to achieve this scatter. The Cram_r-Rao bounds differ drastically on the flight and simu-

lated data. The Cram_r-Rao bounds on the simulated data are about 10 times those of the flight data and

agree well with the observed scatter. For the 11 derivatives estimated (not including bias terms), the

ratios of the sample standard deviations to the Cram_r-Rao bounds range from 0.68 to 1.32. This is

excellent agreement for a sample of only 18 maneuvers.

The Cram_r-Rao bound thus agrees well with the scatter on simulated data, but disagrees drastically

on flight data. Sections 9.1.2 and 9.1.3 examine the reasons for this discrepancy.

9.1.2 Previous Attempts at Explanation

Researchers have advanced several ideas attempting to resolve the discrepancy in the Cram_r-Rao

bound. Few of these ideas have been discussed extensively in the literature because of their speculative

nature. Maine and Iliff (1981a) examined these proposals and showed that none of them provided a satis-

factory explanation for discrepancies of the magnitude observed in practice.

The excellent performance of the Cram_r-Rao bound on simulated data refutes many conceivable explana-

tions of the discrepancy: One is the possibility of an error in the formulation or computer programming;

such an error would have shown up in the simulated as well as the flight results, since the same computer

program was used. A second refuted explanation is the fact that the Cram6r-Rao bound is only a lower

bound. The maximum likelihood estimator is proven to be asymptotically efficient, that is, the Cram_r-

Rao inequality approaches an equality as time approaches infinity. For finite time, the equality does

not hold. However, intuition, which can be backed up by analysis in this case, suggests that a few

periods of the natural frequency should be enough that the asymptotic result is closely approached. The

fact that the scatter of the simulated data agrees so well with the Cram_r-Rao bound verifies that the

time was long enough to make the equality a very good approximation.

These attempts to explain the discrepancy between the Cram_r-Rao bounds and the scatter implicitly

assume that the scatter is a reasonable measure of the accuracy. For the simulated data, where the true

values are known to be constant, the scatter almost defines the accuracy for an unbiased estimator. For

the flight data, other possibilities must be considered. Recall that the simulated data noise level was

chosen to make the scatter match that of the flight data, and the resulting Cram_r-Rao bounds of the

simulated data were larger than those of the flight data. As is evident by comparing Figures 9.1-2 and

9.1-4, the noise power in this simulated data is much larger than that of the flight data residuals. The

difference in the Cram_r-Rao bounds arises directly from the difference in the noise power. If the simu-

lated data noise power were lowered to the same level as that of the flight data residuals, the simulated

and flight Cram_r-Rao bounds would be the same. Of course, the scatter of the simulated data would be

much less than that of the flight data.

This suggests the possibility that instead of the Cram_r-Rao bounds being too small, the scatter is

too large in the flight data to properly represent the accuracy. It might be true, for instance, that

the individual estimates are as accurate as indicated by the Cram_r-Rao bounds and that the scatter

reflects actual changes in the coefficients. In principle, this would explain the discrepancy. How-

ever, there is no physical reason to suspect such large variations in the aerodynamic derivatives at

essentially the same flight condition. Furthermore, no ascertainable pattern can be detected in the

scatter that relates to any flight condition parameter. Although only a single example is shown here,

the same discrepancy is noted on every class of vehicle tested, including small general aviation air-

craft like the PA-30 shown here, airliners (Tanner and Montgomery, 1979), military fighters (Iliff et

at., 1978; Foster, 1977), large supersonic aircraft (Powers, 1977), and unconventional vehicles

(Sim, 1976; Maine, 1978). The universality of the discrepancy argues strongly against the possibility of

apparently random changes in the actual derivatives.

A related possibility is that the scatter in the estimates results from unmodeled errors that would

not be reflected in the Cram_r-Rao bounds. An obvious example of such a problem would be an error in the

measurement of the flight condition. For instance, if the dynamic pressure measurement were inaccurate,

the Cram_r-Rao bound and the estimates of the dimensional derivatives would not be affected. The non-

dimensional derivatives, however, would have larger errors than otherwise predicted. The occurrence of

the same discrepancy in data from many different aircraft and data systems argues strongly against this

as a cause. We believe that most of the data systems used are accurate enough to eliminate problems of

errors in the flight condition.

None of these possibilities has proven to be a satisfactory explanation of the discrepancy observed

in the flight data. For several years, the necessity for the fudge factor on flight data was left essen-

tially without explanation. It was argued that modeling errors existed that invalidated the Cram_r-Rao

bound. Such modeling errors, of course, were not present in the simulated data. Although this argument

is virtually irrefutable, it does little to explain the problem. The subject of what types of modeling

errors might exist that would have such effects was not addressed. This argument, amounting to a dis-

missal of the problem, does not give any basis for confidence in the use of the fudge factor. Although

some authors found the values to be of empirical use when the fudge factor was applied, others rejected

the Cram_r-Rao bound as invalid.
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This situation has more far-reaching implications than the invalidation of the Cram_r-Rao bound for
use with flight data. The theoretical derivation of the Cram_r-Rao bound rests on the likelihood func-

tional. If this theory is found inadequate, the theoretical justification for the use of maximum likeli-

hood estimators must also be questioned since the estimator is based on the same likelihood functional.
Thus, an invalidation of the Cram_r-Rao bound might imply an invalidation of the estimates, leaving us

with nothing theoretically worthwhile.

9.1.3 E__lanation of the Discrepancy

lliff and Maine (1977) advanced the first satisfactory explanation of the discrepancy in the
Cram_r-Rao bound. The discrepancy was traced to the theoretical assumptions about independence of the

noise samples.

The long period of time that elapsed before this explanation was advanced points out the necessity

for researchers who are well grounded in both theory and practice, because the problem lay essentially in
a lack of communication between the theoreticians and the practitioners. The theory is most naturally

developed assuming independence of the noise samples, and it had been passed to the practitioners in this
form. Experienced practitioners were well aware that residual spectra are seldom even close to white,

but they accepted the assumptions as being necessary to the theory. In fact, the theory can easily give
much information about the effects of colored noise. The theoreticians were unaware that the results

were needed, and the practitioners were unaware that helpful theory was available.

The exact discrete-time theory of estimation in the presence of colored noise is trivial when the

spectral shape of the noise is known. The application is also easy in the frequency domain, but con-
siderations such as nonlinearities and time variation severely limit the application of frequency domain

estimation. The time domain application of the exact theory of estimation with colored noise is overly
cumbersome. The effort is not justified by the small benefits expected. Furthermore, the noise spectral

characteristics are seldom precisely known, and incorrect specification could actually make the estimates
worse. Estimating spectral characteristics is possible in principle, but adds further unacceptable com-

putational complications. The theory of estimation with colored noise has therefore been largely rele-
gated to textbook examples.

Abandoning the exact approach, we recognize that approximating the effects of colored noise can

still provide more useful results than ignoring the issue. For a first approximation, assume that the
noise is band-limited white with band limit B. Rather than derive a maximum likelihood estimator for

this system, we analyze the performance of the white-noise-based estimator when the actual noise is

colored as described. The results of this analysis agree well with intuitive expectations. As long
as the noise bandwidth is much larger than the system bandwidth, there is negligible effect on the esti-

mates. Stated loosely, the estimation errors are caused by the noise near the natural system frequen-

cies; the estimator will always mistake some percentage of this noise for actual system response and

some percentage of the actual system response for noise. Noise far above the system bandwidth is readily
identified as noise rather than as system response. A good estimator should be little influenced by such

high-frequency noise.

This result is easy to generalize. It is obvious that the exact shape of the noise roll-off was of
little consequence in the preceding analysis. We could repeat the analysis with different types of roll-

off characteristics and would obtain the same results. In short, the high-frequency characteristics of
the noise do not materially affect the estimates.

This conclusion is a welcome validation of the practice of using the maximum likelihood estimator
based on independent noise samples even though the actual residuals are known to be significantly corre-

lated. The quantitative interpretation of "high" frequency is somewhat difficult, and skepticism is pru-
dent when the noise bandwidth nears the system bandwidth, as often occurs. Nonetheless, this theory

provides a much stronger base than totally ignoring the question.

Since the estimates are essentially unaffected by high-frequency noise, it immediately follows that

all functions of the estimates are equally unaffected. Thus, in particular, the same expression for the
Cram6r-Rao bound should still be valid. This would seem to refute the thesis that the discrepancy in the

Cram_r-Rao bound is related to the noise spectrum; in fact, the relationship is so elementary that it has
been overlooked.

In stating that the estimates are essentially unaffected by high-frequency noise, we are comparing
noise spectra that are the same at low frequencies. The high-frequency spectra, and thus the total noise

power, will differ. The low-frequency spectral density, rather than the total power, is the important

statistic. All the programs in use are written in terms of the total noise power (or equivalently, the
noise variance). Programs based on the continuous-time theory use the spectral density, but the spectral

density is estimated in practice by dividing the discrete total power estimate by the Nyquist frequency.

Let us consider the effects of using the total power instead of the spectral density. Imagine a

system with total noise power R. If the noise samples are independent, the classic analysis is valid,
and the Cram6r-Rao bounds should be correct. The noise power spectral density of this system is 2RAt

because the noise spectrum is flat up to the Nyquist frequency I/2At. Now imagine a second system with
the same total power, but with a one-sided noise bandwidth of B. Figure 9.1-6 shows the noise spectra of

these two systems.
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The Cram6r-Rao inequality for both systems is

var(_) ) li_l (Vcz*)R-I(vj*)*}-I
(9.1-1)

where vC_* does not depend on the noise statistics. Since the total power R is the same for both

systems, the same values are computed for Cram6r-Rao bounds. This is the computation used by current

programs. Expressed in terms of the power spectral density GG*, the Cram_r-Rao inequality should be

var(C) _ {i=_ I

For the first system, [I/(2At)] GG* = R,

the second system, however, [I/(2at)] GG* =

1

var(_) ) 2B_-

The Cram6r-Rao bound computation based on

(v{_*) I_-IA_-GG*I-I (Vj*),}-1 (9.1-2)

so this computation is the same as the previous one. For

[1/(2BAt)] R, thus

{i_l (V_%*)R-I(vj *).1-1 (9.1-3)

the total power was therefore too small by a factor of

1/(2Bat) in the variance (or%r[7(2BAt) in the standard deviation). The Cram_r-Rao bound computation

based on the power assumes that the power is evenly spread over the Nyquist range as in the first case.

Thus, in Equation (9.1-3), B is assumed to be 1/(2At). If this assumption is incorrect, the resulting

variance computation will be proportionally incorrect.

These results excellently explain the discrepancies previously observed. The noise samples on the

simulated data were independent, and thus the corresponding Cram_r-Rao bound computations were valid.

Modern flight test instrumentation is accurate enough that the largest component of the residual error in

flight data is from modeling error rather than true measurement error. The "measurement noise" statistics

must include all such unmodeled effects. The philosophical question of precisely what can be included in

measurement noise is addressed in Maine and lliff (1984). Since our theory contains only the linear

system model and measurement noise, any effects not included in the system model must contribute to the

measurement noise (otherwise our theory is denying their existence; such a solipsistic approach seems

unwise). The measurement noise in real flight test data therefore tends to be quite colored. Figure 9.1-7

shows power spectral density plots of the residuals from the flight test data used in Figure 9.1-3. A

precise break point is not obvious, but a value near 0.3 Hz seems reasonable. The Nyquist frequency for

these 50-sample/sec data is 25 Hz, so the computed Cram_r-Rao bounds should be increased by a factor of
about N25/0.3 _ 9. The sample standard deviations were about nine times the Cram_r-Rao bounds before this

correction. The agreement is now quite reasonable considering the vaguely defined value of the break fre-

quency. The noise break frequency is close enough to the system frequencies that the approximations in

the theory are subject to question, but the experimental results hold up well.

As a verification of the theoretical results of this section, a new set of simulated data was created.

The noise for these data was created by passing the pseudorandom independent noise through a fifth-order

Chebyshev filter with a break frequency of 1Hz; this filter has a sharp break at I Hz as shown by Fig-

ure 9.1-8, which is a power spectral density of one of the resulting measurement noise signals.

Figure 9.1-9 shows a typical time history match to these data. Note that this match exhibits

deterministic-appearing characteristics, such as phase shift and flattened peaks. The matches of B,

p, r, and ¢ are more typical of flight data than are the simulations shown in Figure 9.1-4. Accel-

erometers, by their nature, have more high-frequency noise than such instruments as rate gyros. There-

fore, the flight accelerometer matches tend to be of a character intermediate between that of Fig-

ures 9.1-4 and 9.1-9. Figure 9.1-10 shows the Cram_r-Rao bounds and estimates of Cn8 and C_B from the

simulated data with filtered noise. We have succeeded in duplicating the discrepancy with simulated data

by using band-limited noise. The band limit is well defined here, and when the Cram_r-Rao bounds are

corrected for the colored noise, they agree excellently with the scatter.

These results support the conclusion that the discrepancy in the Cram_r-Rao bound has now been ade-

quately explained by the presence of colored noise. An important consideration is that in order to

accurately reflect flight data scatter, the noise statistics used in computing the Cram4r-Rao bound must

represent the entire residual error including modeling error contributions (which may be much larger than

the actual instrumentation error). Therefore, studies made solely on the basis of instrumentation charac-

teristics (Hodge and Bryant, 1975; Sorensen, 1972; Gupta and Hall, 1978) are likely to be extremely

overoptimistic. Colored noise would also be expected to affect the insensitivities, but it should not

directly affect the correlations. The correlations might, however, be affected by the fact that the noise

contributions from modeling error on the various signals tend to be correlated.

9.1.4 Suggested _lementations

Section 9.1.3 explains the reasons for the discrepancies observed in the Cram_r-Rao bounds. It

remains to discuss practical implementation of a corrected computation of the bound. We consider

three approaches.



141

The first approach is to continue the use of fudge factors. The Cram_r-Rao bounds, computed

ignoring noise coloring and then multiplied by a fudge factor of 5 to I0, have proven useful in practice.
The objection to this approach has not been to its utility but rather to its ad hoc nature and total lack

of theoretical justification. Now that the theory has provided an understanding of the need for an extra
term, it is not unreasonable to use a value that is based on past experience rather than analytically

computed for each maneuver. It could be regarded as an empirically determined spectral adjustment factor

instead of as a mysterious fudge factor. The factor has been observed to be relatively constant over
large classes of cases, further justifying this approach. The advantages to this approach are the

simplicity and the fact that no changes to current programs are required. The disadvantage is that the
engineer must watch for changes in the vehicle or in the analysis that might significantly affect the

spectral characteristics of the residuals and thus the factor used. If such changes occur or if discrep-

ancies are noted, it may be necessary to adjust the factor used. The approach is subject to criticism on
the basis of arbitrariness, but when considered as a tool to aid the engineer's evaluation, instead of as

an absolute value of accuracy, it can continue to be useful, as it has been in the past.

The second approach is to examine (manually or automatically) the actual spectrum of the residuals.

The break frequency can be evaluated, or the spectral density can be used directly. This method has the

advantage of providing the most information. The spectral characteristics of each signal can be adjusted
separaSely, instead of using a single factor for all the signals. The entire spectral shape can be

examined for peculiarities such as resonant modes. The disadvantages are twofold: First, this is the

most complex approach. A Fourier transform routine must be included in the analysis program if the
adjustment is to be automatic; appropriate plotting routines will also be required. It is always a good

practice to examine at least a few sample residual power spectral density plots anyway, but it is

simplest to create the power spectral density plots in a separate program. The second disadvantage is
that the value to use for the spectral density or the break frequency is not usually obvious from the

plot, Figure 9.1-7 shows a typical example of this problem. The spectrum does not exhibit an obvious
flat area followed by a well-defined break. Picking a specific value from the plot can be as much of

an art as picking a value for the spectral adjustment factor from experience.

The third approach is a compromise between the first two; it obtains information from the actual

residuals but keeps the programming relatively simple. This approach uses the total power of low-pass-

filtered residuals. A simple single-pole filter is used with a break frequency two or three times the
system natural frequency. The power of the filtered residuals is then divided by the filter break fre-

quency to give the average power spectral density at frequencies near and below the system natural fre-

quencies. This method does not provide the complete spectral information of a power spectral density
plot, but with very little work it does pull out a reasonable estimate of the single value we are after.

The bulk of the implementation is in filtering the residuals, which is done in the same time loop that com-
putes them.

The method is somewhat approximate and requires picking a value for the filter break frequency. The

obvious approximations include the assumption that the noise spectrum is flat at least to the filter

break frequency, the choice of filter break frequency, and the use of a first-order filter. In practice,
the noise tends to be closely concentrated around the system natural frequencies. This violates the

requirement that the noise bandwidth be well above the system frequencies. Because of these approxima-
tions, the method should not be regarded as giving a precise measure of the expected scatter; our only

claim is that the method is an improvement over previous computations. Furthermore, some of the pro-

posals of Section 9.1.3, although unable to explain discrepancies of a factor of i0, might contribute
measurably to smaller discrepancies. The approximations in the proposed approach are such that a factor

of about 2 typically remains to be multiplied, based on empirical observation.

The method might therefore seem to provide little improvement over the first approach since an

empirically determined factor remains (although the factor is now smaller). The advantage is that this

approach will approximately account for large changes in the spectral characteristics. If the spectral

characteristics of all the maneuvers are similar, the results from this and the first approach are

equally applicable.

Figure 9.1-11 shows the flight data from Figure 9.1-3 with Cram_r-Rao bounds computed from the

filtered residuals. A break frequency of 0.5 Hz was used for the filters. The correction factors com-

puted from the filtered residual power ranged from 3 to 6, and a remaining empirical factor of 2 was

used. The magnitudes of the Cram6r-Rao bounds on this plot are reasonable and give a good visual indica-

tion of the estimate accuracy. Although this plot shows no outstandingly good or poor maneuvers, there

is a noticeable tendency for the estimates near the center of the scatter band to have smaller Cram6r-Rao

bounds than the outliers. This approach results in a useful estimate of the accuracy.

9.2 EXAMPLES OF APPLICATION

This section presents several examples of application of the Cram_r-Rao bound to actual flight data.

The examples illustrate the kinds of information that can be deduced with the aid of the bounds.

9.2.1 Example 1

The first example uses data from a remotely piloted oblique-wing vehicle (Maine, 1978) shown in

Figure 9.2-i. Cross-coupling derivatives between the longitudinal and lateral-directional modes were
of significant interest for this nonsymmetric vehicle. Figure 9.2-2 shows the estimates of two such

derivatives, Cy_ and Cmr. An empirically determined spectral adjustment factor of 5 was used in the
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Cram6r-Raoboundsshown.TheCy_datashowrelativelysmallscatterandcorrespondinglygoodCram6r-Rao
bounds.Theeffectof this derivativeis readilyidentifiedfromtheflight data,andit agreeswell with
the predictions.

ForCmr, ontheotherhand,thescatterandCram6r-Raoboundsareaboutthesamemagnitudeasthe
estimates.Thereis verylittle informationaboutthevalueof Cmrin theflight data. Withthewing
skewed15° to 45°, thedatashowthat Cmris positiveandprobablysomewherein the rangeof 0.1to 0.3.
It cannotbeestimatedbetter thanthis fromthedataavailable.

Thisexampleillustrates theuseof thescatterandtheCram_r-Raoboundsto determinewhichderiva-
tives canbeaccuratelyestimatedfromthedata. Confidencein thedeterminationis improvedbyusing
boththescatterandtheCram_r-Raoboundsto supportthe conclusion.
9.2.2 Example 2

The second example uses data from a remotely piloted 3/8-scale F-15 model (lliff et al., 1976)

shown in Figure 9.2-3. A spectral adjustment factor of 5 was used for these data. Figure 9.2-4 shows

the estimates of Cmq. The behavior around 25 ° angle of attack is of particular interest. It is dif-

ficult to justify the fairing shown based on the data scatter alone. The fairing was based mostly on the
data points with small Cram_r-Rao bounds. In particular, the cluster of points near 25 ° angle of attack

showing Cmq near 0 have small Cram_r-Rao bounds, while the points at the same angle of attack showing

Cmq values of -3 and -4 have larger bounds. The fairing therefore goes to 0 at 25 ° angle of attack. The

estimates of Cm_ in Figure 9.2-5 unambiguously show a similar shape near 25 ° angle of attack. Subsequent

results have tended to verify the validity of the Cmq fairing.

In this example, the Cram_r-Rao bounds provide more information than the scatter alone. The bounds

indicate that some points have good accuracy, even though the overall scatter is large because of a few
poor estimates. The Cram_r-Rao bounds indicate that some of the estimates above 35 ° angle of attack

and also some near -10 ° are quite unreliable even though the scatter is not large (see example 5, Sec-
tion 9.2.5, for more on this point).

9.2.3 Example 3

Figure 9.2-6 shows estimates of CnB taken from the same 3/8-scale F-15 data as in example 2, Sec-

tion 9.2.2, using the same spectral adjustment factor of 5. The scatter above 35 ° angle of attack is

quite large, as are most of the Cram6r-Rao bounds. A few points with small Cram6r-Rao bounds form the

basis for the fairing used. It is interesting that the three points (shaded) farthest from the fairing

were obtained immediately before aircraft upsets. These more negative values of CnB may be an early
manifestation of the aerodynamic phenomenon causing the upsets.

9.2.4 Example 4

The fourth example uses data from an F-111A airplane shown in Figure 9.2-7. Figure 9.2-8 shows esti-

mates of Cm_ for the F-111A at 26 ° of wing sweep (lliff et al., 1978). The Cram_r-Rao bounds were

multiplied by an empirically determined factor of I0 to correct for the effects of colored noise. The

factor was chosen to make the Cram_r-Rao bounds of about the same magnitude as the scatter for most of the

derivatives. The scatter on Cm_ is much larger than the Cram_r-Rao bounds, even after using the factor.

The M = 0.9 points are particularly puzzling. Since using the same factor resulted in good agreement of

the Cram_r-Rao bounds and the scatter for the other derivatives, the Cm_ estimates deserve careful study.

To study these results, we replotted the data as a function of Mach number (Figure 9.2-9). The

reason for the apparent discrepancies was then evident. As shown by the fairing in Figure 9.2-9 the

data show a significantly less stable Cm_ in a region around Mach 0.85. In Figure 9.2-8 the data were

rounded to the nearest M = 0.7, 0.8, or 0.9. The points near Mach 0.85 were all automatically rounded

to Mach 0.9 (they were slightly above 0.85), This merging of the Mach 0.85 and 0,9 data made the Mach
effect look like an inconsistency. Figure 9.2-10 shows the same data as Figure 9.2-8 with the points near

Mach 0.85 shaded and fairings of the flight data added. The scatter about these fairings is reasonable.

In this example, the Cram6r-Rao bound did not directly indicate the nature of the problem, but it did

draw attention to an area that needed more careful study. The ensuing study disclosed the unanticipated
Mach effect.

9.2.5 Example 5

Figure 9.2-11 shows estimates of C_r for the F-111A airplane at 35 ° of wing sweep. A spectral

adjustment factor of 10 was used, as described in example 4, Section 9.2.4. The data in this figure

were gathered in an effort to investigate derivative changes as a function of normal acceleration;

such changes could be caused by structural deformation. The solid line is a fairing of previous l-g

flight data.
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This figure has characteristics the opposite of those in example 4; the adjusted Cram6r-Rao bounds

are much larger than the data scatter. The estimates are all very close to the fairing of the previous

data. This behavior is typical of a problem that can occur when you use an a priori weighting (that is,

when you use an MAP estimator).

Convergence difficulties were encountered in analyzing several of the elevated-g maneuvers, which

were often not well-stabilized maneuvers. Therefore, an a priori weighting was used to improve the con-

vergence. The a priori values are indicated by the solid line in Figure 9.2-11.

The effect of the a priori weighting is to hold estimates near the a priori values unless there is

significant evidence that the a priori values are incorrect; the level of significance required can be

adjusted. The a priori weighting thus tends to eliminate large estimate changes that are based on mini-

mal information. This can improve convergence if the information content of the manuever is poor.

The Cram6r-Rao bounds in Figure 9.2-11 indicate that the maneuvers contained very little information

about the derivative C_r. The small scatter is probably due almost entirely to the a priori weighting,

rather than to information from the maneuvers. Thus, the data in Figure 9.2-11 do not verify the pre-

vious flight data, a conclusion that might be mistakenly drawn if the Cram_r-Rao bounds were not con-

sidered. Instead, Figure 9.2-11 indicates that the new data do not have sufficient information to

contradict or verify the a priori values. In such a case, the estimator holds near the a priori values

when an a prCori weighting is used.

This example also illustrates an important fact about the computation of the Cram_r-Rao bound when

an a priori weighting is used. The Cram6r-Rao bounds are computed from an approximation to the second

gradient of the cost function. When an a priori weighting is used, a penalty function is added to the

cost function. To estimate the information content of the flight maneuver, the matrix used for the

Cram_r-Rao bound must be computed based only on the original cost function; it should not have a term

added for the second gradient of the penalty function. If the second gradient of the penalty function

were added into the computation of the bound, the bound would reflect the sum of the information from the

maneuver and from the a priori weighting. The phenomenon in Figure 9.2-11 would not be observed (the

Cram_r-Rao bounds in the figure would be much smaller).

There are applications where you want to use the information from both sources and to have a cor-

responding accuracy estimate. The Cram6r-Rao bound with the second gradient of the penalty function

included is a possible source for such an accuracy estimate. However, it gives no hint as to how much

of the information was obtained from the maneuver and how much was obtained from the prior information.

Knowing how much of the information came from each source helps avoid misinterpretations.

9.2.6 Example 6

Figure 9.2-12 shows the estimates of Cn6 r obtained from the same flight data used in example 5,

Section 9.2.5. As in example 5, the data scatter is small and agrees well with the fairing of the pre-

vious flight data. A priori weighting was used for both examples. In this example, however, the
Cram_r-Rao bounds are small and are consistent with the scatter. It can be concluded that the maneuvers

contain significant information about the derivative Cnar. Therefore, the data shown give positive veri-

fication of the a priori values. This contrasts with example 5, where we could only conclude that the

new data did not contradict the a priori values.

9.3 MODELING CONSIDERATIONS

In this document and in Maine and lliff (1984), we have emphasized issues of modeling. All the

analysis and evaluation tools depend to some degree on assumptions of model validity. If the assumed
model is inappropriate, then the parameter estimates are of little value. Evaluation tools such as the

Cram6r-Rao bound will sometimes detect modeling errors, but they cannot be relied on for such purposes.
Critical consideration of model adequacy must pervade the entire estimation process.

In evaluating and using results, it is not sufficient to know that the estimates came from an ade-

quate model. For any given problem, there are numerous adequate model forms. It is important to know
precisely which model was used so that you can evaluate the parameter estimates in the context of that

model. Estimates obtained with one model structure may not be directly comparable with values derived
using different model assumptions. This need not mean that either set of values is wrong. It does mean

that knowledge of the parameter values alone is insufficient; you also need to know what model the para-

meters apply to.

A classic example concerns estimates of q and _ derivatives. Consider the following simplified

longitudinal model, obtained from Equation (3.4-3):

ly

_sc

mV cL_ q - mV

_c+
-- q = Cm_ + Cmq 2V Cmo

(9.3-ia)

(9.3-1b)
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Suppose,now,that wewantto expandthis modelbytheadditionof a Cm_term.unaffected,andEquation(9.1-1b)is replacedby
Equation(9.3-1a)is

ly _c

_sc _ = Cm_ + _L_ + + (9.3-2)Cmq 2V Cmo Cm_

Substituting Equation (9.3-1a) into Equation (9.3-2) and rearranging gives

& = --_S-CL_amV + q + _v _L_mVCLo (9.3-3a)

ly I--s-q_-C_Cm_ CL_Ia + (Cmq + Cm_)_+ + c I_ qs CLo ) (9.3-3b)_sc G = Cma 2mV2 2V Cmo Cm_ - mV

For current purposes, we will assume that the value of Cm_ is known. This avoids an identifiability

problem, which, although important, is not relevant to the current discussion.

The sum Cmq + Cm_ in Equation (9.3-3) plays the same role as the term Cmq in Equation (9.3-1).

Parameter estimates based on these two models will reflect this equivalence. The estimates of

Cmq obtained using the model of Equation (9.3-1) will equal the sum of the estimates Cmq + Cm_ obtained

using the model of Equation (9.3-3). Unless Cm_ is zero, this implies that the Cmq estimate from Equa-

tion (9.3-1) is not equal to that from Equation (9.3-3); analysis based on such an equivalence will give

unreasonable results. Similarly, the Cm_ from Equation (9.3-1) is not directly comparable with that from

Equation (9.3-3); however, the numerical difference between these two Cm_ values is small for most con-

ventional aircraft configurations, and it is usually neglected.

The issue of model comparability often arises in comparing wind-tunnel and flight estimates. Models

like Equation (9.3-1) are often used in flight data analysis, whereas Equation (9.3-3) is more represent-

ative of most wind-tunnel test methods. The result is that wind-tunnel Cmq estimates are significantly

different from flight Cmq estimates obtained using Equation (9.3-1). This difference does not mean that

either of the models or their corresponding derivative values are wrong. Both can be useful models of

aircraft behavior. The important thing is that Cmq estimates from Equation 9.3-1 apply only to that

model; it is incorrect to use them in Equation 9.3-3. This is what we mean by the statement that you

must evaluate parameter estimates in the context of the assumed model structure.

If you apply estimated parameter values to a different model structure, you must consider the effects

of the changed structure. In some cases there is no effect, and the same parameter values apply. In

other cases there are simple equivalence relationships, such as the one derived here between Cmq and

Cmq + Cm_. Finally, there are cases where the model structures are too different for the parameter to be

meaningfully translated.

The first, and most crucial, step in considering the effects of model differences is to recognize

when a model difference exists. This requires you to be conscious of what model was used in the estima-
tion and what model you are using in application or evaluation. Several misapplications of parameter
estimates have arisen from failure to consider model structure as an issue.
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Thisdocumenthasexaminedthepracticalapplicationof parameterestimationmethodologyto the
problemof estimatingaircraft stability andcontrolderivativesfromflight test data. Wehavecon-
centratedontheoutput-errormethodin orderto providea focusfor detailedexamination.Thereare,
however,otherviableapproachesnotcoveredin this document.It is not realistically possiblefor one
documentbothto surveythewidevarietyof feasibleapproachesandto treat eachin thedepththat we
haveattemptedhere.

Parameterestimationplaysa majorrole in currentflight test programs.Parameterestimation
resultsareconsideredamajortest objectiverequiredfor successfulcompletionof flight test pro-
grams.Althoughparameterestimationresearchcontinuesin severalareas,it is nolongerpurelya
researchtopic.

In this documentwefirst derivedthe aircraft equationsof motionasusedfor stability andcontrol
derivativeestimation.Successfulapplicationof parameterestimationtechniquesrequirescarefulcon-
siderationof whateffectsto includein theequations.Suchcomplicationsaspilot andcontrolsystem
model_areperipheralto thepurposeof estimatingaerodynamiccharacteristics;themostsuccessful
modelsavoidsuchperipheralissueswherepossible.

Wenextdiscussedsimplifyingthe generalequationsof motionandadaptingthemto a specificcom-
puterprogram.Althoughtheprecisedetailsmayvaryfor differentprograms,the processweexaminedis
alwaysimportant.Numerousattemptedapplicationshaveflounderedbecauseof suchmundaneissuesasthe
treatmentof biases. Wepresentedanidealizedexampleusingcomputeddata,simplifiedin orderto help
gainanintuitive graspof theestimationprocess.

Wediscussedthe role of aircraft massdistributiondataandpredictedderivativedatain thepara-
meterestimationprocess.Weparticularlyemphasizedthe effectsof errorsin thesedataandthevarious
requirementsfor differentobjectives.

Thedesignof flight test maneuversinvolvestrade-offsbetweenmanyconflictingcriteria. We
discussedmaneuversize, flight safetyconsiderations,andpilot involvement.Weexaminedidentifi-
ability asa practical issueinvolvingindependentinputs,modalexcitation,andfrequencycontent,more
thanasanabstractnotionrelatingto singularityof the informationmatrix. Wealsoconsideredflight
schedulingissuesandallowancesfor instrumentationfailures andothercontingencies.

Wediscussedthedataacquisitionsystemin detail. Thisdiscussionincludedconsiderationof time
tagging,frequencyaliasing,filtering, samplerates, andresolution. Wealsodiscussedthe varioussen-
sors, their characteristics,andtheir relativemerits.

Finally, weconsideredevaluationof theparameterestimationresults. Thetoolsusedfor evaluation
includethe Cram_r-Raobounds,scatter,correlations,bias,andengineeringjudgment.Wediscussedthe
rolesof thesevarioustools, their relativemerits,andtheir interplay. Wespecificallyemphasizedthe
useof theCram_r-Raoboundasthe primaryanalyticmeasureof accuracy,whilerecognizingthat no
analytictool cansubstitutefor theapplicationof soundengineeringjudgment.

Wealsoemphasizedtheiterative natureof the evaluationprocess.Evaluationof theresultsmustbe
accompaniedbyaconsiderationof howtheymightbeimproved--by betterinstrumentation,modeling,
maneuvers,analysismethods,or whatever.Toobtaingoodresults, it is mandatoryto thoroughlyreview
the entireestimationprocessfor errorsof equipment,judgment,or fact. Withoutsucha conscious
review,it is almostcertainthat somesucherrorswill exist, corruptingthevalidity of the results.
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