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SUMMARY

Real-time piloted aircraft simulations with digital computers have been per-

formed at Ames Research Center (ARC) for over two decades. For the simulation of

conventional aircraft models, the establishment of initial vehicle and control

orientations at various operational flight regimes has been adequately handled by

either analog techniques or simple inversion processes. However, exotic helicopter

configurations have been recently introduced that require more sophisticated tech-

niques because of their expanded degrees of freedom and environmental vibration

levels.

At ARC, these techniques are used for the backward solutions to real-time

simulation models as required for the generation of trim points. These techniques

are presented in this paper with examples from a blade-element helicopter simulation

model.

INTRODUCTION

For research such as that done at ARC, flight simulation is initiated from a

configuration of vehicle states and pilot controls that is conceptually a single

point in the history of a real or imagined vehicle flight. This point, called the

"initial flight condition," is the origin of a region of interest to simulation

researchers. For many reasons the vehicle model itself cannot be "flown" to this

point, but rather must "magically" appear in this configuration, often repeti-

tiously, with perhaps a single parameter being perturbed at the beginning of each

real-time session. For example, a landing scenario may be repeatedly reenacted with

different values for the vehicle initial flap setting. A change in flap setting (or

a change in almost any variable on an aircraft) produces changes in the vehicle

translational and rotational accelerations.

In real-time flight simulation, both the vehicle translational and rotational

accelerations must vanish (be nulled or trimmed) during simulation initiation. It

is not merely that pilots prefer to begin operations in a nonaccelerated configura-

tion; it is actually a critical requirement. For instance, large-scale motion

devices demand the absence of initial transients.

Initial Conditions

The set of initial conditions specified by engineers and pilots are invariably

incomplete. For example, between two consecutive experiments, the computer operator



might receive the following instructions from the simulator cab: "Beam me up,

Scotty, to 500 ft on a glide slope of 5o. '' In all probability, the appropriate

vehicle attitude and control configuration for the accomplishment of this trimmed

initial condition would not be known a priori. In fact, the phenomenon of "incom-

plete initial conditions" presents an unusual problem to the discipline of flight

simulation programming.

To appreciate the problem of incomplete initial conditions, consider the fact

that a discrete real-tlme model is coded in forward, sequential flow. Given all of

the pilot controls and all of the vehicle states, then the ,_del is designed (only)

to produce all of the vehicle states at the next time-point (one cycle-tlme

later). However, the problem of trimmling implies the backward solution of the

model. The question is: If all of the accelerations are required to be zero on

succeeding cycles, what is the required orientation of the vehicle and what are the

required values for all of the pilot controls?

Modes

The problem becomes slightly less complicated when two distinct "modes" are

programmed into the discrete model because there is (I) an initial condition mode

(IC mode) during which the independent variable time "t" does not advance after each

consecutive pass through the model, and (2) an operate mode (OP mode) during which

time advances each pass through the model in accordance with t = kT, where T is

the cycle time. During the IC mode, special program branches are implemented so

that accelerations are prevented from producing velocity changes and velocities are

prevented from producing changes in the linear and angular positions.

Complex dynamics nonetheless occur in the IC mode. They are caused by unavoid-

able algebraic loops and occasional free-running integrators, i.e., integrators that

function during the IC mode. These processes complicate the production of "effects"

whenever known "causes" are given in sequential processes.

Cause and Effect

Despite the presence of dynamic behavior in IC mode, cause and effect can be

established, as will be described. It will require an exercise in the calculus of

variations to establish the causes when only the desired effects are known.

Given the existence of cause and effect, the "forward solution only" character-

istic of a flight simulation model may be used in a novel procedure to produce an

effective "backward solution." This procedure is referred to as "trimming a vehicle

model." It involves the production of partial derivative matrices and the creation

of pseudoinverses thereof. An iterative procedure is developed by using classical

mathematical techniques. These techniques are known to have quadratic convergence

features.
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In flight simulation the backward-solution process is actually a third mode; it

is called "Trim mode." Since a pilot iterates his many controls based upon his many

observable states, Trim mode emulates a pilot in actual flight (or OP mode). How-

ever, the trim process in flight simulation is automatic and functions only in IC

mode; the simulator pilot is necessarily removed from the procedure. For the sub-

Ject of "trimming an aircraft," the following definitions are used.

I. The "control vector" consists of elements either normally set by a pilot

or, from physical considerations, consists of elements such as the aircraft orienta-

tion and position. Any given "control" must influence at least one element in the

"state vector."

2. The "state vector" consists of the vehicle linear and angular accelera-

tions, usually expressed in the body-axls frame.

PARTIAL DERIVATIVE EVALUATION

In terms of a set of n controls CI, C2, ..., Cn in two distinct configura-

tions, a differential control vector x may be described by the difference,

X --

m m jD m

CI I CI

C2 IC2

C
Cn b n

a

(i)

Assume that these controls at points a and b influence the model and produce two

distinct sets of values for the states. In terms of m states, a differential

state vector y may then be observed from the model in response to the previously

described control configurations.

IS1 IS 1

I " "

is s
m b Im a

(2)

The observations of the states at points a and b are valid only if the states

are sufficiently quiescent at both points. In practical terms this means that the

two points must each be independently acquired after some cyclic count K during

which cause and effect are well established, and filtration techniques may be
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required, particularly for helicopter models, for the generation of trends rather

than the known periodic variations that such models produce.

Response Interval

For blade-element helicopter simulation models such as the Rotor Systems

Research Aircraft (ref. I) or the Black Hawk (ref. 2), both of which are referred to

as GENHEL models, it has been determined that approximately three complete rotor

revolutions are required to attain the "tracking blade" state. Therefore, in

response to a control perturbation, a large number of cycles through the model must

be made before the state vector becomes sufficiently quiescent for algorithmic

use. At a cycle time of 20 msec, three complete rotor revolutions translate to

about 40 cycles through the model. Additionally, even after stationary equilibrium

is attained, the rotor system number of blades per revolution (N/rev) harmonics

(refs. 3 and 4) continue to obscure the vehicle states, as discussed in the next

section.

Rotor response to a step input is a relatively slow dynamic process. This is

compounded in IC mode by a smoothing filter that is usually used to suppress the

rotor system N/rev harmonics. The resultant responses are "slow" especially

following a collective input, where a reasonable step change (for the purpose of

evaluating a partial derivative) in the control during the IC mode takes well over

one half second (in pseudoreal time) to produce a vertical-axls acceleration

response that is in the neighborhood of its final value.

In contrast to conventional aircraft simulation models, helicopter models

usually contain more algebraic loops and free-running integrators. The blades

cannot be static in this mode, but rather, they must advance in azimuth Just as they

do in OP mode in order to produce the appropriate forces and moments. Although no

transition of time exists in IC mode, the azimuth angle for each computer cycle

during this mode is the product of the rotor rpm and the cycle time T, Just as in

OP mode. Also, rotor downwash terms as well as flapping and lagging integrations

function just as they do in OP mode. For these reasons there is an approximate

cycle count equivalency during IC mode which may be expressed in terms of the

requisite time for approximate convergence to final values (tracking blades) during

OP mode. If the time for convergence is roughly Tc in OP mode, the requisite

convergence number in IC mode is given approximately by K = Tc/T. For the example

simulation model used here, the required value of T c is about 0.8 sec. Complete

quiescence is never actually achieved, but certain statistical operations may be

used to aid convergence. They are shown below to satisfactorily isolate the

effective trends of the state vector.

For a conventional aircraft simulation with a minimal number of algebraic loops

and no free-running integrators, the value of K may be as small as 2 or 3, but for

a blade-element helicopter model it is more probably in the neighborhood of 40

or 50.



Smoothing the States

The determination of values for states is a more complicated process than

merely waiting a long time for inputs to propagate through the system and produce

quiescent responses. Even when a good delay count of K (or interval Tc) is deter-

mined for a helicopter model (by examining responses), any given evaluation of the

states will nonetheless be contaminated by the N/rev harmonics produced by its rotor

system. This periodic contamination of the trends of the state vector renders any

specific evaluation point quite useless for the computation of partial deriva-

tives. For this reason the following regression technique is used.

Statistical parameters are accumulated over a sufficient interval (K cycles)

and the assumed functionality is then evaluated at the end point. The assumption of

quadratic behavior works well, particularly where the derivative at the end point is

forced to be zero (i.e., is in quiescence). This regression technique is a least-

squares solution for the best quadratlc-eurve fit (ref. 5), with a constraint. A

detailed description follows.

Assume a quadratic history of a particular state S as a function of the cycle

count k. This is a more reasonable functionality than time t (where, for a dis-

crete model t = kT) because time does not advance in IC mode. Observations of a

state S are made at each point k, with the assumed functionality

(S) k : a I + a2k + a3k2 (3)

where k : I, 2, ..., K. If k is assumed to be a continuous variable, the deriva-

tive of this function with respect to the count is given by

d(S) k

dk " a2 + 2a3k (4)

When equation (4) is set equal to zero at the final time point (k : K), one of the

unknowns is eliminated.

The function is then expressed in terms of two unknowns a I and a2.

(S)k : al + 2K

a2k(2K - k)

By defining the operator o as the summation from I to K, the method of least

squares can be used to give the solutions in terms of the observations.

(5)

(6)



a =
I

a2 =

a[k2(2K - k)2]a[S k] - a[k(2K - k)]a[Skk(2K - k)]

Ka[k2(2K - k)2] - a[k[2K - k)] 2

2K2a[Skk(2K - k)] - 2Ka[k(2K - k)]a[S k]

Ka[k2(2K - k)] 2- a[k(2K - k)] 2

(7)

The final value (or best estimate of S after K cycles) is then given by the

value of the quadratic function at k = K.

I
(S)k = aI + _ a2K

a[Sk]{a[k2(2K - k)2] - K2a[k(2K - k)]} + a[Skk(2K - k)]{K 3 - a[k(2K - k)]}

Ka[k2(2K - k)2] - a[k(2K - k)] 2

30a[k(2K - k)S k] - 6(K + I)(2K + 1)a[S k] (8)
= K(K + I)(8K - 11)

For K observation points (K cycles) after a control deflection is initiated,

the two indicated running summations are computed for each state. This process

produces the best estimate of each state under the assumptions.

Evaluation Sequence

Each control is independently incremented and the resultant states are evalu-

ated using the regression technique just described. The sequence is as follows.

(I) All of the states are computed for the initial control vector, here defined as

the "primary point." (2) The first control is incremented by an amount to be later

discussed. (3) Evaluation of all of the states is made after K cycles according

to the regression techniques. (4) The first control is then returned to its initial

(primary) point and the second control is incremented by a designated amount.

(5) This iterative process of incrementing and evaluating continues until all of

the n controls are completed. At the end of this sequence, the partials of all

states with respect to control variations have been obtained by comparison with the

"primary point" values, i.e., the H matrix has been computed.

laSllaC I as11aC 2 . . aSllaCnl

H : aS21aC1, aS2/AC2 " " aS21aCn I (9)

LaSm/&C I ASm/&C 2 • . aSm/aCnJ



Note that this H matrix (m by n) relates the differential control vector x
(n by I) to the differential state vector y (m by I) according to

y = I-_ (10)

for small changes in the controls. The elements of the H matrix are referred to

as the "stability derivatives."

Range of Controls

The maximum and minimum control values must be specified.

controls then has a given total range.

[Ril[i][i!R2 C2 C2

R

max nln

Each of the n

(11)

The maximum and minimum control deflections are used for more than one pur-

pose. By limiting the allowable control excursion range they prevent the controls

from entering areas of nonlinearities from which they may never recover. For exam-

ple, given a large initial pitch or roll angle, certain aircraft may trim themselves

upside down! At ARC we arbitrarily use 0.5% of this range as the partial evaluation

size in the development of the H matrix:

AC i = 0.005 Ri (i : I, 2, ... n) (12)

Changes in controls that are used for evaluation purposes must be significant,

but must not cause states to transcend a reasonable region of linearity. Once the

partial derivatives have been evaluated, a new "primary evaluation" may be per-

formed. Equation (10) is the basis for this evaluation, as is outlined in the next

section.

PRIMARY EVALUATIONS

The transition of a complete control vector from set a to set b as in

equation (I) for the trimming problem is driven by the fact that the desired set

b of states in equation (2) is the null vector. This null vector, within some

small error criteria, is the definition of trim for aircraft simulation work. In

terms of aircraft body linear and angular accelerations the state vector that is

required from equation (2) is the null vector minus the values observed at the
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initial primary point
ming is thus defined.

a. The differential state vector

w

P
y = -

V

r

.u.

y for one cycle of trim-

(13)

The indicated ordering of the state vector is not arbitrary, as will be discussed

under "Ground Trim."

System Definitions

Equation (10) is restated below with the appropriate dimensions included for

clarification.

y[m.1] = H[m.n]x[n-1] (14)

This system is overdetermined if there are more states than controls (m > n); it is

determined if the number of states is equal to the number of controls (m = n); and

it is underdetermined if the number of states is less than the number of controls

(m < n). The least-squares method of solution to both the over- and underdetermined

cases is outlined in the next two sections• The determined case, which is trivial,

is a subset of either of these techniques•

The following mathematical techniques are not universally applicable• However,

they are quite useful in the aircraft simulation field, where trim points are known

to exist. It is helpful to keep in mind that this is an iterative procedure in

which small changes are made. In the process of trimming an aircraft model, only

small linear subspaces of the total region need be considered.

The Overdetermined Case

The overdetermined case means that there are more states than controls. For

the overdetermined case, there is in general no exact solution for x because of

probable inconsistencies in the system. However, a vector x which minimizes the

error norm (a scalar) may be obtained. This scalar is created by forming the error

norm in combination with an arbitrary, sy_u_etric, positive-definite (m-by-m)

weighting matrix W.

For aircraft simulation work, the weighting matrix need not be quite so arbi-

trary. With the state vector y defined as in equation (13), the angular accelera-

tions are given in rad/sec 2 and the linear accelerations are given in ft/sec 2. For
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approximate equivalency, this leads to the requirement that in terms of pure numbers

(without units) the angular terms should have an order of magnitude more influence

than the linear terms to satisfy motion-system acceptance criteria. For example, if

linear accelerations during convergence are in the region of 0.01 ft/sec 2, the

angular accelerations should be in the region of 0.001 rad/sec 2. According to the

definition of equation (13), this produces the following arrangement of W when the

number of states m : 6.

W _

"I 0 0 0 0 O"
0 0.1 0 0 0 0
0 0 I 0 0 0
0 0 0 0.I 0 0
0 0 0 0 I 0
0 0 0 0 0 0.1

(15)

The overdetermined solution proceeds as follows.

expressed

Q : (ux - y)'W(_ - y)

and differentiating this (ref. 6) with respect to the vector

The scalar error norm is

x giving

(16)

dQ 2H'WHx - 2H'Wy
dx :

(17)

Setting this equal to zero (for extreme values) implies

H'_'Ix: H'Wy

The solution.vector is thus given by

x : (u,mz)-ln'_

(18)

(19)

The Underdetermined Case

The underdetermined case means that there are more controls than states. For

the underdetermined case, there are infinitely many solutions for x that satisfy

the equation exactly, but to make the selection unique, the condition may be imposed

that the norm x'Vx be minimized where V is an arbitrary symmetric positive-

definite (n-by-n) weighting matrix. The Legrange method of multipliers calls for

the formation of the sum

Q : x'Vx - 2B'(Hx - y) (20)
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where 8 is a vector multiplier.

yields

Differentiating with respect to the vector x

: 2Vx - 2H'B
dx (21)

and setting this equal to zero gives

X : V-IH'B (22)

This produces the solution vector

x : v-lH'(l'lv-lH')-ly (23)

According to the dimensions of V, in the underdetermined case the controls

rather than the states are weighted. This operation has redundancy with the control

limiting of equation (11) in that the ranges adequately isolate the relative-

magnitude importance of the controls. For this reason V is taken to be the iden-

tity matrix so that the final underdetermined solution becomes

x : H'(BH')-Iy (24)

Note that both pseudoinverses (H'WH)-IH'w and V-IH'(HV-IH') -I reduce to H-I

(if it exists) for the determined case.

Mathematical Rigor

The linear techniques Just described are not global-search algorithms. When

larger solution spaces are considered, mathematical exceptions to these techniques

occur. For instance, the process is easily thwarted by an "inflection point."

However, for the aircraft trimming problem, aberrant points are few and far between,

especially if the initial control vector is in the approximate region of the trim

point upon process initiation.

A linearly independent set of controls must be selected in order to avoid

indeterminate pseudoinverses. No two controls may produce proportional state-vector

changes.

The direct use of either equations (19) or (24) in a sequence of primary evalu-

ations may lead to the discrete "limit cycle" phenomenon. For this reason, a scalar

gain G = 0.5 is nominally associated with these equations. Optionally, this gain

may be scheduled in the interval (0, I).
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COMMUNICATIONPARAMETERS

At ARC the trimming procedures are implemented in a stand-alone, generalized

FORTRAN subroutine called STILL which is part of our BASIC structure (ref. 7). This

routine communicates with an aircraft simulation model by using two different

media. All kinematic variables (such as the state vector) and discrete switches use

our standard BASIC COMMON, but the subroutine calling sequence is used to communi-

cate the number of applicable controls, their identity, and their extreme values.

The technique of using a caliing sequence for these quantities was selected because

it permits flight simulation programmers to incorporate alternate trimming proce-

dures within the same program. For example, a conventional trim procedure using

aircraft pitch attitude as one of the controls in a horizontal flight configuration

may be alternated with a procedure in which pitch attitude may be frozen in a pro-

cess of determining the requisite flightpath angle or power level.

Boundary Control

The maximum and minimum control-deflection values of equation (11) are used to

maintain the control vector within a region of interest. A check of each control is

made at the end of each primary evaluation. If any given control violates its

boundary, it is arbitrarily set back from the boundary by an amount equal to 5% of

its range. This procedure is occasionally useful during the initial debug of a

simulation model, during which phase the utilized initial control values tend to be

quite removed from their requisite trim values.

Ground Trim

A discrete (e.g., a switch) exists within the BASIC COMMON subroutine structure

that informs various programs when at least one gear is compressed (ref. 8). In

this case, the calling sequence of subroutine STILL is ignored, and alternate con-

trol and state definitions are automatically employed. A takeoff configuration is

thus easily sequenced into a simulation effort. In this case the selected differen-

tial state-vector is a subset of equation (13):

y = --
(25)

For the vector in equation (25), m : 4. Note that by using the same sequence as in

equation (13), subroutine STILL maintains the same notation for all options.
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The ground-trlm control vector was selected because of its capacity to trim the

state vector given the complex interactions of a helicopter model. It consists of

the vehicle pitch attitude, its height, and its roll angle.

C : [!] (26)

In equation (25), no attempt is made to null the longitudinal-acceleration

component because motion simulators are normally capable of accommodating this

variable by a static offset called "residual tilt." Any yaw acceleration during

takeoff may be accommodated by either a (more) symmetric thrust distribution or by

the foot pedals (or even differential braking action). Yaw acceleration has not

been a problem during ground trim except at extremely low velocities where gear

braking and side-force models had inadequate breakout limits.

The determination of the maximum and minimum control deflections is automatic

during ground trim. The extreme values are computed from geometrical relationships

involving gear locations with respect to the vehicle c.g. These locations are also

part of the BASIC COMMON structure used by STILL.

Airborne Trim

For airborne trim, the calling sequence to STILL specifies the order of the

controls in terms of their sequential partial evaluations. The calling sequence is

padded to the tenth value but any integer value for the numer of controls N from

one to ten is permissible. The calling sequence is given by:

CALL STILL (N, CI, CMINI, CMAXI, C2, CHIN2, CMAX2,

C3, CMIN3, CMAX3, C4, CMIN4, CMAX4,

C5, CHIN5, CMAX5, C6, CHIN6, CMAX6,

C7, CMIN7, CMAX7, C8, CMIN8, CMAX8,

C9, CMIN9, CMAX9, CI0, CMINI0, CMAXIO)

If the inelegance of this structure seems objectionable, then consider the fact that

STILL functions on a variety of computers including Xerox Sigmas, IBM PCs, VAXs, and

CDC 7600s.

Observation of Progress

For convenience of observation, subroutine STILL provides a discrete that

informs the user exactly when a primary evaluation is completed. This discrete,

called IEVAL, is set for only one cycle when both the controls and states are abso-

lutely compatible, i.e., the display or print commands slaved to this discrete show

the true trim progress independent of intermediate partial evaluations. This
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discrete is necessarily set at the end of the interval during which the value of

IPART is zero (the primary evaluation interval).

EXAMPLES

A typical blade-element rotor system is used in order to display some of the

features of STILL. This system illustrates two different control configurations.

These configurations are selected to show the convergence features for the over- and

underdetermined cases and to exemplify some of the challenges associated with a

blade-element helicopter model. Neither the vehicle flight regime nor the particu-

lar units associated with the selected controls or states are germane to this

presentation.

The first configuration, that of an overdetermined case, is also used to iden-

tify the separate features of the partial evaluation sequence by use of a subset of

the trim history.

The control list for the overdetermined case includes (I) a collective-

proportional control "THETAO," (2) a longitudinal cyclic control "BIS," (3) a lat-

eral cyclic control "AIS," (4) a tail rotor control "PEDAL," and (5) the roll atti-

tude of the vehicle "PHI."

Partial Evaluation Sequence

The initial 12 sec of trimming data are given in figures I and 2. The controls

are shown in figures 1(a) through 1(e), and a partial-evaluation-sequence identifier

(a control variable subscript) called "IPART" is shown in figure 1(f). If only the

initial portion of the trim process is used, the separate partial evaluations are

easily identified, although trim is not accomplished in this short interval. For

this particular model the cycle time used was T = 20 msec and the selected time

for convergence (for each evaluation) T c : 0.8 sec. Hence, for 40 cycles (K : 40),

or 0.8 sec of pseudoreal time, each partial evaluation is made, and this is repeated

by cycling through the controls in sequence.

In figure 1(a) we see that the first control, THETAO, is incremented for

0.8 sec (at t = 0.8 sec, after the initial primary evaluation) and then returned to

its original value at t = 1.6 see. The second control, BIS, is then incremented

for a like duration. This process continues until all five controls are incre-

mented, as is shown in figure 1(f). The quantity "IPART" shows which control is

being incremented. When IPART : 0 a "primary evaluation" is being made. After

this occurs, the entire process repeats itself. Hence, (N + I)T c = 4.8 sec are

required for each complete primary evaluation when N = 5.

The influence of the above procedure upon the states is given in figures 2(a)

through 2(f) for the angular and linear states. In figure 2(b) we see that QBD, the

pitch acceleration, responds to the first partial THETAO of figure 1(a) beginning

13



at t : 0.8 sec with a transient behavior, and that the transient is really not

completed even after t : 1.6 sec. However, at this time the first partial column

of equation (9) is evaluated. This is one example of how the final-value regression

technique of equation (8) is useful in isolating the trend of the state history. In

figure 2(f), this same control is shown to cause transient behavior in the vertical

acceleration WBD. Note that when the first partial is returned to its initial value

(at t : 1.6 sec) and the second partlai is incremented, a similar transient behav-

ior occurs.

This process of incrementing and observing (statistically) continues until all

five partials are evaluated at t = 4.8 sec (five controls plus one primary evalua-

tion times 0.8 sec). At this point another primary evaluation is initiated. All of

the controls are changed at this time (fig. I), and all of the states respond

(fig. 2). The statistical evaluation of the state response to this vector change is

completed at t = 5.6 sec, at which time equation (19) produces a new primary evalu-

ation point. Each state indicates a quadratic-type transient with superimposed

noise characteristics during this primary interval, as is shown in all traces of

figure 2 beginning at t = 4.8 sec and ending at t = 5.6 sec. This is another

reason for using the final-value regression technique, here evaluated at the final

point given by t = 5.6 sec.

From simple observation of the first 12 sec of the trimming procedure, no clear

trends of the controls can be determined. This is because 12 sec of data corre-

sponds to only two-and-a-half primary evaluations, as shown by IPART in fig-

ure 1(f). The complete trimming interval is examined in the next section.

Overdetermined Convergence

Figures 3 and q show the complete convergence process for the overdetermined

example. Less than one minute was required for 12 primary evaluations, which caused

all states to have negligible values (after the last primary evaluation). The

trimming algorithm terminates automatically when this occurs.

For the overdetermined example, the value of vehicle yaw angle psi : 0.0 °, and

the vehicle pitch angle THETA : 1.26°; these quantities are not part of the control

list in this case. The five controls that were used, their ranges, and their ini-

tial and final values are given in table I.

The quadratic-convergence features of the trimming algorithm are easily seen

from figures 3 and 4, even though the intermediate partial evaluations tend to

obscure the traces.
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TABLEI.- OVERDETERMINEDPARAMETERS

Control
number Name

Minimum Maximum Initial Final
value value value trim

I THETAO
2 BIS
3 AIS
4 PEDAL
5 PHI

10 18 15.5 15.8427
0 2 1.1 1.3632

-2 0 -0.5 -0.8312

0 2 0.8 1.0441
-2 2 0.5 0.5265

Underdetermlned Convergence

For this example the control list is expanded to include the yaw angle PSI and

the pitch angle THETA along with the original five controls. The list then includes

seven controls; one greater than the number of states. The seven controls used,

their ranges, and their initial and final values are given in table 2.

The final trim point is only approximately equal to that of the overdetermlned

case. This occurs because two additional degrees of freedom have been introduced.

TABLE 2.- UNDERDETERMINED PARAMETERS

Control Minimum Maximum Initial Final

number Name value value value trim

I THETAO 10 18 15.5 15.8311

2 BIS 0 2 1.1 1.3629

3 AIS -2 O -0.5 -O.8256

4 PEDAL 0 2 0.8 1.0491

5 PHI -2 2 0.5 0.5482

6 PSI -2 2 0.0 -0.1517

7 THETA O 4 1.26 1.3193

Trim completion also needs 12 primary evaluations for the underdetermined case;

this requires a longer total time interval because there are two more controls to be

evaluated per primary point. The control history is presented in figure 5 and the

state history is presented in figure 6. For convenience the partial-evaluatlon-

sequence identifier IPART is presented both in figure 5(f) and 5(i).
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CONCLUSIONS

The regression techniques given here are sufficient to trim a wide variety of

simulation models. The curve-fit feature for raw input data expands the capacity of

the algorithms to handle models with algebraic loops, free-runnlng integrators, and

noisy environments such as those of helicopter models.

The procedures presented in this paper are represented by a stand-alone FORTRAN

subroutine called STILL. This program, which performs all the required mathematical

operations including matrix inversion, has many useful features. By use of over-

and underdetermined control lists, it can create trim maps over complete flight

envelopes. These data are important for simulation debug and systematic checkout.

Additionally, real-time operations invariably require the STILL capability to deter-

mine trim controls at arbitrary initial-flight conditions.
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