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PEROVSKITE OXIDES: OXYGEN ELECTROCATALYSIS AND BULK STRUCTURE
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Perovskite-type oxides have been considered for use as oxygen

reduction and generation electrocatalysts in alkaline electrolytes This

paper is concerned with perovskite stability and electrocatalytic activity,
and the possible relationships of the latter with the bulk-solid state

properties.

Perovskite oxides have not been found in general to be very active for

oxygen reduction, although substantial catalytic activity for hydrogen

peroxide decomposition has been found. Instability of some perovkites has

been observed over particular potential ranges. In some cases these ranges
overlap those in which 02 reduction occurs.

A series of compounds of the type LaFexNil_xO 3 has been used as a

model system to gain information on the possible relationships between

surface catalytic activity and bulk structure. Hydrogen peroxide

decomposition rate constants have been measured for these compounds. Ex-

situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility

measurements have been used to study the solid state properties. X-ray
photoelectron spectroscopy (XPS) has been used to examine the surface. MES

has indicated the presence of a paramagnetic-to magnetically ordered phase
transition for values of x between 0.4 and 0.5. For 0 < x s 0.4 the

compounds are paramagnetic, as indicated by the absence of a Zeeman effect

in the MES spectra. For 0.5 s x S 1.0 the observed Zeeman effect in the MES

spectra indicates the presence of a magnetically ordered phase.

Complementary magnetic susceptibility measurements indicate that the

compounds are antiferromagnetically ordered.

MES also shows that the introduction of Ni into the Fe(lll) matrix of

LaFeO 3 forces some of the Fe(lll) into the unusual Fe(IV) state, while part

of the Ni(lll) is changed to Ni(ll), as indicated by XPS.

The hydrogen peroxide decomposition rates have been found to undergo a
substantial change in the range 0.25 < x < 0.5. A correlation has been

found between the values of the MES isomer shift and the catalytic activity

for peroxide decomposition. Thus, the catalytic activity can be correlated

to the d-electron density for the transition metal cations.

INTRODUCTION

Perovskite-type oxides constitute a family of oxides of the type ABO3..

with structures similar to that of the mineral perovskite CaTiO 3 (i, 2).

Depending on the nature of the A and B cations, the chemical and physical

properties can vary over a wide range. An attractive feature is that these

INFIQC, Depto. de Fisico Quimica, Fac. de Ciencias Quimicas, Univ. Nac.

de Cordoba. Cordoba. Argentina.

221



properties can be varied by preparing materials of the type

AxA'l_xByB'l_yO3 . Their electronic conductivity can vary from insulating

to metallic conducting and even superconducting. The magnetic properties

can vary from paramagnetic to ferro- or antiferromagnetic. Such compounds

are very interesting both from the catalytic and the bulk properties points

of view. Mixed oxidation states of both A and B cations are involved.

Even if A is not catalytically or electrochemically active, it is possible

to control the oxidation state of B by changing the relative amount and

nature of the A cation. These materials have been synthesized and studied

by several authors (3-6). The objective of this paper is to examine the

relationship of the electrochemical properties of these perovskites to

their bulk structures.

Since the work of Meadowcroft (7), many workers have examined 02

reduction and generation on perovskites (8-17). In the more applied work,

good performance and stability in long-term operation have been observed

for 02 generation (8, 13). For 02 reduction, however, good performance is

typically observed in short-term operation, but the performance often

degrades with time (12).

Matsumoto et al. (8) have examined 02 generation and reduction on

perovskite-type oxides. They were the first to study LaNiO 3 as an elec-

trode material for 02 reduction (8). They used X-ray diffraction to ana-

lyze changes in the structure due to exposure to the electrolyte at various

potentials. Karlsson (ii, 12) has reported that under prolonged cathodic

polarization in alkaline solution, LaNiO 3 reduces irreversibly to Ni(OH) 2

and La(OH)3, thus leading to a gradual loss of performance for 02 reduc-

tion.

Bockris and Otagawa (13, 14) have examined 02 generation on LaNiO 3 as

well as a number of other perovskites. They used X-ray photoelectron spec-

troscopy (XPS) to analyze the surface composition of these perovskites

before and after exposure to the electrolyte and proposed that some of the

surfaces were different in composition from that of the nominal bulk

stoichiometry. The results however should be treated with caution, since

it is difficult to use XPS for the quantitative surface analysis of oxides.

Recently in the authors' laboratory (13), it has been shown using

Mossbauer effect spectroscopy (MES) that SrFeO 3 undergoes an irreversible

reduction to Fe(OH)2 in alkaline solution when the potential is set more

negative than ca. -0.7 V vs. Hg/HgO, OH-. These examples point to the

possibility that the surface and even the bulk structure of the perovskite

can be modified, even irreversibly, under certain potential conditions.

There have been several attempts to relate surface and bulk properties

of the perovskites with both 02 reduction and generation (8, 13, 14).

Matsumoto and coworkers (8) have proposed correlations of catalytic activi-

ty with the existence of a a* band. Bockris and Otagawa (13, 14) have

proposed that the catalytic activity for 02 generation of transition metal-

containing perovskites is correlated with the occupancy of the antibonding

orbitals of a hydroxylated surface transition metal cation. A variety of

bulk physical properties were examined and found not to correlate with the

catalytic activity.

While generally speaking it is not valid to correlate bulk properties
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with catalytic activity, in selected instances a bulk property can produce
an effect upon the surface properties and thus upon the catalysis. In the
present work compoundsof the type LaFexNil_xO3 have been examined using
MES and magnetic susceptibility, which are bulk characterization techni-
ques, and XPS, which is a surface or near-surface (ca. 1-2 nm) technique.
A correlation has been found between the catalytic activity for peroxide
decomposition and the MESisomer shift.

EXPERIMENTAL

Four preparative methods have been used, the solid state reaction

(SSR), nitrate decomposition (ND) and precipitation methods, the latter

including the hydroxide precipitation (HP) and inorganic complex precipita-

tion (ICP) methods. In the SSR method a mixture of the oxides of the

component elements is ground and then heated at a controlled temperature

between 900 and ii00 ° C. In the ND method (18) a concentrated solution of

citric acid is added to a concentrated solution of the metal nitrates so

that the molar ratio of citric acid to total metal was i. The solution was

evaporated in a rotary evaporator at 40 ° C until the precipitate acquired

the consistency of a viscous syrup. The residual water was evaporated in a

vacuum oven at ii0 ° C for 24 hours. The precursor thus obtained is a fine

mixture of the nitrates and citric acid. After being burned at -200 ° C, the

precursor, which is then black in color, is heated at 900 ° C in air for 24

hours.

In the HP method a concentrated solution of an organic base (e. g.,

methylamine) is added to a solution of the metal nitrates. The precipitate

is filtered and dried at ii0 ° C in a vaccum oven and then heated in air at

a temperature between 600 and 750 ° C for 24 hours.

In the ICP method a solution of the A ion nitrate [e.g., La(NO3)3] is

added to a solution of a soluble form of the inorganic complex [e.g.,

K3Fe(CN)6 ] and a precipitate of the complex substituted with the A ion is

obtained [e.g., LaFe(CN)6 ]. The precipitate is filtered, dried in a vaccum

oven at ii0 ° C for 24 hours and then heated in air at a temperature between

450 and 700 ° C for 24 hours. Usually the ICP method requires only a very

low temperature for the synthesis because of the molecular level mixing of

the A and B ions.

Some of the compounds have been examined using X-ray diffraction and

found to exhibit no detectable phase impurities. The rest are in progress

and the results will be presented in a more detailed report.

XPS measurements were done with a Varian IEE-15 X-ray photoelectron

spectrometer equipped with a high-intensity magnesium anode (K_ radiation,

1253.6 eV). The operating parameters were: X-ray power, 640 W (8 kV, 80

mA), analyzer energy, i00 kV, channel width, 0.18 eV. The analyzer pressure

was 10"6-10 .7 torr. An internal standard of Au powder was used in an

intimate mixture with the sample to correct for energy shifts caused by

surface charging.

The Mossbauer spectra were recorded with a Ranger Scientific MS-900

system, and the statistical analysis performed with the STONE routine (19).

The Mossbauer parameters are reported vs. o-iron.
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The magnetic susceptibility measurementswere performed with a Faraday
electrobalance (Cahn RG) with a magnetic field of - i0 kG. Ni(ethylenedia-
mine)3S203and Hg[Co(SCN)4]K6were used as standards for calibration.

For the electrode preparation equal amounts of the catalyst and Shawi-
nigan Black (SB, Gulf Oil Chemicals) (an acetylene black with an approxi-
mate surface area of 65 m2/g) were mixed in water under ultrasonic agita-
tion. A dilute Teflon emulsion (T30B, Dupont) was added to the mixture such
that 25 wt._ of the total weight was Teflon. The mixture was then fil-
tered through a fine pore membrane(Nucleopore, polycarbonate membrane,1.0
#m). The resulting carbon/perovskite/Teflon paste was kneaded until rubbery
and then placed on top of a disk of electronically conductive hydrophobic
material (Electromedia Corp. Englewood, NJ) containing a nickel screen or
carbon fiber in a 1.75 cm diameter die and pressed at 340 kg cm-2. The
electrode disk was then trimmed to obtain a rectangle 0.5 x 1.0 cm. A
nickel screen was used as the counter electrode and the reference electrode
was Hg/Hg0, OH'. The electrochemical experiments were performed either in
0.I M or 4 M KOHat room temperature.

Hydrogen peroxide decomposition measurementswere performed at 22° C
using the gasometric method. A small amount of the catalyst (- i0 to 50 mg)
was dispersed in 50 cm3 of 4 M KOHprepared from distilled water and KOH
pellets (Fisher Scientific, Reagent Grade). The initial concentration of
HO2- was 0.2 M.

A. Bulk Structure

RESULTS

The MES spectra for the different perovskite compositions are shown

in Fig. i. These show for 0 < x S 0.4 the presence of two peaks, which can

be attributed formally to Fe 3+ and Fe 4+ sites. The existence of Fe 4+ in

perovskites has been reported before for SrFeO 3 (4, 20), although in the

present case the isomer shift apparently is not as negative as it is in the

case of Fe 4+ in SrFeO 3. The site with the less positive isomer shift will

be provisionaly assigned to Fe 4+. The absence of a six-line splitting in

the spectra provides evidence that in the 0 < x S 0.4 compositional region

the perovskite is paramagnetic. For 0.5 S x S 1.0, however, the spectra

yielded six lines, characteristic of a magnetically ordered species. A

singlet is also observed, which shows that a paramagnetic phase is still

present. This could be explained as follows: statistically, there should be

two types of iron atoms for intermediate compositions (i.e. when x - 0.5).

One type of iron will be mainly surrounded by nickel atoms, and this will

lead to the formation of a "paramagnetic site", which will have Fe prefe-

rentially in the formal 4+ state. Another type will be surrounded by iron

atoms, leading to the formation of an "antiferromagnetic site", which will

have Fe preferentially in the 3+ state. The six-line spectra at

x _ 0.5 can be attributed to Fe 3+ and the singlet to Fe 4+. This can be

supported by the continuity of the isomer shift vs. x curve (Fig. 2), for

both types of sites. Two types of iron sites have been observed for

LaFexRUl.xO3 with MES by Bouchard et al.(3). In that case however both were

in the +3 state and were also paramagnetic. Another possible explanation is

the existence of two distinct phases for intermediate compositions, one

paramagnetic and the other antiferromagnetic, each one with a given isomer
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shift which remains relatively constant. The possible existence of two

phases must be checked using X-ray diffraction measurements.

A plot of the isomer shift vs. x indicates that the difference in

isomer shift between the two types of sites (or phases) reaches a maximum

at x = 0.25. Only one type of site (or phase) is present at the two ex-

tremes. The composition with x - 0 has been assigned using the compound

LaFe0.0013Nio.998703, in which all of the iron is 57Fe in order to obtain a

good MES signal. Since the isomer shift is a direct measurement of the

electron density surrounding the nucleus, it can be concluded that there is
a maximum in the difference between the electron densities for the Fe 3+

and Fe 4÷ sites (or phases) at 25_ of iron.

Mossbauer effect spectroscopy has shown that in LaFexNil_xO 3, depen-

ding on x, Fe is in two oxidation states ( i.e. 3+ and 4+). It is interes-

ting to analyze the oxidation states of Ni in the same structure. It is

supposed then that, in order to maintain electroneutrality, Ni must be in

the 2+ state. (In pure LaNiO 3 the normal oxidation state is 3+.) XPS is

suitable for checking this possibility if the caveat already mentioned in

the introduction is kept in mind.

The 2p3/2 Ni bands for LaFexNil_xO 3 perovskites for different values
of x are shown in Fig. 3. One peak is at binding energies between 853 and

855 eV (depending on the composition). As the amount of iron increases, a

new peak starts to develop at lower energies, and the original peak is

shifted towards higher energies. This is possibly due to a change from good

electronic conduction for low Fe content to semiconducting properties for

high Fe content, which will change the surface energy with respect to the

Fermi level in the bulk of the semiconductor. At 90 mol_ iron, two clearly

defined peaks are observed, with the one at lower energies attributed to a

Ni 2+ species. These results are consistent with those obtained from

Mossbauer spectroscopy. When Ni is introduced in LaFeO 3, part of the origi-

nal Fe 3+ is oxidized to Fe 4+, and the Ni valence is distributed between

the 2+ and 3+ states, so that the formula of the compound

can be writen as LaFe(lll)xFe(IV)l_xNi(lll)yNi(ll)l-yO3, where the x

and y values depend upon the overall composition. The appearance of Fe 4+

ions when Ni 2+ is oxidized to Ni 3+ has been observed by Corrigan et al.(21)

in battery-type nickel hydroxide electrodes doped with iron hydroxide using

Mossbauer spectroscopy.

The combination of oxidation sates of B and B' in LaBxB'l_xO 3 regu-

lates the total magnetism of the compound. Thus Fe 3+ is in a high spin

state (t2g 3 eg 2) in LaFeO 3 (22), and this compound is antiferromagnetically

ordered. Ni _+ is in a low spin state (t2g6 eg I) in LaNiO 3 (22), and the

compound is a Pauli paramagnet. As was previously mentioned there is a

transition from a paramagnetic to a magnetically ordered state in the

0.4 < x < 0.5 region. The specific assignment of antiferromagnetism for the

compounds in the range x _ 0.5 is supported by magnetic susceptibility

measurements. The gram magnetic susceptibilities (Xg) at room temperature

are shown in Table I as a function of x. The values of Xg are to small to

be assigned to the ferromagnetic state, for which Xg should be on the

order of 10"2-104 emu g-i (23). The Xg values for _aramagnetic or antife-

rromagnetic compounds should be in the range 0-I0 -_ emu g-i For these

reasons the compounds with x > 0.5 are antiferromagnetic, as is LaFeO 3

(24).
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Perovskites of the type LaBxB'l.xO 3 offer the opportunity to change
the distribution of the oxidation states, which can be very useful from the
point of view of catalysis. The solid state properties can be changed more
or less continuously with composition. For this reason the series of
LaFexNil_x03 perovskites has been chosen as a model system for the examina-
tion of electrochemical and catalytic properties.

B. Electrochemical Stability

The voltammograms for LaFeO 3 and LaFeo.75Nio.2503 are shown in Fig. 4.

The electrodes were prepared in the form of a thin porous coating, as

described in the experimental section. Over a wide potential range LaFeO 3

exhibits no voltammetric peaks. This is consistent with the fact that

LaFeO 3 is an insulator(l, 22, 24). The introduction of Ni into the LaFeO 3

structure increases its conductivity (25), and for x < 0.2 the compound is

a metallic conductor. As shown in Fig. 4b, the introduction of 25 mol% Ni

in LaFeO 3 makes it sufficiently conducting to observe redox peaks. Two

redox couples are present, one centered at ca. -0.5 V, corresponding to the

Fe(lll)/Fe(ll) couple and the other centered at ca. +0.52 V, corresponding

to the Ni(lll)/Ni(ll) couple. The shapes and positions of the peaks are

similar to those for the respective hydrated oxides [FeOOH/Fe(OH)2 and

NiOOH/Ni(OH)2 ] (26). The peak separation for the Fe(lll)/Fe(ll) redox

couple is exaggerated in this case however. A shift in the nickel peaks due

to the presence of iron is also observed in this case, as is observed in

the Fe/Ni oxyhydroxides(26, 27).

As judged by the integrated charge associated with the voltammetric

peaks in the case of LaFe0.75Ni0.2503 (Fig. 4b), only the surface is invol-

ved in the redox processes. (The surface areas of these perovskites are on

the order of I to 3 m2/g.) In order to gain additional information concer-

ning the redox processes, in-situ MES was performed with LaFe0.25Nio.7503

in 4 M KOH. The ex-situ MES spectrum of the dry electrode and the in-situ

MES spectra after polarization at +0.5 , 0.0 and -1.2 V vs. Hg/HgO, OH-

(not shown) are all almost the same. This is consistent with the previously

mentioned finding that only a small fraction of the material was involved

in the redox process (- 2 % of the total), which corresponds to material in

a thin surface layer.

Since all of the iron in SrFeO 3 should be in the 4+ state, it has been

used in electrochemical, MES and XPS experiments tO provide a reference,

even though it is known that the compound is not completely stoichiometric

except under special conditions. It is a metallic conductor so that no

problems arose due to poor electronic conductivity. The results obtained

with cyclic voltammetry are shown in Fig. 5. The anodic and cathodic poten-

tial limits were increased in steps. No faradaic current was observed

between -0.5 and +0.6 V (Fig. 5a). At +0.6 V anodic current due to 02

generation was observed. At potentials more negative than -0.5 V, a catho-

dic peak was observed with a complementary anodic peak in the positive

sweep. A voltammogram between the limits -1.3 V and +0.8 V is shown in Fig.

5b. The Fe(lll)/Fe(ll) redox couple is observed, as in the case of

LaFe0.75Ni0.2503. In this case, however, ca. i00 % of the material takes

part in the redox process. In-situ MES performed in this laboratory (28)

have shown that SrFeO 3 is irreversibly reduced to Fe(OH)2 at potentials

more negative than ca. -0.7 V vs. Hg/HgO, OH" and that, under subsequent

anodic polarization at -0.3 V, FeOOH is obtained.
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C. Catalytic Activity

In order to examine possible relationships between catalytic activity

and bulk structure, the hydrogen peroxide decomposition reaction has been

chosen due to its important role in oxygen electrochemistry. Hydrogen

peroxide decomposition rate constants have been measured for the

LaFexNil_xO 3 series using the gasometric method. The rate constants are

plotted in Fig. 6 as a function of x. These results should be treated with

some caution, however, since they are not normalized to the surface areas.

A maximum is observed at 25% Fe content. This correlates very approxi-

mately with the isomer shift variations for Fe 3+ and Fe 4+ noted above. The

range of x values for which the difference in the electron density for both

sites is at a maximum corresponds to that for which the maximum activity

for hydrogen peroxide decomposition is observed. It is possible that both

the mixed oxidation state for Fe and/or Ni and the unusual presence of Fe 4+

sites may be factors in promoting the catalytic activity.

This correlation could be considered reasonable in the I;_L,_ of t_°,,_

traditional explanation of hydrogen peroxide decomposition catalysis as

proposed by Latimer (29). Any redox couple which falls in the potential

range between the O2/HO 2" and HO2"/OH" couples can in principle catalyze

the disproportionation reaction. If a catalyst simultaneously contains both

strongly oxidating and strongly reducing species, the coupled HO 2" oxida-

tion and reduction might be fast.
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TABLEI

Compound Xg I06/( emu g-I)
....................................

LaNiO 3 5.2

LaFe0.1Nio.903 24.3

LaFe0.25Ni0.7503 12.6

LaFe0.50Nio.5003 15.4

LaFe0.75Nio.2503 12.4

LaFe0.90Ni0.1003 13.2

LaFeO 3 9.9
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Fibre 2: Isomer shift (6) of Fe 3+ (61) and Fe4+ (62) for LaFexNil_xO 3 as a
function of x.
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Figure 3: X-ray photoelectron spectra of the Ni 2p3/2 bands of LaFexNil_xO 3

for different values of x.
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Figure 4: Cyclic voltammograms for thin porous coating electrodes of 50%

perovskite in SB carbon on a pyrolytic graphite disk,

Electrolyte: 0.i M KOH, N2 saturated. Scan rate: i0 mV/s.
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Cyclic voltammograms for floating gas-fed electrodes containing

15 mg cm "2 of SrFeO 3 plus 15 mg cm -L of SB carbon. Electrolyte:

0.i M KOH, N 2 saturated. Scan rate: i0 mV/s.
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Figure 6 : Hydrogen peroxide decomposition rate constants vs. x in

LaFex Ni I -x03 •

The rate constants were measured by the gasometric method in

4 M KOH at 22 ° C. The initial concentration of peroxide was
0.2M.

235


