
October 1987 UILU-ENG-8 7-2264
CSG-73

--
I

r/J &/- 6 ci a- I COORDINATE~ S~IENCE LABORATORY >&'W _- /
CoZZege of Engineering / f l /u GL 6 -7

(32 - L 7 L I / A / -
I
I

LOCAL CONCURRENT
ERROR DETECTION
.AND CORRECTI-ON
IN DATA STRUCTURES
USING VIRTUAL
BACKPOINTERSF

.

C . C . Li
P. P. Chen
W. K. Fuchs

(NASA-CB- 161432) LOCAL CONCURRENT E B B 0 3 N88-10692
DETECTION A N D CORRECTION I N DATA STRUCTURES
U S I N G VIRTUAL BACKPOINTERS (I l l i n o i s Uoiv ,)
42 p Avai l : NTIS E C A03/tIF 801 CSCL 056 Unclas

63/82 0104436

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Punlic Release. Distribution Unlimited.

-. I
Y

LOCAL CONCURRENT ERROR DETECTION AND CORRECTION
IN DATA STRUCTURES USING VIRTUAL BACKPOINTERS I

1
E

C. C. Li, P. P. Chen, W. K. Fuchs

Computer Systems Group
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1101 W. Springfield Ave.

Urbana. U, 61801

ABSTRACX

A new technique, based on virtual backpointers. for local concurrent error detection and
correction in linked data structures is presented in this paper. Two new data structures, the Vir-
tual Double-Linked List, and the B-Tree with Virtual Backpointers. are described. For these struc-
tures, double errors can be detected in O(1) time and errors detected during forward moves can be
corrected in O(1) time. The application of a concurrent auditor process to data structure error
detection and correction is analyzed, and an implementation is described. to determine the effect on
the mean time to failure of a multi-user shared-database system. The implementation utilizes a
Sequent shared-memory multiprocessor system operating on a shared database of Virtual Double-

I
1 LinkedLists.

I d e x Terms- concurrent error detection, data structures. concurrent structure checking

This research was supported in part by the National Aeronautiu and Space Administration (NASA) under Contract
NASA NAG 1402, and in part by the SDIO/IST and managed by the Ofice of Naval Research under contract N00014-86-K-

l
4 0519.

I
I
1
1
I
1
1
I
1
I
1
1
1
I
1
I
I
I
1

Address of Correspondent

W. Kent Fuchs
Computer Systems Group

Coordinated Science Laboratory
University of Illinois at Urbana-Chanpaign

1101 W. Springfield Ave.
Urbana, IL 61801

(217) 333-9731

1

I. INTRODUCI'ION

Linked data structures form an integral part of many software and database systems. Per-

forming error detection and correction to preserve the correctness of data structures is important in

achieving overall system reliability. To reduce the performance degradation incurred through their

use. detection and correction should ideally be executed concurrently with normal processing, and

every invocation of these procedures should be completed in O(1) time. If any global checking

information (e+, a global count) is used in detection or correction, then O(n) nodes must be

accessed, where n is the number of nodes in the structure, and those procedures cannot run in O(1)

time. In addition, since node access time is the major contributing factor to the cost of error detec-

tion, the number of nodes accessed should be minimized. The Checking Window concept is intro-

duced in this paper as a method of formalizing these ideas, and as a method of describing local con-

current error detectability as a function of the number of nodes to be checked. To preserve the

structural integrity of linked data structures, a new approach to detecting and correcting structural

errors, called the virtual backpointer, is also introduced in this paper. The technique is used to

construct two new data structures: the Virtual Double-Linked List and the B-Tree with Virtual

Backpointers. The Virtual Double-Linked List uses the same amount of storage as the double-

linked list from which it is derived. The B-Tree with Virtual Backpointers. derived from the E

tree of order rn. requires rn+4 more fields in each node. It is shown that O(1) local concurrent error

detection can be performed for both structures. and that O(1) correction is possible for those errors

detected during forward moves through the structures. Correction for those errors detected during

backward moves through the structures is in worst case Oh).

The foundation work concerning robust data structures was performed by Taylor, Morgan.

and Black [11. Several techiques have since been presented to achieve robust data structures; how-

ever. most achieve error detection in O h) time. A global count, as used by Taylor, Morgan and

Black in the modified(k) doublelinked list, the chained and threaded binary tret. and the robust

B-tree [1-3]. by Munro and Poblete in their isomorphic binary tree 141, by Sampaio and Sauvk in

2

their robust binary tree [51. and by Seth and Muralidhar in their mod(2) chained and threaded

binary tree 161, necessitates. for some errors, a traversal of all the nodes of the structure for error

detection. The three pointer tree, as explained by Yoshihara et Ot. 171 requires O b) time to detect

double errors, since a preorder traversal of all the nodes of the tree is performed. Though not indi-

cated in their paper, error detection can be performed in O(1) time using the D-loops within the

structure, but only single errors can be detected. Kuspert's work with the keparately-chained hash

table [SI. which is an application of doublelinked lists, achieves detection in O(1) time; however.

five extra fields must be stored in each node.

A general theory of local detectability and local correctability has been introduced and for-

malized by Black and Taylor [91. and has been successfully applied to several different types of

data structures, including: the spiral(k) list [91, the LEtree [9-101, the mod(k) list [ll], the

helix@) list 1121. and the AVL tree [131. The intention of their work is to be able to correct an

arbitrary number of errors in a data structure, provided the errors are d c i e n t l y separated from

each other. However. the complexities of the correction algorithms (which include error detection)

are typically not O(1).

1
I
1
I

The organization of this paper is as follows. Section 11 presents an analysis of local concurrent

error detection, giving formal definitions for Checking Windows and local concurrent error detecta-

bility. In Section III. the virtual backpointer concept is described and is used to construct two new

data structures: the Virtual Double-Linked List and the ETree with Virtual Backpointers. The

local concurrent error detectability and correctability of each structure is analyzed. Section N

describes a concurrent auditor process as applied to data structure error detection, analyzes its

effectiveness in increasing the mean time to failure of a system, and presents the results of an

I
I

implementation. Finally, Section V summarizes the results.

11.

3

LOCAL CONCURRENT ERROR D E T E ~ I O N AND CORRECTION

Local concurrent error detection (LCED) is an on-line technique for detecting structural errors

in a locality of a currently accessed node in a linked data structure. If the size of the locality is

constant and the degree of each node is fixed, then an LCED procedure will run in O(l) time. Local

concurrent mor correction (LCEC) can correct errors detected by an LCED procedure. using

another locality of the currently accessed node (not necessarily the same as that used by the LCED

procedure). If the size of the locality is again constant, then an LCEC procedure will run in O(1)

time. Error detection and correction typically degrade system performance. The degradation is a

function of the number of nodes accessed. the number of nodes stored, and the computation

required, for detection and correction. For the LCED procedures analyzed here, no extra node

accesses are required (except in the initialization phase). Hence, the storage and computation

requirements dominate the cost of error detection and correction.

Linked data structures may be modeled as directed graphs. A graph G = (N, E) consists of a

b i t e set of nodes N = (Nl, N,. - * - , N,) and a finite set of edges E = {E,, %, * * - , E,}. Each edge

E,= <Nj, N,> links a pair of ordered nodes in this directed graph (digraph). In the digraph

representation of a linked data structure. the nodes represent the data records. and the edges

represent the pointers between the records. If all the nodes consist of the same fields. then the data

structure is said to be dfm. A move from a node Nj to a node N, is possible if there exists an

edge E, between them, and is represented as N,+N,. Then N, is reached from N, by following E,. A

truversd is a series of moves starting at a root node or header of a structure that accesses part or all

of the data structure.

An LCED procedure is invoked to detect structural errors whenever a move attempts to fol-

low a pointer, which may be a forward pointer, a backward pointer. or a virtual backpointer (Sec-

tion III). That is. the LCED procedure attempts to verify the move. Thus, it is on-line, or con-

current with normal structure access.

4

The errors considered in this paper are those that affect the structural information of the data

structure (e.g., pointer values, structural checking information). The probability of an erroneous

pointer to a random location remaining undetected by the techniques presented in this paper is pro-

portional to 2*, where b is the number of bits used to represent a pointer, and d is the number of

erroneous pointers required for masking. Since this probability is very low, the error detection

analysis concentrates on the case where erroneous pointers point to other nodes of the same type.

This kind of error may occur in partially or incorrectly updated data structures. or as a result of

software errors or hardware failures. These erroneous pointers may or may not coincide with logi-

cal pointer boundaries: however, the routine that accesses nodes from slow memory can detect

these boundary errors and supply this information to the LCED procedure.

Memory subsystems are commonly configured hierarchically. and the ratio of the access time

of slower memory (used to store the data structure. e.g.. MOS RAM, disk) to that of faster

memory (used to buffer the currently accessed nodes. e.g.. cache, register file) is usually very large.

Hence it is desirable to have all the nodes in the LCED or LCEC localities stored in the fastest

memory. In the remainder of this paper, A, will represent the address of a node N, in a linked data

structure. N, may have many pointers to other nodes. and a desired move MV from N, will be

represented as N1-+NMV.

DEFINITION 1: Re is a fast memory of capacity c nodes, which holds the c most recently

accessed nodes, including the node reached by the current move M V . Since a move is perfarmed

between two nodes. c must be at least two to verify the move. That is. for a move MV N,+N,,

R, holds both N, and NMV. If c = 1 then only N, could be stored, and the information of the

source node N, (e.g.. address, pointer value) would be lost. Thus, an erroneous move would be

13

The LCED procedure requires a set of c nodes to verify the move MV. This set of nodes is

called a Checking Window. The cost of a Checking Window is proportional to c. since it involves

storing the required nodes in the fast memory (storage cost) and performing checks on those nodes

indistinguishable from a correct move.

5

(computation cost). The nodes in the Checking Window need not be re-accessed from slow

memory. since they are already stored in Re.

DEFINITION 2: Let a set of Checking Windows of size c. w", be defined recursively as:

w" = {wf-' u Nk} where Wf-' is the f h Checking windm of w'-' (1 d j d I W""1) and Nk

Wf-' is adjacent to one of the nodes in W;-'. The base case is W2 = {{N,, N,,}}. 0

Wk, for some m. is constructed by adding one more node N, to the smaller Checking Window

Wf-'. such that N, can be reached from Wf' in one move. All such W i form a set of sets, w' . It

will be shown that Checking Windows of the same size do not necessarily achieve the same detecta-

bility. When the context is clear, we may use w" to represent one particular W;.

EXAMPLE 1: Consider a forward move Ni+Ni+' in a normal double-linked list (Figure 1):

W: = INi. Ni+l}

W2 = {W:) = UNi. Ni+Jj

Wf = {Ni, Ni+l. Ni+J

W i = {Ni+ Ni. Xi+')

I
I I

I
I

Figure 1. Checking Windows for a DoubloLinked List.

I
I
I
I
1
I
I
1
1
I
I
I
I
I
I
I
I
I
U

6

The Lock and Key concept is now introduced as a generalization of structural checking infor-

mation that is distributed throughout the nodes of linked data structures (distributed checks). In

the simplest case, nodes in the structure will have associated with them a Key. When performing a

move from a node to its child, the node's Key becomes an argument t o the child's Lock function,

which either returns "True." signaling a valid move, or "False," signaling error detection. In its most

general form. the Lock and Key concept allows for multiple-Key Locks and Keys distributed over

potentially many nodes.

DEFINITION 3: A Xey is information associated with a node (e+, its address. a pointer, or dis-

0 tributed check) that is used by a checking function to verify a move.

DEFXNIT~ON~ A Lock, Lock,,, is a checking function that verifies a move, such that

Lock,,(Key,, - - , Key,) = "True" if all its Key, arguments ate present and correct. "False" if all

its Key, arguments ate present and not all are correct, or "X" (don't care) if not all its Key, are

present. A Lock whose Key arguments are all present is called a checkable Lock. otherwise the

Lock is an uncheckable Lock. U

The computational overhead to evaluate the checkable Locks is O(1) if all Lock,, are defined

on Keys that can be contained in a fixed-size Checking Window Wf. No storage overhead is neces-

sary because Locks are functions and are not stored. and Keys can be information that is already

present in the node. e.g.. pointers.

DEFINITION 5: A Circulur Lock, CLock, -N , is a Lock function whose Keys are addresses of
I k

nodes:

where - is a pointer (e+. a forward pointer, a backward pointer. a virtual backpointer) of N, to

7

N,, g is a function that generates x using a series of pointers, and ?= represents a comparison that

0 returns either "True" or "False" for a checkable CLock.

Circular Locks possess the property that for all starting nodes N,, any single pointer error

encountered in the moves of g causes the Lock to evaluate to "False." The following two examples

show that the double-liked list and a binary tree with signatured access paths employ Locks and

Keys. The doublelinked list uses a Circular Lock checking function, while the tree with signa-

tured access paths uses a Lock defined on O(height-of-tree) Keys.

- EXAMPLE 2: Let No, N,. , N, be the nodes of a double-linked

forward pointer Pi and a backpointer B,. For a forward move Ni+Ni+,:

list. Let a node N, have a

The backpointers are the distributed checks, and the g function in the Circular Lock retrieves the

backpointer B from the node at y. This structure achieves O(1) single pointer error detection in

0 Checking Window W: (cf. Example 1).

EXAMPLE 3: In the signatured access path technique. signatures defined over the nodes of valid

traversal paths are embedded at path termination points. where a traversal path starts at a header

and ends at a leaf, for a binary tree [14]. Error detection is achieved by comparing signatures gen-

erated at traversal time with the embedded signatures. A simple signature is the logical exclusive

or function (@I of all the pointers in the valid traversal path.

Keys = <ordered set of pointers in a valid traversal path, signature>

The nodes' pointers are the distributed checks. This structure cannot guarantee O(1) detection time

a as O(heighZ+f-tree) nodes may be accessed in the traversal path.

8

We now determine the minimum number of errors that are required to cause the checkable

Locks used by the LCED procedure to evaluate to "True" in a particular Checking Window. This is

similar to the changes used by Taylor, Morgan and Black [15] to determine the distance between

two data structure instances. The difference here is that the distance is measured within a Check-

ing Window. Hence this new distance is termed Zocd distance, from which the definition of local

concurrent error detectability follows directly. Let LockMv be defined, for every possible move

MV in a specific data structure, over Keys distributed in nodes contained in a bed-size Checking

Window.

DEFINITION 6r The loccJ distance. d;(MV), within a Checking Window of size c is defined as

the minimum number of pointer errors in all Wf that can mask a move to an incorrect node, due to

a pointer error, where M V is the move to the correct node. Errors are not detectable if all check-

0 able Lock, evaluate to True."

DEFINITION 7: The Zocd wmw-rent error detectability, D'(W). for a s p e c ~ e d move hlV and

Checking Window of sue c is given by:

D'(MV) = m d d f (W)) - 1,l < j < I W'I . 0

The max function is used because. for a specsed move, it is always possible to find a Check-

ing Window Wf which can detect at least 0' simultaneous errors (including the pointer from N, to

N, that is erroneous). When the context is clear, we may omit the parameter MV in df(MV) or

D'(Mv).

The following theorem will be used to prove that the local concurrent error detectability of

data structures employing the virtual backpointer is the same for both forward and backward

moves.

THEOREM 1: In a uniform data structure, if for every pointer of the form N,-N, there exists

a - pointer to reach N, from N, in one move, and the Luck functions are Circular Locks. then

using an LCED procedure, D' (N,+N,) = D' (N,-N,) = D' .

9

P'ItOO€? Since the data structure is uniform, Ni-'Nk and Nk-Ni represent all possible forward

and backward moves, respectively. Notice that Wf = IN,, N,}. Thus, all W; are also the same for

both moves as W; is defined on Wf. If Ni-'N, is erroneously changed to N,+N,.. it is isomorphic

to the case Nk+N, being changed to N,-N,,. because the pointers used in the g function of the Cir-

cular Lock are not changed by the isomorphism. In both cases, the Locks evaluate to the same

value because the accessible nodes in Wf are the same. By Definition 6. d;(N,-rN,) = df(N,-Ni).

a Hence D' (Ni-+Nk) = Dc(N,-Ni) = DC .

Theorem 2 will be used in determining the upper bounds of local concurrent error detectabil-

ity for the Virtual Double-Linked List and &Tree with Virtual Backpointers.

THEOREM 2 Local concurrent error detectability is a monotonically increasing function of

window size c. That is, 0''' 6 D' d D" for 3 d c d n, where n is the total number of nodes in

the data structure.

PROOF: Every W: is constructed by adding one adjacent node N, to a Checking Window of

size c-1: W: = Wf-' U N,. If each checkable Lock in Wf-' evaluates to "True" in Wf-' then it

will remain "True" in W: because the Keys of the Lock are contained in both Wf-' and Wi. If the

addition of T\J, causes an uncheckable Lock in Wp-' to evaluate to yrue" or "X" in Wz. this results

in d i = dj . However, if the uncheckable Lock evaluates to "False." then d: > df-'. since at least

one other error would be required to mask the detected error. Hence. d i 3 d;-1. Then max(d:) 2

mddf- ') , and D' 3 DC-' follows from Definition 7. The upper limit of detectability is trivially

c-1

D" , since the entire structure is then included in the Checking Window. 0

If the Checking Window includes all the nodes of the structure, LED procedure degenerates

into a global error detection procedure, which requires an) execution time. Therefore, to achieve

maximum local concurrent error detectability, it is sufficient to use a Wf with minimum size c for

which D' = D" .

The LCED procedures mentioned throughout this section were unspecified because the actual

procedure used depends on the particular data structure to be checked. The general LCED

10

technique is as follows. First, determine the appropriate Checking Window Wf that achieves the

desired local concurrent error detectability. For each possible move from each node, identify the

Lock functions and associated Key arguments that are used to perform the checking. The LCED

procedure can be constructed as follows: for each move made, access the nodes dehed by the

Checking Window, and evaluate all the checkable Lock functions. If all Locks return "True," then

either no error has occurred or undetectable errors have occurred; if any Lock returns "False." then

at least one error has been detected. Once an error has been detected by an LCED procedure, LCEC

may be performed. The upper limit of correctability is . However, the actual correctability

depends upon the data structure.

Since errors are detected and corrected based only on information from nodes in the Checking

Window, many other detectable errors may exist simultaneously throughout the data structure.

Although the local concurrent error detectability and correctability may only be one or two in the

window, the actual number of detectable and correctable errors may be much larger.

111. VIRTUAL BACKPOINTERS

The v i t t d &c&pilrter is a distributed checking symbol that can be used to achieve O(l>

L O and O(1) LCEC during a forward move. and O(1) LCED and O(n) LCEC during a backward

move in many linked data structures. In addition, it can be used to generate a backpointer from a

node N, to its parent Npurnt. In the general case, a virtual backpointer may point to an ancestor

N,,,, of a node N,, where N,- is an ancestor of N, if there exists a series of moves from

Namestor to Ni-

DEFINITION 8: In a linked data structue. let Nan-, be an ancestor of N,, and Qi be the set of

all pointers in N,. The vin'ud buckpointer Vi = f(Q,. kox-), where f is a function such that

A,,*, = f'(Qi. Vi) = f'(Qi. f(Q,, Amenconor)), and fa is a companion function determined by f. In

I
I
1
I
I
1
I
I
B
I
1
8
U
I
I
I
1
1
I

11

general, there may be vectors of virtual backpointers. 3, = T(Qi, A), which, after suitable transfor-
4

mation by f , point to vectors of nodes x. 0

The virtual backpointer has the following properties. 1) For a forward move Ni-+Ni+,. Vi+,

provides checking information. 2) For a backward move Ni+l--Ni, provides the backpointer

after transformation by f , and QIncator is used as checking information. Two example data struc-

tures employing the virtual backpointer are presented in the following subsections: the Virtual

Double-Linked List, which is derived from the double-linked list, and the &Tree with Virtual

Backpointers. which is derived from the &tree.

The VufuuZ Double-Linked List (VDLL) is a data structure that employs the virtual back-

pointer and possesses local concurrent error detectability and correctability. Errors are detected in

O(1) time with an LCED procedure. For a forward move, detected errors may be corrected using

LCEC in O(1) time; for a backward move, detected mors may be corrected using LCEC in O(n)

time. The VDLL requires no more storage space than the double-linked list (DLL). and retains the

simplicity of the DLL. in that it is possible to move directly from a node to its parent, using the

virtual backpointer. This is not possible. for example, in the modified(k) DLL [l], for k > 2, which

must access other ancestors of a node in order to reach the node's parent.

DEFINITION 9: A VitrUcJ Double-Linked List is described as follows (Figure 2). In a linked

list data structure, let Ni,l be the parent of N,. and Pi be ihe forward pointer of the N,, therefore

Qi = {Pi}. Let f((x}. y) = f'((x}, y) = x@y. then Vi = Pi'&& = Ai+lf3Ai-l, and A,,, = Pi@Vi. where

@ denotes the logical exclusivtor function. Also. c header nodes No. N-l, - - * .N-+, are added,

where c is the size of the Checking Window. These header nodes are assumed to be always accessi-

ble by the LCED procedure. Note that = N,. 0

The VDLL is created from the DLL by replacing its backpointers with virtual backpointers.

The same operation can be applied to the modSed(k) DLL family [I]. resulting in the modi6ed(k)

12

Figure 2. Virtual Double-Linked List (VDLL) of 5 nodes.

VDLL structures. It will be shown that each modSed(k) VDLL achieves greater local concurrent

error detectability than the corresponding modified(k1 DLL.

DEFINITION 10: A modijedfk) V i d DoubbLinked List is described as follows. In a linked

list data structure. let Ni, be the kth ancestor of N,, and Pi be the forward pointer of the N,, there-

fore Qi = {Pi}. ht f(x. y) = f*((X}. y) = *, then vi = P,@A,,, = Ar+l@&k. and A,+ = Pi@vp

0 Also. max(k+l. c) header nodes, are added.

The possible Locks and Keys of the VDLL can be identified as follows (Figure 2). For a for-

ward move N,-N,+, following Pi,

I
b
1
1
I
I
u
1
I
I
I
1
I
8
I
I
I
I
I

13

where g is the identity function. For the backward move N,+,-N, following V,+l@Pi+l.

where g retrieves the pointer P from the node at y. Locks and Keys for the modified(&) VDLL can

be identified similarly. Using the results of the analysis of LCED. we now determine the local con-

current error detectability of the VDLL.

THEOREM 3 Using an LED procedure, the local concurrent error detectability of the VDU

is D2(forward) = D2(backward) = D2 = 1, and D'(forward1 = D'(backward) = D' = D3 = 2. V c

2 3.

PRWR Since the VDLL uses virtual backpointers and Circular Locks. by Theorem 1,

D'(forward) = D' (backward). Consider a forward move M V . Ni*N,+l. following Pi. The LCED

procedure attempts to verify this move. A pointer that does not point to a logical node boundary

can easily be detected by the node access routine. Therefore consider only erroneous pointers that

lead to valid logical node addresses. Suppose that Pi is erroneous and leads to Nj+, instead of N,,,.

In Wt = INi, N,+,), d t = 2: either VI+, or PI+, must be erroneous to mask the error in Pi. Assume
that Vj+, is erroneous (Figure 3a). In W:= {Ni,Nj+1.Nj+2}, d: = 2. However, in W2 3 =

{N,-,, N,. NI+,}, Vi will lead to the detection of the error in Pi. because following the backpointer

given by Vi@Pi will lead to a node N,,, instead of N,,,. and Pk-1 f N,. Therefore. Vi must be

changed into the value A,,@A,, to mask the error in Pi. Thus 4 = 3.

Assume now that Vi+, is not erroneous, so Pj+, must be erroneous (Figure 3b). Consider

Wl = {Ni, Nj+,, Nk+2). The LCED procedure will not detect the error in Pi if PI+, has been changed

to A,, = AiCbVj+,. and Vk+2@P,+2 has been changed (via a change in either V,+2 or Pk+2) to Aj+,.

The remainder of the analysis is similar to the case above. and gives d, 2 = 2. d, 3 = 3, and d, 3 = 3.

According to Definition 7, D2 = 1 and D3 = 2. Since the VDLL can be changed to another correct

VDLL by three pointer errors (node deletion), D" = 2, where n is the number of nodes in the struc-

14

4 - 2 4 - 2 v,,

Ai-, $3 pi-, vi-,

Aj+2 p+2 v+2 Ai+2 pi+2 vi+2 59 $9
Figure 3a. Analysis of VDLL: Errors in P,. Vi, and Vj+,.

8
1

Figure 3b. Analysis of VDLL: Errors in Pi, Vi. Pj+l. and Vk+2.

15

ture. By Theorem 2, D" = 2. V c 2 3. a

The above proof suggests that when moving forward Nl-NMV following Pi. use

W3 = {Nprrr. Ni. NMv} as the Checking Window, where NprW corresponds to N,, in the proof; and

when moving backward Nl-NM, following Pi@V,. use W3 = {Ni, NMV, N,-} as the Checking Win-

dow, where N,,, is the node reached by following PM@VMv. By using these windows, double

pointer errors can be detected. or single pointer errors corrected (described below). The LCED pro-

cedure using this Checking Window evaluates four locks when moving either forward or back-

ward. For a forward move, the locks are: L1: A,, ?= Pi@Vi. L2: Ai ?= PM@VW. L3: Ai ?= PprW

and L4: A,?=P,. For a backward move, the locks are: L1: A,?=P&VMv. L2:

AM, ?= Pi@Vi. L3: A, ?= PneXt and L4: A, ?= PMv (In the W2 Checking Window, only two locks

are evaluated, namely A, ?= PM@VMv and AM, ?= Pi for the forward move, and AM, ?= Pi@V,

and A, ?= PMv for the backward move.) A comparison of local concurrent error detectability is

given in Table 1 for the WLL. modified(2) eVDLL. modified(3) VDLL. DLL without a global

count, and modZed(2) and modified(3) DLL without global counts [l], for various sized Checking

Windows. The local detectability of the modified(2) and modified(3) VDLL can be obtained using

Table 1. Local Concurrent Error Detectability
of Several Linked List Data Structures.

Detectability V D U I VDU I VDU D U D U
D' 1 I 0 I 0 1 0 I 0

1
I
I
I
1
I
1
I
I
I
I
I
I
I
I
I
I
I

16

the same analysis technique as that applied to VDLL. Any modified(k) VDLL achieves greater

local concurrent error detectability than the corresponding modified(&) DLL. For k > 3. no further

improvement in detectability can be made for either of the two families.

TKEoREM 4: Any single pointer error detected by a forward move in W3 = {Nv. N,, NMv) in

a VDLL can be corrected with an O(1) LCEC procedure rquiring at most one extra node access for

both diagnosis and correction. Any single pointer error detected by a backward move in

W3 = {Nnm, N,, N,} in a VDLL can be corrected with an O(n) LCEC procedure requiring at most

one extra node access for diagnosis.

PROOR Since the local concurrent error detectability for this structure using is D3 = 2,

the upper limit of correctability is 1. Assume that a single error has been detected during a for-

ward move. The LCED procedure supplies the values of the four detection locks (Table 2a). and

three error indication values generated by a node access routine, NAP,. N&, NA,. that indicate

out-of-bounds pointers or pointers that do not point to logical node boundaries. when used to

access Nprw, Ni and N,. respectively. There are eight possible errors: 1) Aprr+ error, 2) Pprw error,

3) Ai error, 4) Pi error, 5) Vi error, 6) AM, error, 7) P, error and 8) V, error. To distinguish

the eight errors, the seven-tuple syndrome {Ll. L2, U, L4, NA,, NPq. NA,) is constructed

(Table 2b). For the error-free case. the syndrome will be {True. True. True, True. True. True,

True). There are two cases of identical syndromes for different errors. In each case one extra node

is acccssed to completely diagnose the error. N, is accessed by following P, to distinguish a P,

error from a VMv error. N, is accessed by following Pi@Vi to distinguish an A,, error from a Vi

error. Once the error has been diagnosed. correction proceeds as follows:

1) Aprw mor: correct value is P,$V,.

2) P,, error: correct value is 4.

3) A, error: correct value is Ppisr.

4) Pi error: correct value is A,.

17

Diagnosis Locks
L5 A,,?=P@V, Access Nx via P,,
L6 A,?=P, Access NY via PpV,

Table 2a. Detection and Diagnosis Locks for Forward Moves

in the WLL using wj.

I Detection Loch I 31
L4 A.,,, ?= P:

Table 2b. Error Detection and Diagnosis Syndromes for Errors Detected

by Forward Moves in the V D U using W3.

5)

6)

7)

8)

Vi error: correct value is A,,@P,.

AM, error: correct value is Pi.

PMv error: correct value is A,@V,.

V, error: correct value is ApP,.

1
I

I
1

Assume now that a single error has been detected during a backward move. The LCED pro-

cedure supplies the values of the four detection locks (Table 3a). and three error indication values

1

~

L1 A,,,, ?= PdV,
L2 A,, ?= Pi@V,
L3 A,, ?= P,,,,

-

18

generated by a node access routine, NAnext. NAMv. NA,, that indicate out-of-bounds pointers or

pointers that do not point to logical node boundaries. when used to access Nn,*, NM, and N,,

respectively. There are eight possible errors: 1) Anrxt error, 2) P,,,, error. 3) A,, error, 4) Pm

error. 5) V, error, 6) A, error, 7) P, error and 8) Vi error. To distinguish the eight errors, the

seven-tuple syndrome {Ll, L2. L3. L4. NAnm. NAM,, NA,) is constructed (Table 3b). For the

error-free case. the syndrome will be {True. True, True, True, True. True. True]. There are two

cases of identical syndromes for different errors. In each case one extra node is accessed to

I
I

I

I
1
1
1
I
I
I

Table 3a. Detection and Diagnosis Locks for Backward Moves
in the VDLL using wj.

I Detection Locks 1

Table 3b. Error Detection and Diagnosis Syndromes for Errors Detected
by Backward Moves in the VDLL using +.

19

completely diagnose the error. N, is accessed by following Pnext to distinguish a P,,, error from a

V, error. Ny is accessed by following Pi to distinguish a Pi error from a V, error. Once the error

has been diagnosed, correction proceeds as follows:

A, error: correct value is PM@V,.

Pnrxt error: correct value is A,.

AM, error: correct value is P,.

PMv error: correct value is Ai.

V, error: To correct the error in VMv. first access the headers of the struc-

ture. Next, move forward. acceSSing nodes No. N,. - , N,, performing w3
LcED and correcting single errors with o(1) LmC, until Pk = AMv Then the

correct value of V, = AkCeP,.

A, error: correct value is PMV

Pi error: correct value is A&Vp

V, error: correct value is A&Pp

Note that for a forward move. both diagnosis and correction are O(1) time. and require one

extra node access. For a backward move, diagnosis is O(l> time (one extra node access) but correc-

tion requires O(n) extra node accesses in the worst case. Thus. O(1) LCEC is possible for an error

detected by a forward move, while O(n> LCEC is possible for an error detected by a backward

move. The proof assumed that LCED was used: if W2 is used instead. then diagnosis for both

the forward and backward moves is still O(1). but correction for both moves requires O h) LCEC.

The B-Tree with Virhccrl Backpointers (VBT) of order m is a data structure that possesses local

concurrent error detectability and correctability. Errors are detected in O(1) time if the time com-

plexity is measured as a function of the number of nodes in the tree. is.. n. For a forward move.

20

detected errors can be corrected using O(1) LCEC; for a backward move, detected errors can be

corrected using O(log,n) LCEC. The VBT requires m+4 extra fields in each node, and has the

additional feature that backward traversal can be performed without a stack. using the virtual

backpointer.

The underlying structure of the VBT is the B-tree of order m [16]. which finds application in

the construction and maintenance of large-scale search trees. The B-tree h& the following charac-

teristics:

1)

2)

3)

4)

Every node contains at most 2m keys. and every node except the root contains

at least rn keys. The root contains at least one key.

Every node is either a leaf node, with no pointers to other nodes. or an internal

node, with pointers to other internal nodes or to leaf nodes.

All leaf nodes appear at the same level.

An internal node with k keys will have k+l pointers to subtrees. The k keys

will be arranged in strictly increasing order. and keys in the ith subtree will be

less than the ith key. while keys in the i+lth subtree will be greater than the ith

key.

Let be the fh pointer in node N,. Assume that each pointer requires one word of memory.

Therefore. each pointer is uniquely addressable by A,,j (Figure 4a). The VBT is modified from the

B-tree in the following ways to achieve local concurrent error detectability.

1)

2) Vi, the virtual backpointer of N,. is defined as Vi=P,,o@P,,,@ * . -

A header node No is created with POJ = A,,j for 0 d j d 2m.

th $Pi&@AWeatj where the j pointer in Nwmt points to N,. For the special case

of the virtual backpointer from the root to the header, V, is defined on A,,o.

even though all Po,j point to N,.

S
i
8
I
8
I
I
1
I
I
1
I
I
1
I
8
1
I
1

21

3) The keys of N, (i.e.. KI2. - * - , KIh) are arranged in a matrix (Figure 4b)

and the key check symbols Xi,j and Y,, are generated using a product code [17]

as follows:

- Ki, (j lh+l @ K i , 0 - ~) ~ + 2 @ - * @ Ki,(+l)m+m '1 g j 2

Yi, -K,jQKim+j , 1 d j d m.

K1,j is used to determine xlb~((j-I)h)+l and Yi.(j-l)mdm + 1' called its

corresponding X and Y check symbols, respectively.

The number of key fields used in N, is called COwLt,, which is added for performance enhance

ment. A VBT of order 2 is illustrated in Figure 4c. The possible Locks and Keys of the VBT can be

identilied as follows. Assuming the f h pointer of N, points to N,. for a forward move N,dN, fol-

lowing Pi,$

where g is the identity function. For the backward move Nk--N, following (Pk,@Pk,l$ - - -
@pk, @vk).

where g retrieves the f h pointer Pi,, from the node at y.

We now determine the local concurrent error detectability of the VBT. employing the results

of the analysis of LCED. Using Theorem 2. Table 4 presents the possible key and pointer errors

that can occur in the VBT (errors in the count field are covered by the fifth and sixth rows of the

table). and the number of errors required to mask them, assuming an L E D procedure is used.

THEOREM 5: Using an L O procedure. the local concurrent error detectability of the VBT is

1 and D3 = D' = 2. V c 2 3. D2

22

I
I
I

Figure 4a. Node Representation in Order-2 B-Tree with Virtual Backpointers.

I

Yi.1 Yiz ... Y,, I

vi = Pi,O@Pi.l@ * - - @PiZm@Apua*c.j
amti = number of key fields used in N,

Figure 4b. Virtual Backpointer and Key Check Symbols in a VBT Node. I
I
I
I
I
I
I

Figure 4c. Order-2 B-Tree with Virtual Backpointers (VBT). I

PROOF: From Table 4. the minimum d f = 2 and the minimum d r = 3 . V c 3 3.

Definition 7, it follows that D2 = 1 and Dc = 2, V c 3 3.

Error Condition
Non-empty VBT becomes empty
Empty VET becomes non-empty
Key. X or Y becomes erroneous
Internal node's non-null winter mints to incorrect node

23

From

0

max(d:)
2m+l
2m+2

3
2

From Table 4 it can be seen that no increase in the local concurrent error detectability can be

Two of internal node's pointers exchanged
Internal node becomes a leaf node
Leaf node becomes an internal node

gained by using w' for c >/ 3. It can be shown that when moving forward Ni+NMv following Pi,,,

or when moving backward Ni-NMv following (PMv,o@PMv,1@ - @PMva@VMv)s use

wj = {PIpm. N,. NMVJ and = {Ni. NMVs N,) respectively, to achieve detection of double

pointer errors. or correction of single pointer errors (described below). In the window for the for-

~-

2 4 4
3 3 3

I

3 4 5 .I

ward move, N, is the parent of N,. and in that for the backward move, N,, is the parent of

NMv The LCED procedure using this window evaluates four locks. For a forward move, the locks

* * @PMv%$Vm. L2: AW,t ?= P,,o@Pi,,@ * * @Pia@Vi, L3: AM, ?= P,,, and L4: 4 ?= Pm,t.

(In the Wz Checking Window, only two locks are evaluated. namely Aid ?= Pm,o@PW,I@

@PMvB@VMv and

A, 13: P,,t for the backward move).

- *

?= Pi,, for the forward move, and AMv.17~ Pc0@Pi,,@ * * @P,,@Vi and

Table 4. Analysis of Errors in the VBT.

~ ~ ~~~

Internal node's non-nulipoinbr becomes null 6
I Internal node's null winter becomes non-null 1 6

+{
7 I 7 1

I'
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I

24

ROEOREM 6: Any single pointer error detected by a forward move in W3 = {Nprev, N,, N,,}

can be corrected with at most 2m+l extra node accesses in O(1) time. Any single pointer error

detected by a backward move in = IN,, Nm, N,,} can be corrected in O(logZ,n) time if it is

detected during a backward move.

PROOR Since the local concurrent error de2ectability of this structure in * is D3 = 2, the

upper limit of correctability is 1. Assume that the error detected is a single error. The error may

be a key, a key check symbol, a COLuLt or a pointer. For the key or key check symbol error, diag-

nosis and correction are performed using the procedures for product codes [17]. For a cottltt error,

all the keys and key check symbols will be correct. hence counting the non-null keys will regen-

erate the count.

For the pointer error, if the erroneous pointer is located at the header node. it can be corrected

by simple comparison because there are 2m+l 3 3 identical pointers in the header. Otherwise.

there are two cases: detection by a forward move and detection by a backward move. Assume that

the error has been detected during the forward move from N, to N, following PiJ. The LCED

procedure supplies the values of the four detection locks (Table 5a). and three error indication

values generated by a node acccss routine, NA,. NA,. NA,, that indicate out-of-bounds pointers

or pointers that do not point to logical pointer boundaries, when used to access N,, N, and NMv,

respectively. There are nine possible errors: 1) A,, error, 2) PprrvJ error where PprmJ is the

pointer from N,, to Ni, 3) Ai error, 4) P, error, 5) Pi, error for 0 < s d 2m and s Z j. 6) Vi

error. 7) A,, error, 8) P,,* error for 0 d t d 2m. and 9) V, error. To distinguish the nine

errors. the seven-tuple syndrome {Ll. L2. L3, L4, N%,. NA,. NA,) is constructed (Table 5b).

For the error-free case. the syndrome will be {True, True, True, True, True, True. True}. There are

two cases of identical syndromes for different errors. In each case extra nodes are accessed to com-

pletely diagnose the error. The nodes Nk are accessed by following all the pointers P,,% from N,

to distinguish a PW,% error from a V, error. N, is accessed by following P,,,@Pi,,$ * - - PihV,

to distinguish an A,, error from a Vi error or a Pi, error. The latter two errors are distinguished

Table 5a. Detection and Diagnosis Locks for Forward Moves
in the VBT using w3.

1 Detection Locks

I

[L4 I A w ? = P i i I

Table 5b. Error Detection and Diagnosis Syndromes fo: Errors Detected
by Forward Moves in the VBT using W .

by accessing the nodes N; by following all the pointers Pi, from NP Once the error has been diag-

nosed, correction proceeds as follows:

1) A,, error: compute Apmd from P,,,@P,,,@ - -
can be calculated.

@Pi,$V,, from which Aprm

26

Ppnvt error: correct value is A,.

A, error: correct value is PpWJ.

error: correct value is Am

Pi, error: correct value is &,@Pi,$ * - - @P,&P,,+l@ - - @Pih@Vp

Vi error: correct value is AprwJ@Pi,O@Pi,l@ - - @Pi%.

A, error: correct value is Pi$

... PMv,t error: correct value is A@PMV0@ - @P,,t-l@PMv,t+l@

@%V,@VM,.

VMv error: correct value is A@P,,o@PMv,i@ @PWh.

Assume now that the error has been detected during a backward move from N, to N, fol-

lowing P,,,@P,,,@ * - . @PiBQV,. The LCED procedure supplies the values of the four detection

locks (Table 6a). and three error indication values generated by a node access routine.

NA,,.NAMv.NA,. that indicate out-of-bounds pointers or pointers that do not point to logical

pointer boundaries. when used to access N,,, NMV and N,. respectively. There are eight possible

errors: 1) A, error, 2) Pnaa error where Pnms is the pointer from N, to N,, 3) A, error, 4)

PMv,t error for 0 d t d 2m. 5) V,, error, 6) A, error, 7) Pi,] error for 0 d j d 2m. and 8) Vi error.

To distinguish the eight errors, the seven-tuple syndrome {Ll. L2. L3. L4. NA,. NAMv, NA,} is

constructed (Table 6b). For the error-free case, the syndrome will be {True. True, True, True.

True, True, True}. There are two cases of identical syndromes for dserent errors. In each case

extra nodes are accessed to completely diagnose the error. The nodes N i are accessed by following

all the pointers Pi,] from N, to distinguish a P,.] error from a Vi error. N, is accessed by following

Pnext,,-,@Pn..& * - cgPnatB@V, to distinguish a P,, error from a V, error or a P,,t error.

The latter two errors are distinguished by accessing the nodes Ni by following all the pointers

PMv,t from Nw Once the error has been diagnosed, correction proceeds as follows:

27

1) A,, error: compute A,,,, from PM,,o@P,,,,@

which A,, can be calculated.

* - @P,*@VMv. from

2) Prima error: correct value is AMv

Table 6a. Detection and Diagnosis Locks for Backward Moves

in the VBT using wj.
',

Table 6b. Error Detection and Diagnosis Syndromes for Errors Detected

by Backward Moves in the VBT using W3.

28

AM, error: correct value is Pnextz.

PMv,t error: To correct the error in PMv,t, ilrst access the headers of the struc-

ture. Next, move forward, accessing nodes No, N,,

LCED and correcting single errors with O(1) LCEC. until Pkg = A,. Then

the correct value of P,,* is Aks@PMv.O@

, N,, performing

... @PMv,t-l@PMV,t+l@ ...

@pMV,2m@vW

V, error: To correct the error in V,. first access the headers of the struc-

ture. Next, move forward, accessing nodes No. N,, - - , Nk, perfOrIUhg

LcED and correcting single errors with o(1) Lac, until P k g 3 A,. Then

the correct value of V, i s A ~ g @ P ~ , o $ P ~ , 1 @ * - * @PMvh.

4 error: correct value is Pw,v

Pi,j error: correct value is Am,t@Pi,o@ - - @Pi,~l@Pi,j+l@ - - ePitn$Vi.

Vi error: correct value is A,,t@P,,o@Pi,,@ * @Pi*. 0

The robust B-tree [3] presented by Black, Taylor and Morgan performs double error detection

or single error correction in O(n) time, and requires 2m+3 extra fields in each node of an order-m

Etree. Taylor and Black have also developed the LB-Tree [lo] which is locally correctable. in that

it can correct many single errors if they occur in separate substructures. However. in order to ver-

ify a pointer, one level of nodes must be traversed, and to correct a pointer, all the levels above the

current level must be traversed. Hence. double error detection and single error correction require

O h) time. and 2m+5 extra fields in each node of an order-m B-tree are required. In comparison, the

advantages of the VBT are as follows:

1) Double pointer errors can be detected in the VBT using an O(1) LCED pro-

cedure.

Single pointer errors can be corrected in the VBT using an O(1) LCEC pro-

cedure for an error detected during a forward move. or using an O(log,n)

2)

29

LCEC procedure for an error detected during a backward move.

The VBT requires only m+4 extra fields in each node.

The virtual backpointer facilitates backward traversals of the VBT. which can

then be used to enhance performance.

3)

4)

IV. ANALYSIS A N D IMPLEMENTATION

AUDITOR PROCESS

OF A CONCU'FW.ENT

The Concurrent Auditor Rucess (CAP) is an on-line process for error detection and correction

that runs in parallel with user processes accessing a database. It is used, in this case. to perform

data structure error detection and correction for the user processes, and allows concurrent access to

structures being checked to reduce the system performance degradation due to error detection.

Koved and Waldbaun have developed an auditor program that provides detection of computer

subsystem failures [lS]. based on Waldbaum's concept of the auditor program [19]. Taylor, Mor-

gan and Black have suggested the use of an audit program to periodically perform error detection

and correction in data structures [l]. However. little analysis has been performed on the

effectiveness of such an audit program. This section presents an analysis of the effectiveness of the

CAP and presents measurements of the CAP'S effectiveness in a W u e n t Balance 8000 multiproces-

sor implementation using a database of VDLL.

The CAP described here accesses structures more frequently and uniformly than user

processes to reduce the latency of error detection. A h . the CAP performs error detection in

Checking Windows of higher cost than those used by user processes. to reduce their performance

degradation. For example, if the database is composed of VDLL or VBT instances, user processes

may perform single pointer error detection in W2 with less computation cost. while relying on the

CAP to detect the less-frequent double pointer errors in W3 with more computation cost. The

effectiveness of the CAP is determined by its increase of the mean time to failure (m) of the

30

system. Ideally. a large increase is achieved with little degradation of user process performance.

Hence, the CAP permits user processes to access structures being checked as long as they do not

insert or delete nodes from the CAP'S current Checking Window. Expressions are derived to deter-

mine the M?TF in a multi-user, n-process system with and without the use of the CAP. This is

followed by the results of an implementation of the CAP using a VDLL database.

A. Analysis

In a multi--. n-process sharcd-database environment. assume that the CAP performs error

detection in and that user processes perform error detection in W2. The pointer errors can then

be divided into three classes: E,. E, and %. E, errors are those which can be detected by a user

process or by the CAP. E, errors can be detected by the CAP but not by a user process. E, errors

can be detected by neither a user process nor the CAP. Suppose the time for an E! error to occur is

T", the time for a user process to encounter that error is Tu. and the time for the CAP to detect an
.

E,

E, error is TA. For the purposes of analysis assume, in a given time interval. both the number of

errors that occur and the number of accesses to a particular node are random variables following a

Poisson distribution. Then, random variables Ti,. Tu and T A follow an exponential distribution

with mean time y;, /3 and cy. respectively.

LEMMA 1: The probability of an E, error causing any of the n processes to fail in the presence
n

of*eCAPis 1-IJ-I .

PROOF: For a single process, the probability to fail can be derived using basic probability

theory:

31

n

Therefore, the probability of any of the n processes failing is 1- j = 1-[$] . 0

THEOREM 7: Without the use of the CAP. MTTF =: y: + 0. and with the use of the CAP.

PROOF: If no CAP is used. M " F = min(E(Ti~.E(Ti~)+E(TU)=: min(yf,y;) +P=:

y: + 0. where E(X) is the expected value of random variable X.

In the presence of the CAP. the determination of whether an El error will cause a failure can

be modeled as a Bernoulli trial with parameter p = 1- 1 - I, j . Hence the mw foiiows a

Y ;'
geometric distribution with mean -, where n' represents the effect of n user processes and the

CAP. 0

P

If E, and & errors are formed by the accumulation of E, errors. then T" and Ti2 are propor-

tional to the access frequency. Thus y; = n y i . yi = ny, and y2 >> yl. This gives. for the

without-CAP case, M"F = yr + /3 = nyf + p. In the with-CAP case, since the CAP is - times

1 1 1

B
a

faster in checking the data structure than a user process. y:' = n +- yf. E, errors will retain 811 I :I

32

EXAMPLE 4: Suppose 7: = 100 hours, yi = 10.000 hours, /3 = 1 minute, and 5 user processes

are active on the system. Without the use of the CAP. Ml'TF 1: 500 hours. However. by using the

Q CAP, and with a = 10 seconds. M?TF is increased to M'ITFap =2050 hours.

If a is small enough (Le.. the CAP is fast enough), the term can exceed the

7; term. In this case, M?TF,, = y:+/3. This effectively eliminates the chances of

a user process failure due to E, errors, which occur more often than E, errors.

A model database of VDLL was implemented in C and run on a !%quent Balance SO00

shared-memory multiprocessor system with six CPUs. Single random errors and worst-case double

errors (called "double cooperative errors." where a second error masks a previous error) were

injected into the database one at a time. Error detection was accomplished by one of four user

processes. the database manager, or the CAP, each of which performed either W2 or checking.

The database manager serviced all update requests. and the CAP operated in the idle time of the

database manager. to reduce performance degradation. Databases of 50. 100. 500 and lo00 nodes

were used in the simulations. Each database consisted of eight VDLL instances: Six non-empty

instances. one empty instance, and a free list. To model the locality of user process database access.

each user process performed approximately 8Wo of its operations (composed of 75% searches, 12.59'0

insertions and 12.54 deletions) within one VDLL. and the other 20% in a randomly selected VDLL.

For each single or double error injected, the detection latency and the number of operations

completed in that time were measured. for five diEerent combinations of user process LcED/CAP

LCED (Table 7). The mean error detection latencies for the five combinations. applied to databases

33

of 50. 100. 500 and 1000 nodes. are shown in Table 8. Table 9 shows by what factor use of the

CAP can decrease the error detection latency. The following observations can be made based on the

remlts of the implementation:

1)

2)

Single and double LCEI) can be performed on the VDLL in O(1) time.

The use of the CAP significantly reduces the error detection latency of both

single random errors and double cooperative errors.

The CAP is more effective in reducing the detection latency of single random

errors as the size of the database increases.

3)

Using the analysis results of the previous section. the first observation shows that y;' a 5y:.

Thus from Theorem 5, the MCrz.F,, > J X W . This clearly shows the utility of the CAP. in

increasing the MTTF of the system.

v. SUMMARY

In this paper, we have presented a new technique for local concurrent error detection in linked

data structures that can achieve O(1) error detection in a variety of data structures. This tech-

nique uses the concept of a Checking Window to define the locality in which local concurrent error

detection is performed &d also to determine the associated cost of the locality. The virtual back-

pointer was introduced and used to d e b e two new data structures. the Virtual Double-Linked

List. which incurs no storage overhead, and the B-Tree with Virtual Backpointers of order m.

which requires m+4 extra fields per node. It was shown that double errors could be detected using

a local concurrent error detection procedure in O(1) time for both structures. In addition. those

errors detected during forward moves were shown to be correctable using a local concurrent error

correction procedure in O(1) time. Correction of those errors detected during backward moves was

shown to be. in worst case, Oh). Finally, an analysis and implementation of a concurrent auditor

1'

11
~B
I
I
1
I
1
I
1
1
1
1
I
I
1
I
1

e

cast
1

Table 7. Combinations of User Process LCED and CAP LCED.

UserProcessLCED CAPLCED
None

4
5

I: I
None

w3 w3

w' l + l

Single
Size samples 1 2 3 4 5
50 loo00 77 8 7 64 7

Table 8. Mean Error Detection Latencies.

Random
Error

Double

Error
Cooperative

Error I Database Numberof I case I

100 loo00 144 11 10 127 10
500 1800 4884 147 134 5052 140
lo00 200 29087 372 308 31033 312
50 loo00 72 7 7 39 7
100 loo00 60 13 10 57 11
500 1800 420 54 48 447 50

Random
Error

Double

Error
Cooperative

100 13 14 13
500 33 37 36
lo00 78 94 99
50 10 10 6
100 5 6 5
500 8 9 9

Table 9. Detection Latency Reduction Factor Through Use of the CAP.

size 1:2 1s 43
Single 50 10 11 9

34

35

1 process in a shared database using the virtual backpointer technique was shown to s ignihntly

reduce the error detection latency.

1
I

36

REFERENCES

D. J. Taylor. D. E. Morgan. and J. P. Black. "Redundancy in Data Structures: hnproving
Software Fault Tolerance." IEEE Transactions on Sofmare Ekgineering. vol. SE-6. no. 6. pp.

D. J. Taylor, D. E. Morgan. and J. P. Black. "A Compendium of Robust Data Structures,"
Roceedings of the 11th Alvurcrl International Symposium on Fa& Tolerant Computing. pp.
129-131. June 1981.
J. P. Black, D. J. Taylor, and D. E. Morgan, "A Robust B-Tree hplehentation." Proceedings
of the 5th Internatwd Conference on Software Engineering, pp. 63-70. March 1981.
J. I. Munro and P. V. Poblete. "Fault Tolerance and Storage Reduction in Binary Search
Trees." Information and Control. vol. 62, pp. 210-218.1984.
M. C. Sampaio and J. P. Sauvc. "Robust Trees," Roceedings of the 15th Anrurcll International
Symposium on Fault Toleran$ Computing. pp. 23-28, June 1985.
S. C. Seth and R. Muralidhar, "Analysis and Design of Robust Data Structures." Roceedings
of the 15th Alvucal Infernutionui Symposium on Fault Tolerant Computing, pp. 14-19. June
1985.

585-594, November 1980.

[7] K. Yoshihara, Y. Koga. and T. Ishihara. "A Robust Data Structure Scheme with Checking
Loops." Roceedings of the 13th AIvurczl Internatwnal Symposium on Fa& ToZerant
computing, pp. 241-248, June 1983.
K. Kuspert. "Efficient Error Detection Techniques for Hash Tables in Database Systems."
Roceedings of the 14th Annual International Symposium on Fault Tolerant Computing. pp.
198-203. June 1984.
J. P. Black and D. J. Taylor, "Local Correctability in Robust Storage Structurcs," to appear:
IEEE TrculJcrctionr on s0ftwCp.e Engineering.
D. J. Taylor and J. P. Black, "A Locally Correctable B-Tree Implementation.'. The Computer
J d , vol. 29, no. 3, pp. 269-276,1986.
I. J. Davis and D. J. Taylor, "Local Correction of Mod(k) Lists." (3-85-55, Dept. of
Computer Science, University of Waterloo, December 1985.
I. J. Davis, "Local Correction of Helix(k) Lists." CS-86-30. Dept. of Computer Science.
University of Waterloo. August 1986.
I. J. Davis, "A Locally Correctable AVL Tree." to appear: 17th Alvucal Internatiod
Symposium on F'Qllt-Tolerant Computing. July 1987.
W. K. Fuchs. "A Specification-Based Approach to Concurrent Structure Verification in
Multiprocessor Systems." I'Interr24twnui Gmferena on Cornpdw Design. pp. 375-378,
October 1986.
D. J. Taylor, D. E. Morgan, and J. P. Black. "Redundancy in Data Structures: Some
Theoretical Results." IEEE Transactions on Software Engineering. vol. SE-6. no. 6, pp. 595-
602. November 1980.
R. Bayer and E. McCreight. "Organization and Maintenance of Large Ordered Indexes." ACCU
Infarmrrtica. vol. 1, no. 3. pp. 173-189, 1972.
P. Elias. "Error-Free Coding," IRE Tranrrzctions on Infirmation Theory. vol. IT-4, pp. 29-37,
1954.
L. Koved and G. Waldbaum. "Improving Availability of Software Subsystems through On-
Line Error Detection." IBM Systems J&. vol. 25. no. 1. pp. 105-115,1986.

[SI I
I 191

[lo]

Ell]

[12]

[13]

[141

I
1
I
I
1

E151

[I61

1171

[lSl

1
I

37 1

I
I
I

1191 G. Waldbaum, “Audit programs - A Proposal for Improving System Availability,” Research
Report RC-2811, IBM Thomas J. Watson Research Center, February 1970. i

I
I
I
i
1
1
8
I
I
I
I
I

REPORT OOCUl
la. REPORT SLCURITY CWSlFICATlON

1

Unclassified
SECURITY CWSIFICATlON AUTHORITY

20. DISTRIBUTION / AVAllABlLlTY OF ABSTRACT

22.. NAME OF RESPONSIBLE INDIVIDUAL
~UNCLASSIFlEDNNLlMlTEO 0 SAME AS RPT. 0 O X USER)

2b. DECI.A$SIFKATK)N I OOWNGRADlNG SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER($)

UILU-ENG-87-2264 CSG-73
61. NAME OF PERFORMING ORGANIZATION 6b. OFFKE SYMBOL
. Coordinated Science Lab (n a*&)

University of Illinois I N/A
6c AOORESS (City, stat& md ZIpcO&)

1101 W. Springfield Avenue
Urbana, IL 61801

ORGANIZATION Of applicable)
8r NAME OF FUNDING /SPONSORING

NASA ONR

8b. OFFICE SYMBOL

8c ADDRESS (afy, StatC. and ZIpcO&)
NASA Langley Research Ctr.
Ms. 130

see back
additional

Hampton, VA 23665 address
1 I - TITLE [lnckt& Security Uas$ifiotion)
Local Concurrent Error Detection And Correctior

I

N

1

IENTATlON PAGE -

1 b. RESTRICTIVE MARKINGS

3 . DISTRIBUTION I AVULAI)IUTY OF REPORT
None

Approved for public release;
dlstributfon unlimited

S. MONITORING ORGANUATION REPORT NUMBER($)

7r. NAME OF MONITORING ORGANIZATION
NASA ONR

7b. AOORESS (Cky, S t m , rrrd UPCodd
NASA Langley Research Center see back
MS 130
Hampton, VA 23665

additional
address

9. PROCUREMENT INSTRUMENT IOENTlFICAT#)N NUMBER

NASA NAG 1-602 N00014-86-K-0519

10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT WORK UNIT
ELEMENT NO. INO. I ACCESSION NO.

~~~ ~~~~ ~~ 

In Data Structures Using Virtual Backpointers 

12- PERSONAL AUTHOR(S) 
Li, C.C. , Chen, P.P. , Fuchs, W.K. 

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT Wear8 Month, my) Technical FROM TO 1987 October 
16. SUPPLEMENTARY NOTATION 

17. COSATI COOPS 18. SUBJECT TERMS (Corrclnw on mverse if aemsay a d  idrntii) 6y blodr numkr) 
FIELD I GROUP 1 SUB-GROUP concurrent error detection, data structures, concurrent ' 

I I structure checkinn 
I 1 

- 
I I 
I I I 

'9. AESTRACT (Contkwn on mwm if nuesuy and id8m.e by block number) 
A new technique, based on virtual backpointers, for local concurrent error detection and 

the Virtual Double-Linked List, and the B-Tree with Virtual Backpointers, are described. 
For these structures, double errors can be detected in O(1) time and errors detected during 
forward moves can be corrected in O ( 1 )  time. 
to data structure error detection and correction is analyzed, and an implementation is 
described, to determine the effect on the mean time to failure of a multi-user 
shared-database system. 
system operating on a shared databased of yirtual Double-Linked Lists. 

- correction in linked data structures is presented in this paper. Two new data structures, 

The application of a concurrent auditor proces: 

The implementation utilizes a Sequent shared-memory mulitprocessor 

1 

21. ABSTRACT SECURITY CWSIFICATtON 

22b. TELEPHONE Onclud. Ana Code) 22c OFFICE SYMBOL 
Unclassified 

1 

SECURITY CLASS IFKATION OF THIS PAGE 

UNCLASSIFIED 

(IOD FORM 1473, &4 MAR 83 APR edition may be uud Until eXh8wtod. 
All &or ditionr am obsoleto. 


