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ABSTRACT 

This volume is the documentation of the theoretical development of the 
forced steady state analysis of the structural dynamic response of a turbine 
engine having nonlinear connecting elements. Based on modal synthesis, and the 
principle of harmonic balance, the governing relations are the compatibility of 
displacements at the nonl inear connecting elements. 
displacement compatibility equations at each nonlinear connection, which are 
solved by iteration for the principal harmonic of the excitation frequency. 

The resulting computer program, TETRA 2, combines the original TETRA 
transient analysis (with flexible bladed disk) with the steady state 
capability. A more versatile nonlinear rub or bearing element which contains a 
hardening (or softening) spring, with or without deadband, is also 
incorporated. 

There are four 
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1.0 SUMMARY 

The NASA-Lewis Blade Loss program which was originally written for the 
calculation of transient response of turbine engine structures, has been 
extended to predict steady state vibratory response. The original name of 
TETRA (Turbine Engine Transient Response Analysis) has been kept, but slightly 
modified to TETRA 2. 
forced steady state responses. The 'transient' capability is based on the 
latest version of TETRA and includes the subsequent additions of: 

This new program can be used to calculate transient and 

1) Flexible Bladed Disk module 
2) Squeeze Film Bearing Module 

The 'steady state' capability includes the original modules with the 
exception of the squeeze film module. 
been generalized to allow either dead-band or no dead-band, and the rub spring 
characteristics is a hardening spring and/or a l inear s p r i n g .  

differences: 

However, the original rub element has 

Inputs for transient and steady state are the same except for the obvious 

Transient requires 'time-sweep' inputs 
Steady state requires ' frequency-sweep' inputs. 

The basic theoretical approach for the steady state capability requires the 
formation of a global matrix equation in terms of the generalized coordinates 
and nonlinear physical forces. Solution is by harmonic balance and iteration 
of physical displacements at the nonlinear connecting elements. 
yields only the first harmonic of the forcing frequency. 

This solution 
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2.0 INTRODUCTION 

In the NASA-Lewis sponsored Turbine Engine Transient Analysis program 
(TETRA), a computational tool was developed to predict the transient dynamic 
response of engineering structures to suddenly applied loads, such as from 
the loss of a blade (l)*. The capability of this program was further enhance 
by the addition of two modules: 1) Flexible Bladed Disk ( Z ) ,  and 2)  Squeeze 
Film Bearing ( 3 ) .  
under NASA-Lewis sponsorship. 

The latter was added by Case Western Reserve University 

The fundamental technical approach is the method of model synthesis ( 4 ) ,  

The possible 
wherein the dynamic response of a complex structure is constructed in terms 
of the natural modes of its principal structural components. 
breakdown of a turbine engine into its main components is shown in Figure 
1-1. The equations of motion in the modal generalized coordinates are solved 
numerically by central difference integration in the time domain. This 
solution has the flexibility to accommodate nonlinearities, such as tip 
rubs, squeeze films or other nonlinear bearings or connecting elements. Also 
the gyroscopic coupling between motions in the vertical and horizontal planes 
of rotating structures is considered for rigid as well as flexible bladed 
disks. Applications of the TETRA are found in References 1, 2 and 5 .  

The transient response of a structure is a history of the motion and 
loads which initially vary non-uniformly in time until a steady state condi- 
tion is reached. Where damping is low and modal frequencies high, the time 
steps required to reach steady state can be considerable, for this reason a 
more direct method to calculated steady state response was undertaken. 

Steady state capability allows the calculations of forced response 
amplitudes as function of excitation frequency so that engine response from a 
sinusoidal input, such as unbalance, can be obtained over the engine 
operating speed range. 
established. 

For purely linear systems, the methodology is well 

However, in the presence of nonlinearities, obtaining the steady state 
solution is neither simple nor straight-forward. This is especially true 
with large systems of equations with strong nonlinearities. To date, there 
is no mathematical method to solve the general nonlinear differential 
equations, (6), (7) and ( 8 ) .  

J- 

Numbers in parentheses indicate references. 
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To produce a more pragmatic s o l u t i o n  t o  t h i s  complex and impor tan t  problem, 
t h e  s o l u t i o n  i s  l i m i t e d  t o  t h e  f i r s t  harmonic o f  t h e  f o r c i n g  f requency. 
S o l u t i o n  by i t e r a t i o n  o f  t h e  c o m p a t i b i l i t y  c o n d i t i o n s  a t  o n l y  t h e  non l i nea r  
connect ing elements r e s u l t s  i n  a dramat ic  r e d u c t i o n  i n  t h e  number o f  equat ions 
t o  be solved. The method o f  harmonic .balance, due t o  K r y l o f f  and B o g o l i u b o f f  
(9), was used t o  t rans fo rm t h e  non l i nea r  d i f f e r e n t i a l  equat ions t o  a s y s t e m  o f  
non l i nea r  connect ions.  

This  methodology was implemented i n  a computer code b u i l t  on t h e  o r i g i n a l  
TETRA program. 
t r a n s i e n t  a n a l y s i s  as we l l  as t h e  steady s t a t e  s o l u t i o n .  
user  f r i e n d l y ,  t h e  i n p u t s  o f  t h e  o r i g i n a l  TETRA has been kept  unchanged as much 
as poss ib le .  The o n l y  major  a d d i t i o n  l i e s  i n  t h e  d e s c r i p t i o n  o f  t h e  
't ime-sweep' o f  t h e  t r a n s i e n t  a n a l y s i s  and t h e  'frequency-sweep' o f  t h e  steady 
s t a t e .  The bas i c  d e s c r i p t i o n  o f  t h e  s t r u c t u r a l  subsystems and t h e i r  modal 
data, t h e  concatenat ion  o r  assemblage of t h e  subsystems and t h e  connect ing 
elements a r e  e s s e n t i a l l y  t h e  same. 

The new program, TETRA2, has t h e  c a p a b i l i t y  o f  t h e  o r i g i n a l  
To make t h e  TETRA 2 

Th is  f i n a l  r e p o r t  i s  t h e  documentation o f  t h e  development o f  TETRA 2, i n  
p a r t i c u l a r ,  t h e  steady s t a t e  c a p a b i l i t y .  
1) theory ,  and 2)  u s e r ' s  manual. The l a t t e r  i nc ludes  t h e  e n t i r e  i n p u t  
sheets f o r  t h e  TETRA 2 code: t r a n s i e n t  and steady s t a t e ,  as w e l l  as sample 
cases, and comparisons o f  r e s u l t s  made f o r  t h e  o r i g i n a l  two subsystem 
demonstrat ion cases. 

Th is  r e p o r t  c o n s i s t s  o f  two volumes: 

Wi th  t h e  NASA sponsored TETRA 2 computer code, i n d u s t r y  i s  presented a 
comprehensive t u r b i n e  engine r o t o r  dynamics computer code t h a t  can be used 
f o r  t h e  c a l c u l a t i o n  o f  60th t r a n s i e n t  and steady s t a t e  responses. The non l i nea r  
c a p a b i l i t y  o f  t h e  program g r e a t l y  enhances and broadens i t s  a p p l i c a t i o n  t o  more 
r e a l  i s t i c  a n a l y s i s  o f  r e a l  engines. 

The au thors  w ish  t o  acknowledge t h e  t e c h n i c a l  h e l p  prov ided by t h e i r  
co l leagues.  D r .  J. K. Casey c o n t r i b u t e d  h i s  mathematical  e x p e r t i s e  i n  the  
computat ional  s t r a t e g y  employed i n  t h e  program, w h i l e  M. J .  S t a l l o n e  prov ided 
o v e r a l l  t e c h n i c a l  guidance, e s p e c i a l l y  i n s i s t i n g  i n  making TETRA 2 i n p u t s  and 
ou tpu ts  as s i m i l a r  as poss ib le  t o  t h e  o r i g i n a l  t r a n s i e n t  vers ion .  
recogn ize  A. Storace f o r  c o n t r i b u t i o n  i n  t h e  o v e r a l l  program and R. H o l t  f o r  
w r i t i n g  t h e  model program t h a t  checked o u t  TETRA 2. 
f o r  a very  met icu lous  and neat  t y p i n g  o f  t h e  work ing equat ions;  many thanks. 

A l s o ,  we 

F i n a l l y ,  t o  Jeanet te  S t u r g i l l  

To o u r  co l leagues a t  NASA-Lewis, thanks t o  Gerry Brown who managed t h e  
o r i g i n a l  TETRA and Bob K i e l b  who succeeded him i n  TETRA 2 and Chuck Lawrence, 
NASA-Lewis' mon i to r  f o r  t h e  program. We would l i k e  t o  recognize t h e  thorough 
c r i t i c a l  eva lua t i ons  t h a t  t h e  f i r s t  p r o j e c t  mon i to r  o f  t h e  NASA Blade Loss 
Program, Ming Tang, has made t o  TETRA and f o r  t h e  subsequent d e f i n i t i o n  o f  t h e  
e a r l y  stages o f  TETRA 2. 
i n  rev iew ing  t h e  t e c h n i c a l  documentations o f  t h e  Blade Loss Program as w e l l  as 
t h e  v e r y  cogent c o n s t r u c t i v e  c r i t i c i s m s  he provided, have proven inva luab le .  

He has s ince  passed away l a s t  yea r .  H i s  thoroughness 
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3 .O PART I : ANALYTICAL DEVELOPMENT 

3.1 Technical Amroach to Steadv State Response Anal vsi s 

The steady state response of systems with nonlinearities is a relatively 
undeveloped field unlike purely 1 inear systems. Nonlinear differential 
equations have many possible'solutions, each being highly sensitive to initial 
conditions, external forces and system parameters. For instance, in the case 
of Duffing's or van der Pol's equation, grossly different solutions are 
produced by changes in initial conditions or force amplitudes. One initial 
condition may result in periodic solutions; another may result in aperiodic 
solutions; still others may yield jumps or bi-stable solutions, limit cycles, 
and subharmonic and superharmonic oscillations. 

When one considers a complex turbine engine with many degrees of freedom 
and several nonlinearities, the problem of finding general steady state 
solutions is considerable. In most cases, only approximate solutions with 
narrow constraints are practicable. In the present work, a pragmatic 
philosophy is employed which will limit solutions to the first harmonic of the 
excitation frequency and simple harmonic oscillations with constant amplitude. 
This is justified from most engine experience, where engine response i s  
essentially in the excitation frequency. 

inter-subsystem connecting elements, such that the deflection of a structural 
subsystem can be represented by a superposition of its normal modes. 
nonlinear connecting forces are written as function of the relative physical 
di spl acements between the joined components and are treated as quasi -external 
forces. By multiplying these connecting physical forces by the appropriate 
modal displacements, the global equations in the generalized modal coordinates 
of the complete assembled structure are obtained. 

The left-hand side of the global matrix differential equation contain the 
linear part which are proportional to the generalized coordinates. 
right-hand side are the generalized forces which are functions of time in the 
case of external forces, and the nonlinear connecting forces which are 
explicit functions of the relative physical displacements. 

The use of modal synthesis on a large system also limits nonlinearities to 

The 

On the 

Employing the principles of I harmonic averaging' or I harmonic balance' due 
to Kryloff and Bogoliuboff (9,lO) and slowly varying functions ( l o ) ,  the 
differential equations are transformed to nonlinear algebraic equations. After 
solving explicitly (by inversion) for the generalized coordinates, the relative 
physical displacements at the nonlinear connections are obtained by modal 
superposition. These last equations relate the vector of relative physical 
displacements at the nonlinear connections on the left-hand side to the 
external and nonl i near connecting physical forces (in terms of re1 ati ve 
physical displacements) on the right-hand side. Thus, the equations to be 
solved are reduced from twice the number of generalized coordinates to just 
four times the number of nonlinear connecting elements, which is a considerable 
reduction. 
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Numerical solution by iteration of these compatibility relations is made 
with existing computer subroutines such as those in the I M S L  library. 

The following sub-sections delineate the technical approach described here, 
in more technical details. 

3.1.1 Generalized Global Eauations o f  Structural Systems With Nonlinear 
Connecti na Elements 

Following the method of modal synthesis, the global equations o f  
motion of a system of inter-connected elastic bodies were derived in 
Reference 1,2,  and 4. Those obtained in (1) and (2) were solved in 
the transient TETRA and are the same ones solved in TETRA 2. To 
illustrate the basic concept of the method employed in the steady 
state analysis, the denotation of each structural component and 
plane(s) (horizontal and vertical planes) will be omitted for 
simplicity. A very detailed development of the working equations 
actually programmed, is presented in a later section. 

Conceptually, the equations of motion of the fully coupled and 
assembled system are written in tensor (or matrix) notation. 
dependent variables, qi(t) are the generalized modal coordinates of 
the component structures. 
modes are obtained with free-free boundary conditions, these satisfy 
orthogonality only within the individual structures, such that 
coup1 ing forces between substructures and their normal modes exist. 
In short, the matrices of the coefficients of the generalized modal 
coordinates are not diagonal, but in general, full matrices. 

relative physical displacements between the joined structures at the 
connected points. Though these displacements belong to a subset o f  
the physical displacements of the substructures, these 'connection' 
displacements are not expressed in terms of normal modes. Thus, the 
nonl inear connecting forces are a1 ways in terms of the re1 ative 
physical displacements. 

The 

Since each component structure's normal 

The generalized nonlinear connecting forces are functions o f  the 

From (1) and ( 2 ) ,  the global equations of motion in the 
generalized coordinates are given in tensor form as: 
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Where: 

Mi j= modal mass matrix (non-diagonal with the flexible bladed d i s k  
module) 

W i j  = modal natural frequencies, diagonal matrix 

$, = modal critical damping ratio 

gyro coupling - skew symmetric matrix W 
n = axial location of linear connecting element 

Kijn = generalized 1 inear connecting spring matrix, summed over 

Cijn=general ized 1 inear damping matrix associated with Kij n 

Fi(t)- generalized external force - sinusoidal 
~ , ( m m )  

the 'n' linear connections 

= modal nonlinear connecting forces at m locations. 
1 Summed over m locations. 

urn - Re1 at i ve physical di spl acement at the nonl i near connect i ng 
element with axial location m. 

The generalized nonlinear connecting forces are given as a 
hardening spring with viscous damping, and written in terms of the 
physical displacements. 
point 'm' is given as a physical force: 

For example, one nonlinear spring force at 

Fm = -Km[l + pm(hxm)21hx" - Cmhxm 

Where: Km= the linear part of the spring 

p = the nonlinear factor 
rn 

Xm= the relative physical displacement at location 'm' 

Cm= viscous damping coefficient of the connecting element. 

The generalized nonlinear connecting force on a subsystem at 
point 'm' is simply the product of the physical forcf,,Fm times the 
subsystem's modal displacement at point 'm' in the i mode; thus: 

(#pm = - r#); 
Where: 

t 

@: = ith modedisplacement at point 'm' 
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When there is more than one nonlinear connection, the physical 
connecting forces are multiplied by the modal displacements at thfi,r 
locations and summed over those locations - for each mode. The i 
general ized nonl inear connecting force is therefore: 

- F ,  - p m ( 1  + p m [ A x m 1 2 ) A x m  - 2 c p y c m A i m  = 0 
m m 

3.1.2 Transformation by Harmonic Balance and the ComDatibilitv Relations 

The gl obal general i zed di fferent i a1 equat i ons are nonl i near i n the 
physical displacements at the nonlinear connecting elements. 
forced solutions synchronous with the excitation frequency, an 
assumption of slowly varying function is made. This assumes that the 
principal motion is harmonic with constant amplitude, so that the 
ensuing generalized - and physical - displacements, may be written in 
the form: 

To obtain 

qi(t)  = aimsat + blsinwt 

xm(t) = Ammsd + Bmsind  

A ,  = i, = im = B m =  a .  = 6 ,  = A m  = Bm = 0 
.. .. .. .. 

1 1  
with 

(9,10,11) by means of which the "N" differential equations are 
transformed to "2N" nonlinear algebraic equations.* 

of the displacements into the N global generalized differential 
equations; multiply each equation by 
to 2 d w  ; repeat the last step but multiply with 'Sinat dt' and 
integrate as before. 

The next step is to employ the principle of harmonic balance 

The transformation is made as follows: Substitute the harmonic form 

'coswt dt' and integrate from 0 

Recalling that each global generalized equation is identified as: 
vi = 0, the transformation becomes: 

Where: vf = cosine transformation 

WS = sine transformation 

*2N, when motions are in only one plane; 4N when motions are in 2 planes. 
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The following integral transformations, which are inferred from the 
terms of the global generalized differential equations, are required: 

Where: 

qi sinot  

q .  = aicoswt + b.sinot 

X m  = A m a s a t  + Bmsinot 
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4 

With these transformations, the differential equations become 
algebraic equations. Thus, 

AA.. AB..  lic 
ZC ( 2 ( A A ~ ,  ABm.../ 1 1 . ij: 1.2 ... N [ B z  1J BBi; ]  (:) = (1) 1 + [ <{x ( A A ~ ,  AB"' ... 

Where: AAij, ABi -, BA. a ,  BBi - are the coefficients of 
the gdneraj jzed cdordinates 

Ff = cosine transformation of the external general force 

F: = Sine transformation of the external general force 

Hc - Cosine transformation of the nonlinear connecting force, a 
nonlinear connecting 

This may be a polynomial in Am, Bm of the form: 

- 
function of the Am, Bm components at 
elements. 
(A'), (B1)3 ; (A1)(*1)2 ; etc. 

Where m: 1,2, ...M 

-s - Hi - Same as ?, except it is for the Sine transformation. 

simply with a change in the range of the index i: 
The previous transformed matrix equation may be written more 

Where i,j= 1 , 2 ,  ... 2N 
a .  = a., i=1,2 ,... N 

a ,  = b . ,  i = N + l  , N + 2  ,... 2N 
J J  

J J  

Eli = [ AAi, ...I 
Inverting the Eij matrix, one obtains an explicit expression for the 

general i zed coordi nates : 

a i = a l , a  2 . . . a n ;  b , , b ,  ... b 

The first term on the right-hand side is the vector of generalized 
displacements due to the external forces alone, while the second are due 
to the unknown physical displacements at nonlinear elements. 
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Thus there are 2N equations with 2N t 2M unknowns; the latter being 
the cosine (Am) and Sine (Bm) components of the relative physical 
displacements at M nonlinear connections. These are the ultimate 
unknowns. 
relations at the nonlinear connections are formed. 

To solve for the Am and Bm's, displacement compatibility 

Recall that: X m  = @mqi 

From the assumed harmonic form of the displacements, it follows that 
at point m: 

N N 

i = l  i = l  

n 2N 

i = l  i=N-iI 

where the repeated index i indicates summation over the modes. 

elements are therefore: 
The components of the physical displacements at any of the nonlinear 

NOTE: 
N 2N 

i =  I i=N+1 

Forming similar physical displacements at both ends of a nonlinear 
connecting element, one obtains their difference which is the relative 
physical displacement. Thus, for the cosine component at point in: 

1 2  



A similar expression is obtained for the Sine component: 

In like manner, relative physical displacements at all the nonlinear 
connecting elements are obtained, resulting in compatibility relations 
or iterating equations whose number. is twice the number of nonlinear 
elements. 
equations from 2N (twice the number of generalized modal coordinates) to 
2M (twice the number of nonlinear connecting elements). 

By this process we have reduced the number of iterating 

Substituting the relative physical displacements (obtained by 
iteration) into the explicit expressions for the generalized 
coordinates, one then obtains the complete solution. 
displacement at any point on any physical subsystem is calculated by 
simple superposition. 

elements were planar. However, nonlinear rotor bearings deflect in a 
radial direction. This has components in both vertical and horizontal 
planes. With this regard, the displacement compatibility relations must 
be found in 2 planes, which increases the number of iterating equations 
to 4M (four times the number of nonlinear elements) - still a 
considerable reduction from two times the number of generalized 
coordinates. Note that the general ized modal coordinates include 
vertical as well as horizontal degrees of freedom. 

It will be noted that the global matrix equation of motion as well as 
the compatibility relations at nonlinear connections are derived in the 
standard way: by Lagrangian or Newtonian formulation and modal 
superposition. No recourse to Lagrangian multipliers was made to obtain 
the compatibility equations via constraint relations, as was done in 
(11). This theoretical rationalization helps establish the fundamental 
basis for the methodology. However, the results obtained in the present 
work by the standard formulation are identical to what would be derived 
with the concept o f  Lagrangian multipliers (11). 

3.2 A ~ ~ l i c a t i o n  to Turbine Enqine Steady State ResDonse 

The physical 

The previous discussion tacitly assumed that the nonlinear connecting 

The preceding theoretical approach was applied to the turbine engine 
problem employing the earlier formulation of TETRA. 
the entire engine's dynamic response from the modal characteristics of its 
components'. normal modes is made by modal synthesis. 
engine structure is unchanged. 

Thus the reconstruction o f  

The modeling of the 

However, rather than selecting the time history of the engine response (for 
the transient case), one picks the range of frequencies where the solution i s  
required in the steady state analysis. 
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Because the general rub or bearing element (nonlinear spring) produces a 
force that is a cubic in the relative displacement, the radial nature of the 
displacements means that the connecting forces couple motions in the horizontal 
and vertical planes. 
displacements at the nonlinear connections are four in number: 

Thus the components of the forces and physical 

(1) Vertical 
(2) Horizontal 
(3) Cosine Component 
(4) Sine Component 

This means that the number of iterating or compatibility relations is four 
times the number of nonlinear connecting elements rather than the two times in 
a system of a single plane. 

3.3 Solution of the ComDatibilitv Relations 

The reduced algebraic equations governing displacement compati bil i ty at 
nonlinear connecting elements is equal in number to 4-times the number of 
nonlinear connections. Principal unknowns are the relative physical 
displacements at these junctures. 
equations are solved by iteration. 
of the general rub element, the convergence of the iteration routine may not 
always be certain. 
nonlinear) element has both a cubic term and a deadband. 
i s  a nonlinear property even when the associated spring rates are constant. 
However, the convergence problem is not really serious when deflections are 
small (in the order of bearing clearances). Only when deflections are very 
large will these problems arise. 

This system of nonlinear simultaneous 
Because of the doubly nonlinear character 

The deadband itself 
The double nonlinearity arises from this, that the rub (or 

In the computational algorithm developed for TETRA 2, the iteration 
subroutine i s  written as a module which may be replaced or added to - at the 
option of the user. The program has 2 IMSL iteration modules. These are based 
on Newton's Method and the Secant Method. 

The relative physical displacements, determined by iteration, allow 
calculating all the forces in the system of equations in the generalized 
coordinates, and hence, all the modal amplitudes. The latter is performed 
simply by inversion technique. Subsequently, the physical displacements at all 
points in the complete structure are fcund by superposition. These, as well as 
the bearing loads, are found as in the original TETRA. 

The following sections are the amplification and application of the basic 
theory to the detailed analysis of the TETRA engine model. These contain the 
explicit and very detailed working relations describing the global matrix 
differential equation formation, the transformation to algebraic equations by 
harmonic balance, formulation of the iterating equations and the special 
treatment o f  the deadband. The latter describes the numerical procedure for 
performing the harmonic balance when rubbing is intermittent rather than 
continuous. 

In the next volume, which is also the user's manual, sample cases are 
Because TETRA 2 replaces described along with input and output descriptions. 

the original TETRA program, with the dual capability of transient and steady 
state analyses, the full and complete set of input sheets (with descriptions 
and instructions) and output options are given. 
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4.0 Part 11: Detailed Amlication of the Theorv to Turbine Enclines 

The turbine engine modeling developed in the original TETRA has been 
presented, e.g., the ordered concatenation of the structural subsystems in 
terms of their normal modes and as governed by the method of modal synthesis. 
However, for the steady state cases the equations to be solved are the 
displacement compatibility relations at the nonlinear connections, which number 
four at each of these joints. 

As discussed in Part I, the steady State response analysis requires the 
foll owing: 

1) Formation o f  a global matrix differential equation in the 
generalized coordinates 

2) 

3)  

Transformation of these equations by the principle of harmonic 
balance with simultaneous nonlinear algebraic equations 

Formation o f  displacement compatibility relations at nonlinear 
connecting el ements 

4 )  Iterative solution of the compatibility relations - yielding the 
relative physical displacements at the nonlinear connections 

5) Substitution of these physical displacements in the transformed 
g1 obal equations of the general i zed coordinates, and cal cul at i ng 
the latter by inversion 

6) Calculating the physical response of the entire engine by 
superposition 

These calculations were made in the frequency domain so that the results 
describe the forced steady state response of a turbine engine at the principal 
harmonic of the excitation frequency. 

The implementation of the methodology in the original TETRA program has 
resulted in TETRA 2, which now has the dual capability of the transient version 
and steady state. In addition, the scope o f  the transient version has been 
increased to contain the following enhancements initially developed for the 
steady state analysis: improved rub element (with the cubic nonlinear factor), 
structural damping' capability (applies for physical connecting element types 1, 
2, 4, and 5), and new printout options. 

Because the transient analysis has been virtually untouched, this portion of 
the report i s  concerned only with theoretical details of the steady state 
analysis. 
state options merged together via input sheets and output. 

Only in the user's manual, (Volume 2) are the transient and steady 
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The following sections document the detailed working equations and their 
implementation into TETRA 2. One should use the fundamental global matrix 
differential equations presented in Part I as a general reference in reading 
what follows, because this provides a bird’s eye view of the equations to be 
solved and the inter-relationships of the various elements. For instance, it 
should be noted that forces are initially derived in physical space and 
subsequently developed in generalized coordinate space. This is followed for 
flexible bladed disk, gyro linear connecting elements, and nonlinear 
connections. 
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4 .1  A ~ ~ l i e d  Forces For a Steadv S t a t e  Analvsis 

4.1.1 Phvsical Unbalance Forces 

The unbalance forces are i l l u s t r a t ed  i n  the figure on the type K-1 i n p u t  
Only the steady s t a t e  unbalance forces are discussed here, since the 

For a steady 
sheet. 
t ransient  analysis unbalance loads were covered i n  reference 1. 
s t a t e  r u n ,  the unbalance forces are: 

where: 

F u j z  = Unbalance load a t  point j in the z (ve r t i ca l )  direct ion.  

= Unbalance load a t  point j in the y (horizontal)  direct ion.  Fujy 
= rotor speed 

t = time 
U = unbalance magnitude for  the unbalance load 
9 = Phase angle fo r  the unbalance load 

Note: For each unbalance load the global point number j ,  unbalance 
magnitude U , and phase angle  4) i s  input (see type K-2 namelist i n p u t  
sheet) .  

Using trigonometric i den t i t i e s ,  we can rewrite the unbalance forces i n  terms o f  

More t h a n  one unbalance load may be inputted for  a given p o i n t .  

cos and s in  

Lett i ng 

we see t h a t  

components as fo11 Ows: 
F 
F 

F = p  c o s w t f  Fs sinot  

F = F f  cosot+P sinwt 

the magnitudes of the cos and sin components are: 

= uw2 sin + cos ot + [lo2 cos + sin a t  

= uo2 cos 9 cos at - uo2 sin a sin at 
UJZ 

UJY 

UJZ UJZ UJZ 

UJY UJY UJY 

2 Fs. UJ z = Uo cos@ 

F " .  UJY =uo2cos+ 

<,y = - Uo'sin 

17 



4.1 .2  Phvsical Pcos + @ )  Forces 

For a steady state analysis run, TETRA 2 also makes provision for inputting 
appl ied loads of the form: 

F , = Pcos (o t  + @I 
PJ k 

where: 

Fp;k = Applied forces at global point j in global direction k. 

P = Force magnitude for the load 
0 = Steady state forcing frequency 
t = Time 
@ = Phase angle for the load 

Note: For each Pcos ( o t + @ )  load, the global point number j, force 
magnitude P, phase angle + 
type L-2  input sheet). 

, and global direction number k is inputted (see 

Using a trigonometric identity we have: 
= Pcos9cosot  - Ps in@s inwt  

FP;k 

Letting 

= F c  c o s o t f  F'. s inot  
' i k  PJk PJ k 

we see that the magnitudes of the cos and sin components of the force are: 
F" = P c o s @  

F"pjk = - P s i n @  
PJ k 

4 .1 .3  Total Phvsical Amlied Forces 

The total applied force for a given point and direction can be written in terms 
o f  the cos and sin components as follows: 

Fqjk = c,k cos ot + cjk sin ot 

where: 

F41k = Total applied force for global point j and global direction k 

F " .  aJ k %k are obtained by summing the unbalance loads and the P c o s h t f  
loads for global point j and global direction k as follows: 

F S .  = 7 F t k  + F;,k a j k  - 



where 

<,k = Magnitude of the cos component of an input unbalance load for global 

c j k  = Magnitude of the sin component of an input unbalance load for global 

5 , k  = Magnitude of the cos component of an input load for 

p .  = Magnitude of the sin component of an input p m s ( w t + @ )  load for 

point j and global direction k (see section 4 . 1 . 1 )  

point j and global direction k (see section 4 . 1 . 1 )  

global point j and global direction k (see section 4 . 1 . 2 )  
P m s ( o t + @ )  

PI k 
4 global point j and global direction k (see section 4 i 1 . 2 )  

4 . 1 . 4  Generalized Amlied Forces 

The generalized force for generalized coordinate i may be written in terms o f  
the cos and sin components as follows: 

F i  = FFcoswt + F:sinot 

where: 

Fi = Generalized force for generalized coordinate (global mode) i 

n 6  

where 

F"4ik I 

':k P 

4 i j k  I 

Magnitude of the cos component of the total applied force for global 
point j and global direction k (see section 4 . 1 . 3 )  
Magnitude of the sin component of the total applied force f o r  global 
point j and global direction k (see section 4.1.3) 
Mode shape for global mode i , global point j, and global direction k 
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4.2 Linear Phvsical Connectina Elements 

There are six types of physical connecting elements. All of the six types can 
be used for either transient analysis or steady state analysis runs with the 
exception of the type 6 element (squeeze film damper element), which can be 
used for transient analysis runs only. 
include type 1 (general spring - damper element), type 2, (link - damper 
element), type 4 (engine support - links element), and type 5 (uncoupled point 
spring - damper element). 
linear (types 1,2,4, and 5) physical connecting elements for a steady state 
analysis run. The equations used for the nonlinear type 3 element (rub 
element) for a steady state analysis run will be discussed in section 5. 

The linear physical connecting elements 

This section discusses the equations used for the 

4.2.1 Transformation Matrix 

For steady state analysis runs, a transformation matrix [ Cp 3 must be 
calculated for each of the linear (type 1,2,4 or 5) physical connecting 
elements to aid in calculating the contributions of the element to the global 
matrices . 
A sample transformation matrix is shown in figure 4-1. 
transformation matrix for element 3 of the demonstrator model. For this 
element, joint I (global point number 5) lies on the rotor (consisting of modal 
subsystems 1 and 2) and joint J (global point number 2) lies on the case 
(consisting of modal subsystems 7 and 8). Modal subsystem 1 (the vertical 
plane subsystem) has 5 modes (global modes 1 through 5), modal subsystem 2 has 
5 modes (global modes 6 through lo), modal subsystem 7 has 3 modes (global 
modes 11 through 13), and modal subsystem 8 has 3 modes (global modes 14 
through 16). The transformation matrix simply consists of the mode shapes 
filled in at the appropriate positions, and the remainder (the bulk of the 
matrix ) filled with zeroes. 

This figure shows the 
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kl F i g u r e  4-1. Sample Phys ica l  Connecting Element Transformat ion M a t r i x  

i G L O B A L  M O D E  N U M B E R  I 
5 1 6  1 7  1 8  9 12 13 14 15 16 I l 1  1 ! 

I 1 
0 0 1  

I 
1 
I 
I 

0 0 0 

0 0  0 0  0 '11.2 '2,f.2 '3.f.2 '4.1.2 '5,1,2 

'6JJ '7,f.3 '8,f.s '9,f,3 'l&f,31 0 0 0 

I 
1 '11.5.2 '12.J.2 '13.J.2 

0 
I 

0 I O  O 

0 1 
i o  O 

' 0  0 0 
I 

CP . = Modeshapeforglobalmodenumberi,point(ioint) j ,  andelementdirectwn k 
4 ,J .k  
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4.2.2 Stiffness Contributions 

The contributions of a linear (type 1, 2, 4 or 5)  physical connecting element 
to the global stiffness matrix is: 

where 

[SCI = Stiffness contributions matrix for the element 
= Transpose of the element transformation matrix 

[a = Element stiffness matrix 
[+I = Element transformation matrix (see section 4.2.1) 

[sc] is usually a smaller matrix than the global stiffness matrix, and the 
terms of the stiffness contributions matrix [sc] must be added into the global 
stiffness matrix at the appropriate positions. 

For a more detailed description of the global stiffness matrix, see sect ion 
4 . 4 . 3  

4.2.3 Damoinq Contributions 

4.2.3.1 Non-Structural Damoinq 

For non-structural damping, the element damping matrix [c] is constant and i s  
not a function of rotor speed or forcing frequency. 
[c] for non-structural damping may be defined by input damping matrix 
definition, or computed from input damping coefficients, or computed using the 
element stiffness matrix, input element Q factor, and input element selected 
frequency. In any event, the non-structural damping contributions of a linear 
(type 1, 2, 4 or 5)  physical connecting element to the global velocity matrix 
is as follows: 

The element damping matrix 

where: 

[NSDCI = Non-structural damping contribution matrix for the element 
[+IT = Transpose of the element transformation matrix 
[a = Element damping matrix 
[+I = Element transformation matrix (see section 4.2.1) 
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[NSDCI is usually a smaller matrix than the global velocity matrix, so the 
terms of the non-structural damping contributions matrix [NSDC] must be added 
into velocity matrix [C,] at the appropriate positions. For further details, 
see section 4.4.4. 

4.2.3.2 Structural DamDinq 

For structural damping, the contributions of the element to the global velocity 
matrix are calculated using the element stiffness matrix [K], input element Q - 
factor, and either the independent rotor speed (if ISF = 1 on the type A input 
sheet) or the steady state forcing frequency (if ISF = 2 on the type A input 
sheet). The structural damping contributions are first collected into a 
structural damping contributions matrix [C 3 (see section 4.4.4). The 
contributions of each of the linear (type f ,  2, 4, and 5 )  physical connecting 
elements to this structural damping contributions matrix is: 

where: 

[SDC] = Structural damping contributions matrix for the element. 
QF - Input Q - factor for the element - Transpose o f  the element transformation matrix 

'@IT = Element stiffness matrix !z = Element transformation matrix (see section 4.2.1) 

[SDC] is usually a smaller matrix than the structural damping contributions 
matrix [C 1, so the terms of [SDC] must be added into [C 3 at the 
appropriate positions. After the structural damping contributions matrix 
[C ] i s  computed, it must be multiplied by either the reciprocal of the 
inaependent rotor speed (if ISF = 1 on the type A input sheet) or the 
reciprocal of the steady state forcing frequency (if ISF = 2 on the type A 
namelist input sheet). For more details, see section 4.4.4. 

Structural damping i s  a new feature that has been added to TETRA 2 
was not present in the earlier TETRA program. This feature may be used for 
either steady state or transient analysis runs. 
applicable for the linear (type 1, 2, 4, or 5 )  physical connecting elements 
on1 y . 

and which 

Structural damping is 

4.3 GYroscoDic Elements 

4.3.1 Transformation Matrix 

For steady state analysis runs, a transformation matrix [ @ ] must be 
calculated for each gyroscopic element to aid in calculating the contributions 
of the element to the global matrices (just as is done for the linear physical 
connecting elements). 
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A sample gyroscopic element transformation matrix is shown in figure 4-2. 
figure shows the transformation matrix for the gyroscopic element at globa 
point 4 of the demonstrator model. 
(the independent rotor). Rotor 1 consists of modal subsystems 1 and 2. Modal 
subsystem 1 (the vertical plane subsystem) has 5 modes (global modes 1 through 
5), and modal subsystem 2 also has 5 modes (global modes 6 through 10). The 
transformation matrix simply consists of the applicable mode shapes filled in 
at the appropriate positions, and the rest of the matrix filled with zeroes. 

This 

This gyroscopic element lies on rotor 1 

The 
col 

l and 
con 
ma 

4.3.2 Vel oci tv Contributions 

gyroscopic element contributions to the global velocity matrix are 
ected in a gyroscopic contributions matrix for the independent rotor [GI] 
a gyroscopic contributions matrix for the dependent rotor [Gg]. 
ribution of a gyroscopic element to either the gyroscopic contributions 

(if the gyroscopic element lies on the 
independent rotor) or the gyroscopic contributions matrix for the dependent 
rotor [Go] (if the gyroscopic element lies on the dependent rotor) is: 

The 

hrix for the independent rotor [GI] 

where : 

[G$ = Gyroscopic contributions matrix for the gyroscopic element 
[@I = Transpose of the gyroscopic el ement transformati on matrix 
[GI= [ ! I ,  :] = Gyroscopic element matrix at point (joint) I on 

I 

the rotor 

I = Polar mass moment of inertia at point (joint) I on the rotor 
[+I = Gyroscopic element transformation matrix (see section 4.3.1) 

The gyroscopic contributions matrix for the independent rotor must then be 
multiplied by the independent rotor speed, and the gyroscopic contributions 
matrix for the dependent rotor must be multiplied by the dependent rotor 
speed. 

P 

See section 4.4.4 for more details. 
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4.4 Formation o f  the Global Mat r ices  

4.4.1 Matr ix  Eauation 

The equat ion  o f  motion is:  

where: 

q [MI = g loba l  mass ma t r ix  
[K]  = g loba l  stiffness mat r ix  
[C] = global  v e l o c i t y  ma t r ix  
[F]  = g e n e r a l i z e d  a p p l i e d  ( e x t e r n a l )  f o r c e  v e c t o r  
[ H I  = g e n e r a l i z e d  non l inea r  ( rub)  element f o r c e  v e c t o r  

= genera l  i zed  d i  sp l  acement 

The fo l lowing  s e c t i o n s  d e t a i l  how we f i n d  the [MI, [ K ] ,  and [C] g 
matrices. In a d d i t i o n ,  we will a l s o  show how we combine the [MI, 
matrices i n t o  one g loba l  s o l u t i o n  matrix [ G M ] .  

4.4.2 Global Mass Matr ix  rM1 

flexible bladed disks 

The global  mass ma t r ix  c o n s i s t s  o f  the diagonal  modal mass terms and the 
non-diagonal terms due t o  the f l e x i b l e  bladed d i s k s  ( i f  any ) .  These terms a r e  
saved i n  a r r a y s  i n  TETRA. 
but  r a t h e r  the terms of  the g loba l  mass matrix a r e  written d i r e c t l y  i n t o  t h e  
gl  obal so l  u t i  on matrix i n sub rou t ine  GLOB2 . 

The global  mass matrix i t se l f  i s  not  saved i n  TETRA, 
' 

A sample g loba l  mass matrix i s  shown i n  f i g u r e  4-3. 
g loba l  mass matrix for a model c o n s i s t i n g  o f  one rotor on which two f l e x i b l e  
bladed d i s k s  are l o c a t e d .  The r o t o r  i s  composed o f  two modal subsystems (one 
f o r  the vertical p lane  and one for the hor i zon ta l  p l a n e ) ,  and each f l e x i b l e  
bladed d i s k  is  a l s o  i t s e l f  a modal subsystem, making a t o t a l  o f  f o u r  modal 
subsystems. 

Note t h a t  the s t eady  s ta te  a n a l y s i s  g loba l  mass has the same format  a s  t h e  
f l e x i b l e  bladed d i s k  mass ma t r ix  used f o r  a t r a n s i e n t  a n a l y s i s  run (which i s  
shown on page 70 reference 2 ) .  
d i s k  mass ma t r ix  only  inc ludes  the modes for the r o t o r  on which  the f l e x i b l e  
bladed d i s k s  a r e  l o c a t e d  and the modes f o r  the f l e x i b l e  bladed d i s k s ,  and i s  
only  found i f  a t  l e a s t  one f l e x i b l e  bladed d i s k  i s  p r e s e n t .  
g loba l  mass ma t r ix ,  on the other hand, i nc ludes  a l l  the modes f o r  the model, 
and i s  always needed, even i f  there a r e  no f l e x i b l e  bladed d i s k s .  

This f i g u r e  shows the 

However, the t r a n s i e n t  a n a l y s i s  f l e x i b l e  bladed 

The s t eady  s t a t e  
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4 .4 .3  Global Stiffness Matrix TKI 
n 

+ [+ilTIKil[+il 
i = l  

[Klmotid stiffness 

The global stiffness matrix consists of the modal stiffness terms (along the 
diagonal) plus the contributions of the linear (type 1, 2 ,  4 ,  or 5)  physical 
connecting elements. The contributions of each 1 inear physical connecting 
element (see section 4.2 .2)  are added into the correct location in the [K] 
matrix. Note, however, that the 
modal stiffnesses of the flexible bladed disks (if any) vary with the speed o f  
the rotor on which the flexible bladed disks are located (these are the only 
stiffness terms that vary with rotor speed or forcing frequency), and hence the 
FBD modal stiffness terms are not incorporated into the [K] matrix of TETRA but 
rather written directly into the global solution matrix in subroutine GLOB2. 

The [K] matrix is stored separately in TETRA. 

4.4.4 Global Velocitv Matrix rCl 

where 

i 

= the contributions of the modal damping plus the non-structural 
damping contributions of the linear (type 1, 2,  4 ,  or 5 )  physical 
connecting elements. 
connecting element (see section 4 . 2 . 3 . 1 )  are added into the correct 
locations in the [C,] matrix. 
as the global velocity matrix [C] (square matrix whose order = total 
number of modes) 

The contributions of each linear physical 

The [C,] matrix is the same size 

Q 9 = Frequency used for the structural damping. This corresponds to the 
independent rotor speed (if I S F  = 1 on type A input sheet) or to the 
steady state forcing frequency (if ISF = 2 on the type A input 
sheet). 

= Matrix for the structural damping contributions (not including the l/Qs 
multiplier) of the linear (type 1, 2,  4 ,  and 5)  physical connecting 
elements. The structural damping contributions of each linear 
physical connecting element (see section 4.2 .3 .2 )  are added into the 
correct positions in the [C,] matrix. The [C,] matrix 
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is the same size as the [C] matrix except that the rows and columns for the 
flexible bladed disks are omitted (Cs is a square matrix whose order equals 
the total number of modes in subsystems 1 through 11). 

' I  = Independent rotor speed 

n 

[GI]  = [4ilT[G,l[4il 
i = l  

= matrix for the contributions (not including the ' I  multiplier) 
of the gyroscopic load points on the independent rotor. 
contributions for each gyroscopic load point i (see section 4.3.2) 
are added into the correct positions in the [GI] matrix. 
[G ] matrix is a square whose order = total number of modes for the 

The 

The 

in a ependent rotor. 
= Dependent rotor speed 

n 

['Dl = 2 [G,I 
i - 1  

= matrix for the contributions (not including the "D multiplier) 
o f  the gyroscopic load points on the dependent rotor. The 
contributions for each gyroscopic load point i (see section 4.3.2) 
are added into the correct position in the [GD] matrix. 
matrix is a square matrix whose order = total number of modes for the 
dependent rotor. 

The [GD] 

QmD= speed of the rotor on which the flexible bladed disks are located. 

multiplier) of the gyroscopic loading due to the f l e x i b l e  b laded  
disks. This does not include the terms for the flexible bladed d i s k  
center o f  gravity points, which are included in either the [GI] or 
the [Go] matrix. See figure 4-4 for the contents of the [ G F B ~ ]  
matrix. 

[GmD]= matrix for the contributions (not including the ' F B D  

The global velocity matrix [C] is not stored separately in TETRA, but the 
component matrices [C 1,  [C,], [G 1,  and [G ] are stored separately. 
The component matrix ~ G F B D ]  is no E stored, ut the non-zero terms o f  this 
matrix are stored in arrays and scalar variables. The terms of the component 
matrices are multiplied by the appropriate multipliers and incorporated 
directly into the correct positions in the global solution matrix in subroutine 
GLOB2. 
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4.4.5 Global Solution Matrix r G M l  

Using tensor notation, our equation of motion is: 

where: 

M i d  = global mass matrix 
Kij = global stiffness matrix 
Cij = global velocity matrix 
qj = generalized displacements 
Fi 
Hi 
We can substitute: 

= general ized appl ied (external ) force vector 
= generalized nonlinear rub element force vector 

q i  = a.coswt + b.s inwt  
F~ = Ff coset + < sin at 
H. = H: mswt + Hy sin wt 
(the Hi expression is possible because we use harmonic averaging to get the 
nonlinear (rub) element forces, as will be shown later). 

This gives: 

J J 

msot + b . s i n a t  + b .coswt 
J J 

= F m s o t  + F:sinot  + q c o s o t  + H:sinot  

Now separating out the sin and cos parts this yields two equations: 
2 -a M . . a  .coswt + K..a .coswt + oC..b .msot = Tcoswt + Hfcosot 

- u2M. .b .shot  + K. .b .sinat - wC. .a .sinul = p s i n o t  + Hqsinot 

LJ J Y I r l J  

Y J Y J V J I 

Dividing through by coset and sinat and rewriting: 

( - w 2 M . . + K . .  IJ Y ) a . + o C . . b . = q + H g  J Y J  

--w M . + K.. bi - oC..a. = < + HS 
V LJ ) C J J  
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We can write this in matrix form as follows (also noting that Mij = 0 for i z j ) :  

r 3 

a n  

bl 

I 
i 
I 

- bnl  

I 
r '  I 1 

I IOCll -OzMll + Kll .......... .K .................. @Cln 
I n  . . 

I :  . I .  

I .  . . . . 
e 

. 
I .  . e . . 

e I '  . r :  . . 
2 '  I 

. . . . 
Knl .......... M n n  + K n n !  OCnl ................. "nn 

I .  I 2 -0 M,, + Kll . .  ......... 
0 .  

1 --well . .  . . ............ 0 . -  I . I 
I 

. *  . 
* . . . . . I i  . I 

I 
e I 

I 
* .  I .............. -wc . 

V 

0 

. 
* .  Knl . . .  ....... -02Mnn i 

L I J 

where n = number of generalized coordinates (modes) 

We define the large 2n x 2n matrix on the left hand side to be the global 
solution matrix [GM]: 

[ - y M l l  + K,, ....... I 1 

1 i = * * * . .  I *  
. 

I 

l i  . I .  

I .  
. . 

............ ............ 1 -0Cll i - 0 2 M  11 + K l l  K,n . * .  e I I .  
. .  

I '  a 

I '  
. 

e 

e 
e 
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We see t h a t  knowing t h e  elements o f  t h e  g loba l  mass m a t r i x  M i  -, t h e  elements 
of t h e  g l o b a l  s t i f f n e s s  m a t r i x  K i - ,  t h e  elements o f  t h e  g l o b a l  v e l o c i t y  
m a t r i x  C i - ,  and t h e  steady s t a t e  Sorc ing  frequency w , we can c a l c u l a t e  t h e  
g loba l  s o l u t i o n  m a t r i x .  

Then we have: 

- 9  

GM I 
I 

- 
5 . 

e 

* 

. . 

bl . . . 
. 
b . 
bn 

4 

- - + 

HT . . . . 
4 

I 

HC n 

H: . 
? 

e 

0 

H 
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4.5 Iteration Method and Eauations 

4.5.1 General Method 

We demonstrated in the previous section that the equation of motion can be 
written in matrix form as: 

-l  

'1 
GM I 

I 
I - -  

L 

Hc, 
. 
HC n 

H : 
. 
H' .n - 

. .  

7 . 
H' n 

H: 
a 
e 

H' .n 

Solving for the cosine and sine components o f  the generalized displacements 
(ai and b i  respectively): 

- 1  

e 

F n 

5 +I 
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We define: 

= 

and 

c -  

GM 

- *  

Then we have: 

- 1  

. 
P 

n 

5 
;. n 

* 

= R Vector 

T Vector 

35 



Expanding the T vector in the above we get: 

+ 

. . 

0 

wherelthe gi,j are the elements of the inverse of the global s o l u t i o n  matrix 
[GMI- . 
The g i -  values (elements of the inverse of the global solution matrix) are 
found ?n a straight forward manner by first finding the global solution matrix 
[GM] as detailed previously, then inverting the global solution matrix. 
and R: 
manner by multiplying the inverse of the global solution matrix by the applied 
(external) force vector F (also easily found), as per the definition of the R 
vector. 

The Rf 
values (the R vector) can also be calculated in a straight forward 

If there are no nonlinear (rub) elements, or.if there is no rub because the 
dead band has not been exceeded for any rub element, then the sine a,"d cosinse 
components of the generalized nonlinear (rub) element forces (the H i  and H t  
respectively) are zero. For this case, the cosine and sine components of the 
generalized displacements (thecai and ki respectively) can be found easily 
since they are equal to the R i .  and R i  values, and we're done. However, if 
nonlinear (rub) elements are present, and if there is a rub for at least one o f  
the rub elements, then we must find the HC and HU values, which becomes 
much more involved. 

To find the Hf and H f  values (if  needed) iteration must be performed. This 
is done by deriving a set of iterating equations in which the rub element 
relative displacement components (the US ) are the unknowns. For each 
iteration, we calculate the rub element physical force components at joint I 
(the P ' s ) ,  which are functions of the U S  , and which get plugged into the 
iterating equations. 
converged to a solution, we take the final values for the rub element physical 
force components at joint I (the P ' s ) ,  and calculate the nonlinear (rub) 
element generalized force components (the H f  and H f  values) (the H vector). 

I I 

Then, after the iterating equations have (hopefully) 
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The rest is simple. 
the global solution matrix by the H vector as per the definition of the T 
vector. The R vector and the T vectors are then added together to find the 
cosine and sine components of the generalized displacements (the ai and bi 
respectively). 

The following sections detail the derivation of the iterating equations and the 
derivation .of the rub element physical forces at joint I. 

The T vector is then found by multiplying the inverse o f  

4.5.2 Derivation of the Iteratinq Equations 

We can write: 

where 

For each non 

LW,, =  AX^ cos ot + AX;, sin ot 

AXk, = &k, cos wt + AX:, sin ot 

A x  k,  u = relative displacement for the k'th nonlinear (rub) element 

= relative displacement for the k'th nonlinear (rub) element 
in the vertical direction 

in the horizontal direction 

inear (rub) element k, we have four equation as follows: 

hxc k . u  =x" k , u , l  - 3 , u . J  = i a i ( @ k , i , u , l  - @ k , r , v , J  

M i , u = X f , u . l  - x i , u . J  = % b i ( 4 k , a . u . l  - 4 k , i , u , J )  

(2 ) 
1 = l  

h X f , f l = q , H , I  - x" k , H . J  = I " L ( @ k , L , t f . l -  @k,c.t I .J 
1 = 1  

( 4 )  
1 = I  

n .  

= cosine(c) or sin (s) component of the vertical (V) or p o r s  
k, u or H, I or J where 

horizontal (H) displacement for joint I (I) or joint J 
(J) for the k'th nonl inear rub element 

*k,i ,vorH.IorJ = Mode shape for k'th nonlinear (rub) element, mode i ,  
vertical ( V )  or horizontal (H), joint I (I) or joint 
J (J) 

mode i 

mode i 

ai = cos component of the generalized displacement for 

bi = sin component of the generalized displacement for 
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We now define: 

- 
"k,  i .  v - @ k , i , v , I  - @ k , i ,  v, J 

- 
' @ k , i , H  - @ k , i , H , I  - @ k , i , H . J  

Substituting this into equations 2 through 5 we have: 
n 

n 

n 

n 

= bi ' @ k , i , H  
i = l  

Further, we can define 
n 

i = l  
n 

i - 1  

where c,;;rH = the iterating equation for the k'th rub element, cosine (c) 
or sin (s) component in the vertical ( V )  or horizontal (H) 
direction 

The unknowns in the it rating equations are the relative displac.Tent cornpon.ents (4, v 1 b'$. I ,  * A<, " 1 A%, H 7 . During iteration the values of the ( b k , u -  I f , , , , .  " , u 9  < , t j )  

expressions approach 0 as the unknowns approach their true value. The number 
o f  iterating equations equals 4 times the number of nonlinear (rub) elements. 
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From equation 1 we see t h a t :  
n !I 

,, n 

Plugging the  ai and b i  expressions i n t o  the  i t e r a t i n g  equations (equations 
6 through 9) we get :  

n n 

Now d e f i n i n g  : 
n 

R: ' @ k ,  i ,  = v 
r=l 
n 

i = l  
n 

i = l  
n 

We can w r i t e :  
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TO get the generalized nonlinear force (the H's) we add the contributions o f  
joint I (subscript I) and joint J (subscript J) in both the vertical (subscript 
V )  and horizontal (subscript H) directions and sum over the nonlinear elements: 

I' 
c -  y- 

" J - e=  o 1 ( H ; , u , l  +";,t l , l  +";,IJ,J +"f , t f , J )  

To get each H contribution we multiply the mode shape 
connect i ng el ement force P. 

4) by the nonlinear 

we get: 

'i 
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S u b s t i t u t i n g  these expressions f o r  I f c  and i n t o  equat ions  10 th rough 13 we g e t :  J 

-hx = o  k. v 

-Ax;,, = 0 
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Rewriting: 

“ n L n n L 

n n L n n L 

= 0 

n n 1. n n L 

-Ax;, ,  = 0 

n n I. n n L 

( 1 6 )  

-Ax;, = 0 

4 2  



n n 

We define the following parameters: 

1 

n n 

n n 

‘ @ k , i , u  c i g n i i , j  ‘ @ e , j , u  

. = I  j= 1 
n n 

2 ‘ @ k , i , H  5- g n + i , j  ‘ @ e . j , u  

i = l  j =  1 

n n 

‘@k,  i .  u 1 g i , j  ‘ @ e , j ,  H 
i = l  j =  1 

n n 

n n 

n n 

n n 

n n 

n n 

n n 

n n 

n n 

43 



Substituting these parameters into equations 16 through 19 we get: 
\ 

These are the iterating equations. The l i fk," ' F i , u ,  a n d  F i , l l  
functions are calculated in subroutine FCN. 
either by IMSL subroutine ZSCNT or IMSL subroutine ZSPOW, depending on which of 
these routines the user specified via the nonlinear routine option IROUT (see 
input sheet 1-2). 

The actual iteration is performed 

The S, A,  B, C, and D parameters in the iterating equations are known 
quantities and are calculated based on the proceeding definitions of these 
quantities. Because the S, A, B, C, and D parameters do not change from 
iteration to iteration, for efficiency purposes they are calculated only once 
for each forced frequency, prior to iterating for the forced frequency. 
The A x ' s  are the unknowns in the iterating equations. The P ' s  in the 
iterating equations (the rub element forces at joint I) are functions of 
the A X ' S  . See section 5 for a discussion of the method and the 
equations used'to find the P's. 

4.5.3 Eauations for the Maximum and Minimum Relative DisDlacement 
Macrnitudes 

The maximum and minimum relative displacement magnitudes for each rub element 
are needed to determine (through comparison with the dead band) if there i s  a 
rub f o r  the given rub element and, if so, whether the rub is continual or 
intermittent. 

As noted previously: 

AX,, = Wk, r I  cos at + AX;, sin at 
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where 
= relative displacement for the k’th nonlinear (rub) element in the 

hxk,II = relative displacement for the k’th nonlinear (rub) element in the 
vert i cal di recti on 

horizontal direction 

We next define: 

;It I - element 

1 A I element 

= Maximum relative displacement magnitude for the k’th nonlinear ( rub)  

= Minimum relative displacement magnitude for the k’th nonlinear (rub) k min 

It can be shown (through the derivation is long-winded, so we skip it here): 
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4.5.4 Determininq If a Rub Is Present (That is, if Iteration is Needed) 

Iteration is needed to find the AX'S 
components) only if there is a rub for a least one of the rub elements. 
procedure used to determine if a rub is present is as follows. 
parameters are found (subroutine PARAM1). 
the A X ' S  
(that is, if the P forces were all equal to 0). 
these are: 

(rub element relative displacement 
The 

First, the S 
Then, in subroutine CHECK, we find 

that would result assuming there were no rub element forces 
From equations 20 through 23, 

Then, using these (calculated assuming no rub element forces), we 
calculate the maximum and minimum relative displacement magnitude for each rub 
element that would result assuming no rub element forces from equation 24 and 
25. 
band for each rub element, we can check (as we do in subroutine CHECK) if a rub 
is present for any each rub element. 

By comparing the maximum relative displacement magnitude with the dead 

If this check reveals that there is no rub for any of the rub elements, then we 
know that the assumption of no rub element forces was correct. If this is the 
case, then the A X ' S  obtained from equations 26 through 29 are in fact the 
correct AX'S , and no iteration is needed. On the other hand, if this check 
reveals that there is a rub for at least one of the rub elements, then there 
are rub element forces, and equations 26 through 29 do not yield the 
correct AX I S  . For this case, the A X ' S  must be found via iteration 
using equations 20 through 23. 

4.5.5 Findinq the Initial Guess for the Iteration 

Assuming that we have found that iteration is needed (see section 4.5.4), then 
we must find the initial guess for the iteration. 
check. The initial guess is determined from the following rules: 

This is done in subroutine 

1. If it is the very first solution'(forced frequency), and the user inputted 
an initial guess via the GUESS input variable (see namelist input sheet 
1-3), then the initial guess inputted by the user is used. 

2. If it is the very first solution (forced frequency), and the user did not 
input an initial guess, then the initial guess for the rub element 
relative displacement components are those that would result if there were 
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3 .  

4 .  

5. 

no rub element forces (obtained from equations 26 through 29). 

If it is not the first solution, but if rotor speed is considered for the 
run, there are no unbalance forces, and if it is the beginning forcing 
frequency for the current rotor speed, then the initial guess for the rub 
element re1 ati ve di spl acement components are those that would resul t i f 
there were no rub element forces (obtained from equations 26 through 29). 

If rules 1, 2, and 3 do not apply, and if the previous frequency had a rub 
for at least one rub element, then the rub element relative displacements 
(found via iteration) for the previous forcing frequency are used as the 
initial guess for the iteration. 

If rules 1, 2, and 3 do not apply, and if the previous forcing frequency 
did not have a rub for any of the rub elements, then the initial guess 
for the rub element relative displacement components are those that would 
result if there were no rub element forces (obtained from equations 26 
through 29). 

4.5.6 Solvina the Iteratina Eauations 

Assuming that we found that iteration was needed (see section 4.5.4), the f i r s t  
step performed is to find the initial guess for the rub element relative 
displacement components (see section 4.5.5). 
B, C, and D parameters (subroutine PARAM 2) that appear in the iterating 
equations. 
the iterating equations (subroutines SOLVE, NLFORP, BACKS, FCN, plus IMSL 
subroutine ZSCNT or ZSPOW and several other IMSL subroutines or function 
subprograms which are called by ZSCNT or ZSPOW). 
rub element (so that iteration is not needed), all of these subroutines are 
ski pped . 

Next, we proceed to find the A ,  

Then a whole bunch of subroutines are called (if needed) to solve 

If there is no rub for any 

The user specifies which of two IMSL subroutines (ZSCNT or ZSPOW) are used to 
solve the iterating equations via the nonlinear routine option IROUT (See 
namelist input sheet 1-2). By this means, the user chooses the iteration 
method t o  be used. 

At each iteration, the rub element physical forces at joint I (the P forces) 
must be found so that they can be plugged into the iterating equations. 
forces are found in subroutine NLFORP. The next section details how we find 
these forces. 

These 
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5.0 General Nonl inear Rub Element 

5.1 Phvsical Force eauations at Joint I 

We now turn our attention to the equations for the rub element physical forces 
at joint I. 
because of the dead band. 

These equations are nonlinear, both because of a cubic term and 

We define: 

p e , u . ~  = Physical forces for the l t h  rub element in the vertical direction 

' e , t , , ,  = Physical force for the l t h  rub element in the horizontal direction 

at joint I 

at joint I 

= Relative displacement magnitude for the 
t t h  rub element. 

AX = Relative displacement in the vertical direction for the l t h  rub 
element (that is, the vertical displacement at joint I minus that at 
joint J) 

element (that is, the horizontal displacement at joint I minus that 
at joint J) 

de,u= Relative velocity in the vertical direction for the l t h  rub element 

b p , i , =  Relative velocity in the horizontal direction for the l t h  rub 

e, u 

AX,,,,= Relative displacement in the horizontal direction for the  l t h  rub 

element 

c o  = Dead band (this equals input variable DBAND on the type F input 
sheet) 

K ,  = Linear radial spring constant factor for the l t h  rub element (this 
equals input variable SK on the type F input sheet) 

Pe = Nonlinear radial spring constant factor for the l t h  rub element 
(this equals input variable AK on the type F input sheet) 

Ce = Damping coefficient for the l t h  rub element (this equals input 
variable CC on the type F input sheet) 

We can write: 
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5.2 Harmonic Averaainq 

In order to find the “e,“, i  1 ‘i,ti,I ’ p ; 9 0 . ~  9 and ‘i, ti., values 
to plug into iterating equations 20 through 23, we approximate the rub element 
physical forces at joint I with the expressions: 

These expressions are not exact because, due to the nonlinearity and complexity 
of equations 30 and 31, higher order terms involving  COS^^^, sin2wt, 
cos3wt, sin3wl,etc. would also be present. However, these higher order terms are 
neglected and only the first harmonic terms retained. Our problem then boils 
down to finding the values of p:[ , ,  PC e. r!.  I PS e .  v.1 and P;, H ,  I . This 
is accomplished using the method o f  iarmonic averaging. 

Given a function f(t), the method of harmonic averaging involves integrating 
over a cycle as follows: 

2rI/cJ 

f (1) a s  wt dt 
i 0  

for the cos part: 

for the sin part: f ( I )  sin wt dt 

In order to perform the harmonic averaging, the following integral 
transformations will be helpful. The derivation of these integral 
transformations is straight forward but is fairly lengthy so is not included 
here. 

For the expression: 
q (I)  = (I coswt + b sin at 

J o  - 4, 
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For the pair of expressions: 
q,( t )  = a msot + b sinot 

q2(t)  = c cosot + d sinat 

we have: 

I n a(d2 + 3c2) + 2 bcd 

4 0  
2 I 

q,(t) q2(t )cosotdt  = 

1 n b(c2 + 3d2) + 2acd 

4 0  
I 

q,(t) 422 ( t )  sin ot dt = 

(40) 

(41) 

Note that the p"C.u,I * PC,,,,, * P:.u.r and P L i . 1  q u a n t i t i e s ,  
which are found via harmonic averaging (except when there is no rub), are 
functions of the relative displacement components flt.q, 
The h x ' s  are the unknowns in the iterating equations, and each iteration 

and pi,Hz 
be done for each iteration. 

u"cHH, u:..09 and Mi..,. 

provides a new guess for the h x ' s  . Thus, the P:,uv.rp p : , H , I '  P i , v , I  * 
values change for each iteration, so the harmonic averaging must 

If the equations are simple enough, closed form equations may be derived to 
perform the harmonic averaging (as is done for a continual rub with dead band 
equal to 0). 
numerical integration (using Simpson's rule) is performed instead (as is done 
for a continual rub with dead band not equal to 0 and for an intermittent 
rub). The advantage of using closed form equations, if possible, is that the 
closed form equations are more efficient and more exact than the numerical 
integration. 

Further details of how the harmonic averaging is accomplished is contained in 
sections 5.3.2, 5.3.3, and 5.3.4. 

If the equations are too complex to solve in closed form, 
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5.3 Four Possible Rub Cateqories 

Four possible rub categories are recognized by TETRA 2. 
no rub, continual rub with dead band equal to zero, continual rub with dead 
band greater than zero, and intermittent rub. 
in figure 5-1. 

These categories are 

The categories are illustrated 

The TETRA 2 program determines which of the four categories apply by comparing 
the maximum and minimum rub element relative displacements (calculated using 
equations 24 and 25) and the rub element dead band (input variable DBAND on the 
type F input sheet). Note that this determination must be made for each rub 
element and at each iteration (since the calculated maximum and minimum 
relative displacement magnitudes change from iteration and iteration). 

Different logic is used to calculate the rub element physical force 
components p:.v.Ip ' ; . H . I '  p " c u . I '  and ' : . € ? . I  depending on which 
category applies. The following sections detail the equations used for each of 
the four rub categories. 

5.3.1 No Rub 

If it is determined that a given rub element has no rub (see section 5.3), then 
the rub element physical forces must be zero. 

Hence, the program sets: 
PC = 0 c. v, I 

and we're done. 
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NO RUB 

CONTINUAL RUB 
WITH f o = O  

c1 earance Ci rcl e 

? hxh,H 

Orbital E l  1 i pse 

Orbital El 1 ipse  

h x k , H  

Orbital Ell ipse 

CONTINUAL RUB h x k , ? f '  

WITH f o > o  
Clearance Circle 

Orbital E l  1 ipse  

hxh,?l I N T E W I T T E N T  RUB 

where r u b  occurs) 
(shaded areas ind ica t e  

C1 earance Ci rcl  e 

Nomencl ature: 

€ 0  = Dead Band 

I Akl = Relative displacement magnitude f o r  the k ' t h  r u b  element. 

h x k , H  = Relative displacement o f  the k ' t h  r u b  element i n  the  horizontal 
d i r e c t  i on 

= Relative displacement o f  the k ' t h  r u b  element i n  t he  ve r t i ca l  
d i r ec t ion  

FIGURE 5-L. FOUR POSSIBLE RUB CATEGORIES 
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5.3.2 Continual Rub with Dead Band Eaual to Zero 

If it is determined that we have a continual rub but t h e e  dead band equals 0 
(see section 5.3), harmonic averaging is used to find Pe,v,x P;,H,I# p:,.,~ 9 

and ';,H.I . However, the equations simplify enfugh when the dead band 
equals 0 that we can derive closed form equations for Pe,u,I p: H I I S  p ~ , u , I ,  
and , thus avoiding the less efficient process o f  integrating 
numerically. To find the desired closed form equations, we proceed as follows: 

Pi. H. I 

Setting € , = O  in equations 30 and 31 we get: 

Making use of the cosot 
40) equation 42 becomes: 

integral transformations (equations 34, 36, 38, and 

Making use of the cosot integral transformations (equations 34, 36, 38 and 
40) equation 43 becomes: 

- nC e m ; ,  H 

Making use of the shot 
41) equation 42 becomes: 

integral transformations (equations 35, 37, 39 and 
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Making use of the sinot 
41) equation 43 becomes: 

integral transformations (equations 35, 37, 39 and 

Rewriting the last four equations we get: - 

5.3.3 Continual Rub with Dead Band Not Eaual to Zero 

If it is determined that we have a continual rub and the dead band does not 
equal 0 (see section 5 . 3 ) ,  harmonic averaging is used to find P:,u,I , P:,,,, , P:,u,I 
and p;Jf*1 . The equations for this category of rub are too complex to 
solve in closed form, so we must integrate numerically to find P:,u,I, Pi,.,, , 

Using the integral transformation of equation 34 on the expression given in 
equation 32 we get: 

p:, u, I ' and 5.H.I' 
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Using the integral transformation of equation 34 on the expression given in 
equation 33 we get: 

Using the integral transformation of equation 35 on the expression given in 
equation 32 we get: 

Using the integral transformation of equation 35 on the expression given in 
equation 33 we get: 

Substituting Y = o t  , the preceding four equations can be rewritten: 

cos YdY (44) 

. r 2 n  

r 2 n  
1 

p"~H.1 = ;; 1, pt,H,I sin VdV (47) 

For a continual rub, we note that the products p~lvsIcos Y' p t . ~ . ~  cos Yp 
5, v, I sin u', 
Thus, we need only integrate between 0 and n and double the results as 
foll ows: 

and p t , g ~  S i n  repeat themselves every 180'. 
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To perform the numerical integration, the integrals are divided into 10 
subdivisions, with Y varying from 0 through n in step? of n/10. 
For each value of y , the parameters 
are calculated using the equations: 

and &?e,H h x t , H '  AXt,U, 

Me, = hxc cos a t  + AX:, sin ot 

AXe, 

be,v = ou:,ucosot- o e e , U s i n o t  

AX,, 

e. u 
= hxc!, cos a t  -+ AX:, sin a t  

= w AX:, cos o t  - o hx'(, sin a t  

~ 

Substituting Y =  o t  and rewriting: 

where 0 = forcing freauency, t = times vzwt , and the relative 
displacement components hxc,,qp and  AX;,^ are known because they are 
the guesses for the current iteration. 

equations 30 and 31. 

Finally, knowing the 
and n (in steps of d10 ) ,  the values of the integrals in equations 48 
through 51 are obtained using Simpson's rule. 

, 
~ The ' C U  -d values are then calculated for each value of Y using 

' t u  Md ' e 3  values for each value of Y between 0 

I 5.3.4 Intermittent Rub 

If it is determined that we have an intermittent rub (see section 5.3), 
harmonic averaging is used to find P: , , , I*  P : , H , I P   pi,.,^^ and p : , ~ , ~ .  
Again, the equations for this category o f  rub are too complex to solve in 
closed form, so we must integrate numerically to find P : , v , I ,  P i , H , I ,  P : , , u . I ,  and P i , H , I .  
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As for a continual rub with dead band equal to 0, the following equations are 
applicable (see equations 44-47 of section 5.3.3): 

m 
Pe,  v, I cos Y d 'Y 

= ' m s Y d Y  

P"cvu,I = ; I  n 0 P e. v. I s in'YdY 

s i n Y d Y  

2x1 

' b . I  / 'i' ,H,I 
m 

'e, H, I 

For an intermittent rub, the orbital ellipse intersects the clearance circle at 
four points (points A,  B, C, and D in figure 5-2a). 
present only for the two portions of the orbital ellipse that rub (between 
points A and B and between points C and D in figure 5-2a). 
products Pe, v,  I sin UI , and Pe, H ,  I sin Y 
the two portions that rub (see sample Pev,Ims'v  versus plot in 
figure 5-2b). 
between points A and B) and double the result. Thus, the preceeding equations 
become : 

Rub element forces are 

Furthermore, the 
pe: ,,,I cos v s PdH.1 cos are the same for 

Hence, we need only integrate over one of the two rub areas (say 

YB 

Pe, v, I COS 'P d 'JJ (56) 

YB 

'YA P t , H , I  (5') 

YB 
Pe, sin Y d Y (58) 

r Y B  

where y~ is the angle for point A and yB is the angle for 
point B. 
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Figure 5-2a. 
(Shaded a r e a s  i n d i c a t e  where r u b  o c c u r s )  

Orbi ta l  E l l i p s e  and Clearance C i r c l e  

A 

I 
I I ) Y = o t  
n 2n 

Figure  5-2b. Sample P e , o , I ~ s q  Versus UI P l o t  

Figure 5-2. I n t e r m i t t e n t  Rub 
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To perform the numerical integration, the integrals  are divided into 10 
subdivisions, w i t h  v varying from vA t o  vB i n  steps of ( v B - y ~ ) ' l o *  
The procedure i s  the same as for  the continual r u b  i t h  dead band n o t  equal t o  
0. That i s ,  f i r s t  t h e u e , u p  me,H, Ak 
each v value using equations 52 t h & g h  55.  Then, the P,," and PtaH 
values are calculated for  each value of Y using equations 30 and 31. 
Finally, knowing the P,,u and Pe,H values for  each value of 'y , the 
values of the integrals  in equations 56 through 59 are calculated using 
Simpson's rule .  

and de,H parameters are found f o r  

So far  we have no t  covered how t o  find the VA and v~ angles over which the 
integration i s  performed. This  i s  explained i n  section 5 . 4 .  
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5.4 Eauations For the Intersection of the Orbital Elliose and the 
C1 earance Ci rcl e 

I For an intermittent rub, we must find the equations for the intersection of the 
orbital ellipse with the clearance circle. 
numerically integrate over one of the two rub areas, and we must know the 
beginning angle VA and the ending angle VB for the integration (see 
section 5.3.4) . 

This is needed because we must 

We proceed as fol 1 ows: 

The equations for the orbital ellipse of a rub element are: 
AX = ~ P c o s ' P +  AXtsinV (60) 

~ AX, = h x c , c o s ~ +  AXRsinV (61) 

U 

~ 

where Y = at 

Defining : 

C 

Equations 60 and 61 can then be written as: 
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For the four intersection points o f  the orbital ellipse with the clearance 
circle (whose radius € o  = the dead band) (see figure 5-2) we can write: 

Plugging equations 62 and 63 into equation 64 we get: 

(Ax:) cos2 (Y - Qu)+  ( A x ; )  cos2 (Y - Q.)=( f0)2 

Dividing through by 6; we get: 

Using a trigometric identity this becomes: 

= 1  
1 +ms 

2 2 

Rearranging: 

Using another trigometric 

+ L ( 5  
€0 

Rearranging: 

identity this becomes: 
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Th,s can be rewritten: 

A c o s 2 Y  + B s i n 2 Y  = C (65) 

where 
AXm 

Defining : 

I Equation 65 can be rewritten: 

h2 + B2 m s ( 2 Y  - a )  = C 

from which we get: 

C 

Defining : 

~ 

where: 

0 1 e s n  
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We can then list four possible values of the function: 

as follows: 

Plugging these four possible values into equation 66 we get: 

e a  
Y 3 = n +  - + - 

2 2  

Y 4 = 2 n -  - + - 
2 2  

The preceding equations give the ly angles for the four intersection p o i n t s  
o f  the orbital ellipse with clearance circle. As discussed in section 5.3.4, 
we numerically integrate over one o f  the two rub areas, then double the 
result. 
that the rub areas are between points 1 and 2 and between points 3 and 4, and 
there is also the possibility that the rub areas are between points 2 and 3 and 
between points 4 and 1 (see figure 5-3). 
possibilities apply, we first calculate the 
half way between points 1 and 2: 

However, given the four intersection points, there is the possibility 

To find which of these two 
Y angle at point 1.5, which i s  

a 
= n +  - lyl + 

Y . 5  = 2 2 



hx 

Possible Orbital E l  1 i pses 
t h r o u g h  intersection points 
1, 2 ,  3 ,  and 4 

I 
Axif 

C1 earance 
C i  rcl e 

! 
I 
! 

Figure 5-3 .  Orbital Ell ipse Possibi l i t ies  For 
An Interrni t t e n t  Rub. 
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We then calculate the radius at point 1.5 as follows: 

. 
If the radius at point 1.5 is greater than the dead band, then the rub areas 
must be between points 1 and 2 and between points 3 and 4. 
case, we numerically integrate between points: 

If this is the 

Y A = Y l  and Y B = Y 2  

as detailed in section 5.3.4. 

However, if the radius at point 1.5 is less than the dead band, then the rub 
areas must be between points 2 and 3 and between points 4 and 1. If this i s  
the case, we numerically integrate between points: 

Y A = Y 2  and YIr,=Iv3 

as detailed in section 5.3.4. 
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5 . 5  Eauations For the Maximum and Minimum Rub Element Harmonically 
Averased Force Masnitude 

As noted in section 5.2, the rub element physical forces are expressed as: 

Pe, v ,z  = P i ,  v , J  cosat + P i ,  v ,J  sinat 

= P:, H ,  cos a t  + P i ,  H ,  sin at 'e ,  H, Z 

where PC e, v.1 ';,H,Z' ' i,v,Z ' and p S , , H , I  averaging. 

We next define: 

are found using harmonic 

Fmax = Maximum rub element harmonica1 ly averaged force magnitude 

Fmin = Minimum rub element harmonically averaged force magnitude 
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It can be shown (though the derivation is lengthy, so we skip it here): 

I )2. ( P L .  J 2  

, 

2 2 e,  H, I 

Note that these equations are similar in form to the equations for the maximum 
and minimum relative displacement magnitudes given in section 4.5.3. 
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6.0 Generalized DisDlacements and Generalized Velocities 

6.1 Generalized DisDlacements 

The generalized displacements can be written in terms of the cos and sin 
components as foll ows: 

i 

Z,  = cos ot + Zf sin ot (67) 
I where: 

I 

I 

2, = general ized displacement for global mode k 

zI = amplitude o f  the cos component of the generalized displacement 

Zf = amplitude of the sin component of the generalized displacement 

mode k 

mode k 

= steady state forcing frequency 

t = time 

The amplitude of the cos and sin component of the generalized displacement for 
each mode i s  calculated using the method outlined in section 4.5.1. The 
generalized displacements can also be expressed in terms of the magnitude and 
phase angle as follows: 

Z & = Z ; m s ( o t - < & )  

where: 
2; 

‘k 

For each forcing frequency, the generalized displacements are found as outlined 
above and in section 4.5.1. 
calculate the physical quanti ties (physical displacements, physical velocities, 
physical connecting element forces, etc.) as outlined in section 7 which 
follows. It is normally the physical quantities that the user is interested in 
rather than the generalized values. For this reason, printout of the 
generalized displacements is omitted if the user requests the short or the 
standard form of the output (see printout option IOUT on the type A input 
sheet). Printout o f  the generalized displacements (cos components, sin 
components, magnitudes, and phase angles) is included if the user requests the 
long form of the printed output. 

The generalized displacements are then used t o  

. 
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6.2  Generalized Velocities 

In a manner similar to that for the genera 
section, the generalized velocities can be 
components as fol1 ows: 

ZV, = mswt + ZV: sinwt 

where: 

ized displacements of the preceed 
expressed in terms of the cos and 

ZV, = generalized velocity for mode k 

By differentiating equation 67, we can express the amplitudes of the cos and 
components of the generalized velocities in terms o f  the generalized 
displacements found via the method of the preceeding section as follows: 

ZV, = 02; 

zv; = -02; 

ng 
sin 

sin 
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7.0 Eauations For the Physical Quantities 

Once the generalized displacements and generalized velocities have been found, 
as outlined in section 6, they are used to calculate the physical quantities. 
The physical quantities are the last things calculated for each forced frequency 
solution. The following sections detail how the physical quantities are 
cal cul ated. 

7.1 Physical DisDlacements, Velocities, and Modal Forces at 
the Points 

The physical displacement can be written in terms of the cos and sin components 
as follows: 

x.. = <jcosot + X8.sinmt 
8J rl 

where: 

= physical displacement for point i in direct 

The amplitude of the cos and sin components of the phys 
found by summing over the modes as follows: 

n 

x". = Q i k Z E  
k -  1 

1J 

n 

k=  1 

where: 

on j 

cal displacement is 

T k  = displacement mode shape for point i ,  direction j ,  and mode k 

mode k (see section 6.1) 

mode k (see section 6.1) 

= amplitude of the cos component of the generalized displacement for 

zf = amplitude of the sin component of the generalized displacement for 

Similarly, the physical velocity can be written in terms of the cos and sin 
components as follows: 

v.. = VC.cosot + V i s i n o t  
V 1J 

where: 

V.. = physical velocity for point i in direction j 
1J 
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n 

The ampl i tude o f  t h e  cos and s i n  components o f  t h e  p h y s i c a l  v e l o c i t y  i s  found by 
summing over  t h e  modes as f o l l o w s :  

n 

n 

vs. = cPx,,zv; 
1J k=  1 

where: 

zVk = ampl i tude o f  t h e  cos component o f  t h e  g e n e r a l i z e d  v e l o c i t y  f o r  mode k 

zvi=  ampl i tude o f  t h e  s i n  component o f  t h e  g e n e r a l i z e d  v e l o c i t y  f o r  mode k 

S i m i l a r l y ,  t h e  modal f o r c e  can be w r i t t e n  i n  terms o f  t h e  cos and s i n  components 
as f o l l o w s :  

(see s e c t i o n  6.2) 

(see s e c t i o n  6.2) 

F . .  = F.cosot+ Fd.sinot 
rl 1J rl 

where: 

Fi, = modal f o r c e  f o r  p o i n t  i i n  d i r e c t i o n  j 

The ampl i tude o f  t h e  cos and s i n  components o f  t h e  modal f o r c e  i s  found by 
summing over  t h e  modes as f o l l o w s :  

n 

F.= 1 #f. zc 
1J rik k 

k = l  

n 

P.= 2 d z' 
1J t jk k . 

A =  1 

where: 

d. = f o r c e  mode shape f o r  p o i n t  i, d i r e c t i o n  j, and mode k 
rlk 

Note t h a t  t h e  p h y s i c a l  d isplacements and p h y s i c a l  v e l o c i t i e s  a r e  c a l c u l a t e d  
u s i n g  t h e  displacement mode shapes, w h i l e  t h e  modal f o r c e s  a r e  c a l c u l a t e d  us ing  
t h e  f o r c e  mode shapes. For  t h e  f l e x i b l e  v e r t i c a l  and h o r i z o n t a l  p lane 
subsystems, t h e  displacement mode shapes are  t h e  t r a n s l a t i o n  and s lope,  w h i l e  
t h e  f o r c e  mode shapes are  t h e  shear and moment as en tered  on i n p u t  sheet C-3 .  
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So f a r  we have expressed t h e  p h y s i c a l  d isplacements,  p h y s i c a l  v e l o c i t i e s ,  and 
modal f o r c e s  i n  terms o f  t h e  cos and s i n  components. 
be expressed i n  terms o f  t h e  magnitude and phase angle as f o l l o w s :  

These q u a n t i  t i e s  can a1 so 

x.. = xm cos at - <; 
V 1J 0 

Fij = F ? w s  0 0 at-f 
~ 

where: 

xm v s/c.r;,z + (x;. 
X; <; = tan-' (F) 

11 

VU. G = tan-' (<) 

Usua l ly ,  t h e  user  i s  p r i m a r i l y  i n t e r e s t e d  i n  t h e  magnitudes o f  t h e  q u a n t i t i e s .  
For  t h i s  reason, i t  i s  t h e  magnitudes and phase angles o f  these q u a n t i t i e s ,  
r a t h e r  t h a n  t h e  cos and s i n  components, t h a t  a re  p r i n t e d  o u t  and w r i t t e n  t o  t h e  
o u t p u t  p l o t  f i l e .  An except ion  t o  t h i s  i s  t h a t  t h e  cos and s i n  components a re  
a l s o  p r i n t e d  o u t  i f  t h e  l o n g  form o f  t h e  p r i n t e d  o u t p u t  i s  requested v i a  i n p u t  
v a r i a b l e  IOUT on t y p e  A i n p u t  sheet.  

. 
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7.2 Phvs i ca l  Connectinq and GvroscoDic Element Forces 

TETRA 2 has c a p a b i l i t y  f o r  s i x  d i f f e r e n t  types  o f  p h y s i c a l  connect ing  elements: 
t y p e  1 (genera l  spring-damper elements), t ype  2 ( l i n k  e lements) ,  t y p e  3 ( r u b  
e lements) ,  t y p e  4 (engine s u p p o r t - l i n k s  e lements) ,  t y p e  5 (uncoupled p o i n t  
spring-damper e lements) ,  and t y p e  6 (squeeze f i l m  damper e lements) .  The f i r s t  
f i v e  types  can be used f o r  e i t h e r  t r a n s i e n t  o r  s teady s t a t e  analyses,  w h i l e  t h e  
t y p e  6 (squeeze f i l m  damper elements) can be used o n l y  f o r  t r a n s i e n t  analyses.  
I n  a d d i t i o n ,  TETRA 2 accounts f o r  gyroscop ic  f o r c e s  a c t i n g  on a r o t o r  by means 
o f  a gy roscop ic  element, which can be used f o r  e i t h e r  t r a n s i e n t  o r  s teady s t a t e  
analyses. A l though n o t  a p h y s i c a l  connect ing  element, t h e  gy roscop ic  element i s  
c l a s s i f i e d  as an element because gyroscop ic  f o r c e s  a re  c a l c u l a t e d  ve ry  s i m i l a r l y  
t o  t h e  damping f o r c e s  o f  t h e  phys i ca l  connect ing  elements. 
concerns i t s e l f  o n l y  w i t h  t h e  element f o r c e s  f o r  s teady s t a t e  a n a l y s i s  runs ,  
s i n c e  t h e  element f o r c e s  f o r  t r a n s i e n t  a n a l y s i s  runs  were covered i n  r e f e r e n c e  1 
and r e f e r e n c e  3. 

T h i s  s e c t i o n  

The p h y s i c a l  connect ing  o r  gyroscop ic  element f o r c e  can be w r i t t e n  i n  terms o f  
t h e  cos and s i n  components as f o l l o w s :  

Fijk = qjk cosot + P. sin at 
LJ k 

where: 

F v k  = f o r c e  t h a t  p h y s i c a l  connect ing  o r  gy roscop ic  element k e x e r t s  on 

q j k  = amp l i t ude  o f  t h e  cos component o f  t h e  f o r c e  t h a t  p h y s i c a l  

t h e  engine components o r  ground f o r  p o i n t  i and d i r e c t i o n  j 

connect ing  o r  gyroscop ic  element k e x e r t s  on t h e  engine component 
o r  ground f o r  p o i n t  i and d i r e c t i o n  j 

Tjk = ampl i tude o f  t h e  s i n  component o f  t h e  fo rce  t h a t  p h y s i c a l  
connect ing  o r  gyroscop ic  element k e x e r t s  on t h e  engine component 
o r  ground f o r  p o i n t  i and d i r e c t i o n  j 

The ampl i tude of t h e  cos and s i n  components o f  t h e  force t h a t  t h e  e lemen t  e x e r t s  
on t h e  eng ine  component o r  ground i s  c a l c u l a t e d  ve ry  d i f f e r e n t l y  f o r  t h e  
n o n l i n e a r  t y p e  3 p h y s i c a l  connect ing  element ( r u b  e lement)  t han  f o r  t h e  o t h e r  
elements. 
(except  when t h e  dead band has n o t  been exceeded so  t h a t  t h e  r u b  e l e  e n t  f o r c e s  
a re  0 )  as d e t a i l e d  i n  s e c t i o n  5 .  For  j o i n t  I c o f  t h e  r u b  element, f k  i n  t h e  
above equa t ion  i s  t h e  same as t h e  v a r i a b l e s  p,, ( f o r  t h e  v e r t i c a l  d i r e c t i o n )  
and piHz ( f o r  t h e  h o r i z o n t a l  d i r e c t i o n )  f rom s e i t i o n  5 .  
same as 
d i r e c t i o n )  f rom s e c t i o n  5. 
t h e  n e g a t i v e  o f  t h e  f o r c e s  a t  j o i n t  I o f  t h e  r u b  element. 

For  t h e  o t h e r  elements, on t h e  o t h e r  hand, t h e  ?,A and F b k  are  c a l c u l a t e d  
u s i n g  t h e  p h y s i c a l  d isp lacements and/or p h y s i c a l  v e l o c i t i e s  a t  t h e  j o i n t s  o f  t h e  
element ( t h e  p., xu., v'. , vu, t h a t  were found i n  s e c t i o n  7.1) and d a t a  

For  t h e  r u b  elements, these a re  c a l c u l a t e d  u s i n g  harmonic averag ing  

L ikewise ,  F f . k  i s  t h e  
p:"~ ( f o r  t h e  v e r t i c a l  d i r e c t i o n )  and PCHZ ( f o r  t h e  h o r i z o n t a f  

The f o r c e s  a t  j o i n t  J o f  t h e  r u b  element a re  s imp ly  

Y tJ &J 1J 
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pertaining to the stiffness and damping of the element. 
damping data is used along with the physical displacements and/or physical 
velocities to calculate the element forces depends on the type of physical 
connecting element and the user input options which were chosen. 
stiffness matrix definition or input stiffness coefficients are used obtain the 
stiffness of the element. 
damping matrix definition, input damping coefficients, or may be calculated 
using an input Q-factor and a frequency. The frequency used along with the 
input Q-factor to calculate the damping may either be input (non-structural 
damping), or the steady state forcing frequency or independent rotor speed may 
be used for this frequency (structural damping). In the case of the gyroscopic 
element, the polar moment of inertia and the rotor speed are used to calculate 
the damping. See reference 1 for more details about the physical connecting and 
gyroscopic el ements. 

Just what stiffness and 

Input 

The damping of the element may be obtained by input 

The physical connecting and gyroscopic element forces may also be expressed in 
terms of magnitude and phase angle as follows: 

F . .  ilk =Fm y k  c a s ( ~ t - < ~ ~ ~ )  

where: 

Usually, the user is interested primarily in the magnitude o f  the element 
forces. 
quantities, rather than the cos and sin components, that are printed out and 
written to the output plot file. 
components are also printed out if the long form of the printed output i s  
requested via input variable IOUT on the type A input sheet. 

For this reason, it is the magnitudes and phase angles of these 

An exception to this is that the cos and sin 
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7.3 Flexible Bladed Disk Disolacements and Stresses 

For each f lex ib le  bladed disk, two modes are considered. These modes are the 
horizontal nodal diameter mode (referred t o  as  mode P )  and the vertical  nodal 
diameter mode (referred t o  as  mode Q ) .  I n  a given TETRA model, there can be a 
maximum of two f lex ib le  bladed disks,  and these f lexible  bladed disks must be 
located on the same rotor. See reference 2 for  a detailed discussion o f  the two 
nodal diameter modes and f lex ib le  bladed disks in general. 

The equations for  the displacements and s t resses  a t  a local p o i n t  on f lexible  
bladed disk number 1 or 2 (from reference 2 page 11 and 21)  are: 

U =  -( u ~ s i n \ V +  Q m s ~ )  

P s i n V + Q m s Y  

where: 

\ I 

s, = ( P  sin + Q cos VI) 

P sin Y + Q cos Y 

U = tangential displacement of the local point on the f lex ib le  bladed disk 

U = input s t a t i c  (zero speed) mode shape for  tangential translation of the 
- 

local point on the f lexible  bladed disk 

V = axial displacement of the local point on the f lex ib le  bladed disk 

- 
V = input s t a t i c  (zero speed) mode shape for  axial t ranslat ion o f  the 

s~ = f i r s t  s t r e s s  component of the local point on the f lex ib le  bladed disk 

local point on the f lexible  bladed disk 

- 
s, = 

s, I 

s, - = 

s, = 

s, = 

- 

- 

input modal s t r e s s  for  the f i r s t  s t r e s s  component of the local p o i n t  
on the f lexible  bladed disk 

second s t r e s s  component of the local point on the f lex ib le  bladed 
disk 

input modal s t r e s s  for  the second s t r e s s  component of the local p o i n t  
on the f lex ib le  bladed disk 

third s t r e s s  component of the local point on the f lex ib le  bladed disk 

input modal s t r e s s  for the third s t r e s s  component of the local p o i n t  
on the f lexible  bladed disk 
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P = generalized displacement for  the horizontal nodal diameter mode of t h e  
f lexible  bladed disk 

Q = generalized displacement for  the vertical  nodal diameter mode o f  the 
f lex ib le  bladed disk 

Y = polar angle of the local p o i n t  on the f lex ib le  bladed 
disk 

The polar angle of the local p o i n t  on the f lex ib le  bladed disk i s  
found from: 

Y = Q t + Q  

where: 

Q = f lex ib le  bladed disk rotor speed 

t = time 

CP = input polar angle of the local point on the f lex ib le  bladed disk 
re la t ive  t o  the f lex ib le  bladed disk reference diameter (see i n p u t  
sheet C-15) 

Also, for  a steady s t a t e  analysis run we can express the generalized 
displacement of the P and Q modes in terms of magnitude and phase angle as 
fol 1 ows : 

P = P m m s '  0 a t - z p  

( Q = 8'" cos at - C q )  

where the magnitude and phase angle for  the P and Q modes are calculated j u s t  
l ike  those of the other generalized displacements (see section 6 . 1 ) .  

Plugging the expressions for  Y, P, and Q into equations. 68 through 7 2 ,  we a r r i v e  
a t  f a i r l y  complex expressions for  the displacements and s t resses  a t  a local 
point on a f lex ib le  bladed disk: 
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n 

We can define the magnitude portions of these expressions as 
foll ows : - 

U r n =  UP" - P 

4 

P 

Q 

Urn= UQ" - 
V"= VP" 

V m =  VQ" 
- 
- 

s;= s, P" 

s;= s, P" 

s;= s, P" 

- 
S z =  S, Q" 

- 
- 

S E =  S, 8" - 
- 

s:= S, 8" 

It i s  these magnitudes that are printed out and written onto the plot file for a 
steady state analysis run. 

Substituting the magnitude quantities into the expressions for the displacements 
and stresses at a local point on a flexible bladed disk we get: 

u=  ( i " m s ( a t - < p ) s i n ( * t + O ) t  P u ~ c o s ( o t - < p ) m s ( R t + @ )  
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8.0 CONCLUDING REMARKS FOR VOLUME 1. 

T h i s  volume documents t h e  methodology f o r  t h e  s teady  s t a t e  s o l u t i o n  
i n c o r p o r a t e d  i n  TETRA 2 .  
unders tand ing  o f  i t s  developments f rom t h e  e s s e n t i a l s  o f  t h e  t h e o r y ,  t o  t h e  
a c t u a l  a p p l i c a t i o n s  t o  engine dynamics and t o  t h e  programmed work ing  
equat ions.  
t h e  case o f  t h e  i n t e r m i t t e n t  rubs.  

It i s  w r i t t e n  t o  p e r m i t  a s t r a i g h t f o r w a r d  

These a l s o  i n c l u d e  t h e  t rea tment  o f  n o n l i n e a r  elements and 

It i s  in tended t h a t  t h i s  volume should be a s e l f  con ta ined d e s c r i p t i o n  
o f  t h e  e n t i r e  t h e o r y ,  as w e l l  as an accompaniment t o  t h e  second volume. 

Volume 2 i s  t h e  u s e r ' s  manual which c o n t a i n s  b o t h  program i n p u t / o u t p u t  
d e s c r i p t i o n  and t h e  t r i a l  o r  sample i l l u s t r a t i v e  cases. 
documentat ion o f  t h e  p r o g r e s s i v e  s teps t h a t  were taken t o  debug and check 
t h e  program, f rom simp1 e degenerate cases t o  t h e  t w i n  spool  engine model. 
T h i s  volume i s  a l s o  in tended t o  be a s e l f  con ta ined u s e r ' s  manual. However, 
t o  t h o s e  i n t e r e s t e d  i n  cross-check ing program w i t h  theory ,  Volume 1 w i l l  
be necessary.  

The l a t t e r  i s  a 
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