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NOTATION 

EV Evolute 
INV Involute 
A Wavefront 
c2 
si ,  - s, 
N Normal to a surface 
LC,, LCZ Lines of curvature 
E , ,  E2 Characteristic directions (eigenvectors on a wavefront) 
ki, kZ Characteristic values (eigenvalues), principal normal curvatures 
KN. KG. KM Normal, Gaussian, and mean curvatures 
x = (x, Y, z) Generic parametric surface coordinates 
x., X" Tangents to a surface 
XUU, X"", X"" Tangent rates 
E, F, G Coefficients of the First Fundamental Form 
e, f, g or L, M, N Coefficients of the Second Fundamental Form 
Xi Coefficients associated with ki, ei 

Azimuthal angle in Euler's Theorem k, Nv Derivatives in Rodriques' formula 
R21, R22 Principal normal radii of curvature (Flux-density context) 
F a 1 - d ~ ~  Flux-density 
dip $i Angles of incidence on deflector and receiver 
a,, a1, a2 Coefficients of the Flux-density formula 
r2 Distance from reflector to observer (Flux-density formula) 
F Focal length of a paraboloid 
Y Reflector surface 
6 ,  Wavefront aberration along normal to Gaussian sphere (GS) 
67 Reflector distortion 
OPL Optical path length 
HI, n1, n3 

c1, cz Centers of curvature 
rl, rl 
W11tn,  l m t n ,  n Aberration coefficients 
11, 11, 1s 
i- Azimuthal variable 
U Radial variable 
C Radius of Gaussian sphere 

Caustic surface of two branches (wl, wl) 
Incident and reflected rays 

- -  
- - -  

Planes associated with a Darboux frame 

Edges of regression (space curves) 

Optical invariants (h2, d, h u cos t) 

PRECEDING PAGE B L A m  NOT FILMED 
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ANALYTICAL CAUSTIC SURFACES 

INTRODUCTION 

The study of caustic surfaces is rooted in antiquity. “One of the earliest discoveries in optics (F. Maurolycus, 1575) 
was that the rays of a normal system are tangential to a surface, the so-called caustic surface, and that the general ray 
is tangential to the caustic surface in two points,” Ref. 1, p. 156. The study of caustic surfaces persists to the present. 
“Thorn himself observed that a usual interpretation of his theorem on the classification of singularities of gradient 
mappings as elementary catastrophes were the so-called caustics.” Ref. 2 (1982), p. 1080. A great amount of material 
on caustics can be found between the discoveries of Maurolycus and the observation of Thom. Many statements per- 
taining to caustics stir the imagination; some are provocative. For example, the caustic has been described as “a zero, 
one-, or two-djmcnsional manifold in every neighborhood of which more than one ray of any infinitesimal tube of the 
field passes through some point,” Ref. 3, p. 326. In geometrical optics: “The envelope to a family of rays reflected 
from some surface is called a caustic, and the Hilbert integral along an envelope degenerates into a variational in- 
tegral,” Ref. 4, p. 79. From differential geometry: “The center surfaces are the loci of the centers of principal (normal) 
curvature on the surface,” Ref. 5, p. 94. The caustic surfaces are usually associated with focusing, Ref. 6, p. 259. 

The objectives of this document are limited to a discussion of several alternative means for obtaining analytical 
caustic surfaces and the exploration of wavefronts and caustics of a general form that derives in a natural way via 
aberration theory, An overall appreciation of the structure of this document may be obtained from Figure 1. A family 
of lines defining the caustic surfaces is obtained analytically from rays via the law of reflection, perhaps the simplest 
and most familiar approach. Introduction of the optical path length, in conjunction with the law of reflection, leads to 
the wavefront approach. Procedures based on differential geometry permit the analytical development of center sur- 
faces, or caustic surfaces, as a set of points via wavefront normals and principal normal curvatures (kl, kl). A flux- 
density algorithm obtains an equation for the caustic surfaces in terms of the intrinsic Gaussian, mean, and normal 
curvatures (KG, KM, KN) of a reflector by exploiting a singularity of the formulation. This approach allows the mapp- 
ing of contours of equal flux density and the imbedding of the caustic surfaces. A second method that leads to 
parametric equations of the caustic surfaces uses a tensor algorithm that regards only the source and the reflector, to 
the exclusion of the wavefront. 

The practical or applications aspect of “Analytical Caustic Surfaces” is implicitly contained in Figure 1. It can be 
seen that provision is made for a distortion of the reflector, resulting in a distorted wavefront. Alternatively, an 
idealized wavefront may be assumed at the outset, and caustic surfaces may be obtained after superimposing combina- 
tions of many types of appropriately weighted classical wavefront aberrations. Sources (8,) may be generalized to 
represent converging, diverging, or planar types, and superposition of sources is allowed under the flux density 
algorithm. Intermediate media, between source and reflector, may be treated as a modification of the illumination 
block of Figure 1. 

The relationship between rays, wavefronts, and caustics is illustrated for convenience in two dimensions in Figure 
2 and initial discussion is in terms of involutes and evolutes. Actually, the latter are defined for space curves in three 
dimensions as follows: 
(1) The evolute of a curve is the geometric locus of the centers of curvature of a curve. Ref. 7, p. 58 
and 
(2) The involute of a curve lies in the tangent surface of that curve and intersects the tangent lines orthogonally. Ref. 

Rays are seen to be orthogonal to wavefronts and tangent to the caustic curve. The arc distance SI2 on the caustic 
equals the tangent distance from the wavefront to the caustic. It is therefore the inverse of the curvature at every point 
of the wavefront. The evolute of the wavefront is the caustic. The involute of the caustic is the wavefront. The 
wavefront is not unique and depends on the choice of an initial point of the caustic. Bertrand curves are recalled. Ref. 
8, p. 98 

8, p. 84. 

INV(0) = A 

Generation of Figure 2 is made easy since the caustic (Q) was taken to be a circle for which a closed-form expres- 
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Sr (TANGENT RAY TO CAUSTIC, ORTHOGONAL TO WAVEFRONT) / -  

Figure 2. Rays, wavefronts and caustics. 
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sion of arc length is available. This in turn provides the radii of curvature of A directly. The example is a particularly 
good one since a portion of the Tschirnhausen cubic is nearly circular. The latter curve is a cross-section of the caustic 
surface for off-axis plane-wave incidence on a parabolic arc. Background material on the derivation of this cubic 
curve is found in Ref. 9 and Ref. 10. Figure 3 illustrates the formation of Tschirnhausen’s cubic by tangent rays and is 
a point of departure for developing analytical three-dimensional caustic surfaces of paraboloids and other reflectors 
under various assumptions regarding illumination and distortion. 

The objectives of this document are brought out in greater detail in Figure 4. Representative wavefronts (A) and 
their associated center or caustic surfac_es (wl, wz) are shown without any reflector surface (7) or illuminating rays (s,). 
Since the system of the reflected rays (S,) is orthogonal to the wavefront (A), the wavefront normals and the reflected 
rays are co-directional or at most anti-directional. The rays (3,) are tangent to the caustic branches (a1, up). An 
analytical means of determining the caustic surfaces may therefore be reduced to the problem of finding the wavefront 
normals (a), a family of lines in three-dimensional space. Alternatively, the caustics may be found as a set of points, 
using the definition of a center surface, if the extrema (kl, k2) of normal curvatures (k) can be found at every point P 
on the wavefront A. Standard methods of differential geometry are employed to obtain both the unit normals (R) to a 
surface (F), via the un-normalized tangents (Z”, ZJ, and the principal normal curvatures (kl, kJ. These methods also 
permit the writing of equations, practical closed-form expressions, to describe the caustic surfaces analytically in 
many cases. An advantage of obtaining the caustic surface equations is that they may in turn be analyzed for cur- 
vature. 

An objective of this document is to include wavefront aberrations and pursue the analysis when the tangentst, and 
t, are no longer Orthogonal, and all terms of the first and second fundamental forms of differential geometry are dif- 
ferent from zero. The directions of the principal lines of curvature (LC,, LCI) imply orthogonal vectors (eigenvectors) 
associated with the principal normal curvatures (eigenvalues) and principal centers of curvature (C,, C,) in Figure 4. 
The vectors R, VI, F1 then constitute an orthogonal moving triad on the wavefront (A), and the pairs of vectors (R, Zl), 
(a, sl) identify with (principal) planes of curvature.2 All of the preceding discussion pertains to the formation of 
caustic surfaces from a wavefront using standard methods of differential geometry to obtain the characteristic values 
(kl, k,) and the normal (N) of the latter surface. 

Similar techniques may be applied directly to a reflector surface instead of a wavefront to obtain the caustic sur- 
faces. Characteristic values and surface normals are required as before. The stipulation of an incident ray (%) and the 
reflector normal (R) defines a plane of curvature intersecting the reflector and therefore a normal curvature (KN), not 
necessarily a principal normal curvature. The characteristic values (kr, k,) of the reflector determine the Gaussian (KG) 
and mean (KM) curvatures. An existing analysis, predicated on these intrinsic curvatures (KG, KM, KN) of the reflector, 
provides both flux density and caustic information through exploitation of a singularity of the formulation, as men- 
tioned, previously. Standard methods of differential geometry may therefore be used in conjunction with alternative 
theories for obtaining caustic surfaces. 

’ Once the nodal cubic has been identified it may be rewritten in parametric form as 

x = 3a(t‘-3) , y = at(t’-3) , 

from which the expression for arc-length, 

S = at(ta+3) 

follows. 

a The triad is called a Darboux frame for surfaces, and is the analogue of  Fresnel’s frame ( t ,  n, b) for space curves. Ref. 14, p. 210; Ref. 5 ,  P.  261. 
- - -  
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Figure 3. Tschirnhausen’s Cubic (caustic arc) for Oi = loo. 
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R, = kl-' I 

Figure 4. Center Surfaces ( wl, w2) o f  a wavefront (A) .  
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CENTER SURFACES 

A review of the theory of center surfaces is useful before setting out to find the surface normals and principal nor- 
mal curvatures of either wavefronts or reflectors. From the three fundamental equations of differential geometry, 

the normal curavature is defined as 

I1 -dsI dff - edu’ + 2f du dv + gdv2 k =-= 
I dSI dsI E d u 2  + 2F du dv + Gdv2,  

where the surface is: 

9 (7) 
- 
x = q u ,  v) 

and the surface normal is 

N = N(u, v) (8) 

Results obtained for principal normal curvature may be verified using Rodriques’ formula since it characterizes the 
eigenvectors. 

- 
dN = -kdE (9) 

In the preceding, 

and 

Here 

and 

E = XU . XU, F = ?ZU . Xv, G = Xv Xv 

e = L = -(XU Nu) = (Xuu XU XV)/(EG - F*)”’ 

f = M = - (XU . NV + XV . NU) = (XUV XU XV)/(EG - F * ) ~ / ~ .  

g = N = -(Rv Nv) = (XVV XU XV)/(EG - F’)”’ 

since 

x u  . N = 0,XV N = 0 9 

7 



and 
- xu Rv = kv R" 

The (E, F, G) and (e, f, g) are coefficients of the first and second fundamental forms. 

in Figure 4. 
The unit surface normals are obtained from a cross-product of tangents, not necessarily orthogonal, as indicated 

Letting 

A = dv/du 9 

the normal curvature of a surface becomes 

e + 2fA + gA2 
E + 2FA + GX2 

k =  

! The extrema of k are characterized by 

dk/dX = 0 7 

so that 

; i  = 1,2 I1 f + gAi e + f x i  

I 
k, =-=-- 

F + GA-E + FA, 

See Ref. 5 ,  p. 80; Ref. 21, p. 287. 

The A, may be found from 

A, + A2 = -(Eg - Ge)/(Fg - Gf) 

A, A2 = (Ef - Fe)/(Fg - Gf) 

(23) 

(24) 

See Ref. 4, p. 142 
I The principal directions (eigenvectors) associated with the principal normal curvatures (eigenvalues or 

characteristic values) are given by 

(25) 
- 
ei = (XU + XVAJ/H, , i  = 1,2 

where 

Hi3 = E + 2F Ai + GAj2 9 (26) 

and are always orthogonal since 
- 
el F2 = (Xu + Xv A,) (Xu + %v A2)/HlH3 

= [E + (A, + A2)F + XIAzG]/HiHz = 0 

8 



The normal curvature in an arbitrary direction takes the form 

k = k, cos’ a + k2 sin’ a 9 

and is known as Euler’s theorem. 
The derivatives h ,  Rv appearing in Rodriques’ formula are given by 

- f F - e G -  e F - E -  
Nu = x u  + xv 

EG - F2 EG - F2 

and 

gF - fG gu + fF - gE - 
EG - F2 

Rv = x v  
EG - F2 9 

and are known as the Weingarten equations. Ref. 5, p. 108. 
A normal curvature (k) is a principal normal curvature (k,, k,) if and only if k is a solution of the quadratic 

(EG - F’) k2 - (Eg + Ge - 2Ff) k + (eg - f2) = 0 (31) 

Ref. 8 ,  p. 183. 

Since the roots of this equation are 

(Eg + Ge - 2Ff) * J(Eg + Ge - 2Ff)’ - 4(EG - F2)(eg - f2) ki = 9 

2(EG - F’) 

the mean curvature is 

Eg + Ge - 2Ff - k, + k2 KM = -- 
2(EG - F2) 2 

and the Gaussian curvature is 

(33) 

< 

so that Equation (28) may be rewritten as 

k2 - 2 K ~ k  + KG = O  (35) 

The surface normals along a line of curvature are tangent to two space curves, or edges of regression, at distances 
k,-l and k2-I from a point (P) of a given surface. Ref. 5, p. 94; Ref. 21, p. 25. Lines of curvature are always or- 
thogonal. Center surfaces (caustics of two sheets) are the loci of the centers of principal normal curvature of a given 
surface (wavefront). Figure 4. 

The points on a surface are classified as follows: 

Elliptic: eg - f2  > O  - 
Hyperbolic: eg - f’ < 0 - KG > 0 

KG < 0 
(36) 
(37) 
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Parabolic: KG = 0 
Planar: e = g = f = O -  KG = 0 
Umbilical: 

eg - f2 = 0 and e’ + f2 + g2 # 0 - 
k = -=-=- e = constant for all directions 

E F G  

Ref. 8, p. 177- p. 184; Ref. 16, p. 96; Ref. 6, p. 261 
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CAUSTICS FROM DISTORTED WAVEFRONTS 

The computational route for obtaining caustics as a set of points from a distorted wavefront is now presented in 
some detail. A cylindrical net or (a, I;) parametrization is used to describe an idealized spherical wavefront. Aberra- 
tions are then introduced along the normal of a Gaussian wavefront and, alternatively, parallel to the system axis 
when appropriate to achieve simplification of the expressions. Since caustic information is to be obtained as a set of 
points belonging to center surfaces, machine computations are anticipated at an early stage. The partial derivatives 
h ,  Rv, Ruu, xuv, Xvv are lengthy, but usually manageable algebraic forms. Forming E, F, G analytically involves 
vector dot-products. Forming e, f, g involves both vector dot- and cross-products. The latter are not developed 
analytically. 

A physical picture associating reflector, wavefronts, and caustic (w,) is given as Figure 5. The wavefronts (A,) cor- 
respond to reception of a 10-degree plane wave by a paraboloidal reflector, and are illustrated in two dimensions only. 
Caustic analysis will, however, be in three dimensions throughout this document. Figures 2 and 3 are closely related to 
Figure 5. The cusps of the wavefronts appear to lie on the caustic; this observation is not explored here. Direct deter- 
mination of the center surfaces or caustics of wavefronts such as A,, A2, & is sought for a large class of problems. 
Figure 5 represents a specific choice of source and surface and is included here for illustrative purposes only. 

Introduction of the Oauss/Seidel aberrations of degree 2/4, to the exclusion of the Schwarzschild aberrations of 
degree 6 and other aberrations, is arbitrary. The method of center surface determination is not restricted to these 
classic aberrations; they simply provide a useful set of examples encountered in optics and microwaves. The Gaussian 
sphere may be associated with the class of problem8 that regards circular apertures, It ir replaced, for ether 
geometries, by conformable reference wavefronts. Cylindrical and toroidal geometries are examples where the Caus- 
sian sphere is inappropriate. Ref. 17, Ref. 18. 

Appendix A and Appendix B Contain the details pertaining to distorted wavefronts for the GausdSeidel aberra- 
tions when perturbations are directed parallel to the system axis (Z) or along the normal (N,) to the Gaussian sphere, 
respectively. The latter case is illustrated in Figure 6. It can be seen that the set of normals for I; equals a constant on 
the Gaussian sphere is coplanar. This is not necessarily true for the corresponding set of normals on the distorted 
wavefront. As a result, a planar arc on the Gaussian sphere maps to a pair of three dimensional space curves or edges 
of regression lying on the caustic surface branches (al, a2). A caustic surface may be represented by a sufficiently large 
number of such curves (r) in (x, y, z) space. A single curve may be dealt with by considering projections onto the plane 
I; equals a constant and a plane orthogonal to it by forming 

A 
Ri,z k = Ri,z i g A  (O,O, 1) 9 (41) 

Rl,z IS! = R1,z lR,, (- sin {, COS {, 0) Y (42) 
- - - 

R1,2 i N A  ,N I = Rl,2 iNA (cos {, sin {, 0)  9 (43) 

where ,R,, i f t i  , lR I, are unit normals to the distorted wavefront (A) and the projection planes, respectively. Here 
R,,, are the principal normal radii of curvature. 

Three dimensional isometric representation of the caustic surface branches (al, wz) is to be preferred to the projec- 
tion described above. 

1 1  



- 
Figure 5 .  Reflector (y), Wavefronts (A), and Caustic (al). 
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CAUSTICS FROM FLUX DENSITY SINGULARITIES 

Caustic sutfaces may be dbtained from an algorithm that permits the Compdtation Of flux density at generic field 
points with the exception of the caustic coordinates. Refs, 11, 12, 13. In fo rma th  regritding the caustics ig abtairied 
by exploiting a singularity of the flux-density forniulatiori 

The denominator of equation (44) i B  set equal to cero, and the resulting quadratic is solved for distatrccs ki, Riz along 
a reflected ray, Wavefronts do not m e t  explicitly, and caubtics are obtained under this approach ih terms of the in- 
trinsic Gaussian, mean, and normal curvatures (Ka, & KN) of a deflector surfade and a specified source of illurninah 
tion, KN is determined by the intersection of the plane fornidd by the deflector normal and the incident ray with the 
deflector surface. 

In the preceding equation CR,r is a reflection or trrnsmission coefficient associated with P deflector, I is the h a =  
diance due to a source, (pl and are angles of incidence on the deflector and receiver, respectively. For the present 
discussion, reflectors only, 

, 
The coefficients a,, uI,  tz2 for reflection hi-e 

~a = 4Ko COS qf -2(2Kh1 cos* g, + KN sin2 q,)/(rl) + cos qi/(r,)2 (48) 

Several specializations ate made for the discussion that follows, Incidence on a planar receiver (film) is not an- 
ticipated, therefore the factor cos $, is set to unity to obtain the flux-density field. Reflection is assumed to be perfect 
and irradiance is arbitrarily taken to be unity also. For illumination by a plane wave, the distance (rl) from source to 
reflector is unbounded so that the following simplification is achieved: 

I cos 9r (49) 
FdSl-dS1 - ’ . 

1 cos g, -2(2 b cos2 q, + KN sin1 (p,) rt + ~ ( K o  cos qi)ra’ 1 

(2 KM COS’ (pi + KN SinZ 9‘) f 4(2Kb1 cos’ 9, + KN sin’ pi)’ - 4Ko cos2 (pi (50) 
r2 = RZI, Rzz = 

4Kc COS pi 

The utility of the flux-density method may be demonstrated by several examples. Consider the paraboloid and, 
following the sign conventions of Ref. 11, take the principal normal curvatures of the refelctor surface to be 

- 4F’ 9 (51) k, = 
(4F’ + ~73”~ 

I and 

using standard procedures of differential geometry. Ref. 17, Ref. 5. 

I 14 



When a plane-wave is axially directed upon a paraboloid rotational symmetry exists snd 

KN = kl 

for every planar cut containing the system axis. From this 

and 

It can be shown that 

4F’ 
4F’ + a’ cos’ ‘ P I  =- 

and 

a’ 
4F’ + a’ sin’v, = 

so that the radical of equation (SO) vanishes, The roots of rl are then equal. 

(4F’ + a‘) 
4F = IRaI = (RzzI = 

Recalling the equations of a parabola 

and 

lz I 
(ul + 23”’ 

cos2 ‘ P r  = - , 

(53) 

(54) 

(56) 

(57) 

the result 

P = lrll (62) 

can be shown. The interpretation is that all I r2 I, directed along a reflected ray, terminate on the focal point of the 
paraboloid. That is, the caustic surfaces wI and w1 degenerate to point caustics that are congruent with the focus (F), in 
the present analysis, for an axially-directed plane-wave source. See Ref. 6, p. 259. 
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I When the incident plane wave is not axially directed, equation (50) is evaluated. For every value (a) of the radial 
net the local incidence angle (pi)  at y may be found using 

- - - -  
(INTI (- ]Si) = INy Si = COS pi 
(concave side) (convex side) 

where both 
An xz-plane cut through the caustic surfaces wI, w2 for a 10-degree plane wave source is shown in Figure 7. Tschir- 

nhausen’s cubic (wl) is recovered directly, without any representation of the received wavefront as a set of points along 
the reflected rays &). A second caustic branch (w2) is also obtained here, and Figure 7 should be compared with 
Figure 3. The set of reflected rays in the xz plane of Figure 3 did not provide any information about caustic branch 
(w2) ;  the three dimensional representation is required. 

Figure 7, for the paraboloid, may be obtained by plotting RZI ,s, and Rzz ,s, from reflector (y) to caustic sheets (a1, 
w2). The RZJ, Rzz are effectively eigenvalues of latent wavefronts which intersect (y) at every (a, t) pair. See Figure 5 .  A 
more expedient approach is to plot vectors 

and ,si are unit vectors. 

(64) 
- x(wJ = Z(P) - (Rzi) 

l and 

from the origin (0). Similarly, the coordinates of a computed flux-density (FD) may be written as 

(66) 
- x (FD) = X(P) - (R2) 13, 

If R2 is adequately subdivided (AR2 small), the contour mapping problem of the authors Burkhard and Shealy may be 
relieved by forming a “look-up table” for each ray CIS,) so that preselected values may be located directly. This ob- 
viates the need for interpolation estimates minimizes errors, and is readily adapted to automatic plotting methods pro- 
viding computation time is not excessive. 

Figure 8 shows the overall flux-density picture with condensing and diverging pseudo-spherical waves. The depar- 
ture from a Gaussian sphere is dominated by a linear phase gradient of weight (will) and a comatic aberration gradient 
of weight as described in Appendix B of this document. In the flux-density approach the distorted wavefront per 
se is never identified. 

Figure 9 shows the flux-density picture in the vicinity of the caustic surfaces (wI, w2) as seen in the (x, z) plane. It is 
particularly important to identify the ray bundle associated with the flux-density mapping and the intercepts of the 
bounding rays of that bundle with the caustic curves. Within t_he ray bundle there is a region where flux-density values 
superimpose. The introduction of rays outside of the bundle ( S I / ,  s , I / )  enlarges that region. See Ref. 6, p. 259; p. 262. 

When an axial plane wave illuminates a portion of a sphere the results are not as degenerate as for the paraboloid. 
A pseudo-focus appears at (O,O, -c/2), a line caustic (a2) forms, and a surface caustic (w2) may be associated with a 
nephroid generating arc rotated about the reflector (z) axis. Figure 10. With paraxial reception, the primary difference 
is a rotation and translation of the caustic surfaces with some distortion (Figure 11). It is often instructive to trace the 
progression of the points :(a,), F(wJ as radial variable (a) is updated for some azimuthal value (t) on the reflector (7). 
A mapping of the flux-density for the sphere with inclined incident plane wave is given as Figure 12. Condensing and 
diverging waves are seen here also, but the fine-structure in the vicinity of the displaced pseudo-focus differs greatly 
from the previous paraboloid example. 

Although this document is primarily concerned with identifying the means for obtaining caustic/flux density infor- 
mation, and verifying some of the formulation, the practical implications for microwaves and optics are also of in- 
terest. The paraboloidal and spherical reflector examples were selected because of the wide application of these sur- 
faces as focussing or collecting devices. Caustic analysis appears to offer an economical means for obtaining high- 
frequency focal region information in three-dimensional space. The analytical generation of coordinates for two 
caustic sheets, with varying degrees of degeneracy, provides insight not readily obtained by the tangent approach 
found in many textbooks and journal articles. Annexation of flux-density greatly enhances the value of the classic 
caustic analysis of wavefronts. Extensions to edge-diffraction, including various approaches such as the geometrical 
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Figure 7. Caustic Surfaces from Flux-Density Singularities (Paraboloid F = 1 .O) 
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Figure 8. Caustic Surfaces and Flux-Density (Paraboloid F = 1.0) 
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Figure 9. Caustic Surfaces and Flux-Density (Paraboloid F = 1.0) 
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Figure 10. Caustic Surfaces from Flux-Density Singularities (Sphere C = 1 .O) 
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Figure 11. Caustic Surfaces From Flux-Density Singularities (Sphere C = 1 .O) 
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Figure 12. Caustic Surfaces and Flux Density (Sphere C = 1.0) 
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theory of diffraction (OTD) and the uniform asymptotic theory of diffraction (UTD), lie beyond the scope of the pre- 
gent discussion. Ref. 24, pp. 67-1 19. Also, the caustic approach is not placed in competition with other means for ob- 
taining focal-region information (Le. physical optics for example). An example of such a comparison may be found in 
Ref. 25, p. 477. Also see Ref. 30, p. 266 for the fine structure of a cusp caustic and Ref. 6, p. 263 for examples of 
smooth and cusp caustics. 

The interested reader may wish to review the design of a line-feed built by the Cornell University Center for 
Radiophysics and Space Research for the 1000-foot spherical reflector of the Arecibo Ionospheric Observatory in 
Puerto Rico. Refs. 22, 26, 27,28. Additional information on a line-source corrector for a large spherical reflector is 
found in Ref. 29. It is noted that every point of the nephroid (a,) in Figure 10 is the result of the intersection of two 
rays, and that every point of the line caustic (a2) is the result of the intersection of a cone of rays. Ref. 23, p. 118. The 
implications of the number of ray intersections at various points in the focal region (cusp of a caustic) with respect to 
field values is discussed in Ref. 31, pp. 1331-1358. Details pertaining to the electromagnetic diffraction in the focal 
region of a spherical mirror under oblique illumination may be found in Refs. 32, 33, and 34. 
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CAUSTICS FROM A TENSOR ALGORITHM 

A method of obtaining the equations of caustics by means of a “tensor” algorithm has been found in the literature. 
Ref. 19. The cited source does not contain the derivation of the method. It asserts that 

vectorially. Here p is a scalar, Xi is a unit vector along a reflected ray, xi is a vector to the reflector y, and Xi is a vector 
to the caustic (n) of two sheets or branches (wl, w2) as illustrated in Figure 13. 

The central problem is to find, explicitly, an equation giving the distance (p) to a caustic (Q) that is known in terms 
of a family of tangent rays (3,) from a reflector (7). An equation is given in Ref. 19 for the unknown distance 

together with tensors 
ax: %x: 

and 

In Ref. 19, for the paraboloidal reflector, 

are radial and azimuthal variables of an orthogonal (cylindrical) net, and an inclined plane wave is assumed to be the 
source of rays <si>. 

The reason for introducing the second-rank tensors gap and G is obscure, and may have been merely a desire 
for a compact expression for distance (p), but this is speculation. A erivation of the present method of obtaining the 
equation of a caustic surface directly from a specification of the source and the reflector, without introducing the no- 
tion of flux-density, is given below. Beginning with equation (67), 

dSIi = dxi + d(pXi) 

Since Xi is a unit vector, 

Xi dXi = 0 = dSli dXi 3 

and 

From this, 
axi dui  t p axi d u i  + axi + axi -1 a u2 ‘ [- aU,  - du2 a U l  du2 a u 2  

-- - axi d u i  + axi 
a u ,  du2 a u 2  
-- - 

(a = 1,2) 

= o  

(73) 

(74) 

(75) 
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Figure 13. Caustic Surfaces from a Tensor Algorithm. 

25 



In compact notation, 

If the ratio (dul/dua) is to have only one value, 

(&I + P G ~ I  + gia + ~ G i a ) ’  - 4(g11 + pG11) (gza + ~ G a a )  = 0. 

For the paraboloid with off-axis plane-wave, 

Gia = Gii 

and 

(77) 

(78) 

g1, = 811 = 0 (79) 

The last equation:islattributed to the existence of a normal rectilinear congruence in Ref. 19, but appears to be due to 
the selection of an orthogonal (p,@ net. 

Applying both equations, (78) and (79), the simplification obtained for this specialization is 

and a quadratic in (p) is recovered: 

The roots of the preceding quadratic, 

p = PI, pz 9 

are not radii of curvature, but they stretch or compress the unit vector Xi (or to locate points of the caustic bran- 
ches (wI, w,). In this respect (p) is operationally identical to (R2), associated with the flux-density singularity and 
discussed previously. The derivation, above, circumvents an assumption of Ref. 19 that there exists a dul and, in- 
dependently, a duz such that utilization of equation (75) yields the equal lengths (p). Introducing the ratio (duJdu,) 
results in the same quadratic in (p) obtained in Ref. 19, but admits a simultaneous pair dul, du, and avoids 
“eliminating” these factors in a separate operation. 

A specific result that utilizes the preceding method is given in Appendix C of this document. The equation for the 
caustic surfaces is obtained for a paraboloid illuminated by an off-axis plane wave. 
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CONCLUSION 

The present document has discussed several methods for determining analytical caustic surfaces. It was shown that 
the mapping of focal regions is an extended study of surfaces including the source or incident wavefront, the reflector, 
and the reflected wavefront in addition to the caustic surfaces, themselves. A review of the classical three-dimensional 
treatment of center surfaces, as applied to distorted wavefronts, was augmented by the flux-density analysis. The lat- 
ter, predicated on the Jacobian of a mapping, obtained the caustic surfaces directly from a specification of the il- 
luminating function and the reflector, to the exclusion of an identifiable physical wavefront. Only the intrinsic Gaus- 
sian, mean, and normal curvature, associated with the incident ray, were required to obtain both caustic branches by 
exploiting a singularity of the flux-density equation. 

This effort progressed until it became apparent that a second document would be needed to display isometric views 
of the caustic surfaces. The computational aspects of the problem have been dealt with using the TURBO PASCAL 
language, but a need for automatic plotting capability with a “hidden-line” feature seemed essential to enhance presen- 
tation, reduce the amount of labor, and guard against human error. An extension of the wavefront approach to a 
Gaussian sphere, rather than a hemisphere, is also being implemented. A discussion of multiple reflection, or higher 
epicycloids, previewed by both the paraboloidal and spherical reflector examples presented here, has been deferred to 
a second document together with such topics as multiple and extended sources. The latter raises the question of 
relative phase,and the phase of the caustic surfaces in general. Speculation regarding “intersecting” and “nearly- 
intersecting” ray density,and other controversial subjects, were also set aside to keep this paper within reasonable 
bounds. 
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APPENDIX A 
Gauss/Seidel Aberrations (Parallel Distortion of Gaussian Wavefront) 

x = u sin 5 9 y = - u c o s ~  

- 9 1 1  132 
- O040 122 
- O222 I3 
- O220 I1 I2 
- O131 '2 '3 
- O311 '3 '1 

(Gaussian Sphere) 
(axial focus) 
(transverse focus) 
(spherical) 
(astigmatism) 
(field curvature/Petzval) 
(coma) 

(distortion) ( A 4  

where 

I1 = h2 , I2 = u2 , I3 = h u cos 5 ('4-3) 

Substituting (A-3) into (A-2), the wavefront z-coordinate is given by 

The wavefront tangents are then obtained as 

and 

- 
xv = [ u cos {, u sin {, (all1 h)  u sin { + 2 ( 0 2 2 2  h 2 )  r? cos { sin { 

The second partial derivatives are 

- 
xuu = [ 0,-0, u2 (c2 - 0 3 - 3 ' 2  + (c2 - O2>-% -2(0020) - 12(0040) oz 

- 
x = [ - u sin 5. u cos e, ( q l l  h) u cos 5 + h 2 )  u2 (cos2 - sin2 e )  VV 

t (0131 h)  u3 COS { + (0311 h 3 )  U COS 1 64-9) 
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APPENDIX B 
Gauss/Seidel Aberrations (Normal Distortion of Gaussian Wavefront) 

is taken as the normal to the Gaussian sphere of radius (c). The wavefront coordinates are given by 

x = u sin f t (ao2o) u3 sin f t (all1 h) u2 sin f cos f t (ao4o) sin f - - 
C C C 

t ( ~ 2 ~ ~  h2) d sin f cos2 f + (a220 h2)  (r3 sin 5 + (a131 h) o4 sin f cos f - 
C C C 

t (a311 h3)  c? sin f cos f - 
C 

3 3  

C C 

- (a222 h2) COS f - h2)  u3 cos f - - 

z = - (c2 - u2)% - u2 (c2 - u2fh - (all1 h) u (c2 - u2)' COS f - - 
C C 

- ( w ~ ~ ~  h2) c? (c2 - u2)' - (a131 h) 2 (c2 - c?>" cos 5 - - 
C C 

The wavefront tangents are then obtained as 

xu = [sin f + 3 ( ~ )  u2 sin f + ?(al 1 1  11) u sin 5 cos f + ~((~040) u4 sin 
- 

- - 
C C C 

t 3(a222 t i 2 )  u2 sin f cos' f + 3 ( 0 2 2 0  11') u2 sin f t 4(0131 h) u3 sin f cos { - - - 
C c C 

t - t ' ( a 3 1 1  ]I3) u sin 1 cos 5 
C 
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- cos f - 3(w020) o2 cos f - 9(wlll h) 0 cos2 f - 5(0040) O4 COS f - - 
C C c 

- 3(w222 h2)  u2 cos3 f - 3 ( 0 ~ ~ ~  h2) u2 cos f - 4(w131 h) u3 cos2 f - - - 
C C C 

t 

C J 

L C C 

c c 

t (0222 - I,’) cos2 3‘ u3 (e’ - u y  - 2(= 

c C 

t 112) u3 (e’ - u y  - h 2 )  u - - 
C C 

t h )  cos f u4 (e2 - u2)-% - 3(w131 h)  cos f 2 (c2 - 2)” - - 
C C 

A 
k t ( ~ 3 ~ ~ ~  h3)  cos f (5’ (e2 - u2)-’ - h3) cos f (c’ - dy”] - - 

c C 

- 7 
y v  = [U cos 3‘ t ( ~ 0 . ~ )  u3 cos + (wl ti) u2 (cos2 5 - sin- + ( ~ 0 4 0 )  d cos f - - 

C C C 
e. 

2 t 

ai 

h2)  u3 (cos3 f - 2 sin f c o s  f)  t h 2 )  u3 cos f - 
C c 

- - -t (0131 h)  u4 (cos2 

c C 

sin f t (wo20) u3 sin f t l ( w l I 1  h)  2 sin f cos f +- d sin f - - 
C c c 

7 
t 3(w222 l i2 )  u3 sin cos- t 1i2) u3 sin - 

J 

(B-5) 

t 

c C 
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[ ( U r n  h) (5 (c2 - u2fh sin f + 2 ( 0 ~ ~ ~  h2)  u2 (c2 - u2fh sin { cos { - 
C C 

+ ("131 h) u3 (c2 - 2)' sin { + (0311 h3) u (c2 - 02)' sin { 1; I *  - - 
C C 

t 

The second partial derivatives are 

- - 
xuu - 

+ 2(Wo20) d ( c 2  - &-' -2(W020) (c2 - o2)-" - - 
C C 

+ (al1, h) 0 3 ( C '  - 0 5 - 3 / 2  cos { + ? (WI l1  11) u (c2 - u2)-' cos { - - 
C C 

+ (olll 11) u (c2 - u y  cos { - 
C 

+ 
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t 2(w222 h2) u2 (c2  - $)-” cos2 f -2(w222 h2) (c2 - u2>n cos2 - - 
C C 

C C 

t 2 ( 9 2 0  h2) u2 (c2 - u2)-” - 2 ( 9 2 0  h2) (c2 - d>” - - , C C 

h) d (c2  - u2)-3/2 cos f t 4(w131 h) u3 (c2 - u~)‘” cos 5 (a131 - 
C C 

t 3(0131 h) u3 (c’ - 2)-” COS f - 6(0131 h) u (c2 - COS 5 - - 
C C 

(w h3) u3 (c2 - 2)-3/2 cos f t 3(w31 h3) u (c2 - 2>-“ cos ‘1 f? (B-7) - 
I C C 

t 3 ( 9 2 2  h2) u2 (cos3 f - 2 sin2 f cos f) t 3(0220 h2) 2 cos f - - 
C C 

- t 4(0131  h) u3 (cos2 f - sin2 0 t 2(a31  - h3) u (cos2 f - sin 

C C 

f t 3(a020)  u2 sin f t 4 ( a l l l  h) u sin f cos f t 5((d040) u4 sin 5 - b 

C C C 

t 9(0222 h2)  u2 sin f cos2 f t 3 ( 9 2 0  h2)  2 sin f - - 
C C 

t 8(w131 h) u3 sin f cos f t 4(U3l1  h3)  u sin f cos t - - 
C C 

( a l l 1  h) sin f u2 (c2 - u2)-’ t ( a l l 1  h) sin f (c2 - 2fh - [- c C 

- h2) u3 (c2  - u2)-’ sin f cos 5 + 4(0222 h2) u (c2 - 0’)” sin f cos f - - 
C C 

- (0131 h)  u4 (c2 - u~)-’/~ sin f t 3(a131 h) u2 (c2 - u2)n sin f - - 
C C 
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t 3 ( 0 ~ ~ ~  h2)  u3 (cos3 f - 2 sin2 5 cos f t ( ~ 9 ~ ~  h2)  u3 cos f - - 
C C 

(B-9) t (0131 h)  u3 (c2 - u2fh COS f t (0311 h3)  u (c’ - 2p cos ‘1 Q - 
C C 
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APPENDIX C 
The Caustic Surfaces of a Paraboloid and Inclined Plane Wave 

A complete verification of the caustic equation obtained in Ref. 19 for the paraboloid and inclined plane wave is 
tedious. Some of the important factors are given here for convenience, together with the final result. In Ref. 19, the 
parametric equations of the reflector surface are given as 

- 1 2  x1 - - ( p  - 4u2) 
4a 

x3 = p sin 0 (C-3 1 

s, = si - 2(N Si) ii (C-4) 

The details pertaining to  the reflected ray are omitted entirely here since they are easily obtained from 
- - 

The components of a reflected unit vector are 

- s, = xi = (X1, X2’ X3) = 

8a2 cos cp - 4a p sin 8 sin cp 

4a2 t p2 

- 4a p C O S  e cos cp + 2 p2 sin e COS e sin 

4a2 + p2 

- 4a p sin e cos cp t 2p2 sin2 e sin cp 

4a2 t p2 

t 

t 

t 

and 

From the preceding Xi, the partial derivatives 

axi - ax, - 4a cos cp (p2 sin e tan cp - 4a p - 4a2 sin e tan cp) ’? t 

h 1  a~ (4a2 t p2)’ 

A 
4a cos cp 

(4a2 t p2)2 (C-6) 

(p2 sin e t 4a p sin2 e tan cp - 4u2 sin e )  K 

_ a  

BIPCEDIN&:PAGE BLANK NOT FILMED 
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- - ? + axi -4a  p COS 8 sin cp axi 
al2 ae 4a2 + p2 
- - - -  

4uL pL 

4 u 2  + p2 

P cos cp (- 4a COS 8 + 2 p sin 2 8 tan p) A t  k 

, (C-7) 

give 

G l l  = 

cI2 = G~~ 

= 4p2 [4a2 t p2 - (2a sin e sin cp - p cos cp)2~ / (4a2 + p212 (322 

16a2(cos2 cp t sin2 8 sin2 9) / (4a2 t p2)2 

= BU p cos e sin cp ( p  cos cp t 2a sin o sin cp) 1 (4a2 t p212 

The reflector tangents 

A A - - p sin e J  + p c o s  8 i; hi - 
a u 2  ae - - - -  

together with the partial derivations of Xi, give 

i g l  = 2(p sin e sin cp - 2a COS cp) 1 (4a2 + $1 (C-13) 

(C- 14) 

(C- 1 5) 

- 
g12 - g21 = 0 

I gZ2 = 2p2(p sin e sin p - 2a cos cp) I (4a2 t p 2 )  

The equation for the coordinates of the caustic surfaces of the paraboloid with incident plane wave inclined at an 
angle (cp) is obtained as 

(2a t XI) cos cp 

(2a cos cp - x3 sin cp) 
- - xi - X I  + 

[x2 - 21 Q S  + [x3 - - -  x3 
(2a + xl) sin cp A 

, (C-16) l Q  2a (2a cos cp - x3 sin p) 

where 

y ( L - 1 7 )  

Q = 2a t x1 - cos d x ,  cos cp + x3 sin cp) k (2a + xl) sin cp 

and the point (xl ,  x2, x3) lies on the paraboloid. 
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