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EXECUTIVE SUMMARY 

History of the MPP Working Group 
Practical scientific applications using massively parallel computer hardware first appeared 
on the research scene during the 1980's. Their development has been motivated by the 
need for computing power orders of magnitude beyond that otherwise available today for 
tasks such as numerical simulations of complex physical and biological processes, 
generation of interactive visual displays, satellite image analysis, and knowledge-based 
systems. Representative of the first generation of this new class of computer hardware is 
the Massively Parallel Processor (MPP)', located at NASA's Goddard Space Flight Center 
in Greenbelt, Maryland. Even though the MPP was constructed by NASA specifically to 
process high pixel resolution satellite image data, such as Landsat or Space Telescope 
images, its design also provided for reasonable high-speed scientific computation. During 
this same period, computer scientists were making substantial theoretical progress in the 
development of efficient algorithms for grid-connected array processors. Believing in the 
untested potential of parallel architectures to meet a wide variety of computational 
problems, NASA took the risky step of making the MPP readily available to a diverse 
national community of scientific investigators who were charged with discovering what its 
limits were. 

Through a national solicitation2 initiated in 1984 by NASA's Office of Space Science and 
Applications (OSSA), a pioneering team of 40 scientists3 was provided the opportunity to 
test and implement their computational algorithms on the MPP beginning in the fall of 
1985. By the end of a year, enough interesting results were acquired from these projects to 
warrant convening the First Symposium on the Frontiers of Massively Parallel 
Scientific Computation4 held September 24-25, 1986, at the Goddard Space Flight 
Center. The research endeavors of the MPP investigators span a broad variety of 
applications including Earth science, physical science, signal and image processing, 
computer science, and graphics. The performance of many of these applications on the 
MPP was in the supercompiiter range to well beyond any existing capabilities. 

A majority of the applications implemented on the MPP by the investigators have been 
numerical simulations, and their diversity has drawn national attention to the general- 
purpose capabilities of the MPP's single-instruction-stream multiple-data-stream (SIMD) 
architecture. 

Role of Parallel Scientific Computation 
Since the MPP investigators began their work, a wide variety of coarse grain parallel 
processors have become available in the commercial marketplace. These processors have 
established themselves as having scientific value and are now beginning to permeate all 
fields of scientific computation. 

In this same timeframe, commercial massively parallel computer systems also became 
available and production models were delivered to more than twelve scientific and military 
sites in the United States. We are now witnessing the development of massively parallel 
computer systems, from specialized processors for DoD to those having broad applications 
in the university and commercial arenas. Numerous applications are being developed on 
these commercial machines in areas ranging from fluid simulation and image processing to 
artificial intelligence. They are producing a wealth of the "new intuition" necessary for 
their effective use, and their emergence as inexpensive alternatives to other 
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supercomputers, combined with their ability to be upgraded fairly easily, present 
compelling scientific and marketplace arguments for their accelerated development. Today, 
the need is to build up first hand experience using these systems and to compare and 
document the computational techniques that emerge. 

Findings 

The MPP Working Group made the following observations after 12 months of MPP use: 

1. The Working Group provided a broad range of applications tests for the MPP. 

2. The MPP architecture is suitable for a wide range of applications-much broader 
than initially anticipated. 

3. For certain classes of problems, the MPP's SIMD architecture is easier to program than 
a VAX or CYBER 205. These classes include: 

lattice simulation 
neural network simulation 
image problems 
grid-based fluid dynamic simulation 
systolic VLSI simulation-those where distances are short. 

4. "Data Structure'' parallel algorithms5, a style of parallel implementation distinct from 
"Control Structure" parallel algorithms, are appropriate for the MPP. 

5. The bit serial processing element (PE) architecture of the MPP is good, and can be very 
important for certain applications. One application achieved a speed-up of 16,000 times 
over a VAX. A bit serial algorithm was used. This kind of algorithm is most efficient for 
the MPP and inefficient for machines based on conventional architecture. 

6 .  Surprisingly, finite element analysis, which intuitively was not expected to map well to 
the MPP, runs as fast on the MPP as on other supercomputers such as the CYBER 205 
and CRAY-1. 

7. The MPP is still a national resource-it should be put onto the National Science 
Foundation (NSF) networks. The MPP is the only massively parallel machine available 
over a network. 

8.  The MPP is being used as a tool to design other architectures. 

9. NASA provided people with computer smarts to be the support group to users. This 
situation will persist. The support provided worked well. The difference to-date between 
the MPP and machines such as the CYBER 205, is that the MPP support people had to get 
involved in each investigator's problem. 

10. An MPP user must be dedicated to get results. The machine still requires a high level 
of user sophistication and computing experience. 

1 1. The Working Group stimulated interdisciplinary interactions. Many of its members 
would not otherwise have had access to a parallel machine. 
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12. Because of the magnitude of the problems being run on the MPP, visualization via 
image display is important for tracing the state of programs running in the machine and the 
flow of data. By looking at images, the user can conclude whether or not the processing is 
running correctly. It is an implicit diagnostic/debugger. 

13. The MPP's Parallel Pascal compiler lacks optimization. Currently, it produces code 
that is far from optimum. 13y contrast, users of the British Distributed Array Processor 
(DAP) can gain only 10 percent performance increase by going to assembly language. 
Parallel Pascal overhead is estimated to be: 

a factor of 2 for floating point math. (C.Grosch-ocean dynamics). 
a factor of 4-5 for short integers. (H.Hastings-neural net model). 
a factor of 40 for logic. (F.Sullivan-Ising Spin simulation migrated to PEARL,). 

14. Some Working Group members found Parallel Pascal superior to FORTRAN because 
of certain features in the Pascal language. For an experimental research environment 
Parallel Pascal is a good compromise. 

15. There is currently no library of professional, user-friendly science subroutines available 
on the MPP. 

16. Users accessing the MPP from remote locations found this means of access viable. 
Some remote users used the portable MPP simulation environment~6.~ to develop programs 
on their own VAXes, then moved them to the MPP via network to run them. 

17. The MPP's 1K bits of memory per processor were found to be limiting for numerous 
applications. Currently this memory limitation is the system's major bottleneck on 
performance; enlarging it is the most obvious way to improve the performance of many 
applications. Some MPP users are doing large 2-dimensional dynamics simulations, but 
they cannot go to 3-dimensional because of the small size of this processor memory. 

18. The host VAX's slow YO is another major throughput bottleneck, especially for 
applications using large da.ta sets. The MPP is not the YO bottleneck. The host VAXs 
response time deteriorates during prime shift, for example, a 90-second job at midnight 
could be an hour job at worst-case prime time. MPP data I/O is still difficult to program. 

19. The MPP provides an environment for educating scientists and their students. 

Scientist education-the Working Group activity is unique because of its 
breadth, taking in the non-space scientist community. 

Academic education-access to the MPP has been a useful educational tool. 
Numerous papers and Masters and Ph.D theses in the area of parallel processing are 
being generated. Slee Appendix D for lists of students involved, papers, theses, 
and grants. 



Technical Recommendations (in priority order) 

1. Provide a functionally complete handbook for users, describing in one place, all aspects 
of MPP use. 

2. Envelop Parallel Pascal within an accepted programming environment including a 
symbolic debugger. 

3. Increase the size of the array memory and main control unit memory, as much as 
possible. 

4. Implement all standard features of Parallel Pascal or some similar functionally complete 
Pascal derivative. 

5 .  Improve VO between the staging memory and both the host and image displays. 

6. Provide code optimization for the Parallel Pascal compiler. 

7. Extend Parallel Pascal to support asynchronous transfer of data from host memory to 
both the main control unit memory and the staging memory. This will allow computation 
to take place simultaneously with data transfer. 

8.  Make the MPP simulation environment identical to the host environment, and portable 
to both VMS and UNIX operating systems. 

9. Create a library of professional, user-friendly science subroutines and corresponding 
documentation. There is a common need among Working Group members for subroutines 
that perform generic algorithms, such as Fast Fourier Transforms or random number 
generation. The DAP scientific subroutine library* could be used as a model for such a 
library for the MPP. 

10. Implement a time-sharing user environment on the host computer. This will allow the 
MPP to be used interactively by multiple users. 

11. Provide transparent software for manipulating data arrays with sizes that are multiples 
of 128 x 128. 

12. Implement virtual array unit and staging memory software. 

Strategic Recommendations 

1. Issue a new announcement to expand the Working Group. 

2. Solicit collaboration with other agencies to broaden technology applications. 

3. Institutionalize support for operations of the MPP at current levels, thereby making the 
MPP available to an expanded Working Group to include Research and Technology 
Objectives Proposals (RTOP's) or NASA grant proposers who are prepared to explore the 
potential of this new architecture for future applications to their science. 

4. Initiate a study of the role of future parallel processors for Space Station, Earth 
Observing System (EOS) and the Great Observatories era. 
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Chapter 1 - The MPP Working Group 

1.0 Introduction 

NASA is interested in evaluating the performance and utility of the MPP for appropriate 
scientific applications to specific problems arising in space and Earth sciences. In addition, 
for purposes of obtaining a broader understanding of the performance of the MPP, NASA 
also considers investigations in the general physical and mathematical sciences. To achieve 
these goals, a Space Science and Applications Notice (AN) entitled Computational 
Investigations Utilizing the Massively Parallel Processor (MPP)2, was signed 
on December 20, 1984, by Dr. Burton I. Edelson, NASA Associate Administrator for 
Space Science and Applications. It announced an ongoing opportunity to carry out 
computational investigations exploiting the unique characteristics of the MPP. This letter 
was distributed nationally to an address list of more than 2,000 scientists and institutions. 
Investigators who are accepted into this program are required to participate in a Working 
Group in order to assist NASA in assessing the usefulness and potential of the MPP for a 
wide variety of computational applications that stress different uses of the MPPs hardware 
and software. 

NASA provides each investigator with free time on the MPP and its host VAX-11/780 
computer, documentation of the hardware and software, and limited user assistance. Each 
member of the Working Group is expected to provide all expenses required for hisher use 
of the machine, including expenses for personnel required for programming and execution 
of software, salaries, and related expenses. Prospective investigators are also expected to 
obtain funding for their research activities through other program offices at NASA or from 
other agencies or institutions. Acceptance into this program does not carry with it any 
guarantee of research funding. Participation is limited to investigators at U.S. institutions, 
and proposals may be submitted at any time. 

Each proposed investigation should present a well-defined scientific or engineering study 
that will make a distinct contribution to one or more of the following NASA objectives: 

assess the MPP's unique capabilities for carrying out scientific research, 
measure and document advantages of parallel processing techniques over 

enhance the MPP system of applications software for general user availability, 
evaluate the future needs for advanced MPP-type machines. 

conventional high-speed computers, 

Proposals should demonstrate a computational need for the MPPs capabilities to carry out 
the scientific research. Available time on the machine is limited, and NASA accepts only 
those investigations that can be reasonably accommodated and accomplished using the 
current configuration. 
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1.1 Selection 

Each proposal is reviewed and evaluated for scientific quality and technological merit by a 
panel of disciplinary peers with final selection of the investigations made by NASA 
Headquarters. The final decision on a proposal's acceptance takes into consideration the 
potential ability of the investigation to assess the MPP, the balance between different 
scientific disciplines, and the availability of MPP computing time. 

On March 20, 1985, the Technical Advisory Committee (TAC) for this AN met to review 
the proposals that had been received as of close of business on March 19, and to prepare a 
recommendation to the Headquarters Selection Committee. The TAC consisted of 

Dr. Daniel Slotnick 
Prof. Ashok Agrawalla 
Dr. David Randall 
Dr. John Barker 
Mr. James Fischer 
Dr. Kenneth Iobst 
Dr. James Strong 
Dr. James Tilton 
Dr. Sheldon Green 
Dr. Richard Shine 
Dr. Robert Silverberg 
Mrs. Ai Fang 
Mr. Ken Wallgren 

University of Illinois Chairman 
University of Maryland 
Goddard, Code 6 10 
Goddard, Code 620 
Goddard, Code 630 
Goddard, Code 630 
Goddard, Code 630 
Goddard, Code 630 
Goddard, Code 640 
Goddard, Code 680 
Goddard, Code 690 Vice Chairman 
NASA HQ, Code E1 
NASA HQ, Code RTC 

Executive Secretary 

Dr. Allan Gottlieb (New York University) and Mr. Rudy Faiss (Goodyear Aerospace) 
were appointed to the TAC but were unable to attend. 

Forty proposals had been received and all were reviewed. Most proposals were assigned 
in advance to at least three TAC members for reading. Assignments were made with the 
intention of matching proposal subject matter to TAC member background. In the review 
meeting, each proposal in turn was given five minutes for presentation by its readers and 
was then discussed and graded into one of four categories: 

OUTSTANDING GOOD POOR JUDGMENT DEFERRED 

When all proposals had been considered, the floor was opened to allow the grade given to 
any proposal to be changed. The final ratings of the 40 proposals received were: 

15 - outstanding 
17 - good 
5 - poor 
3 - judgment deferred (only abstract received) 
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On April 12,1985, the Selection Committee met at NASA Headquarters to review the work 
of the TAC and select the initial membership of the Working Group. Committee members 
were: 

Dr. Caldwell McCoy 
Dr. Milton Halem 
Dr. John TheLon 
Dr. Dan Spizer 
Mr. Lee Holcomb 
Dr. John Lehman NSF 
Dr. Paul Schiieck 

NASA HQ, Code EI, Chairman 
GSFC, Code 630, Co-Chairman 
NASA HQ, Code EE 
NASA HQ, Code EZ 
NASA HQ, Code R 

Supercomputing Research Center 

The Selection Committee: 
selected the 32 proposals rated outstanding or good by the TAC, 
changed the ranking of one proposal from poor to good and accepted it, 
reviewed and accepted two proposals that had been rated "judgment deferred" by the 
TAC ( the proposals had subsequently been received). 

A total of 35 Working Group projects were selected by the April 12, 1985, Selection 
Committee. These proposals roughly divide into four disciplines: Earth sciences, 
theoretical physics and astrophysics, signal and image processing, and computer science 
and graphics. Six times since then, as new proposals have been received, selection 
committees have been convened and have accepted 7 additional Working Group members. 
Two members have resigned. Currently, there are 40 Working Group projects3 (see 
Appendix B - Working Group Membership). 

1.2 Charge 

Each member of the Working Group is expected to conduct a well-focused research effort 
that will provide insight into some aspect of the MPP system, and a final report covering 
the results of those investigations. Two-day workshops are conducted semiannually by 
NASA-Goddard. Workshops were held in August 1985, February 1986, September 
1986, and February 1987. These workshops are designed to enhance the exchange of 
ideas and to discuss individual results. All Working Group members are expected to 
participate in workshop discussions and contribute to workshop reports, NASA provides a 
limited travel allowance for workshop participation. 

In exchange for free use of the MPP and its associated computing resources, Working 
Group members are required to provide to NASA documented software subsequent to 
using it in their MPP investigations. If required, NASA will provide proprietary protection 
for data or algorithms for 1 year following the start of each investigation. 
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Chapter 2 - The MPP Program 
The MPP is the product of an Office of Aeronautics and Space Technology (OAST) 
research and technology program designed to evaluate the application of a computer 
architecture containing th.ousands of processing elements, all operating concurrently, to the 
computational requirements of the sensor systems of the 1980s and 1990’s. The MPP 
was delivered to NASA.-Goddard in May 1983, by Goodyear Aerospace Corporation 
following 4 years of development. After delivery, Goddard installed a VAX-11/780 as the 
MPP’s host and developed an MPP user environment connecting the MPP and the VAX. 
The unique software ‘and hardware systems making up the current MPP user 
environment9.10, including the MPP high-level languages and the operating system, are 
described below. For mare detail, see Appendix E - Technical Summary of the MPP . 

2.1 MPP User Environment 

User Languages 

The initial high level language implemented in 1983 was Parallel Pascalll, which is an 
extended version of standard Pascal. Experience gained in the development and use of 
Parallel Pascal recommended1* a modified language, MPP PascaP, which is currently in 
user field test. As part of one Working Group project, a highly interactive language, MPP 
Parallel FORTH14, became operational in December 1986. The MPP is also 
programmable in two assembly languages15J6. 

Operating System 

The MPP operating system provides support for running applications code and for 
interactive debugging17. It links the program running on the MPP with the program 
running on the VAX through a message passing system, and supports an extensive set of 
VO service routines18. 

Policy: An MPP system software policy, established in February 1986, directed that all 
subsequent MPP system software would be upward compatible, and that the existing 
system software would be supported by NASA for a period of at least 2 years. 

MPP User Consultants 

When the Working Group began in October 1986, Goddard established a goal of making 
every effort to help the group members succeed in what they had proposed to do on the 
MPP. Instead of just waiting for questions, Goddard wanted to make available the MPP 
experience that had been developed, and to be involved in the Working Group’s algorithm 
design process from the beginning. To offer support in this way, Goddard chose eight 
staff members skilled in MPP applications development, and assigned each of them to 
provide consultative help to roughly four Working Group members. In many cases, the 
choice reflected the special interests of the staff member. 
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The scope of consultation encompassed all aspects of algorithm and program design, 
including specific coding. The consultants were also charged with identifying low-level 
routines that would be of general use to other MPP users. Since the consultants developed 
indepth understanding of the applications with which they were working, requests for 
debugging advice were often directed to them. The Working Group members were 
encouraged to visit Goddard to work directly with their consultant and the MPP staff. A 
consultant could also visit the Working Group member. 

Subroutine Libraries 

A library is being established to collect computational subroutines as they are developed. 
NASA is not able to validate those subroutines that come from users, because of the effort 
required. 

MPP Simulation Environments 

Two MPP simulation environments have been developed and distributed to user sites 
remote from Goddard. The MPP Simulator6 supports the development, testing, and 
refinement of Parallel Pascal, MPP Pascal, or assembly language applications programs on 
any VAX operating under VMS. The Parallel Pascal Translator7 allows the 
development of Parallel Pascal programs on most computers that have a Pascal compiler. 

Documentation 
Date first available 

Overviews 
General Description of the MPP 
Computing on the MPP 

User Manuals 
MPP User's Guide 
MPP Primer 
CAD User's Manual 
MPP Simulator User's Manual 

MPP MCL Macros and Subroutines 
MPP Pascal Callable Procedure Library 

Parallel Pascal Language R@erence Manual 
MPP Pascal Language R@erence Manual 
MPP Main Control Language Manual-MCL 
MPP PE Array Language Manual-PEARL 

Library Manuals 

Language Manuals 

System Software Internals Documents 
Hardware, Architecture and Maintenance 

4/83 
2/86 

1/86 
7/85 
4/83 
12/85 

6/86 
2/86 

1/85 
9/86 
4/83 
4/83 
N/A 
4/83 
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2.2 MPP Physical Environment 

Access to the MPP 

The MPP is in the Image Analysis Facility of the Space Data and Computing Division at 
Goddard. It is physically located in Building 28 and is accessed either on-site or from 
remote sites by means of 

SPAN 9600 baud since 10/85 
ARPANET 9600 baud since 2/86 
TELENET 1200 baud since 2/86 
Dial-In 2400 baud upgraded from 1200 baud 10/86 

The MPP is normally available for use from 0900 Monday through 2400 Saturday and 
from 1000 through 1800 Sunday. 

On-site Facilities for MPP Users 

Work Areas: Prior to August 1986, work areas for visiting Working Group members were 
provided on an as-needed basis in existing terminal room areas. Since that time, a large 
MPP User Room was macle available with several VTl00 terminals, four modem office 
cubicles, and one International Imaging Systems (IIS) image analysis terminal connected to 
the MPP's host VAX. 

On-Line Data Storage: Limited on-line disk storage space is provided to Working Group 
Members for keeping their MPP programs and data. In addition, "scratch" disk space is 
available to all Facility users; scratch space is initialized weekly. 

2.3 Scope of the FY87 MPP Program 

FY87 Funding Profile 

506-45-1 1 Computer Science $200K 
656-20-26 MPP Software $250K 
656-13-25 MPP Maintenance & Operations $250K 

TOTAL, $700K 
--------- 

Allocation of FY87 Funds 

MPP User Support Office 
MPP System Software Development 
MPP Algorithm Development 
MPP Working Group Conferences 
MPP Hardware Maintenance 
Computer Facility Operations 
Miscellaneous 
IMS tax 

$ 25K 
$ 50K 
$191K 
$ 45K 
$ 73K 
$246K 
$ 3K 
$ 67K 

$700K 
--------- 

TOTAL, 
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Chapter 3 - Discipline Findings 

3.1 Earth Sciences Group 

3.1.1 ApplicationslAlgorithms 

The Earth Science studies encompass a number of diverse applications. In summary, they 
are: 

1. Solution of the barotropic quasi-geostrophic equations for a model of synoptic scale 
dynamics in Ocean circulation. 

This involved solving partial differential equations on a nonuniform grid using a relaxation 
method and an alternating direction implicit method. 

2. Classification of Landsat data using a maximum likelihood algorithm. 

This involves applying a discriminant function to each pixel and determining which class 
yields the maximum value. 

3. Solution of the equations of a numerical model of heat and moisture flow within a 
hillslope. 

The equations are solved by calculating the spatial derivatives of the moisture flux using 
finite difference techniques and spatial derivatives of the heat flux by a force restore 
method, and then computing the time integral using an Adams-Bashforth predictor- 
corrector method. 

4. Solution of the hydrodynamic equations for two-dimensional, nondivergent flow on a 
sphere as used in numerical weather prediction. 

A Poisson equation for the stream function is solved by Fourier transforming and solving 
sets of tridiagonal equations. The vorticity equation is then updated in time. 

5. Solution of the equations of a numerical model that describes the transport and removal 
of photochemical oxidants and acidic species and precursors in the troposphere. 

A Crank-Nicolson Gallerkin Finite Element Method for transport equations and Semi- 
Implicit Method for chemistry equations were used. A time-splitting technique was 
employed to achieve a high degree of parallelism. 

6. Contextual classification of multispectral Earth observation imagery using a 
combination of spatial atnd spectral information in a statistical approach. 

The approach is an expansion of the standard maximum likelihood classification approach, 
where information from a local neighborhood of image points is considered in calculating 
the discriminant function rather than just from the pixel being classified. 
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3.1.2 Summary of Findings 

In general, all of the investigators found that the MPP was an effective tool for solving their 
problems, although they found some bottlenecks. In those applications that used finite 
difference methods on grids, the nearest-neighbor connectivity of the MPP suited the 
problem well and led to an efficient solution. In the one case (application 4) where a partial 
spectral method required large amounts of long range communication across the array, the 
performance was seriously degraded; here is an example of an algorithm that is not well 
suited to the MPP architecture. However, in another case (application 5 ) ,  a major 
component of the photochemical model is the solution of the equations for the chemistry at 
every grid point at every time step. In doing this, there is no interprocessor data transfer 
needed; this is an application that is very well fitted to the MPP. Two classification 
applications have been implemented on the MPP with good results-ne of the two requires 
only nearest neighbor and short distance communication and the other required no 
communication at all. Thus, both are well suited to the MPP architecture. 

With one important exception, discussed below, all of the investigators programmed in the 
MPP's high level language, Parallel Pascal. All the applications have fairly large codes, 
largely using floating point arithmetic. It would not have been feasible to code these in 
assembly language with the time and manpower available. Many of the investigators had 
difficulties at the beginning of the study because of errors in the floating point primitives. 
These errors have now been corrected, and all of the investigators find Parallel Pascal a 
good programming language for the MPP. 

The Parallel Pascal compiler is believed to generate code that is less efficient than that 
which could be produced by hand coding in assembly language. The degree of inefficiency 
is not known. One estimate, based on floating point operation counts and the number of 
cycles for each, suggests that the speed of the code could be doubled by coding in 
assembly language. 

In one application, the hillslope model, a very significant speedup of a factor of 3 or 4 was 
obtained by multitasking. That is, the main control unit (MCU) and the PE control unit 
(PECU) were used concurrently with the array unit (ARU). This was done by assembly 
language coding because there is no provision in Parallel Pascal to indicate that a coarse 
grained parallelism exists in the algorithm and can be exploited by multitasking. In 
addition, this application required higher precision arithmetic than that provided by the 
standard 32 bit floating point primitives. This was provided by custom programming of 
arithmetic modules. 

The members of the Earth sciences group found that the ARU memory (1K bits) was 
barely adequate for their applications. They expressed the desire to have a larger ARU and 
MCU memory, as well as a larger staging memory. This enlarged memory requirement 
ranged from an additional 1K bits for the classification calculation to 64K bits for the flow 
calculations. It must be emphasized that this requirement is for additional ARU memory, 
and in some cases MCU memory, and could not be met by increasing the size of the 
staging memory. 

In one of the calculations, classification of the Landsat data, the front end VAX proved to 
be a severe YO bottleneck. It would seem that this would be true of any application where 
large amounts of data must be moved in and out. 

The performance of these codes on the MPP were timed and compared to codes, 
embodying the same algorithms, run on CYBER 205's, and CRAY-1's and 2's. The 
detailed results are given in the Proceedings of the First Symposium on the Frontiers of 
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Massively Parallel ScientiJic Computation4. Overall the performance on the MPP was at 
least comparable to that on CYBER's and CRAY's, and in some cases much better. We 
believe that the MPP-type architecture has more potential for development than do the more 
conventional architectures. 

3.1.3 Recommendations 

1. Retain special status of the MPP because it requires some experience and expertise to 
use effectively. 

2. Continue the Working Group. Another announcement of MPP availability should be 
made. 

3. Make it a major priority to bring up all standard features of Parallel Pascal, and make 
the software user friendly. 

4. Greatly improve I/O between the host and the staging memory and also between the 
staging memory and image display devices. 

5. Increase the size of the local ARU memory as much as possible. We think at least 64K 
bits per PE are needed. 

6 .  If a new MPP is to be built larger than 128 x 128, which would be desirable, one 
would need long range communications. Studies should be done now to decide what form 
this should be; some possibilities are, at most a hypercube, a pyramid, or a shuffle. I/O 
bandwidth and internal memory size and software must be examined. 

7. It is necessary to know the limitations on a small array machine and one should be 
obtained, perhaps a Mini-DAP. This has more memory per PE and some long-range 
communication. 

8. 
powerful processors is not :recommended. 

For future MPP-like machines, the approach of using a far fewer number of more 
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3.2 Physics Group 

3.2.1 Ap plications/Algori t hms 

The following scientific problems were studied by the members of the Physics Group: 

1. 

2. Charged particle transport. 
3. 
4. 
5. Particle simulation of plasmas. 
6. 
7. 
8. 
9. Free-electron laser simulations. 
10. Dynamics of collisionless stellar systems. 

Electronic structures and associated hyperfine properties of atoms and condensed 
matter sy s tems . 
Real-time animation of space plasma phenomena. 
Simulation of beam plasma interactions. 

Phase separation by Ising Spin simulations. 
Phase transitions in lattice field theories. 
Wave scattering by arbitrarily shaped targets-direct and inverse. 

For the full titles and other details of these research programs, see Appendix B-Working 
Group Membership. 

When these scientific problems are formulated theoretically, they are transformed into 
mathematical problems. A partial list of these problems is given below, together with the 
methods adopted for solving them on the MPP. The bracketed numbers refer to the 
original applications, listed above. 

Linear partial differential equations in one or two space-like dimensions, with time 
derivatives also involved in some cases. They are solved by direct numerical integration 
[lo], by transform methods [4,5], or by a Monte-Carlo method. 

Equations of discrete particle dynamics in 2 dimensions. Solved by numerical 
integration, with the particle data kept either at fixed locations, in the processor array [4], 
or at locations corresponding to the instantaneous positions of the particles in the 
simulation domain [5]. 

Analysis of statistical systems, solved by a Monte-Carlo method [7]. 

Mamx operations, including inversions and eigenvalue problems [ 11. 

Numerical integrations of functions of up to three variables [ 13. 

Such problems are not, of course, confined to theoretical physics, but also arise in many 
other scientific disciplines. 

3.2.2 Summary of Findings 

The experience gained in the realization of their research programs, and notably the factors 
affecting the performance of the algorithms on the MPP, as summarized in Appendix 
C-QuantiJications, led the investigators to the following conclusions: 

1. The scientific problems that map best onto the MPP are those that are inherently two- 
dimensional, and for which the algorithms require less than 1K of memory per processing 
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element, with no need for communication between remote pairs of PE's. For such 
problems, the MPP programs generally execute faster than the corresponding programs on 
conventional supercomputers such as the CRAY- 1. 

2. Other programs tend to be limited to speeds lower than that of a CRAY-1, either by the 
insufficiency of the PE or stager memories, or by the slowness of input/output operations. 

3. The availability of bit-serial arithmetic proved to be important in some cases, by creating 
possibilities for the use of algorithms that would have been infeasible without it. The lattice 
gas approach to computational fluid dynamics is a case in point. 

4. In general, the need was felt to develop new algorithms for the MPP, rather than recode 
for the MPP the algorithms ithat are preferred for conventional serial processors. 

5. For the majority of investigators, who were located at sites other than GSFC, network 
access was essential. The reliability of the Space Physics Analysis Network (SPAN) was 
not always satisfactory. 

3.2.3 Recommendations 

The Physics Subgroup recommends the following steps to make the MPP system more 
responsive and useful for the problems currently pursued by the subgroup. The project 
should: 

1. Investigate the possibility. of increasing the capacities of the MCU and ARU memories. 

Some physics programs exceed in length the capacity of the MCU memory, which obliges 
the programmer to use the host memory as a back-up, with a consequent speed penalty. 
Likewise, a larger ARU me.mory would reduce VO and simplify programming; it would 
also allow the MPP to compute or simulate larger scale or more complicated physical 
problems. 

2. Add virtual memory to the Parallel Pascal compiler. 

It would be helpful if the performance of a program suffered only graceful degradation 
when it ran out of memory at each level. This result could be achieved by providing virtual 
ARU memory in the stager, ;and virtual MCU memory in the host. 

3. Create a library of professional, user-friendly science subroutines and corresponding 
documentation. 

There is a common need among group members for subroutines that perform simple 
algorithms, such as Fast Fourier Transforms, random number generation, sorting routines, 
and histogram sums. The D,4P scientific subroutine library* could be used as a model for 
such a library for the MPP. 

4. Investigate improvements to network reliability. 

Group members have found: difficulty in accessing the MPP via SPAN and ARPANET 
more often than they consider desirable; while this problem is not primarily an MPP 
responsibility, the group believes that the MPP should make its needs for increased 
reliability known to the network managers. 

19  



5. Optimize the Parallel Pascal compiler. 

Currently, the Parallel Pascal compiler produces code that is far from optimum for simple 
and commonly used operations such as data shifts and rotates. Improvements are also 
needed in the compiler's use of the PE memory for temporary results, because PE memory 
is a very precious commodity in the MPP. 

6. Develop a capability for handling arrays larger than 128 x 128, with software 
transparent to the user. 

Some Group members make logical use of arrays larger than 128 x 128, e.g., 256 x 256. 
The MPP compiler should be capable of implementing such large arrays, and also three 
dimensional arrays, e.g., 16 x 32 x 32, without major reprogamming by the user. 

7. Make other improvements to Parallel Pascal. 

Currently, neither disk VO nor the operations of the staging memory are integrated into 
Parallel Pascal, nor does Parallel Pascal implement the capability, which exists in the 
hardware, of transferring data back and forth between the stager and the host 
simultaneously with array operations. Moreover, Parallel Pascal has no double precision 
arithmetic for real numbers, no complex arithmetic, and no exponent function. Some 
existing intrinsic functions, such as the reduction sum, should be made more rapid. 

8. Develop a shell or other means of supplying transparency and portability to user codes. 

Users invest appreciable resources in developing and running code on the MPP system, so 
far without any assurance that their codes will be usable later or in other environments. 
Continued enthusiasm for the MPP system will depend on perception by the users that their 
future computing is secure from obsolescence. Item 6 above would help in this objective. 

9. Incorporate comprehensive graphic output in the YO hardware and software. 

Many projects require visual interpretation of their results in conceptual or graphic form. 
This is especially true for the kind of complicated problems that recommend use of the 
MPP. Computer graphic representation is routinely taken for granted in such cases , and 
should be a standard available output medium for the MPP system. Both hardware and 
software support are needed. 

10. Install a symbolic debugger. 

The current MPP debugger (CAD) is rather primitive by modem standards. The Parallel 
Pascal compiler already produces the information required by a fully symbolic debugger; it 
should be a high priority to write such a debugger for the MPP and provide good 
documentation for it. 
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3.3 Signal and Image Processing Group 

3.3.1 Applications/Algorithms 

Scientific problems addlressed by the Signal and Image Processing group fall into two 
major categories. The first of these fits closely with one of the original performance areas 
of the MPP, which is the highly parallel analysis, using loosely coupled local procedures 
on images and other two,-dimensional data. Projects include: 

Processing of Seasat and SIR-B Synthetic Aperture Radar (SAR) phase history data into 
images. 

Development of an automated technique for matching corresponding pixels in stereo 
image pairs to determine elevations. 

Reconstruction of Coded-Aperture X-ray images. 

Biomedical Image Analysis. 

Three-dimensional reconstruction. 

The other set of problems involve an abstract sequential model to generate artificial images 
(computer graphics) or to be "discovered" in an existing image (computer vision). Projects 
in this area include: 

Animated sequences from a polygon patch model. 

Recursive subdivision to form randomly textured surfaces. 

Array pattern recognition. 

This might be termed the nonintuitive class of problems, because many of them have been 
met with solutions that were not, at the outset, obvious. The use of an abstract model 
requires a procedure to rnap the model to the array or to abstract the model from the array. 
In the straightforward image-processing tasks this is a simple wholesale raster transfer, and 
the challenges involve the design of the local computations. Graphics and vision models 
are inherently three-dimensional, so that the major initial challenge is developing efficient 
transformation of the model to fit the array. 

3.3.2 Summary of Findings 

As might be expected, image-processing projects experienced significant speedups, near 
the theoretical limit possible considering the number of processors and the speed of 
calculations. More surprising is that the model-based applications have also achieved 
significant speeds, well beyond that of a sequential model traversal. The fractal 
subdivision algorithm has, in fact, been timed to be twice as fast as a special-purpose chip 
designed for that purpose. 

Any existing or projected function in this group can be done by special purpose hardware. 
We feel it is important tcb view the MPP not as an "image engine" or "graphics engine," but 
rather as a robust prototyping medium for a large class of conceivable engines. Many 
procedures need considerable simulation and fine tuning before committing their details to 
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fabrication, and the MPP provides an ideal bed for this sort of work. For many of our 
applications, any of which might be simulated on a sequential machine, the MPP makes 
possible turnaround times that cannot be approached sequentially. Trial-and-error fine 
tuning, a highly iterative process, is possible in a matter of days rather than weeks. 

Particularly in the non-intuitive problems, it is clear that the space of possible approaches is 
much larger than originally expected and that we are only at the beginning of discovery in 
this field, a finding which was not necessarily predictable. We expect this to have 
profound implications for both the theory and practice of computing. 

In a general mode, the subgroup agreed upon several key points. The first of these is that 
each member is engaged in activities that would not have been contemplated were it not for 
the existence and availability of the MPP. Second, related to the fact that we are in the first 
years of a new system, most members experienced a great deal of hesitation in committing 
ideas to code, and thus "dragged their feet" until the operating environment became less 
volatile. Related to this, several noted the unavailability of a library of low-level routines of 
the type that one is reluctant to write until sure that the routine does not exist elsewhere in 
the system. This last point is particularly true of remote users who are not able to walk 
down a hall and find out who knows what. 

The one member who did not drag his feet experienced considerable initial difficulty that 
would appear to justify the self-imposed delays of the others. This involved more than one 
generation of Parallel Pascal code generator, as well as considerable input-output difficulty. 
This person was able to make progress since he is on-site at Goddard, with daily access to 
the User Support staff. 

While specific products of our involvement will be listed below, it is worth mentioning that 
the two group members on university faculties have been able to expose students to the 
MPP by use of the simulators running at our home institutions. 

The subgroup agreed that no one wished to code in MPP assembler language (MCL) or 
microcode language (PEARL), and that only code in a high-level language is likely to 
survive in any event, which makes maintenance and support of Parallel Pascal of supreme 
importance, since this is at present the most likely gateway to other architectures. 

While most applications are sized to fit the MPP's constraints as a matter of convenience, 
and few feel restricted, all agree that more processors and more memory per processor 
would be useful and advantageous. Only one member felt limited immediately by the size 
of local memory. 

Most of the group use the MPP via remote access over SPAN, and the group has found 
this to be generally satisfactory. The applications are all data intensive, and are thus 
sensitive to the strengths and weaknesses of the front end computer's VO capabilities. 

As a practical detail, the VAX front-end computer has not been entirely satisfactory both 
because of its apparent overloading, and because of the difficulty of transferring data to 
and from the MPP. 

The general impression of the subgroup is that the programming environment was probably 
undercommitted. The major symptom of this is the lack of a strong utility library, and the 
user support personnel necessary to maintain it. Those members who have made extensive 
use of User Support have indeed made considerable progress, but we feel that the resource 
is better spent on more widely useful products, which would include a well-documented 
library. 
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3.3.3 Recommendations 

The support environment has c..anged markedly in the past 2 years. A complete 
documentation package is half of a file drawer, but the most recent MPP User's Guidelo 
and the new MPP Pascal rnanuall3 provide a working basis, with some extensions, for a 
truly portable and useful starter set of information for new investigators. Some further 
determination of essential information, and its packaging, is still required. This 
recommendation immediately affects the next two. 

At its current level the MPP is not suitable for inclusion in a general supercomputer facility, 
largely because the user support requirement would exhaust Goddard's resources very 
quickly. A concise "how to" document, and a truly portable simulator, might change this 
assessment. However,, there still appear to be wrinkles and idiosyncracies that require 
ironing out before going public. 

The Working Group can be expanded, subject to several considerations. First, it should be 
demonstrated that the first cohort made progress, otherwise we simply invite others to a 
shared futility. This might be determined by some threshold number of papers or working 
systems. Second, documentation should be to the level that new users do not require 
extensive assistance from the User Support staff. Specifically, new users should be able to 
develop their own programs, reserving the User Support staff for debugging and similar 
technic a1 assistance. 

A broad spectrum of applications and programming styles has now been applied to the 
MPP for several years, and, in the process, many investigators have accumulated and, 
reinvented in many cases, a considerable body of private knowledge. At some point in the 
Working Group's life, it would be desirable to collect some of that experience, if only to 
centralize papers and technical reports prepared elsewhere. 

At present, the Reeves Parallel Pascal appears to be the most aggressively ported parallel 
language with any direct relevance to the MPP environment. It should be noted that many 
"parallel" languages are in fact targeted at the multiple instruction multiple data stream 
(MIMD) environment, ;achieving their parallelism by explicit fork and join instructions (in 
UNIX terms). In order to provide a gateway for existing and future MPP software it 
seems desirable to make MPP Pascal compatible with Parallel Pascal, and to bring it up to 
the capability of sequential Pascal (enumerations, sets, etc.). In a related vein, there 
appears to be considerable room for improvement in the optimality of compiled code, and 
once the new MPP Pascal code generator has been tested that issue should be examined. 

The other software requirement we see is a more comprehensive and accessible library of 
utility functions to extend capabilities to other MPP features that are currently not available 
through Pascal. The group feels strongly that support and improvement of MPP Pascal 
and establishment of a 1:ibrary are the major and exclusive priorities for support resources. 

It is in the interest of both NASA and the scientific community at large that massively 
parallel computation be pursued both at the research and production levels. First, a great 
body of tasks exist that adapt well to parallel computation and that cannot be done any other 
way. Second, the scopc: for future expansion and enhancement of parallel architectures is 
orders of magnitude greater than for vector processors. We feel that the particular 
hardware that may augment or supplant the MPP is not nearly so critical to continued 
success as is the preservation of a stable programming environment. 
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3.4 Computer Sciences Group 

3.4.1 AlgorithrndApplication 

The algorithms considered within the Computer Science group include several general areas 
of interest, including: 

1. Finite element analysis 
2. Parallel nested dissection 
3. Local relaxation with feedback 
4. Parallel graph theory algorithms 
5. Image processing algorithms 
6 .  Routing algorithms 
7. Simulation of systolic VLSI systems. 

The applications of these algorithms are diverse: 

1. 
2. 
3. 
4. Image processing 
5. Long range communication 
6 .  Functional programming language implementation 
7. Solving sparse linear systems. 

Two-D and three-D electromagnetic field computation 
Neural networks and connectionist models of artificial intelligence 
Three-D interactive graphics in real time 

These projects constitute research in parallel algorithms, instead of using algorithms to 
carry out research in some other branch of science. Consequently, the members of the 
Computer Science Group are experimenting with their programs, and do not anticipate 
reaching a point where the programs are finished and used to process large amounts of 
data. This makes the MPP working environment-remote access, the compilers, the host 
operating system, etc.-especially important. 

Data Structure Parallelism 

Several of these research projects involve "data structure parallelism" instead of the more 
common "control structure parallelism." In the past, most work on parallel algorithms has 
focused on control structures rather than data structures, so it is especially important that 
the MPP Working Group is contributing to this promising area. 

A MIMD computer uses control structure parallelism: the programmer or compiler finds a 
way to partition an algorithm into a set of processes that can execute concurrently, and 
schedules each process to run on a separate processor. The programming languages 
developed for this approach use control statements to specify where there is parallelism. 
Examples include fork/join, cobegidcoend, etc. 

In data structure parallelism, the algorithm has a sequential organization with no explicit 
concurrent processes. However, the algorithm may execute instructions that perform 
global computations in parallel on a large data structure. For example, consider the task of 
marking every element of a list or set (this problem is important in symbolic programming 
languages). The conventional method would be to mark the elements one by one, 
following a pointer from each element to the next. A program using parallel control 
structures would try to make several processors execute that algorithm. In contrast, the 
parallel data structure approach would provide a single instruction that marks all the 
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elements. The processor issues the instruction (as part of a sequential program), but the 
memory that contains the data structure performs the actuul work. 

The MPP supports data structure parallelism by combining processing power with each 
record in the memory. It is necessary to have a very large number of processors, but it is 
not necessary for the processors to be powerful or to have a very large amount of memory. 
The Connection Machine is another good architecture for data structure parallelism, and it 
would be useful to compare its performance with the MPP's for several parallel data 
structure algorithms. Th,e Connection Machine has a richer interconnection network than 
the MPP, but the cycle time of the MPP is faster. Consequently some parallel data 
structure algorithms will run faster on the Connection Machine and others will run faster on 
the MPP. It would be very fruitful to analyze these issues further. 

3.4.2 Findings and :Recommendations on Programming Languages 

The Computer Sciences group has, in general, found that the present MPP Pascal high- 
level language facility is a reasonable one for research and development using the MPP, 
although it does need to be embedded in a more sophisticated working environment. 

The availability of a good high level-language such as MPP Pascal has been found 
especially important for MPP projects in which the program changes from experiment to 
experiment (as opposed to projects in which only the data sets change between 
experiments). Nevertheless, some members of the group have found it useful or desirable 
to write some or all of their systems in one or both of the low-level languages (MCL 
assembler language or PEARL microcode language) to get adequate efficiency. The need 
for the low-level languages arises particularly in applications that involve unusual forms of 
data transfer among ARU processing elements. 

Several programs developed by the computer science group do not involve extensive 
numerical computation, in contrast to the programs developed by the other groups. For 
nonnumerical programs, and even perhaps for many numerical ones, a Pascal-based high- 
level language is more attractive than FORTRAN-based languages, such as those usually 
used on CRAY or CYBER 205 systems. To this extent the MPP programming 
environment is more congenial than CRAY or CYBER 205 environments. 

Various significant changes that have been made to MPP Pascal during the life of the 
Working Group have been very beneficial in themselves but have required major program 
changes by some group members from time to time. Also, some of the more advanced but 
standard data-structuring facilities of Pascal are only now being incorporated, so that the 
programming environment is not yet as stable as one would wish. 

The recent introduction of streamlined inputloutput facilities into MPP Pascal is welcomed 
as it enhances the ease, speed, and reliability of programming. One point still causing 
concern is the need to have some user-programmed ancillary FORTRAN modules to 
accompany an MPP Pascal program. 

Recommendations on Programming Languages 

MPP Pascal should be strongly supported and maintained. 

Enhancements to MPP Pascal should continue. 
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Effort should not be diverted into developing high-level languages for the MPP other 
than MPP Pascal. It is much more important to concentrate on making the MPP Pascal 
environment as good as possible. 

The need for user-written FQRTRAN modules to supplement MPP Pascal programs 
should be eliminated. 

However, the facilities for supplementing MPP Pascal programs with FORTRAN 
modules, as well as MCL and PEARL modules, should be maintained and enhanced. 

3.4.3 Findings and Recommendations on the MPP Working Environment 

Most new users of the MPP need considerable help in organizing their algorithms and 
using the MPP software. The Goddard User Support Office has done an excellent job of 
providing the Working Group Members with support. 

Interactive network access has been very successful. Most users fiid it most productive to 
develop their programs locally on their own VAXes using the MPP Simulator or the MPP 
Pascal Translator. They then transfer the source program files to the MPP and log on 
interactively to run the programs. This procedure is relatively easy and uses both 
researcher and machine. It allows the researchers to use their own computing environment 
while testing and debugging, and it reduces the load on the MPP. 

Recommendations on the MPP Working Environment 

We recommend several enhancements to the software environment which would improve 
productivity : 

Install a good screen editor that works on all standard ASCII terminals. Emacs would 
be the best choice. 

Provide software for data compression in order to support higher effective bandwidth 
over low cost communications paths. 

The MPP Pascal compiler should be made compatible with the Translator. This would 
make it easier to develop programs, and would reduce the demand on the MPP hardware 
for debugging. Since the MPP Pascal compiler doesn't implement the full language, 
several users found that programs developed on the Translator required major changes 
before they would work on the MPP. 

3.4.4 Findings on Architecture 

There are several very different types of parallel computer currently available, and 
techniques that work well on one type of machine may not transfer well to other types. The 
MPP is representative of fine grain machines with bit serial processors and a mesh 
interconnection. The results of the Working Group members' projects indicate how 
successful this architecture is for a wide range of problems. 

The MPP's processing element architecture is extremely well designed and implemented. 
Frequently each processing element can do several operations simultaneously, and the shift 
register supports efficient arithmetic algorithms. 
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The choice of a bit serial architecture is a good design tradeoff. Many algorithms use 
integer operands (some:times with short lengths), and some algorithms are inherently bit 
serial. The MPP's architecture can execute all of these classes of algorithm efficiently. If 
the processing elements had been designed with floating point hardware but no bit serial 
capability, the machine: would have cost much more but would have been suitable for a 
smaller set of applications. 

The current configuration of the MPP has several limitations, although in most cases it is 
possible to work around them. The most serious problem is that each processing element 
has only 1024 bits of local memory. Most of the users had to work carefully to avoid 
exceeding this limit, and some had to resort to using the staging memory as a bit plane 
virtual memory. A lar,ge number of applications would work better if each processing 
element had a somewhat larger memory, around 64K bits. (However, some three 
dimensional simulation algorithms would require a far larger memory in each processor.) 
The Main Control Unit memory is also sometimes a limitation. 

The mesh interconnection network limits the speed of long-distance communication in the 
array unit. However, the fast cycle time allows short and medium distance messages to 
travel very rapidly. 'The MPP is best suited for algorithms that rely mostly on 
communications over short paths. 

The current VAX-ll/T80 front end interface is a bottleneck. Upgrading the front end 
system will improve the system response and increase MPP YO throughput. 

3.4.5 Findings and Recommendations on Performance 

The MPP has delivered outstanding performance in a wide variety of algorithms and 
applications, some of which are far removed from its original intended uses. 

Since the MPP was designed for image processing, its superb performance in that area is 
not surprising. Image processing and similar problems typically involve many logical and 
small integer operations, and local or short-range communications. The MPP is well 
matched to these problems because its processing elements are directly connected to their 
four nearest neighbors in a grid topology. 

In addition, the MPP has also proven very effective at traditional number crunching 
problems such as solving systems of linear equations. Much of the success in the CRAY- 
type problems is due to the use of shift registers to speed multiplication in the processing 

. elements. Efficient coding of algorithms also appears to be very important. 

Several members of the Working Group are developing algorithms that involve symbolic 
computing, graph theory, routing, neural network computation, etc. Some of these areas 
do not have an obvious two-dimensional grid structure. This implies that the MPP's area 
of applicability is much broader than originally thought. 

Several promising lines of research in computer science are based on large numbers of 
small computing elements that communicate with each other. For example, neural 
networks, cellular automata, systolic VLSI systems, and data-parallel algorithms all fall in 
this category. The MPP is a good architecture for studying such systems, and it seems to 
be more natural for these research areas than vector supercomputers or coarse-grain MIMD 
architectures. 
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Recommendations on Performance 

1. Develop more cellular-automaton algorithms. For example, how fast does Wolfram's 
fluid flow algorithm run on the MPP? Also, give further study to the Ising Spin 
exchange model. 

2. Develop more parallel data structure algorithms. How well does the MPP compare with 
related architectures, such as the Connection Machine, for executing such algorithms? 

3. Profile existing algorithms to understand performance bottlenecks. Find out what 
performance gains would accrue from: 

morememory 
more efficient scalar communications (broadcasting) 
more connectivity. 

4. Determine more precisely the benefits of massive parallelism in number crunching. 
Compare MPP with intermediate designs (e.g., 128 8086/8087's). How much CRAY 
time is communication? 

5. Continue to develop theoretical techniques that shed light on the inherent complexity 
of algorithms, and try to use these to develop better parallel algorithms. 

3.4.6 Findings and Recommendations on the Working Group 

Research using the MPP has been an extremely rewarding experience for the members of 
the Computer Science group. Several of us are working on problems that would be out of 
reach using conventional computers. Access to the MPP is allowing the working group to 
experiment with state-of-the-art computing facilities, and it is bringing parallel computing to 
the universities long before they would be able to afford it using their own resources. 
Several graduate students are learning about parallel programming. 

The Working Group has shown that the MPP is useful for a much wider range of 
applications than originally intended. Providing access to new users will probably extend 
this range further. 

In addition to showing the usefulness of the MPP, this work has a long-term significance. 
The future development of parallel architectures will rely on experience with many different 
algorithms and many architectures. By supporting the MPP Working Group, NASA has 
provided 35 new data points that will improve the state-of-the-art for all parallel 
computation. This experience will be useful to the designers of future parallel computers, 
and it will add to our knowledge of parallel algorithms. 

Recommendations on the Working Group 

Since the MPP Working Group has been so successful, it should be continued. The basic 
structure works well: researchers who wish to use the MPP write a proposal that is 
reviewed by a panel of scientists who are expert in the capabilities of the machine and who 
can assess the quality of the proposed research. The authors of successful proposals will 
enter the Working Group. 
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Since the capacity of the MPP is not fully used at present, the size of the Working Group 
could be allowed to grow substantially. It might be best to add about 10 new members per 
year. 

A new user must make a substantial effort to learn how to use the MPP effectively. The 
present members of the Working Group should use their experience to try to help new 
members get started as quickly and easily as possible. It is important to allow new 
members several years of access to the MPP, because short-term access would not give 
them time to learn to use the system, develop their algorithms, and obtain useful results. 
The Working Group workshops at Goddard have been helpful for the current Working 
Group members, and more should be held for the new members. Experienced users could 
give short, intensive, hands-on guidance to the people learning to use the MPP. 

The User Support Group has been very helpful, and much of the success of our research is 
due to them. It would also be helpful to develop some simple examples of program 
development, as well as enhanced documentation and subroutine libraries. 

29 



Appendix A - Significant Accomplishments 

My application, simulation of a neural net model, was far easier to program on the MPP 
than on conventional computers. The simulation model is based largely on two- 
dimensional arrays processed in a way that can easily be represented in the MPP Pascal 
high-level language, and that allows efficient, natural use of the MPP Array Unit. A 
conventional computer would require more complex programming in order to avoid 
intolerable inefficiency. My application involves extensive experimentation with different 
versions of the neural net model, resulting in frequent, reasonably major program 
modifications. It is, therefore, important that changes be easy to make. 

-John A.  Barnden 

A new gridless model for particle simulation has been developed. The gridless model is 
fully parallelized with respect to the conventional particle-in-cell model due to the 
architecture of the MPP. The parallel nature of the MPP has made the discrete Fourier 
Transform (DFT) a visible alternative to the Fast Fourier Transform (m). The program is 
cost efficient relative to CRAY CPU time. 

-Chin Lin 

In my application (Synthetic Aperture Radar signal processing), I have been able to take 
advantage of the full parallelism of the MPP Array Unit for computations, the staging 
memory for in-place transposition of intermediate data, and the high bandwidth between the 
ARU and the staging memory for minimizing the intermediate data YO time. Even with 
Parallel Pascal programming the "kernel" process in my application, a 4096-complex 
element Fourier transform, needs only 1.25 milliseconds. The total computation time on 
the MPP for single-look processing of a 4096 x 4096 array of SIR-B signal data is only 19 
seconds. (The wall clock time is much larger due to conventional VO hardware on the host 
VAX computer.) 

-H.K. Ramapriyan 

Since 1979, I have been doing research on parallel computer hardware to support 
functional (or applicative) programming languages. My hardware model is well suited for 
VLSI implementation, but is impossible to simulate adequately on a conventional machine, 
on a vector supercomputer, or on a MIMD machine with a small number of processors. 
Since this is an experimental architecture, a VLSI implementation would be very costly and 
inflexible; fast software emulation on a parallel fine-grain SIMD machine is needed. The 
MPP and the Connection Machine are the only two currently available machines that are 
suitable. Access to the MPP has made it possible for me to make rapid progress in this 
research in the last year. In particular, I have developed: 

A general solution to the functional aggregate update problem, which has been a 
major problem for data flow architectures and applicative architectures. It now 
appears that a. machine like the MPP would make an excellent structure memory 
for data flow systems. 
A parallel garbage collector. 
A parallel combinator reduction system on the MPP is in progress. This looks 
promising, but much work remains. 

-John T. O'Donnell 



The goal of my project is to develop parallel algorithms for interactive, real-time 
manipulation of stereo pair graphic images. Terrain models defined over grids are the 
images of interest. Standard graphics operations of rotation, translation, scaling, 
perspective projection, and shading are computed for a 128 x 128 grid of elevations. The 
second image of a stereo pair is computed from the first by a rotation about the Y axis. 
Preliminary results based on one test case indicate that computational aspects of rendering 
stereo images can be done faster than the refresh rates of display devices. That is, in less 
than 1/30 of a second as needed for real-time manipulation. Similar computation on a 
VAX-11/780 took approximately 100 seconds, yielding a speedup of 3000 times for the 
MPP compared to a VAX. It would not be feasible to carry out this research on graphics 
algorithms without access to the MPP. 

-Edward Davis 

In my implementation of the contextual classifier on the MPP, I made no concerted effort to 
come up with the most efficient implementation possible. Still, this relatively inefficient 
implementation provides better than a 100-fold speed-up over a fairly efficient VAX-1 1/780 
implementation of the algorithm. This amount of speedup is sufficient to make it possible 
for the first time to study the effectiveness of this classifier on several different data sets of 
reasonable size (e.g., 512 x 512 pixels). 

-James Tilton 

A note on comparing the MPP implementation of the contextual classifier with a CRAY 
implementation: It makes little sense to compare the speed of the contextual classifier on a 
vector supercomputer such as a CFUY to the speed of the implementation on the MPP. 
Devising an implementation on the MPP that effectively uses the parallelism of the MPP is 
very easy and natural, whereas it would be much more difficult to develop an 
implementation on a vector supercomputer that effectively exploits that type of parallelism. 
Being such an easy and natural implementation, the MPP implementation lends itself much 
more effectively to experimentation with variations of the algorithm. 

-James Tilton 

A matching algorithm has been implemented on the MPP. Cross-correlation between local 
neighborhoods is performed to find corresponding pixels in both images. Increased 
resolution at each iteration is obtained by decreasing the size of the neighborhood used in 
the matching step. An interactive shell program has been developed on the MPP to allow 
modifying input parameters such as neighborhood size at each step in the matching 
process. The matching algorithm has been applied to SIR-B synthetic aperture radar 
images and to stereo cloud-cover images taken from synchronous orbit. In both cases, 
matches (for areas where the signal-to-noise ratio was high) were obtained automatically 
with as much accuracy as those produced by human observers. 

-James Strong 

I have demonstrated the ability to do operations on the MPP that would normally require 
generalized routing. One example is table look-up. This is based on a sort routine with a 
modified comparison step. 

-John Dorband 
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The mapping of inherently nongrid problems to the MPP array has generated a number of 
unexpected possible strategies. The space of solutions appears much broader and richer 
than previously imagined. The coherence sought in graphics rendering algorithms is well 
suited to the array communication structure. 

-Michael McAnulty 

The MPP made it possible for the first time to collect sufficient statistics to investigate 
vortex-vortex correlations in the planar spin model in a quantitative manner. 

-Peter Suranyi 

A calculation was performed on the MPP of intermittency for a Boolean delay equation of 
theoretical importance in modeling Quarternary Glaciations, and also related to the 
predictability of a deterministic white noise. The algorithm was programmed in MPP 
Parallel FORTH using 32-bit fixed precision arithmetic. The 1K bit PE memory limitation 
forced the choice of an inferior algorithm to that run on serial and vector machines. The 
algorithm achieved a speedup of 4,000 compared to a VAX-8650, and is estimated to run 
50 times faster than on a CRAY-1 compensating for the difference in algorithms. 

-A.P. Mullhaqt 

Our initial analysis of two-center integrals in molecular wave-function calculations has 
convinced us that the hWP will be a very effective computational tool and substantially 
reduce the computational time that one now needs with conventional computers. However, 
one needs very different algorithms and reprogramming of current procedures, which we 
are currently working 011. 

-N. Sahoo, S.N. Ray, and 
TP. Das 

As researchers at a university, my colleagues and I were pleased to discover that the 
opportunity of working with the MPP is highly attractive to graduate students, and not only 
within the Department of Electrical Engineering, to which we belong. Our two salaried 
research assistants, both from the Department of Computer Science, cooperated with us 
enthusiastically and productively, while two other graduate students came voluntarily to 
work on our project for academic credit alone. 

-Owen Storey 
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Appendix B - Working Group Membership 
Although this appendix lists only the 39 principal investigators and technical staff for the 40 
current Working Group projects, a separate document, Abstracts of the MPP Working 
Group3 is available with more detailed descriptions of each project. 

Earth Science Group 

Tropospheric Trace Gas Modeling on the MPP 
Dr. Gregory R. Carmichael, Chemical and Materials Engineering 
University of Iowa, Iowa City, Iowa 

Seog Y. Cho, Department of Chemical & Materials Engineering 
University of Iowa, Iowa City, Iowa 
David M .  Cohen, De artment of Computer Science 

University of Iowa, Iowa City, Iowa 

Universi ofIowa, P owa City, Iowa 
Mehmet x . Oguztuzun, Department of Computer Science 

Kalman Filtering and Boolean Delay Equations on an MPP 
Dr. Michael Ghil, Department of Atmospheric Sciences 
University of California, Lm Angeles, California 

Dr. A.P. Mullhaupt, Department of Mathematics & Statistics 
University 0)’ New Mexico, Albuquerque, New Mexico 

Adapting a Navier-Stokes Code to the MPP 
Dr. Chester E. Grosch, IC.4SE 
NASA-Lungley Research Center, Hampton, Virginia and 
Old Dominion University, Norj6olk, Virginia 

R. Fatoohi, ICASE 
NASA-Lungley Research Center, Hampton, Virginia 

A Physically-Based Numerical Hillslope Hydrological Model with Remote Sensing 
Calibration 
Dr. Robert J .  Gurney, Hydr(ologica1 Sciences Branch 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Dr. P.J. Camillo, Hydrological Sciences Branch 
NASA-Goddard S ace Fli ht Center, Greenbelt, Maryland 
E.T. Engman. Hy%rology hboratory 
U.S. Dept. of Agriculture, Beltsville. Maryland 
A.A. van de &end, Hydrological Sciences Branch 
NASA-Goddurd Space Flight Center, Greenbelt, Maryland 
A.R. Irving 
Science A lications Research, Lunham, Maryland 

Science Applicanons Research, L a n k ,  Maryland 
Judith E. iY evaney 

A Comparison of the MPP with Other Supercomputers for Landsat Data Processing 
Mr. Martin Ozga, Statistical Reporting Service 
U.S. Department of Agricul/ure, Washington, D.C. 

Use of Spatial Information for Accurate Information Extraction 
Dr. James C. Tilton, Information Analysis Facility 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 
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A Magnetospheric Interactive Model Incorporating Current Sheets (MIMICS) 
Dr. Elden C. Whipple, Jr., Center for Astrophysics and Space Sciences 
University of California at San Diego, La Jolla, California 
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Physics Group 

Investigations on Electroruc Structure and Associated Hyperfine Properties of Atoms and 
Condensed Matter System Using the MPP 
Dr. Tara Prasad Das, Department of Physics 
State University of New York, Albany, New York 

Dr. Surendra N. Ray 
ST Systems Corp., Lanham, Maryland 
Narayan Sahoo, De artment of Ph sics 
State University ofNew York, A1 l any, New York 

Numerical Calculations of Charged Particle Transport 
Dr. James A. Earl, Department of Physics and Astronomy 
University of Maryland, College Park, Maryland 

Simulation of Beam Plasma Interactions Utilizing the MPP 
Dr. Chin S. Lin, Department of Space Sciences 
Southwest Research Institute, San Antonio, Texas 

A.L. Thring, Department of Space Sciences 
Southwest Research Institute, San Antonio, Texas 
J. Koga, De artment of Space Sciences 

R.W. Janetzke, Department of Space Sciences 
Southwest hlesearch Institute, San Antonio, Texas 

Southwest Ep esearch Insatute, San Antonio, Texas 

Particle Simulation of Plasmas on the MPP 
Dr. L.R. Owen Storey, STAR Laboratory, 
Stanford University, Stanford, California 

Dr. I .MA.  Gledhill, STAR Laboratory 
Stanford University, Stanford, California 
Dr. Oscar Buneman, STAR Laboratory 
Stanford University , Stanford, California 

Phase Separation by Ising Spin Simulations 
Dr. Francis Sullivan, Scientific Computing Division 
National Bureau of Standards, Gaithersburg, Maryland 

Dr. Raymond D. Mountain, Thermophysics Division 
National Bureau of Standarh, Gaithersburg, Maryland 

A Study of Phase Transitions in Lattice Field Theories on the MPP 
Dr. Peter Suranyi, Department of Physics 
University of Cincinnati, Cincinnati, Ohio 

Paul Harten, Department of Physics 
University ojf Cincinnati, Cincinnati, Ohio 

Wave Scattering by Arbitrarily Shaped Targets-Direct and Inverse 
Dr. William Tobocman, Department of Physics 
Case Western Reserve University, Cleveland, Ohio 

William H. Vonder Haar, Department of Physics 
Case Western Reserve University, Cleveland, Ohio 
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Free-Electron Laser Simulations on the MPP 
Dr. Scott Von h e n ,  
KMS Fusion, Inc., Ann Arbor, Michigan and 
Mission Research Corporation, Albuquerque, New Mexico 

Lorie M .  Liebrock 
Michigan Technological University, Houghton, Michigan 

The Dynamics of Collisionless Stellar Systems 
Dr. Richard L. White, 
Space Telescope Science Institute, Baltimore, Maryland 
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Signal & Image Processing Group 

Fixed Point Optimal Nonlinear Phase Demodulation 
Dr. Richard S. Bucy, Department of Aerospace Engineering 
University of Southern! California, Los Angeles, California 

Pattern Recognition on an Array Computer 
Dr. Y. Paul Chiang, Department of Electrical & Computer Engineering 
Washington State University, Pullman, Washington 

Graphics Applications of the MPP 
Dr. Edward W .  Davis, Department of Computer Science 
North Carolina State University, Raleigh, North Carolina 

Dr. David F. McAllister, Department of Computer Science 
North Carolina State University, Ralei h, North Carolina 

North Carolina State University, Raleigh, North Carolina 

Automatic Detection and Classification of Faint Galaxies on Deep-Sky Astronomical 
Pictures 
Dr. Sara R. Heap, Astronomy Branch 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Sanjay Pol, Department of Computer &- cience 

Donald J. Lindler 
Advanced Computer Concepts, Inc., Potomac, Maryland 

Application of Parallel Computers to Biomedical Image Analysis 
Dr. Robert V. Kenyon, Dept. of Electrical Engineering and Computer Science 
University of Illinois, Chicago, Illinois 

Comet Halley Large-Sc:ale Image Analysis 
Dr. Daniel A. Klinglesmith, III, Science Operations Branch 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Dr. John E. Dorband, Image Analysis Facility 
NASA-G'oddard Space Flight Center, Greenbelt, Maryland 
Archibald Warnock I l l ,  
ST Systems Corporation, Lanham, Maryland 

Synthetic Aperture Radar Processor System Improvements 
Dr. Stephen A. Mango 
Naval Research Luborartory, Washington, D.C. 

S. Walter McCandless 
User Systems, Inc., Annandale, Virginia 

Development of Automatic Techniques for Detection of Geological Fracture Patterns 
Dr. H.K. Ramapriyan, lnfonnation Analysis Facility 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Dr. Paul D. Lowman, Geophysics Branch 
NASA-G(oddard S ace Fli ht Center, Greenbelt, Maryland 
Dr. Herbert W. BLdget, & o p p  Branch 
NASA-Goddard Space Flight enter, Greenbelt, Maryland 
Mr. Edwwd J. Seiler, 
Science Applications Research, Lanham, Maryland 
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Development of an Improved Stereo Algorithm for Generating Topographic Maps Using 
Interactive Techniques on the MPP 
Dr. James P. Strong, Information Analysis Facility 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Reconstruction of Coded-Aperture X-Ray Images 
Dr. Lo I .  Yin, Solar Physics Branch 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Dr. Michael J .  Bielefeld 
Computer Sciences Corporation, Baltimore, Maryland 
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Computer Sciences Group 

Diagrammatic Information Processing in Neural Nets 
Dr. John A.  Barnden, Computer Science Department 
Indiana University, Bloomington, Indiana 

Sorting and Signal Processing Algorithms: A Comparison of Parallel Algorithms 
Dr. Howard B.  Demuth, Department of Elecm'cal Engineering 
University of Idaho, Moscow, Idaho 

Space Plasma Graphics: Animation 
Mr. Eugene W. Greens fadt, Space Sciences Department 
TRW, Redondo Beach, California 

Karen E'. Jordan, Space Sciences Department 
TRW, Redondo Beach. California 

Parallel Algorithms for Graph-Theoretic Problems 
Dr. Susanne E. Hambrimh, Computer Sciences Department 
Purdue University, West h f i e t t e ,  Indiana 

Applications of Stochastic and Reaction-Diffusion Cellular Automata 
Dr. Harold M .  Hastings, Department of Mathematics 
Hofstra University, Hempstead, New York 

Dr. Mich.ae1 Conrad, Department of Biological Sciences 
Wayne State University, Detroit, Michigan 
Dr. Stefan Waner, Department of Mathematics 
Hofstra University, Hempstead, New York 

Sorting and Signal Processing Algorithms: A Comparison of Parallel Architectures 
Dr. Martin T. Hagan, Electrical Engineering Deparmnt  
University of Tulsa, Tulsa, Oklahoma 

Solution of Complex, Linear Systems of Equations 
Dr. Nathan Ida, Electrical Engineering Department 
University of Akron, Akron, Ohio 

Kapila Udawatta, Electrical Engineering Department 
Universily of Akron, Akron, Ohio 

FORTH, An Interactive Language for Controlling the MPP 
Dr. Daniel A.  Klinglesmith III, Science Operations Branch 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Dr. Arne A. Henden, 
ST S stems Corporation, Lunham, Ma land 

NASA-Goddard Space Flight Center, Greenbelt, Maryland 
Dr. john .E. Dorband, Image Analysis P acility 

Algorithmic Commonalities in the Parallel Environment 
Dr. Michael A. McAnulCy, Department of Computer and Information Sciences 
University of Alabama, Birmingham, Alabama 

Dr. William M .  Siler, Clinical Computing 
Carraway Methodist Medical Center, Birmingham, Alabama 
Michael S .  Wainer, Department of Com uter and Information Sciences 
University of Alabama, Birmingham, A P abama 
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Simulating an Applicative Programming Storage Architecture Using the NASA Massively 
Parallel Processor 
Dr. John T.  O'Donnell, Computer Science Department 
Indiana University, Bloomington, Indiana 

Parallel Solutions of Very Large Sparse Linear Systems 
Dr. John H .  Reif, Computer Science Department 
Duke University, Durham, North Carolina 

Dr. Torstein Opsahl, Perkin-Elmer Advanced Development Center 
MRJ, Inc., Oakton, Virginia 

Massively Parallel Network Architectures for Automatic Recognition of Visual Speech 
Signals 
Dr. Terence J .  Sejnowski, Biophysics Department 
Johns Hopkins University, Baltimore, Maryland 

Dr. Moise H. Goldstein Jr., Dept. of Electrical Engineering & Computer Science 
Johns Ho kins Universi , Baltimore, Maryland 

Johns Hopkins University, Baltimore, Maryland 
Ben P. e uhas, Dept. of k! lectrical Engineering & Computer Science 

Animated Computer Graphics Models of Space and Earth Sciences Data Generated Via the 
Massively Parallel Processor 
Mr. Lloyd A. Treinish, National Space Science Data Center 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 

Dr. Chester J. Koblinsky, Geodynamics Branch 
NASA-Goddard Space Fli ht Center, Greenbelt, Maryland 
Dr. Richard A. Goldber hectrody namics Branch 

Science Ap licahons Research, Lanham, Maryland 

Sciences Applications Research, Lanham, Maryland 

NASA-Goddard S ace fi  light Center, Greenbelt, Maryland 
Michael L. Goug R 
Mr. David k ildenhain 
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Appendix C - Quantifications 
This Appendix presents quantitative data concerning the ways in which the Working Group 
has solved problems on the MPP. Various parameters are quantified for each MPP project 
in the tables that appear 011 the following pages. These parameters are: 

(a) Physical lattice size - This item applies only to physical phenomena taking place 
in a two-dimensional spatial domain, that is divided up into a grid and mapped more or less 
directly onto the array of processing elements. Obviously, problems having a physical 
lattice size of 128 x 128 are very well suited for solution on the MPP. 

(b) Physical vector size - This item is the maximum number of data that need to have 
the same mathematical operation performed upon them at a given step in the calculation. 
Problems where this number is smaller than 16,384 do not make full use of the parallel 
computing power of the IVIPP. Problems where the number is greater than 16,384 could, 
in principle, be solved faster on an even larger machine of the same type. 

(c) Word sizes (in bits) for the physical variables - This item indicates how well 
the problem is suited to the 1-bit arithmetic used in the MPP array unit. 

(d) Memory required per processing element (PE) - Requirements of fewer than 
1K bits can be satisfied by the array memory. Requirements for a further 16K can be met 
by the staging memory. Total requirements exceeding 17K necessitate use of the host 
memory as well. 

(e) Communication between processing elements - Since only nearest-neighbor 
connections exist between its PE's, the MPP is best suited to problems not calling for long- 
range communication. The following codes are used to indicate the type of communication 
required in each project: 

(0) No communication needed. 
(1) Communication with nearest neighbors only. 
(2) Remote communication needed. 

( f )  Percentage of time spent on input to and output from the array unit - 
This item indicates to what extent the speed of solution of the problem is limited by YO. 
(g) Overall performance relative to a CRAY-1 - The number tabulated here is the 
time required to complete the solution on a CRAY- 1, divided by the corresponding time on 
the MPP; in some cases these times have been measured, in others only estimated. The 
algorithms need not be the same for the two types of computer. If performance statistics 
relative to a CRAY are unavailable, comparison is sometimes made between the MPP and a 
VAX. 
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Appendix D - Lists 

Papers 

Earth Science Group 

"A SIMD Implementation of a Distributed Watershed Model," J.E. Devaney, P.J. Camillo, 
and R.J. Gurney, in Proceedings of the Second International Conference on Super- 
computing, Santa Clara, California, May 1987. 

"Massively Parallel Correlation Techniques to Determine Local Differences in Pairs of 
Images," J.P. Strong and H.K. Ramapriyan, Proceedings of the Second International 
Conference on Supercomputing, Santa Clara, California, May 1987. 

"Implementation of a Four-Color Cell Relaxation Scheme on the MPP, FLEX/32, and 
CRAY/2," R.A. Fatoohi and C.E. Grosch, to appear in The 1987 International Conference 
on Parallel Processing. 

"Chemical Network Problems Solved on NASA/Goddard Massively Parallel Processor 
Computer," S.Y. Cho, (3.R. Carmichael, D.M. Cohen, and M.H. Oguztuzun, AICHE 
Annual Conference, 1986. 

"Automated Matching of Pairs of SIR-B Images for Elevation Mapping," H.K. 
Ramapriyan, J.P. Strong, Y. Hung, and C.W. Murray, IEEE Transactions on Geoscience 
and Remote Sensing, GE-24, No. 4, July 1986, pp. 462-472. 

Physics Group 

"Charged Particle Transport Calculations on the Massively Parallel Processor," Dr. James 
Earl, paper submitted to the 20th International Cosmic Ray Conference, Moscow, 
U.S.S.R., August 1987. 

Signal and Image Processing Group 

"Limitations of Inherently Parallel Graphics Algorithms," Michael McAnulty, Proceedings 
of the Second International Conference on Supercomputing , Santa Clara, California, May 
1987. 

"A Fractal Subdivision Algorithm for Mesh-Connected Computer," Michael S .  Wainer, 
IEEE Transactions on Computers, 1987 (accepted for publication). 

"Reconstruction of Coded Aperture X-Ray Images," Michael Bielefeld, Proceedings of the 
SPIE Conference, August 1987 (in press). 

"Block Iterative Restoration of Astronomical Images on the MPP," Sara Heap and Don 
Lindler, Proceedings of the 169th Meeting of the American Astronomical Society, 
Pasadena, California, January 1987. 

"Deconvolution of Quasar 2130 + 099," Sara Heap and Don Lindler, Proceedings of the 
I69th Meeting of the American Astronomical Society, Pasadena, California, January 1987. 
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"Classification of Multispectral Data Using Contextual Information," Dr. James Tilton, 
invited paper at An Interdisciplinary Workshop on the Theory and Methods of Pattern 
Recognition With Applications to Multispectral Data Analysis, Utah State University, 
Logan, Utah, May 8-9, 1986. 

"Computational Investigations Using the Massively Parallel Processor," Dr. James Tilton, 
invited paper at An Interdisciplinary Workshop on the Theory and Methods of Pattern 
Recognition With Applications to Multispectral Data Analysis, Utah State University, 
Logan, Utah, May 8-9, 1986. 

"Estimation of A Priori Probabilities for Bayesian Classification of Multispectral Image 
Data," Dr. James Tilton, presentation at Workshop on Analytical Methods in Remote 
Sensing for Geographic Information Systems, sponsored by the International Association 
on Pattern Recognition Technical Committee 7, Paris, France, October 23-24, 1986. 

Computer Sciences Group 

"Principles of Evolutionary Learning-Design for a Stochastic Neural Network," H. 
Hastings and S. Waner, BioSystems, 18 (1985), 105-109. 

"Biologically Motivated Machine Intelligence," H. Hastings and S. Waner, SIGART 
Newsletter, 19-3 1 , January 1986 (not referreed). 

"Evolutionary Learning of Complex Modes of Information Processing," H. Hastings and 
S. Waner (submitted). 

"Functional Aggregate Update on a Parallel Processor Architecture," John T. O'Donnell. 

"Data Parallel Garbage Collection," John T. O'Donnell (in progress). 

"Finely Grained Parallelism in an Applicative Architecture," Dr. John T. O'Donnell, 
Proceedings of the Workshop on Future Directions in Computer Architecture and 
Software, Army Research Office, May 1986. 

"Simulating VLSI Systems Using the Massively Parallel Processor," Dr. John O'Donnell, 
Proceedings of the 1986 Summer Computer-Simulation Conference, Society for Computer 
Simulation, July 1986. 

"Parallel Implementation of Field Solution Algorithms," Dr. Nathan Ida, to be presented at 
COMPUMAG, Graz, Austria, August 1987. Accepted for publication in ZEEE 
Transactions on Magnetics. 

Technical Reports 

Computer Sciences Group 

"A Study of MPP Implementations for the Connected Component Labeling Problem," S.E. 
Hambrusch, L. TeWinkel, Technical Report, Purdue University. 

"Complex Cognitive Information Processing: A Computational Architecture with a 
Connectionist Implementation," J.A. Barnden, Technical Report 2 1 1, Computer Science 
Department, Indiana University. 
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Theses 

"Sort Computation and Conservative Image Registration," J.E. Dorband, Ph.D. Thesis, 
Department of Computer Science, Pennsylvania State University, December 1985. 

"Solution of Large Linear Systems of Linear Equations on a Massively Parallel Processor," 
Kapila Udawatta, Ph.D. Thesis, University of Akron, August 1986. 

"A Parallel Finite Element Analyzer," Wang Jian-She, Ph.D. Thesis in progress, 
University of Akron. 

Students 

Physics Group 

[Storey] Shaw-Ben Shi, Computer Science major from Stanford University, worked on the 
MPP from 9/1/85 to 3/31/86 and again from 7/1/86 to 12/31/86. 

[Storey] Igor Dayen, Computer Science major from Stanford University, worked on the 
MPP from 9/1/85 to 3/3 1/86. 

[Storey] Elgin H. Lee, Electrical Engineering major from Stanford University, worked on 
the MPP from 9/1/86 to 1:2/31/86. 

[Storey] Stanley H. Yau, Engineering Economic Systems major from Stanford University, 
worked on the MPP from 9/1/86 to 12/31/86. 

[Grosch] Raad A. Fatoohi, Ph.D student, Department of Electrical Engineering, Old 
Dominion University. 

Computer Sciences Group 

[Demuth] Derek Brown, at graduate student at the University of Idaho, is using a variation 
of the Mandelbrot set calculation as a benchmarking tool. This was a research project in 
EE504: High Performance: Computing. 

[Demuth] Joe Hicklin, a graduate student at the University of Idaho, has implemented a 
neural network experiment tool to allow users to perform a broad range of experiments on 
large neural nets. 

[Hambrusch] Jeffery Hostletler and Lynn TeWinkel, computer science graduate students at 
Purdue University, started working on the MPP in October 1986. 

[McAnulty] Michael Wainer is a Ph.D. student, Department of Computer & Image Science, 
University of Alabama at I3irmingham. 

[Carmichael] Mehmet H. Oguztuzun, Ph.D student, Department of Computer Science, 
University of Iowa. 



[Hastings] Steven Rosenthal, Mathematics Department, Hofstra University. 

[Davis] Sanjay Pol, M.S. student in Electrical and Computer Engineering, North Carolina 
State University, Raleigh. 

[Davis] K.L. Duh, Electrical and Computer Engineering, North Carolina State University. 

[Ida] Kapila Udawatta, a Computer Engineering graduate student at the University of 
Akron, worked on the MPP from 9/85 to 9/86. 

[Ida] Wang Jian-She, an Electrical Engineering graduate student at the University of 
Akron, began work on the MPP 10/86. 

[Ida] All students in my Computer Algorithms course (20 students) use the MPP Simulator 
for homework as signmen ts . 

Grants 

A proposal with the title "MPP Implementations for Graph and Computer Vision 
Problems" has been submitted to NSF, but no decision has been made. The principal 
investigators are S.E. Hambrusch and C. Guerra. 

A grant titled "Investigation of the Usefulness of the Massively Parallel Processor to Study 
Electronic Properties of Atomic and Condensed Matter Systems" is cofunded by NASA 
and the State University of New York at Albany, The principal investigator is T.P. Das. 

A proposal titled "Complex Cognitive Information Processing" has been submitted to NSF, 
AFOSR and ONR. The principal investigator is J.A. Barnden. 

A grant titled "Utilization of MPP for Investigation of Electronic Structures and Hyperfine 
Properties of Atomic and Condensed Matter Systems," has been submitted to the 
Department of Energy, Principal Investigator is T.P. Das. 

A grant titled "Particle Simulation of Plasmas on the Massively Parallel Processor," has 
been funded by the National Science Foundation. Principle Investigator is L.R.O. Storey. 

A grant proposal titled "Graphics Algorithms on Parallel Architectures," was submitted to 
the National Science Foundation. Principle Investigators are D.F. McAllister and Edward 
W. Davis. 

A grant titled Computer Simulation of Rarefied Media," is funded by the NASA-Ames 
University Consortium. Principal Investigator is L.R.O. Storey. 

A smaller grant from the Stanford-Ames Institute for Space Research was awarded to 
L.R.O. Storey. 

A grant titled "Complex Cognitive Information Processing: A Computational Architecture 
with Connectionist Implementation," was received by John Barnden. 

A grant application is being submitted to the National Science Foundation in the Fall of 
1987. Principal Investigator will be Harold Hastings. 
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"A Pyramid Approach to Image Segmentation," is a proposal funded by the NASA4SFC 
Director's Discretionary Fund for FY87. Principal Investigator is James Tilton. Part of 
this project is funded for Curtis E. Woodcock of the Department of Geography, Boston 
University for a proposal titled, "The Use of Spatial Features in Image Segmentation." 

A grant proposal titled "Graphics Algorithms on Parallel Architectures," was submitted to 
the National Science Foundation. Principal Investigators are Dr. D.F. McAllister, and Dr. 
E.W. Davis. 

"Generation of Fractally Textured Surfaces by Recursive Subdivision," is a project 
performed by Michael S .  Wainer under a NASA Graduate Student Fellowship, 1985- 
present. 

"A grant proposal titled "Investigating Net Behavior by Simulation," was submitted by 
Michael McAnulty to ,the U.S. Army. 

"Parallel Computing for Finite Element Analysis," is a proposed grant from NASA-Lewis 
Research Center, (pending), Principal Investigator is Nathan Ida. 
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Appendix E - Technical Summary of the MPP 
INTRODUCTION 

The Massively Parallel Processor1 (MPP) is an advanced computer architecture termed 
single-instruction stream ]multiple-data stream (SIMD) that shows promise of delivering 
enormous computational power at lower cost than other existing architectures. Its 
computational element, the array unit, consists of a 128 by 128 array of small 1-bit 
processors, each containing 1,024 bits of local memory, and having nearest neighbor 
connectivity. A secondary storage unit, the staging memory, holds 32 megabytes of data 
and connects to the array memory via an 80 megabyte per second data path. An array 
control unit broadcasts control signals to all processors in the array unit. The MPP is a 
back-end processor for a \/AX-1 1/780 host, which supports its program development and 
data needs. (See Figure 1.) 

The MPP was built for the Goddard Space Flight Center by Goodyear Aerospace 
Corporation. Delivery of the system took place in May 1983. At that time, the 
construction of a digital pirocessor using the very high degree of parallelism embodied in 
the MPP had not been previously attempted. 

MPP SOFTWARE 

Since its delivery to Goddard, an extensive language system and a unique operating system 
have been implemented for the MPP. This system software repertoire is relied on daily by 
dozens of teams of scientific investigators who are developing, testing, and running parallel 
algorithms. 

High Level Languages 

The initial high level language implemented in 1983 was Parallel Pascalll. This 
language was designed to be independent of the computer's architecture, thus allowing 
portability of applications programs between diverse parallel computers having Parallel 
Pascal compilers. Experience gained in the development and use of this approach showed 
that the 128 by 128 square grid architecture of the MPP could not easily be hidden Erom the 
programmer by using current compiler writing technology. 

A modified language, MPP P a s ~ a l ~ ~ . ~ ~ ,  was then implemented that is architecture 
dependent and that possesses important semantic features allowing the programmer to make 
very efficient use of the hardware's capabilities. The MPP Pascal compiler is capable of 
producing highly optimized code and is sufficiently flexible to allow easy modification. 
MPP Pascal is currently in user field test. 

Under the auspices of one of the Working Group proposals, the FORTH14 language was 
ported to the MPP and extended to permit the MPP to be operated in an interactive manner. 
MPP Parallel FORTH became operational in December 1986. The MPP is also 
programmable in assembly language15.16. 



Operating System 

The MPP operating system provides interactive debugging aids17 in addition to support for 
running applications code. The software that performs these tasks is shared by all MPP 
users, greatly reducing the demand on the host's main memory. The debugging aids 
include performance monitoring, error reporting of MPP hardware-detected faults, 
breakpointing, single-step, and status display. A first-come-first-served queue is the 
central arbiter controlling user access to the MPP. 

All MPP applications programs must be prepared as two parts. One part runs in the MPP 
control unit and the other part runs on the host. They are linked together through a 
message passing system. A master/slave control relationship exists between the MPP and 
the host. The host resident program is the highest level of control. This program interacts 
with the user and starts MPP programs. MPP programs, in turn, use the host as an VO 
server, directly accessing the host's disk and image analysis terminals through an extensive 
set of I/O service routines. 

A device driver that communicates directly with the MPP hardware runs at the lowest level 
in the host operating system. This driver is the hub of the entire system, controlling the 
execution of programs in the MPP as well as the flow of data throughout the system. The 
bulk of the operating system interacts directly with this device driver to accomplish tasks in 
support of a running application such as initializing the hardware, loading programs, 
starting and stopping programs, reading and writing data, and delivering messages between 
running programs in the host and the MPP. 

Libraries 

Computational: A number of libraries of computational subroutines are supported. One 
type holds more than 270 microcoded subroutines that define the actual instruction set of 
the MPP. These include the basic arithmetic and transcendental functions as well as multi- 
precise arithmetic and special user-written instructions. A second type of library holds 
MPP Pascal-callable subroutines, including fast fourier transforms, a random number 
generator, a sort computation package, linear algebra routines, and utility programs. 

Data 1/01*: For many applications, having only 1,024 bits of memory available to each 
of the 16,384 MPP processors has been a serious constraint. This limitation was imposed 
by the memory chip technology available in 1980 when the system was designed. As an 
alternative to an expensive hardware upgrade, bit-plane I/O software was developed that 
treats the staging memory as individual bit planes. A system was implemented that 
provides each processor with 16K bits of virtual array memory. The penalty is an increase 
in memory access time from 0.1 microseconds to 25 microseconds per bit plane; however, 
many applications benefit from this virtual memory as they effectively overlap computation 
with data transfer. In addition to bit-plane YO, another system, SMM VO, gives the user 
access to the powerful data reformatting capabilities of the staging memory. A set of 
libraries holds VO subroutines which control the movement of data within the system. 

Si mula t ion Environments 

Two MPP simulation environments have been developed and distributed to user sites 
remote from Goddard. 
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MPP Simulator6: The: MPP Simulator supports the development, testing, and 
refinement of MPP Pascal or assembly language applications programs on any VAX 
operating under VMS. It allows a user the convenience of a local dedicated MPP that does 
not have to be shared with other users. In addition, its use at remote sites off-loads 
program preparation work: from the MPPNAX system at Goddard. Code that runs on the 
Simulator will run on the MPP after adjusting any references to the size of the array unit 
(usually simulated as a 16 x 16 array to speed execution). 

Parallel Pascal Translator? The Parallel Pascal Translator takes Parallel Pascal 
source code as input and produces equivalent serial Pascal source code as output. The 
serial Pascal can be comp:iled and executed using a standard Pascal compiler system. The 
Translator allows the development, testing and refinement of applications programs on 
most computers that have ,a Pascal compiler. 

MPP HARDWARE 

Array Unit 

The Array Unit is the 123 x 128 array of processing elements (PE's) that supplies the 
MPP's computational pourer: Each PE has a local 1,024 bit random access memory and is 
connected to its four nearest neighbors-north, south, east and west. Opposite array edges 
can be connected together to form either a plane, a horizontal cylinder, a vertical cylinder, 
or a torus. Arithmetic and logic in each PE are performed in a bit-serial manner. All 
operands are fetched in bit-serial fashion from the 1,024-bit local memory and results are 
constructed in the memory in like fashion. The cycle time is 100 nanoseconds. Table 1 
shows the raw computing speeds for selected arithmetic operations. The data-bus states of 
all 16,384 PES are combined in a tree of inclusive-or logic elements whose single-wire 
output is used in the Array Control Unit for operations such as finding in parallel the 
maximum or minimum value in an array. 

MPP Processing Elemlent: A single PE is shown functionally in Figure 2. The P- 
register, together with its input logic, performs all Boolean logic functions on two variables 
and can also receive data from the P-register in any one of its four nearest neighbors. The 
A-, B-, and C-registers, thle shift register, and associated logic form an arithmetic unit. The 
G-register controls masking of arithmetic, logic and routing operations. (Unmasked 
operations are performed in all PES. Masked operations are performed only in those PE's 
where the G-register is se:t.) The S-register is used to shift data to and from the Staging 
Memory without disturbiing PE operations. A custom integrated circuit (IC) holds eight 
PE's, exclusive of the 1,024 bits of random access memory, which is on a separate IC 
chip. A one-bit wide bidirectional data bus connects the memory and the internal 
components of the PE. 

Microcircuit Technology: All components of eight PES, exclusive of random access 
memory, are packaged on a custom integrated circuit. This chip uses high speed 
complementary MOSFET (HCMOS) technology. This chip contains a two row by four 
column array of PE's. 

Array Control Unit 

The Array Control Unit broadcasts control signals and memory addresses to all PE's in the 
Array Unit and receives .Array Unit status bits. It is designed to perform bookkeeping 
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operations (address calculation, loop control, branching, subroutine calling, etc.), and 
control the Array Unit simultaneously. It contains three parts: (1) the Main Control Unit, 
(2)  the PE Control Unit, and (3) the I/O Control Unit. 

The Main Control Unit executes the application program stored in its program memory. It 
performs the scalar arithmetic operations required, calls the PE Control Unit for all array 
logic and array arithmetic operations, and calls the I/O Control Unit for all I/O operations. 
Both sets of calls are queued to await execution while the Main Control Unit moves on to 
generate other calls. 

The PE Control Unit generates all Array Unit instructions except those pertaining to the S- 
register (data UO). It executes microcoded routines stored in its program memory to 
perform all array operations required by applications programs. 

The I/O Control Unit controls the shifting of I/O data through the Array Unit S-registers as 
well as the transfer of I/O data between the S-registers and the Array Unit memory. It 
executes YO channel programs stored in the Main Control Unit's program memory. 

Staging Memory 

The MPP system includes a Staging Memory for buffering Array Unit data. This memory 
provides both the "corner turning" function, which converts conventional byte or word 
oriented data into the bit plane form needed by the Array Unit, and the "multidimensional 
access" function, which allows large multidimensional arrays of data located in the Staging 
Memory to be read out or written in along arbitrary orderings of array dimensions. The 
current capacity of the Staging Memory is 32 megabytes, upgradable to 64 megabytes. 

Data moves between the Array Unit and the Staging memory via 128 parallel lines. The 
upper limit on the transfer rate is 1.28 billion bitshecond. Goddard's MPP currently 
supports .64 billion bitshecond. Data movement in both directions can be overlapped with 
processing. 

Host Processor 

A DEC VAX-11/780 computer manages data flow between MPP units, loads progams into 
the Control Unit, executes system test and diagnostic routines, and provides program 
development facilities. The MPP is interfaced to the VAX through a 5 megabytehecond 
DR-780 channel. Remote access to the VAX is provided through ARPANET, SPAN, 
BITNET, TELENET, and dial-in. 
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SPEED OF TYPICAL OPERATIONS 

OPERATION 

Addition of Arrays 
%Bit Integers (9-Bit Sum) 
12-Bit Integers (13-Bit Sum) 
32-Bit Floating Point Numbers 

Multiplication of Arrays 
%Bit Integers (16-Bit Product) 
12-Bit Integers (24-Bit Product) 
32-Bit Floating Point Numbers 

I Multiplication of Array By Scalar 
&Bit Integers (16-Bit Product) 
12-Bit Integers (24-Bit Product) 
32-Bit Floating Point Numbers 

*MOPS - Million Operations Per Second 

EXECUTION RATE (MOPS) 

I 

Table 1. Speed of Typical Operations 

6553 
4428 

430 

1861 
910 
216 

2340 
1260 
373 
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