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(ABSTRACT) 

The objective of this study was to develop tests that could be used to characterize 
autohesive strength development in amorphous thermoplastic resins and fiber-reinforced 
thermoplastic prepregs. All tests were performed using polysulfone P1700 thermoplastic 
resin and AS4P1700 graphite-polysulfone prepreg. 

Two test methods were examined to measure autohesion in neat resin samples. These 
included an interfacial tension test based on the ASTM tensile adhesion test (ASTM 
D897) and a fracture toughness test using a compact tension (CT) specimen (based on the 
ASTM toughness test for metals ASTM E399-83). The interfacial tensile test proved to 
be very difficult to perform and with an unacceptable amount of data scatter. The data 
obtained using the compact tension test were repeatable and could be correlated with 
temperature and contact time. 

Autohesive strength development in fiber-reinforced prepreg samples was measured 
using a double cantilever beam (DCB) interlaminar fracture toughness test. The fracture 
mechanisms were determined to be different in the healed DCB specimen than the virgin 
specimen due to resin flow at the crack plane during the healing tests. 

The CT test was found suitable for use in determining the autohesive properties and self- 
diffusion coefficient of neat resin. The DCB test, although not suitable for autohesive 
testing, indicated that repair of thermoplastic matrix composites is possible; however, the 
repair will not be as tough as the virgin material. 
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1 .O Introduction 

-c 

The use of advanced fiber-reinforced composites has increased significantly in recent 

years. The high specific strengths and stiffnesses of these materials make them ideal for 

aerospace applications. However, typical fiber-reinforced organic matrix composites 

using thermosetting resins, such as epoxies, have low damage tolerance and low service 

temperatures when compared to the more traditional aerospace materials, such as 

aluminum. 

To overcome the shortcomings in thermosetting resins, there is great interest in the use of 

thermoplastic resins as matrix materials for fiber-reinforced composites. Thermoplastic 

resins are generally high toughness materials and subsequently can improve the damage 

tolerance of composites. However, the mechanisms by which thermoplastic matrix 

composites form are very different than the mechanisms by which thermosetting matrix 

composites cure. Major differences between the processing characteristics of 

thermoplastic and thermosetting resins are shown in Table 1.1. The extreme tow height 

non-uniformity and the lack of flow in thermoplastic prepregs make them more difficult 

to process than thermosetting prepregs. Unlike thermosetting resins, which rely on low 

viscosity flow and wetting ability of the resin to coalesce the ply interfaces, thermoplastic 

matrix composites must be physically deformed to cause coalescence. 

The mechanisms explaining the consolidation and interfacial deformation in 

thermoplastic composites have been established as viscoelastic deformation and 
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Table 1.1 Comparison of Thermoset and Thermoplastic Matrix Composites 

Prepreg 

Minimum Viscosity I (Poise) 

Solidification I 
Processing Temperature I 

Thermoset Thermoplastic 

Uniform Nonuniform 

10 lo4 

LOW I High 

Chemical 
(Irreversible) 

Physical 
(Reversible) 

250 - 350'F 600 - 7W°F 
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autohesive bonding. These mechanisms are not well quantified and present processing 

models developed for thermosetting resin composites cannot be directly applied to 

thermoplastic matrix composites. Processing cycles for thermoplastic composites are 

currently derived empirically by trial and error. These methods do not lead to processing 

cycles which result in fully consolidated composite structures with strong interfacial 

bonds. In order to improve the processing theory for continuous fiber-reinforced 

thermoplastic matrix composites, the processing parameters temperature, pressure, and 

time must be related to the overall state of consolidation in the composite. 

Common methods of processing thermoplastic composites from prepreg materials include 

matched die press molding or autoclave molding. Thermoplastic prepregs are often 

produced by first dissolving the polymer in a solvent. The minimum attainable viscosity 

of a neat thermoplastic resin during processing is very high ( 2104 Poise). A solvent is 

used to lower the viscosity (=lo Poise) to ensure good fiber wetting and even matrix 

distribution which leads to a good fiber matrix bond. The solvent must be removed from 

the prepreg prior to processing to eliminate the possibility of voids forming due to solvent 

outgassing. The solvent is normally removed by drying in a forced air or vacuum oven. 

The prepreg must be processed in order to produce the composite. The prepreg is cut to 

the dimensions of the structure and fiber directions oriented (laid up) to obtain the desired 

mechanical properties of the finished product. Thermoplastic prepregs have little or no 

tack and often the prepregs are spot welded to prevent slippage during processing. The 

lay-up is then placed in the die press or autoclave and processed at an elevated 

temperature and pressure for a known period of time, called the processing cycle. During 
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the processing, the resin undergoes rheological and physical changes dependent on both 

the applied pressure and temperature. This causes the prepreg plies to coalesce and 

consolidate into the finished laminated structure. The magnitudes of the temperature, 

pressure, and time greatly affect the quality of the finished composite. 

In order to develop a processing model, the physical processes tllat occur during 

production of thermoplastic composites must be fully understood both quantitatively and 

qualitatively. The mechanism controlling the interfacial bond formation (consolidation) 

has been recognized as autohesion or self-diffusion. There are numerous theories 

describing autohesion in neat resin, and tests to determine autohesive strength are 

available. Autohesion in fiber-reinforced thermoplastic prepregs is not well understood 

due to the complications of the fiber matrix interface. Thus, the objective of the present 

study is to develop simple test methods that can be used to characterize interfacial 

strength development in advanced amorphous thermoplastic matrix resins and fiber- 

reinforced amorphous thermoplastic prepregs, and to model the results for incorporation 

into future processing theories. 

. 
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2.0 Literature Review 

c 

In previous studies and by independent observation of the composite during processing, it 

has been established that individual prepreg plies consolidate by interfacial bonding [ 11. 

The resulting bond strength is a function of the processing parameters temperature, 

pressure, and time to which the interface is subjected. The mechanism governing the 

formation of interfacial bonds has been established as autohesion [2]. 

2.1 Autohesion 

Thermoplastic high polymers adhere to themselves through a mechanism known as 

autohesion or self-diffusion. It is the consensus that interfacial strength is a function of 

the number of molecules that penetrate across the interface. The following is a brief 

description of the autohesive phenomenon as it is presented in the literature [2-161. 

Autohesive strength is controlled by two mechanisms: 1) Intimate contact between the 

interfacial surfaces and 2) Diffusion of the macromolecules across the interface 

[4,7,9,12]. Figure 2.1 shows the phenomenon of autohesion. At time zero, the two 

surfaces are pressed together. Providing the temperature is high enough (normally above 

the glass transition temperature, Tg), the surfaces will deform viscoelastically, come into 

contact and wet (Figure 2.la). The polymer chains will begin to diffuse across the 

interface due to random thermal motions. After some time has passed, the chains will 

have partially diffused across the interface and entangled with 
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Figure 2.1. Schematic representation of the autohesive phenomenon. 
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molecular chains on the other side of the interface, thus giving the interface some strength 

(Figure 2.lb). Following a long enough period of time, the polymer chains will have 

penetrated and entangled into the adjacent interface enough so that the interface is no 

longer distinguishable from the bulk polymer. The interface is considered completely 

healed (Figure 2.1~). Either wetting or diffusion can account for significant proportions 

of the interfacial strength. Diffusion is conditional upon the surfaces being in intimate 

contact, as the molecules cannot move across open space [8]. Theories to describe 

polymer diffusion and deformation are based on DeGennes’ Reptation theory of 

molecular motion. 

2.1.1 DeGennes’ Reptation Theory 

DeGennes [3] derived a model of molecular dynamics assuming that very high molecular 

weight polymers (characteristic in thermoplastic resins) behave as long linear chains of 

many links, each of which is free to rotate (Figure 2.2). Furthermore, these molecules are 

constrained by other molecules in the polymer melt so they can be modeled as being 

confined to a tube. Any movement of the molecule must be within this tube. Local 

movements of the chain in its tube cause it to slip out of the end of its original tube. 

Simultaneously to moving from the original tube, the chain is forming a new tube that 

represents the new constraints on its motion (Figure 2.3). Eventually after a long enough 

period of time has transpired, the chain will have no memory of the original tube and will 

be entirely within a new tube. This time is called the reptation time for the molecule. 

DeGennes [3] states that if one considers time intervals that are comparable to the 

reptation time, one can ignore the details of the movement of the chain in its tube take a 

macroscopic view of chain movement. 
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Figure 2.2. Representation of Polysulfone macromolecule by stiff chain segments 
attached by freely rotating joints. The structure of Polysulfone is shown in 
the magnified area. 
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Using this physical model, DeGennes derived relationships between the chain length, 

chain mobility, time, and length of chain diffused. Using Einstein’s [3] diffusivity 

relation, DeGennes developed an expression for the mean square distance that the center 

of mass of the chain moves during time t 

2 x = 2 D  t 
rep 

where x2 represents the mean square distance that the center of mass of the chain moves, 

D, is the self-diffusion coefficient, and t is time. DeGennes subsequently shows that the 

root mean displacement of the center of mass of the chain becomes 

where S(t) is the length the chain has moved along its constraining tube. 

The above relationships are the basis for models of crack healing and welding in high 

polymers developed by Wool, Wool and O’Connor, Jud et al., and Rager and Tirrell’s 

[4,5,8,9,10]. The mechanistic and experimental approaches taken by each of these 

researchers are different; however, the conclusions and experimental results are similar. 
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2.1.2 Wool’s Theories of Polymer Healing 

Wool [4, 5, 81 and Wool and O’Connor [6, 71 reported in a series of papers theories 

explaining the interfacial strength development and crack healing in thermoplastic 

polymers. They redefine intimate contact of the surfaces as three separate temperature 

dependent mechanisms; surface rearrangement, surface approach, and wetting. 

Diffusion is time, temperature and pressure dependent. In the case of instantaneous 

wetting, Wool defines total interfacial strength, o as consisting of a wetting strength, ow 

and a diffusion dependent strength, o d  . Using the Reptation model where x = t114 

(equation 2.2) and a fracture model to describe the formation of load bearing molecular 

entanglements in which o = x, the time dependency of the diffusion strength can be 

determined as 

1 I4 od= C(T) t 

where C(T) is a temperature dependent constant. The total strength is given as 

O=ow+od=ow+C(T)  t 114 

(2.3) 

(2.4) 

where the temperature dependence of C(T) can be modeled using different theories. 

Wool and O’Connor [6] suggest either an Anhenius or Williams, Landel, and Ferry 

temperature dependence. 
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Because it is a function of surface energy changes, wetting strength (aw) is constant with 

respect to time for a given surface area. However, when two surfaces are brought into 

contact under external pressure, some areas will be in intimate contact immediately while 

others will come into intimate contact only after viscoelastic deformation of the surface 

has O C C U K ~ .  So, even though the wetting strength per unit area is a constant, the actual 

strength gain from intimate contact may be time dependent. Intimate contact must be 

established before diffusion can occur. Therefore, the effect of the intimate contact 

function will be to alter the time dependence of the relations derived above. If diffusion 

is not initiated immediately there will be another time dependent function due to diffusion 

initiation [6].  Due to the nonuniformity of the thermoplastic prepregs, it is reasonable to 

expect that complete intimate contact of the entire interfacial area will not be established 

immediately during composite processing. Therefore, to describe the processing of 

prepregs it will be necessary to account for a wetting function. 

Wool also developed relationships to describe the autohesive strength for two different 

failure mechanisms, chain pull-out and chain fracture [8] .  A chain pull-out failure is 

similar to the diffusion process of the polymer chains in reverse. Upon the application of 

an outside tensile load, the chains will disentangle from their constraints due to both the 

thermal motion and the energy supplied by the external load. The external load will cause 

the thermal motions to be driven in such a way that the polymer chains work away from 

the interface and precipitate failure. The chain pull-out mechanism of failure is favored at 

high temperatures (above T, of the thermoplastic) and slow strain rates which allow the 

chains sufficient time to disentangle from the molecular entanglements. 
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Chain fracture failure occurs when the applied tensile load is great enough to cause the 

covalent bonds in the polymer backbone to fail before the polymer chain can disentangle 

from its constraints. Chain fracture failure is favored at low temperatures and high strain 

rates. If the polymer is tested well below the Tg, it is reasonable to assume that chain 

fracture is the major failure mechanism regardless of the strain rate because the free 

volume of the polymer is so low that the polymer chains have little overall motion. 

Whichever form of failure occurs, the time dependence of the relationships derived by 

Wool for the failure strength are the same; however the molecular weight dependence and 

the strain rate dependence vary with fracture mode[8]. 

Using the linear elastic fracture mechanics approximation, G = 02/2E, where G is fracture 

energy, E is the tensile modulus, and o the tensile stress, Wool [6] also obtained the 

following relationships between fracture energy and contact time. Assuming 

instantaneous wetting and a negligible wetting strength, the critical strain energy release 

rate, GIc is proportional to the square root of time . 

The stress intensity factor K,, is related to the critical strain energy release rate by the 

relationship K, = GrlD [18]. From this a relationship between the stress intensity 

factor K, and contact time can be written as 

lr(Q 
% C = f  

Autohesion 13 



Wool develops relationships between fracture energy and other parameters, a summary of 

which is given in reference [4]. 

2.1.3 Prager and Tirrell's Theories of Polymer Healing 

Using DeGennes theory of polymer dynamics and a probability model that predicts the 

number of polymer chain bridges per unit area across the interface, Prager and Tirrell [9] 

derived two relationships that relate contact time to interfacial strength. The first, 

1R M-3/2 0 - t  

where M is molecular weight, applies to surfaces that have been held against a gas or 

inert surface long enough for the number of chain ends to reach equilibrium. In this 

situation the concentration of chain ends at the interface is less than in newly fractured 

surfaces because some of the chain ends will have reptated back into the bulk of the 

material. The second, 

applies to newly fractured surfaces and surfaces with many chain ends. The second of 

these relationships agrees with Wool's theories and with experimental data. Prager and 

Tirrell report no experimental results [9]. 
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2.1.4 Jud, Kausch and Williams’ Theory of Polymer Healing 

Jud, Kausch and Williams [ 101 assume that the bond strength due to wetting is negligible 

and conclude that “to achieve practical strength,” diffusion of the molecules across the 

interface is necessary. They assume that the strength of the interface is directly 

proportional to the number of links formed across the interface. The number of links per 

unit surface area is proportional to the average depth of penetration, Ax, of molecules 

which can be related to contact time through the Einstein diffusivity relationship 

2 < A x ( t ) > = 2 D t  (2.9) 

where D is the self-diffusion coefficient. 

Using these assumptions they derived the following relationship for the strain energy 

release rate Gc. 

(2.10) 

where Ga represents the strain energy release rate of the undamaged material, n(t) 

represent the number of links across the interface after time t , no represents the number 

of links across the interface in the undamaged or completely healed polymer, A0 is the 

contact area, t is time, and 2, is the time to achieve complete healing of the interface. The 

stress intensity factor, KI can be written as 
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(2.11) 

Jud et al. [ 101 performed crack healing tests on compact tension specimens made of poly 

(methyl methacrylate), PMMA and verified the relationship between KIc and time given 

in equation (2.1 1). An Arrhenius temperature dependence was fit to the data which gave 

a measured activation energy of 274 kT mol-1. Absolute values of the self-diffusion 

coefficient for PMMA were also calculated in this study. 

2.1.5 Bothe and Rehage’s Model of Autohesion 

Bothe and Rehage [ 121 derived a relationship between contact time and interfacial tensile 

strength. Using Einstein’s equation for diffusion and a molecular description of the 

interface which assumes that strength is proportional to the number of molecular 

segments diffusing across the interface in time t, they derived the following relationship 

between adhesive strength and the square root of contact time 

(2.12) 

where oH is the adhesive or autohesive strength, k is a proportionality constant, p is the 

density, M is the molecular weight, D is the self-diffusion coefficient, t is time, and oA is 
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an initial adhesion independent of time. 

Bothe and Rehage introduce the concept of saturation pressure. Saturation pressure is 

defined as the pressure above which, at constant time and temperature, no further increase 

in pressure produces an increase in bond strength. They report experimental results that 

support equation (2.12) and also the existence of two different failure mechanisms, chain 

fracture and chain pull-out [ 121. 

2.1.6 Autohesion in Elastomers 

A number of other researchers, many of them in the rubber industry, have studied the 

formation of bonds in polymers and elastomers [13-161. None of the papers reviewed 

derived time and temperature dependent mechanisms or models to predict formation of 

autohesive bonds; however, they do present interesting data and qualitative explanations 

for the observed results. 

Bauer [13] studied tack in rubbers and determined that diffusion and intimate contact are 

the important mechanisms behind good bonds. Bauer assumes that the molecules diffuse 

due to relaxation of local stress concentrations and that the diffused molecules are held in 

the network by secondary bonds which can slip upon application of stress. He also 

assumes that diffusion is instantaneous and differences in strength between samples are 

due to differences in actual contact area (Le., that the strength of the bond is constant). 

Rhee and Andries [14] also studied autohesion in rubbers and elastomers. They state that 
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bond strength is caused by a diffusion-adsorption (molecular attractions between the 

surface molecules) process. They tested a number of rubbers for the effect of different 

parameters including aging, molecular weight, processing oil, and particle size of 

additives. 

Hamed [15] studied rubbers for the effects of surface roughness, green strength, different 

molecular weights and blends, testing rate, contact load, and time. Hamed concludes that 

interdiffusion, while important, does not control tack in the samples tested. 

Boenig, Willer and Shottafer [16] studied urethan elastomers for the effects of contact 

time, bonding pressure, time left to oxidize in ambient air, and solvents. They state that 

chain diffusion is the controlling mechanism behind bond formation and that the 

temperature dependence can be modeled using an Arrhenius equation. 

2.2 Test Methods 

In order to measure the autohesion and self-diffusion of high polymers, a number of test 

methods have been used. They can be crudely broken down into two approaches: 1) 

Direct measurement of the movement of molecules through the use of tagged molecules 

(normally radioactive) and a detector to measure the penetration or movement of these 

molecules with respect to time; 2) Indirect measurement by mechanical tests that measure 

properties dependent on the diffusion of the molecules. This study is concerned only 

with the latter testing method. 
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In mechanical tests the two polymer surfaces are normally pressed together at a given 

temperature for a specified length of time. The fracture stress or fracture energy of the 

interface is then measured using the appropriate test. 

Tack measurements, used by Skewis [ll], Bauer [13], and by Fthee and Andries [14], 

measure the interfacial tensile strength of two surfaces that have been pressed together 

under pressure for a known time. All of the tack tests were performed at room 

temperature which was well above the Tg of the elastomers being studied. 

Fracture toughness tests were performed by Wool and O’Connor [6,7] and Jud et al. [lo]. 

Wool and O’Connor studied the rehealing of elastomers with double cantilever beam 

toughness tests, and rehealing of PMMA and polystyrene with Izod impact tests. The 

polymers were healed above the T, of the polymer in question. Jud et al. used a 

compact tension fracture toughness test to measure autohesion in rehealed PMMA 

specimens. The specimens were rehealed in a hot press at temperatures above the T, of 

PMMA (approximately 100OC). 

Hamed [ 151 investigated tack formation by using a T-peel test of polymer spread over a 

flexible base. A T-peel test measures the energy required per unit area to separate the 

two surfaces. The polymer was dissolved in a solvent and spread on a flexible base. Two 

strips of the polymerbase material were pressed together for a measured time and then 

the smps were separated in a tensile testing machine. 

Interfacial tests were performed by Wool and O’Connor [7], Boenig et al. [16], Dara and 
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Loos [ 13, and Bothe and Rehage [ 121. Wool and O’Connor used notched tensile bars of 

HTPB that were fractured and healed to evaluate fracture stress, fracture strain, and 

fracture energy as a function of healing time. Boenig et al. used the ASTM D412-51T, 

type C tensile test to measure tack in urethran elastomers [16]. Dara and Loos used a 

parallel plate plastometer fitted with a tensile/compressive load cell to measure 

autohesion in P1700 polysulfone resin The specimens were bonded at elevated 

temperature and mechanically tested at the bond temperature in a nitrogen purged 

atmosphere. Bothe and Rehage used a through the thickness tensile test at room 

temperature to test autohesion in polybutadiene (BR), crosslinked acrylonitrile-butadiene 

copolymer (NBR), ethylenepropylene copolymer (EPM) and polychlorobutadiene (CR). 

They studied the effects of contact pressure, contact time, polymer structure, and strain 

rate. 

A close examination of the literature reveals that only a few studies have addressed 

autohesion of thermoplastic resins suitable for use as matrix materials for advanced 

composites. Furthermore, autohesion in fiber-reinforced thermoplastic composites has 

received almost no attention. 
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3.0 Experimental Procedure 

In most of the tests described in the last chapter the specimens were healed and 

mechanically tested at temperatures well above the glass transition temperature of the 

polymer. Based on the theories presented in Section 2.1, it is reasonable to assume that 

the interface will continue to heal during mechanical testing. 

Jud et al. [ 101 healed PMMA samples above the glass transition temperature and cooled 

the specimens to ambient temperature before testing. This approach eliminates healing 

during mechanical testing but introduces thermal effects such as non-isothermal healing 

during heat up. 

In order to reduce the effects mentioned above, a testing program was designed that 

allowed better control over the healing parameters. The first test, an interfacial tension 

test, was designed to allow the polymer to reach a setpoint temperature before the two 

surfaces were brought into contact. After healing, the polymer specimens were cooled to 

room temperature (well below the Tg) for mechanical testing. The second test, a compact 

tension test, followed the experimental procedure used by Jud et a1 [lo]; however, 

transient thermal effects were accounted for in the data analysis. 
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3.1 Materials 

The polymer system used in this study was polysulfone thermoplastic resin. It was 

chosen due to availability and low cost. Other investigations have characterized both the 

rheological and some of the autohesive properties of this polymer thus allowing 

comparisons to be made between previous studies [l, 17, 18, 19, 201 and the present 

study. 

_-  

The neat resin, UDEL@ P1700 polysulfone manufactured by Union Carbide Corporation, 

was obtained in a sheet 1.575 mm (0.062 in.) thick and in an annealed sheet 6.35 mm 

(0.25 in.) thick from Westlake Plastics Company. The prepreg consisted of UDEL@ 

P1700 (bead form) polysulfone polymer impregnated on Hercules AS-4 graphite fibers. 

The U.S. Polymeric Division of Hitco prepregged the AS-4 fiber with the P1700 Resin 

using the solvent cyclohexanone to achieve fiber wetting. 

3.2 Testing Facilities and Equipment 

Mechanical testing was performed at NASA Langley Research Center using an Instron 

mechanical testing machine equipped with a lo00 lb. resistance type load cell that could 

be calibrated to measure 0-100 lb. full scale (Figure 3.1). Load versus time was plotted 

on a chart recorder with the chart speed dependent upon the test being run. 

Healing of the interfacial specimens and the compact tension (CT) specimens was 
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Figure 3.1 Instron mechanical testing machine used in this study. 
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performed in a forced air oven manufactured by Blue M, Incorporated (Figure 3.2). The 

oven had a closed-loop temperature control system that was monitored by a digital 

readout. The double cantilever beam @CB) specimens were rehealed in a Wabash hot 

press with closed-loop heating and cooling systems on both the upper and lower platens 

(Figure 3.3). 

3.3 Interfacial Tension Test 

3.3.1 Sample Preparation 

The 1.575 mm (0.062 in.) thick sheet was supplied in a nonannealed 2.58 m x 1.29 m (8 

ft. x 4 ft.) sheet. The sheet was annealed in an oxygen purged nitrogen oven for 20 to 48 

hours at 2OOOC and then for 2 hours at 220 to 225OC. The nitrogen oven was used to 

minimize oxidation of the polymer surface during annealing. A separate infrared 

(IR) surface analysis was performed on polysulfone samples that were processed in a 

forced air oven at 200°C for 24 hours followed by 220°C for 3 hours. No surface 

oxidation was detected by the IR analysis. Based on the information obtained from 

infrared analysis, all rehealing of the polysulfone was done in forced air ovens; however, 

annealing was still performed in a nitrogen atmosphere due to the long exposure periods 

at elevated temperature. 

The interfacial tension test required 28.58 mm (1.125 in.) diameter disks of the 

polysulfone. These were punched from the annealed sheet using an Osborne arch punch. 

Experimental Procedure 24 



ORIGINAL PAGE IS 
OF POOR QUALITY 

Figure 3.2 Blue M oven used for the neat resin healings. 
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Figure 3.3 Wabash press used to heal the DCB specimens. 
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A 50.8 mm (2 in.) diameter disk was punched from a 0.0254 mm (1 mil) thick sheet of 

Kapton. A central hole 12.7 mm (0.5 in.) in diameter and three 3.175 mrn (0.125 in.) 

holes spaced 120" apart and 15.875 mm (0.625 in.) from the center were punched in the 

Kapton disk as shown in Figure 3.4. The purpose of the Kapton was twofold. First, it 

reduced the cross sectional area of the polysulfone so that during testing, failure would be 

ensured at the bonded interface rather than at the polymer to metal adherend bond. 

Second, when the disks were punched, stresses and strains were introduced along the 

edge of the annealed disk. The Kapton prevented the edges from touching and ensured 

that only stress free areas of the disk healed. 

3.3.2 Testing Procedure 

Mor to use, each polysulfone disk was inspected under crossed polarizers and a low 

power optical microscope (x20). If surface irregularities, stress concentrations, or gel 

particles were apparent, then that specimen was discarded. 

Two polysulfone disks were placed in the bonding fixture separated by the Kapton film, 

as shown in Figure 3.5. The bonding fixture consisted of a base plate with three 3.175 

mm (0.125 in.) diameter alignment pins located around the circumference of a 28.575 

mm (1.125 in.) circle at regularly spaced intervals and a weight that fit over the alignment 

pins free to slide up and down (Figure 3.6). The weight was used to apply contact 

pressure to the specimen and was attached to a rod protruding from the top of the oven. 

The assembly was placed in a forced air oven preheated to the desired bonding 
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The alignment pins fit through the smaller holes (3.175 mm) and the test section is the 

larger 12.7 mm hole. 

Figure 3.4 Dimensions of Kapton disk. 
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Figure 3.5 Schematic of interfacial test assembly. 
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Figure 3.6 Schematic of interfacial test bonding fixture. 
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temperature and allowed to reach the oven temperature. Temperature of the specimen 

was monitored by a thermocouple attached to the base of the fixture. 

Upon reaching the setpoint temperature, external pressure was applied to the specimen by 

a dead weight. A 6.45 kg (14.2 lb.) weight was applied for 15 seconds followed by 1.87 

kg (4.1 lb.) weight for the remaining bonding time. The high initial pressure ensured 

initial contact of the entire interface, but resulted in excessive flow and specimen 

deformation if left on for extended periods of time. Based on Wool’s theories, once the 

polymer is in intimate contact, additional pressure is not necessary for bonding [4, 81. 

The low pressure was applied only to ensure that the samples remained in contact without 

excessive flow during the longest tests. Therefore, high pressure was applied only for a 

short time to ensure initial contact and the low pressure was maintained to ensure 

continuous contact throughout bonding. 

The disks were bonded for a given time and temperature. After processing, the healed 

specimens were removed from the bonding fixture and allowed to cool to ambient 

temperature. If the disks were not bonded following processing, they were recorded as a 

no bond specimen and discarded. 

Following the procedure in the ASTM Test for Tensile Properties of Adhesive Bonds 

(D897-78), the healed disks were bonded to sandblasted and degreased metallic parallel 

plate fixtures using a mom temperature cure epoxy adhesive (Figure 3.5). The epoxy was 

allowed to dry for at least one hour and then the specimen thickness was measured with a 

micrometer. If the thickness of the specimen varied by more than M.3 mm around its 
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circumference, then it was discarded. This range was set because specimens with 

thickness variations greater than fo .3  mm consistently had low autohesive strengths. The 

test specimen was inserted between self-aligning grips attached to the fixed and moveable 

members of an Instron mechanical testing machine. All mechanical measurements were 

made in tension at room temperature with constant crosshead speeds of 0.05, 0.25, and 

0.5 mdmin (0.002,O.O 1, and 0.02 idmin). 
t 

3.3.3 Data Reduction 

Autohesive strength as a function of bonding time and temperature was calculated from 

the maximum recorded load divided by the cross sectional area of the center hole in the 

Kapton disk. The results from identical tests were averaged and the standard deviation of 

the data calculated. 

3.4 Compact Tension Toughness Test 

3.4.1 Sample Preparation 

The CT specimen geometry is shown in Figure 3.7. Prior to testing the samples had to be 

sized. In CT tests the main concern is to ensure the sample is thick enough to guarantee 

plane strain conditions across most of the crack front. The specimens were sized using 

the requirement in the ASTM Test for Plane-Strain Fracture Toughness of Metallic 

Materials (E399-8 l), that the sample thickness, b, be greater than 2.5 (K, / 0ys)2. Using 
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Figure 3.7 Schematic of compact tension specimen. 
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the highest toughness reported for polysulfone of 3.4 MPa-mln [17] and the yield 

strength of 70.3 MPa (10,200 psi.) reported by Union Carbide, a minimum thickness of 

5.8 mm (0.230 in.) was calculated. The width and height of the specimen were 

determined by selecting the dimension of W in Figure 3.7 to be 25.4 mm (1 in.). This 

ensured that the crack length, a, was large compared with the size of the plastic zone. 

The requirements on the dimensions of a, from the ASTM standards, are a > b which is 

satisfied by taking W of 25.4 mm and ensuring the initial crack length, a is greater than b. 

Hinkley [17] used smaller CT specimens (W of 12.7 mm), also satisfying the ASTM 

conditions, of both polysulfone and other tough polymers with great success. 

Specimens were cut from the 6.35 mm (0.25 in.) thick annealed sheet and machined to 

size. Sharp, naturally arrested cracks were introduced into the specimens by driving a 

new, chilled razor blade into the sawed notch. The samples were examined between 

crossed polarizers and those with stress concentrations near the crack tip were discarded. 

3.4.2 Testing Procedure 

The CT specimens were placed in the Instron machine (Figure 3.8) and fractured at a 

crosshead speed of 0.5 mm/min (0.02 in./min). Peak load and crack length were recorded 

for calculation of the critical stress intensity factors. If the maximum load was followed 

by stable crack growth, the crosshead was stopped. The new crack length was marked on 

the specimen, the specimen was unloaded and reloaded until the load peaked again. 

Using this procedure up to four measurements could be obtained from each specimen; 
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Figure 3.8 CT specimen in Instron testing machine. 
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however, some specimens had unstable crack growth and only one measurement could be 

recorded. 

If the specimen was still in one piece following the fracture test it was used for a 

rehealing test. A sliver of 0.0127 mm (1/2 mil) thick Kapton was placed in the crack end 

and the specimen was wrapped in a sheet of 0.0254 mm (1 mil) thick Kapton. The 

Kapton sliver ensured that the same crack plane initially tested was broken upon 

retesting, and the Kapton wrap prevented the specimen from sticking to the rehealing 

fixture. To ensure dryness, the specimens were kept in a vacuum oven at 100°C for at 

least 24 hours prior to rehealing. 

The CT specimens were rehealed by processing at elevated temperatures in a forced air 

oven for a specified length of time. The rehealing fixture was preheated to the test 

temperature. The Kapton wrapped CT specimen was placed in the preheated fixture and 

external pressure was applied to the specimen by a dead weight, as shown in Figures 3.9 

and 3.10. After the desired rehealing time, the specimen was removed from the oven and 

allowed to cool in ambient air. The Kapton wrapping was removed and the rehealed 

specimen was visually inspected for holes, cracks or flaws near the crack tip. If the 

specimen was free of defects, it was retested according to the aforementioned procedures. 

I 
3.4.3 Data Reduction 

Critical stress intensity factors were calculated using the following formulas 
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Figure 3.9 Schematic of CT specimen healing fixture. 
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Figure 3.10 CT healing fixture and weight in Blue M oven. 
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( b  W’”) 

C K =  (3.1) 

where Pc is the peak load recorded by the chart recorder and Y is a geometrical factor for 

the compact tension specimen calculated as follows 

(3.2) 
(2+ X) (0.886+ 4.64X - 13.32 X2 + 14.72 X3 - 5.6X4) Y= 

(1 - xp2 

The parameter X is defined as 

X = a / W  (3.3) 

where a and W were previously defined in Figure 3.7 [17]. Values of X should fall 

between [ 171 

0.2 I a /  W I 1.0. 

The crack length used in the calculations was the average of the crack lengths measured 

on both sides of the specimen as the crack did not always grow perpendicular to the 

specimen sides. Critical strain energy release rates, GIc can be calculated from the 

critical stress intensity factor by assuming that the material is linearly elastic and in a 

state of plane strain [21] as follows 
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2 2 Klc(l.O- 2) ) 
GlC = E 

(3.4) 

where E is tensile modulus, Klc is the critical stress intensity factor and u is Poisson's 

ratio. 

3.5 Double Cantilever Beam Composite Test 

3.6.1 Sample Preparation 

Unidirectional composite specimens were fabricated from AS4 / P 1700 poly sulfone 

prepreg tape using a processing cycle developed at NASA Langley Research Center. The 

specimens were 12 plies thick and were compression molded in a 76 mm (3 in) square 

steel mold. During lay-up, a 25 mm (1 in.) wide piece of 0.0127 mm (0.5 mil) thick 

Kapton was placed along one edge of the specimen at midplane for crack initiation. 

The composite fabrication procedure is outlined as follows: 

1. Cut prepreg that has been warmed to room temperature into 305 mm x 330 mm (12" 

x 13") sheets. 

2. Dry prepreg in forced air oven for 16 hours at 100 "C then at 200 "C for 1 hour to 

remove any remaining solvent. 

3. Cut into 76 x 76 mm (3" x 3") squares and stack 6 plies in mold. Place a 25 x 76 mm 
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(1" x 3") piece of Kapton film at one end of the mold. Then stack six more plies of 

prepreg over Kapton. 

4. Free coat mold and place in preheated hot press. 

5. Process at 37OOC (700 OF) and 6900 kPa (1000 PSI) for 15 minutes. 

6. Cool in ambient atmosphere and remove panel from mold. 

7. C-scan panel for defects. 

None of the panels C-scanned had any detectable defects other than the Kapton film. 

DCB specimens were cut from the panels using a water cooled diamond edged saw. 4 to 

5 specimens 12.7 mm (0.5 in.) wide were obtained from each panel. The sawed 

specimens were prepared for testing by bonding aluminum tabs to the precracked end of 

the DCB specimen for load introduction. The tabs were affixed with a room temperature 

cure epoxy and aligned by balancing the beam vertically on a non-stick surface of 

polyethylene, or Kapton. A schematic diagram of the test specimen is shown in Figure 

3.1 1. The sides of the DCB specimen were painted with a water based white correction 

fluid to aid in measuring the crack length. 

3.5.2 Testing Procedure 

The DCB specimens were fractured at a crosshead speed of 0.5 mm/min (0.02 in./min) in 

the Instron mechanical testing machine (Figure 3.12). Peak load, crack length and a chart 

recording of load versus time were recorded for calculation of mode 1 critical strain 

energy release rates. In most of the specimens, the maximum load was followed by 
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Figure 3.11 Schematic of DCB specimen. 
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Figure 3.12 DCB specimen in Instron testing machine. 
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stable, slow crack growth. For these cases, the crosshead was stopped and one minute 

allowed for the crack to stop growing. The new crack length observed on both sides of 

the specimen was marked, the specimen was unloaded to at least one third of peak load, 

and the crosshead was started down again. This procedure was followed until the crack 

had grown to within 13 mm (0.5 in.) of the end of the sample and 8 to 10 measurements 

had been obtained. The crack was allowed to propagate approximately 6 mm (0.25 in.) 

for the first measurement and 7 to 13 mm (0.3 in. to 0.5 in.) for the later measurements 

where the beam properties were changing more slowly. 

If the DCB specimen remained in one piece it was used for a rehealing test. The samples 

were placed in a special alignment fixture and rehealed for a predetermined time at a set 

temperature in the Wabash press. 

Before rehealing, the specimen thickness was measured with a micrometer. If it was less 

than 7.62 mm (0.300 in.), Kapton shims were placed under the specimen to bring the total 

thickness to 7.62 mrn (0.300 in.). The thickness was critical to ensure that all specimens 

were slightly above the rehealing fixture and pressure was applied to the specimen rather 

than the fixture. The rehealing fixture and hot press are shown in Figures 3.13 and 3.14, 

respectively . 

The rehealing fixture and the Kapton shims were coated with a Teflon release substance 

to prevent sticking and preheated in the press to the desired temperature. The DCB 

specimen was placed in the rehealing fixture and the press was closed. The sample 

processing time was measured from when the pressure transducer on the press 
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Figure 3.13 Composite DCB specimen rehealing fixture. 
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Figure 3.14 DCB specimen healing fixture in Wabash hot press. 

Experimental Procedure 46 



registered a positive pressure. After the desired time had elapsed, the press was opened 

and the sample removed from the fixture and cooled under ambient conditions. 

3.5.3 Data Reduction 

To calculate the critical strain energy release rate, Glc, from the DCB tests the following 

data reduction procedure was used. From the chart recorder output (a typical output from 

the chart recorder is shown in Figure 3.15), the slope of the loading curve (load versus 

crosshead displacement) was determined by using a straight edge and the compliance of 

the beam was calculated from the measured slope (Le., compliance = l/slope). The linear 

assumption was good for all the specimens tested. The critical strain energy release rate 

was calculated from the following equation 

(3 .3  

where b is the sample width and A1 and A2 are geometrical factors determined from the 

compliance and peak load. 

To determine A 1 and A2, curves of both compliance versus (crack length):, and peak load 

versus (crack length)-l are plotted. Typical curves are shown in Figure 3.16. The slope 

of each of these curves was calculated using a least squares linear curve fit. A1 

corresponds to the best fit slope of the compliance versus (Crack 1ength)s and A2 
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Figure 3.15 Typical chart recorder output from DCB test. ORIGINAL PAGE IS 
OF POOR QTJALITY 
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Figure 3.16 Typical curves used to obtain AI and A*. 
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corresponds to the slope of the peak load versus (crack length) -1 [27]. The critical strain 

energy release rate was calculated as a function of crack length using the following 

equation 

where P, is the peak load corresponding to a certain crack length, a. 

3.6 Post Failure Analysis 

To study the effects of rehealing on the fracture mechanisms, both CT and DCB 

specimen failure surfaces were examined in a scanning electron microscope (SEM). 

Micrographs of the failure surfaces were obtained after initial fracture and after the 

specimen was rehealed and refractured a number of times. 

3.6.1 Sample preparation 

The specimens were cut to allow them to be mounted in the SEM chamber. The CT 

specimens were trimmed of excess material that was not fractured (i.e. the sawed notch 

and hole area) and the DCB specimens were cut into three 25mm (1 in.) sections. The 

section of the DCB specimen containing the Kapton flaw was discarded and the two 
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remaining specimens were used in the SEM study. 

The sized samples were mounted on aluminum posts using a combination of double sided 

adhesive tape and a colloidal graphite suspension in isopropanol. The graphite ensured 

good electrical contact between the sample and the mounting. The samples were sputter 

coated with gold-palladium to reduce charging effects which produce poor images. 

3.6.2 Testing Procedure 

The samples were examined in a Philips 505 SEM and photographs of the fracture 

surfaces were taken using a Polaroid camera attached to the SEM. The samples were 

examined and photographs taken at different magnifications depending on the sample. 

The CT specimens were examined at magnifications of 48.6 X, 163 X, and 287 X and 

the DCB specimens at magnifications of 163 X, 326 X, and 1,310 X. 
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4.0 Results 

4.1 Interfacial Tension Tests 

The interfacial tension test measured the growth of interfacial strength as a function of 

temperature and contact time. Three groups of tests were performed: the first measured 

the effect of bonding temperature on the interfacial strength; the second the effect of 

contact time; and the third the effect of strain rate. 

The pressure applied to bond the interfacial test specimens was calculated from the 

pressure data reported by Dara and Loos [l] for the same polymer. They used an 

interfacial tensile test to determine the lowest pressure, called the saturation pressure, at 

which the interfacial strength became independent of pressure. The applied pressure was 

375 kPa (55 psi) at the lowest temperature of 21OOC and was used for all tests. Interested 

readers are referred to their work [ 11. 

The results of the interfacial tension test were disappointing. The data obtained from the 

test matrix shown in Table 4.1 had very high scatter and were difficult to correlate with 

contact time and temperature. Results of the tests are shown in Figures 4.1 and 4.2 for 

data rehealed at 210°C and 22OoC, respectively. The square symbols represent the mean 

of the measured data and the bars represent one standard deviation from the mean. The 

results are determined from between five and twelve measurements at each time and 

temperature condition. The straight line is the best fit to the data in accordance with the 
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Temperature, OC 

210 
210 
210 
210 
210 

220 
220 
220 
220 
220 
220 
220 
220 

220 
220 
220 

Table 4.1 Interfacial Test Matrix 

Contact Time, sec 

30 
60 
120 
180 
300 

15 
30 
60 
120 
210 
300 
600 
1200 

600 
600 
600 

Crosshead Speed, in/min 

0.02 
0.02 
0.02 
0.02 
0.02 

0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 

0.002 
0.01 
0.02 
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Figure 4.1 Autohesive strength versus fourth root of contact time for Udel@ P1700 
polysulfone specimens bonded at 210OC. The strength was measured 
using an interfacial tension test. Symbols represent the mean of the data. 
Error bars represent one standard deviation from the mean. Solid line is a 
best fit through the data and the origin. 
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Figure 4.2 Autohesive strength versus fourth root of contact time for Udel@ P1700 
polysulfone specimens bonded at 220OC. The strength was measured using 
an interfacial tension test. Symbols represent the mean of the data. Error 
bars represent one standard deviation from the mean . Solid line is a best 
fit through the data and the origin. 
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rehealing theories of Wool outlined in Section 2.1.2 for instant wetting and neglecting 

stress due to wetting or surface attraction. Data at additional temperatures were not 

obtained due to the unacceptably high scatter at 210°C and 220°C. 

Figure 4.3 shows the effect of crosshead speed or strain rate on the interfacial bond 

strength. All specimens were healed for 10 minutes at 22OOC and tested at crosshead 

speeds of either 0.05,0.25, and 0.50 mm/min (0.002,0.01,0.02 in/min). The data were 

not expected to show any significant strain rate effect since testing was performed at 

room temperature, far below the glass transition of the polysulfone. At ambient 

temperature, little macroscopic molecular motion exists (i.e. no reptation) and failure is 

by chain fracture. According to Wool, autohesive strength is independent of strain rate 

for chain fracture failure [4, 81. The results plotted in Figure 4.3 show a slight upward 

trend in the measured interfacial strength with increasing crosshead rate. This may be 

due to some chain pull-out failures at very low strain rates; however, the observed trend is 

not proportional to the square root of strain rate as Wool asserts for chain pull-out 

fractures [4,8]. 

The poor results of the interfacial tests can be explained by surface waviness, eccentricity 

of the load train during testing, and thermal effects. Each disk had some surface 

waviness prior to testing. Those with gross differences were discarded; however, it is 

unreasonable to assume that the disks used were perfectly flat. Surface waviness caused 

some areas of the disks to come into contact and wet before others, introducing a time 

dependent wetting function that varied from specimen to specimen. These effects were 

present even though the surfaces of the polysulfone disks were examined under a low 

power microscope in an attempt to identify and eliminate those with rough surfaces. 
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Figure 4.3 Autohesive strength versus crosshead speed for Udel@ P1700 polysulfone 
specimens bonded at 22OOC for 10 minutes. Symbols represent the mean of 
the data. Error bars represent one standard deviation from the mean. 
Solid line shows trend. 
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Some evidence of this phenomenon could be observed by looking through the test section 

with a light microscope following healing, and examining the interface. For two sets of 

disks bonded under identical time and temperature conditions, the interface was more 

visible in disks with wavy surfaces than in disks with smooth surfaces. This indicates 

that the saturation pressure used by Dara and Loos [ 11 was not high enough to ensure 

immediate wetting in this study. 

The load eccentricity was introduced due to thickness variations in the polymer disks 

caused by flow and deformation during healing. After bonding the metal grips onto the 

polysulfone disks, the upper and lower plate fixtures were not perfectly parallel. The 

differences in the thickness from place to place in the assembly resulted in bending forces 

to be introduced along with tensile forces when the specimen was loaded. Every attempt 

was made to discard the assemblies with gross differences in thickness by measuring the 

thickness at four places around each assembly with a micrometer; however, some 

eccentricity was unavoidable. 

Specimens were also subject to thermal loads. Rapid cooling of the healed specimen 

from the elevated bonding temperature to ambient temperature sometimes resulted in 

failure of the interfacial bonds, especially in specimens bonded for short times. It is 

possible that nonuniform and rapid cooling resulted in thermal stresses large enough to 

break or damage the fragile autohesive bonds. 

The interfacial tensile test could also be analyzed using a fracture mechanics approach to 

calculate fracture strength. In the interfacial test, the thin Kapton disk between the two 

r 
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polysulfone specimens introduces a crack. Also, at room temperature the polymer is 

glassy and brittle and so linear elastic fracture mechanics should apply. The fracture 

mechanics approach will show how the specimen geometry (Le., diameter of center hole 

in Kapton disk and diameter of polysulfone specimens) influences the fracture toughness 

and the corresponding fracture strength. This information may help in sizing the Kapton 

hole diameter to reduce the influence of the flaw. 

Others have used interfacial tests with good results. In these studies, the mechanical tests 

were usually performed at the healing temperature well above the Tg of the polymer [ 1,8, 

11, 12, 161. This procedure reduces thermal effects and minimizes load eccentricity 

because the polymers are rubbery and the bulk of the specimen can deform until the 

specimens are parallel. 

The poor results from the interfacial tension test were the incentive to adopt a different 

testing method that eliminated or minimized the problems associated with the interfacial 

test. 

4.2 Compact Tension Tests 

In an effort to eliminate the wetting and load eccentricity problems observed in the 

interfacial tests, a compact tension (CT) test was adopted. In the CT test, a crack was 

allowed to propagate only far enough to give a suitable amount of data without complete 

fracture of the specimen. Thus, the same surface that was broken was rehealed, 

eliminating the wetting and alignment problems that affected the interfacial tension test. 
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Since the specimen was in one piece during rehealing the dimensions remained the same, 

eliminating the load eccentricity found in the interfacial tests. It also had the advantage 

that one specimen could be used for a number of rehealings. The compact tension test 

matrix is shown in Table 4.2. 

4.2.1 Pressure Tests 

To ensure that data recorded at different temperatures are comparable, the rehealed 

specimens must have the same wetting functions regardless of temperature. One method 

of obtaining this is to apply enough pressure so that the surfaces come into intimate 

contact and wet immediately. This pressure is called saturation pressure and varies in 

accordance with temperature [ 121. From the theory of autohesion, it was recognized that 

pressure should make little difference in the self-diffusion of the polymer; as it takes very 

large pressures to change the amount of free volume of the polymer[l, 2, 41. However, 

intimate contact does depend on pressure. The upper and lower surfaces of the CT 

specimens are mirror images of each other and only a small amount of pressure is 

required to deform the surfaces and them into intimate contact. 

In order to determine the saturation pressure for the CT tests, different pressures were 

applied to pre-cracked CT specimens at the beginning of rehealing. The effect of pressure 

on the measured refracture toughness is shown in Figures 4.4 and 4.5. The pressure was 

calculated by dividing the dead weight load applied during rehealing by the nominal area 

of the crack plane in the CT specimen [w times b from Figure 3.7, 161.3 mm2 (0.25 in2)]. 
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Temperature, "C 

196 
196 
196 
196 
196 

200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 

205 
205 
205 
205 

213 
213 
213 
213 
213 
213 

Table 4.2 Compact Tension Test Matrix 

Contact Time, Sec 

900 
3600 
7200 

12,600 
18,000 

600 
750 
900 
1200 
1500 
900 
900 
900 
900 
900 
900 

300 
420 
600 
900 

300 
360 
480 
600 
900 
360 

Pressure (kPa) 

46.4 
46.4 
46.4 
46.4 
46.4 

46.4 
46.4 
46.4 
46.4 
46.4 
60.4 
74.5 
88.5 
102.5 
1 16.7 
130.7 

46.4 
46.4 
46.4 
46.4 

46.4 
46.4 
46.4 
46.4 
46.4 
60.4 
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Temperature, OC 

213 
213 
213 
213 

225 
225 
225 
225 

245 
245 
245 
245 

Table 4.2 Continued 

Contact Time, Sec 

360 
360 
360 
360 

240 
300 
420 
600 

180 
240 
300 
360 

Pressure (Ha) 

74.5 
88.5 
102.5 
116.7 

46.4 
46.4 
46.4 
46.4 

46.4 
46.4 
46.4 
46.4 
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Figure 4.4 Fracture Toughness versus rehealing pressure for Udel@ P1700 
Dolvsulfone CT specimens bonded at 2OOOC for 15 minutes. Symbols 
I .  - 
represent the mean of the data. Error bars represent one coefficient of 
variation from the mean. 

Results 63 



3 

u 2 1 

0 

0 - Data mean 

T 
B 

I I I I I 
- 

0 20 40 60 80 100 120 

Pressure (kPa) 

Figure 4.5 Fracture toughness versus rehealing pressure for Udel@ P1700 polysulfone 
CT specimens bonded at 213°C for 6 minutes. Symbols represent the 
mean of the data. Error bars represent one coefficient of variation from the 
mean. 
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The square symbols represent the mean of the refracture toughness and the bars represent 

one coefficient of variation from the mean. The plots show the fracture toughness fust 

increasing with increasing pressure (Figure 4.3, reaching a plateau and then decreasing at 

higher pressures (Figure 4.4). The increasing toughness with increasing pressure is the 

result of faster wetting in the specimens. The plateau indicates that the saturation 

pressure has been reached which implies immediate or extremely rapid interfacial wetting 

and complete interfacial contact. At elevated pressure, the specimen deformed 

extensively, resulting in a decrease in the measured refracture toughness as shown in 

Figure 4.4. The pressure used for all of the CT tests was the lowest pressure (46 kPa) in 

the plateau region at 20OOC. This pressure was chosen because 200°C was the lowest 

temperature in the original test matrix. Saturation pressure decreases with increasing 

temperature due to the lower modulus of the polymer at higher temperatures. Thus, it can 

be assumed that intimate contact was achieved for all the temperature and contact time 

conditions in the test matrix. 

4.2.2 Results of CT Tests 

The CT tests measured the fracture toughness for the undamaged specimens and also the 

refracture toughness for subsequently rehealed specimens. The results from the 

undamaged specimens are plotted in Figure 4.6, which plots fracture toughness against 

the crack length. The values from the undamaged specimens do not vary with crack 

length, indicating that the geometrical factor used in the stress intensity factor 

calculations was accurate [17]. The measured fracture toughness varied between 1.8 and 
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Figure 4.6 Fracture toughness versus crack length for Udel@ P1700 polysulfone 
CT specimens. Symbols represent data and the dashed line represents the 
mean of the data. 
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3.0 MPa ml/L with the mean being 2.26 MPa mlR. Stress intensity factor values reported 

in the literature for polysulfone range between 2.4 and 3.4 MPa mln. The lower value 

observed in this study may be due to the annealing process to which the polysulfone was 

subjected. However, 2.26 MPa mln is within the data scatter for the fracture toughness of 

poly sulfone reported by Hinkley [ 171. 

The results of the CT rehealing tests are shown in Figures 4.7-4.12 for specimens 

rehealed at 196, 200, 205, 213, 225, and 245OC, respectively. The square symbols 

represent the mean of at least 5 measurements at each time and temperature condition and 

the error bars represent one coefficient of variation from the mean. In both Figures 4.8 

and 4.10, the CT specimens regain the original toughness of undamaged polysulfone, 

indicating complete healing of the interface. Furthermore, the rehealed fracture 

toughness data do not pass through the origin as reported in previous investigations [ 101 

and there is a considerable time lag between the beginning of healing and the point where 

the fracture toughness increases. 

The reason for the time lag lies in the experimental procedure used to reheal the 

specimens in the present investigation. Healing was performed in a forced air convection 

oven preheated to the desired temperature. Due to the finite surface heat transfer 

coefficient between the oven fluid and the specimen, the time required for the specimen 

to reach the healing temperature was a significant portion of the total healing time. Since 

healing begins at Tg, the specimens were rehealed non-isothermally. The non-isothermal 

rehealing will be addressed in a later section of this chapter. 
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Figure 4.7 Fracture toughness versus fourth root of contact time for Udel@ P1700 
polysulfone CT specimens rehealed at 196OC. Symbols represent the mean - -  
of the data. Error bars represent one coefficient of variation from the mean. 
Dashed line represents the fracture toughness of undamaged material. 
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Figure 4.8 Fracture toughness versus fourth root of contact time for Udel@ P1700 
polysulfone CT specimens rehealed at 200°C. Symbols represent the mean 
of the data Error bars represent one coefficient of variation from the mean. 
Dashed line represents the fracture toughness of undamaged material. 
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Figure4.9 Fracture toughness versus fourth root of contact time for Udel@ P1700 
polysulfone CT specimens rehealed at 205OC. Symbols represent the mean 
of the data Error bars represent one coefficient of variation from the mean. 
Dashed line represents the fracture toughness of undamaged material. 
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Figure 4.10 Fracture toughness versus fourth root of contact time for Udel@ P1700 
polysulfone CT specimens rehealed at 213°C. Symbols represent the mean 
of the data Error bars represent one coefficient of variation from the mean. 
Dashed line represents the fracture toughness of undamaged material. 
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Figure 4.11 Fracture toughness versus fourth root of contact time for Udel@ P1700 
polysulfone CT specimens rehealed at 225OC. Symbols represent the mean 
of the data Error bars represent one coefficient of variation from the mean. 
Dashed line represents the fracture toughness of undamaged material. 
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Figure 4.12 Fracture toughness versus fourth root of contact time for Udel@ P1700 
polysulfone CT specimens rehealed at 245OC. Symbols represent the mean 
of the data Error bars represent one coefficient of variation from the mean. 
Dashed line represents the fracture toughness of undamaged material. 
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4.3 Non-Dimensional Rehealing Function 

In order to allow comparisons to be made between the neat resin CT tests and the 

composite rehealing data (see Section 4.8), the critical strain energy release rate was 

calculated for the neat resin CT tests. Assuming plane strain conditions, the critical strain 

energy release rate, G 1c was calculated from the fracture toughness data as follows [21] 

KtC ( 1-u2 ) 
G1c = E 

(4.1) 

where Klc is the measured fracture toughness from the CT tests, ‘u is Poisson’s ratio 

(0.40 for polysulfone [22]), and E is the tensile modulus (2.5 MPa for polysulfone [24]). 

The data was non-dimensionalized by dividing the calculated strain energy release rate by 

the critical strain energy release rate for the undamaged polysulfone specimens as follows 

where R is defined as the rehealing function. 

Shown in Figure 4.13 is a summary plot of the rehealing function, R, versus the square 

root of time. According to the rehealing model of Wool and O’Connor (see equation 

2.5), if healing is isothermal and interfacial wetting is instantaneous and negligible, a plot 

of the rehealing function versus square root of time should be a straight line that passes 

Results 74 



c 

\ 

o o x  

I I I I I I I I I I I 

c‘! x 0 
\q 
0 

09 
0 

9 
M 8 

0 
2 

0 
2 

0 
00 

n 
v1 z 

0 
d 

a 

0 

Results 75 



through the origin. The rehealing data obtained in the present investigation appear to 

follow the straight line relationship but do not pass through the origin. Furthermore, 

above 205OC the slope of the rehealing function is nearly constant. These differences are 

due to the non-isothermal healing effects as indicated in Section 4.2.2. 

4.4 Heat Transfer Model 

In order to measure temperature as a function of time during the rehealing tests, six 

thermocouples were embedded at various locations inside a CT specimen. One 

thermocouple was placed in each of the following locations: the top surface, bottom 

surface, front edge, and rear edge of the specimen. The other two thermocouples were 

embedded at the crack plane and the crack tip. The CT specimen was then placed in the 

oven and exposed to the same processing cycles that the rehealing CT specimens were 

subjected to. Each thermocouple was sampled at 30 second intervals by a Fluke scanning 

digital thermometer. 

Two heat transfer solutions were compared with the measured data. These included a 

three dimensional quadrilateral solution with fixed specified boundary temperatures and a 

negligible internal resistance model with finite surface heat transfer coefficient. The 

negligible internal resistance (NIR)  solution with a surface heat transfer coefficient of 32 

w/(m2-OC) gave an excellent correlation with the measured results. 

In the NIR solution it is assumed that the body has a high enough thermal conductivity, 
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r 

compared with the surface film coefficient and that the temperature of the body may be 

taken as uniform for any instant of time. An energy balance for the specimen over a 

small time interval gives 

dT 
S p dt hA (T-Tf)=-pVC - (4.3) 

where h is surface heat transfer coefficient, A, is exposed surface area, T is the specimen 

temperature, Tf is the fluid temperature, p is density, V is the volume of the body, C, is 

the specific heat of the body, and t is time. 

Rewriting equation (4.3) gives 

d(T-Tf) hA 
- - -  dt - 

P cpv T-  Tf (4.4) 

Integrating equation (4.4) with respect to time and with the initial condition T = Ti at 

time t = 0, we obtain the expression [22] 

- h A  T- Tf 
Ti - Tf 

(4.5) 

For polysulfone CT specimens using a heat transfer coefficient, h of 32 w/mZ-OC, p of 

1.24 Mg-m-3 [U], Cp of 1.13 kJ/kg-"C [25], V of 6.145 x 10-3 m3, AS of 2.276 x 10-3 m2 

we obtain the following 
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(4.6) 

The heat transfer coefficient was obtained by using equation (4.5) to calculate 

temperature versus time for different values of the heat transfer coefficients until the 

calculated temperatures matched the thermocouple data. Figure 4.14 shows the 

correlation between equation (4.6) and the thermocouple data, for a heat transfer 

coefficient of 32 w/mZ-OC. 

4.5 Temperature Dependence 

To fully describe and model the autohesive phenomenon for thermoplastic resins, it was 

recognized that the temperature dependence must be determined. As discussed 

previously (see Section 4.2), the low convective heat transfer coefficient between the 

oven fluid and the CT specimen resulted in a finite amount of time to heat the specimen 

to the oven set point temperature. Thus, the CT specimens were healed non-isothermally. 

Furthermore, only data measured after the specimen reached the specified isothermal 

oven temperature can be used to determine the temperature dependence. To determine 

the time at which the temperature in the CT specimens became constant, the NIR heat 

transfer expression, equation (4.6), was solved for time, t as follows. 
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Figure 4.14 Non-dimensionalized temperature, 0 versus time in oven for CT 
specimens. Symbols represent data gathered at different oven 
setpoint temperatures. The solid line represents the negligible internal 
resistance heat transfer solution using a surface heat transfer 
coefficient of 32 w/m2 - O C .  
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t=-98.707 1 ~ i - ~ f  iT-Tfl (4.7) 

The time to reach 0.5"C below oven setpoint temperature (T,) was calculated for the CT 

specimens and verified by the thermocouple data. A temperature OS0C below the 

setpoint temperature was selected rather than the actual setpoint temperature because the 

NIR expression predicts infinite time to reach actual oven setpoint temperature. The half 

degree approximation agreed well with the thermocouple data in predicting the time 

required for the CT specimens to reach actual oven setpoint temperature. Rehealing data 

obtained after the specimen reached the oven setpoint temperature (Tf) was isothermal 

and can be used in the diffusion model developed by Wool and O'Connor (Chapter 2) to 

determine the temperature dependence. If wetting is instantaneous and the instantaneous 

wetting load at initial time is negligible then the rehealing function defined in equation 

(4.2) can be written-as follows. 

R =  qT)tR (4.8) 

where C(T) is a temperature dependent constant (self-diffusion parameter) proportional to 

the polymer self-diffusion coefficient. In order to determine the self-diffusion parameter, 

C(T) the non-isothermal data points were removed from the plots of the rehealing 

function versus square root of contact time and a linear least squares curve was fit to the 

isothermal data at each temperature condition (Figure 4.15). Measurement'of the slope of 

each curve gave the self-diffusion parameter C(T). Table 4.3 shows the time to obtain the 
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Figure 4.15 Isothermal rehealing data, R versus square root of contact time for Udel@ 
P1700 polysulfone CT specimens. Symbols represent the mean of 
the data. Solid lines represent linear regression curve fits to the data. 
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Table 4.3 Time to reach oven temperature, self-diffusion parameters, and 
correlation coefficients from the least squares fit to the isothermal 
rehealing data. 

Temperature ("C) Time to T, (sec) 

196.0 

200.0 

205.0 

213.0 

225.0 

245.0 

579.7 

581.9 

584.6 

589.0 

594.6 

603.8 

C(T) Correlation 

0.0091 0.98 

0.0239 0.83 

0.0543 1 .00 

0.0752 1 .00 
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oven setpoint temperature, the self-diffusion parameter, and the correlation coefficient 

from the least squares fit to the isothermal data. 

Determination of C(T) at temperatures above 213°C was precluded by the fact that the 

data was not isothermal. 

4.5.1 Arrhenius Temperature Dependence 

Jud et a1 [lo]., Wool and O’Connor [6], and Prager and Tirrell 191 observed that the 

experimentally determined macroscopic diffusion coefficients calculated for different 

temperatures could be approximated by an Arrhenius law. The form of the Arrhenius 

equation is given as 

c(T, = KO exp [ - A] 
where Ea is the activation energy, R is the universal gas constant (8. 

the absolute temperature (K) and KO is a pre-exponential factor. 

(4.9) 

J / mol K), T is 

The parameters Ea and KO can be determined by plotting the natural log of the self- 

diffusion parameter, C(T) versus reciprocal temperature as shown in Figure 4.16. Fitting 

a linear least squares curve to the data, with a correlation coefficient of 0.93, the constants 

were determined to be 6.73103 x for KO, and 221.96 kJ / mol. for Ea. 

Results 
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Figure 4.16 Natural log of C(T) versus reciprocal temperature. Symbols represent 
data. Sold line represents a linear regression curve fit to the data. 
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The calculated value of Eais on the same order of magnitude that Jud et al. determined 

for the self-diffusion activation energy of PMMA, 274 kJ mol-' [lo]. Dara and Loos [l] 

reported a value of 36.7 kJ mol-' for the activation energy of polysulfone. The 

differences between their results and the result of this study is probably due to different 

testing methods. Other estimates of the activation energy for polysulfone are not 

available; however, the activation energy for the zero shear rate viscosity (which is also 

dependent on the available free volume in the polymer) of polysulfone was measured to 

be 96.3 kJ mol-' [26]. 

4.5.2 Williams, Landel and Ferry (WLF') Temperature Dependence 

Wool and O'Connor [6] stated that the self-diffusion coefficient should follow a WLF 

temperature dependence, providing that the mode of failure remains the same between 

samples rehealed at different temperatures. Ferry [23] states that the WLF relationship is 

accurate at temperatures between the glass transition temperature, Tg, and fifty degrees 

above the glass transition temperature, Ti+ 5OoC, due to the fact that free volume changes 

control the mechanical properties of polymers in this range. At higher temperatures, an 

Arrhenius relationship is more accurate. The testing range used in this study falls within 

the T, to T,+ 50°C range and so the WLF temperature dependence is expected to be most 

accurate. 

The premise behind the WLF theory is that a certain state of a polymer can be achieved 

by many different approaches. For instance, at a high temperature only a short amount of 
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time is needed for complete healing of the crack but at a lower temperature more time is 

needed to heal the crack. The theory relates all movement of the molecules directly to the 

free volume available to each molecule. As the free volume increases so does the 

molecular motion and subsequently the self-diffusion. One relationship has been shown 

to be applicable to a wide variety of polymers and it relates some property, which is 

temperature dependent, to the same property measured at a reference temperature. The 

relationship can be written as follows [23] 

(4.10) 

where aT is the shift factor, C1 and C2 are constants, T is temperature, and Tr is the 

reference temperature. aT is defined as 

CS,O '=csT, (4.1 1) 

where CS,O is the property being measured at the reference temperature and Cs is the 

property at temperature T. 

In the present investigation the reference temperature, Tr, is taken at 196OC and CS 

represents the self-diffusion parameter, C(T), at the rehealing temperature, T, taken from 

Table 4.3. 

The constants C1 and C2 were determined by plotting l/ln( aT ) against l/(T-Tr). A least 
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squares linear curve fit to the data gives values of 3.6324 and 1 1 .SO53 for Ci and C2, 

respectively (Figure 4.17). The WLF equation provides an excellent fit to the data as 

shown by the comparison in Figure 4.18. 

4.6 SeIf-Diffusion Coefficient 

Using an approach similar to Jud et al., the self-diffusion coefficient was estimated from 

the following relationship [ 101 

(4.12) 

where the definitions and values of the quantities in equation (4.12) are given in Table 

4.4. The estimated self-diffusion coefficient for polysulfone P1700 is 1.03 X 10-20 m2 

sec-1 at 196OC. The self-diffusion coefficient is proportional to the self-diffusion 

parameter, C(T) and should follow the same temperature dependence. Table 4.5 shows 

the estimated self-diffusion coefficient at different temperatures calculated using both the 

Arrhenius and the WLF temperature dependence. In performing the calculations it was 

assumed that the proportionality constant between the self-diffusion coefficient and the 

self-diffusion parameter, C(T) did not vary with temperature. 
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Figure 4.17 Determination of WLF constants for the temperature dependency of 
autohesion. Symbols represent data. Solid line represents a linear 
regression curve fit to the data. 
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Figure 4.18 Comparison between the WLF equation (solid line) using the constants 
calculated in Fig. 4.17 and the data (symbols). 
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Table 4.4 Definition and values of quantities used to estimate the self-diffusion 
coefficient of polysulfone at 196OC. 

Symbol Quantity Estimated Value Reference 

Plateau modulus 106 N/m2 [I81 

Density 1.24 Mg/m3 [241 

Universal gas constant 8.31 J (mol-OK)-l [23] 

Molecular weight 20,000 1221 

Critical M for entanglement 3200 ~191 

Zero shear viscosity for M, 5 X 105 Poise r191 

Mean square end-to-end distance/M 6.432 X 10-17 m2 mol g-' [20] 

~ 
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Table 4.5 Estimated diffusion coefficients (D,) of polysulfone P1700 using both 
an Arrhenius and a WLF temperature dependence. 

Temperature ("C) 

196 

200 

205 

213 

225 

245 

D, (Arrhenius, m2 sec-') D, (WLF, m2 sec-1) 

1.03 X 

1.67 X 10-m 

3.01 X 10-20 

7.99 x 10-20 

2.84 x 10-19 
2.25 X 10-l8 

1.03 X 

2.68 X lo-" 
5.31 X 10-3 

1.00 x 10-19 
1.59 x 10-19 
2.44 x 10-19 
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4.7 Non-Isothermal Rehealing 

A non-isothermal rehealing model was developed by combining the isothermal healing 

model of Wool and O’Connor (equation 4.8) with the NIR heat transfer model (equation 

4.6). The model was developed using both an Arrhenius and a WLF temperature 

dependence for the self-diffusion parameter, C(T). 

The first approach followed was to differentiate the isothermal healing model in equation 

(4.8) with respect to time to obtain the rehealing rate, dR/dt. Using an Arrhenius 

temperature dependence for the self-diffusion parameter and the NIR heat transfer 

solution, the following expression for the rehealing rate was obtained 

Equation (4.1 1) proved difficult to solve numerically due to a mathematical singularity at 

time t=O and did not fit the data. 

A numerical scheme (stepwise) was developed in which the rehealing equation was 

solved incrementally for small time steps. A flowchart of the solution process is shown 

in Figure 4.19. At the beginning of rehealing the specimen is at ambient temperature and 

the initial rehealing function is zero. Time was incremented by a small time step, At, and 
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Tj+l = (Ti - Tf> ex 

AR = C(T*) (2 - C(T ) tj I * l’* I 
Rj+l = Rj + AR 

Figure 4.19 Flowchart of the stepwise solution process. The self-diffusion parameter, 
C(T) is calculated using either the Arrhenius or WLF expressions. 
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the new temperature of the sample was calculated using the NIR heat transfer solution. 

The former and new temperatures were averaged over the time step and and the self- 

diffusion parameter was calculated using this temperature. The incremental rehealing, 

AR, corresponding to At at the averaged temperature was calculated and added to the 

previous R. Then time was incremented and the calculations continue until the time 

reaches a set flag. 

Figures 4.20 through 4.25 show a comparison between the results of the non-isothermal 

rehealing model using an Arrhenius temperature dependence and the measured CT data. 

The model accurately predicts the time at which healing first begins for all temperatures 

but is not accurate at low temperatures close to the T, (Figure 4.20). At the higher 

temperatures the model fits the data reasonably well. 

Figures 4.26 through 4.31 show a comparison between the results of the non-isothermal 

rehealing model using a WLF temperature dependence and the measured CT data. Like 

the solution with an Arrhenius temperature dependence, the WLF model accurately 

predicts the onset of healing. Furthermore, this model accurately predicts the degree of 

rehealing at long healing times and for all the temperatures tested. The amount of non- 

isothermal rehealing can be ascertained from the plots. In Figure 4.26 the curve is linear, 

with a slope corresponding to the self-diffusion parameter, C(T) at 196OC (see Figure 

4.15 and Table 4.3). These results indicate that most of the healing occurred isothermally 

at the oven temperature. On the other hand, the curve in Figure 4.31 does not approach a 

straight line, indicating that most of the healing was non-isothermal at temperatures 

below the oven temperature. Varying degrees of this phenomenon can be seen as the 

oven temperature increases. 
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Figure 4.20 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 196OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using an Arrhenius 
temperature dependence (solid line). 
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Figure 4.21 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 200OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using an Arrhenius 
temperature dependence (solid line). 
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Figure 4.22 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 205°C. Comparison between data 
(symbols) and the non-isothermal rehealing model using an Arrhenius 
temperature dependence (solid line). 

Results 97 



pr: 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 0 10 20 30 40 

4t (4s) 

Figure 4.23 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 213OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using an Arrhenius 
temperature dependence (solid line). 

Results 98 



1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
0 10 20 30 40 

dt (4s) 

Figure 4.24 Rehealing function versus square root of contact time for Ude@ P1700 
polysulfone CT specimens bonded at 225OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using an Arrhenius 
temperature dependence (solid line). 
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Figure 4.25 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 245OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using an Arrhenius 
temperature dependence (solid line). 
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Figure 4.26 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 196OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using a WLF 
temperature dependence (solid line). 
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Figure 4.27 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 200OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using a WLF 
temperature dependence (solid line). 
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Figure 4.28 Rehealing function versus square root of contact time for Ude@ P1700 
polysulfone CT specimens bonded at 205OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using a WLF 
temperature dependence (solid line). 
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Figure 4.29 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 213OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using a WLF 
temperature dependence (solid line). 

Results 104 



1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
0 10 20 30 40 

4t (4s) 

Figure 4.30 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 225OC. Comparison between data 
(symbols) and the non-isothermal rehealing model using a WLF 
temperature dependence (solid line). 
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Figure 4.31 Rehealing function versus square root of contact time for Udel@ P1700 
polysulfone CT specimens bonded at 245OC. Comparison between data 
(symbols) and the non-isothermal rehealing mode1 using a WLF 
temperature dependence (solid line). 
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4.8 CT Fractography 

Fractography was performed, in a scanning electron microscope (SEM), on the failed CT 

specimens. Four different specimens were studied. These included a virgin (i.e. not 

rehealed) specimen and three specimens that had been rehealed and refractured. The 

refractured specimens had rehealing function values of 0.37,0.81, and 1.0. Figure 4.32 

shows the failure surface of the virgin sample at magnifications of 48.6X and 163X. 

Large amounts of deformation are apparent with roughly parallel crazes. Figure 4.33 

shows the failure surface of a CT specimen with a rehealing function of 0.37. Much less 

deformation is apparent but the parallel crazes are discernable. Figures 4.34 and 4.35 

show the failure surfaces of samples with rehealing values of 0.81 and 1.0, respectively. 

The amount of deformation in the failure surface increases with increasing degree of 

rehealing. The failure surface in Figure 4.35 has a similar appearance to the failure 

surface in the virgin specimen. This indicates that the same failure mechanisms occur in 

the rehealed specimens as in the virgin specimens. Thus, it can be concluded that the 

fracture toughness and failure mechanisms of a completely rehealed poly sulfone 

specimen are the same as the virgin material. 

4.9 Double Cantilever Beam Composite Test 

A double cantilever beam (DCB) interlaminar toughness test was used to examine 

interfacial strength development in fiber-reinforced thermoplastic composites. The test 
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Figure 4.32 Scanning electron micrographs of virgin CT specimen. The top figure is 
at 48.6X, the bottom figure at 163X. Crack growth is from the 
top of the figure to the bottom. 
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Figure 4.33 Scanning electron micrographs of CT specimen with R of 0.37. The top 
figure is at 48.6X, the bottom figure at 163X. Crack growth is from the 
top of the figure to the bottom. 
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Figure 4.34 Scanning electron micrographs of CT specimen with R of 0.81. The top 
figure is at 48.6X, the bottom figure at 163X. Crack growth is from the 
top of the figure to the bottom. 
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Figure 435 Scanning electron micrographs of CT specimen with R of 1.0. The top 

figure is at 48.6X, the bottom figure at 163X. Crack growth is from the 

top of the figure to the bottom. 
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measured the critical strain energy release rate of unidirectional graphite-polysulfone 

composite rehealed at different temperatures and contact times. Like the CT test, the 

crack was allowed to propagate only far enough to obtain good data; but the specimen 

remained in one piece. This ensured that maximum contact was obtained upon rehealing. 

The fust set of tests measured the critical strain energy release rate of the undamaged 

composite. The results are plotted in Figure 4.36. The critical strain energy release rate 

increased with increasing crack length. This was due to the fibers in the unidirectional 

laminae “bridging” the crack and bearing some of the load that would normally go into 

the fracture process. As the crack propagated, these fibers pulled out from the rest of the 

composite absorbing some energy. The mean critical energy release rate for the 

undamaged specimens was 551.3 n/m (3.148 lbhn.). In reporting values of the critical 

strain energy release rate for rehealed specimens, the mean of all tests was used since the 

effect of bridging should be similar for either undamaged or rehealed DCB specimens. 

Following the same non-dimensional scheme used for the CT specimens, the rehealing 

function is defined as 

The rehealing function, R versus the square root of time is plotted in Figures 4.37 through 

4.39 for rehealing temperatures of 213,225 and 245OC. The symbols represent the mean 

of the data and the error bars represent the upper and lower bounds on the data. 
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Figure 4.36 Critical strain energy release rate versus crack length for AS4Polysulfone 
DCB specimens. Symbols represent data. Dashed line represents the mean 
of the data (G1c-I. 
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Figure 4.37 Rehealing function, R versus square root of time for AS4 / Polysulfone 
DCB specimens healed at 213OC. Symbols represent data. Error bars 
represent the lower and upper bounds on the data. 
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Figure 4.38 Rehealing function, R versus square root of time for AS4 / Polysulfone 
DCB specimens healed at 225OC. Symbols represent data. Error bars 
represent the lower and upper bounds on the data. 
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Figure 4.39 Rehealing function, R versus square rmt of time for AS4 / Polysulfone 
DCB specimens healed at 245OC. Symbols represent data. Error bars 
represent the lower and upper bounds on the data. 
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The composite data do not show the same strong time and temperature dependence that 

was observed in the neat resin tests. The data obtained at 213OC and 245OC (Figures 4.37 

and 4.39) do show a weak increase in the critical strain energy release rate with 

increasing contact time; however, the data at 225OC do not show an increase in the 

critical strain energy release rate with increasing contact time (Figure 4.38). This 

indicates that the theories outlined in Chapter 2, assuming instantaneous wetting, do not 

apply. Furthermore, only about eighty percent (80%) of the original fracture energy is 

recovered upon rehealing. 

The time required to achieve complete interfacial healing by autohesion was calculated 

using the isothermal rehealing model in equation (4.8) with the self-diffusion parameter, 

C(T), determined in Section 4.5. The model predicts that the interface will be completely 

rehealed in 127 seconds at213OC, 51 seconds at 225OC, and 22 seconds at 245OC. These 

calculations of course neglect wetting effects but do show that sufficient time has elapsed 

for complete healing of the interface by self-diffusion. Thus, it can be concluded that 

wetting, intimate contact, and resin flow cause a different time dependency than the 

autohesive phenomenon alone [6].  

The lower toughness upon rehealing can be explained by different fracture mechanisms 

occurring in the undamaged specimens than in the rehealed ones. During the first crack 

growth, a number of mechanisms contribute to the measured critical strain energy release 

rate. Among these are resin deformation, interfacial failure, fiber peeling, and fiber 

breakage [27]. As the crack propagates, microcracks are formed on planes adjacent to the 

main crack plane which contribute to the amount of energy absorbed during the test. 
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Also the main crack may not follow a straight path but jump between different crack 

planes. 

Following rehealing of the specimen, the recrack propagation will follow the path of least 

resistance that was established previously. The recrack may not cause microcracking or 

breaking of the fibers that were broken in the first test and the lack of these energy 

absorbing phenomenon cause the discrepancies between the first and subsequent tests of 

the same specimen. 

4.10 DCB Composite Fractography 

Scanning electron microscopy (SEM) was performed on the DCB specimens to determine 

if there were differences in the failure mechanisms between undamaged and rehealed 

specimens. 

Three DCB samples were examined in the SEM. One was a virgin specimen and the 

other two were fractured and rehealed three times. Both rehealed specimens had 

rehealing function values that varied between 0.5 and 0.8. Two locations, corresponding 

to the beginning and the end of the crack, were examined on each specimen. Figures 4.40 

and 4.41 show the failure surfaces of the virgin specimens. The specimens show only 

small amounts of polymer deformation, indicating low toughness. A poor fiber matrix 

bond is indicated by bare fibers and long polymer tendrils. The polymer tendrils were 

stripped off the fiber during the test. Stray fibers indicate fiber breakage and pull-out. 
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Figure 4.40 Scanning electron micrographs of virgin DCB specimen at beginning of 
crack. The top figure is at 163X, the bottom figure at 326X. 
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Figure441 Scanning electron micrographs of virgin DCB specimen at end of 
crack. The top figure is at 163X, the bottom figure at 326X. 
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The rehealed specimens, shown in Figures 4.42 - 4.45, show a greater amount of resin at 

the fracture plane than the virgin specimens. This indicates that during rehealing some 

polymer flow was taking place. The different appearance of the rehealed failure surfaces 

in the DCB specimens indicates that different failure mechanisms contributed to the 

rehealed critical strain energy release rate. Some of the possible differences were 

mentioned above (see the end of Section 4.9). The flow of resin indicates that the 

surfaces were not in intimate contact immediately and even though the fiber tows were 

touching, the individual fibers were not necessarily in intimate contact. A possible cause 

of the lack of intimate contact was due to the stray, broken fibers created during the fnst 

crack growth. These fibers did not lie parallel to the other fibers and upon healing 

interfered with the intimate contact between the crack surfaces. 

Differences in both the fracture toughness and the fracture mechanism between virgin and 

healed DCB specimens indicates that if thermoplastic matrix composites are to be 

repaired, the repaired part will not have the same toughness as the undamaged material 

regardless of how long heat and pressure are applied. 

. 
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Figure 4.42 Scanning electron micrographs of rehealed DCB specimen at beginning of 
crack. The top figure is at 163X, the bottom figure at 326X. The value of 
the rehealing function was 0.5. 
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Figure 4.43 Scanning electron micrographs of rehealed DCB specimen at end of 
crack. The top figure is at 163X, the bottom figure at 326X. The value of 
the rehealing function was 0.5. 
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Figure445 Scanning electron micrographs of rehealed DCB specimen at end of 
crack. The top figure is ;it 163X, the bottom figure at 326X. The value of 
the rehealing function was 0.8. 
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5.0 Conclusions 

Three mechanical tests were investigated for characterizing autohesive strength in 

amorphous thermoplastic resins and fiber-reinforced amorphous thermoplastic 

composites. These included an interfacial tension test, a compact tension fracture 

toughness test and a double cantilever beam interlaminar toughness test.. 

Although the healing parameters temperature, pressure, and contact time could be easily 

controlled, the interfacial test results were very poor. The specimens were difficult to 

prepare and there were excessive variations in the measured interfacial strength. It was 

determined that the present interfacial tension test was unacceptable for measuring 

autohesive strength development in neat resin samples. 

The results obtained using the compact tension test were good. The mechanical 

measurements were repeatable with an acceptable amount of data scatter. However, due 

to healing in a forced air oven, the specimens were not rehealed isothermally. Therefore, 

theories developed for isothermal healing cannot be directly applied to the data. 

A non-isothermal rehealing model was developed by incorporating a negligible internal 

resistance heat transfer model into the isothermal rehealing model, and an Arrhenius and 

WLF type temperature dependent model. The non-isothermal model was applied to the 

results obtained from the compact tension test and was found to give good results. Using 

scanning electron microscopy, the failure mechanisms in the healed CT specimens were 

determined to be the same as in the virgin specimens. It was determined that the CT test 
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is suitable for self-diffusion parameter measurements. 

1- 

A 

The self-diffusion coefficient of polysulfone P1700 was estimated at each of the test 

temperatures using the data obtained in the CT tests. The activation energy of the self- 

diffusion process was calculated and compared well to the zero shear viscosity activation 

energy; however, it did not compare well to another studies self diffusion activation 

energy for polysulfone. 

Autohesive strength in fiber-reinforced thermoplastic composites was measured using a 

double cantilever beam interlaminar toughness test. The data do not show a strong time 

or temperature dependence as observed in the neat resin tests. Furthermore, only about 

eighty percent of the undamaged fracture energy can be recovered. This is accounted for 

by different fracture mechanisms in the virgin than the rehealed DCB specimens. SEM 

examination of the failure surface revealed that the healed DCB specimens have more 

resin at the refracture plane than the virgin specimens. Resin flow and the lack of strong 

time and temperature dependence in the DCB data indicates that intimate contact was not 

established immediately. It was determined that the DCB test is poor at measuring the 

autohesive strength development in fiber-reinforced prepreg; however, the test does 

indicate that repair of fiber-reinforced amorphous thermoplastic composites is possible 

although the original toughness cannot be attained. 

The following recommendations are made for further study: 

Analyze the interfacial test results using a fracture mechanics approach. 
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Develop a composite test that heals new prepreg only, to eliminate the differences in 

failure mechanisms between new and rehealed samples. 

Determine pressure effects on the composite autohesion. 

Extend the model to incorporate new advanced tough thermoplastics and thermoplastic 

matrix composites 
-* 

. 
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