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I n e r t i a l  Confineaent Fusion (ICF) i s  an a t t rac t ive  
engine p a e r  source f o r  interplanetary manned 
spacecraft. especial 1 y f o r  near-tern m i  ss lms 
requir ing a i n i u  fl ight duration, because Iff laas 
inherently hlgh parer-torass ra t i os  and hlgh 
speci f ic  i qu l ses .  He have developed a new vehicle 
conceot cal led VISTA that  uses ICF and i s  capable o f  
round-trip manned missions t o  Mars i n  1 M  days using 
A.D. 2020 technology. We describe VISTA'S englne 
operation, discuss associated plasma issues. and 
describe the advantages o f  DT fuel  for near-tern 
appl ications. Although ICF i s  po tent ia l l y  superior 
t o  non-fusion technologies fo r  near-tern 
interplanetary transport. the performance 
capabi 1 i t ies  a f  VISTA cannot be aeaningful l y coqared 
wi th those o f  aagnetlc-fusion systems because o f  the 
lack o f  a coqarable study o f  the magnetic-fusiw. 
systems. He urge that  such a study be conducted. 

O e u t e r i l c t r i t i ~  fusion. with i t s  energy release o f  
up t o  3.4 x 101 J/g. i s  an a t t rac t ive  englne powr 
source for interplanetary manned spacecraft because 
i t  provides p o w e r - t ~ s s  ra t ios  o f  ten t o  several 
hundred watts per gram. and specif ic i g u l s e s  o f  tens 
of thousands o f  seconds. The inherent advantages o f  
fusion over other technologies can be real ized by irse 
of magnetic thrust chambers. as o r i g ina l l y  proposed 
i n  1972 fo r  I n e r t i a l  Confinement Fusion (ICF) by 
Hyde. Hood. and ~ u c k o l l s t l l .  Magnetic confinement o f  
the fusion-heated propellants isolates the hot 
plasmas from f i r s t  walis and el 'dnates the therrral 
constraints that  mechanical thrust chambers Impose. 

Beginning w i  t h  Hyde's 1983 concept o f  a laser-fusion 
rocket.[21 w conducted a detai led study based on 
A.D. 2020 technology and developed a new spacecraft 
concept cal led VISTA (Vehicle f o r  Interplanetary 
Space Transport Appl ications) This vehicle uses DT 
fusion and i s  described i n  deta i l  i n  the f i n a l  report 
of our study.131 VISTA asswes a 6%-eff icient 
excimer-laser dr iver  operating a t  1000 K wi th an 
output o f  5 W. and uses pe l le ts  that  al low energy 
gains from 200 up t o  perhaps 1500.t31 Such pe l l e t  
gains are highly speculative and are based on 
extrapolations o f  analyt ic  Illodeling. t 3 l  The 
effective specif ic impulse i s  about 17.000 s. with a 
j e t  ef f ic iency near 36%. Hhen operating a t  a maxiaun 
pe l l e t  repet i t ion  rate o f  30 Hz. VISTA'S power system 
has a power-to-mass r a t i o  near 20 H l g .  a mass flow 
rate o f  1 . S  kg/s. a thrust o f  2.4 x 105 N ,  and a 
j e t  power o f  2.0 x I@ m. These parameters allow 
a round t r i p  t o  Mars wl th a 100-metric-ton payload i n  
about 100 days wl th a launch mass near 6.000 metric 
tons. 
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This performance 1s potent ia l l y  superior to that 
provided by any other near-term technology. including 
chemical propulsion. nuclear-electric propulsion, and 
even a n t i m a t t e r a t t e r  annlhi l a t i o n  propul slon.[33 
Howver. VISTA performance depends on s i g n i f l c u l t  
technoloqiial advances I n  .any areas. including the 
development o f  a SSU exclmer-laser driver. very hlgh 
pel 1 e t  gains. very lau-spec1 f f  c r a s s  heat-pipa 
radiators f o r  wst&heat rejection. and a spacial 
Inductor pouer-conversion systea. 133 Wevertheless. 
such short-duration missions are c ruc ia l  f o r  
astronauts t o  avoid radiat ion exposures frcm 
cosmi c-ray-i nduced neutron showers. ri th the 
resul tant  cancers. as u e l l  as t o  avoid s igni f icant  
physiological deter lorat ion i n  zero-gravity 
enviroments exceeding 100 days .[31 Lonaer missions 
aust incorporate massive d r d  shield l& and 
spacecraft ro ta t ion  t o  provide a r t i f i c i a l  gravity. 

I n  t h i s  pager. we focus on j u s t  three aspects o f  
VISTA: 1) the plasma issues i n  the magnetic thrust  
chamber. 2) the potent ia l  perfommce capabi 11 t i e s  o f  
VISTA and mageetic-fusion systems f o r  the par t icu lar  
case o f  fas t  interplanetary missions, and 3) the use 
o f  O f  fuels. as opposed t o  00 o r  ~ l e 3  fuels. f o r  
near-term appl ications. 

Figure 1 gives an a r t i s t ' s  conception o f  the systems 
layout. Thrust I s  obtained by posit ioning pe l le ts  a t  
a repet i t ion  ra te  o f  1 t o  30 Hz a t  a par t icu lar  s i t e  
on the spacecraft axis where laser bean  can i g n i t e  
the fusion fuel. This i g n i t i o n  s i t e  I s  located 
behind the plane o f  a 12-1 superconducting magnet 
sl;ch that  the neutron-gama shle ld f o r  the c o l l  casts 
a hollow conical shador wl th a half-angle o f  50 deg. 
This half-angle aaxiipizes the j e t  e f f i c iency  uf the 
thrust  chamber, as determined by Hyde. 121 A l l  
spacecraft structure and system are placed i n  the 
conical shadow o f  the c o l l  shie ld t o  prevent vehicle 
surface heating from fusion neutrons. The conical 
spacecraft geometry i s  thus required fo r  DT fuel. 
which emits copious neutrons. The conical shapd i s  
a lso s t ruc tura l ly  e f f i c i en t .  

The fusion pe l l e t  conslsts o f  a laser target 
slirrounded by t yp i ca l l y  50 g o f  added (expellant) 
mass. Af ter  fuslon !gnitlon, the expellant i s  heated 
and forms a hot plasma debris cloud. The plasma 
expands and cools by converting the plasma's thermal 
energ) I n t o  rad ia l  ion  k ine t i c  energy. Hhen the 
port ion o f  the plasma headed towards the magnet gets 
close enough so tha t  the magnetic pressure becomes 
signi f i cant  compared t o  the dynamic kinetic-energy 
pressure. the debris begins t o  be deflected rearward 
i n t o  a re la t i ve l y  small so l id  angle t o  form the , 



Figure 1. VISTA systems layout. Tro f i n a l  laser  focusing mi r ro rs  are shown. 
but  opt ional  conf igurat ions irtcorporate m u l t i p l e  mir rors .  

exhaust p l u m  and create thrust .  The magnet thereby 
acts as a larqe spring. convert ing the ion  k i n e t i c  
energy i n t o  po ten t ia l  energy. and then re tu rn ing  the 
energy t o  plasma headed i n  the d i r e c t i o n  o f  the 
exhaust. The plasma thus e x i t s  the th rus t  chamber 
without s i g n i f i c a n t  change i n  the h igh ion  speed 
establ lshed by the fus ion microexplosion. thus 
prov id ing very h igh speci f ic  impulsez. This i s  the 
main advantage of fusicn over technologies employing 
mechanical th rus t  chambers. 

The overa l l  measure of the eff tc iency of the t h r u s t  
chaaber i s  given by the j e t  e f f ic iency o f  the 
spacecraft. tha t  1s. the r a t i o  of the V r e r  i n  the 
propulslve force pro jected i n  the d i r e c t i o n  o f  the 
exhlust. t o  the pouer i n  the plasma i n  the th rus t  
chamber. This e f f i c iency  i s  determined p r i m a r i l y  by 
the geometrical dlvergenre of the exi t l n g  exhaust. 
However. the ef f ic iency can be lowered by other  
ef fects .  such as a spectrum of exi t l n g  exhaust 
sp?eds. o r  a w g n e t i c  f i e l d  embedded i n  the plasma i n  
the th rus t  chamber t h a t  must be removed i n  the plume. 

High e f f i c i e n c y  of thrust-chamber operat ion inposes 
requirements on the h i  s to ry  of olasma conduct ivi  t y .  
I f  the plasma conduct lv i ty  remains h igh enough 
throughout ! ts  t r a n s i t  through the th rus t  chamber so 
t h a t  magnetic f l e l d  i s  e f fec t i ve ly  excluded f r u  the 
plasma. then engine operat ion can be modeled by the 
f l u i d  techniques developed by Hyde[Zl. I f  the 
conduct ivi  t y  fa1 1 s enough t o  a l  low s o n  magnetic 
f l e l d  t o  d i f f u s e  i n t o  the outer por t ions o f  the 
p l a s m  as i t  i s  deflected. which we th ink i s  the 
r e a l i s t i c  case. then j e t  e:ficiency i s  degradcd 
because of the drag resu l t tng  uhen the exhaust 
decouples from the magnetlc f i e l d  i n  the plume. An 
accurate assessment of the j e t  e f f ic lency i s  
dependent on the degree of t h i s  orag. but the drag 
can not be calculated wcthout a great deal more study 
t o  consider the occurrence of complex ;hysical 
processes. For example, because the time scale f o r  
the debris t o  trans! t the th rus t  chamber i s  on ly  

s. i n s t a b i l i t i e s  (collective e f fe r ts )  should 

be neg l ig lb le .  b u t  we don't  knav f o r  sure. Evcn the  
r o l e  played by the plasma conduc t l v i t y  i n  the plume 
i s  no t  cer ta in .  an4 t h i s  conduc t i v i t y  i s  d i f f i c u l t  t o  
ca lcu late.  

m e  conduc t i v i t y  of the plasma IS d i f f i c u l t  t o  
ca lcu la te  throughout i t s  t r a n s f t  through the t h r u s t  
chamber and i n t o  the plume because corplex physical 
processes are involved. Temperature gradlents can be 
ra ther  la rge  i n  the p e l l e t  mater ia l  i r e d i a t e l y  a f t e r  
the fus ion react ions. The p e l l e t  expansion r h i c h  
then occurs i s  not  simply adiabatic.  but  can invo lve  
complex hydrodynami c processes (shocks ) t h a t  
complicate tire r a d i a t i v e  processes. For example. 
hydrogen expel lant  has no bound electrons when 
ion ized and vould thus n o t  rad ia te  as much as heavier 
expel lants. High-Z expel lant  would not rad ia te  
e f f e c t i v e l y  u n t i  1 the ho t  i n t e r i o r  thema l  rave 
propagated through the expandlng p l a s m  debris cloud 
t o  reach i t s  outer  surface. By the t ime the outer  
plasma radius i s  about 1 a, the p l a s m  temperature 
due t o  i n t e r n a l  random p a r t i c l e  motions has dropped 
t o  roughly 1 eV, uhi l e  the d l rec ted  rad ia l  i o n  
k i n e t i  c energy associated wi t h  the plasma expanslon 
i s  near 112 t o  1 keV1ion ( f o r  hydrogenldeuteriun 
expel lants) .  Even so, the conduct iv i ty  i s  s t i l l  
w i t h i n  about 3 orders of magni tude of metal 1 i c  
conduct ivi  t i e s .  The important question i s  then 
whether recombination w i  11 heat the plasma as i t 
cont l  nues t o  expand. thereby maintaining s u f f l c l e n t  
conduc t l v i t y  t o  e f fec t i ve ly  exclude magnetlc f i e l d .  
VISTA may be requi red t o  use higher-Z expel l a n t  t o  
maintain su i tab le  plasma conduct iv i ty .  More study o f  
these issues i s  needed because the extent o f  the 
ion iza t ion  occurr ing i n  t h i s  h igh ly  c o l l i s i o n a l  
p!~sma dur ing the f l r s t  100 ps i s  perhaps the most 
c r l  t t r a l  issue governing feasibi  l i t y  of t h l  s I C F  
appi )cat ion.  

E f f i c i e n t  decoupling of the p l a s m  from the magnetic 
f i e l d  i n  the plume I s  essent ia l  t o  minimlze unwanted 
p a r t i c l e  f low forward around the f i e l d  l i nes  and onto 
spacecraft s t ructure.  Simple mechanical decoupling 



requires a large beta i n  the plume. Beta. which i s  
the r a t i o  o f  the pa r t i c l e  pressure t o  the magnetic 
pressure (i .e.. the r a t i o  o f  the plasma's 
kinetic-energy dens1 t y  t o  the magnet-f i e l d  energy 
density). i s  proportional t o  the r a t i o  of the to ta l  
energy density o f  the plasma and the square of the 
magnetic f i e l d  intensi ty.  Beta should increase tn  
the plume because the square o f  the magnetic f i e l d  
decreases faster  than the plasma n l d e r  density. 
while the pa r t i c l e  energy remains essential ly 
constant. Decoupling should therefore be ef f ic ient .  
but precise cal iu lat ions are l a c k t n ~ .  Such 
calculations are required t o  understand the 
feas ibs l i t y  o f  t h i s  pulsed-plasma magnetlc nozzle. 
not j us t  t o  determine the design detai ls .  

m a r i s o n  o f  ICF and Maanetic-Fusion Svstems 

Magnetic fusion uses magnets t o  contain a plasma a t  
mderately high density t o  enable fusion reactions t o  
occur. and thereby avoids the thermal cons*ri ints 
inposed by mechanical thrust  chambers. jus t  as i n  
VISTA. Or!? concept using magnetic flision erploys a 
magnetic mirror  machine. that  i s .  a cy l indr ica l  
magnetic f i e l d  wi th magnetic mirrors on each end. 
wi th one end purposely leaky t o  form the exhaust 
plme. I n  the ideal case. expellant mass i s  added t o  
the fusion plasma before i t  enters the exhaust 
nozzle. thereby ensuring e f f i c i e n t  n ix ing o f  the hot 
and cold f l u i ds  and thus high j e t  eff iciency. I n  the 
hybrid-plmse concept o f  the magnetic mirror. 
additional cold propellant i s  added i n  the nozzle 
region t o  add t o  the mass f l o u  rate.141 I n  t h i s  
case. the resul t ing d l  spersion i n  nozzle speeds 
causes a lowered j e t  e f f i  c i  ency (and therefore poorer 
perfomance). but the degradation i s  not s ign i f i cant  
unless the added mass ra te  i s  a r e  than that  
coqarable t o  the fusion e x i t  f l o u  rate. Same other 
maonetir fusion concepts are discussed by 
Borowski . 151 

No accurate coaparison between ICF and 
magnetic-fusion propulsion systems can be made a t  
t h i s  time because a systems study comparable t o  ours 
has not yet been conducted for the magnetic-fusion 
systems. To be sure. magnetic-fusion systems can not 
use DT fuel because the neutron emission frora t he i r  
large burn region i s  d ist r ibuted ( i .e.  not 
point- l ike). Excessive shie1ding mass would 
therzfore be required t o  protect a l l  of t he i r  
superconducting magnets. and performance would be 
degraded. Magnetic-fusion systems must hence use 
advanced fuels l i k e  DO o r  0-HP~. and therefore 
require both the more advanceo fusion technology and 
a suitable source o f  the fuel. VISTA avoids these 
problems by i t s  conical structure. which intercepts 
only about 3% of the neutron emissions. I n  addition, 
preliminary estimates of the p o w e r - t w s s  ra t ios  f o r  
magnetic-fusion systems are i n  the 5 t o  10 Wlg 
range.151 while VISTA operates 'n the 10 t o  20 Wlg 
range. We suspect that the s l i gh t  advantage fo r  ICF 
systems results because the mass o f  the magnets for 
the magnetic-fusion systems becomes larger a t  high 
englne power levels than the dr iver  mass fo r  the ICF 
system. Moreover, t h r o t t l i n g  fo r  the magnetic-fusic~ 
syrtems would be accomplished by changes i n  expellant 
flow rate, which also changes the specif ic impulse. 
while t h ro t t l i ng  i n  VISTA i s  accomplished by merely 
changing the repet i t ion rate. which i s  independent of 
the target physlcs. On the other hand. the 
magnetic-fusion systems would provide continuous 
thrust and therefore simpler structure. and would 
a l lev ia te  the neutron i r rad ia t ion  problems 
encountered when other spacecraft are i n  the 

vicinlty.C31 The magnetic-fusion systems may 
therefore be bet ter  for near-Eartn applications. I n  
general. houever. the uncertaint ies are too large t o  
make meaningful comparisons of the potent ia l  
performance capabi l i t ies  before a col~prehensive study 
of the aagnetic-fusion systems i s  conducted wi th 
assumptions s imi lar  t o  those incorporated fo r  VISTA. 

DT vs. Advanced Fusion Fuels 

One might wnder why VISTA does not use 00 or  k ~ e 3  
fuels. These fuels emit more energy i n  charged 
part ic les.  which the magnet u t i l i z e s  t o  create 
thrust .  A crucia l  factor for magnetic thrust 
chambers. however. i s  that  the fusion process resul ts 
i n  gain (more energy output than supplied t o  the 
pel l e t ) .  Thus. the important quantity I s  the product 
(Garc of the pe l l e t  gain and the charged-particle 
fractvon. 

The gain f o r  the advanced fuels i s  about o n e f i f t h  t o  
one-sixth o f  the gain for Dl. so when targets are 
operated wi th large expellant masses. the Gfcp 
product i s  always less than that  f o r  DT (G*fcp i s  
about 113 fo r  00 and 112 f o r  D-~e3 when the product 
i s  normalized t o  unf ty f o r  01). This suggests tha t  
advanced fuels could never compete wi th D l .  However. 
if different f l l g h t  optimizations and operating 
conditions are considered. i t  i s  possible f o r  
advanced fuels t o  outperform DT when p e l l e t  gains get 
very large (e.g.. larger than 200 for the advanced 
fuels. which corresponds roughly t o  gains above 1000 
f o r  DT).131 The added performance i n  terns o f  
reduced t r i p  time. however. i s  ins igni f icant  (a t r i p  
t o  Mars i s  shortened by only a few percent). The 
advanced fuels do lessen the rad ioac t iv i ty  hazards 
associated wi th the use o f  about 2 metric tons o f  
t r i t ium.  and lower the emitted neutron f lux that  
causes hazards f o r  neighboring spacecraft.C31 
However. the pel l e t  technology for the advanced fuels 
does not exist. and pe l l e t  gains above 200 for these 
fuels represent extremely advanced t e  hnology. I n  

S S addition. suf f ic ient  quantit ies f He are not 
available on earth, so use of He would necessitate 
the mining o f  the lunar surface o r  the h v i a n  
atmosphere. Thus. advanced fuels may prove useful 
f o r  far-term applications. but DT i s  de f i n i t e l y  the 
best choice f o r  near-term interplanetary applications 
using VISTA. 

He have sumarized how ICF has great advantage over 
competing te;hnologies for fast interplanetary 
transport. and have described the VISTA spacecraft 
concept. Ke explained that  the performance 
advantages f o r  VISTA ar ise  from the high fusion 
energy gain and the avoidance o f  theteal constraints 
by the use o f  a magnetic th rus l  chamber. He have 
indicated that  the feas ib i l i t y  o f  VISTA as a v iable 
interplanetary transport rests pr imar i ly  on whether 
the j e t  eff iciency i s  degraded s ign i f i cant ly  by 
plasma processes i n  the magnetic thrust  chamber a.id 
i n  the exhaust nozzle. Future studies must address 
the issues re la t ing  t c  p lasm conductivity, 
decoupling i n  the plume. and co l lec t ive  ef fects.  We 
also indicated that  i t  i s  d i f f i c u l t  t o  compare the 
performance capabi 1 i t i es  of magnetic-fusion systems 
with those of VISTA because no comprehensive study o f  
the mgnettc-fuston systems has been conducted using 
assumptions simi l a r  to those incorporated for  VISTA. 
We therefore recommend that such a study o f  
s~gnet ic - fus ion  concepts be undertaken. Final ly ,  we 
explained why VISTA performs best with DT fuel. ant 
not wi th DD or  D-tie3, for near term missions. 
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pmau disclad,  or represent., that ~ t r  use would wt infringe privatdy oaned rigbts. Rcfcr- 
ence herein to any specrr~ unnmcrcial product. proass, or service by trade name. trademark, 
manufacturer, or otherwise docs not mmsarily constitute or imply its emhemcat,  recom- 
mendation, or favonng by the Unitcd Stata k r n m e o t  or any agmcy tbaeof. The views 
and opinions of authon ex- k i n  do not naxssarily state or rcflca tbos of the 
Unitcd States Government or any agency tbmor. 
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