NASA TM-88253

NASA Technical Memorandum 88253

NASA-TM-88253 19880003908

N188-13290

Tip Aerodynamics From Wind Tunnel Test of Semi-Span Wing

Johannes M. Van Aken and Robert H. Stroub

FOR REFERENCE

tor to be taken from this noose

NF00957

September 1986

1

661 **2** 1986

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

Tip Aerodynamics From Wind Tunnel Test of Semi-Span Wing

Johannes M. Van Aken, University of Kansas, Lawrence, Kansas Robert H. Stroub, Ames Research Center, Moffett Field, California

September 1986

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California 94035

N88-13290#

TIP AERODYNAMICS FROM WIND TUNNEL TEST OF SEMI-SPAN WING

Johannes M. Van Aken¹ and Robert H. Stroub

Ames Research Center

SUMMARY

This report presents the results of a low-speed wind tunnel test on a 5.33-aspect-ratio, semi-span wing with 30° and 35° swept tapered tips. The test results include aerodynamic data for the tip itself and for the entire wing including the tip. The metric tip extended inboard 1.58 wing chord lengths. The aerodynamic drag data show the strong influence of tip incidence angle on tip drag for various lift levels. Pitching-moment characteristics show the effect of a moment center at 0.13 c and 0.25 c.

NOMENCLATURE

ALFT, at correcte	d angle of	attack of	'the t	ip, deg
-------------------	------------	-----------	--------	---------

ALFW, α_{i} corrected angle of attack of the wing, deg

b_t tip span, m

 b_{ω} wingspan including tip, m

ct tip reference chord, m

c_w wing reference chord, m

CDT tip drag coefficient, $\frac{DRAG}{0.5\rho S_{t}V^{2}}$

CLLT tip rolling-moment coefficient about root of the tip, positive tip up, $\frac{\text{ROLLING MOMENT}}{0.5\rho S_{t} b_{t} V^{2}}$

1

CLLW wing rolling-moment coefficient about wing root, positive tip up, $\frac{\text{ROLLING MOMENT}}{0.5\rho S_W b_W} V^2$

¹University of Kansas, Lawrence, KS.

CLNT	tip yaw-moment coefficient about tip-root quarter-chord point, positive tip aft, $\frac{\text{YAWING MOMENT}}{0.5\rho\text{S}_{t}\text{b}_{t}\text{V}^{2}}$
CLNW	wing yaw-moment coefficient about wing-root quarter-chord point, positive tip aft, $\frac{\text{YAWING MOMENT}}{0.5\rho S_W b_W B^2}$
CLT	tip-lift coefficient, $\frac{\text{LIFT}}{0.5\rho S_t V^2}$
CLW	wing-lift coefficient, $\frac{\text{LIFT}}{0.5\rho S_W V^2}$
СМТ	tip pitching-moment coefficient about tip-root quarter-chord point, positive nose up, $\frac{\text{PITCHING MOMENT}}{0.5\rho\text{S}_{t}\text{c}_{t}\text{V}^{2}}$
СМ₩	wing pitching-moment coefficient about wing-root quarter-chord point, positive nose up, $\frac{\text{PITCHING MOMENT}}{0.5\rho S_w c_w V^2}$
СҮТ	tip side-force coefficient, positive out right wing, $\frac{\text{SIDE FORCE}}{0.5\rho S_t V^2}$
CYW	wing side-force coefficient, positive out right wing, $\frac{\text{SIDE FORCE}}{0.5\rho S_W V^2}$
CMT AT	tip pitching-moment coefficient about tip-root 0.13-chord line, posi- tive nose up, CMT - 0.12CLT
s _t	tip planform area, m ²
S _W	wing planform area, m ²
TIP ANGLE	tip incidence angle relative to inboard portion of wing, deg
α _t	corrected angle of attack of tip, deg
Λ _{c/4}	quarter-chord sweep angle of tip outer region, deg
ρ	air density, kg/m^3

2

.

INTRODUCTION

A determination of the aerodynamic characteristics of the tip region was required for the design of a free tip for rotor blades. The free-tip concept requires the tip to be able to weathervane into the local relative wind as a way of correcting for velocity perturbations in magnitude and direction. This weathervaning capability is a direct function of the aerodynamic pitching-moment characteristics about the tip's pitch axis; hence, the tip pitching-moment characteristics were a key factor in the design of the free tip. The overall purpose of the aerodynamic investigation was to determine the pitching-moment characteristics of several tip configurations as an aid in designing a free-tip configuration. The free-tip configuration would be incorporated into a rotor system that would be tested in a wind tunnel to evaluate benefits of the concept.

The direct simulation of a tip on the end of a rotor blade in forward flight was not achievable with a wind tunnel test of a semi-span wing. However, the aerodynamic data from a semi-span wing test would provide sufficient data to significantly aid in the design. Of particular importance would be the data obtained with the tip at positive and negative incidence angles relative to the inboard portion of the wing. Positive and negative incidence angles of the free tip were predicted in the analytical studies reported in reference 1.

A series of wind tunnel tests were undertaken to investigate the aerodynamic characteristics of several candidate tip configurations. The tip configurations tested encompassed numerous combination of tip-chord taper and sweep; two configuration parameters that would greatly affect the dynamic characteristics of the free tip. The purpose of this report is to present the test data for two tip plan-forms. The test data support the analysis of the results from the test of the first successful free-tip rotor (FTR) configuration (ref. 2).

MODEL DESCRIPTION

The geometric data for both the wing and the tip are presented in figure 1 and in table 1. Two swept-tip configurations were tested: a 30° swept tip and a 35° swept tip. Both swept tips had the same planform area and chord taper. Coordinates for the modified NACA 23010 airfoil are presented in table 2.

The tips were mounted on an internal strain-gage balance whose base was mounted inside the inboard portion of the wing. Figure 2(a) shows the strain-gage balance arrangement. The tip strain-gage balance was located at the quarter chord of the root section of the tip. The tip incidence angle could be indexed at -5° , 0° , and $+5^{\circ}$ relative to the inboard portion of the wing. When the tip was indexed, it was pivoted about the strain-gage balance since the balance was fixed relative to the wing. The gap between the tip and the inboard section was unsealed. Previous tests with this model arrangement had shown that sealing the gap with grease resulted in

no measurable data change; therefore, no significant pitching moment or drag penalty was expected.

MODEL INSTALLATION

The semi-span wing was mounted on an internal strain-gage balance whose base was attached to the wind tunnel scale system underneath the tunnel floor. The wing jutted through the floor, and through a boundary-layer splitter plate (fig. 2(b)). The splitter plate was nonmetric; hence, there was a large gap between the wing and the splitter plate. In the gap, a soft, nonporous foam was installed to prevent intrusion of flow from outside the wind tunnel.

TEST CONDITIONS

The conditions of the test were dynamic pressure, 2154 Pa; Mach number, 0.176; and Reynolds number, $4.06 \times 10^6/m$.

DATA REDUCTION

Tip aerodynamic characteristics were measured with an internal strain-gage balance inside the tip as shown in figure 2(a). With this arrangement, tip airloads were directly measured without the measurement system causing any interference to the tip data. The metric tip region is depicted as the black portion of the wing shown in figure 2(b). The wing was attached to a second, internal, strain-gage balance located under the tunnel floor. The strain gage balanced the measured forces and moments in the body-axis system; these forces and moments were transformed to the wind-axis system for presentation. The forces and moments were referred to the respective moment centers for the wing and for the tip. The moment center for the wing was at the root of the exposed wing on the wing quarter-chord line. The tip moment center was at the root of the tip on the quarter-chord line.

For the tip and the wing, the forces and moments are considered to be from a left wing. Figure 3 presents the force and moment nomenclature. Two corrections were applied to the data. First, corrections were applied that account for the torsion deflection of the tip balance as it affected resolution of the forces and moments into the wind-axis system. Second, standard wall corrections for blockage and angle of attack (ref. 3) were applied to the data.

RESULTS

The test data are presented in both graphs and tables. Tabulated data for both swept tips are presented in tables 3 and 4 for the 30° swept tip and the 35° swept tip, respectively. Lift, drag, and pitching-moment data are presented in figure 4 for the 30° swept tip, and in figure 5 for the 35° swept tip. The effect of deflecting the tip relative to the inboard section of the wing for tip incidence angles of -5° , 0° , and 5° is presented in figure 5. The major importance of incidence angle is its effect on the tip drag characteristics. At negative incidence angles and positive wing lift, the drag of the tip is less than at zero incidence angles. Conversely, at positive incidence angle and positive wing lift, the drag is greater than at zero angle.

Pitching-moment data referred to the 0.13 chord line are also presented. This shows the influence of having the pitch axis forward of the quarter chord. This pitch-axis location is the same as the FTR configuration.

CONCLUSIONS

A low-speed wind tunnel test of a semi-span wing showed the drag of a tip to be sensitive to its incidence angle and to its lift coefficient. In addition, the test showed that the chordwise location of the moment center had a strong influence on tip pitching-moment variation with tip lift coefficient.

REFERENCES

- Stroub, Robert H.: Performance Improvements With the Free Tip Rotor. Paper I-4, Amer. Helicopter Soc. National Specialists' Meeting, Rotor System Design, Philadelphia, PA, Oct. 1980.
- Stroub, Robert H.: Analysis of the Free-Tip Rotor Wind Tunnel Test Results. NASA TM-86751, 1985.
- 3. Pope, Alan: Wind Tunnel Testing. John Wiley & Sons, Inc., New York, 1954.

TABLE 1.- WING AND TIP GEOMETRICAL DATA

Wing (including tip)

Span, m1	.053
Reference chord, m	.198
Root chord, m	.209
Planform area, m ²	.208

<u>Tip</u>

Span, m 0.312 Reference chord, m 170 Chord at root, m 209 Planform area, m ² 053
Swept section of tip
Span, m
Chord at root, m
Chord at tip, m
Quarter chord sweep angle30°, 35°
Taper ratio0.3

	× >				
	Yu				
	↓ V _ℓ	nių uninteri karajon dažio <u>1996 m. ir sustantas parastas susta</u> s tai	والمتحركات ويرابعهم والمتحد والمتحد		
			C		>
			<u> </u>	<u></u>	
x/c	y _u /c	y _l /c	x/c	y _u /c	y _l /c
0.0	-0.0225	-0.0225	0.43	0.0465	-0.0487
.005	0078	0329	.47	.0446	0468
.01	0024	0362	.51	.0424	044
.015	.0019	0378	.55	.0397	0412
.025	.0096	0394	.59	.0369	038
.035	.0155	0404	.63	.0336	0346
.047	.0214	0412	.67	.0301	0308
.06	.0265	042	.71	.0263	0269
.08	.0327	0434	.75	.0223	0226
.11	.0396	0449	.79	.0181	0182
. 15	.0455	0471	.83	.0137	0136
.19	.0489	0494	.87	.0093	0093
.23	.0499	0513	.91	.0056	0057
.27	.0499	0522	.945	.0028	0031
.31	.0497	05215	.96	.00235	00235
.35	.049	0517	1.0	.00235	00235
•39	.048	0505			

TABLE 2.- AIRFOIL COORDINATES FOR MODIFIED NACA 23012 AIRFOIL

Leading edge radius, r/c = 0.0158Center of leading edge circle at x/c = 0.0158, y/c = -0.0225 TABLE 3.- AERODYNAMIC CHARACTERISTICS OF THE WING ANDD OF THE TIP WITH 30° SWEEP

Run	44	Tip 27	Tip an	gle - 5.0	^л с/4	= 30°								
NO	ALFW	ALFT	CDW	CYW	CLW	CLLW	CMW	CLNW	CDT	СҮТ	CLT	CLLT	СМТ	CLNT
5	-0 5	-5.5	0.013	-0.003	-0.10	-0.13	-0.009	-0.008	0.024	0.000	-0.29	-0.13	0.013	-0.009
6	1.5	-3.3	.012	.000	.04	.01	077	006	.016	.002	14	06	001	005
7	2.5	-2.3	.012	.011	.12	.03	042	006	.013	.005	06	03	007	004
8	3.5	-1.3	.013	.004	. 18	.11	074	007	.013	.006	00	01	011	004
9	4.6	3	.014	.004	.25	.16	040	007	.011	.008	.08	.03	018	003
10	5.6	.7	.017	.030	.36	.16	.044	009	.012	.010	.11	.04	023	003
11	6.6	1.7	.021	.008	.44	.23	.082	005	.014	.012	.18	.07	026	003
12	7.7	2.7	.026	.007	.58	.23	046	010	.015	.012	.25	.10	035	003
13	9.7	4.7	.036	.012	.68	•33	074	020	.023	.015	.41	. 17	047	006
14	11.7	6.8	.051	.022	.84	.40	059	017	.031	.014	.57	.23	062	007
15	13.8	8.8	.072	.028	.98	.49	062	026	.033	.011	.69	.29	077	008
16	15.8	10.8	.088	.030	1.09	.57	110	048	.044	.001	.83	.35	092	011
17	17.8	12.8	.141	.037	1.14	.48	139	073	.065	007	.90	.39	100	018
18	19.8	14.8	. 165	.028	1.14	.46	147	100	.105	018	1.02	.44	113	028
19	5	-5.5	.013	007	06	13	.010	032	.025	000	31	13	.014	010
20	-2.6	-7.5	. 029	008	28	19	019	022	.048	.000	44	19	.026	020
21	-4.6	-9.6	.053	020	36	32	029	039	.079	.001	54	23	.046	033
22	-6.6	-11.6	.097	013	56	32	058	062	.130	.001	64	27	.116	055
23	5	-5.5	.017	.006	17	07	008	012	.024	.001	28	12	.011	008
24	5	-5.5	.017	009	12	10	016	009	.024	.000	29	13	.013	009

TABLE 3.- CONTINUED.

Run	45 T	ip 29	Tip and	gle 0.0	Λο/μ :	= 30°								
		-			0/4								_	
NO	ALFW	ALFT	CDW	CYW	CLW	CLLW	CMW	CLNW	CDT	CYT	CLT	CLLT	CMT	CLNT
5.	-0.5	-0.3	0.010	0.000	-0.03	0.05	-0.053	-0.007	0.010	0.004	-0.08	-0.03	-0.002	-0.003
6	.5	.7	.010	.004	01	.04	069	009	.012	.005	00	.00	011	003
7	1.5	1.7	.012	.004	. 15	.03	037	006	.013	.006	.07	.03	019	003
8	2.6	2.7	.011	.000	.21	.10	134	006	.015	.007	.14	.06	026	003
9	3.6	3.7	.012	002	.28	.16	045	008	.019	.008	.20	.08	031	004
10	5.6	5.7	.022	.021	.47	.23	084	009	.028	.007	.37	. 16	050	006
11	7.7	7.8	.032	.011	.61	.33	085	015	.038	.006	.51	.22	066	009
12	9.7	9.8	.043	.015	.77	.38	107	017	.050	.001	.64	.27	086	012
13	11.8	11.8	.060	.017	.97	.45	149	027	.051	010	.81	.36	107	011
14	13.8	13.8	.078	.014	1.04	.57	107	034	.073	018	.91	.40	119	017
15	15.8	15.8	. 100	. 020	1, 17	.62	107	- 054	.097	035	1.07	.47	- 139	- 023
16	17.8	17.8	. 153	.036	1.18	.51	138	110	. 191	. 020	1.03	.41	- 147	084
17	.5	.7	.008	.004	. 13	04	101	029	.012	.004	.02	.01	013	003
18	5	3	.008	.007	00	06	032	030	.011	.003	06	03	004	002
19	-1.5	-1.5	.009	020	05	14	030	017	011	.003	12	05	.000	002
20	-2.6	-2.5	.013	026	21	12	080	016	.010	.002	20	08	.008	002
21	-3.6	-3.5	.022	019	27	17	041	023	.011	.002	29	12	.020	004
22	-4.6	-4.5	.034	024	35	22	041	023	.016	.002	35	14	.026	006
23	-6.6	-6.5	.069	010	50	30	077	050	.034	.003	50	20	.042	015
24	-8.7	-8.6	. 122	019	60	33	037	054	.068	.003	59	24	.066	030
25	5	3	.012	003	10	.01	038	006	.011	. 004	05	02	005	003
26	5	3	.015	024	06	03	 025	.027	.010	.004	06	02	005	003
		- 5		•										

TABLE 3.- CONCLUDED.

Run	43 Т	ip 27	Tip an	gle 5.0	Λ _{c/4}	= 30°								
NO	ALFW	ALFT	CDW	CYW	CLW	CLLW	CMW	CLNW	CDT	CYT	CLT	CLLT	CMT	CLNT
5	-0.5	4.7	0.016	0.009	0.07	0.02	-0.073	-0.008	0.019	0.007	0.15	0.07	-0.022	-0.005
6	1.6	6.7	.021	.017	.23	.10	099	007	.031	.006	.30	.13	035	008
7	3.6	8.7	.025	.025	.43	. 16	074	014	.042	.004	.45	.20	049	012
8	5.7	10.8	.035	.034	.59	.25	115	018	.057	.000	.58	.26	064	017
9	7.7	12.8	.045	.016	.73	.36	175	023	.073	007	•73	.33	083	021
10	9.7	14.8	.057	.014	.85	.46	151	027	.095	017	.85	.38	097	027
11	11.7	16.8	.077	.036	.85	.65	187	041	.160	.012	.92	.39	115	069
12	13.7	18.8	.114	.033	.84	.77	125	058	.205	.025	•97	•39	131	089
13	15.8	20.8	. 148	.058	1.29	.50	179	 088	.246	.040	.95	.36	151	103
14	11.8	16.8	.090	.064	1.14	.39	164	060	.158	.012	•93	•39	116	069
15	4	4.7	.018	.018	.23	.00	044	014	.018	.006	.22	.10	028	005
16	-2.5	2.7	.020	002	02	14	071	014	.011	.007	.02	.02	012	003
17	-3.5	1.7	.026	.012	11	17	085	028	.009	.006	04	01	007	003
18	-4.6	.7	.035	.002	22	19	125	021	.009	.007	10	03	002	003
19	-5.6	- .5	.046	006	28	22	085	025	.008	.007	18	06	.003	003
20	-6.6	-1.5	.060	.009	35	30	099	033	.006	.008	26	10	.009	002
21	-7.6	-2.5	.087	.006	48	26	035	044	.009	.009	36	14	.019	004
22	-8.6	-3.5	.113	011	50	28	117	041	.015	.009	39	15	.024	007
23	-10.6	-5.6	.139	.026	49	34	093	057	.035	.008	51	20	.041	017
24	5	4.7	.019	.019	.05	.05	118	006	.015	.007	.14	.07	022	005
25	5	4.7	.019	.013	.08	.02	113	004	.016	.007	. 16	.07	022	005

Run 4	2 Ti _l	p 27 1	ſip angl	e 0.0	$\Lambda_{c/4} =$	35°								
NO	ALFW	ALFT	CDW	CYW	CLW	CLLW	CMW	CLNW	CDT	CYT	CLT	CLLT	CMT	CLNT
5	-0.5	-0.3	0.010	-0.004	-0.03	-0.04	-0.075	-0.008	0.010	0.005	-0.05	-0.02	-0.008	-0.003
6	1.5	1.7	.012	.000	.09	.08	013	003	.012	.007	.11	.05	021	003
7	3.6	3.7	.012	006	.28	.16	096	005	.016	.008	.22	.09	030	004
8	5.6	5.7	.018	.011	.40	.28	091	015	.027	.008	.37	. 16	042	007
9	7.7	7.8	.030	.005	.60	.33	117	012	.038	.007	.53	.23	059	010
10	9.7	9.8	.043	.004	.77	.40	107	018	.048	.003	.63	.28	076	013
11	11.7	11.8	.063	.005	.93	.48	135	021	.062	004	.80	• 35	089	017
12	13.8	13.8	.082	.009	1.06	.57	072	028	.075	014	.93	.41	104	022
13	15.8	15.8	.118	.023	1.17	.61	103	075	.148	.016	.99	.41	119	086
14	17.8	17.8	. 161	.034	1.18	.51	149	106	.195	.026	1.01	.40	134	087
15	15.8	15.8	.114	.019	1.18	.60	083	074	.153	.017	.99	.41	123	069
16	.5	.7	.008	010	.07	.02	062	036	.011	.005	.02	.01	012	003
17	5	3	.007	005	04	02	049	031	.011	.004	05	02	008	003
18	-1.5	-1.3	.009	023	06	12	011	020	.011	.003	12	05	002	002
19	-2.6	-2.5	.014	030	- .22	11	037	022	.012	.003	18	07	.002	003
20	-4.6	-4.5	.033	041	34	21	049	024	.014	.003	33	13	.015	005
21	-6.6	-6.5	.067	021	52	29	051	048	.036	.003	49	20	.034	015
22	-8.7	-8.6	.122	023	60	31	036	062	.070	.005	59	24	.056	030
23	5	3	.010	010	09	01	092	010	.011	.005	04	02	007	003
24	5	3	.012	010	07	00	029	009	.011	.004	06	02	006	003

TABLE 4.- AERODYNAMIC CHARACTERISTICS OF THE WING AND OF THE TIP WITH 35° SWEEP

Figure 1.- Wing and tip geometric data.

(a) Strain-gage balance arrangement and model installation.

(b) Semi-span wing installation in wind tunnel.

Figure 2.- Semi-span wing.

NOTE: Left wing configuration. Arrows indicate positive direction of forces, moments, and angular displacement.

Figure 3.- Force and moment nomenclature.

Figure 4.- Lift, drag, and pitching-moment characteristics of the 30° swept tip at -5° , 0° , and $+5^{\circ}$ incidence angles.

Figure 5.- Lift, drag, and pitching-moment characteristics of the 35° swept tip at zero incidence angle.

1. Report No. NASA TM-88253	2. Government Acces	sion No.	3. Recipient's Catalo	g No.							
4. Title and Subtitle		5. Report Date	1086								
TIP AERODYNAMICS FROM WIN SEMI-SPAN WING	Г OF	6. Performing Organi	zation Code								
7. Author(s) Johannes M. Van Aken, (Un Lawrence, Kansas) and Rob	8. Performing Organia A-86247	zation Report No.									
9. Performing Organization Name and Address											
Ames Research Center Moffett Field, CA 94035	-	11. Contract or Grant	Nó.								
12 Sponsoring Agency Name and Address			13. Type of Report as	nd Period Covered							
National Appaneutiag and	Space Adminis	stration	Technical	Memorandum							
Washington, DC 20546		Scracion	14. Sponsoring Agency Code 505-42-11								
^{15. Supplementary Notes} Point of Contact: Robert H. Stroub, Ames Research Center, M/S 247-1 Moffett Field, CA 94035 (415) 694-6732 or FTS 464-6732											
16. Abstract											
test results include aero wing including the tip. lengths. The aerodynamic dence angle on tip drag f teristics show the effect	dynamic data The metric t drag data sh or various 1 of a moment	for the tip its ip extended inbo now the strong i ift levels. Pit center at 0.13	self and for bard 1.58 win influence of tching-moment c and 0.25 c	the entire ng chord tip inci- charac-							
17 Key Work (Suggested by Author(a))											
Semi-span wing		Unlimited									
Free tip		Subject Octogeny 02									
Tip aerodynamics		Sui	bject categor	y - 02							
19. Security Classif (of this report) 20. Security Classif (of this report) 21. No. of During Disort											
Unclassified	fied	19	A02								

*For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document