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The problems inherent to large scale systems have been of interest for 
a long time now. The areas which have motivated the study have been 
principally power network, communication network and economic or ecological 
systems. The increase in size and flexibility of future spacecraft has put 
those dynamical systems into the category of large scale systems, and tools 
specific to the class of large systems are being sought to design control 
systems that can guarantee more stability and better performance. 

Among several survey papers, reference [l] was found to be a thorough 
investigation on decentralized control methods. Especially helpful in this 
paper was the classification made of the different existing approaches to 
deal with large scale systems. A very similar classification is used in the 
following, even though the papers surveyed here are somehow different from 
the ones reviewed in [l]. Special attention is brought to the applicability 
of the existing methods to controlling large mechanical systems like large 
space structures. Furthermore, some recent developments are added t o  this 
survey. 

Simplification methods 

Agarercation method 
The first way to tackle the problem of size for large scale systems is 

to simplify the model. The first class of simplification methods recognized 
in [l] is the class of amregation methods. Those methods were first 
derived in the economic field. The motivation was that there is an 
important number of economic agents which act independently and have the 

(NASA-CR-181556) SURVEY ON L A R G E  SCALE m a - 1  3374 
SYSTEPI CONTROL RETNODS ;Rassachuset ts  Iust. 
of T e c h . )  20 p A v a i l :  N T I S  BC AC"3/8E A 0 1  

CSCL 2 2 8  Unclas 
G3/18 0311652 



2 

same dynamics. Those agents can be individuals in the economy and the 
dynamics describe the way they spend, invest, or save, their income. As 

long as the dynamics are similar and there is no interaction between the 
agents, only one average individual is necessary to describe the behavior of 
the whole and the different agents can be aggregated into one single state, 
thus reducing tremendously the analysis of economic equilibria. 

More mathematical grounds have since been brought to the idea. 
Starting from a very general and theoretical basis, the aggregation of a 
system can be considered as a particular form of contraction. The 
mathematics of system contraction, system expansion and the inclusion 
principle are presented in [2]. It is shown there that the principle of 
aarezation is to find a reduced order dynamical system which can describe 
some pro.iection of the overall state at every time for any initial 
conditions. That is, the trajectory of the aggregate system for initial 
conditions being the projection of the entire initial state vector, and 
receiving the same inputs as the entire system. will be the projection of 
the overall system’s trajectory. In the case of redundant states and 
redundant equations, as it is the case when independent agents are acting in 
a similar fashion, the averaging over the agents is the same as starting 
with the initial average and propagating it using the common dynamics of the 
different agents. 

The control aspect using aggregated models is presented in [3] for a 
general linear time invariant system. First shown in [3] is that the 
derivation of an aggregated model corresponds effectively to the selection 
of some modes of the system. The issue of efficiently selecting the modes 
is addressed. A good aggregate model retains the dominant modes appearing 
in the output of the system. 

Considering the LQR problem, it is shown in [3] that suboptimal control 
laws can be derived using the simplified model. The idea is to solve the 
LQR problem for the reduced order system using an aggregated cost functional 
which is as close as possible to the cost functional chosen for the complete 
system. Then, implementing the reduced order control law to the complete 
system will yield a stable system whose poles are 1) the modes not retained 
in the aggregation, 2) the closed-loop poles of the reduced-order system. 
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The modes not retained in the aggregate model do not change since they are 
not contained in the aggregate state vector which is fed back. 

The degree of suboptimality of such a control law can be estimated, 
that is, a lower bound for the optimal cost that one would obtain by 
designing the optimal regulator problem for the overall system can be 
evaluated ( C2.4)). Therefore, the difference between this lower bound 
estimate and the cost obtained by using the suboptimal law provides some 
information on how well the simplified control performs. 

Output feedback is also investigated in [3], the approach being to use 
a control law as close as possible to the reduced order control law 
presented above. There is unfortunately in that case no guarantee of 
stability. Finally the problem of control with an observer is presented. 
In that case the measurements used in the aggregated observer are influenced 
by the modes not retained in the model and spill-over results from it. 
However results for global stability of the complete system can be derived 
that show that, as long as the coupling via the measurements and the 
feedback law between the modes retained in the simplified model and those 
which were not, remains within some bounds which depend on the closed-loop 
dynamics of the aggregate system, the complete system remains stable. The 
proof uses vector Lyapunov type techniques. 

ODtimal projection for model reduction 
A very recent development in the field of system reduction has been the 

method of optimal projection. The method systematized the way to represent 
a large order dynamical system by a reduced order model. The optimal 

projection equations for model reduction are presented in [26]. A 
comparison between this technique and other more intuitive techniques is 
also made in this paper, which leads to the unsurprising conclusion that the 
value of the criterion for which the reduction was optimized is greater when 
those alternative techniques are used. The optimization criterion is a 
quadratic function of the error between the output of the complete system 
and the output of the reduced order system when both are excited by a white 
noise of chosen intensity. The optimal projection equations take the form 
of two modified Lyapunov equations having the order of the complete system 



4 

which are found to be coupled by an oblique projection matrix whose rank is 
the dimension of the reduced-order system. The projection has to be 
determined as part of the solution. There exist projections which lead to 
local rather than global minima for the cost functional, since the equations 
correspond to first order necessary conditions. Nevertheless, there appear 
to be promising numerical techniques for actually solving the optimal 
projection equations and converging toward the global minimum, which makes 
this method very appealing. 

Nonsinrmlar perturbation techniques 
The second type of approximation method singled out in [l] are the 

perturbation methods. A distinction has to be made between sinmlar and 
nonsinmlar perturbations since they apply for very different classes of 
sys tems . 

The nonsinmlar perturbations occur in the case of weak coupling in the 
system. The overall system can in fact be described as a set of 
interconnected dynamical subsystems where the coupling between the 
subsystems is supposedly small. Each subsystem is described by its own 

local state variables. The overall system’s state vector is mde by 
regrouping all the local state vectors. It is also supposed that the local 
sensors attributed to one subsystem can only sense the subsystem’s state 
variables and that actuators attributed to one subsystem do not directly 
influence other subsystems. 

In that case, the intuitive approach is to neglect completely the 
interaction. A more rigorous approach is to design local optimal control 
systems for each subsystem as if they were isolated and then try to 
determine how the global stability of the coupled system is ensured. This 
corresponds to the approach by Siljak [5-71 or Singh [4] and to the notion 
of connective stability. The design procedure presented in [SI is the 
following: 1 )  solve for each subsystem, as if it were isolated, the LQR 
problem with guaranteed degree of stability (meaning the cost functional is 
of the form e2”‘(XTQX + U RU) ) then 2) adjust the parameter a so that the 
system will be connectivelv stable. A system is said to be connectively 
stable if the system remains stable for all admissible values of the 
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coupling. The property translates into an algebraic criterion involving the 
internal dynamics of the subsystems and the coupling. Such a criterion is 
derived for example in [4]. and as intuitively foreseen. compares the speed 
of the internal dynamics to the speed of the loops closed via the coupling. 
Thus, increasing the parameter a should make the internal dynamics fast 
enough to guarantee connective stability, and indeed, a limit is computed in 
[5-71, that depends on the maximum allowable coupling between the 
subsystems, such that having the parameter a above the limit guarantees 
stability for all admissible values of the coupling. The computation of the 
limit as well as the derivation of the connective stability criterion in [4] 

involves vector Lyapunov type techniques ( [6]). 
The design obtained through this method is a decentralized control: 

each subsystem is controlled by its local actuators using local state 
variables. It yields very good robustness characteristics, since the system 
remains stable for a large class of structural changes. 

This approach can be qualified as non-cooperative since the system is 
broken down into subsystems which are made as independent as possible. 
Therefore, the dynamics of the system. and especially the coupling existing 
between the subsystems, is not fully used by the local controllers which 
only have a limited knowledge of the structure of the overall system. 

The same philosophy is used in the design of a hierarchical control 
system presented in [4]. Local LQR problems are solved for each subsystem. 
The perturbation entering each subsystem in the form of coupling is reduced 
by a global controller which tries to reduce the interaction as much as 
possible. In the best case, the design decouples the subsystems via the 
global controller, and then implements local optimal regulators for each 
subsystem. 

Such a controller is of course suboptimal. but bounds on suboptimality 
can be computed as shown in [4]. The approach presents some advantages in 
the simplicity of the design: finding the gains to decouple the subsystems 
is nothing more than an algebraic manipulation; the remaining task is to 
solve a number of reduced-order Riccati equations for the subsystems 
considered as isolated. with order much smaller than that of the complete 
system. However, one can see that it is not always smart in that no best 
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use of the dynamical properties is made. The subsystems do not cooperate, 
neither do the controllers. This leads to relying on higher control gains. 
The robustness property in the case of the decentralized control law is 
however very appealing if one is concerned with reliability. It must also 
be noted that the interconnection can be nonlinear. 

An interesting way to augment the cooperation between the local 
controllers while still using the methodology of [5] is shown in [SI. The 
idea is to make the subsystems overlap: the system state variables are 
partitioned into subsets which define the state vectors for the subsystems; 
making an overlapping partition of the system is to permit the same state 
variable to be in the state vector of two different subsystems. The 
dynamics of such a variable will therefore be taken into account by 
different local controllers. Based on the results of [2] about system 
expansion and system contraction, it is shown in [9] that the problem 
considered is similar to that of [5] and the design methodology is in fact 
similar: for each subsystem considered independent, the LQR problem with 
guaranteed degree of stability is solved. The bound for a is however less 
conservative when overlapping decomposition is used [ll]. [SI shows that 
more freedom exists to build vector Lyapunov functions with overlapping 
decomposition, thus sometimes succeeding in proving stability where Lyapunov 
functions based on the disjoint decomposition of the system have failed. 

Nvcwist arrav method and diagonal dominance 
The Nvauist arrav method should be included in the category of 

nonsingular perturbation techniques, even though the approach is not a state 
space approach but rather a frequency domain approach. Rosenbrock in [lo] 
develops the method which can be regarded as an extension to Multi-Input- 
Multi-output systems of the use of the Nyquist diagram or the inverse 
Nyquist diagram in the design of compensators for Single Input Single Output 
systems. A row (column) diaaonallv dominant matrix is a matrix for which 
the norm of each diagonal element is greater than the sum of the norms of 
the off-diagonal elements situated on the corresponding row (column). If 
this property is satisfied by the matrix transfer function of the system, 
then the Nyquist stability criterion which involves the determinant of the 
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matrix transfer function can be broken down to several Nyquist stability 
criteria each of which involves only one diagonal element of the matrix 
transfer function - a SISO transfer function. Compensation can thus be 
undertaken in a SISO way. The first step of the design procedure shown in 
[lo] is to tailor the matrix transfer function on which gain feedback will 
be used. Starting from a physical input-output matrix transfer function, 
one uses pre and post compensation as well as recombination of the physical 
inputs and outputs to obtain some matrix transfer function as diagonally 
dominant as possible. The inputs of the transfer function are thus the 
inputs to the precompensator, some electronics box whose outputs drive the 
real plant, and the outputs are those of the postcompensator, some 
electronic box whose inputs are the plant outputs. Some inner loop might 
also be closed to modify the input-output characteristics of the plant. The 
whole purpose of the operation is to minimize the sum of the norms of the 
off-diagonal elements of the rows (or the columns) of the matrix transfer 
function defined between the new inputs and the new outputs to enforce 
diagonal dominance. Then a set of feedback gains is chosen so that the 
extended Nyquist stability criteria are not violated. The method can handle 
nonlinearity for the Popov’s circle criterion can be extended in the same 
manner as the Nyquist stability criterion. The control law is connectively 
stable, meaning that the actual values of the off-diagonal elements of the 
closed-loop matrix transfer function are not important as long as the matrix 
satisfies the diagonal dominance property. One drawback of the method is 
that there is no really straightfoward clever way to achieve diagonal 
dominance. Pseudo-diagonalization, presented in [lo]. where one tries to 
make the plant transfer function diagonal using compensation, is very 
similar in essence to the idea of [4] to use a global controller to decouple 
the subsystems constituting the overall system, and the same restrictions 

apply - 
A similar design procedure is considered in [ll] with relaxed dominance 

conditions. The property required there is called quasi-block diagonal 
dominance. A diagonally dominant matrix always satisfies the quasi-block 
diagonal dominance criterion but the reverse is not true. The methodology 
presented in [ll] includes the possibility to decompose the matrix transfer 
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function into overlapping blocks. The restrictions about the non- 
cooperativeness of the connectively stable decentralized control applied for 
the methodology of [SI. But again, benefits are to be expected by making an 
overlapping decomposition of the system. In that case, the system input 
vector as well as the output vector are partitioned into subsets of inputs 
and subsets of outputs. The reason for expecting better performance with an 
overlapping decomposition is similar whether the approach is from the state 
space viewpoint or the frequency domain viewpoint: it is that the local 
controllers are built using more structural information. 

The local LQGATR design methodology presented in [12] uses block- 
diagonal dominance properties even though the problem is presented in a 
stability robustness setting which is becoming more widely understood in 
engineering. In this paper, the overall system is first being modeled in 
state space. The overall state vector is then partitioned into possibly 
overlapping subsets to define the subsystems. For every subsystem, the 
coupling with the rest of the system is translated into a multiplicative 
transfer function error which is then bounded by some function of the 
frequency e(w). Then, a standard LQG/LTR procedure is applied to each 
subsystem. The plant which is being controlled is the local subsystem 
dynamics and the effect of the remaining state variables are considered to 
be perturbations. Thus, for every subsystem. the stability robustness test 
is to compare the maximum singular value of the local closed-loop transfer 
function with the inverse of its multiplicative error l/e(w) which bounds 
the intercoupling effects. 

Sinnular Derturbation method: the multi time-scale approach 
The second category of perturbations are sineular perturbations. The 

class of systems for which this theory is applicable is the class of systems 
with well separated spectra. In that case. the overall system is not taken 
to be a collection of subsystems with their particular input, output and 
state variables. The system is rather broken down into a slow svstem and a 
fast svstem [l]. When the time constants of the fast and the slow systems 
are well separated simplifications occur. First, the fast system is 

considered to be infinitely fast. The dynamical equation becomes an 



9 

algebraic equation and the fast modes (or the fast state variables) can be 
eliminated in favor of the slow modes. Substituting into the dynamics of 
the slow system, one gets a reduced-order system. A control system can be 
designed for the reduced-order slow system. The fast modes being related 
algebraically to the slow modes, their slow part is specified and represents 
a desired trajectory. The next step is to consider the slow modes as 
infinitely slow. The dynamics of the fast modes then describe the error of 
fast modes about their desired trajectory specified by their slow part. A 

second controller is then developed to give suitable dynamics to the error. 
The derivation of the method is presented in [13] for the deterministic 
case, and in [14] for the stochastic case. Such composite controllers are 
of course suboptimal. The degree of suboptimality is estimated in the 
deterministic case in [13]. In [14]. it is shown that as the perturbation 
tends toward zero the suboptimal closed-loop system tends asymptotically 
toward the optimum. The multi time-scale approach presents m y  nice 
features. First, the two time-scale case can be extended to a multi time- 
scale case (with more than two time-scales) as shown in [15]. The design 
method can be used iteratively to design controllers operating with 
different bandwidth. This should improve the degree of suboptimality. as 
more structural information is used to derive the control system. Second, 
the architecture is naturally that of a hierarchical system: The slow modes 
are controlled with a reduced-order controller and with a relatively small 
bandwidth. Some directives are passed from the slow controller to the fast 
controller and the fast dynamics error is driven to zero so that the system 
follows the prescribed trajectory. 

Restrictions apply to the use of multi time-scale control systems. The 
closed-loop system must be multi time-scale with bandwidths similar to those 
of the open-loop system. This is not however a very compelling restriction 
in the case of a large flexible structure since the amount of control one 
can get from the actuators is usually limited, and very high gains are not 
conceivable. The second problem is to evaluate how suboptimal is the 
design. This is highly dependent on the choice of the fast and the slow 
modes and the size of the gap between the bandwidths. There must be ways to 
optimize the choice of the modes in order to obtain a solution as close as 
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possible to the optimum. 
Let’s mention for completeness that some results have been presented on 

the linear filtering of singularly perturbed systems in [lS] . Those 
results are very important since the simplification of the control law 
requires some simplification of the estimator loop necessary to reconstruct 
the states. 

The multi time-scale idea has also been extended to the frequency 
domain and some important results are presented in [17]. Those developments 
led to the derivation of a design procedure in the frequency domain of two 
time-scale output feedback control laws for two time-scale plants [ls]. 

Decentralized control methods 

A more direct approach to controlling large-scale systems consists in 
considering simpler controllers. One reasonable choice, regarding 
implementability and simplicity, is to use a nonclassical information 
pattern, that is, to feed the actuators only a part of the information that 
can be collected in the system. In the decentralized control case, the 
control law commanding the actuator of a subsystem is only a function of the 
subsystem’s outputs. If such an architecture appears straightfoward and 

rather appealing, the problem of deriving the control laws is not. As 

reported in C1.4.321, Wistenhausen showed in 1968 on a example that the 
solution to the LQ problem with nonclassical information pattern was not 
linear. Furthermore, the seDaration DrinciDle does not hold even when one 
restricts the control law to be linear, with specified feedback channels. 

Restricting the control law to be linear is a very reasonable approach 
given the complexity coming from the size of the systems considered. There 
is no need to increase the complexity by trying to use nonlinear control for 
which little is known compared to linear control theory. Sandell and Athans 
introduce in [19] the optimal solution for nonclassical LQG problems for 
which the optimum is constituted by a linear control. law. However, the 
specificity of the problem makes the solution mostly relevant in the field 
of decision making processes. 

The implementation of a decentralized control law (i.e. each controller 



11 

acts based upon the outputs of a subset of sensors) can be the result of 
different considerations. As seen before, decentralized control laws 
providing connective stability were found by local optimization of the gains 
and the remaining structural information was reduced to only provide bounds 
on the perturbation due to the coupling. This yielded some suboptimal 
control. 

Another possible approach is to get an optimal control law within the 
admissible set of laws that is fixed by some external considerations which 
partition the information available to each controller. Such a problem was 
studied by Chong and Athans in [20]. In their study, the system was 
considered to have two different sets of inputs and two different sets of 
outputs. The actions of each set of inputs were constrained to rely only on 
one set of outputs. The LQG solution for such a constrained controller 
could then be derived. One very important drawback of the solution is that 
each control loop uses a compensator of the same order as the plant. 
Therefore, even if the number of communication channels is reduced. the 
complexity of the control law remains. 

Stabilization and pole placement 
Stabilization and pole placement have always been of prime interest in 

the centralized control of linear systems. The stability of a linear time 
invariant system is directly related to the location of its closed-loop 
poles. LQ. and other techniques are however usually preferred as design 
procedures since it is difficult to relate the input/output properties of a 
system, its command following properties or noise rejection properties for 
example, to the location of the closed-loop poles. Anyhow. it is always 
useful to know if arbitrary dynamics can be obtained, and the following 
works answer the question for decentralized feedback control. 

Wang and Davison introduce in [21] the notion of fixed poles. Those 
are the uncontrollable or unobservable poles in the context of centralized 
control. Fixed poles are the ones that cannot be assigned by a given 
structure of controller. A general result is that a system can be 
stabilized by a class of controller if the fixed modes found for this class 
are all contained in the strict left-half plane. The rest of the dynamics 



12 

can be placed arbitrarily using dynamic compensation. In [22]. Davison uses 
this result and introduces the notion of robust servomechanism. The 

robustness is defined as the property for the control system to remain 

asymptotically stable and regulate with zero steady-state error in the 

presence of steady disturbances and steady structural error. The 
centralized robust servomechanism presented in [22] is extended to the 

decentralized robust servomechanism in [23]. A series of existence theorems 
stated in [B] give necessary and sufficient conditions for a system to be 
stabilizable through decentralized control. The generic structure of the 

decentralized compensator is also characterized. It is shown that there 

exists a solution to the problem of the robust decentralized servomechanism 

for "almost all" interconnected systems, provided some controllability and 
observability properties, where the notion of "almost" is more specifically 

defined. [24] constitutes a very interesting development of the previous 
work since it investigates the decentralized robust servomechanism problem 

for large space structures. The results were derived assuming that position 

and rate sensors were collocated and were the dual of the actuators -meaning 

for example that there is a rate sensor collocated with each reaction wheel 
and that the input axis of the rate sensor coincides with the axis of the 

reaction wheel. Under those conditions, it is shown that the decentralized 

robust servomechanism has a solution if and only if the centralized robust 
servomechanism has one, which equivalently occurs if and only if the rigid 
body modes are controllable. An other very interesting result is that i t  is 
possible to design a controller in the form shown in [24] for which the 
unmodelled higher order modes will not be destabilized. 

The study of [2!5] gives another complete characterization of the 

conditions for stability and pole placement using decentralized control. 
The approach is to determine conditions under which a system made of 

interconnected subsystems can be made controllable and observable from the 

inputs and outputs of a particular subsystem using the other controllers to 

change the coupling between the subsystems. Once the entire system is 

controllable and observable, dynamic compensation can be employed using the 

controller singled out to place the poles of the system. 

The existence theorems presented in the studies aforementioned are very 
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powerful theorems, but they are not constructive theorems, in the sense that 
they cannot be turned into design techniques, or very poor ones in the case 
of [%I. As mentioned before, pole placement, if it is very useful 
theoretically, is not a very useful tool as far as specific performances are 
sought. Consider a MIMO system fully controllable from two different 
inputs. The same closed-loop poles can be obtained using state feedback and 
closing the loop on one, or the other input channel. Of course. the 
properties of the two designs might be very different, even though both have 
the same closed-loop poles. As in the centralized case, pole placement 
using decentralized control does not provide enough freedom to the designer. 

Simdified centralized control desims 

One can opt for a reduced order controller to avoid prohibitively long 
process time in the control loop. Such an approach yields a centralized 
control scheme of acceptable complexity. Of course, one is led to look for 
an optimal design given the order of controller that is chosen. The 
solution to this problem has been derived in [27]. The problem is the 
following: given a plant of very high order, some quadratic cost functional 
on the states and the system’s inputs, and some measurements corrupted by 
noise, find a compensator of given order which will minimize the cost 
average. When the order of the compensator is equal to the order of the 
plant, the problem simply reduces to the classic LQG problem. This problem 
requires the resolution of two uncoupled Riccati equations of order equal to 
the plant order. When the order of the compensator is smaller than that of 
the plant, it is shown in [27] that the solution to the optimal problem 
envolves the resolution of two full-order modified Riccati equations coupled 
by two modified Lyapunov equations via an oblique projection matrix whose 
rank is equal to the order of the compensator. The projection has to be 
determined as part of the solution and there exists more than one that will 
satisfy the necessary conditions stated in [27]. Numerical methods can be 
developed to solve the optimal projection equations and it is possible, like 
in the case of model reduction via optimal projection, to make the solution 
converge toward a local minimum which yields an acceptable value for the 
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cost. The global minimum might also be reached. There is no theoretical 
difficulties to derive the problem for discrete-time systems, and the 
optimal projection equations developed in [28] are for a fixed-order sampled 
data compensator. 

As shown in [29]. the optimal fixed order compensator problem can be 
solved even when the plant is infinite dimensional. The solution is very 
similar to the finite dimensional case with two modified Riccati equations 
and two modified Lyapunov equations. In that case however, these equations 
involve linear operators on an infinite dimensional space. Due to the 
infinite dimensionality of the state space, one needs to call upon 
properties of linear operators in Hilbert spaces. The proofs are 
consequently more involved than when only matrix linear algebra is needed. 
This result of theoretical importance has little utility for one concerned 
with finding an actual compensator. It provides however confidence to the 
designer that by taking a finite dimensional approximation of the plant and 
solving the optimal projection equations for this model will yield a 
compensator that should converge to some limit as the dimension of the 
approximate plant is increased. 

The method of optimal projection can be extended to obtain a fixed 
reduced-order state estimator [30]. One can be tempted to use such an 
estimator, or to use the reduced order plant model found through optimal 
projection to design a compensator. Such a design will yield a reduced- 
order compensator which will be only suboptimal in the class of compensators 
of the same order. Those suboptimal approaches may on the other hand 
simplify tremendously the controller synthesis for a tolerable increase in 
the cost. 

It must be emphasized again that the compensator obtained through 
optimal projection is a reduced-order central compensator: every actuator in 
the system receives its commands from the same calculator which synthesizes 
the command inputs using the information of every available sensor. The 
main benefit of such a method is to reduce the computations to  synthesize 
the commands and not to limit the communication requirements or to make the 
control robust to components’ failure. There is no guarantee of stability 
and one may have to iterate the design process to find the right order for 
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the compensator. Finally. little is known about the sensitivity of the 
design to parameter errors and model uncertainties. 

Multilevel techniclues 

The multilevel, or hierarchical architecture appears to be the next 
natural step to improve the performance of a decentralized control scheme. 
At the subsystem level, local controllers operate using local information 
and information supplied by a global controller. They supply in return the 
global controller with those informations, as well as their actions, 
preferably in a condensed manner. The global controller has perfect 
structural information about the system, and knows in particular how the 
subsystems interact. Given the information received from the subsystems, 
the global controller sends directives to each local controller so that more 
cooperation occurs within the system. Such an architecture is very elegant, 
but its actual implementation appears to be very difficult. 

Periodic coordination 
As argued by Chong and Athans in [31], if the global controller is 

supplied with all the information, the solution to the LQ problem will be 
for the global controller to cancel out the local actions and superimpose 
the centralized optimal solution. The approach in [31] is therefore to 
consider that the global controller operates at a smaller rate than the 
local controllers. The solution to the LQ problem is called periodic 
coordination, since the directives arrive at the local level periodically 
every 1 time steps, where 1 is the ratio between the global controller’s 
sampling time and the local controller’s sampling time. The system 
considered in this approach is the interconnection of dynamical systems each 
of which has its own state variables, sensors and actuators. The overall 
system command matrix as well as the output matrix are assumed to be block 
diagonal. This setting is similar to the one considered for connective 
stability. Under those assumptions, the control law implemented is the 
following: local controllers drive local actuators based upon local 
information. The local control law would be LQ optimal if there were no 
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coupling between the subsystems. At the upper level, the interactions 
between the subsystem are being estimated based on a priori information and 
past measurements. The update of the estimate is done only periodically 
every 1 steps. Two kinds of periodic control can be distinguished. The 
first one is qualified as open-loop, meaning that the coordinating 
parameters are computed based on past information and without expecting 
future information. Thus, the estimate tries to minimize a mean error for 
all future times. The second one is qualified as closed-loop, meaning that 
future measurements are expected: the estimate in that case nminimizes a 
mean error for the next 1 steps only. The closed-loop scheme is more 
complex to solve and its resolution does not decouple at the subsystem 
level. It should however yield a better solution. The method appears to be 
an elegant design method. Still, even if optimality is reached, little is 
known about stability. 

Goal Coordination and Interaction Prediction methods 
Most of the remaining work on hierarchical control does not make any 

assumption about the information pattern and does not consider different 
time-scales for the local and global controllers. The problem considered 
throughout [32] is a LQ type problem for a system constituted of 

interconnected subsystems. The omimal sequence of controls can be 
generated 0 n - U  for the regulator problem. In order to simplify the 
computation, additional variables, called the coordination variables, are 
introduced. They naturally appear as LazranEe multipliers in the cost 
minimization problem. In the Goal Coordination method ( C32.331) also 
referred to as the Interaction Balance method ( Mesarovic et al.. to whom 
the method is attributed in [32]) the coupling terms are considered as state 
variables. They are of course related to the system's state variables 
through linear transformation, and are treated as constraints. The 
coordination variables are the Lagrange multipliers of those constraints. 
By use of the coordination variables, the resolution of the problem 
separates into an upper and a lower level. At the lower, or subsystem 
level, one is led to solve decoupled optimal regulator problems for the 
subsystems as if they were isolated. The coordination variables enter as 
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parameters of the local minimization problems. At the upper level, the 
coordination variables are updated to reduce the cost. The updating process 
is truly a minimization algorithm. The gradient of the cost relative to the 
coordination variables, which is used in the algorithm. depends on the local 
optimal solutions found at the subsystems' level for the state, costate, 
coupling and control variables. The optimum is found recursivelv by first 
assuming coordination variables, then by computing the gradient of the cost 
at the lower level, solving only reduced-order minimization problems. A 
different scheme attributed to Takahara is referred to as the Interaction 
Prediction method in C32.331. The method uses both the aforementioned 
coordination variables as well as the coupling variables to define the 
coordination vector between the local and the global problems. The solution 
is found in the same manner as in the Goal Coordination method, by assuming 
a value for the coordination vector at the upper level and by computing the 
gradient of the cost at the lower level. 

Both methods require the iterative computation of a minimum at each 
time step. A high convergence rate is reported using either method f o r  

fairly complicated systems. The dynamics of the system should however be 
rather slow so that the time for the algorithm to converge remains small 
compared to the rate at which one has to sample the system. 

Both methods are so-called infeasible methods C32.331 because the 
constraints are met only at the minimum. The main drawback of such methods 
is that suboptimal control sequences cannot be obtained by relaxing the 
accuracy on the determination of the minimum at each time step. Such a 
control sequence could very well destabilize the plant and does not statisfy 
any of the problem contraints. Therefore. the expected reduction in 
computation time due to the breaking down of the large minimization problem 
to simpler reduced-order problems may very well be over-estimated because of 
the need to reach accurately a minimum at each time step. 

Let's mention for completeness that multilevel methods simplify the 

computation of centralized control gains [32]. Those methods use 
coordination variables like the on-line multilevel methods presented above, 
but gains instead of controls are computed in this case. The methods are 
also recursive and their main advantage is that they require the resolution 



18 

of only reduced-order Riccati equations, whose calculation grows much faster 
than linearly with the order. 
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