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AN EVOLUTIONARY COMMUNICATIONS SCENARIO FOR MARS EXPLORATION 

Steven H. Stevenson 
National Aeronautics and Space Admini s t r a t i o n  

Lewis Research Center 
Cleveland, Ohio 44135 

As Mars explorat ion grows i n  complexity w i t h  time, 
the  corresponding comnunlcations needs w i l l  grow 
i n  va r ie t y  and complexity also. 
Earth/Mars l i nks ,  f u r t h e r  needs w i l l  a r i s e  f o r  
complete surface connect iv i t y  f o r  the  prov is ion  o f  
navigat ion,  pos i t i on  locat ion,  and voice, data, 
and video communications services among m u l t i p l e  
Mars bases and remote explorat ion s i t es .  This 
paper addresses the  l i k e l y  required communications 
funct ions over the  f i r s t  few decades of  Mart ian 
exp lo ra t ion  and postulates systems f o r  prov id ing 
these services. Required technologies are 
i d e n t i f i e d  and development requirements ind icated.  

From i n i t i a l  

INTRODUCTION 

I n  recent years, d i r e c t i o n  and momentum have been bu i ld ing ,  both i n  the  U.S. 

and the Soviet  Union, towards long-term commitment t o  the  explorat ion o f  

Mars. I n  the  U.S. the  exp lo ra t ion  of Mars has the po ten t i a l  o f  becoming a 

major new space a c t i v i t y  leading u l t i m a t e l y  t o  the  manned explorat ion and 

sett lement o f  t h a t  p lanet.  The p r e s i d e n t i a l l y  appointed "National Commission 

on Space" has recommended t h a t  the  exp lo ra t ion  of  Mars become a major U.S. 

space goal and NASA has incorporated i t  as a major i n i t i a t i v e  i n  i t s  

long-range s t ra teg ic  planning a c t i v i t i e s .  



The i n i t i a l  missions, those precursor t o  u l t imate  human presence, are being 

formulated now by both the  U.S. and Soviets. 

t o  be launched probably i n  7992, and the  Mars Rover Sample Return Mission 

(MRSR) i n  the  1998 t ime frame. These missions w i l l  lead t o  establishment o f  

the  required knowledge base concerning planetary parameters, the  Mart ian 

environment, and the  po ten t i a l  f o r  resource exp lo i t a t i on  necessary f o r  human 

a c t i v i t i e s  t o  take place. The f i r s t  manned mission could take place, 

depending on the  Nat ion's object ives,  as ea r l y  as 2005 o r  perhaps more l i k e l y  

i n  the 2015-2030 era. 

These inc lude the  Mars Observer, 

To e f f e c t i v e l y  pursue t h i s  ambitious goal, a host o f  systems and support ing 

technologies must be developed and constructed. 

l i f e  support, and i n  general, the  basic i n f r a s t r u c t u r e  f o r  accomplishing goals 

of t h i s  magnitude, w i l l  have t o  be developed. 

inc lude power, propulsion, s t ructures,  robot ics ,  mater ia ls,  comnunications, 

and others. Many of  these needs, options, and issues have been i d e n t i f i e d  and 

are we l l  documented i n  the  recent l i t e r a t u r e ,  conferences, and NASA planning 

a c t i v i t i e s .  

The appropr iate vehicles, 

Supporting technology areas 

This paper discusses some of  the  comnunications aspects o f  manned Mars 

a c t i v i t i e s  and presents some po ten t i a l  comnunication system types f o r  

support ing those comnunications needs. 

t h a t  need t o  be pursued now are I d e n t i f i e d  and re la ted  current  e f f o r t s  a t  NASA 

Lewis Research Center and other  NASA centers a r e  discussed. 

Comnunications technology i n i t i a t i v e s  



EXPLORATION SCENARIOS 

Mars exp lo ra t ion  (unmanned) began a number of  years ago w i t h  the  Mariner f l yby  

mission and Vik ing orb i te r / lander  missions i n  the  1970's. 

i s  the  Mars Observer mission t o  be launched i n  1992. The spacecraf t  w i l l  

a r r i v e  a t  Mars i n  1993 and w i l l  be placed i n  a 350 km near-polar o r b i t .  

w i l l  be co l lec ted  f o r  a t  l e a s t  one Mart ian year (687 days) on the  cl imatology, 

surface composition, topography, g r a v i t y  f i e l d ,  and magnetic f i e l d  o f  Mars. 

Fol lowing the  Mars Observer, i n  1998, w i l l  be the  Mars Rover Sample Return 

(HRSR) mission. 

as the  name impl ies,  re tu rn  actual  samples from the  Mart ian surface. These 

w i l l  g rea t l y  enhance the  understanding of  the  Mart ian rego l i t h ,  i t s  h is to ry ,  

and the  po ten t i a l  o f  using i n - s i t u  resources f o r  construct ion,  agr icu l tu re ,  

p rope l lan t  production, etc., f o r  f u tu re  human Mart ian surface explorat ion and 

hab i ta t ion .  Concurrently w i t h  the  U.S. missions t o  Mars, the  Soviet  Union i s  

proceeding w i t h  s i m i l a r  type missions. One o f  these i n  the  ea r l y  90's w i l l  

sample the  surface o f  the  Mart ian moon Phobos by vapor iz ing a small spot on 

the  surface w i t h  a laser  beam and analyzing the  spect ra l  emissions. The 

Mart ian moons, Phobos and Deimos, have been suggested as p o t e n t i a l  resource 

nodes from which t o  manufacture propel lants ,  serve as observation posts, and 

as staging bases f o r  Mars surface explorat ion.  Missions t o  (and r e t u r n  from) 

the  Mart ian moons (from Earth o r b i t )  have less demanding energy requirements 

and are f a r  less  complex than those intended f o r  landing on the  surface. I f  

propel lants  and poss ib ly  o ther  necess i t ies could be manufactured a t  the  

Mart ian moons, manned missions t o  the  Mart ian surface would be g rea t l y  reduced 
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Current ly  planned 

Data 

Although no t  ye t  an o f f i c i a l  mission, the  MRSR mission w i l l ,  



i n  complexity. 

explorat ion beginning i n  the  l a t e  1990's i s  being pursued. 

missions, bu t  not  present ly  defined, w i l l  be more advanced precursor missions 

leading eventual ly  t o  manned explorat ion missions and, perhaps u l t i m a t e l y  t o  a 

continuous human presence. 

The p o s s i b i l i t y  f o r  U.S./Soviet cooperation i n  Mars 

Beyond these 

Recently, a t t e n t i o n  i n  the  U.S. has focused on developing the  comnitment t o  

long-term space goals inc lud ing  s o l a r  system explorat ion and a broad s e t  of 

i n i t i a t i v e s  required t o  accomplish them has been out l ined.  I n  1985, a 

p res ident ia l  comnission, "The National Comnission on Space (NCOS)," was formed 

t o  examine the  U.S. r o l e  i n  space; t o  formulate a bo ld new agenda t o  car ry  

Amer i ca ' s  c i v i l i a n  space enterpr ise i n t o  the  21st century, and t o  place before 

the na t ion  a r a t i o n a l e  and a program t o  assure cont inuing American leadership 

i n  space. The commission ou t l ined  an agenda and r a t i o n a l e  f o r  U.S. space 

a c t i v i t y  over the  next 50 years, a s e t  o f  goals Invo lv ing  science, 

explorat ion,  and enterpr ises representing r e a l  value t o  the  people on Earth. 

To accomplish these goals, they recomnend nat ional  comnitments t o  advancing 

technology across a broad spectrum t o  ensure t i m e l y  a v a i l a b i l i t y  o f  c r i t i c a l  

c a p a b i l i t i e s ;  and c rea t ing  and operat ing systems and i n s t i t u t i o n s  t o  provide 

low-cost access t o  the space f r o n t i e r .  The comnission's recomnendations can 

be found i n  t h e i r  publ ished repor t  . 1 

Subsequent t o  the  NCOS a c t i v i t y ,  NASA has been conducting long-range planning 

a c t i v i t i e s .  Several long-range planning teams were formed t o  o u t l i n e  NASA's 

d i r e c t i o n  i n  carry ing out  the  U.S.'s space a c t i v i t i e s .  Among these were the 

C i l i i l  Space Technology T n i t i a t i v e  ( C S T I )  a c t i v i t y ,  the Advanced Missions 
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Working Group (AMWG), the  Space Leadership Planning Group (SLPG), and most 
2 recent ly,  the  *Sa l l y  Ride* Cornnittee . 

o f  Aeronautics and Space Technology (OAST) has ou t l ined  a sequence o f  phases, 

f o r  planning purposes, character iz ing long-range manned exp lo ra t ion  o f  the  

Solar System. 

associated w i t h  them. The f i r s t  phase, beginning now, would be character ized 

by the  const ruct ion o f  the  Space Stat ion,  OTV, rou t ine  LEO/GEO operations, 

major science and earth-or iented a c t i v i t i e s ,  development o f  lower cost  access 

t o  space, and, i n  general, bu i l d ing  the  basic i n f r a s t r u c t u r e  t o  support the  

next phases t o  come. 

surveys and sample re tu rn  missions, l i f e  science c a p a b i l i t y  development, 

add i t iona l  Space Sta t ion  complex capab i l i t y ,  and a c t i v i t i e s  d i r e c t l y  precursor 

t o  lunar  re tu rn  and manned Mars explorqt ion.  The t h i r d  *Pioneer" phase would 

be the  begining of rou t i ne  human a c t i v i t i e s  i n  the  Solar System beyond earth.  

The Pioneer phase may evolve i n t o  a continuous human presence o r  *P i lg r im*  

From these a c t i v i t i e s ,  NASA's O f f i c e  

Figure 1 presents these phases and the  kinds o f  a c t i v i t i e s  

The next WPathf inderw phase would inc lude Mars s i t e  

phase a t  the Moon and Mars. 

* S e t t l e r H  phase character ized by large numbers of  people l i v i n g  i n  

se l f -susta in ing planetary settlements. 

associated w i t h  these phases, but  they would represent several decades i n  

extent.  

Paine (former Administrator o f  NASA and a l so  Chairman o f  the Nat ional  

Comnission on Space) was presented a t  the  Mars I 1  conference i n  1984. 

paper, Paine looked ahead ten  decades t o  the  p o s s i b l l i t y  o f  an independent 

Mart ian c i v i l i z a t i o n  and ou t l i ned  the  necessary prerequis i tes,  such as 

i n te rna t i ona l  peace, cooperation, and na t iona l  p rosper i ty  leading t o  t h i s  

poss ib le  fu tu re .  

Farther i n t o  the  fu tu re  there may even be a 

No t h e l i n e s  are shown on Figure 1 

A v is ionary paper, 'A Timeline f o r  Mart ian Pioneersa3 by Thomas 

I n  t h i s  
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To develop and conduct t h e  a c t i v i t i e s  out l ined  I n  these exp lora t ion  scenarios, 

many elements o f  t h e  basic supportlng i n f r a s t r u c t u r e  must be developed and 

in tegra ted  i n t o  r e l i a b l e  operating systems. 

t h e  supporting i n f r a s t r u c t u r e  i s  comnunications, and t h a t  i s  t h e  subject  o f  

t h e  fo l lowing  sections o f  t h i s  paper. 

One o f  t h e  c r i t i c a l  elements o f  
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COMMUNICATIONS REQUIREMENTS AT MARS 

The communications requirements o f  Mars exp lo ra t ion  a c t i v i t i e s  w i l l  be 

determined by the  type and complexity o f  those a c t i v i t i e s ,  necessary l i n k s  and 

connect iv i ty ,  services t o  be provided, and p a r t i c u l a r  funct ions t o  be 

performed and cha rac te r i s t i cs  o f  serv ice desired. 

missions w i l l ,  o f  course, be less demanding on systems than l a t e r  a c t i v i t i e s .  

As a human presence emerges i n  explorat ion a c t i v i t i e s ,  the  requirements on 

communications systems and funct ions w i l l  be g rea t l y  increased. The 

requirements represent the  determinant f o r  the  types o f  communications systems 

t o  be deployed and the  technologies t h a t  need t o  be developed t o  support these 

systems. The fo l low ing  suggests some of  the  requirements t h a t  w i l l  be 

involved i n  Mars exp lo ra t ion  a c t i v i t i e s ,  and these are sumnarized i n  Figure 2. 

The e a r l i e r  unmanned 

- LINKS 

The most obvious comnunications l i n k  required i n  explor ing Mars would be, o f  

course, a l i n k  or l i n k s  between Mars and Earth. I n  order t o  maximize 

comnunication t i m e  per  day, comnunications could be relayed through a Mars 

o r b i t e r  as was done i n  the  Vik ing program and posstbly f o r  the  MRSR mission. 

E a r l i e r  missions w i l l  use lower a l t i t u d e  e l l i p t i c a l  o r b i t  re lays,  as these 

w i l l  be used f o r  o ther  purposes such as mapping, wh i le  l a t e r  manned surface 

a c t i v i t y  may invo lve  dedicated *areostat ionary* communication and ear th  re lay  

sate1 1 i t e s .  

when r e f e r r i n g  t o  the  Ear th) .  For redundancy, d i r e c t  Earthhlars l i n k  

c a p a b i l i t y  w i l l  be included. 

(The term llareostationary" being analogous t o  *geostat ionaryn 
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Comnunications must be maintained with i n - t r a n s i t  spacecraft.  I n i t i a l l y ,  a 

l i n k  would be needed between the  spacecraft and Earth and l a t e r  as a rou t ine  

human presence develops, comnunications from Mars w i t h  Incoming spacecraf t  

w i  11 be necessary. 

Also, since ea r l y  a c t i v i t i e s  w i l l  l i k e l y  be conducted a t  the  Har t ian moons, 

Phobos and Deimos, l i n k s  from there w i t h  Earth and w i t h  l a t e r  Mars surface 

bases w i  11 be required. 

As m u l t i p l e  explorat ion s i tes ,  outposts, and bases emerge on the  Mart ian 

surface, there w i l l  be a need f o r  comnunications interconnection. 

There w i l l  be a need f o r  comnunications w i t h  mobile vehic les and remote 

explorat ion a c t i v i t i e s  w i t h  the bases and w i t h  Earth. Unmanned Mart ian 

rovers, balloons, airplanes, manned Mart ian *jeeps*, and other  mobile means 

*Hand-held* o r  

o ra t i on  s i t e  and 

w i l l  requ i re  communications w i t h  t h e i r  c o n t r o l l i n g  

i nd i v idua l  means of  communications w i t h i n  an imned 

back t o  base w i l l  be needed. 

bases. 

a te exp 

SERVICES 

The services t o  be provided by comnunications systems w i l l  i n i t i a l l y  be a l l  

data transmission, but  l a te r ,  when manned a c t i v i t i e s  begin, voice and video 

transmissions w i l l  be necessary. 

the  f i r s t  manned missions t o  t ransmi t  t o  Earth the  f i r s t  a c t i v i t i e s  o f  the 

Mart ian pioneers. 

High reso lu t ion  video w i l l  be required on 

O f  course, r e a l  t i m e  o r  i n t e r a c t i v e  communications won't be 
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possible due t o  the  t ime delay caused by the  long path length. 

transmission time, a t  the  speed o f  l i g h t ,  var ies w i t h  the  distance between 

Earth and Mars and var ies from a minimum o f  about 3 minutes t o  a maximum o f  

about 22 minutes. 

The 

FUNCTIONAL REOUIREHENTS 

The wfunc t iona l  requirements" o f  a comnunlcations system re fe rs  t o  the  nature 

of the  transmissions the  system must provide and how i t  must perform. 

Examples inc lude such th ings as type o f  transmission t o  be accomnodated 

(voice, video, data),  comnunication capaci ty t o  be provided, connect iv l t y  

required, and standards of  services t o  be adhered t o .  

I n  the  context  o f  Mars explorat ion,  the  e a r l i e r  missions w i l l  send back data 

streams of  up t o  a few megabits per second (Mbps) wh i le  l a t e r  manned missfons 

i nvo l v ing  h igh reso lu t i on  video i n  p a r a l l e l  w i t h  other  data could represent a 

need f o r  transmission capaci ty i n  the  hundreds o f  Mbps. 

Voice and lower speed data transmission among d i f f e r e n t  po in ts  on the  Uar t ian  

surface and w i t h  Earth w i l l  be a fundamental requirement. 

Pos i t ion  l oca t i on  and nav igat ion o f  both manned and unmanned vehic les w i l l  be 

required, and, f o r  some a c t i v i t i e s ,  pos i t i on  w i l l  need t o  be known w i t h i n  a 

few meters .  

9 



As the human presence emerges, safety  w i l l  be an over r id ing  requirement. This 

d ic ta tes  t h a t  people explor ing Mars have the  a b i l i t y  t o  contact t h e i r  bases a t  

any t ime and f o r  the  Mars expedit ions and bases t o  be i n  contact  w i t h  Earth a t  

a l l  times. This a lso  impl ies t h a t  ubiqui tous Mart ian surface coverage w i l l  be 

required, o r  anywhere t h a t  manned a c t i v i t y  i s  l i k e l y  t o  be. 

COMMUNICATION TECHNOLOGY ASPECTS 

Some of the  imp l ica t ions  f o r  comnunications technologies involved i n  manned 

Mars (and other  Solar System) missions are perhaps somewhat d i f f e r e n t  o r  more 

s t r i ngen t  than would be required f o r  systems prov id ing s i m i l a r  type funct ions 

i n  a near Earth environment (Figure 3 ) .  Because of the  human presence, safety  

i s  of the  utmost concern. 

system and the  cost and t i m e  involved i n  es tab l i sh ing  and maintaining i t  

d ic ta tes  long-l ived, u l t r a - r e l i a b l e  f a c i l i t i e s .  Fau l t  t o l e r a n t  and f a i l  s o f t  

designs f o r  comnunication equipment w i l l  be required. 

The p o s s i b i l i t y  o f  a f a i l u r e  i n  a comnunications 

The cost o f  t ranspor t ing  hardware t o  Mars w i l l  pu t  a premium on small, 

l i gh twe igh t  components w i t h  lower power consumption. 

compression and higher data ra tes per her tz  w i l l  be required f o r  conserving 

power . 

Likewise, data 

Personal comnunications by explorers on Mars would be g rea t l y  enhanced by 

advanced sate1 1 i t e  demodulators enabling access by numerous narrow band 

channels t ransmi t t i ng  independently. Personal comnunications equipment would 

a lso  be required t o  be small, l ightweight ,  re l i ab le ,  and low power (perhaps on 

the  order o f  0.5 wat t ) .  
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POTENTIAL COMMUNICATION SYSTEM TYPES 

Ear ly  Systems 

Previous and planned missions t o  Uars t y p i c a l l y  make use o f  o rb i te r / lander  

combinations i n  order t o  make complete surface observations, mapping, etc., 

and f o r  surface analys is  and explorat ion.  The o r b i t e r s  are a l so  used as 

communications re lays f o r  transmission between the  landers and Earth. I n  

order f o r  the  o r b i t e r s  t o  be used e f f e c t i v e l y  as relays,  t h e i r  o r b i t s  must be 

constrained somewhat beyond t h a t  desired f o r  the  other  o r b i t e r  funct ions.  

Generally, the  o r b i t e r s  are placed i n  h i g h l y  e l l i p t i c a l  (e.g., 500~33,429 KM) 

o r b i t s  having 24.5 hour periods ( the  ro ta t i ona l  per iod o f  Mars). The o r b i t s  

are phased such t h a t  the  zeni ths remain i n  s igh t  o f  the  Mars landers. Using 

o r b i t e r s  f o r  comnunications re lays t o  Earth i s  somewhat more complex than 

having d i r e c t  l i nks ,  bu t  s i g n i f i c a n t l y  increases the  comnunications t ime per  

day (reduces occu l ta t i on  o r  blockage t i m e  per day when the  landers are on the  

side of  Mars away from the 

The use o f  the  Mart ian moons, Phobos and Deimos, f o r  comnunication re lays t o  

Earth and among scattered bases on Mars' surface has been suggested 6 . These 

moons are i n  near c i r c u l a r  l o w  i n c l i n a t i o n  ( less  than 2 degrees) o r b i t s  about 

Mars. Thei r  a l t i t u d e s  above the  p lanet  are 1.82 and 6.06 Mars r a d i i ,  

respect ive ly .  

bu t  because of  Mars' ro ta t i on ,  the  moon passes over the  same surface locat ions 

only  about twice per day. Also, because of  the  lower a l t i t u d e  of  Phobos, i t  

i s  v i s i b l e  from a l oca t i on  on the  surface only  about 40 percent of the  time, 

Phobos c i r c l e s  Mars a l i t t l e  over th ree  times a Mart ian day, 
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and not  beyond 5 69' l a t i t u d e .  

t rack  Phobos' movement across the  sky o r  t ransmi t  i n  an omnidirect ional  mode, 

a power and frequency wasteful  approach. For continuous coverage, two other  

s a t e l l i t e s ,  spaced 120' I n  Phobos' o r b i t ,  would be needed. 

Antennas on the  surface would e i t h e r  have t o  

Deimos, the  outermost moon, i s  almost i n  a Uars synchronous o r b i t .  It has a 

per iod of  30 hours compared w i t h  the  Uars day of  24.5 hours, and consider ing 

the  r o t a t i o n a l  v e l o c i t y  o f  Uars, Deimos passes over the  same spot on the 

surface about every 5.5 Mars days. 

revo lu t ion  about Mars, it i s  i n  view of a given po in t  on the  surface about 2.5 

days a t  a t i m e ,  bu t  out  o f  s i g h t  f o r  3 days a t  a time. As i n  the  case w i t h  

Phobos, Deimos cannot provide coverage t o  the  po la r  regions from i t s  

equator ia l  o r b i t .  

Phobos and Deimos may be usefu l  i n  the  e a r l y  phases o f  manned Mars explorat ion 

as communications relays.  For po la r  coverage, a system of s a t e l l i t e s  i n  po la r  

o r  o ther  h igh l y  i n c l i n e d  o r b i t s  could be used. 

systems t h a t  might be employed i n  the  ea r l y  phases of  explorat ion.  

Because o f  the  r e l a t i v e l y  slow apparent 

Although less than idea l  as comnunication s a t e l l i t e s ,  

Figure 4 ou t l ines  some o f  the  

The Earthhlars l i n k s  would have t o  t ransmi t  increasing amounts o f  data as 

exp lo ra t ion  a c t i v i t i e s  p r o l i f e r a t e ,  and t h i s  requirement could be a major 

fac to r  i n  the  choice of  transmission frequency. The l i n k  comnunications 

capaci ty increases w i t h  frequency and the  current  and planned deep space l i n k s  

inc lude S-band (2.5 G H z )  , X-band (10 G H z )  , Ka-band (30 G H z )  , and lase r  

frequencies. 

recent ly ,  segments i n  Ka-band a t  32 and 34 G H z  have been a l loca ted  f o r  deep 

space use. A Ka-band system can support data ra tes o f  f i v e  t o  ten  times the 

rates supported a t  X-band f o r  the  same antennas and power leve ls .  

The present Deep Space Network (DSN) uses X- and S-band and, 

1 2  



For data rates greater  than 100 Mbps, lasers should be considered as an 

a l t e r n a t i v e  t o  the  more conventional microwave l i n k s  . 
large data rates wi th  small t ransmi t t lng/ receiv ing apertures. However, some 

o f  the  charac ter is t i cs  which make lase r  communication l i n k s  a t t r a c t i v e  also 

make them d i f f i c u l t  t o  use. 

apertures a lso  requires very accurate po in t i ng  systems. 

at tenuat ion,  which together w i t h  narrow beam width makes unauthorized access 

t o  the  comnunication l i n k s  more d i f f i c u l t ,  requires a re lay  system of  

s a t e l l i t e s  o r b i t i n g  the  Earth i n  order t o  provide dependable comnuncations 

w i t h  Earth-based stat ions.  A s i m i l a r  s i t u a t i o n  ex i s t s  a t  Mars where a dust 

storm could block laser  comnunication l i nks .  Therefore, i t  i s  envisioned t h a t  

a l ase r  l i n k  would be used only  f o r  comnunications between vehic les i n  Earth 

and Mars o r b i t  w i t h  lower frequency comnunications t o  the  surfaces. 

5 Lasers can support 

The h igh gain which makes poss ib le  small 

Atmospheric 

For present near-term planning a Ka-band system appears a t t r a c t i v e  f o r  

comnunications between Earth and Mars. A Ka-band system can support moderate 

data rates,  prov id ing dependable comnunications w i t h  the Earth wi thout  a data 

re lay  system i n  o r b i t  around the  Earth. 

La ter  Sys tems 

As explorat ion a c t i v i t i e s  on Mars grow i n  complexity and scope, the  

communications requirements w i l l  grow l ikewise, d i c t a t i n g  more elaborate and 

complex systems and technology. 

l a t e r  communications needs, and Figure 6 depicts these i n  place about Mars. 

Figure 5 suggests some systems addressing 

A 
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system of three *areostationary* sate1 lites spaced equilateral ly in Mars ' 
equatorial plane could provide a variety of comnunication services and form 

the basis of a network covering 95 percent of Mars' surface. The 

areostationary concept i s  analogous to the geostationary communications 

satellites used for terrestrial communications whereby the satellite appears 

to be stationary with respect to the planetary surface. These satellites 

could be interconnected by intersatellite links ( ISL) ,  either laser or high 

frequency microwave, and would constitute a network providing instantaneous 

and ubiquitous communications from anywhere on the surface, excepting the 

polar regions, including links to Earth and the Martian moons. The 

areostationary satellites would be used for various voice, data, and video 

comnunications among fixed bases, remote exploration sites, and mobile units, 

and would include navigation and position location functions. For polar 

communications, the system could be supplemented by a number of low altitude 

satellites in various inclined orbits. If a sufficient number of satellites 

were provided such that four would be in view at any one time, then precision 

position location, to within a few meters could be provided, much as the 

current NAVSTAR Global Positioning System (GPS)7. 

Other possibilities for polar region coverage include highly elliptical, 

highly inclined orbits, such as employed by the Russian 'Holniya* 

communications satellites for coverage of high latitudes. These orbits are 

configured such that the apogees occur over the desired region of coverage at 

the most appropriate time of day. The high ellipticity and relatively high 

apogee ensures the satellite to be in view during most of the orbital period. 

Because of the apparent movement though, the ground stations must mechanically 

track the satellites to keep the antennas pointed at them. 
14 



Advanced phased array antennas having the  beams e l e c t r o n i c a l l y  steered ra ther  

than mechanically, would probably be more appropr iate f o r  a Mars app l i ca t ion .  

I f  steerable beam antennas were t o  become su i tab l y  p rac t i ca l ,  then perhaps two 

systems o f  e q u i l a t e r a l l y  spaced synchronous a l t i t u d e  s a t e l l i t e s ,  i n c l i n e d  45 

degrees, respect ively,  t o  the  equator ia l  plane could be employed. This could 

provide v i r t u a l  l y  a1 1 services required and cover the  e n t i  r e  planet.  Another 

p o s s i b i l i t y  f o r  po la r  coverage would be t o  have s a t e l l i t e s  placed above both 

poles and interconnected w i t h  the  s a t e l l i t e s  i n  the  equator ia l  planes v i a  ISL, 

thus forming a network f o r  complete Mart ian surface coverage and 

connect iv i ty .  These "pole s i t t e r "  s a t e l l i t e s  would have t o  be held i n  place 

by continous t h r u s t  s ince they are no t  i n  o r b i t s  about Mars, bu t  ra ther  are 

subject  t o  both the  g rav i ta t i ona l  a t t rac t i ons  of  Wars and the  Sun. The 

s a t e l l i t e s  would b a s i c a l l y  be i n  o r b i t s  about the Sun, some distance above o r  

below the  North and South Mars poles and would have t o  r e s i s t  both the  Sun's 

a t t r a c t i o n  at tempt ing t o  p u l l  them across Wars' o r b i t a l  plane and Mars' 

g r a v i t a t i o n a l  a t t r a c t i o n .  The distance from Mars would have t o  be such t h a t  a 

small enough t h r u s t  could be employed t o  make the  f u e l  consumption p r a c t i c a l .  

For t h i s  appl icat ion, .a  very high spec i f i c  impulse t h r u s t e r  such as an ion 

engine would be desirable.  

mi l l ipounds, the  distance from Mars must be q u i t e  great  t o  employ t h i s  low 

t h r u s t  level--on the  order of one m i l l i o n  miles. Actual ly ,  f o r  the  

p o l e - s i t t e r  concept, there ex i s t s  a distance from the  p lanet  where the  sum of 

the  p lanet ' s  and the  Sun's g r a v i t a t i o n a l  a t t r a c t i o n s  are a minimum. 

case o f  Mars, t h i s  distance i s  1.275 m i l l i o n  mi les.  By way of  example, a 3.5 

mi l l ipound ion  th rus ter ,  w i t h  a spec i f i c  impulse o f  3000 seconds, could 

support a 1000-pound s a t e l l i t e  a t  t h i s  distance f o r  10 years w i t h  a p rope l lan t  
15 
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expenditure of  a l i t t l e  over 300 pounds. 

s i t t e r  s a t e l l i t e  i s  so large compared w i t h  the  equator ia l  comnunications 

s a t e l l i t e s ,  the  l i n k  cha rac te r i s t i cs  would be markedly d i f f e r e n t .  The 

equipment required f o r  i n t e r f a c i n g  w i t h  the  two systems might, therefore,  be 

incompatible making the  p o l e - s i t t e r  concept unat t rac t i ve .  This concept should 

be examined i n  more depth f o r  poss ib le  advantages. 

Since the  distance of  the  pole- 

Comnunications l i n k s  w i t h  Earth w i l l  be h igh l y  redundant, capable o f  being 

relayed through both the  comnunications and other  s a t e l l i t e s  i n  o r b i t  about 

Mars, from the  moons, and from the bases on the  surface. 

i n t e r a c t i v e  comnunications w i t h  Earth w i l l  no t  be poss ib le  because o f  the  long 

s ignal  delay (var ies  between 3 and 22 minutes one-way), t h e  availability o f  an 

Earth l i n k  must e x i s t  a t  a l l  times. There ex i s t s  an Earth/Hars occu l ta t ion  by 

the  Sun l a s t i n g  f o r  up t o  three weeks t h a t  occurs p e r i o d i c a l l y  (on the  order 

o f  a l i t t l e  over a year) t h a t  would cause comnunications blackout, were no t  a 

way found around it. The concept o f  a 'Trojan' s a t e l l i t e  re lay  system, having 

8 re lay  s a t e l l i t e s  placed a t  the  Earth/Sun l i b r a t i o n  po in ts  has been proposed 

as a way o f  avoiding the  per iod ic  occu l ta t i on  ( the  term *Trojanm coming from 

the  so-cal led astero ids i n  s i m i l a r  pos i t ions  I n  the  Jupiter/Sun system). The 

Earth-Sun l i b r a t i o n  po in ts  are located a t  pos i t ions  leading and fo l low ing  the  

Earth 2 60 degrees, respect ive ly ,  from the  Sun (Figure 7). They would be one 

astronomical u n i t  (1 AU) from the  Earth and would add 6 minutes o r  27 percent 

t o  the otherwise maximum s ignal  t ime delay. The Trojan s a t e l l i t e s  would on ly  

need be used dur ing the  occu l ta t i on  periods, s ince the  d i r e c t  Earth/Hars path 

length i s  always shorter,  bu t  they would be necessary and could support other 

planetary missions. 

capaci ty l ase r  l i n k s  i n  t h i s  l a t e r  t i m e  per iod.  

Although real- t ime 

The primary l i n k s  themselves would most l i k e l y  be high 



I N I T I A T I V E S  REQUIRED 

The so la r  system explorat ion goals and operations suggested by the  NCOS w i l l  

d r i v e  comnunications requirements beyond t h a t  which can be met by the  cur ren t  

NASA R6T program i n  c m u n l c a t i o n s .  To support these fu tu re  explorat fon 

a c t i v i t i e s ,  a v a r i e t y  o f  focused R6T programs should be i n i t i a t e d .  Studies 

should be i n i t i a t e d  t h a t  w i l l  i d e n t i f y  the  v a r i e t y  o f  l i k e l y  exp lo ra t ion  

a c t i v i t i e s  and t h e i r  support ing requirements i n  s u f f i c i e n t  depth t o  de f ine  

a l t e r n a t i v e  system concepts and arch i tectures f o r  accomplishing these 

missions. These studies w i l l  i d e n t i f y  the  more appropr iate and enabling 

technology areas and provide d i r e c t i o n  f o r  the  R6T programs. 

probably no t  much can be sa id about spec i f i c  technology requirements f a r  i n t o  

the  fu ture,  work i n i t i a t e d  now w i l l  b u i l d  the generic technology base needed, 

and w i l l  c e r t a i n l y  be d i r e c t l y  appl icable t o  missions a t  l e a s t  two o r  three 

decades away, and w i l l  ensure t h a t  i t ' s  ava i lab le  when needed. 

Although 

Mars explorat ion probably does no t  impose comnunications requirements unique 

t o  i t s e l f ,  bu t  ra the r  shares s i m i l a r  requirements w i t h  other  advanced so la r  

system exp lo ra t ion  t h a t  may d i f f e r  from those i n  the  near-Earth environment. 

More emphasis w i l l  be placed on safety,  r e l i a b i l i t y ,  mass reduction, and 

cost.  These w i l l  be primary d r i ve rs  on technology development f o r  deep space 

missions and the  i n i t i a l  studies should i d e n t i f y  technologies prov id ing the  

biggest payoffs i n  these areas. Some of the  i n i t i a t i v e s  and technology 

developments t h a t  should be o r  are being pursued t o  support NASA planetary 

goals a r e  noted i n  Figure 8. 
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Laser and high frequency comnunications technologies for deep space links need 

to be pursued. 

NASA field centers in particular that are engaged in laser and Ka-band 

radiof requency developments, respectively, for space applications. The Jet 

Propulsion Laboratory (JPL), who manages the DSN for NASA, i s  also sponsoring 

Ka-band technology for DSN upgrading. 

Goddard Space Flight Center and Lewis Research Center are two 

The development of advanced high level of integration solid-state electronic 

devices, such as Monolithic Microwave Integrated Circuits (MMIC's) in antenna 

applications would have great application and impact on weight and power 

requirements and mission flexibility. 

low cost, high yield, uniform quality production capability for these devices 

and the capability to integrate them into large-scale system designs. 

The present need here is to develop a 

Advanced antenna technology will be needed, based on either solid state MMIC 

devices or advanced traveling wave tube technology. Optical beam forming 

techniques, employing optical fibers instead of metallic waveguides will 

greatly simplify size, weight, and complexity of antenna beam forming for 

multiple, spot and hopping beam applications. In conjunction with this, 

optoelectronic device technology for conversion of electronic signals to/from 

optical for signal switching will need to be developed. 

Bulk demodulators for demodulating many signals simultaneously rather than 

separately, along with advanced modulation and coding techniques, will greatly 

reduce the consumption, power, and weight of the associated systems. 

will be particularly useful in comnunications with personnel and mobile 

unit-type comnunications where, typically, a separate single device is devoted 

to each user channel. 

These 
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Ultra-small  e lec t ron  beam devices ( t r a v e l i n g  wave tubes) f o r  app l i ca t ions  as 

ampl i f ie rs ,  frequency sources, use i n  personal comunications, and as elements 

o f  phased ar ray  antennas w i l l  be bene f i c ia l  i n  app l i ca t ions  where weight and 

power are a t  a premium. 

a source o f  electromagnetic power i n  the  30 t o  300 6Hz range f o r  use as l o c a l  

o s c i l l a t o r s  i n  remote sensing and low power radar app l i ca t ions  of  value t o  

Lunar and Mars explorat ion.  

Besides conmunications, such tubes promise t o  provide 
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CURRENT ACTIVITIES 

A number of cormtunications technology activities having value for future 

planetary exploration are underway in the NASA cormtunications program. 

Mentioned earlier were laser and Ka-band activities at 6oddard Space Flight 

Center, JPL, and Lewis Research Center. In particular, Lewis Research Center, 

a lead NASA center for comnunications technology development, is building the 

Advanced Cmunications Technology Satellite (ACTS) to prove the operational 

viability of a wide variety of advanced comnunications subsystems. 

pioneering the application of Ka-band technology integrated with advanced beam 

forming antennas, including multiple fixed and scanning beam capability, 

on-board switching, baseband signal processing, and intersatellite link 

technology. 

Fllght Center are developing laser packages to be flown on ACTS that will be 

used for experiments with laser transmission to ground stations, aircraft, and 

the Shuttle. 

ACTS i s  

The U.S. Air Force/MIT's Lincoln Labs and NASA's Goddard Space 

Other activities at Lewis include technology thrusts in the areas o f  MHIC 

solid state technology and ultrasmall highly efficient electron beam 

technology. 

heterostructure materials, leading to devices with higher switching speeds, 

faster signal processing, and other attributes i s  being explored. 

the solid state device developments are efforts in the advancement of 

traveling wave tube (TWT) technology, at both high and low power levels. 

Lewis has efforts in advanced tube technology at 60 GHz and 8.4 GHz for 

intersatellite link and X-band DSN applications. The Ka-band ACTS technology 

will also be directly applicable to deep space link applications. 

(on t h e  order o f  0.5 watt) ultra-small highly efficient TWT technology having 

potcntial for the applications mentioned above is also being developed. 

HHIC technology employing gallium arsenide and more advanced 

Paralleling 

Low power 
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Lewis has developed and demonstrated 6 d i g i t a l  video compression technique f o r  

vas t l y  reducing the  b i t  r a t e  required f o r  transmission o f  f u l l  motion 

broadcast q u a l i t y  vldeo, w h i l e  re ta in ing  v i r t u a l l y  f u l l  p i c t u r e  q u a l i t y .  

Because of  the  h igh bandwidths and power required i n  video transmission, 

techniques of t h i s  nature w i l l  be p a r t i c u l a r l y  valuable i n  f u t u r e  manned deep 

space a c t i v i t i e s .  

Superconductivi ty i s  another area being explored a t  Lewis and other  NASA 

centers f o r  the  p o t e n t i a l  i t  holds i n  many areas inc lud ing  comnunications. 
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CONCLUSIONS 

Long-range goals f o r  the  U.S. space program are cu r ren t l y  being establ ished. 

Planning a c t  v i t i e s  are ge t t i ng  underway t o  determine how best t o  accomplish 

those goals. Spec i f i c  mission concepts a r i s i n g  from the  planning a c t i v i t i e s  

w i l l  provide the  focus f o r  the  needed technology developments. 

Comnunications i s  an essent ia l  p a r t  o f  the  explorat ion i n f r a s t r u c t u r e  and w i l l  

be v i t a l  when humans become involved i n  deep space missions. Although 

advances i n  comnunications technology w i l l  continue t o  occur independently o f  

deep space goals, deep space explorat ion imposes some unique technology 

requirements t h a t  must be s p e c i f i c a l l y  addressed. 

charac ter is t i cs  t h a t  w i l l  be needed f o r  foreseen missions over the  next two 

decades can be i d e n t i f i e d  now. Many o f  these required technologies are not  

now avai lab le,  and the  necessary development programs should be i n i t i a t e d  i n  

order t o  provide a t ime ly  choice o f  options when required. 

Certain technology 
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Figure 2. Communications Requirements at Mars 

SAFETY IMPLICATIONS OF FAILURE OF COMMUNICATIONS SYSTEM AND 
COST AND TIME REQUIRED TO ESTABLISH AND MAINTAIN IT DICTATES 
LONG LIVED, ULTRA-RELIABLE FACILITIES. 

FAULT TOLERANT AND FAIL Son DESIGNS FOR COMMUNICATIONS 
EQUIPMENT. 

COST OF TRANSPORTING HARDWARE TO MARS WILL PUT PREMIUM ON 
SMALL, LIGHTWEIGHT COMPONENTS WITH LOWER POWER 
CONSUMPTION. 

DATA COMPRESSION AND HIGHER DATA RATES PER HERR TO 
COMMUNICATE OVER LOMG DISTANCES IN REAL TIME WHILE 
CONSERVING POWER. 

ADVANCED SATELLITE DEYODUUTORS TO ENABLE ACCESS BY 
NUMEROUS NARROW BAND CHANNELS USED IN PERSONAL PORTABLE 
COMMUNICATIONS. 

SMALL, LIGHTWEIGHT, RELIABLE AND LOWER POWER (PERHAPS .5 
WATT) PERSONAL PORTABLE COMMUNICATORS. 

Figure 3. Technology Aspects 
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Figure 4. Potential Early Communication System Types 
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COVERAGE 

Figure 5. Potential Later Communication System Types 
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Figure 6. Candidate Communications Systems for Later 
Mars Exploration 

Figure 7. Trojan Relay Satellite to Eliminate Communication 
Occultation o f  Mars by the Sun 
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Figure 9. NASA Related Activit ies and Current Technology 
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