
Algorithms and Programming Tools for //C/P4/5- Image Processing on the MPP: #3 

i .- /(L Final Report for the Period 
May 1984 to July 1987 , 

Anthony P. Reeves 
School of Electrical Engineering 

Cornell University 
Ithaca, New York 14853 

Work Supported by NASA Grant NAG 5-403 

(YhS&-(sg-182349) hLGU81THMS A l D  PROGBMUYC 888-14641 

TOOLS FOR IMAGE PBOCESSISG ON THE BPPt3 
Final Report, Hay 198U - J u l .  1987 lcornell 

CSCL 098 Unclas 

Uaiv.) 186 p G3/61 011U845 .- 

J 

i 



I 
1 
1 
I 
E 

Algorithms and Programming Tools for 
Image Processing on the MPP: #3 

Final Report for the Period 
May 1984 to July 1987 

Anthony P. Reeves 
School of Electrical Engineering 

Cornel1 University 
Ithaca, New York 14853 

Work Supported by NASA Grant NAG 5-403 

Abstract 

This is the third and final report on the work done for NASA Grant 5-403. All the work done 
for this grant is summarized in the introduction and work done since August 1986 is reported in 
detail. For work prior to this date, see Report #1 for the period May 1984 t o  November 1985 
and Report #2 for the period March 1986 to August 1986. The Students who have contributed 
to  this work are Cristina Mahon, Maria Gutierrez and Marc Willebeek-LeMair. 

The work for this grant falls under the following headings: (a) fundamental algorithms for 
the MPP,  (b) programming utilities for the MPP, (c) the Parallel Pascal Development System, 
and (d) performance analysis. In this report, the results of two research efforts are presented: 
region growing by Marc Willebeek-LeMair and performance analysis of important characteristic 
algorithms by Maria Gutierrez. In each case, timing results from MPP implementations are 
included. A paper on Marc’s work is included in which parallel algorithms for region growing on 
the MPP are discussed. These algorithms permit different sized regions to be merged in parallel. 
Marias’ Masters thesis, which is included, gives details on the implementation and performance 
of several important MPP algorithms. These include: a number of standard permutations, the 
FFT, convolution, arbitrary data mappings, image warping, and pyramid operations. All of 
these functions have been implemented on the MPP. The permutation and image warping func- 
tions have been included in the standard development system library. 



Table of Contents 

Section Page 

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.1 Fundamental Algorithms . . . . . . . . . . . . . . . . . .  2 
1.2 Programming Utilities . . . . . . . . . . . . . . . . . . .  3 
1.3 The Parallel Pascal Development System . . . . . . . . . .  3 
1.4 Performance Analysis . . . . . . . . . . . . . . . . . . .  4 
1.5 VisitstoNASA . . . . . . . . . . . . . . . . . . . . . .  4 
1.6 Pioneer Remote Users . . . . . . . . . . . . . . . . . . .  4 

2. SUMMARY OF RESEARCH COVERED IN REPORT 111 . . . . . . . . . . . .  6 
2.1 Fundamental Algorithms . . . . . . . . . . . . . . . . . .  6 
2.2 The System Library . . . . . . . . . . . . . . . . . . . .  7 
2.3 The Development System . . . . . . . . . . . . . . . . . .  8 

3. RESEARCH COVERED IN REPORT 12 . . . . . . . . . . . . . . . . .  10 
3.1 Fundamenfa1 Algorithms . . . . . . . . . . . . . . . . . .  10 
3.2 General Utilities . . . . . . . . . . . . . . . . . . . . .  11 
3 . 3  Performance Analysis . . . . . . . . . . . . . . . . . . .  11 

4 .  RESEARCH COVERED IN THIS REPORT . . . . . . . . . . . . . . . .  13 
4.1 Fundamental Algorithms . . . . . . . . . . . . . . . . . .  13 
4.2 Programming Utilities . . . . . . . . . . . . . . . . . . .  14 
4 . 3  Performance Analysis . . . . . . . . . . . . . . . . . . .  15 

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

6. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

APPENDIX A: REGION GROWING ON A HIGHLY PARALLEL MESH-CONNECTED 
SIMD COMPUTER 

APPENDIX B: ALGORITHMS AND PERFORMANCE ANALYSIS FOR THE MASSIVELY 
PARALLEL PROCESSOR 

APPENDIX C: PERMUTATION FUNCTION DOCUMENTATION 

8 
I 
1 



1. Introduction 

The implementation of a number of fundamental algorithms on the Massively Parallel Pro- 

cessor (MPP) has been studied. The work reported here may be categorized under the following 

four headings: (a) fundamental algorithms for the MPP, (b) programming utilities for the MPP,  

(c) the Parallel Pascal Development System, and (d) performance analysis. 

In fundamental algorithms we first explored basic algorithms which were known to match 

well to the MPP namely local filtering including convolution. Algorithms which did not match 

directly onto the MPP were then considered these included: the FFT, image rotation, interpola- 

tion, image warping, pyramid operations, sorting and parallel region growing. We also explored 

enhancements t o  the Parallel Pascal software environment which would allow us and other 

researchers t o  more conveniently use the MPP. 

First, a set of utility programs were written for commonly used functions that were not 

intrinsic to the Parallel Pascal Language. These included operations such as random number 

generation, large array manipulation, masked reduction functions, near neighbor functions 

pyramid primitive operations and standard data permutations. 

Second, since since Pascal (and also Parallel Pascal) does not have a library mechanism, a 

library preprocessor was developed. This permitted algorithms and utility functions to be 

installed in a System Library in such a way that they could be invoked to  operate on different 

data array sizes and also on different data types. These features are not usually found with other 

library preprocessors but are very important for the MPP environment. 

Third, the development and maintenance of a Parallel Pascal Development system, which 

allowed programs in Parallel Pascal to be developed and tested on any conventional computer, 

became vital t o  our work. This research was started before the M P P  was operational. Further- 

more, once the MPP was operational, we have had continuous problems with both the data  link 



2 

and the system environment when using the MPP remotely. The Development System permitted 

algorithm development on the local computing resources and reduced the contention for access to 

the MPP. The Development System documentation [l] has been distributed to the MPP users 

and we have distributed the Development System including the System Library to a number of 

different sites. 

Finally, we developed methods to characterize the performance of the MPP. This was use- 

ful to both provide information on permutation costs to MPP programmers and to asses the 

efficiency of the programming environment. A number of the fundamental algorithms and their 

performance on the MPP are covered in this final report. 

, 
I 

The Students who have contributed to this work are Cristina Mahon, Maria Gutierrez and 

Marc Witlebeek-LeMair. Cristina and Maria have now completed their masters degrees and 

Marc is still working towards the PhD degree. The results of this research program include (a) a 

number of novel algorithms which have been implemented on the MPP, (b) a set of useful pro- 

gramming utilities which have been organized in a system library, (c) a (documented) program 

development system which can be used on conventional computers (this includes the system 

library) and (d) a detailed performance characterization of the MPP and its software environ- 

ment. 

The remainder of this section outlines the achievements of the research program. Sections 

two and three outline the work covered by the previous two reports and section four describes 

the work done during the period covered by this report. 

1.1 Fundamental Algorithms 

A number of important fundamental algorithms which test various aspects of the MPP 

architecture have been developed and analyzed. All of these algorithms were first developed on a 



a 

conventional computer using the Parallel Pascal Development System; they were then moved to 

the MPP where their performance was tested. Making these algorithms operational on the MPP 

typically involved more work than their initial development. Most of the results for the MPP 

implementations are given in this report. 

The algorithms which have been developed include: the FFT,  two dimensional convolution, 

median filtering, sorting, image warping, image rotation (with interpolation), random number 

generation, pyramid filtering (Gaussian and Laplacian), general data  mapping, and parallel 

region growing. 

1.2 Programming Utilities 

The Parallel Pascal environment was intended to be augmented with a system library of 

commonly used functions. A large number of utility functions have been developed and installed 

in such a library. These include: masked reduction functions, large array shift functions, regular 

permutations, and the fundamental algorithms mentioned above. 

1.3 The Parallel Pascal Development System 

A program development system has been developed for both the M P P  and conventional 

serial computers. This system greatly simplifies the development of high level language pro- 

grams for the MPP. Furthermore, i t  allows programs to be developed and tested on any conven- 

tional computer using the debugging aids available for Pascal on that  computer. This environ- 

ment consists of a set of system programs and a library of general purpose Parallel Pascal func- 

tions. The documentation for the Parallel Pascal Development system is given in report #l. 

Updates to this library are described in report #2 and this report. We have distributed the 

UNIX version of the Parallel Pascal System to number of sites; the VMS version has been distri- 



4 

buted by NASA on the MPP software tape. 

1.4 Performance Analysis 

Conventional performance measures for supercomputers, such as Fortran loops, are not a 

good way to  benchmark the MPP. Massively parallel systems are not suitable for all scientific 

applications; however, there is an important class of applications for which they are very 

effective. We are interested here in evaluating the performance of such systems for applications 

to which they are well matched. Typical algorithms of such applications are the Fast  Fourier 

Transform (FFT) and matrix convolution; the performance of both of these operations on the 

MPP is considered in detail. 

In order to further analyze the performance of a massively parallel processor system it  is 

necessary to characterize its data permutation ability. A characterization scheme has been 

developed which involves measuring the ability to  perform a set of regula1 permutations. These 

permutations occur in many scientific problems and knowledge of their mplementation speed 

may also be useful in guiding a programmer to develop efficient programs. 

1.5 Visits to  NASA 

During this report period Maria, Marc and myself have visited the NASA Goddard Space 

Flight Center on several occasions. Algorithms have been tested on the MPP and a presentation 

on the development system was made to the M P P  users group. 

1.8 Pioneer Remote Users 

In addition to the development of the reported algorithms and software this grant provided 

us with the opportunity to be the pioneer remote users of the MPP. Most of the work on the 

MPP was done from Cornel1 over a telephone line which in itself absorbed a significant amount 



5 

of the available hnds.  We also made several visits to NASA; on two occasions seminars were 

presented on the Parallel Pascal environment. Considerable discussions were held with NASA on 

the development of the 1 /0  system for the MPP and other aspects of the high level language 

environment. The complete Parallel Pascal development system has been installed on the MPP 

host and has been distributed by us to a number of remote sites. It has been ported to a number 

of conventional computers including VAX systems running either VMS or UNM. 



6 

2. Summary of Research Covered in Report #l. 

A major contribution to this initial work was made by Cristina Mahon (previously Cristina 

Moura); her masters thesis [2] is included in report #l. In addition to developing a number of 

algorithms for the MPP,  Cristina was one of the first remote users of the MPP. She developed a 

number of programs for conveniently using the MPP from a remote site and much of her time 

was spent identifying bugs in the initial version of the MPP code generator. She developed a 

number of novel algorithms for arbitrary data mappings, permutations, and image rotation 

including interpolation. These algorithms were all tested and evaluated using the Parallel Pascal 

Development system; several of the algorithms were implemented on the MPP. These algorithms 

have been published [3] and a copy of this paper has been included in report #l. The 

specification of the Parallel Pascal language has now been published [4,5]; these papers are 

included in report #l. 

In addition to Cristina’s work, the manual for the Parallel Pascal development System and 

the documentation for the system library is included in report #l .  

Some of the research highlights which are covered in report #l are listed below. The fol- 

lowing three subsections deal with fundamental algorithms, programming utilities and the 

development system. No work on performance analysis was done during this first period. 

2.1. Fundamental Algorithms 

Three types of algorithm were developed during the period of report #l. These were 

heuristic data mapping, matrix rotation and interpolation. 

A Data Mapping Algorithm. A fast heuristic arbitrary data mapping algorithm has been 

developed. For most mappings this is much faster than other techniques such as sorting. This 

has been implemented on the MPP for both regular (128 x 128) and large ((n * 128) x (m * 128) 



7 

two dimensional arrays. 

Matrix Rotation Algorithms. Fast matrix rotation algorithms have been implemented based 

on the above data mapping function. The nearest neighbor algorithm has been tested on the 

MPP. Large matrix nearest neighbor rotation, and interpolation schemes have been developed 

and tested on the Development System only. 

Interpolation Algorithms. A high speed interpolation algorithm has been implemented for 

bilinear and bicubic interpolation for image rotations (any angle) and small matrix warps. These 

have been tested on the Development System but not on the MPP. 

2.2. The System Library 

A set of general purpose library programs have been developed. All of these programs run 

correctly on the development system and nearly all of them have been tested on the MPP. 

General Utilities. 

generator, an index generator, simplified 1/0 functions and a parallel ceiling function. 

Programs in the general utilities group include a parallel random number 

Masked Reduction Functions. It is frequently necessary to apply a reduction function to a 

subregion of an array. The masked reduction library functions are similar to the primitive 

reduction functions except that  a Boolean array mask parameter is required. 

Large Array Utilities. The large array utilities are shift and rotate functions that operate on 

matrices which have dimensions that are multiples of 128. Both the crinkled and blocked data 

structures are supported. There are also shift and rotate functions which treat  a 128 x 128 array 

as a vector of 16384 elements. These functions do not use the hardware spiral interconnections; 

the use of the regular mesh interconnections is faster for multiple element shifts. 



8 

Near Neighbor Convolution Functions. Many low level image processing applications 

require convolutions between images and small kernel matrices. Programs in this group simplify 

the entry of small matrices and the application of these matrices to image arrays. 

Pyramid Operations. A pyramid convolution function has been implemented; this is a three 

dimensional convolution function which operates on the 13 near neighbors of a pyramid data 

structure. This data structure is embedded within an MPP array. Functions are also available 

for both the vertical and horizontal data shift operations that are associated with pyramid algo- 

rithms. 

2.3. The Development System 

A Single Compiler Command. A command file has been written both for the MPP and the 

development system which, with a simple noninteractive command, compiles a program, makes 

all the library links, and in the case of the MPP,  loads the program onto the system. 

The Library Preprocessor. Standard Pascal does not have any library facilities. A general 

purpose library preprocessor has been developed which works for both the MPP compiler and the 

development system. The preprocessor looks for library subprograms first in named files, then in 

the local directory, and finally in a system library directory. The MPP compiler version of the 

preprocessor also examines a special M P P  system library before the general system Iibrary. This 

library contains system library programs which have been modified to  overcome deficiencies in 

the MPP compiler. This library preprocessor can be used in conjunction with the assembly 

language library feature which is built into the MPP Parallel Pascal compiler. It is also able to  

work in conjunction with any library facilities that  are available with a local Pascal compiler 

that  is used with the development system. 



9 

The Parallel Pascal Translator. The translator is the heart of the development system. It 

translates a Parallel Pascal program into standard Pascal for execution on a conventional serial 

computer. The translator is a Pascal program with over 8000 lines of code. It has been in a very 

stable form for over a year now. It still has some limitations but these are now well documented. 

In addition to  being used by this and other MPP research groups i t  has also been used in a Paral- 

lel Processing course which has now been offered three times with an enrollment of about 50 stu- 

dents each time. 



10 

*- "3. Rbearch Covered in Report #2 

The work described in this report was conducted by Maria Gutierrez, Marc Willebeek- 

LeMair, and myself. The work for this period of the grant falls into two main categories: algo- 

rithms for the MPP and performance analysis of data manipulations for the MPP and related 

architectures. Maria has developed a number of novel algorithms for image warping and 

pyramid image filtering. Marc has investigated techniques for the parallel processing of a large 

number of independent irregular shaped regions on the MPP. In addition some new utilities for 

dealing with very long vectors and for sorting have been developed. Not all algorithms have been 

made to work on the MPP. The effort in the final period of the grant will concentrate on the 

MPP implementation. 

I 

~ 

I 
The performance of the MPP for a number of basic data  manipulations has been deter- 

mined. From these results i t  is possible to predict the efficiency of the MPP for a number of 

algorithms and applications. Some of these results have been published [6 ,7 ,8]  and these papers 

are included in report #2. 

Some of the highlights of the research for this report period for fundamental algorithms, 

utilities and performance analysis are listed below. The Parallel Pascal development system has 

been improved, and better documentation including a tutorial has been written [l]. The new 

tutorial is included in report #2. 

3.1 Fundamental Algorithms 

Image Processing Algorithms. Algorithms for image warping have been developed; both 

nearest neighbor and bilinear interpolation schemes have been implemented. Both of these func- 

tions are guided by the same heuristic technique which is very efficient for small arbitrary warps 

but can also deal with large image distortions. 



11 

Building on the pyramid processing primitives, which were mentioned in the previous 

report, Laplacian and Gaussian pyramid image filters have been implemented. These algorithms 

are used to decompose an image into a number of bandpass filtered subimages. A number of 

interesting efficient image analysis and image filtering algorithms have been based on this 

pyramid of subimages. 

Local Region Processing. A new approach to the parallel processing of independent regions 

in parallel on the MPP is being investigated. For each region in an image a tree is created which 

spans the region and can be used to  compute features of the region. Special provisions have been 

made for generating trees for non-simply connected regions. Techniques for parallel region 

merging have been developed. After merging two regions, a new tree is generated which covers 

the region in a minimum amount of time. Using these tree procedures, an image segmentation 

algorithm, based on the split and merge paradigm, has been implemented. 

3.2. General Utilities 

A general purpose sorting algorithm has been implemented. Based on the bitonic sorting 

technique this program can sor t  the rows, the columns or treat the whole PE matrix as a long 

vector. Any basic data type can be sorted. 

There are new utilities for local mean, local median and local maximum filters. Also, a gen- 

eral purpose binary matching 

functions is given in report #2. 

9 

3.3. Performance Analysis 

algorithm has been developed. Documentation for all of these 

An analysis of different data  permutations and manipulations on the MPP is presented in 

[SI which is also included report #2. This analysis expresses the cost of data  manipulations in 

terms of elemental arithmetic operations; Boolean, integer and floating point data types are 



12 

considered. Results are computed for arrays of size 128 x 128, 256 x 256, and 512 x 512. An 

extended version of this paper, which includes a general description of the MPP,  is given in [7] 

which is also included in report #2. 

There has been much recent interest in the implementation of parallel pyramid data proces- 

sors. Such a processor could be maded with the MPP by augmenting the processor array with a 

pyramid structure of additional processing elements. A pyramid processor based on the MPP is 

considered in [8] which is also included in report #2. The results from an analysis of the pro- 

posed system indicate that,  in general, there would be little advantage in having the additional 

pyramid hardware for implementing many of the pyramid algorithms. 



4. Research Covered in this Report 

Significant work has been done on fundamental algorithms and utilities during this last 

grant period while no new work has been done to the Development system with the exception of 

updating the library with the newly implemented algorithms. The main tasks for the final part 

of this research project have been to implement a number of algorithms on the M P P  and do a 

detailed evaluation of their performance. 

The work by Marc on parallel region growing is given in Appendix A. He identifies a 

number of primitives for parallel region growing and uses a dynamic embedded tree structure to 

represent these regions. 

Marias work is described in her thesis [9] which is given in Appendix B. Main highlights of 

her achievements include: the implementation of algorithms for image warping, pyramid grow- 

ing and the FFT on the MPP; the implementation and performance evaluation of a number of 

regular permutations on the MPP; and the derivation of optimal execution times for many algo- 

rithms on the MPP. 

4.1 Fundamental Algorithms 

Parallel Region Growing. A number of primitive operations for parallel region growing have 

been designed and implemented. The results of applying a split and merge region growing algo- 

rithm to  various test images on the MPP is reported in Appendix A. The implementation is 

currently not very efficient since it involves a large number of Boolean array operations which 

have been programmed in Parallel Pascal. The current implementation is fast enough for con- 

venient algorithm prototyping. 



The Fast Fourier Transform. An FFT function has been implemented on the MPP which 

can transform either the rows or the columns of a 128 x 128 array in one pass or a two dimen- 

sional transform in two passes. The manual page documentation is included in Appendix C and 

algorithm and timing details are given in Appendix A. 

Convolution and Pyramid Building. The implementation of Pyramid filtering and two 

dimensional convolution operations is reported in Appendix B. Convolution operations are quite 

efficient; however, the implementation of the pyramid functions was much less than optimal due 

to the large number of Boolean array operations in the pyramid algorithms. 

Image Warping and Interpolation. The implementation of a heuristic image warping algo- 

rithm on the MPP is reported in Appendix B. Both nearest neighbor and bilinear interpolation 

are considered; the warp algorithm is tested with image rotation and fish-eye image warps. The 

heuristic algorithm is compared with a simple direct mapping technique. Once again, the heuris- 

tic algorithm does not work as well in practice due to  the use of the inefficient Boolean opera- 

tions. A further problem is the suboptimal implementation of the reduction functions. However, 

in many cases, the heuristic algorithm is still much faster than the simple algorithm. 

4.2 Programming Utilities 

Permutation functions. A number of regular permutation functions have been developed t o  

support the FFT algorithm and for performance analysis. The permutations are exchange, 

shuffle, butterfly and bit reverse. All super and sub variations of these permutations have also 

been implemented. The manual page documentation for these functions is given in Appendix C. 

For more details see Appendix B. 



15 

4.3 Performance Analysis 

The Transfer Ratio. A comparative measure, the transfer r a t i o  [7], is used to express the 

cost of an algorithm. The transfer ratio is defined as the ratio of the time for the data transfer 

over the time for an elemental operation. The time for an elemental operation is defined as the 

average between the time of a multiplication and the time of an addition on the processor array 

171. 

Date Permutations. The performance of the MPP for a number of classical regular data per- 

mutations has been explored. Due to  the orthogonality of these permutations, only one dimen- 

sion of the MPP array needs to be considered in order to characterize its performance. On the 

MPP each permutation is performed concurrently on each row of the processor array; Le., 128 

sets of 128 elements (the performance for permuting the columns is identical). Since all the per- 

mutations considered are orthogonal with respect t o  the two dimensions of the M P P  mesh con- 

nections, these results may be simply extended to the case of permuting a 16384 element vector 

(or 128 x 128 matrix); the transfer ratio cost will be doubled and the compiler efficiency will 

remain the same. See Appendix B for details of these permutations and their performance on the 

MPP. 

Conclusion 

Experience has been gained form the implementation of a number of fundamental algo- 

rithms on the MPP from which the following general conclusions can be drawn. 

1. MPP Permutation Capability 

The capability of the MPP to perform a set of regular permutations has been studied in 

detail. The results indicate that the optimal implementation times for floating point data  

transfers may be reasonable for many applications but the permutation of small length data  



16 

may not be very efficient. The performance of the total system for permutations is also 

quite good for floating point data  but significant savings might be made if the shorter data 

type permutations were reprogrammed in PCU microcode. 

2. Parallel Pascal Compiler Performance 

Several characteristic algorithms have been considered: convolution which is implemented 

with a few primitive operations, the F F T  which involves significant data permutations, and 

the heuristic algorithm which has a data dependent behavior. In general, the Parallel Pas- 

cal Compiler performed well for large data types and deterministic algorithms (which pro- 

vided the lightest load for the MCU). It did not perform as well for complex algorithms 

involving Boolean data or reduction functions; however, in this case i t  was still quite ade- 

quate for algorithm prototyping. It is not clear that  an optimizing compiler would be very 

much faster, for the difficult algorithms, unless it generated PCU microcode for critical sec- 

tions. 

3. The Development System 

The development system has proved to be an indispensable tool for program development. 

It has been stable for a number of years and it is suitable for reliable algorithm develop- 

ment before implementation on the MPP. 

4. Performance Analysis 

A number of tools for performance analysis of highly parallel systems have been developed. 

A table of the performance of permutations and other data manipulations on the M P P  is a 

useful aid for an MPP programmer. 

5. Parallel Pascal 

The language Parallel Pascal has proved to be adequate to express all algorithms in an 

efficient style. The language has also been found to be suitable for programming a class of 



17 

problems for hypercube systems [lo]. A problem with the MPP code generator was that it 

did not implement all the language features and, furthermore, some features were imple- 

mented inefficiently. As intended in the original design, the language is augmented by the 

functions in the system library by means of the library preprocessor which is essentially 

transparent to the user programmer. On the MPP implementation, a set of identical func- 

tions but written in microcode for efficiency could be developed and installed, especially for 

data permutation operations which use special features of the processor array. These func- 

tions would be indistinguishable to the user from other library functions. 

6. MPP Processing Speed 

In terms of processing speed, using Batchers figures [ll] the peak performance of the M P P  

is 288 MFLOPS; from our primitive operation measurements the fastest rate we could 

expect t o  attain is 210 MFLOPS (due to  the slower add time). For the convolution algo- 

rithm a rate of 155 MFLOPS was attained and for a 128 x 128 F F T  the rate was 87 

MFLOPS. These algorithms were conveniently programmed in Parallel Pascal. Further- 

more, 128 x 128 is the worst case size for the F F T  implementation on the MPP; for either 

larger or smaller matrix sizes the comparative overhead due to  interprocessor communica- 

tion would be less. 



18 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

A. P. Reeves, Parallel Pascal  Development Sys t em Version 2.0, Cornell University, School 
of Electrical Engineering Technical Report, October, 1986. 
C. Moura, Programming Tools and Algorithms fo r  the Massively Parallel Processor,  MS 
Thesis, Cornell University, 1985. 
A. P. Reeves and C. H. Moura, “Data Mapping and Rotation Functions for the Massively 
Parallel Processor,” Proceedings of Computer  Architecture f o r  Pa t t e rn  Analysis  and Image 
Database Management ,  pp. 412-419 (November 1985). 
A. P. Reeves, “Parallel Pascal: An Extended Pascal for Parallel Computers,” Journal of 
Parallel and Distributed Computing 1 pp. 64-80 (1984). 
A. P. Reeves, “Parallel Pascal and the Massively Parallel Processor,” pp. 230-260 in T h e  
Massively Parallel Processor,  ed. J. Potter, MIT Press (1985). 
A. P. Reeves and C. H. Moura, “Data Manipulations on the Massively Parallel Processor,” 
Proceedings of the Nineteenth Hawaii  International Conference o n  Sys t em Sciences,  pp. 
222-229 (January, 1986). 
A. P. Reeves, “The Massively Parallel Processor: A Highly Parallel Scientific Computer,” 
pp. 239-252 in Data Analysis  in A s t r o n o m y  11, ed. V .  Di Gesu, Plenum Press (1986). 
A. P. Reeves, “Pyramid Algorithms on Processor Arrays,” pp. 195-213 in Pyramidal  Sys- 
tems f o r  Computer  Visison, ed. V. Cantoni and S. Levialdi, Academic Press (1986). 
M. Gutierrez, Algori thms and Performance Analysis  f o r  the Massively Parallel Processor,  
MS Thesis, Cornell University, January 1988. 
A. P. Reeves and D. Bergmark, “Parallel Pascal and the FPS Hypercube Supercomputer,” 
Proceedings of the 1987 International Conference o n  Parallel Processing, pp. 385-388 
(August 1987). 
K. E. Batcher, “Design of a Massively Parallel Processor,” IEEE Transactions o n  Comput -  
ers C-29(9) pp. 836-840 (September 1981). 



APPENDIX A: REGION GROWING ON A HIGHLY PARALLEL MESH-CONNECTED 
SIMD COMPUTER 



REGION GROWING ON A HIGHLY PARALLEL 
MESH-CONNECTED SIMD COMPUTER 

Marc Willebeek-LeMair t and Anthony P. Reeves* 

' School of Electrical Engineering 
Cornel1 University 

Ithaca, New York 14853 

* Department of Computer Science 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801 

Index Terms: Image structure, Segmentation and 2-D description, Parallel processing, Region growing, 
and Split and merge. 

Abstract 
The region growing paradigm for image segmentation groups neighboring pixels into regions 

depending upon a predetermined homogeneity criteria. A parallel method for region growing on a 
highly parallel SIMD mesh computer is presented. In order to do this, techniques to independently 
compute hnctions on irregular shaped regions have been developed. These techniques make use of an 
embedded tree data structure to represent the regions in an image. The results of implementing a paral- 
lel split and merge region growing algorithm on the Massively Parallel Processor are discussed. The 
approach is shown to be efficient primarily for images involving large numbers of regions. 

1. Introduction 

Region growing is a general technique for image segmentation. Frequently, the basic scheme is 

to combine pixels with adjacent pixels to form regions; regions are then merged with other regions to 

"grow" larger regions. The association of neighboring pixels and neighboring regions in the region 

growing process is often governed by a homogeneity criterion that must be satisfied in order for the pix- 

els and regions to combine. The homogeneity criteria are application dependent and may be dynamic 

within a given application. 

In addition to the homogeneity criterion the order in which regions are merged can have an 

important effect on the final result; many sequential region growing algorithms ignore this fact. We 



consider parallel region growing techniques here, in which a merge decision can be based upon the best 

of all alternatives for all regions simultaneously. 

Highly parallel SIMD processors have been shown to be very effective for regular algorithms 

such as image filtering and the FIT. This work extends the domain of the SIMD processor to the irreg- 

ular processing characteristics of region growing algorithms. Our results indicate that, especially for the 

case of a very large number of small objects, powerful parallel region growing techniques can be imple- 

mented in a reasonable amount of time. Section two of this paper outlines the principles of region 

growing with emphasis on the split and merge algorithm. Section three discusses the characteristics of 

the SIMD architecture and section four considers the parallel implementation of a region growing tech- 

nique on an SIMD architecture. The algorithm complexity is discussed in section five. An example of 

the pamllel region growing technique is presented through a split and merge implementation on the 

Massively Parallel Processor (MPP) in section six. 

2. Region Growing 

Region growing is a technique for partitioning an image by linking individual pixels into groups 

of pixels called regions. The merging of pixels or regions to form larger regions is usually governed by 

a pre-defined homogeneity criterion that must be satisfied. In this section we first define a region and 

discuss its properties, next, we review the concept of homogeneity criteria, and finally, we present a 

split and merge algorithm as an example of a region growing technique. 

2.1. Regions 

A region might correspond to a world object or part of one. As defined by [l], a region is a 

four-connected, two-dimensional area that is allowed to be non-simply connected (contain holes). A 

single pixel cannot belong to more than one region. These properties stated more formally are as fol- 

lows. 

A region R is considered to be a set of points with the following properties: 

-2- 



8 
‘ I  

I 

II 

(1) 

(2) 

(3) 

(4) 

xi in a region R is connected to x, iff there is a sequence (Xi ,  J j )  such that xk and xc+l are con- 
nected and all the points are in R. 
R is a connected region if the set of points x in R has the property that every pair of points is 
connected. 

I, the entire image = u R k .  

R i n  Rj = 0, i # j. 

m 

bl 

2.2. Homogeneity Criteria 

When grouping pixels into regions it is usually necessary that the groups satisfy some sort of 

homogeneity criteria. Therefore, the grouping of neighboring pixels into regions is dependent on the 

characteristics of the individual pixels. Once pixels have been combined to form a region, the region 

assumes certain properties based on the combined characteristics of the pixels as a group (e.g. area or 

texture). A homogeneity criteria can be designed to specify such things as the maximum range or gra- 

dient allowable within a region, etc. This criteria will then be used as a test to determine whether or 

not a given group of pixels can be classified as a region. 

As an example, the pixel range homogeneity criteria H(R) is defined as follows: 

iffor all points in R, 
H(R) = 

This particular criterion requires that the range between the minimum and maximum values within a 

region not exceed a threshold, T. 

A variety of homogeneity criteria have been investigated for region growing, ranging from statist- 

ical techniques, which involve the distribution of pixel grey levels, to state-space approaches, which 

represent regions by their boundaries r1.2.31. 

A problem with many region growing schemes is that large regions require an excessive number 

of merge steps. A computationally expedient technique called split and merge [4] addresses the large 

region problem with a prepmcessing split phase. 

-3- 



23. The Split and Merge Approach 

The split and merge technique requires two types of operations; in our algorithm a fast split phase 

is followed by one or more merge phases. The split stage rapidly partitions an image into square 

regions which conform to a first homogeneity criterion; then a region growing technique is used to 

merge these square regions into larger regions which conform to a second homogeneity criterion. High 

speed is achieved by the top down approach that rapidly deals with very large regions. Such regions 

require many iterations to achieve with just a region growing paradigm. 

(1) Splitting 

The first phase of the algorithm is concerned with dividing the image up into homogeneous, 

square regions of varying dimensions. Beginning with the entire image as the area in question, an area 

is checked for homogeneity. Should the homogeneity check fail, the area is split into four quadrants. 

Each of the quadrants is then checked the same way and recursively split until the homogeneity require- 

ment is satisfied. If an area passes the homogeneity test then it is considered a region and left alone 

until the merge stage of the algorithm. The scheme is illustrated in Figure 1. For this case the homo- 

geneity criterion requires that the range of the pixel values in a region must not be greater than 2. Ini- 

tially each pixel is labeled with a unique identifier number (id). While splitting, pixels are assigned a 

region id number corresponding to the pixel id of the pixel located in the upper left hand corner of the 

quadrant to which they are associated. 

(2) Merging 

In the merge phase, adjacent regions are merged to form non-square regions. Region pairs that 

satisfy the homogeneity criterion are allowed to merge. During a single merge iteration a given region 

can merge with only one other region. Figure 2 presents an example of the merging stage for the 

regions split in Figure 1. In this case, the same homogeneity criterion as for the split phase is used 

again. Now, however, merged region pairs assume the smaller id of the two regions. There is also a 

certain hierarchy to the merge sequence since those region pairs that best satisfy the merge criterion are 

allowed to merge first. Ties are broken by, arbitrarily, allowing the pair with the larger id’s to merge 

-4- 



first. 

For many merging criteria, including the one used in the example, the order of merging is impor- 

tant and this affects both the execution time and the final result. An approach which involves increasing 

the threshold value, in stages, in the merge phase, has been found to improve the quality (i.e., produce 

less regions) in the final result €or region growing using both range images [13] as well as grey level 

images [5]. Certain constraints imposed on the merging order, as mentioned above, help to improve on 

the final results, other constraints, however, are imposed in the parallel merging strategy to avoid violat- 

ing the homogeneity criteria. These constraints will be addressed in section 4. 

3. The Mesh-connected SIMD Architecture 

Many highly parallel computer architectures designed for low level image processing applications 

have been proposed and implemented [6,7,8]. These designs exhibit a variety of interconnection 

schemes between processors and the processors themselves range from simple processing elements in 

the SIMD arrangements to much more sophisticated processors in the MIMD systems. The architecture 

of interest in this paper is the highly parallel (tens of thousands of binary processors) mesh-connected 

SIMD processor array. The SIMD mesh consists of an array of identical processing elements (PES) 

with near-neighbor connections. We will be considering the 4connected case in which processors are 

connected to their neighbors to the north, east, south, and west. The architecture we are considering is 

illustrated in Figure 3. The array of PE's is controlled by a host computer that issues it instructions 

when a parallel array computation needs to be performed and is linked to memory via a bi-directional 

I/O path. Each PE contains an ALU with a limited amount of local memory. 

The SIMD-mesh architecture is particularly well suited for low-level image processing. The phy- 

sical layout of the processor array allows for a direct mapping of pixels to PE's. Furthermore, the type 

of computations inherent in low-level processing, such as image filtering and edge detection, involve the 

analysis of a pixels local neighborhood. 



3.1. Massively Parallel Processor Architecture 

The Massively Parallel Processor [ll] is a SIMD mesh-connected computer arranged in a two- 

dimensional 128x128 array of PE’s. The PE’s are bit-serial, allowing for a flexible data format and 

efficient utilization of resources. Each PE can perform high speed arithmetic and implement all sixteen 

possible boolean functions. In addition, each processor contains a mask register that can be set to inhi- 

bit execution of an instruction. PE’s are connected to their near-neighbors to the north, east, south, and 

west. For data to be transmitted from one point of the array to another, it must be routed via a path 

linking both points through adjacent processors. The MPP is equipped with a built-in sum-OR tree 

which combines the output from all PE’s in a tree of OR elements. This can be used to check for termi- 

nation or convergence of a repeated sequence of instructions. 

4. Parallel Region Growing 

A parallel region growing strategy is affected by both the form of the homogeneity criteria and 

the constraints of the parallel processor architecture. In this section a set of representative local pro- 

cessing functions which can be used to realize a large number of homogeneity criteria are defined. 

Their implementation on the meshconnected SIMD architecture, outlined in the previous section, is 

considered. 

4.1. Parallel Region Growing Primitives 

A general set of primitive operations, which can be used on a multi-processor system to imple- 

ment parallel region growing algorithms. is described in this section. The strategy for mapping image 

points onto processors in a multi-processor system may vary from one architecture to another. Concep 

tually, a region is characterized by the values and spatial locations of its individual points, as well as 

the properties of all individual points combined. Therefore, a suitable representation of a region would 

be: a unique region id number assigned to all points in the region in conjunction with a region descrip- 

tor that contains all relevant global information needed to describe the region. Figure 4(a) illustrates 

-6- 



the partition of an image, where each region in the partition is described using the representation sug- 

gested above. We assume that the region descriptor information is located within a given processor 

However, there is no guarantee or constraint that confines all image points within a region to a single 

processor. 

The primitive operations required by a parallel region growing algorithm are as follows. First, in 

order to adequately characterize a region, a method to accumulate information from all region points to 

the region descriptor is needed. Second, in order to update region points concerning changes in status 

(i.e. region id due to merging), information held at the descriptor must be distributed out to all region 

points, particularly boundary points. Third, in order to interact with all neighboring regions in parallel, 

a method for exchanging information between all neighboring regions, sharing a common boundary is 

needed. These tasks are fundamental in a parallel region growing process and can be accomplished 

using the following set of primitives. 

(1) Reduction primitive: reduces information from many points in a region to a single value and 
records it at the region descriptor. Typical reduction functions used are minimum, maximum, and 
sum. 
Distribution primitive: distributes a value from the region descriptor to all points in the region. 
Exchange primitive: exchanges information between points across a common boundary shared 
by neighboring regions. 

(2) 
(3) 

Having defined a set of general parallel region growing primitives, we now consider their imple- 

mentation on a mesh-connected SIMD architecture. When processing images on a highly parallel array 

of processors each pixel in the image can be directly mapped to a processor in the array. Initially each 

processor will only have information about a pixel's value and its spatial location in the image (this is 

straight forward with this architecture since a pixel's location in the processor array is a direct spatial 

mapping of its location in the image). To adhere to the region representation outlined above, as pixels 

are joined to form regions, a given PE within each region is designated to be the region descriptor (Fig 

4(b)). What we require is a systematic way of choosing the descriptor PE and a method to efficiently 

implement the primitives described above. The nature of the primitives, particularly the reduction and 

distribution functions, suggest that a tree structure could be an efficient mechanism to incorporate into 

the region representation outlined thus far. This reasoning helped us arrive at the embedded tree data 

structure described in the following section. 

-7- 



4.2. The Embedded Tree Data Structure 

4.2.1. Embedded Tree Description 

An embedded tree structure is used to represent a region in an image. The tree structure is 

embedded within a region’s boundaries on the PE array. Each region PE is assigned to a vertex in that 

region’s embedded tree. A natural choice of PE to be designated as region descriptor is the PE located 

at the corresponding location of the tree root What follows is a formal definition of a tree along with 

some additional terminology concerning trees. 

Definition [9]. A tree is a directed acyclic graph satisfying the following properties: 

(1) 

(2) 

There is exactly one vertex, called the root, which no edges enter. 

Every vertex except the root has exactly one entering edge. 

(3) There is a path (which is easily shown unique) from the root to each vertex. 

A sample tree structure is presented in Figure 5(a). The arrows indicate the edge directions and will 

help to illustrate the following terminology. 

Terminology [9]. If (v,w) is a directed edge of the tree, then v is called the parent of w and w the 

child of v. A vertex with no children is called a le@. The deprh of (I tree is the length of the longest 

path from the root to a leaf. For example, in Figure 5, vertex a is the parent of vertices b, c. and d, and 

conversely vertices b, c, and d are children of vertex a. Vertices e, f, i, j, k, and 1 are all leaves, and 

the depth of the tree is 3. 

Definition. An embedded tree is a tree confined within a specified boundary, and linked in such a way 

that all points within the boundary correspond to a unique vertex in the tree. 

An example of an embedded tree is shown in Figure 5(b). Since each point in the image, or a region 

for that matter, is mapped to its own processor, we can think of the processors themselves as the tree 

vertices. Furthermore, edges of the tree correspond to interconnections between adjacent processors. 

-8- 



I 
I 
8 
I 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
1 
I 

We chose the tree data structure because of its fan-in, fan-out nature and because it is easily 

extended to cover a two-dimensional arbitrary shaped region. The tree’s fan-in and fan-out qualities 

make it very efficient for implementing the reduction and distribution primitives. By using a tree to 

link together the various pixels in a region, where the pixels form the vertices of the tree and the region 

descriptor is located at the tree root, it becomes possible to broadcast information from the region 

descriptors to other region pixels, or conversely, to accumulate region information at the descriptor 

PE’s, within all regions simultaneously. What is important, however, is the way the tree is constructed. 

The primitives’ efficiency is directly dependent on the depth of the tree. When processing regions of 

an image in parallel, the complexity of the functions employing the tree structure is bounded by the 

maximum tree depth of all regions in the image. Therefore, it is essential that the trees be constructed 

in such a way so as to minimize the tree depth of all regions. 

4.2.2. Embedded Tree Generation 

An iterative shrinking algorithm is used to create an efficient tree structure. This technique sys- 

tematically removes pixels around a region’s border and creates pointers linking the removed pixels to 

still existing neighboring pixels. The shrinking process continues until only a single pixel of each 

region remains. This remaining pixel is defined as the tree root or region descriptor. This strategy will 

centralize a tree root within a region. 

The shrinking algorithm makes use of the near-neighbor connection scheme existing in the mesh. 

A pixel can be removed in the shrinking process only if certain conditions regarding its neighbors are 

true. This requires that each PE investigate its neighbors’ values in order to make a decision on 

whether or not to “shrink”. Initially al l  PE’s in the array contain a binary one. As pixels are removed 

in the shrinking process these ones are changed to zeroes. Two things about a PE’s neighbors need be 

known in order to determine whether or not the conditions required for shrinking exist, (1) their region 

id number and (2) their binary value. The set of conditions shown in Figure 6 pertain to the shrinking 

of the central pixel into its neighbor to the south. Shrinking may occur into any one of a pixels four 

near-neighbors. To determine whether a pixel may shrink to the west, north, or east, the conditions 

need to be adjusted accordingly. In one iteration of the shrinking algorithm the conditions are checked 

-9- 



for each of the four neighbor directions in turn. Should a pixel satisfy the conditions in any one of these 

directions, its binary value is set to zero and a set of pointers are created. Each processor contains a 

pointer set which is encoded in four bits; one bit for each possible direction. The resulting embedded 

tree is represented by a double-linked set of pointers. A parent-pointer is created at the location of the 

removed pixel with a value corresponding to the shrinking direction. Similarly, a child-pointer is 

created at the neighboring PE, into which the pixel was shrunk, with a value corresponding to the direc- 

tion of its new child For example, if parent-pointer[d] is m e  for PE(ij) then the pixel at (ij) is linked 

to its parent in the direction corresponding to d. We can ascertain that at the parent node, child- 

pointer[d] will be true for the value of d corresponding to the opposite direction. Following the 

definition of a tree a PE may have up to four child-pointers, but never more than a single parent- 

pointer. The region PE with no parent-pointers is the root of the region tree, and those PE’s with no 

child-pointers are designated as the tree leaves. The result of applying the tree generating algorithm is 

illustrated in Figure 7. The region pixels are linked together by the parent-pointers, shown in 7(c), 

created during the shrinking process. A corresponding set of child-pointers exist. 

4.23. Regions with Holes 

The algorithm just described cannot generate embedded trees for non-simply connected regions 

(i.e. regions with holes). Rather than converging to a single point, the algorithm converges to a single 

element wide, ring of region pixels which surround the enclosed region. This ring is similar to a 

medial axis of the region to which it belongs. The result of applying the shrinking algorithm to a region 

with a hole is shown in Figure 8(a). Since a root node must be chosen from the remaining pixels con- 

tained in the ring, it is most efficient to choose that pixel with maximum distance to the region boun- 

dary. This would help to minimize the height of the region’s tree. Should two or more pixels possess 

the same height, the pixel with the highest id is selected, arbitrarily, to be the region root. The remain- 

ing pixels in the ring are then, systematically, linked to each other in the direction of the chosen root. 

The ring uncoupling is illustrated in Figure 8(b). Pixels neighboring the mot are uncoupled from the 

ring and linked to the root first, Their neighbors in the ring are removed next, and so on, until all ring 

pixels have a linked path to the root. This solution will also work for regions with more than one hole. 

-10- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
8 
I 
4 

Unfortunately, however, the presence of holes can lead to rather inefficient (deep) tree structures. 

43. General Parallel Region Growing Algorithm 

Region growing, as mentioned earlier, is achieved by merging regions to form larger regions that 

conform to a predefined homogeneity criterion. Using the embedded tree structure, two regions can be 

merged together by discarding the embedded trees of the individual regions and re-generating a single 

more efficient tree for the combined regions. Merging is performed in iterations and terminates when 

no more regions are able to merge without violating the homogeneity criterion. The parallel merging is 

accomplished by regions exchanging information with their neighbors and accumulating this information 

at the region descriptors for evaluation. Regions can then select a merge partner based on the homo- 

geneity criterion being used. Although more than one neighbor may be suitable for merging, merging 

is performed in a hierarchical fashion giving preference to those regions that best satisfy the criterion 

and allowing them to merge first. The algorithm terminates when all possible merges have been per- 

formed. 

The order of merging and a solution to the merge contention problem are important aspects in the 

parallel approach. It is not possible for a region to merge with more than one other region during a sin- 

gle merging iteration. The resulting region could otherwise be in violation of the homogeneity require- 

ments. Most contentions are resolved by allowing regions that are "most homogeneous" to merge first. 

However, should a situation arise in which three regions want to merge with each other (all with 

equivalent homogeneity values) the contention is broken by forcing each region to select only one 

merge partner. that one could be arbitrarily chosen as the region with the highest id. Two common 

merge contention situations are illustrated in Figure 9. Merging is not performed unless both regions 

select each other as merge partners. This insures that no more than two regions from a group will select 

each other to merge with. A region that was unable to merge during a given iteration because its selec- 

tion was not mutual, may succeed in a subsequent iteration. 

-11- 



5. Algorithm Complexity 

The region growing algorithm complexity depends upon both the implementation of the region 

growing primitives and the number of iterations required to arrive at the desired result. The cost of 

implementing a region growing primitive, Embed, Dist, or a reduction, is O(d) where d is the maximum 

distance across any region. The Exchange primitive is implemented in constant time. 

The speed of the primitives also depends somewhat on the region shape and topology. Convex 

blob-like regions containing O(& elements are processed in O(d) time. Non-simply connected regions 

require slightly more time than simple regions due to the additional time taken to compute the embed- 

ded tree. The complexity for these regions is still O(d) and, in general, the cost increase will be less 

than 2. Strange concave shapes, such as spirals. require the most time. Here d is the longest path 

between two pixels in a region which does not go outside the region. However, these regions rarely 

occur in practice. The ideal cost complexity is O(fog d) but, this cannot be achieved because of routing 

limitations on a meshconnected architecture. 

The number of iterations also depends upon the region dimension d. In an ideal situation, merg- 

ing of a two-dimensional region can be achieved in O(fog d)  parallel merges starting with each pixel as 

a region; however, if only one merge occurs during each iteration then the worst case complexity is 

O ( 4 .  

There are two heuristics which can greatly reduce the number of merge iterations. The 6rst is the 

split phase which was mentioned earlier. The split algorithm only requires O(fog d) computations for 

the region growing primitives (although routing is still O(d)) and O(fog d)  iterations to complete. 

Second, in many practical applications there is a "background behind a collection of objects. This 

background, being a single region, could dominate the algorithm cost. However, in most cases it is 

possible to remove the background from consideration by a fairly simple thresholding technique. The 

algorithm cost then depends on the span of the largest object which remains. 

-12- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
1 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
B 
I 

6. Parallel Split and Merge on the Massively Parallel Processor 

A parallel split and merge algorithm has been implemented on the Massively Parallel Processor 

(MPP), using the parallel region growing technique outlined in the previous sections. 

6.1. The Parallel Split and Merge Algorithm 

In order to implement the parallel region growing algorithm, a procedure for generating the 

embedded tree data structures described in section 4.2 and a set of primitives, closely resembling those 

outlined in section 4.1, were designed. 'Ihese primitives are as follows. 

EMBED(ridm, pptrs, cptrs, maxtd): 
This procedure receives as input the region id matrix, ridm, and performs the region shrinking. 
and embedded tree generation. It returns a matrix of parent and child pointers (pptrs,cptrs), and a 
value proportional to the maximum tree depth, maxtd. Region id zero is reserved to mask out 
regions that need not be processed. 

MIN(pptrs, maxtd, pixval, rootval): 
MAX(pptrs, maxtd, pixval, mtval): 

These procedures receive as input the tree parent pointers, pptrs, the maximum tree depth, 
maxtd, and the pixel values, pixval, and perform reduction functions. They deliver the region 
minimum and maximum, respectively, to the region roots (rootval). 

This procedure receives as input the tree child pointers (cptrs), the maximum tree depth (maxtd), 
and the values contained at the region roots (rootval) and distributes them throughout the regions 
(pixval). 

This procedure receives as input the region id matrix (ridm) and the pixel values (pkval) to be 
exchanged across the region border. The paramar direction is needed to discriminate between 
neighboring regions bordering in different directions. The pixel values of neighboring regions are 
returned in neighbval. 

DIST(cptrs, maxtd, rootval, pixval): 

EXCHANCE(ridm, pixval, direction, neighbval): 

Since all  regions are square in the split phase of the algorithm, it is not necessary to create 

embedded trees to represent the regions. On the h4PP the regions in the split phase will have dimen- 

sions mxm where m is a power of 2. Hence, the upper-left comer PE of each region can be designated 

as the region root. Then, by initially treating each pixel in the image as an independent region, an 

iterative merging technique can be used to create larger square regions comprised of four subregions 

(one in each quadrant). This has the Same effect as a top-down split but is more efficient. Using the 

homogeneity criterion suggested earlier, eqn (2.1). all information needed to describe a region can be 

-13- 



accumulated at the root during the region growing process. In effect, a larger region’s properties (e.g. 

minimum and maximum values) are obtained from the properties of its four subregions. There is no 

need to re-evaluate the minimum or maximum values of all pixels in a region, but simply to calculate 

the minimum and maximum of the values held at the roots of the four subregions. A larger region is 

created by merging its four quadrants only if all four quadrants are homogeneous regions and the com- 

bined properties of the subregions satisfy the homogeneity criterion. Hence, reduction operations only 

require a constant number of steps to perfonn and the distribution operation can be performed in 

O(log(m)) steps. However, since the MPP only has near-neighbor connections the cost of routing is still 

O(m). This could be reduced if a more complex interconnection network between PE’s were available 

(e.g. O(log(m)) given a hypercube interconnection). In any case, this is much more efficient than using 

the embedded trees, and only requires a slight modification of the parallel primitives described above. ’ 

The modified primitives for square regions are described below. 

SQRMIN(iteration,pial,rootval): 
SQRM AX(iteration,plxval,rootval): 

These procedures receive as input the splitting iteration number to detennine the dimensions of 
the regions being processed and the locations of the region mots. The region minima and max- 
ima are calculated by first shifting the minimum and maximum values of the southwest and 
southeast quadrants to the roots of the northwest and northeast quadrants, respectively. Then, the 
partial result at the northeast quadrant is shifted left to the northwest quadrant root (now also the 
square’s root) to detennine the square’s minimum and maximum. The results are returned in 
rootval. 

The parameter dimensions is an array containing the dimensions of each region. This informa- 
tion is used to determine how far down, and then across, the value at the m t  needs to be broad- 
cast to reach all region PE’s. The result is returned in pixval. 

SQRDIST(dimensions,rootval,pixval): 

Both phases of the split and merge algorithm are described below. Each phase of the algorithm is first 

outlined by dividing it into a series of steps. The corresponding pseudcwxle for each phase is then also 

broken down into the same steps. The homogeneity criterion suggested earlier, eqn.(Zl), is used. 

1. Since initially all pixels are treated as independent regions, the region minimums and maximums 
are set to equal the pixel values and the split iteration is set to one. 

-14- 

I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2. 
3. 
4. 

5. 

6. 

Each region’s maximum and minimum values are computed. 
The region ranges are calculated at the roots. 
If any regions display a range within the allowed threshold, the new region dimensions are set at 
the roots. 
The iteration value is incremented and, unless either the iteration value exceeds log(n) (n is the 
image dimension) or no merges occurred during the last iteration, conml is returned to step 2. 
The regions’ mot PE id’s are distributed to all region PE’s using the region dimensions contained 
at the region roots. 

Comment: Variable declarations: 
ictn, pid, rootnode : PARALLEL ARRAY [1..128,1..1281 OF [0..163831; 
pixval, regmin, regmax, T,  range : PARALLEL ARRAY [1..128,1..128] OF [0,.255]; 
dimension : PARALLEL ARRAY [1..128,1..128] OF [1..128]; 
iteration : [1..7]; 
merge : BOOLEAN; 

1. 

2. 

3. 

4. 

5. 

Comment: Initialize region maximum and minimum values to the 
Comment: pixel values,pixval. Set the split iteration to one. 
regmin t pixval, 
regmax t pixval; 
iteration t 1; 

REPEAT 
Comment: The region minima and maxima are calculated by 
Comment: propagating the minimum and maximum values of 
Comment: the subregions to the square’s root. 
SQRMIN(iteration, regmin, regmin); 
SQRMAX(iteration, regmax, regmax); 

Comment: Each region’s range is calculated at the region root. 
Comment: Note that the region rootnode id’s can be calculated 
Comment: as a function, f, of the iteration and the unique 
Comment: processor id’s @id). 
rootnode t flpid,iteration); 
WHERE rootnode DO 

range t regmax- regmin; 

Comment: If any range is within the homogeneity threshold, T, 
Comment: then set the region dimension at the region root. 
merge t AhT(range < T); 
IF merge THEN 

WHERE ((range < T) AND rootnode) DO 
w m m o n  + 2itmuioa,. 

Comment: The iteration value is incremented and the program 
Comment: loops back to step 2 unless either there were no 
Comment: merges during the last iteration or the iteration 
Comment: value has exceeded its limit. 
Comment: Splitting is performed iteratively with the splitting 
Comment: dimension of the sub-quadrants increasing by a factor 
Comment: of 2 at each subsequent iteration. Hence a maximum of 
Comment: log(n) iterations are needed (n is the image dimension). 

-15- 



iteration t iteration + I ;  
UNTIL ((iteration > log(n)) OR NOT merge), 

6. Comment: Once a l l  possible quadrants have merged the regions are 
Comment: assigned an id equivalent to the region's rmt PE id 
Comment: This value, held in pid is distributed from the 
Comment: mot. The region dimension matrix, dimension is 
Comment: used to control the broadcasting of this value to all 
Comment: region PE's in idm. 
SQRDIST(dimension, pid, idm); 

The Merne ~hase algo rithm 
1. 
2. 

3. 
4. 

5. 

6. 

Embedded trees for all regions are constructed using the region id's. 
Minimum and maximum values and region id's are exchanged between neighboring regions, to 
determine the range of combined regions, and possible merges. 
Lowest merge ranges are accumulated at the region roots and distributed to all region PE's. 
In case more than one neighboring region yields the same "lowest merge range", the region with 
the higher id is selected. 
Choices of merge selection are exchanged with neighbors. If two regions select each other, both 
regions merge by assuming the smaller id of the two. 
Unless no merges occurred during the last iteration, control returns to step 1. 

The Merne ~hase gseudo-code 

Comment: Variable declarations. 
riah, regmins, regmaxs. mergeneighbid. mergechoices, mergechoice, 
neighbmergechoice : PARALLEL ARRAY [1..128,1..128] OF [0..16383]; 
pixval, mintoroot, maxtoroot, mergerange, neighbmin, neighbmax, newmergerange. 
bestrangeval : PARALLEL ARRAY [ 1..128,1..128] OF [0.355]; 
cptr, pptr : PARALLEL ARRAY [0..5,1..128,1..128] OF BOOLEAN; 
merger : PARALLEL ARRAY [ 1..128,1..128] OF BOOLEAN; 
maxtd, i : INTEGER; 

I. Comment: create embedded trees for al l  regions using 
Comment: the region id matrix, ridm. Then determine each 
Comment: region's minimum and maximum from the pixel values, 
Comment: pixval, and distribute these out to al l  region pixels as 
Comment: regmins and regmaxs. 
EMBED(ridm, pptrs, cptrs, maxtd); 
MIN(pptrs, maxtd, pixval, mintoroot); 
MAX(pptrs, maxtd, pixval, maxtoroot); 
DIST(cptrs, maxtd, mintoroot, regm'ns); 
DIST(cptrs, maxtd, maxtoroot, reg=); 

2. Comment: By initializing the mergerange as the homogeneity 
Comment: threshold, T, only neighbors yielding an acceptable 
Comment: merging threshold are considered. 
mergerange t T; 
Comment: All four neighboring directions are examined and 
Comment: both minimum and maximum values as well as the 
Comment: neighbors id are obtained. 
FOR i t I TO 4 DO 

-16- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 



BEGIN 
EXCHANGE(ridm, regm'n, i ,  neigbmin); 
EXCHANGE(ridm, regmax, i ,  neigbmax); 
EXCHANGE(ridm, ridm, i ,  neighbid); 
Comment: In order to determine the range of a possible 
Comment: merge between a region and its neighbor, the 
Comment: extremes of both regions minimums and maximums 
Comment: must be evaluated. 
WHERE neighbmax < regmax DO 

WHERE neighbmin > regm'n DO 

newmergerange t neighbmax-neighbmin; 
Comment: As each neighboring direction is examined, 
Comment: the merge range and neighbor id of the 
Comment: neighbor yielding the best result is retained. 
WHERE (newmergerange e mergerange) AND (ridm o neighbid) DO 
BEGIN 

neighbmax c regmax; 

neighbmin c regm'n; 

mergerange c newmergrange; 
mergeneighbid c neighbid 

END; 
END; 

3. Comment: 'Ihe best (smallest) range value of all ranges retained 
Comment: by border elements in mergerange is delivered to the 
Comment: region mot and re-distributed to a l l  region elements 
Comment: in bestrangeval. 
MIN(pptrs, m d ,  mergerange, mintoroot); 
DIST(cptrs, martd, mintoroot. bestrangeval); 

4. Comment: In order to arbitrate ties between neighboring 
Comment: regions that yielded the same merge range, the 
Comment: region with the largest id is chosen. 
WHERE bestrangeval = mergerange DO 

MAX(pptrs, maxtd, mergechoices. maxtoroot): 
DIST(cptrs. m d ,  maxtoroot. mergechoice); 

mergechoices c mergeneighbid; 

5. Comment: Once again all four neighbor directions are 
Comment: polled to locate the neighbor chosen for 
Comment: merging. A merger exists where both regions 
Comment: have chosen each other for merging. 
FOR i t 1 TO 4 DO 
BEGIN 

EXCHANGE(ridm, mergechoice, i ,  neighbmergechoice); 
EXCHANGE(ridm, ridm, i ,  neighbid); 
WHERE (ridm = neighbmergechoice) and (mergechoice = neighbid) DO 

haveamerge t ANY(merger); 
Comment: If a merger exists then the smaller id of both 
Comment: regions is selected and this new id is 
Comment: distributed to all region pixels. 
IF haveamerge THEN 
BEGIN 

merger t true; 

WHERE merger AND (neighbid < ridm) DO 

-17- 



ridm c neighbid; 
MIN(pptrs, maxtd, ridm, mintoroot); 
DIST(cptrs, maxtd, mintoroot, ridm); 

END; 
END; 

Dimension 
N 
8 

16 . 
32 
64 

6.2. Results 

A high-level language (Parallel Pascal [12]) implementation of the region growing primitives was 

run on the MPP. A series of timing tests were conducted using images of square NxN regions with the 

set of dimensions: N = 8, 16, 32, 64 (Table 1). These test sets were representative of blob-like regions 

with d=N. 

Time (ms) 
embed min/max dist exchange 
12.5207 1.9675 1.5291 0.0660 
22.2983 3.5137 2.7260 0.0660 
41.8582 6.6043 5.1177 0.0660 
80.9739 12.7876 9.9032 0.0660 

The following set of timing expressions, given in milliseconds, were derived from these results. 

TekdiN) = 1.222N + 2.74 1 

T,,,id-(N) = 0.1932N + 0.4210 

T&N) = 0.1495N + 0.3322 

T e x c b g J W  = 0 . m  

The measured values do not deviate from the above equations by more than 2 percent. 

An estimated performance analysis was conducted assuming an optimal machine-level encoding 

of the primitives. The clock cycle time for the MPP is 100 nanoseconds. Furthermore, it was assumed 

that loop set-up in the host could be overlapped with array computations. This is possible on the MPP 

since a FIFO buffer exists between the host and the PE a m y  which allows the host to perform serial 

-18- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



calculations while the array is busy processing instructions in the buffer. The analysis yielded the fol- 

lowing expressions. 

Dimension 
N 
8 
16 
32 
64 

fe i ;mbcd(N)  = 0.1570N + 0.0197 

Time (ms) 
Split Merge 
2.7276 38.1122 
3.4329 67.1308 
4.2128 125.1579 
5.2824 241.2121 

f~,,+-(N) = 0.0168N + 0.0034 

fh,(N) = 0.0104N + 0.0034 

The estimated results range between 2 to 15 times faster than the measured results. This is probably 

due to two main reasons. First, the Parallel Pascal code generator produces inefficient code since it 

currently does not perform any code optimizations; second, the host may not be able to generate 

instructions fast enough to keep the processor array busy; especially for boolean data operations. (Con- 

ditional branches which are dependent on processor array values cause the F I F O  buffer to empty, how- 

ever no such branches occur in the implementation of the primitives). 

A similar comparison analysis was conducted for the split and merge phases of the algorithm. 

The measured results for the blob-like regions are summarized in Table 2. 

These results yielded the following expressions. 

Tq&i) = 0.01518N + 0.583910g0 + 0.8077 

Tnuqe(N) = 3.627N + 9.104 

The first term in the split phase expression represents the cost due to the shift operations needed to 

route information through an NxN mesh connected region. This could be reduced to O(1ogN) given a 

hypercube interconnection scheme. The second term in the expression is related to the number of arith- 

-19- 



metic operations performed to create an NxN region. The third term includes the overhead operations 

that are independent of N. The merge phase results are primarily a product of the primitive operations 

and therefore yield an expression of O(N). The estimated performance using an optimal encoding is as 

follows. 

fSpfit(N) = 0.0045N + 0.10010gN + 0.052 

fmrge(N) = 0.3746N + 0.3737 

For the split phase the estimated performance was three to five times faster than the measured results. 

Since the merge phase of the algorithm is highly dependent on the parallel primitive implementation, 

we could predict that the estimated performance will be approximately ten times faster than measured 

results. This is in fact the case as demonstrated by the expression above. 

7. Conclusion 

A technique for region growing on a highly parallel SIMD computer has been described. Three 

fundamental primitives for region growing have been defined: reduction, distribution, and neighbor 

exchange. Furthermore, it has been shown that the split algorithm on the target architecture is 

efficiently implemented by region growing using special primitives for processing square regions. 

A simple homogeneity criteria, pixel range, has been used to demonstrate the basic parallel tech- 

niques. However, arbitrary complex homogeneity functions can be computed with this scheme. Addi- 

tional reduction functions such as PRODUCT and MEAN may be implemented with a similar efficiency 

to the primitives MAX and MIN. 

An embedded tree structure has been introduced for rapid primitive computation on a mesh- 

connected SIMD system. 

-20- 



REFERENCES 

111 D. H. Ballad and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, New Jersey, 
(1982). 

[2] A. Rosenfeld and A. Kak, Digital Picture Processing, Academic Press, New York, New York, 
(1982). 

[3] S. W. Zucker, "Survey, region growing: childhood and adolescence," Computer Graphics and 
Image Processing 5,  pp. 382-399. (1976). 

[4] S. L. Homwitz and T. Pavlidis, "Picture segmentation by a directed split-and-merge procedure," 
Proceedings 2nd IJCPR, pp. 424433, (August 1974). 

[5] J. P. Gambotto and 0. Monga, "A parallel and hierarchical algorithm for region growing," 
Proceedings of the I985 IEEE Conference on Computer Vision and Pattern Recognition pp. 649- 
652 (1985). 

[6] A. P. Reeves, "Survey, parallel computer architectures for image processing," 
Computer Vision Graphics and Image Processing 25.68-88 (1984). 

[7l A. P. Reeves, "Highly parallel computer architectures for scientific applications," 

[8] J. Kittler and M. J. B. Duff, Image Processing System Architectures , Research Studies Press, 
Letchworth, England, (1985). 

[9] A. V. Aho, J. E. Hopcmft, and J. D. Ullman. The Design and Analysis of Computer Algorithms , 
Addison-Wesley, Reading, Mass., (1974). 

[lo] A. P. Reeves, "A systematically designed binary array processor," IEEE Trunsactions on Com- 
puters C-29, pp 278-287 (1980). 

[ l l l  K. E. Batcher, "Design of a massively parallel processar," IEEE Tranractions on Computers C- 
29(9) pp.836-840 (September 1981). 

1121 A. P. Reeves, "Parallel Pascak an extended pascal for parallel computers," Journal of Parallel 
and Distributed Compuiing 1 pp. 64-80 (1984). 

[13] R. W. Taylor, M. Savini, A. P. Reeves, "A fast algorithm for range image segmentation," sub- 
mitted to 1987 IEEE System Man and Cybernetics Annual Conference (October 1987). 

-21. 



~1 
1314  

,* 

Figure 1. 
(b) Pixel values. (c) Region id's after first split. (d) Region id's after 
second and final split. 

Split and merge splitting phase. (a) Pixel id numbers. 

I / O  

7 7 
13 

Host 

Figure 2. Split and merge merging phase. (a) Region id's after splitting 
phase. (b) Region ids after first merge. (c) Region id's after second merge. (d) 
Region id's after third and final merge. 

4-b 

1 
I 
I 

1 
1 
I 

Figure 3. Mesh-connected SlMD architecture. 



region 
descriptors 

Figure 4. Region representation. (a) A generalized representation of a region 
consists of a spatial distribution of the region points relative to their location in the 
image, and a corresponding region descriptor for each region. (b) A region represen- 
tation on a mesh of processing elements consists of each region pixel mapped to its 
own PE and a designated region PE to serve as the region's descriptor. 

( a )  

Figure 5. (a) 

( b )  

Tree data structure. (b) Embedded tree data structure. 



S- pixel of same region and 
of binary value one 

Q- pixel of different region or pixel 
of binary value zero 

Figure 6. In order for pixel X to shrink to the south one 
of the near-neighbor arrangements shown must exist. 

'root 

Figure 7. 
a unique id number. (b) Embedded trees created by shrinking algorithm. 
(c) Parent-pointers using the following encoding: l=N, 2=E, 3 4 ,  4=W. 

Embedded tree data structure. (a) Regions are represented by Y 
a 



t 

m 

1 
I 

Figure 8(a). The result of the shrinking algorithm performed 
on a region with a hole is a ring in the shape of a medial axis. 

root node 
D 

Figure 8(b). The ring is uncoupled in such a way that the region 
root is located at the point on the ring that is furthest from the boundary. 

I 



Figure 9. 
arrows in the diagram. First, regions choose a neighbor according to the 
homogeneity criterion. Second, in case of a tie, they select the region with 
the higher id. Finally, regions are allowed to merge only if the selection is 
mutual. (a) and (b) illustrate two different cases that may arrise. 

Merging order. Contention for merging is indicated by the 



APPENDIX B: ALGORITHMS AND PERFORMANCE ANALYSIS FOR THE MASSIVELY 
PARALLEL PROCESSOR 



ALGORITHMS AND PERFORMANCE ANALYSIS 
FOR 

THE MASSIVELY PARALLEL PROCESSOR 

A Thesis 

Presented to the Faculty of the Graduate School 

of Cornel1 University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

by 

Maria Clara Gutierrez 

January 1988 



0 Maria Clara Gutierrez, 1988 

ALL RIGHTS RESERVED 

iii 



BIOGRAPHICAL SKETCH 

Maria Clara Gutierrez was born in Bogota, Colombia in November 28, 1962 to 

Hugo and Bertha Gutierrez. She received a Bachelor of Science in Electrical 

Engineering with high honors at The University of Texas at Austin in May 1985. 

Subsequently, she came to Cornel1 University to pursue the Master of Science 

degree. She did her graduate work under the guidance of Professor A. P. Reeves. 

She received her degree in January 1988. 

iv 



DEDICATION 

To my family, especially to my father and mother. 

V 



ACKNOWLEDGMENTS 

I would like to thank Professor Anthony P. Reeves, my advisor, for his 

guidance and support which made this thesis possible, and Professor Frank T. Luk 

for agreeing to be in my committee and for his encouragement. 

I would like also to specially thank my husband Vernon Marchal and my 

family for their continuous love, encouragement, and support through sometimes 

difficult times. 

I thank also everyone at Phillips 210 and 401 for their help and for the nice 

times that we had. 

I 
I 

I 
1 

vi 



TABLE OF CONTENTS 

1. INTRODUCTION ........................................................................................... 

1.1. Introduction to Parallel Computers ........................................................... 

1.2. MPP Hardware .......................................................................................... 

1.3. MPP Software ............................................................................................ 

2. DATA PERMUTATIONS AND THE FAST FOURIER TRANSFORM 

...................................................................................................................... 

2.1. Introduction ................................................................................................ 

2.2. Data Permutations ...... ...... .. .... .. .. ............ .. .. .. ...... .. .. .......... .. ........ .. .... .... .. .. . 
2.2.1. Exchange Permutation ......................................................................... 

2.2.2. Shuffle Permutations ............................................................................ 

2.2.3. Butterfly Permutations ......................................................................... 

2.2.4. Bit Reversal Permutations ................................................................... 

2.2.5. Conclusions .......................................................................................... 

2.3. Fast Fourier Transform ............................................................................. 

2.3.1 Algorithm .............................................................................................. 

2.3.2. Results .................................................................................................. 

3. IMAGE WARPING ........................................................................................ 

3.1. Introduction to the Warp Operation ......................................................... 

Vii 

E 1 

1 

4 1 

21 

22 

27 

31 

35 

40 

40 

44 

48 

48 

18 

18 

19 



viii 

3.2. A Heuristic Algorithm .............................................................................. 

3.3. Interpolation ............................................................................................... 

3.4. Results ........................................................................................................ 

2.4.1. Rotation with translation warp ............................................................ 

3.4.2. 'Fisheye' warp ..................................................................................... 

3.4.3. Conclusion ........................................................................................... 

4 . CONVOLUTION AND PYRAMID-FILTERING OPERATIONS .............. 

4.1. Convolution and Pyramid Operations ...................................................... 

4.2. Convolution ............................................................................................... 

4.3. Pyramid Operations ................................................................................... 

4.4. Pyramid operations on the MPP ............................................................... 

4.5. Gaussian Filtering ...................................................................................... 

4.5.1. Algorithm ............................................................................................. 
4.5.2. Results .................................................................................................. 

4.6. Laplacian Filtering .................................................................................... 

4.6.1 Algorithm .............................................................................................. 

4.6.2. Results .................................................................................................. 

4 . CONCLUSION ............................................................................................... 

Appendix A: PERMUTATIONS AND FFI' PARALLEL PASCAL CODE 

...................................................................................................................... 

50 

54 

56 

57 

66 

70 

72 

72 

72 

73 

75 

77 

79 

80 

81 

81 

82 

85 

88 



ix 

REFERENCES .................................................................................................... 110 



I \. ' 

LIST OF TABLES 

Table 1.1. Optimal and Measured execution times of some typical operatior 

...................................................................................................................... 16 

Table 2.1. Exchange time results for 32-bit floating point elements . 

...................................................................................................................... 22 

Table 2.2. Exchange time results for 8-bit integer elements .............. 22 

Table 2.3. Exchange time results for Boolean elements ..................... 23 

Table 2.4. Perfect Shuffle time results ................................................ 24 

Table 2.5. Sub-Shuffle estimated time results ..................................... 25 

Table 2.6. Sub-shuffle measured time results ..................................... 25 

Table 2.7. Super-shuffle estimated time results .................................. 26 

Table 2.8. Super-shuffle measured time results .................................. 27 

Table 2.9. Sub-Butterfly estimated b e  results .................................. 29 

Table 2.10. Sub-Butterfly measured time results ................................ 30 

Table 2.11. Super-Butterfly estimated time results ............................. 30 

Table 2.12. Super-Butterfly measured time results ............................. 30 

Table 2.13. Bit Reversal time results .................................................. 

Table 2.14. Sub-Bit Reversal estimated time results .......................... 

Table 2.15. Sub-Bit Reversal measured time results .......................... 

33 

34 

34 

X 



xi 

Table 2.16. Super-Bit Reversal estimated time results ....................... 

Table 2.17. Super-Bit Reversal measured time results ....................... 

Table 2.18. FFT Permutations time results ..................................................... 

Table 2.19. FFT functions time results .......................................................... 

34 

35 

45 

46 

46 Table 2.20. FFT time results ........................................................................ 

Table 3.1. Cost of one mapping for the Rotation Warp centered at 1, 1 . 

...................................................................................................................... 60 

Table 3.2. Cost of one mapping for the Rotation Warp centered at 64, 64 . 
...................................................................................................................... 61 

61 

61 

62 

62 

62 

63 

68 

69 

69 

69 

Table 3.3. Near-Neighbor timing results where ro, co = 1. 1 ............. 

Table 3.4. Near-Neighbor timing results where TO. co = 64. 64 .......... 

Table 3.5. Bilinear timing results where ro. co = 1. 1 ......................... 

Table 3.6. Bilinear timing results where ro. co = 64. 64 ..................... 

Table 3.7. Bicubic timing results where ro. co = 1. 1 ......................... 

Table 3.8. Bicubic timing results where ro. co = 64. 64 ...................... 

Table 3.9. Cost of one mapping for the 'Fisheye' Warp ........................ 

Table 3.10. Near-Neighbor timing results ............................................ 

Table 3.1 1 . Bilinear timing results ..................................................... 

Table 3.12. Bicubic timing results ..................................................... 

Table 4.1. Execution times of the pyramid primitives ..................... 77 



I 
I 
I 
I 
I 
I 
1 
E 
I 
1 
8 
I 
1c 
U 
I 
I 
1 
8 
1 

X i i  

Table 4.2. Gaussian Filtering execution times. ................................................. 81 

Table 4.3. Laplacian Filtering execution times. ............................................... 82 



LIST OF FIGURES 

Figure 1.1. Block Diagram of the MPP. ...................................................................... 

Figure 1.2. MPP Processing Element. ......................................................................... 

Figure 1.3. Array Control Unit. ................................................................................. 

Figure 1.4. Flowchart of Compilation Steps. .................................................... 

Figure 2.1. Measured execution times of the Exchange and sub- 

permutations. ................................................................................................. 

Figure 2.2. Measured execution times of the super-permutations. ......... 

Figure 2.4. Flow fo data for FFT, N = 16. ....................................................... 

Figure 2.3. W operation. ......................................................... 

Figure 3.1. Four Element Interpolation. ............................................................ 

Figure 3.2. Sixteen Element Interpolation. ...... .. ...... .. .. . 

Figure 3.3. Example of a near-neighbor rotation warp. 

...................................................................................................................... 

Figure 3.4. Example of a near-neighbor 'fisheye' warp. ......... 

Figure 4.1. The Pyramid Structure. 

...................................................................................................................... 

5 

6 

8 

11 

38 

39 

42 

43 

54 

56 

58 

67 

74 

Figure 4.2. A three level Pyramid embedded in an 8x8 array. 

7 L  ...................................................................................................................... I U  

xiii 
t 
e 



xiv 

1 

8 
I 

Figure 4.3. Pyramid shift movements. .............................................................. 78 

Figure 4.4. Pyramid convolution kernels. .......................................... 80 



LIST OF TABLES 

Table 1.1. Optimal and Measured execution times of some typical 

Table 2.1. Exchange time results for 32-bit floating point elements . 

Table 2.2; Exchange time results for 8-bit integer elements ................... 
Table 2.3. Exchange time results for Boolean elements .......................... 
Table 2.4. Perfect Shuffle time results .................................................... 
Table 2.5. Sub-shuffle estimated time results ........................................ 
Table 2.6. Sub-Shuffle measured time results ......................................... 

Table 2.8. Super-shuffle measured time results ...................................... 

Table 2.10. Sub-Butterfly measured time results ................................... 
Table 2.11. Super-Butterfly estimated time results ................................ 
Table 2.12. Super-Butterfly measured time results ................................ 
Table 2.13. Bit Reversal time results ...................................................... 
Table 2.14. Sub-Bit Reversal estimated time results .............................. 
Table 2.15. Sub-Bit Reversal measured time results .............................. 
Table 2.16. Super-Bit Reversal estimated time results ........................... 
Table 2.17. Super-Bit Reversal measured time results ........................... 
Table 2.18. FFT Permutations time results ............................................ 
Table 2.19. FFT functions time results .................................................. 
Table 2.20. FFT time results .................................................................. 
Table 3.1. Cost of one mapping for the Rotation Warp centered at 1, 

1 ...................................................................................................... 
Table 3.2. Cost of one mapping for the Rotation Warp centered at 64, 

64 .................................................................................................... 

operations ....................................................................................... 

.......................................................................................................... 

Table 2.7. Super-shuffle estimated time results ..................................... 

Table 2.9. Sub-Butterfly estimated time results ..................................... 

Table 3.3. Near-Neighbor timing results where ro, eo = 1, 1 ................ 
Table 3.4. Near-Neighbor timing results where ro, co = 64, 64 ............. 
Table 3.5. Bilinear timing results where ro, co = 1, 1 ............................ 
Table 3.6. Bilinear timing results where to, co = 64, 64 ........................ 

16 

22 
22 
23 
24 
25 
25 
26 

27 
29 
30 
30 
30 
33 
34 
34 
34 
35 
45 
45 
45 

59 

60 
60 
60 
61 
61 

I 
I 



I 
I 
I 
I 

Table 3.7. Bicubic timing results where To, co = 1, 1. ........................... 
Table 3.8. Bicubic timing results where ro, co = 64, 64. ........................ 
Table 3.9. Cost of one mapping for the 'Fisheye' Warp. ........................ 
Table 3.10. Near-Neighbor timing results. ............................................. 
Table 3.11. Bilinear timing results. ......................................................... 
Table 3.12. Bicubic timing results. ......................................................... 
Table 4.1. Execution times of the pyramid primitives. ........................... 
Table 4.2. Gaussian Filtering execution times. ....................................... 
Table 4.3. Laplacian Filtering execution times. ...................................... 

61 
62 
67 
68 
68 
68 
76 
80  
81 

U 
I 

.. 
11 



LIST OF FIGURES 

Figure 1.1. Block Diagram of the MPP .................................................. 
Figure 1.2. MPP Processing Element ..................................................... 
Figure 1.3. Array Control Unit ............................................................... 
Figure 1.4. Flowchart of Compilation Steps ........................................... 
Figure 2.1. Measured execution times of the Exchange and sub- 

permutations ................................................................................... 
Figure 2.2. Measured execution times of the super-permutations ........... 
Figure 2.3. W operation .......................................................................... 
Figure 2.4. Flow of data for FFT, N = 16 ............................................. 
Figure 3.1. Four Element Interpolation .................................................. 
Figure 3.2. Sixteen Element Interpolation .............................................. 
Figure 3.3. Example of a near-neighbor rotation warp .......................... 
Figure 3.4. Example of a near-neighbor 'fisheye' warp ........................... 
Figure 4.1. The Pyramid Structure ........................................................ 
Figure 4.2. A three level Pyramid embedded in an 8x8 array ................ 

Figure 4.4. Pyramid convolution kernels ................................................. 
Figure 4.3. Pyramid shift movements ..................................................... 

5 
6 
8 

11 

38 
38 
41 
42 
53 

55 
57 
66 
73  
75 
77 
79 

1 
i 
D 



I 

1 
I 
I 
1 
1 
I 
I 
I 
I 
I 
1 
I 
1 
I 
1 
8 
I 

a 
CHAPTER 1 

INTRODUCTION 

1. Introduction to Parallel Computers 

Computers play an increasingly prominent role in scientific research; without 

them, science and technology would not have reached the levels of development of 

today. Still, many research problems exist which require very large computational 

capabilities several orders of magnitude greater than what is now available from 

conventional computers. See [l] [2] and [3] for discussions of such research 

problems. For example, in the area of computational aerodynamics, Peterson ( [l]  

p. 68 ) states that future research will require computers with sustained rates of 

approximately 1 to lo00 billion floating point operations per second (FLOPS). 

The fastest conventional super computers, such as Cray with a rate of lo* 

FLOPS (100 MFLOPS), achieve their high performance by increasing the speed of 

the electronic components and logic circuits, and by introducing pipelining and 

parallelism at the circuit level. However, if speed improvements are only obtained 

through progress in technology, it is not likely that the required sustained rates, in 

the order of billions of FLOPS, will be achieved. 

The computational capabilities of computers can be increased by several orders 

of magnitude, through the introduction of parallelism at all levels of the computer 

1 



2 

architecture, including the processor level. The concept of parallelism in computers 

is not new (according to Hockney and Jesshope [4] it goes as far back as 1842 in a 

publication entitled: "Sketch of the Analytical Engine Invented by Charles 

Babbage"), but its implementation has just recently been made possible with recent 

advances in VLSI technology and the resulting enormous improvements in 

processing, storage, and communications. The result has been the development of 

the Parallel Computer, which may consist of hundreds or thousands of processors 

connected together, and operating simultaneously to solve a given problem. 

Even though technology advances have made parallel computers possible, 

before they can be effectively used, a number of problems must be addressed. In 

addition to the usual design problems of conventional computers, several other 

problems, particular to parallel systems, include: the number of processors, fault 

tolerance, programability, load balancing and the architecture of the interconnection 

network. Of these, the last problem is crucial, for the interconnection network (IN) 

must match the communication needed by the algorithm being solved, otherwise 

the processors may spend a considerable mount of time communicating among 

each other rather than doing useful work. 

The optimal IN is the crossbar where every processor is connected to every 

other one. Unfortunately, this IN is not practical for a large number of processors 

because its cost complexity is O(n2), where n is the number of processors, and thus, 

the crossbar IN is too expensive for large n. Another option for the IN is a ring 



3 

topology where the processors may be considered to be arranged in a circle, such 

that each processor is connected to its adjacent two neighbors. Although this IN is 

inexpensive, O(n), for most applications it would be inefficient and unreliable. 

Several IN organisations exist which fall between these two extremes, in cost and 

performance. One such IN is the mesh-connected network: it is easily 

implemented, O(n), and it fits the communication requirements of a large number of 

algorithms, especially in the area of image processing. 

An existing parallel computer that uses a mesh-connected network is the 

Massively Parallel Proccesor (MPP). This thesis is concerned with the development 

and performance analysis of several important algorithms which have been 

developed for the MPP. The effectiveness of the near-neighbor IN will be studied 

with respect to these algorithms. Of particular interest is the amount of time which 

is spent on interprocessor communication rather than data computation. 

In the following chapters a number of important algorithms, which have been 

developed for the W P ,  are described and their performance on the MPP is 

discussed. Chapter 2 presents several regular permutations: the exchange, shme, 

bum&, biz reversal, and where applicable, the sub and super permutations. In 

addition, an FFT program, which uses some of these permutations, is presented. 

Chapter 3 presents a heuristic mapping algorithm for irregular permutations, using 

near-neighbor, bilinear, and cubic interpolation. This algorithm was run with two 

different irregular permutations or image warping operations: Rotation with 



4 

translation and ’Fisheye’ warp. Chapter 4 presents a convolution operation, and 

two pyramid algorithms: Gaussian and Laplacian filtering. These algorithms build 

the pyramid from the image located at its lowest level. In the resulting pyramid, 

each level is the filtered copy of the adjacent lower level; the filtering is obtained 

with convolution operations. Chapter 5 presents conclusions. The remainder of this 

chapter will present an overview of the MPP’s hardware and software, and the 

optimal and measured execution times of several primitive operations of Parallel 

Pascal, the high level language of the MPP. These primitive operations are used in 

the above mentioned algorithms. 

1.1. MPP Hardware 

The MPP was designed to be a high speed computer for image processing, but 

it is currently also used for several other applications. For a listing of current 

research projects on the MPP see [5].  According to Flynn’s taxonomy [4], the MPP 

is an SIMD computer. This taxonomy classifies computers in four classes, of which 

two are important for parallel computers: 

1. SIMD (Single Instruction, Multiple Data): In this class all the processors 

execute the same instruction stream but on different data. 

2. MIMD (Multiple Instruction, Multiple Data): the processors execute 

different instruction streams on different data. 

The MPP involves an array of 128x128 (16,384) single bit processing elements 

(PE’s). The MPP is an SIMD computer because these PE’s operate 



5 

8 
i 
u 

ACU 4 

synchroneously; the same instructions are applied to different data with a cycle time 

of 100 nsec. Figure 1.1 is a block diagram of the MPP. It consists of four main 

components: The array unit (ARU), which processes a two dimensional (26) 

128x128 array of data, is controlled by the array control unit (ACU). The data is 

sent to the ARU through the Staging Memory. Finally the Host computer is the 

front end from which the user controls the MPP. The following will be an 

overview of these components. Refer to [6] and [7] for more detailed information. 

r Staging Memory 

(Host Computer I 

Figure 1.1. Block Diagram of the MPP. 

1 
a 



6 

The ARU is organized as a number of 26 planes. Each plane consists of 

16,384 bits, Le. 128 rows by 128 columns. The memory consists of 1,024 planes 

and an array of data is stored vertically across several planes. For example an 

128x128 array of 8 bit elements would be stored in eight consecutive memory 

planes. The 36 other planes form the PE’s; the block diagram of a PE is shown in 

Figure 1.2 ([6] p. 209). 

A PE is composed of four subunits: 

Figure 1.2. MPP Processing Element. 



7 

The Arithmetic unit with a variable length planar shift register of up to 30 

processing planes, and the A, B, and C planes used for the bit-serial arithmetic 

operations; 

The Logic and Routing unit with the P plane; 

The Mask unit masks the activity in the other processing planes. If a bit in the 

G plane is set, the operation in the corresponding bit of the processing plane is 

executed, otherwise it won’t be; 

The VO subunit handles the VO of the ARU with the S plane. 

The ACU is divided into three independent control units (Refer to Figure 

1.3): First, the Main Control Unit (MCU) runs the main MPP application program 

which is stored in the Main control memory. The MCU performs all the scalar 

operations and initates array operations by entering calls on the Call queue. It also 

initiates VO operations. Second, the Processing Element Control Unit (PECU) 

controls the processing planes of the ARU. The PE Control Memory stores the 

instructions and the Call queue stores calls from the MCU. These calls tell the 

PECU which instructions the ARU executes next. Third, the I/O Control Unit 

controls the operations of the S plane of the ARU. All three control units operate 

simultaneously to allow overlapping of their operations. 

The Staging Memory is in the data path between the ARU and the front end 

computer. It is needed for reformating the data since the front end computer 

operates on an array of data an item at a time and the ARU operates a plane at a 



8 

Processing 
Element 
Control 
Unit 

PE Control 
Memory 

I 

Call Input- 
output Main 

Control I+ Control 
Unit Unit 

Queue 

Main Control Memory 

Figure 1.3. Array Control Unit. 

time. The Stager also serves as temporary storage since for some applications the 

ARU memory of 1,024 planes is not enough. 

The Front End Computer is the interface between a user and the MPP. 

This Host computer is a VAX-11/780 with a V M S  operating system. When a 

program is run, the program sections preceded with a {$h+) directive are executed 

by the host, and the sections preceded with a {$h-) are executed by the MCU. 

Normally there is only one ($h+) section and it is used to start the MPP. It should 

be noted that the host is shared with other users which can affect its speed. 

1.2. MPP Software 

The MPP's high level language is Parallel Pascal [8]. All the algorithms 

presented in this thesis were developed in this language. Parallel Pascal is a 



9 

superset of the Pascal programming language. Briefly, the extensions of parallel 

pascal involve the following: 

A new data-type array called 'parallel amy'.  This a m y  is to be used in the 

ARU. 

The where-do-otherwise statement which is a parallel extension of the 

conditional statement if-then-else. The condition is a parallel array of 

Boolean. 

The extension of all conventional expressions to array data types. For 

example, suppose that A, B, and C are 26 mays of the same size. To add A 

to B and to store the result in C, all that is needed is the expression: 

C : = A + B  

Built in data manipulations functions which include: data reduction (or, and, 

min, ma, sum, product), data permutation (shvt, rotate, transpose), and data 

broadcast (expand) primitives. 

The development of a MPP Parallel Pascal program involves several 

operations(see Figure 1.4). First, a given algorithm is encoded in a Parallel Pascal 

procedure or function; this program is stored in a library file. Then, a test program 

using this procedure or function, is developed. The test program declares the 

library subprogram as an external procedure or function as follows: 

($ Library_Mme.pl 1 

procedure procedure-nume(1ist of formal parameters); extern; 



10 

The Extern program, a library preprocessor, replaces the external call with the 

source code of the procedure stored in the library file. The program is now ready 

to be compiled and run. It is very helpful at this point, especially for a remote MPP 

user, to test and debug the program with the aid of the Parallel Pascal Translator 

(PPT). PPT translates a Parallel Pascal program into conventional Pascal program. 

Thus, with PPT, a Parallel Pascal program can be run and tested in any computer 

that supports the Pascal language. 

Once the Parallel Pascal program has been debugged, it is ready to be 

compiled and run in the MPP. Several steps are involved in the compilation of a 

program in the MPP (see Figure 1.4). Refer to [9] for more detailed information. 

First, the Parallel Pascal compiler reads the Parallel Pascal program and 

produces a P-code file (PCD) and a listing file (LIS). The code generator program 

then reads the Pcode file and produces the VAX macro assembly code (MAR) and 

the MCU assembly code (MU). The code generator program also outputs a code 

generator debug information file (CGL). 

In the second and third steps, these assembly language codes are compiled. 

The MCL command invokes the compiler for MCU code and it produces an object 

file (MOB). The MAC command invokes the compiler for VAX code and it also 

produces an object file (OBJ). 

In the fourth and fifth steps, the above referenced object files are linked, and 

executable files are produced. Specifically, in the fourth step, Mppfink is invoked 



11 

I 
Translator 

1 fi1e.p If err0 r (s) t 
T 

Pascal executabl 
Compiler fi le 

I 

i If no error 

file.pp 

PP compiler 

file. pcd 
v 

ode generato 

fiacro assemble)\ fmcl assembles 
MCL, J 

file.obj I 
( Vax linker 'y - 

symbol 
*:able 

(MCUJ// (PECU) 
* 

I 

D 

;AD 
L(for executiong 

Figure 1.4. Flowchart of Compilation Steps. 



and outputs the following files: MCU executable (MME), PECU array executable 

(MPE), MCU symbol table (MSY), PECU array symbol table (PSY), and a symbol 

table (STB) file. The fifth step ( Cadlnk ) uses the symbol table file to link the 

MPP side programs (MCU and PECU) to the VAX side programs. Cadlnk outputs 

a VAX executable file (EXE). 

If no compilation enors are found, the program is ready to be executed. To 

start execution in the MPP the command cad filename fiZenume filename is typed. 

Cad (control and debug) is an interactive program used to control the MPP. If 

PPT was used to debug the program, then the debug capabilities of cad will' 

likely not be required. 

When a user needs to measure the execution times of various sections of the 

code, four timing routines are available. These are &-init, Pfm-start, Pfm-stop, 

and Pfm-close. To facilitate their use, these procedures are externally declared in 

the program and later loaded in the link step of compilation. Pfm-init initiallizes 

the timer and ph-close prints the times measured. To time a given section of code, 

a pfm-start command is placed at the beginning of the section to start the timer. A 

pfm-stop command is placed at the end of the section to stop the timer. 

The execution times of several primitive operations were measured using the 

timing routines. For example, the multiplication of two 128x128 arrays of reds 

takes 81.1 psec. To measure this multiplication the following program segments 

were timed: 



13 

Program segment #1: 
For i := 1 to lo00 do 
begin 
a := b (* a and b are parallel mays of reals *) 
end; 

Program segment #2: 
For i := 1 to lo00 do 
begin 
a : = a * b  
end; 

The time required to run the first program segment is equal to 6.60 msec, this is the 

time the MPP takes to execute the loop and an assignment per iteration. The time 

required for the second progmn segment is qual  to 87.7 msec; this is the time the 

MPP takes to execute the loop and a multiplication with an assignment per 

iteration. Therefore the time required for a multiplication is the difference of the 

two divided by 1o00. 

where the tm is the time for a real multiplication, and rP1 and rp2 are the measured 

times for program segment #1 and program segment #2 respectively. 

The cost of the basic primitive parallel operations of the MPP, when 

programed in Parallel Pascal, were measured in this way. When calculating the 

execution times of operations on 8-bit integers or Boolean data types, the time to 

execute program segment #1 is equal to 6.48 msec. The measured operation costs 

are presented in Table 1.1. Optimal times for these operations were estimated for 



14 

the processor array by itself; these are also presented in Table 1.1. Optimal 

arithmetic times were obtained from [lo], and the remaining optimal times were 

derived by counting the clock cycles for optimal microcode instruction sequences 

applied to the PE array hardware. The difference between the measured and 

optimal times is due to the MCU overhead, and to the overhead introduced by the 

Parallel Pascal compiler which does not yet have a code optimization stage. 

According to the execution times presented in Table 1.1, the Boolean 

operations are the least efficient. The MCU adds an overhead of 3 or more psec. 

per operation, which in the case of Boolean operations, dominates the execution 

times and causes an order of magnitude in loss of performance. On average, the 

Boolean measured times are about 20 times slower than the corresponding optimal 

times. For floating point (f.p.) operations, the 3 or more pec. overhead is 

negligeble since the execution times of the operations are on the order of tens or 

hundreds of p e c s .  On average, the f.p. optimal times are 2 times faster than the 

measured times. The f.p. optimal times obtained in [lo] use the IBM format (i.e. 

hexadeximal base exponent) which is faster than the VAX format (Le. binary base 

exponent) used for the measured times. The factor of 2 between measured and 

optimal times was thought to be caused by the difference in format, however, it has 

been stated [ 111 that, in the VAX format, the rate for f.p. multiply is 420 MFLOPS 

(76.2 psec) and for f.p. add is 215 MFLOPS (39.0 psec). These rates are only 

slightly slower than those of the IBM format, and therefore do not explain the 

obtained difference factor of 2. Finally, it was noted that for the shift operation, the 



15 

fewer the number of bits of the elements of the array being shifted and the smaller 

the distance of the shift, the less efficient becomes the operation. 

In the following chapters, when an algorithm is presented, the corresponding 

measured and estimated execution times will be given. The measured times were 

obtained using the timing functions of the MPP; and the estimated times were 

calculated by tracing the Parallel Pascal code of the algorithm and adding the 

optimal execution times, given in table 1.1, of the encountered array instructions. 

Any scalar operations, executed by the MCU, are assumed to be concurrent with the 

execution of the axray operations, and thus, are not taken into account. As an 

example, the following is a program segment of the sh@e permutation, discussed 

in Chapter 2, for which the calculation of the estimated execution time is shown. 

x := 1; y := 0 
tmxl := mx; 
tmx2 := mx; 

-1- 
-2- 
-3- 

num := 2; -4- 
while num e m do -5- 

-6- 
-7- 

mx := tmxl; -8- 
-9- 

begin 
tmxl := shift(tmx1, -x, -y); (* shift down *) 
where id = num do 

num := num + 2; 
end: 

where x and y are integers, and num and tn are 8-bit integers (tn = 128); id is a 

parallel array of 8-bit integer; mx, bnxl, and tmx2 are parallel arrays of either 32-bit 



16 

Table 1.1. Optimal and Measured execution times of some typical operations. 

Operation 
assignment r 
assignment i8 
assignment b 
add r 
mult r 
mult r x s 
sin r 
add i8 
mult i8 
mult i8 x s 
div i8 
mod i8 
trunc 
round 
and 
or 
not 
odd(i8) 
any 
min(r) 
=(r) 
min(i8) 
max(i8) 
compare i8 
where b 
shift(r,O, 1) 
shift(r,0,64) 
shift(r,64,64) 
shift(i8,0,1) 
shift(i8,0,64) 
shift(i8,64,64) 
shift(b,O,l) 
shift(b,0,64) 
shift(b,64,64) 
procedure call 

Optimal time 
6.4 
1.6 
0.2 

38.1 
75.8 
43.9 

2.5 
8.8 
7.0 

17.6 
17.6 
38.1 
38.1 
0.3 
0.3 
0.3 
0.5 
0.5 

32.0 
32.0 
8.0 
8.0 
2.5 
0.1 
3.2 

- 

205. 
410. 

0.8 
51.2 

0.1 
6.4 

12.8 

102. 

- 

Measured time 
6.6 
1.8 
1.6 

75.8 
81.1 
87.7 

4.0 
9.0 
7.5 

24.1 
24.0 

334. 

145. 
145. 

13.7 
13.8 
3.4 
2.9 
2.4 

71.5 
71.2 
33.1 
33.1 
3.9 
3.1 
9.9 

212. 
505. 

4.3 
62.9 

4.3 
7.6 

14.5 
150.( *) 

126. 

time in psec. 
s = scalar, r = array of real, i8 = array of 8-bit integer, b = array of Boolean. 
(*) The measured time for a procedure call varies according to the variables passed 
on the call. 



17 

reds, &bit integers, or Boolean. Assume the number of bits of the elements is equal 

to N b  . 

the following are executed - 1 (i.e. 63) times: 
2 

shift m y  Of Nb by 1 = 0.3 X Nb (-6) 

where b + compare i8 = 0.1 + 2.5 (-7-) 

1 assign may of Nb = 0.2 x Nb (-8-) 

Note that an assignment operation takes two cycles per bit, and a shift operation 

takes per bit two cycles (for load and store) plus the shift distance. The total 

optimal time is equal to 31.9 x Nb + 163.8 psec. For example, for anays of 8-bit 

integer where Nb = 8 , the optimal time is equal to 419.1 psec. 



CHAPTER 2 

DATA PERMUTATIONS AND THE FAST FOURIER TRANSFORM 

2.1. Introduction 

An interconnection network can be defined by the set of permutation functions 

that it can implement. Using the notation of [4], a permutation function is 

performed on an ordered set of N elements, and it is defined by an one-to-one 

function IC (x). Both x and x (x) are integers between 0 and N-1; x and IC (x) 

represent the addresses of the elements before and after the permutation, 

respectively. 

The near-neighbor interconnection network of the MPP can only directly 

implement the shifi permutation. This permutation is possible because the PE may 

has, in addition to the near neighbor connections, toroidal end-around edge 

connections. Any other permutation can only be achieved through the shift 

permutation. 

In Parallel Pascal, the shift permutation is specified with the built in function 

'rotate'. Its arguments consist of the array to be shifted, and the amount and 

direction of the shift. In the MPP, the cost of a shijl permutation (t,) depends on 

the amount of the shift (6) and on the number of bits of the array elements (Nb). In 

general the cost is equal to: 



19 

ts = ( 2 + d )  * 0.1 * Nb p e c  

In this chapter, the algorithms developed to implement four other fundamental 

permutations in the MPP will be presented. In addition, a Fast Fourier Transform 

algorithm that uses two of these permutations will be presented. 

2.2. Data Permutations 

The permutations which have been implemented for the MPP are exchange (E), 

shufle (a), buzzerffy (p), and bit reversal @). Where applicable, the respective 

Super and Sub permutations were also implemented. In the MPP, a permutation is 

performed concurrently to N sets of N elements (N = 128). A set of elements is 

either a row or a column, depending on what coordinate is chosen. In general, the 

cost of a 26 permutation will be twice the cost of the Id permutation results which 

are presented here. 

The following four sections will present the definitions of the four above 

referenced permutations, along with their respective algorithms and performance 

results. A permutation will be defined by considering the binary representation of 

X: 

The above expressions represent the binary address of an element in N = 2" , and a 

permutation is defined by the permutation on the bits of this address [4]. As a 

performance measure, the transfer ratio is used. The transfer ratio is defined as the 

I 
I 
I 
I 
I 
I 
I 
I 
I 
8 
I 
I 
1 
I 
I 
I 
I 
I 
I 



ratio of the time for the data transfer over the time for an elemental operation [5]. 

In this case, the data transfer is equal to the execution time of a permutation. The 

time for an elemental operation is defined as the average between the time of a 

multiplication and the time of an addition on the M U .  Based on the measured 

execution times given in Table 1.1. in Chapter 1, the time for an elemental 

operation for 32-bit floating point elements is equal to 78.5 pec,  and for 8-bit 

integer elements it is equal to 6.5 psec. For Boolean elements, the time for an 

elemental operation is on average equal to 0.2 psec [5].  

Each permutation was coded in Parallel Pascal, and was run on the MPP using 

three types of data: 32-bit floating point, 8-bit integers, and Boolean. The measured 

execution times (m), and the respective transfer ratios (rJ will be given. For a IC 

sub-permutation at bit k the measured execution time is called % k  ; and for a 

super-permutation, it is called tmKi where k is an integer in the range of 1 to n. 

In addition to measured execution times, estimated execution times (to,) have 

been calculated using the method described in section 1.3 of Chapter 1. The 

optimal execution times of the operations, given in table 1.1 of Chapter 1, were 

used in the calculations. In all the time equations presented in this chapter, Nb 

represents the number of bits of the data elements: Nb is equal to 32 for floating 

point elements, to 8 for integer elements, and to 1 for Boolean elements. Also, the 

time unit of these equations is pseconds. 



21 

2.2.1. Exchange Permutation 

q k )  (x) = (b,,, . . ., Fb . . where 1 5 k I n 

The exchange permutation consists of complementing bit k of the input 

address. Thus, this permutation consists of exchanging every pair of elements, 

where two elements form a pair if their addresses are the same except for the kth 

bit. As an example, consider a set of sixteen ordered elements (N = 16, n = 4): 

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 11, 12, 13, 14, 15) 

The binary representation of exchange bit 2 is: 

(2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13) 

Algorithm 

In the exchange permutation all the elements move an equal distance, except 

that half of the elements move in one direction and the other half move in the 

opposite direction. This procedure is accomplished in two steps: 

1 - Calculate the amount of the shift which is equal to 2k-' 

2 - Perform the exchange of pairs: where bk= 1 then shift up (or left), and where 

bk = 0 then shift down (or right). 

Results 

See tables 2.1 to 2.3 for the execution times and the respective transfer ratios. 

The estimated execution times were calculated using the following equation: 



22 

bit k 
1 
2 
3 
4 
5 
6 
7 

syntax error 
fire -, between lines 1326 and 1326 

to tm r 
53.8 130. 1.65 
60.2 151. 1.93 
73.0 180. 2.30 
98.6 221. 2.81 

150.0 288. 3.66 
252.0 406. 5.17 
464.0 627. 7.99 

2.2.2. Shuffle Permutations 

bit k 
1 
2 
3 
4 
5 
6 

* 7  

Q (x) = ( k i ,  b,4, . . . bi, b,,) 
The shuffe permutation consists of a circular left shift of the bits of the input 

to tm r 
34.6 112. 17.2 
36.2 128. 19.7 
39.4 145. 22.3 
45.8 164. 25.2 
58.6 188. 28.9 
84.2 230. 35.4 

135.0 297. 45.7 

address. The resulting permutation consists of splitting in half the set of N 

elements, and then interleaving them like in a perfect card shuffle. As an example, 

consider an ordered set of sixteen elements. The binary representation of the shuffe 

time in psec. 



23 

bit k 
1 
2 
3 
4 
5 
6 
7 

Table 2.3. Exchange time results for Boolean elements. 

to tm r 
29.0 112. 560 
29.2 128. 639 
29.6 144. 718 
30.4 160. 798 
32.0 175. 876 
35.2 191. 955 
41.6 208. 1040 .. 

time in psec. 

is: 

(0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15) 

Algorithm 

1 - Map the upper half of the input matrix by shifting the elements down a total 

of - -  1 steps. For each shift down, one element will be located in the 
2 

correct position, and therefore stored in the result array. 

2 - Map the lower half of the input matrix. The same procedure of step 1 is 

followed except that the elements are shifted up. 

Results 

Refer to table 2.4. for the estimated and measured execution times, as well as 

the transfer ratios. The estimated execution times were calculated using the 

I 
1 
I 

I 
I 
1 

I 
I 

I 
I 
I 
1 



I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

32-bit f.p. 
8-bit int. 
Boolean 

24 

to tm r 
2.34 3.93 50.1 
0.84 3.70 569 
0.39 3.66 18300 

following equation: 

to, = 63.4 * Nb + 819.0 

In addition to the perfect shufie, the sub-sh@e and the super-shufie 

permutations were implemented 

Sub-shuffle 

significant bits of the input address. In the resulting permutation, the set of 

elements is divided into 2& groups, each one of size 2', and a perfect shuffle i s  

performed to each of the subgroups. As an example, consider an ordered set of 

sixteen elements. The binary representation of the sub-shufle at bit 3 is: 

(0, 4, 1, 5;2, 6, 3, 7, 8, 12, 9, 13, 10, 14, 11,  15) 

The sub-shme algorithm is the same as for the shufle, except that there are 2"-k 

Table 2.4. Perfect Shuffle time results. 



25 

bit k to 32-bit to 8-bit 
1 30.4 20.8 
2 67.6 34.0 
3 142.0 60.4 
4 29 1 .O 113.0 
5 588.0 219.0 
6 1180. 450.0 
7 2370. 852.0 

halves, and total amount of the shift is 2k-1 - 1. Please refer to table 2.6 for the 

to Boolean 
18.0 
24.2 
36.6 
61.4 

11 1.0 
210.0 
409.0 

timing results. The estimated execution times are given in table 2.5 and were 

bit k tm 32-bit r tm 8-bit 
1 0.075 0.96 0.072 
2 0.149 1.90 0.137 
3 0.280 3.57 0.257 
4 0.536 6.82 0.490 
5 1.040 13.2 0.948 
6 2.040 26.0 1.860 
7 3.930 50.1 3.580 

calculated using the following equation: 

r tm Bool. r 
11.1 0.072 361 
21.1 0.136 68 1 
39.5 0.256 1280 
75.4 0.489 2440 

146.0 0.947 4740 
286.0 1.860 9280 
551.0 3.570 17960 

too, t = 17.6 + 0.4 * Nb + (0.5 * Nb + 2.6) (2k - 2) 

Super-S huffle 

OCA, (x) = @,+I, . . . , b d + l ,  b,, b,,+, . . . 9 bl) 

The super-shufle permutation is deiined by the circular left shift of the k most 

Table 2.6. Sub-shuffle measured time results. 

time in msec. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 



I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
8 
I 
1 
I 

bit k 
1 
2 
3 
4 
5 
6 
7 

26 

significant bits of the input address. The resulting permu 

~ 

to 32-bit to 8-bit to Boolean 
30.4 20.8 18.0 

266.0 83.6 30.4 
430.0 132.0 45.6 
604.0 192.0 71.2 
876.0 29 1 .O 120.0 

1380. 480.0 2 16.0 
2370. 852.0 409.0 

ation till performs a 

perfect shuffle on the whole set, except that now an 'element' consists of a group of 

2"-' elements. As an example, consider an ordered set of sixteen elements. The 

binary representation of the super-shme at bit 3 is: 

8) (XI = (63, b2, b4, bl) 

and the result is: 

(0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15) 

The super-shufpe algorithm is the same as for the shufpe, except that instead of 

shifting by one, a shift by 2& is performed at each step. Also, after each shift, 2& 

elements are located in the correct location and therefore stored in the result array. 

Please refer to table 2.8 for the timing results. The estimated execution times are 

given in table 2.7 and were calculated with the following equation: 

m,,, 1 = 17.6 + 0.4 * Nb + [(12.8 * 2-' + 0.4) * Nb + 2.61 (2' - 2) 

Table 2.7. Super-shuffle estimated time results. 

time in psec. 



27 

bit k 
1 
2 
3 
4 
5 
6 
7 

Table 2.8. Super-shuffle measured time results. 

tm 32-bit 
0.124 
0.393 
0.61 1 
0.889 
1.363 
2.270 
4.060 

r 
1.58 
5.01 
7.78 

11.3 
17.4 
28.9 
51.7 

tm 8-bit 
0.123 
0.206 
0.386 
0.530 
0.984 
1.890 
3.690 

r 
18.9 
31.7 
59.4 
81.5 

151.0 
29 1 .O 
568.0 

4920 
9440 

18460 

tm Bool. 
0.123 
0.183 
0.300 
0.530 
0.984 
1.890 
3.690 

2.2.3. Butterfly Permutations 

Q ( X I  = (bl, bn-l. * * 9 4. bJ 

The b u t t e e  permutation consists of exchanging the most significant bit 

(MSB) and the least significant bit (LSB). Three cases arise from this exchange: 

First, if the bits are equal (Le. both are equal to 1 or to 0), the permuted addresses 

are unchanged, and therefore the corresponding elements remain in their initial 

positions. Second, if MSB = 1 and LSB 4, the corresponding elements have to 

move up 2R1 - 1 locations away. Third, if the MSB = 0 and LSB =1, the 

corresponding elements have to move down 2"-' - 1 locations away. 

Similarly to the butte&, the sub-buttern permutation consists of exchanging 

bit k (MSB) and bit 1 (LSB); and the super-buttee permutation consists of 

exchanging bit n (MSB) and bit n-k+l (LSB); The binary representations of these 

two permutations are: 

p@) (4 = (bn9 * - 9 bk+l, bk-1, b1, * * - 9 bkl 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I 
1 
I 
I 
1 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 

28 

p(k) (x) = (bd+ l ,  . . . , bd+z ,  b,,, b,,+ . . . I bl) 

Consider an ordered set of sixteen elements. The following are examples of the 

butreflies permutations. The binary representation of butte@ is: 

(0, 8, 2, 10, 4, 12, 6, 14, 1, 9, 3, 11, 5, 13, 7, 15) 

The binary representation of sub-burreg@ at bit 3 is: 

(0, 4, 2, 6, 1, 5, 3, 7, 8, 12, 10, 14, 9, 13, 11, 15) 

The binary representation of super-buttelpy at bit 3 is: 

(0, 1, 8, 9, 4, 5, 12, 13, 2, 3, 10, 11, 6, 7, 14, 15) 

Algorithm 

The algorithm consists of two steps: 

1 - Generate two Boolean masks: ’shiftup’ indicates the positions where the MSB 

of the address is equal to 0 and the LSB is equal to 1, and ’shiftdown’ 

indicates the positions where the MSB is equal to 1 and the LSB is equal to 0. 

Nothing needs to be done where MSB = LSB. 

2 - Perform the shifts: where ’shiftup’ is true, the elements are obtained with a 

shift up by a distance of 2*’ - 1; where ’shiftdown’ is true, the elements are 



29 

bit k 
1 
2 
3 
4 
5 
6 
7 

obtained with a shift down by a distance of 2"' - 1. 

to 32-bit to 8-bit to Boolean 
43.4 29.0 24.8 
49.8 30.6 25.8 
62.6 33.8 25.4 
88.2 40.2 26.2 

139.0 53.0 27.8 
242.0 78.6 31.0 
447.0 130.0 37.4 

The same algorithm applies for the sub and super buttem permutations, 

except that in the sub-butterfly a 2k-1 - 1 shift is performed, and in the super- 

buttefly a (2k-1 - 1)(2"A) shift is performed. 

Results 

The butterfly permutation is obtained either from (x )  or from pen) (x). 

Please refer to table 2.10 for the timing results of the sub-buttejly, and to table 

2.12 for the timing results of the super-buttem. The respective estimated 

execution times are given in tables 2.9 and 2.11 and were calculated with the 

following equations: 

rable 2.9. Sub-Butterfly estimated time results. 

time in pet. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



30 

bit k 
1 
2 
3 '  
4 
5 
6 
7 

Table 2.10. Sub-Butterfly measured time results. 
I 

tm 32-bit r tm 8-bit r tm Bool. r 
147 1.87 136 20.9 134 672 
161 2.05 148 22.8 148 738 
179 2.29 155 23.8 154 77 1 
212 2.70 165 25.4 161 805 
270 3.44 178 27.4 168 840 
380 4.83 207 31.8 175 874 
591 7.53 265 40.8 182 912 

I 
I 
1 

bit k to 32-bit to 8-bit 
1 43.4 29.0 
2 248.0 80.2 
3 35 1 .O 106.0 
4 402.0 119.0 
5 427.0 125.0 
6 440.0 128.0 
7 447.0 130.0 

I 
I 
1 

to Boolean 
24.8 
31.2 
34.4 
36.0 
36.8 
37.2 
37.4 

time in psec. 

bit k tm 32-bit r tm 8-bit r tm Bool. 
1 195 2.49 185 28.5 184 
2 401 5.10 223 34.3 189 
3 503 6.41 249 38.3 189 
4 554 7.06 261 40.2 189 
5 580 7.39 268 41.2 190 
6 593 7.55 27 1 41.7 190 
7 599 7.63 272 41.8 190 

I 
I 
I 

r 
919 
945 
945 
945 
950 
650 
650 

time in psec. 

Table 2.12. Super-Butterfly measured time results. I 



31 

2.2.4. Bit Reversal Permutations 

p (XI = (61, b2, - 9 b,l, bJ 

The bit reversal permutation consists of reversing the order of the bits of the 

input address; it is like taking the mirror image of the address. Similarly, the sub- 

bit reversal at bit k reverses the k least significant bits: bit k to bit 1, and the 

super-bit reversal reverses the k most significant bits: bit n to bit n-k+l. The 

binary representations of these two permutations are: 

reversal permutations. The binary representation of bit reversal is: 

(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15) 

The binary representation of sub-bit reversal at bit 3 is: 

(0, 4, 2, 6, 1, 5, 3, 7, 8, 12, 10, 14, 9, 13, 11, 15) 

The binary representation of super-bit reversal at bit 3 is: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
t 
3 
1 
I 
I 
1 
I 

(0, 
Algorithm 

32 

, 8, 9, 4, 5, 12, 13, 2, 3, 10, 1, 6, 7, 14, 15) 

The bit reversal permutation can be achieved with a series of bit exchanges 

between the pairs of corresponding MSB and LSB, i.e. between b, and bl, bel and 

b2, . . . , b,, and bMl where rn c - . Therefore a bit reversal consists of a series Iri 
of butteflies where the distance of each shift is calculated from the bits position 

numbers. If exchanging MSB bit j with LSB bit i, the amount of the shift is equal 

to 2 - l  - 2&'. The algorithm consists of iterations, where each iteration consists 151 L J  

Of: 

1 - Determine which pair of bits is to be exchanged, and calculate the amount of 

the shift. 

2 - Similarly to the buttem, create the shifts masks, and then perform the shifts. 

The same algorithm applies for the sub and super biz reversal permutations, 

except that the bit exchanges are performed only to the k least significant bits or the 

k most significant bits, respectively. In both cases, the number of iterations is equal 

to 151. 
Results 

Please refer to table 2.13 for the timing results of the bit reversal. The 

estimated execution times were calculated using the following equation: 



33 

to tm 

8-bit int. 0.520 1.51 
Boolean 0.361 1 S O  

32-bit f.p. 1.07 1.57 

t o p  = 337.8 + 22.8 * Nb 

Please refer to table 2.15 for the timing results of the sub-bir reversal, and to table 

r 
20 

232 
7520 

2.17 for the timing results of the sub-bir reversal. The respective estimated 

execution times are given in tables 2.14 and 2.16. The estimated execution times 

were calculated using the following equations: 

top, t = (212.0 + 0.6 * Nb) + (0.323 * 2' - 0.683) Nb /t I 
L J  

I 
I 

1 
I 

Table 2.13. Bit Reversal time results. 

time in msec. 

I 
1 
E 
1 
I 



34 

bit k 
1 
2 
3 
4 
5 
6 
7 

I 
I 

to 32-bit to 8-bit to Boolean 
0 0 0 

138 119 113 
151 122 114 
321 249 228 
398 268 23 1 
709 43 1 349 

1070 520 361 

tm 32-bit 
19. 

442. 
464. 
917. 
948. 

1431. 
1580. 

time in psec. 

r 
0.24 
5.63 
5.91 

11.7 
12.1 
18.2 
20.1 

Table 2.15. Sub-Bit Reversal measured time results. 

tm 8-bit 
19. 

442. 
463. 
917. 
948. 

1431. 
1510. 

bit k 

6 
7 

r 
2.9 

68.0 
71.2 

141.0 
146.0 
220.0 
232.0 

tm Bool. 
19. 

441. 
463. 
917. 
947. 

1430. 
1510. 

r 
94 

2206 
2320 
4590 
4740 
7150 
7540 

bit k 
1 
2 
3 
4 
5 
6 
7 

1 

to 32-bit to 8-bit to Boolean 
0 0 0 

337 169 120 
439 194 123 
724 350 241 
801 369 243 

1020 509 359 
1070 520 361 

.. 

time in psec. 
~~ 

Table 2.16. Super-Bit Reversal estimated time results. 

time in psec. 



35 

r 
2.34 
8.76 
9.39 

14.9 
14.7 
20.5 
20.1 

Table 2.17. Super-Bit Reversal measured time results. 

tm 8-bit 
0.184 
0.687 
0.667 
1.140 
1.110 
1 .550 
1.510 

bit k 

7 

r 
28.3 

106.0 
103.0 
175.0 
171.0 
238.0 
232.0 

tm 32-bit 
0.184 
0.688 
0.738 
1.170 
1.160 
1.610 
1.580 

tm Bool. 
0.184 
0.687 
0.667 
1.139 
1.110 
1 S O  
1.510 

time in msec. 

r 
922 

3440 
3340 
5700 
5550 
7750 
7550 

2.2.5. Conclusions 

An instruction used by all the permutations is the shij? instruction. As 

expected, the costs of the permutations are proportional to the amount of the shift@) 

and to the number of bits of the elements being shifted. The cost of a shift is in 

turn proportional to the value of k. The transfer ratio is proportional to the amount 

of the shift(s) and inversely proportional to the number of bits of the elements. As 

a result, with respect to the transfer ratio, all the permutations are most efficient 

when using 32-bit data and least efficient when using Boolean data. In addition, the 

lower the value of k, the lower is the transfer ratio. For example, the exchange 

permutation with the lowest transfer ratio and therefore the most efficient, is ql) for 

32-bit data elements. In general, the transfer ratio is in the order of 1 to 10’s for 

32-bit data, 10’s to 100’s for 8-bit data, and 100’s to 1OOO’s for Boolean data. 

Two kinds of execution times, estimated and measured, were presented in the 

results of each permutation. When comparing these times, it is found that the 



36 

estimated times are faster than the measured times by an average factor of 1.94 for 

32-bit data, 3.51 for 8-bit data, and 5.94 for Boolean data. There are several 

reasons for the differences between the estimated and the measured times. These 

reasons are presented in the remainder of this section. 

First, the runtime support for the MPP Parallel Pascal compiler does not 

optimally implement the Parallel Pascal primitive operations as is shown in table 

1.1. The optimal times were used in the calculation of the estimated execution 

times; therefore, it is anticipated that the estimated times will be lower than the 

measured times. 

Second, the overhead of the MCU is not taken into account in the estimation 

of the execution times of the permutations. In theory, the MCU operations are 

executed at the same time as the ARU operations. This is possible because an 

instruction queue exists, between the MCU and the PECU, which allows the MCU 

to perfoxm its operations while the array is busy processing instructions in the 

buffer. (The MCU issues the array instructions and puts them in the queue; it also 

executes all the scalar operarions). If during the execution of a program, the depth 

of the queue is always at least one, then the ARU is never idle, and therefore, the 

operations executed by the MCU are 'free' of cost. But if at a given time the queue 

is empty, the ARU could stay idle while it waits for the next instruction. This idle 

time constitutes the MCU overhead. 



37 

The MCU overhead is greater for arrays of Boolean because, in order to keep 

the ARU constantly busy, the MCU needs to issue instructions at a faster rate than 

for example for arrays of 32-bit elements. This is why the factor of difference 

between the estimated and the measured times, which reflects the MCU overhead, is 

greater for Boolean data than for 32-bit data. For example, the factor of difference 

of the buttefly permutations is approximately equal to 6 for Boolean and to 2 for 

32-bit floating point elements. A clear case when the measured time is due to the 

MCU is when k = 1 for the sub and the super-bit reversal permutations. No ARU 

operations are executed when k = 1, and therefore the estimated times are equal to 

0. The measured times are equal to 19 psec for the sub-bit reversal and equal to 

184 p e c  for the super-bit reversal. These times correspond to how long it takes 

the MCU to determine which bit planes are to be exchanged. For k = 1, the least 

significant plane is to be exchanged with itself, so obviously nothing needs to be 

done. 

Finally, for a shifz instruction, the difference factor between the optimal and 

measured execution times (given in table 1.1 of Chapter 1) increases as the distance 

of the shij? is decreased. The results obtained with the permutation functions are 

consistant with this statement. For example, the s w e  permutation, which consists 

of a series of shifts by a distance of 1, is the permutation with the largest average 

difference factor equal to 5.2 . 

I 
I 
1 
I 
I 
I 
I 
B 
1 
Ki 
I 
1 
I 
I 
1 
1 
I 
I 
1 



38 

Q Exchange 
+ Sub-shuffle 
4 Sub-Butterfly 
-+ Sub-bit rev. 

2000 

1000 4 

/ 
0 2 4 6 8 

bit k 

Figure 2.1. Measured execution times of the Exchange and sub-permutations. 

c 



39 

5000 

4000 

3000 

2000 

1000 

0 

Q Super-shuffle 
t Sup-Butterfly 
4 SupBit rev. P 

0 2 4 6 8 
bit k 

Figure 2.2. Measured execution times of the super-permutations. 

In general, the execution times of the permutations are dominated by shift 

operations and by the MCU overhead; no reduction operations are used and the 

arithmetic operations-are minimally used. Refer to Figures 2.1 and 2.2 for a plot of 

the measured execution times of the permutations with 32-bit data elements. Also, 

it should be noted, that if the Parallel Pascal 'bit-plane indexing' instruction is 

implemented on the MPP, the execution times of the buttem, bit reversal, and 

exchange permutations would significantly be reduced. The execution time for 

'bit-plane indexing' should be comparable to the 'odd' instruction which feturns the 

least signrficant bit plane of its argument. The 'odd' instruction takes 

approximately 3.4 psec. Since 'bit-plane indexing' is not currently implemented on 



40 

the MPP, a function bitplane had to be created which takes an average of 75.0 psec 

(including the function call). 

2.3. Fast Fourier Transform 

A Fast Fourier Transform (FFI') program, that uses the p, a, and p 

permutations, was developed. The Fourier Transform is the frequency domain 

representation of a function and it is frequently used in several different scientific 

applications. The FFI', as its name implies, is a fast method to compute the Discrete 

Fourier Transform (DFT), since it reduces the calculation of the FT from O(n*) for 

DFT to O(n log2$. An N-point DFT is equal to: 

1c -12- 
where w = e and N is a power of 2. Please refer to [12] for a detailed 

discussion of the m. 

Because of the widespread use of the FFI', it is often used as a measure of the 

pexformance of a given computer system, and thus, it is of interest to determine the 

execution time of an FFI' on the MPP. In the following sections, the FFI' 

algorithm that was implemented and the corresponding obtained time results will be 

presented. 

2.3.1. Algorithm 

The input to the FFI' program is an NxN array, and the FlT is performed 

concurrently to either the rows or the columns of the may, depending on what 



41 

coordinate is chosen. 

performing an FFT to the columns and then to the rows, or vice versa. 

Consequently, a two dimensional FFT is achieved by 

In general, the algorithm used to perform a FIT to a given row of length N (or 

column) is defined as follows: 

For a bit reversed result: 

FFT, = p(n> W p(,,-1) W . . . 80) W 0 W where N = 2" 

For a normal-ordered result: 

FFT,, = p(n) W f3(n-1) W . . . &) W Q W p where N = 2" 

8, 6, and p refer to the permutations presented in section 2.2; W represents the 

following operation: 

XI = Xl-1 + fl*Y,, 

Y l  = Xl-1 - f l * Y l _ l  

lt -J2- 
where w = e N ,  p represents the power of w, 1 represents the iteration number, and 

x and y are dual nodes ([12] p. 154 ). A diagram of W is shown in Figure 2.1. 

A perhaps better known FF" definition is obtained if every is replaced by a 

0; but as seen in section 2.2., Q takes an order of magnitude longer to execute than 

p, and thus, for the MPP, the FFT with p's is executed more efficiently. Please 

refer to Figure 2.2 for an example of the FIT calculation for N = 16. 

As mentioned previously, the FFT algorithm has complexity O(n log&, but on 

the MPP, it takes log2n steps because there are N PE's for N elements, as opposed 

to one PE for N elements (N = 128). In the MPP, a step or iteration 1 consists of 



I 
i 
I 

42 



42 

I 
I 
t 

I 
I 
I 

I 
1 
U 
I 



43 

x 
1-1 

yI-l  

I * 
I 
I 

I 

b 
8 

y I  

Figure 2.3. W operation. 

the following: 

1 - Perform the permutation except when I = n, in this case a CJ permutation 

is performed. At this point all the dual nodes pairs are located in adjacent 

PE’s. 

2 - Calculate the weights, Wp’s. The method used is simple but yet efficient: First 

the values of the p’s are generated, these are dependant on I and on the 

corresponding array position. Then the real part of w is equal to cos(& p )  N 

2lc 
N and the imaginary part is equal to - sin(- p) .  



44 

3 - Calculate xf’s and yf’s, i.e. perform the W operation presented above. Both the 

xf’s and the yf’s are calculated concurrently in the procedure complexmult. 

Initially, the xl-,’s are in the even numbered PE’s and a copy is send to the 

corresponding dual odd numbered PE; the opposite is done to the yf-l’s. Then 

the complex multiplication and addition are performed. 

At the beginning of the execution of the FFI’ program, three parameters need 

to be defined. The first parameter indicates whether the €T is performed on the 

rows or on the columns. The second parameter indicates whether an FFI’ or an 

Inverse FFI’ (IFFI’) is performed. If an EFI’ is chosen, the algorithm is the same 

as for the FFI’ (given above) with two exceptions: first, before starting the 

iterations, the input elements are divided by the number of elements i.e. by N; and 

second, the definition of the imaginary part of the weight w is equal to + sin(& p). N 

The third parameter indicates whether modulation is to be performed. Modulation 

is achieved by multiplying all the odd numbered input elements by -1. 

2.3.2. Results 

On the MPP, an FFT7 is performed. FFT7 is defined as: 

F*7 = P(5) wP(4)w P(3)w P(2) w 0 w 
Please refer to table 2.18 for the execution times of the P and Q permutations as 

well as for the respective transfer ratios. The execution times of these permutation 

functions are more than the execution times of the same permutations presented in 

8 
I 

I 
1 
1 
5 
1 
4 
I 

section 2.2, because, in the FlT, the data elements used are complex numbers i.e. 



45 

Permutation to tm 
Pm 851 993 
P(6) 45 1 617 
B(s, 252 445 

P(3) 107 77 1 
P(2) 85 362 
d 4390 7290 

P o  154 379 

two 32-bit floating point elements. In the calculation of the transfer ratio, the time 

for an elemental operation is equal to the average between a complex add and a 

complex multiplication (i.e. 314 psec). 

The execution times of the functions that the FFI’ procedure uses are given in 

table 2.19. The ’complexmult’ performs the W operation and its execution time is 

independant of 1, the iteration number. The ’powergen’ function generates the p 

values and its execution time depends on the value of 1. Finally, table 2.20 presents 

the execution times of the FFT procedure. 

The estimated times of table 2.20 are faster than the measured times by a 

factor of 1.51. The execution times of the FIT’S are dominated by arithmetic 

operations (W calculation) and by shifting operations (permutations); no reduction 

functions are used. The MCU overhead is likely to be minimun since most of the 

operations are array operations of 32-bit floating point elements; therefore, the 

r 
3.16 
1.96 
1.42 
1.21 
2.46 
1.15 

23.2 

~~~ ~ 

Table 2.18. FFT Permutations time results. 



46 

Function 
complexmult 
powergen I = 2 
powergen I = 3 
powergen 1 = 4 
powergen 1 = 5 
powergen I = 6 
powergen I = 7 

Table 2.19. FFT functions time results. 

to tm 
437 765 
41.9 294 
64.6 393 
87.3 493 

110.0 593 
133.0 692 

4.2 23 

to 
FFr 14.82 
FFT modulated 14.89 
IFFr 15.01 
IFFT modulated 15.08 

tm 
22.42 
22.43 
22.7 1 
22.76 - ~ ~ _ _  

time in msec. 
_____ ____ 

differences between estimated and measured times are mainly due to the inefficient 

implementation of Parallel Pascal primitive operations. 

As a performance measure of the FFT, the number of MFLOPS was 

calculated. An operation is defined as either a floating point multiplication or 

addition. It was determined that the sine and cosine operations, used in the 

calculation of the weight factors, have a measured execution time equal to 334 

psec, and thus, a sine or cosine operation on the MPP has a cost equivalent to four 

floating point multiplication operations. 

In an FFT, two main calculations are performed at each iteration: first, the 

weights factors are generated, and second, the W operation is performed. In 



41 

general, at each iteration 9 floating point operations per processor are necessary for 

the weights calculation and 8 are necessary for the W operation. There are seven 

iterations and 1282 processors, and the FIT takes 0.0224 seconds. In conclusion, 

the FFT calculation achieves an approximate rate of 87 MFLOPS. 

In addition to the MFLOPS calculation, the percentage of time spent on shift 

operations and the percentage of time spend on arithmetic calculations were found. 

The shift operations consist of the butteflies and the shme permutations, and the 

arithmetic operations consists of the weight factors calculation (powergen and the 

sine and cosine operations), and of the W operation (complexmulr). The FFI' 

program spends approximately 46% of the execution time on shift operations, and 

approximately 54% on arithmetic operations. 



CHAPTER 3 

IMAGE WARPING 

3.1. Introduction to the Warp Operation 

Many image processing applications require a warp or "rubber sheet" operation 

in order to remove irregular distortions, such as those caused by perspective,view 

angle, scanner motion during image acquisition, etc. Examples of warp operations 

include translation, rotation, and scale changes. The work done by M o m  [13] will 

form the basis of the following discussion of the warp operation. 

A parallel warp operation can be implemented in two steps. First, two 

coordinate-index matrices are generated. These matrices encode the mapping 

function between the input image (matrix to be warped) and the output image 

(result matrix), and &e called, respectively, the r matrix (for row index) and the c 

matrix (for column index). For images of size nxn and given i j  where i S n and j 

I n, the output image, R, at the position [ij] corresponds to the input image, I, at 

the position designated by row coordinate r[ij] and column coordinate c[ij]. This 

mapping function can be represented by the following formula: 

R [id1 = I [&I, c[iJ31] 
The second step of a warp operation consists of performing the mapping indicated 

by the r and c matrices. Two algorithms have been explored to perform this 

mapping function: a simple direct algorithm and a heuristic algorithm. 

48 



49 

I 
3 
1 The simple algorithm requires every element of the input image to be passed 

by every position of the output image. When an element is located at the 

appropriate output position, that is, when it has moved the correct distance 

according to the r and c matrices, its value is then stored at this position. The 

following is a Parallel Pascal program segment which implements this algorithm. 

With respect to the MPP, the sizes of the matrices are 128x128. 

Note: id1 is an index matrix where the values of the elements are equal to 
their corresponding row position number, i.e. idl[i, ] := i for all rows. 
Note: id2 is an index matrix where the values of the elements are equal to 
their corresponding column position number, i.e. id2[ j] := j for all columns. 

Begin 
(* calculate relative distance to corresponding output position *) 
r := (r - id1 + numrow) mod numrow; 
c := (c - id2 + numcol) mod numcol; 

(* perform the mapping *) 
For i := 1 to numrow do begin 

For j := 1 to numcol do begin 
where r = i and c = j do 

outimage := inimage; 
(* pass by every column position *) 
inimage := rotate(inimage, 0, 1); 

end; 
(* pass by every row position *) 
inimage := rotate(inimage, 1,O); 

end; 
end. 

The cost complexity of this algorithm is O(n2) whert n is equal to the number 

of rows (or columns) in the image. This algorithm always requires n2 iterations and 

n2 rotations, and, on the MPP, its optimal and measured execution times are 

respectively 153 msec and 600.8 msec for images with 8-bit elements, and 350 



50 

msec and 685.3 msec for images with 32-bit elements. The cost is dependent only 

on the size of the image and the number of bits per element, and not on the 

warping function. As a result of this fact, this algorithm fails to take advantage of 

any uniformity or locality which may exist in the movement of the elements. 

3.2. A Heuristic Algorithm 

A heuristic algorithm [13] has been developed for the MPP which takes 

advantage of uniformity or locality existing in the movement of the data elements. 

Its cost depends on the size of the image as well as on the specific warp operation.. 

The greater the similarity of the movement of neighboring image elements, the 

lower the cost of the algorithm will be. 

The following is a Parallel Pascal program segment which implements the 

heuristic algorithm: 

Variables: 

mk : array of boolean, true values indicate elements of outimage 

that are out of range. 

mask : array of boolean, true values indicate elements of outimage 

which have not yet received the comct element of inimage. 

ri, ci : row and column distances for the rotation. 

lastrit : the last value of rit. 

Variables used to process one column: 



51 

maskt : a version of mask. 

rit : a version of ri. 

inimaget : a version of inimage. 

rt : a version of r. 

lastrit : the last value of rit. 

(* Calculate relative distances to the corresponding outputs *) (1) 
r := (r - id l  + numrow) mod numrow; 
c := (c - id2 + numcol) mod numcol; 
(* initiallize *) 
lastrit :=O; 
outimage := inimage; 
mask := not msk and (r Q 0) or (c o 0); 

(* iterate until the mapping is completed *) (2) 
while any(mask, 1 ,2) do 

begin (* start an iteration *) 
ri := min(r, 1,  2); (* calculate the rotation distance *) (3) 
ci := min(c, 1,  2); 
inimage := rotate(inimage, ri, ci); (* perform the rotation *) 
r := r - ri; ( 4 )  
c := c - ci; 
m k t  := (r = 0) and (c = 0); 
if any(maskt, 1, 2)  then 

else (* start of the else branch *) (6) 
inimaget := inimage (* store matched element@) *) (5) 

(* of no matched element(s), process the column(s) with c = 0 *) 
begin 

where c = 0 do 
rt := r 

otherwise 
rt := nunuow; 

rit := min(rt, 1, 2); (7) 
maSkt := rt = ric 
( the next seven statements implement ) 
{ the statement inimaget = rotate (inimage, rit, 0) ) 
[ but also take advantage of the previous rotations ) 
if ci o 0 then 



52 

begin 
inimaget := inimage; 
lastrit := 0; 

end; 
inimaget := rotate( inimaget, rit - lastrit, 0 ); 
lastrit := rit; 

end; (* end of the else branch *) 
(* store the matched elements into outimage *) 
(* update the corresponding r, c, and mask values *) 
where muskt do 

begin 
outimage := inimaget; 
r := numrow; 
c := numcol; 
mask := false; 

end; 
end; (* end of the iteration *) 

This heuristic algorithm works in the following way: First, the relative 

distances to the corresponding output positions are calculated from the r and c 

matrices (1). Then, a series of iterations are performed until the mapping is 

completed. Before any iteration is begun, however, a test is performed to check 

whether or not the mapping of all the output elements has been completed (no 

superfluous iterations are performed) (2). Specifically, a parallel Boolean array, 

mask, is used such that if at a position in the array the value is true, this true value 

serves as an indication that the corresponding position in the output image has not 

received the correct element value. The parallel pascal reduction function 'any' is 

used to perform the test. This function performs a logical 'and' over all the 

elements of the Boolean array, and, if the result is false, it indicates that the 

mapping has been completed. 



53 

1 
a 
1 
I 
8 

At each iteration, the image is rotated by the maximum distance possible so 

that no backtracking will be required later. This distance is determined by 

computing the minimums of the r and c matrices (3). After the rotation, the r and 

c matrices are updated by subsmcting the distance of the rotation (4). At this 

point, at least one or more of the elements wil l  be matched or none will be 

matched. If there is a matched element@), i.e. a position where r and c are equal to 

zero, the value is stored in the corresponding output element, and the corresponding 

r and c values are updated to the maximum possible distance numrow or numcof 

(5). If there is no matched element, the element with the minimum r value and 

with c = 0 is then matched (6). The matching is accomplished by rotating a 

temporary may, inimager, by the minimum r value (7). If elements remain with c 

= 0, they will be mapped in the subsequent iterations, but in such an event the 

accumulated rotations of the temporary array are taken into account (using the 

fustrir variable). Once all of these remaining elements with c = 0 are mapped, the 

above-referenced pnxess is repeated. 

The worst case cost of the heuristic algorithm is O(n2), as this algorithm may 

conceivably require up to n2 iterations. The two warp functions that we used, 

however, always took less. The heuristic algorithm q u i r e s  less iterations because 

it only performs the moves that are needed by the given warp operation. But the 

penalty for this efficiency, is that the heuristic algorithm incurs an additional cost 

overhead for each iteration because of the Boolean operations, the updates of the r 

and c matrices, and the reduction operations it uses to check for the completition of 



54 

the mapping ('any') and to determine the rotation distance ('min'). The cost of 

these reduction operations depend on the data size and on the system. For the 

MPP, this cost could become a major part of the cost of the algorithm. 

3.3. Interpolation 

So far we have assumed that the generated r and c matrices indicate an exact 

mapping, i.e. that for a given output element the r and c matrices select a specific 

input element. But in most cases these matrices specify a position that falls 

between four input elements, such as those represented in Figure 3.1. 

In2 
(i, j )  ; (i, j + V  

_.... ..... _........ ....................... . 

In4 
(i+l, j+l) 

Figure 3.1. Four Element Interpolation. 

Three methods exist to determine the value of a given output element for 

which r and c do not select a specific input element: 



55 

1 - Near Neighbor Interpolation: This interpolation is the simplest, but the least 

accurate. As its name indicates, the closest input element to the r,c position is 

chosen. For example, in Figure 3.1 the element i j  would be mapped to the 

corresponding output element. 

2 - Bilinear Interpolation: In this method all four surrounding input elements are 

considered. The weight of each element with respect to the output element 

depends on its distance to the r,c position. Once the four elements are 

mapped, the output element is equal to: 

Out = (l-~j)*(l-fi*Znl + (l-fi*@ZnZ + F(l+)*lt~3 + p ~ f y m 4  

3 - Bicubic Interpolation: This method is similar to the bilinear interpolation, 

except that the surrounding sixteen elements are considered (sixteen mappings 

are needed). Again, the weight of each input element depends on its distance 

to the r,c position. See Figure 3.2. 

For methods 2 and 3, where several mappings are required, the algorithm first 

performs a mapping, then multiplies the mapped array by its weight and adds it to 

the partial result array. When this process has been performed with respect to all of 

the neighbors, (four for bilinear and sixteen for bicubic), the partial result is equal 

to the output image. 



56 

I n 1 0  I n 2 0  ' I n 3 0  I n 4 0  

................... I n 8 0  
cf i n 6 0  I n 5 0  I I n 7 0  

rf ; 
........................ out 

I n 9 0  I n 1 0  I n 1 1  I n 1 2  

I n 1 3  I n 1 4  I n 1 5  I n 1 6  

Figure 3.2. Sixteen Element Interpolation. 

3.4. Results 

The heuristic algorithm presented in section 3.2 was run on the MPP. Two 

different warping operations were used: Rotation with translation and 'Fisheye' 

distortion. For each of these operations, this section will both describe how the r 

and c matrices are generated, and present the estimated and measured execution 

times of the heuristic algorithm using near neighbor, bilinear, and cubic 

interpolation respectively. The estimated execution times were calculated using the 

method described in section 1.3 of Chapter 1. As usual, the optimal execution 

times of the instructions, given in table 1.1 of Chapter 1, are used in the 

calculations of the estimated times. Similarly to Chapter 2, to refers to the 

1 
I 



57 

estimated time and tm refers to the measured time. In the to equations, Nb represents 

the number of bits of the elements of the images, and the time units of the 

equations are peconds. 

In addition to execution times, the transfer ratio of the near neighbor algorithm 

was calculated since this figure represents the transfer ratio of one mapping. As 

defined in Chapter 2, the transfer ratio is the ratio of the time for data transfer over 

the time for an elemental operation. In this case, the time for data transfer is the 

time to execute the heuristic algorithm i.e. to perform the mapping. The time for 

an elemental operation is equal to the average between the time for a multiplication 

and the time for an addition in the ARU. The near neighbor transfer ratio figure is 

used as a performance measure for data mapping; the smaller the ratio the more 

efficient the data mapping in the MPP will be. 

For the bilinear interpolation, the computation cost is approximately four times 

that of the near neighbor algorithm, while for the cubic interpolation the cost is 

approximately sixteen times. 

3.4.1. Rotation with translation warp 

This warp operation consists of rotating the image by an angle 8 with the 

center of rotation at IQCO. The mapping between two corresponding points of the 

input and output images is defined as follows: 



58 

From this, the Parallel Pascal statements that generate the r and c matrices are: 

r := cos 0 (idl-ro) - sin 0 (id2-co) + ro; 

c := sin 0 (idl-ro) + cos 8 (id2-co) + ro; 

(idl-ro) and (id2-co) are the matrices with the xi’s and the yi’s. r and c are the 

matrices with the xo’s and yo’s. 

Refer to Figure 3.3 for an example of a near neighbor rotation warp of an 8x8 

image for ro, co = 1, 1 and 8 = 45’. 

1 1  1 2 1 3  1 4 1 5 1 6 1 7 1 8  
19 20  21 22  23 24 25 26  
27  28  29 30 31 32  33 34  
35  36  37  38  39 40  41 4 2  
43  4 4  45 46  47  4 8  49 50 
51 5 2  53 54  5 5  56  57 58  
59  6 0  61 6 2  63  64  65 6 6  
6 7  6 8  69  7 0  71  7 2  73 74  

1 1 0 0 0 0 0 0 0  
2 0 1 2  0 0 0 0 0 0 
2 0 2 1 1 4  0 0 0 0 0 
29 2 2  23 15  0 0 0 0 
38  31 23 24 17  0 0 0 
4 7  39  32  25 25 18  0 0 
4 7  4 8  41 33  26  0 0 0 
56  49  49 4 2  0 0 0 0 

Input Matrix 45 degree rotation at 1 , l  

Figure 3.3. Example of a near-neighbor rotation warp. 

Rotation Warp Mapping Time Results 

The rotation with translation warping using near-neighbor, bilinear, and bicubic 

interpolation was run on the MPP. For each kind of interpolation the program was 



59 

run and timed for different 8, ro, and co. The size of the images was 128x128. 

In order to calculate the estimated execution times corresponding to each 

measured time, it was necessary to obtain the values for the number of iterations 

(ni), the number of column processings i.e. the number of times that the else branch 

in the heuristic algorithm is taken (ne), and the number of rotations (rot) required to 

perform one mapping for a given 8, ro, and co rotation warp. For each iteration, 

two 'any' and two 'min' reductions are performed, and for each column processing, 

one 'min' reduction is performed. Please refer to tables 3.1 and 3.2 for the cost of 

one mapping with the rotation warp respectively centered at 1,l and at 64,64. The 

number of column processings is equal to the number of 'min' minus the number of 

'any' reductions. From these tables, and with respect to the number of iterations 

and the number of rotations, the heuristic algorithm is found more efficient than the 

simple algorithm. In all cases, the heuristic algorithm requires less than the 16,384 

rotations required by'the simple algorithm. 

The estimated t imes were calculated using the following equations: 

- Near neighbor interpolation mapping: 

to = 0.4*Nb + 51.2 + ni*(31.2 + 0.6*Nb) + ne*(16.3 + 0.4*Nb) + O.l*rOt*Nb 

For Nb = 8 

For Nb = 32 

to = 54.4 + ni * 36.0 + ne * 19.5 + rot * 0.8 

to = 64.0 + ni * 50.4 + ne * 29.1 + rot * 3.2 

- Bilinear interpolation mapping: (approximately four times that of the near 

neighbor case) 



60 

angle 8 
0 
15 
30 
45 
60 
75 
90 

to = 930.2 + 4 * to,,,, 

- Bicubic interpolation mapping: (approximately sixteen times that of the near 

neighbor case) 

to = 16618.6 + 16 * to,,,, 

The timing results of the near neighbor rotation warp are given in table 3.3 for 

a rotation centered at 1,l and in table 3.4 for a rotation centered at 64,64. In 

addition to the estimated (to) and the measured (tm) execution times, the transfer 

ratio (r) is also given. As stated above, the transfer ratio reflects how efficient an 

image mapping, using the heuristic algorithm, is on the MPP. The timing results, to. 

and tm, for the bilinear rotation warp are given in tables 3.5 and 3.6, and for the 

bicubic warp, the timing results are given in tables 3.7 and 3.8. 

The transfer ratios of tables 3.3 and 3.4 are very large. Their size indicates 

that the mapping operation for the rotation warp is very costly. It should be noted 

though, that the mapping is more efficient as the number of bits of the data 

iterations rotations 'any' reductions 'min' reductions 
1 0 1 0 

910 1451 1820 2666 
2619 3359 5238 7759 
4069 5838 8138 12098 
3882 7975 7764 11553 
2232 9029 4464 6659 
128 8129 256 382 

Table 3.1. Cost of one mapping for the Rotation with Translation Warp 
centered at 1, 1. 



Table 3.2. Cost of one mapping for the Rotation with Translation Warp 
centered at 64, 64. 

rotations 
0 

4446 
8890 

13589 
16369 
16358 
16318 

75 

'any' reductions 
1 

2106 
7556 

15988 
22926 
23562 
16384 

iterations 
1 

1053 
3778 
7994 

11463 
11781 
8192 

to 
0.054 

75.19 
216.2 
339.1 
33 1.5 
205.3 
36.19 

tm r 
0.33 5.7E+O 

579.0 9.5E+3 
1687.0 2.8E+4 
2634.0 4.3E+4 
2523.0 4.1 E+4 
1468.0 2.4E+4 
109.1 1.8E+3 

'min' reductions 
0 

3091 
11 197 
2377 1 
34174 
35148 
24448 

Angle 8 

0 
15 
30 
45 
60 
75 
90 

Table 3.3. Near-Neighbor timing results where ro, co = 1, 1. 

8-bit element image 32-bit element image 
to tm r to tm r 

0.054 0.33 5.1E+1 0.064 0.35 5.OE+O 
60.73 671.3 1 .OE+5 96.03 680.6 l.lE+4 

2 14.2 2432.0 3.7E+5 324.9 2447.0 4.OE+4 
450.5 5164.0 7.9E+5 672.9 5183.0 8.5E+4 
645.2 7626.0 1.2E+6 957.5 7441.0 1.2E+5 
663.2 7638.0 1.2E+6 983.3 7648.0 1.3E+5 
465.3 5320.0 8.2E+5 699.8 5323.0 8.7E+4 

0 
15 
30 
45 
60 
75 
90 

0.054 
50.47 

146.2 
228.4 
220.1 
130.4 
13.62 

time in msec. 

0.34 
577.4 

1684.0 
2628.0 
2511.0 
1451.0 

87.99 

time in msec. 



62 

Table 3.5. Bilinear timing results where to, co = 1, 1. 

Angle 8 

0 
15 
30 
45 
60 
75 
90 

~ ~~ 

8-bit element image 32-bit element image 
to tm to tm 

0.001 1 0.004 0.0012 0.004 
0.2028 2.308 0.3017 2.3 14 
0.5857 6.729 0.8656 6.738 
0.9 146 10.53 1.3570 10.55 
0.8812 9.927 1.3270 9.970 
0.5227 5.653 0.8222 5.722 
0.001 1 0.01 1 0.001 1 0.01 1 

Table 3.6. Bilinear timing results where ro, co = 64, 64. 

8 -bit element image 
to tm 

0.001 1 0.004 
0.2438 2.695 
0.8576 9.744 
1.803 20.69 
2.282 29.74 
2.654 30.65 
1.862 27.74 

Angle 8 32-bit 
to 

0.0012 
0.3850 
1.300 
2.693 
3.831 
3.934 
2.800 

0 
15 
30 
45 
60 
75 
90 

time in sec. 

~ 

:lement image 
tm 
0.004 
2.73 1 
9.800 

20.75 
29.79 
30.69 
27.78 

Table 3.7. Bicubic timing results where ro, co = 1, 1. 

Angle 6 

0 
15 
30 
45 
60 
75 
90 

time in sec. 

0.0175 
0.8242 
2.356 
3.67 1 
3.538 
2.104 
0.2346 

:ment image !! 32-bit 

0.041 
9.327 

27.14 
42.50 
40.50 
23.60 

1.724 

0.0176 
1.220 
3.475 
5.442 
5.321 
3.302 
0.5957 

lement image 

0.044 
9.390 

tm 

27.25 
42.67 
40.73 
23.9 1 

1.897 



63 

Angle 8 

0 
15 
30 
45 
60 
75 
90 

8-bit element image 32-bit element image 
to tm to tm 

0.0175 0.041 0.0176 0.044 
0.9882 10.78 1.553 10.93 
3.443 38.98 5.215 39.23 
7.224 82.84 10.78 83.16 

10.34 119.0 15.34 119.3 
10.63 122.5 15.75 122.8 
7.461 110.5 11.21 110.8 

increases. 

In general, the estimated results were faster than the measured results by an 

average factor of 11.4 for rotation warps with 8-bit element images, and by an 

average factor of 7.6 for rotation warps with 32-bit element images. The difference 

between the estimated and the measured results is caused by implementation 

inefficiencies and overheads of the operations used in the heuristic algorithm, and 

by the MCU scalar operations which are not taken into account in the calculation of 

the estimated optimal results. As noted in Chapter 2, part of the overhead cost is 

due to the lack of an optimizing stage for the Parallel Pascal Compiler. 

The MCU issues the instructions to be executed by the ARU, and it performs 

all scalar operations. Implementation overhead arises when the MCU is not able to 

issue instructions into the queue fast enough to keep the ARU continuously busy. 

When the instruction queue is empty, the ARU stays idle if waiting for the next 

instruction. In theory the MCU executes scalar operations while the ARU executes 



64 

array operations. However, some scalar operations, in the heuristic algorithm, 

control the flow of program execution and cannot be executed concurrently; these 

are the operations associated with the while and if statements. There is one while 

statement which determines if another iteration is to be started; the evaluation of 

this while operation depends on the result of the reduction operation ’any’ which 

causes the ARU instruction queue to empty. There are two conditional branches (if 

statements), one of which also evaluates with the result of an ’any’ reduction, and 

thus, it also causes the queue to empty. 

The ARU operations used in the heuristic algorithm may be divided into four 

groups. The non-optimal execution of these operations, along with the MCU scalar 

operations, contribute to the factor of difference between the optimal and the 

measured time results. 

The reduction operations used to check for the completion of the mapping 

(’any’) and to determine the rotation distance (’min’). These account for about 

44% of the estimated execution time of the heuristic algorithm. The operation 

’any’ takes a measured time of approximately 2.4 psec and the operation 

’min’, with an may of 8-bit elements, takes 33.1 psec. For these operations, 

the optimal execution time is faster than the measured time by a factor of 4.8 

for the ’any’ reduction, and by a factor of 4.1 for the ’min’ reduction. The 

reduction operations contribute to the difference between the estimated and 

measured times of the heuristic algorithm because, in addition to their non- 



65 

optimal implementation, the reduction operations introduce a MCU overhead 

that is not considered in the calculation of the estimated times. The result of a 

reduction operation is a scalar value for which the MCU must wait. Since the 

MCU has to wait until the reduction instruction is complete, it cannot issue 

any more may instructions into the queue, and therefore the queue becomes 

empty. It is at this time, when the queue is empty and the ARU is ready for 

another instruction, that the MCU overhead is created. 

The Boolean operations used to determine the completition of the mapping 

and to store the mapped elements into the appropiate output positions. These 

operations account for about 20% of the estimated execution time of the 

heuristic algorithm. As seen in table 1.1. of Chapter 1, on the MPP, Boolean 

operations are the least efficiently implemented. On average, the Boolean 

optimal times are about 20 times faster than the measured times. 

The 'update' operations on the r and c matrices. These account for about 20% 

of the estimated execution time of the heuristic algorithm. On average, the 

optimal times of these operations (arithmetic and assignment) are about 2 

times faster than the measured times. 

The rotate operations used to move the input image elements to the 

comsponding output positions. These account for about 8% for 8-bit element 

images and 20% for 32-bit element images. In both cases, the shift optimal 

times are approximately 2 times faster than the measured times. 



66 

3.4.2. 'Fisheye' warp 

In the Fisheye warp operation, the sampling rate of the image is changed. The 

new sampling rate at a given position is determined according to its distance with 

respect to the ro,co coordinates. Specifically, the sampling rate is increased for the 

nearby area around the ro,co coordinates, and accordingly this area is mapped onto 

a larger one. For the remaining area of the image, the sampling rate is decreased. 

Thus, this remaining area is mapped into a smaller one. 

The r and c matrices for this 'fisheye' warp are calculated using the (1 - cos) 

function. For example the r matrix is equal to: 

- For the positions above ro: 

. ---1 * * ro JJ c 
- For the positions below ro: 

f r 1- 

I1 x * ( id1 - ro ) r = ro + (numrow - ro) * -1 + cos I I  2 * (numrow - ro) 

Refer to Figure 3.4 for an example of a near neighbor In this example the 

warp operation is applied to both the x and the y coordinates, i.e. rowc = colc = 1, 

and the warp is centered at ro, co = 4.4. 



67 

1 1  1 2 1 3  1 4 1 5 1 6 1 7 1 8  
1 9  20  21 2 2  23  24  25 26 
27  2 8  29 30  31 3 2  33 34  
35  3 6  37  38  39 40 41 42  
43  4 4  45 46  47  48  49 50 
51 5 2  53 54  55 56  57 58 
59 60  61 62  63 64  65 66  
67  68  69 7 0  71  7 2  73  7 4  

20 21 22  22  2 2  23  24 26 
2 8  29  30  30  30  31 32  34  
36  3 7  38 38  38  39  40 4 2  
36  37  38 3 8  3 8  39 40 42 
36  3 7  38 38  38  39  40 42  
44  45 46 4 6  4 6  4 7  48 50 
52  53 54 54  54  55  56 58 
68  69 7 0  7 0  7 0  7 1  7 2  7 4  

Input Matrix Expand at 4,4 

Figure 3.4. Example of a near-neighbor 'fisheye' warp. 

Fisheye Warp Mapping Time Results 

The 'fisheye' warping using near-neighbor, bilinear, and bicubic interpolation 

was run on the MPP. For each kind of interpolation the program was run and 

timed for different input parameters, namely rowc, colc. ro,and co. The parameters 

rowc and colc indicate whether or not to change the sampling rate in their 

respective coordinate. If rowc is 0 the sampling rate is not changed in the rows, 

while if it is a 1 the sampling rate is changed. The same applies for colc, but with 

respect to the columns. The size of the images was 128x128. 

The estimated times were calculated using the equations given in section 3.4.1. 

Refer to table 3.9 for the cost of one mapping of the 'fisheye' warp. The number 

of column processings is equal to the number of 'min' minus the number of 'any' 

reductions. Similar to the rotation warp, in all cases of the 'fisheye' warp the 



68 

input 
1 0 32 32 
1 0 6 4 6 4  
1 1 32 32 
1 1 6 4 6 4  
1 1 6 4 3 2  
1 1 32 32 

heuristic algorithm required less than the 16,384 iterations and the 16,384 rotations 

required by the simple algorithm. Therefore, with respect to the number of iterations 

and the number of rotations, the heuristic algorithm is found to be more efficient 

than the simple algorithm. 

The timing results of the near neighbor 'fisheye' warp are given in table 3.10. 

In addition to the estimated (to) and the measured (tm) execution times, the transfer 

ratio (r) is also given. The timing results, to and tm, for the bilinear and the 

bicubic 'fisheye' warps are given in tables 3.11 and 3.12, respectively. 

The same measured execution time results, given in tables 3.10 to 3.11, apply 

if the input parameters rowc and colc were 0 1, respectively, as opposed to 1 0, and 

if the value 32 is replaced with any other value from 16 to 112 except for 64. On 

the average, the estimated results were 11.1 times faster than the measured results 

for 8-bit element images, and 6.5 times faster for 32-bit element images. The same 

iterations rotations 'any' reductions 'min' reductions 
28 127 56 56 
27 127 54 54 

784 3683 1568 2297 
729 3556 1458 2134 
756 3683 1512 2214 
756 3556 1512 2214 

Table 3.9. Cost of one mapping for the 'Fisheye' Warp. 



69 

input 

1 0 32 32 
1 0 6 4 6 4  
1 1 32 32 
1 1 64 64 
1 1 64 32 
1 1 32 64 

8 -bit element image 32-bit element image 
to tm r to tm r 

1.164 11.13 1.7E+3 1.882 11.40 1.9E+2 
1.128 10.75 1.7E+3 1.831 11.02 1.8E+2 

45.44 503.1 7.7E+4 72.58 510.7 8.4E+3 
42.33 467.4 7.2E+4 67.86 474.8 7.8E+3 
43.91 484.9 7.5E+4 70.38 492.6 8.1E+3 
43.80 484.7 7.5E+4 69.97 492.1 8.1E+3 

Table 3.11. Bilinear timing results. 

input 

1 0 32 32 
1 0 6 4 6 4  
1 1 32 32 
1 1 6 4 6 4  
1 1 6 4 3 2  
1 1 3 2 6 4  

8-bit element image 
to tm 
5.586 45.34 
5.442 45.34 

182.7 1998.0 
170.0 1998.0 
176.6 1998.0 
176.1 1998.0 

to 
8.457 
8.255 

291.2 
272.4 
282.5 
280.8 

time in msec., input parameters are mwc, colc, ro, and co. 

tm 
46.54 
46.54 

203 1 .O 
203 1 .O 
203 1 .O 
203 1 .O 

Table 3.12. Bicubic timing results. 

input 

1 0 32 32 
1 0 6 4 6 4  
1 1 32 32 
1 1 3 2 6 4  
1 1 6 4 3 2  
1 1 3 2 6 4  

8-bit element image 
to tm 

35.24 203.8 
34.67 203.8 

743.7 801 1.0 
693.8 801 1.0 
7 19.1 801 1.0 
717.5 801 1.0 

32-bit element image 
to tm 
46.72 210.1 
45.92 210.1 

1178.0 8141.0 
1102.0 8141.0 
1143.0 8141.0 
1136.0 8141.0 i 

time in msec., input parameters are mwc, colc, ro, and co. 



70 

analysis for the rotation warp, given in section 3.4.1, applies for the 'fisheye' warp. 

3.4.3. Conclusion 

The heuristic algorithm is most efficient when few image elements are to be 

moved or when there is a lot of uniformity in the movement of the elements. The 

heuristic algorithm always takes fewer than the n2 iterations and n2 rotations 

required by the simple algorithm. However, the cost of the heuristic algorithm may 

still be greater if the cost of the overhead operations, (the operations other than the 

rotations) becomes greater than the savings from the reduced number of iterations 

and rotations. In addition, on the n"P, the heuristic algorithm is at a disadvantage 

with respect to the simple algorithm because the measured execution times are 

slower by a factor of 7 to 11 than the optimal execution times, as opposed to a 

factor of 2 to 3 for the simple algorithm. 

Comparing the execution times of the simple algorithm and the heuristic 

algorithm for the 'Fisheye' warp, the heuristic algorithm is always faster since it 

takes advantage of the considerable amount of uniformity in the movement of these 

warp. The 'Fisheye' mapping requires as few as 27 iterations and a total rotation 

distance of 127 when the warp is applied in one coordinate in the middle of the 

image, and at most 784 iterations with a rotation distance of 3683 when the warp is 

applied in both coordinates at any position except the middle of the image. 

Comparing the estimated execution times of the simple algorithm and the 

heuristic algorithm for the Rotation warp, the heuristic algorithm is less efficient for 



71 

Rotations of large angles. The number of iterations range from 128 in the case of a 

90 degree Rotation centered at 1,l to 11,781 iterations in the case of a 75 degree 

Rotation centered at 64,64. The rotation distances range from 1451 in the case of a 

15 degree Rotation warp centered at 1,l to 16,369 iterations in the case of a 60 

degree Rotation warp centered at 64,64. The number of iterations and rotation 

distances are less than the 16,384 required by the simple algorithm, but not always 

not enough to offset the cost of the overhead operations and the greater 

implementation cost of the heuristic algorithm. This is especially m e  for the 

Rotation warp centered at 64,64. 



CHAPTER 4 

CONVOLUTION AND PYRAMID-FILTERING OPERATIONS 

4.1. Convolution and Pyramid Operations 

An important image processing operation is Convolution; it involves 

convolving an image with a given small mamx: the convolution kernel. This 

chapter presents the convolution operation and two pyramid filtering operations 

where the filtering is obtained with convolution operations. The corresponding 

results, obtained on the MPP, are given. 

4.2. Convolution 

A centered convolution operation is defined as: 

where I is the image, W is the convolution kernel of size (2m + 1) x (2m + 1). In 

general, the dimensions of the kernel are much smaller than the dimensions of the 

image. 

Conceptually, the convolution result for a given image element I[i,j] is 

obtained by superposing the W kernel onto the image (with the center of W at the 

i j  position), and multiplying each kernel element with the corresponding image 

element. The convolution result for i j  is then equal to the summation of these 

72 



73 

products. 

m 
I 
8 

I 
I 
1 
I 
8 
1 
I 

On the MPP, the implementation of a convolution operation involves a series 

of shift-multiply-add operations. The centered convolution operation using 5x5 

kernels was run on the MPP. The measured execution time for images with 8-bit 

integer elements is 987 psec, and for images with 32-bit floating point elements is 

5.28 msec. As a performance measure of the convolution on the MPP, the number 

of MFLOPS was calculated. A convolution with a 5x5 kernel involves 50 

operations (25 additions and 25 multiplications) per processor, and therefore the 

convolution operation achieves approximately a rate of 830 MOPS for 8-bit integer 

data and 155 MFLOPS for 32-bit floating point data. If no interprocessor 

communications were needed, the measured execution times would be equal to 325 

p e c  (33% of the total time) for 8-bit integer data and to 3.92 msec (74% of the 

total time) for 32-bit floating point data. The convolution with 32-bit floating point 

data spends a lower percentage of the execution time in interprocessor 

communication, and therefore, it is more efficiently implemented on the MPP than 

the convolution with 8-bit integer data. 

4.3. Pyramid Operations 

Many image processing algorithms, especially early processing and 

segmentation algorithms, may be efficiently implemented with pyramid data 

structures. A pyramid data structue consists of several copies of an image at 

different resolutions. As one can see in Figure 4.1 ([14] p. loa), the highest level 



14 

of a pyramid consists of one element, the next level down consists of four elements 

in a 2x2 matrix, and so on. In general, the dimensions of a level are twice as large 

as the previous level. Thus, the lower the level in the pyramid, the greater the 

resolution of the image. For a given level k, there are 2k x 2' elements, with each 

one being connected to one element in the level above and to four in the level 

below. 

An important operation in many pyramid algorithms is to build the pyramid 

from the image located at its lowest level. In this chapter two such operations are 

I i I  I 

Figure 4.1. The Pyramid Structure. 



75 

considered: The Gaussian and Laplacian operations, these are filtering operations 

(Gaussian for low-pass filtering and Laplacian for band-pass filtering) in which each 

level is the filtered copy of the adjacent lower level. Even though the mesh 

interconnection network of the MPP does not match the connection of a pyramid 

structure, thereby preventing optimal results, it is of interest to emulate a fully 

parallel pyramid architecture, and to investigate what results can be obtained on the 

MPP. 

4.4. Pyramid operations on the MPP 

A simple way to store a pyramid structure in a two dimensional array is to 

store the successive levels of the pyramid in successive rows of the array. The 

highest level (one element) is located at the [O,O] position in the array. See Figure 

4.2 for an example of a three level pyramid stored in an 8x8 m y .  

Three different movements must be implemented in order to perfom pyramid 

operations on the MPP: a shift within each level, a shift to move up, and a shift to 

move down the pyramid. The function pynnskg generates pymsk, a Boolean 

pyramid consuain mask, that is used by the function xshifr to perform shifts within 

all the levels of the pyramid. These functions are used as follows, where x and y 

are the amounts of the xshift in the x and y directions respectively: 

p y m k  := pyrmskg(id1, id2) 

pyramid := xshijiiyramid, x, y ,  pyrmsk) 

The function pyrgen generates all the shift matrices used for moving up and down 



76 

level 1 4 ..._...+ 21j221 ........ 
. I  

level 2 

I------I 

Figure 4.2. A three level Pyramid embedded in an 8x8 array. 

the pyramid. These shift matrices are 'upl' and 'up2' to move up in the x (row) 

and in the y (column) direction respectively, and similarly 'dnl' and 'dn2' to move 

down. For example 'upl' is generated as follows: 

up1 :=pyrgen(idl, id2, true, 1 )  

The gather function performs the up and down movements. An upward shift of all 

levels of the pyramid is generated by: 

pyramid := gather (gather (pyramid, upl, l ) ,  up2, 2)  

A downward shift is generated by: 

pyramid := gather (gather (pyramid, dnl, 1 ) .  dn2, 2) 

For an example of an up and down movement, achieved with the gather function, 

in a three level pyramid refer to Figure 4.3 (the input pyramid is given in Figure 



77 

4.2.). Also refer to Figure 4.3 for the four possible shift movements within the 

levels achieved with the xshift function. Finally, table 4.1 gives the execution times 

of these functions in the MPP. These functions were developed by Gary Ross and 

Anthony Reeves. 

4.5. Gaussian Filtering 

As stated in section 4.1, the Gaussian pyramid is a sequence of images in 

which each one is a low-pass filtered copy of the image below. A filtered image is 

obtained by convolving the image of the level below with a 5x5 kernel and then' 

shifting the result one level up. The convolution operation is the same as the one 

Table 4.1. Execution times of the pyramid primitives. 

Pyrgen of 'upl' 
Pyrgen of 'up2' 



321 

Shift one level UP 

78 

11 11 

2 4 2 1  i 221221 

Shift one level DOWN 

Shift LEFT w/in level Shift RIGHT w/in level 

Shift UP w/in level Shift DOWN w/in level 

Figure 4.3. Pyramid shift movements. 
(the input pyramid is given in Figure 4.2.) 



presented in section 4.2, except that in order to keep the computation within the 

pyramid boundaries, the function xshifr is used for interprocessor communication 

instead of the regular Parallel Pascal shift. This convolution which uses the xshift 

function will be refered to as a cornmined convolution. 

4.5.1. Algorithm 

The algorithm involves two main steps: 

1 - Based on the weight factor, the convolution kernel is generated (see Figure 

4.4.a). The following equation is used: 

Wx, yl := +[XI * +b] for -2 I x,y I 2 

where +[OI = a ,  +[kl] = b, and + [ S I  = c 

a = weightfactor, b = 0.25, and c = 0.25 - 0.5 * a 

If the value of 'a' is equal to 0.4, the convolution kernel will resemble the 

gaussian probability density function (thus the name of Gaussian pyramid). 

2 - (n - 1) iterations are performed for a 2" x 2" array. At each iteration, the low- 

pass filtering is propagated one level up; thus for a n-level pyramid, n-1 

iterations are needed to propagate the filtering from the lowest level to the 

highest. An iteration consists of the following: 

(i) - perfoming a constrained convolution at each level with the function 

xconv.5 

(ii) - shifting the results one level up with the function gather 

(iii) - restoring the input image at the base of the pyramid, i.e. at the 



80 

lowest level. 

4.5.2. Results 

The Gaussian algorithm was coded in Parallel Pascal using the high level 

pyramid functions xshift and gather, and was executed in the MPP. Two types of 

images were used: images with 8-bit integer elements and images with 32-bit 

floating point elements. See table 4.2 for the obtained execution times. 

0.0025 0.0125 0.0200 0.0125 0.0025 
0.01 25 0.0625 0.1 000 0.0625 0.01 25 
0.0200 0.1 000 0.1 600 0.1 000 0.0200 
0.01 25 0.0625 0.1 000 0.0625 0.0125 
0.0025 0.0125 0.0200 0.0125 0.0025 

(4.4.a.) Gaussian convolution kernel for a = 0.4. 

0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0125 0.0200 0.0125 0.0000 
0.0000 0.0200 0.1 600 0.0200 0.0000 
0.0000 0.0125 0.0200 0.0125 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 

(4.4.b.) Modified convolution kernel. 

Figure 4.4. Pyramid convolution kernels. 



81 

average time measured 
8-bit integers 1.178 sec 

.- 32-bit reds 1.225 sec 

Table 4.2. Gaussian Filtering execution times. 

4.6. Laplacian Filtering 

In this operation a Laplacian pyramid is generated, in which each image is a 

band-pass filtered copy of the image below. A band-pass filtered image at level k 

is equal to the difference between the low-pass filtered images at level k and at 

level k-1 (expanded to the size of level k). In other words, it is equal to the 

difference between the corresponding two successive levels of the Gaussian 

Pyramid. 

4.6.1. Algorithm 

The algorithm consists of three steps: 

1 - Generate the Gaussian pyramid (see section 4.3.1) 

2 - Generate another pyramid by expanding every level of the Gaussian pyramid. 

The q a n d  operation is the opposite of the reduction operation of the 

Gaussian algorithm (steps 2i and 2ii of section 4.3.1). From [lS], this 

operation is defined as follows: 

Level k = expand (Level k-1 ) 



82 

8 -bit integers 
32-bit reals 

2 2  

X E  -2 y' -2 
Level k[i,j] = 4  * E W[x,y] * Level k-1 [ F, p] 

average time measured 
1.374 sec 
1.432 sec 

This equation is implemented as follows: 

(i) - perform a constrained convolution at every level with the modified 

kernel of Figure 4.4.b. 

(ii) - shift the result one level down with the function gather. 

Clearly, the highest level of the pyramid generated from the expand operation 

is equal to zero. 

3 - Substract the two pyramids to obtain the Laplacian pyramid. 

4.6.2. Results 

The Laplacian algorithm was coded in Parallel Pascal and was executed in the 

MPP. See table 4.3 for the obtained execution times. 

Table 4.3. Laplacian Filtering execution times. 

Summary 

Convolution operations can be implemented onthe MPP in Parallel Pascal with 

reasonable efficiency. A full parallel pyramid architecture has been emulated on the 

MPP using the general purpose data manipulation programming tools xshift and 

gather. While the efficiency of these tools is relatively low for any given data 



83 

manipulation, they permit the simulation to be programmed at a very high level. 

The ability of this emulation to process real size images in a resonable amount of 

time has been demonstrated. A much faster implementation of the pyramid 

building operations could be achieved by programming them more directly. 

It was found that the execution times of the pyramid operations on the MPP 

were dominated by the shifts within and between levels of the pyramid. The 

constrained convolution, which uses the shifts within levels operation, has an 

execution time of 6.22 msec for 8-bit integer data, and 8.15 msec for 32-bit floating 

point data. The xshift function seriously impacts the execution time of the 

convolution operation for 8-bit integer data; this constrained convolution is slower 

than the regular convolution of section 4.2 by a factor of 6. However, the 

constrained convolution for 32-bit floating point is slower than the regular 

convolution by only a factor of 1.5. 

For the shifting between levels, a general primitive function, gather, is used. 

This function performs a shift of all levels, and it is not as efficient as only 

performing the shift at the required level. For example, in the first iteration of the 

Gaussian algorithm, a shift, from the lowest level to the next level up, is required 

with a maximum x-distance of 64 and y-distance of 32. This maximum distances 

decrease by half for each level up in the pyramid, and as little as a maximum x- 

distance of 2 and y-distance of 1 are required for a shift to the highest pyramid 

level (in the last iteration). This shift to the highest pyramid level can be much 



84 

more efficiently performed if, rather than using a general operation for shifts 

between levels, a special operation that performs this particular shift is used. 



CHAPTER 5 

CONCLUSION 

This thesis presented several important algorithms developed for a SIMD 

mesh-connected parallel computer, the Massively Parallel Processor (MPP). For 

each algorithm the obtained timing and performance results were discussed. From 

these results, it was found that for Boolean operations, up to an order of magnitude 

is lost in performance with the current implementation of the high level language 

Parallel Pascal and the MCU control overhead. Therefore, assembly coding is very 

desirable for efficient programming of Boolean operations on the MPP. The 

implementation of &bit integer operations is also not very efficient, but it is 

significantly better than the Boolean implementation. On the other hand, the 

implementation of floating point operations in Parallel Pascal is in general quite 

adequate for most applications. 

In the current MPP environment, efficient results can be obtained for 

algorithms using floating point operations, unless bit plane or serial control (by the 

MCU) operations are also substantially used. For example, the perfoxmance results 

of the FFI' and the Convolution algorithms are quite reasonable. These algorithms 

are presented in Chapter 2 and 4 respectively. The FFT achieves a rate of 87 

MFLOPS with 54% of the time perfonning arithmetic operations and 46% shift 

operations (communication). The Convolution algorithm achieves a rate of 155 

85 



86 

MFLOPS with 74% of the time performing arithmetic operations. It was estimated 

that if these algorithms were microcoded then a 20% decrease of execution time 

could be obtained. 

For the permutation algorithms presented in Chapter 2, the results using 32-bit 

floating point data are the most efficient. Comparatively, the exchange permutation 

with a transfer ratio always less than 10, is the fastest permutation. It is followed by 

the butte& permutation again with a transfer ratio always less than 10. Finally, 

the bit reversal is faster than the shufle for permutations involving 5 to 7 bits of 

the elements’ binary address. The bit reversal and the shuffre have a maximum 

transfer ratio equal to 20, and 50 respectively. 

The heuristic algorithm for warp mapping always takes fewer than the n2 

iterations and n2 rotations required by a simple exhaustive algorithm. The heuristic 

algorithm programmed in Parallel Pascal is not very efficiently implemented on the 

MPP because it uses a significant number of Boolean operations and it involves the 

MCU for dynamic control of the flow of execution. As a result, the measured 

execution times differ from the estimated optimal times by approximately a factor 

of 10. However, the heuristic algorithm is sti l l  faster than the simple algorithm 

(and more so if optimaly coded), in favorable cases such as when few elements are 

to be moved or when there is a lot of uniformity in the movement of the elements. 

In conclusion, a number of important algorithms have been effectively 

programmed for the MPP in Parallel Pascal. In all cases the algorithms were first 



87 

rapidly developed using a program development system on a conventional computer 

and were then ported to the MPP. For high efficiency, the next and final stage of 

program development would be to program the critical sections of these algorithms 

in Pearl, the PE array assembly language. While some improvement in 

performance could be achieved with a compiler optimization stage, more significant 

improvements could be made by improving the implementation of some of the less 

efficient primitive operations highlighted in Table 1.1. For floating-point number 

intensive algorithms the Parallel Pascal implementation is reasonably efficient; in all 

cases the Parallel Pascal environment was efficient enough for algorithm 

prototyping. 



APPENDIX A 

PERMUTATIONS AND FFT PARALLEL PASCAL CODE 

Parallel Pascal code of the exchange permutation: 

(* This procedure exchanges the bit which number is equal to bitnum 
procedure exchange(var mx:pla; var tn, gamma, bitnum:integer; 

var id:pli8, var dirco1:boolean); 
extern rh, ch; *) 

V U  

tmx $1; 
bitn, weight, x, y: integer; 

..................... 
function bitplane(matrix:$5; bitnum:integer):plb; 
var x, z : integer; 
begin 

z := 1; 
for x := 1 to bitnum do 

z := z * 2; 

matrix := matrix div z; 
bitplane := odd(matrix); 

end; ..................... 

begin 

bim := bitnum - 1; 

(* calculate amount of shift *) 
weight := 1; 
for x := 1 to bitn do 

weight := weight * 2; 

ifdircol then begin 
x := weight; y := 0 
end 

88 

I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 



89 

else begin 
x := 0; y := weight 
end; 

tmx := mx; 
where bitplane(id,bim) do 

m~ := Shift(=, -x, -y) (* shift down *) 
otherwise 
mX := shift(tmx, x, y); (* shift up *) 

end; 

Parallel Pascal code of the shuffle permutation: 

(* Shuffle permutation; msb goes to the lsb position 
procedure shuffle(var mx:pla; var m, gamma:integer; 

var id:pli8, var dirco1:boolean); 
extern rh, ch; 

var tmxl, tmx2: $1; 
num, x, y: integer; 

begin 

ifdircol then begin 
x := 1; y := 
end 
else begin 
x := 0; y := 
end; 

ml:= mx; 
tmX2 := mx; 

(* map the upper half of the input matrix *) 
num := 2; 
while num c m do 

begin 
tmxl := shift(tmx1, -x, -y); (* shift down *) 
where id = num do 



90 

mx := tmxl; 
num := num + 2; 

end; 

(* map the lower half of the input matrix *) 
num := tn - 3; 
while num > 0 do 

begin 
tmx2 := shift(tmx2, x, y); (* shift up *) 
where id = num do 

mx := tmx2; 
num := num - 2; 

end; 

end; 

Parallel Pascal code of the sub-shuf8e permutation: 

(* Sub-shuffle permutation; bit number=(numbits-1) goes to lsb position 
This procedure changes the variable id. 
procedure subshuffle(var mx:pla; var tn, gamma, numbiwinteger; 

var id:pli8, var dirco1:boolean); 
extern rh, ch; *> 

var tmxl, tmx2: $1; 
ttn, num, x, y: integer, 

begin 

(* divide the input matrix into groups of size = 2**numbits *) 
if numbits = gamma then ttn := tn 

else begin 
ttn := 1; 
for i := 1 to numbits do 

ttn := ttn * 2; 
id := id mod ttn; 

end; (* of else *) 

if dircol then begin 
x := 1; y := 0 

I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 



I 
I 
I 
1 
1 
I 
I 
1 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 

91 

end 
else begin 

end; 
x := 0; y := 1 

tmxl := mx; 
rmx2 := mx; 

(* map the upper halves *) 
num := 2; 
while num c ttn do 

begin 
tmx1 := shift(tmx1, 
where id = num do 
mx := rmxl; 

num := num + 2; 
end; 

-x, -y); (* shift down *) 

(* map the lower halves *) 
num := tm - 3; 
while num > 0 do 

begin 
a n ~ 2  := shift(tmx2, x, y); 
where id = num do 

Il1x := tmx2; 
num := num - 2; 

(* shift up *) 

end; 

end; 

Parallel Pascal code of the super-shuffle permutation: 

(* SUPer-shuffle pennutation;msb bit goes to position number=(gamma-numbits+l) 
This procedure changes the variable id. 
procedure supshuffle(var mx:pla; var tn, gamma, numbitsintegc, 

var id:pli8, var dirco1:boolean); 
extern rh, ch; *) 

var tmxl, tmx2: $1; 
num, x, y, grpsize, ttn: integer; 



92 

begin 

grpsize := 1; 
for x := 1 to (gamma - numbits) do 

grpsize := grpsize * 2; 

ttn := 1; 
for x := 1 to numbits do 

ttn:= tm * 2; 

id := id div grpsize; 

if dircol then begin 
x := grpsize; y := 0 
end 
else begin 
x := 0; y := grpsize 
end; 

tmxl := mx; 
tmx2 := mx; 

(* map the upper half of the input matrix *) 
num := 2; 
while num c ttn do 

begin 
tmxl := shift(mx1, -x, -y); (* shift down *) 
where id = num do 
mx := tmxl; 

num := num + 2; 
end; 

(* map the lower half of the input matrix *) 
num := ttn - 3; 
while num > 0 do 

besin 
tmx2 := shift(&, x, y); (* shift up *) 
where id = num do 
mx := tmx2; 

num := num - 2; 
end; 

end; 

I 
I 
1 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
, I  
~I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 

~ 

93 

Parallel Pascal code of the sub-butterfly permutation: 

(* Butterfly and sub-Butterflies mapping 
This procedure changes the variable id 

procedure butterfly(var mx:pla; var tn,gamma,numbits:integer; 
var id:pli8; var dirco1:boolean); 
extern rh, ch; *> 

type 
plb = parallel array[O..$7,0..$8] of boolean; 

Var 
i, x, y, width, dist: integer, 
shiftup, shiftdwn, mskodd: plb; 
tmx: $1; 

begin 

tmx := mx; 

width := 1; 
for i := 1 to (numbits - 1) do 

width := width * 2; (* 2**(numbits-1) *) 

dist := width - 1; 

id := id mod (width * 2); 
mskodd := odd(id); 

(* create the shift masks *) 
shiftup := (id c width) and mskodd; 
shiftdwn := (id >= width) and not mskodd; 

(* perform the butterfly *) 
if dircol then begin 

x := dist; y := 0; 

x := 0; y := dist; 

end 
else begin 

end; 



94 

where shiftup do 
m:= shift(tmx, x, y); 

where shiftdwn do 
m:= shift(tmx, -x, -y); 

end; 

Parallel Pascal code of the super-butterfly permutation: 

(* SUPer Butterfly mapping 
procedure supbutlly(var m:pla; var tn,gamma,numbits:integer; 

var id:pli8; var dirco1:boolean); 
extern rh, ch; *) 

(* this procedure changes variable id *) 

tYPe 
plb = parallel array [0..$7,0..$8] of boolean; 

V a r  
x, y, grpsize, diff, width, dist: integer, 
shiftup, shiftdwn: plb; 
tmx: $1; 

tmx := mx; 

diff := gamma - numbits; 

grpsize := 1; 
for x := 1 to diff do 
grpsize := 2 * grpsize; 

id := id div grpsize; 
mskodd := odd(id); 

width := 1; 
for x := 1 to (numbits - 1) do 

width := 2 * width; (* 2**numbits / 2 *) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
B 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

95 

dist := (width - 1) * grpsize; 

(* create the shift masks *) 
shiftup := (id c width) and mskodd; 
shiftdwn := (id >= width) and not mskodd; 

(* perform the butterfly *) 
if dircol then begin 

x := dist; y := 0; 
end 
else begin 
x := 0; y := dist; 
end; 

where shiftup do 
mx:= shift(tmx, x, y); 

where shiftdwn do 
mx:= shift(tmx, -x, -y); 

end; 

Parallel Pascal code of the bit reversal permutation: 

(* BIT REVersal using the Bit swapping method 
procedure bitrevb(var mx:pla; var tn, gamma: integer; var id:pli8; 

var dirco1:boolean); extern rh, ch; 
*) 
type plb = parallel array[O..$6,0..$7] of boolean; 

var lo, hi, wlo, whi : integer; 
numshift : integer, 
x, y : integer; 
tmx : $1; 

..................... 
function bitplane(matrix:$4; bitnum:integer):plb; 
var x, z : integer; 
begin 
z := 1; 



96 

for x := 1 to bitnum do 
z := z * 2; 

matrix := matrix div z; 
bitplane := odd(matrix); 

end; ..................... 

(* initiallization *) 
(* least significant bit *) 
lo := 0; 
wlo := 1; 

(* most significant bit *) 
hi := gamma -1; 
whi := tn div 2; 

(* Perform the bit reversal *) 
while hi > lo do begin 

tmx := mx; 
numshift := whi - wlo; 

if dircol then begin 
x := numshift; y := 0; 

end 
else begin 
x := 0; y := numshift; 

end; 

(* case when more significant "it is 1 and less sign. bit is 0 *) 
(* shift down *) 
where bitplane(id,lo) < bitplane(id,hi) do 

IIIX := shift(-, -x, -y); 

(* case when more significant bit is 0 and less sign. bit is 1 *) 
(* shift up *) 
where bitplane(id,lo) > bitplane(id,hi) do 

mx := shift(=, x, y); 

lo := lo + 1; 

I 
I 
1 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
.I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
E 
1 
I 
I 
I 
I; 

ii 

97 

hi := hi - 1; 
wlo := wlo * 2; 
whi := whi div 2; 

end; 
end; 

Parallel Pascal code of the sub-bit reversal permutation: 

(* SUB Bit Reversal using the Bit swapping method 
procedure subbrb(var mx:pla; var tn, gamma, numbits: integer; var id:pli8; 

var dirco1:boolea.n); extern rh, ch; 
*I 
type plb = parallel array[O..$7,0..$8] of boolean; 

var lo, hi, wlo, whi : integer; 
numshift : integer; 
x, y : integer; 
tmx : $1; 

..................... 
function bitplane( matrix: $5; bi tnum : in teger) : plb; 
var x, z : integer; 
begin 

z := 1; 
for x := 1 to bitnum do 

2 := z * 2; 

matrix := matrix div z; 
bitplane := odd(matrix); 

end; ..................... 

begin 

(* initiallization *) 
(* least significant bit *) 
lo := 0; 
wlo := 1; 



98 

(* more significant bit *) 
hi := numbits - 1; 
wlo := 1; 
if numbits = gamma 

then whi := tn div 2 
else begin 

whi := 1; 
for x := 1 to hi do 

whi := whi * 2; 
end; 

(* Perform the bit reversal *) 
while hi > lo do begin 

tmx := mx; 
numshift := whi - wlo; 

if dircol then begin 
x := numshift; y := 0; 

end 
else begin 
x := 0; y := numshift; 

end; 

(* case when more significant bit is 1 and less sign. bit is 0 *) 
(* shift down *) 
where bitplane(id,lo) c bitplane(id,hi) do 

mx := shift(-, -x, -y); 

(* case when more significant bit is 0 and less sign. bit is 1 *) 
(* shift up *) 
where bitplane(id,lo) > bitplane(id,hi) do 

mx := shift(tmx, x, y); 

lo := lo + 1; 
hi := hi - 1; 
wlo := wlo * 2; 
whi := whi div 2; 

end; 
end; 



99 

Parallel Pascal code of the super-bit reversal permutation: 

(* SUPer Bit Reversal using the Bit swapping method 
procedure supbrb(var mx:pla; var tn, gamma, numbits: integer; var id:pli8; 

var dirco1:boolean); extern rh, ch; 
*> 
type plb = parallel array[O..$7,0..$8] of boolean; 

var lo, hi, wlo, whi : integer; 
numshift : integer, 
x, y : integer; 
tmx : $1; 

..................... 
function bitplane(matrix:$5; bitnum:integer):plb; 
var x, z : integer; 
begin 

z := 1; 
for x := 1 to bimum do 

z := z * 2; 

matrix := mamx div z; 
bitplane := odd(mamx); 

end; 
..................... 

begin 

(* initiallization *) 
(* most significant bit *) 
hi := gamma - 1; 
whi := tn div 2; 

(* less significant bit *) 
lo := gamma - numbits; 
wlo := 1; 
for x := 1 to lo do 

wlo := wlo * 2; 

(* Perform the bit reversal *) 
while hi > lo do begin 

tmx := mx; 



Parallel Pascal code of the Fast Fourier Transform: 

100 

numshift := whi - wlo; 

if dircol then begin 
x := numshift; y := 0; 

end 
else begin 
x := 0; y := numshift; 

end; 

(* case when more significant bit is 1 and less sign. bit is 0 *) 
(* shift down *) 
where bitplane(id,lo) c bitplane(id,hi) do 

IIIX := shift(tmx, -x, -y); 

(* case when more significant bit is 0 and less sign. bit is 1 *) 
(* shift up *) 
where bitplane(id,lo) > bitplane(id,hi) do 

mx := shift(tmx, x, y); 

lo := lo + 1; 
hi := hi - 1; 
wlo := wlo * 2; 
whi := whi div 2; 

end; 
end; 

(* 
procedure fft(var matrixr:plr; var matrixi:plr; var tn, gamma:integer; 

var id:pli8; var dircol, modul, ifft:boolean); 
extern rh, ch; 

*) 

type plb = parallel array[0..$9,0..$10] of boolean; 

var tn2, i, ti, tl : integer, 
x, y : integer; 
konst, pi : real; 



I 
I 
1 
I 
I 
I 
1 
I 

101 

mskodd : plb; 
power : $5; 
tpower : $1; 
weightr, weighti : $1; 

*) (* ................................................................ 
procedure powergen(var power:$5; var tn2, gamma, stage:integer; 

var id:$5); 

var k, tk : $5; 
twotoi, twotox : integer, 
i, x : integer; 

begin 
if stage = 1 then power := 0 
else begin 
if stage = gamma then 

else 
where id >= tn2 do power := power + 1 

begin 
x := gamma - stage; 
twotox := 1; 
for i := 1 to x do 

k := id div twotox; 
power := 0; 
twotoi := 2; 

twotox := twotox * 2; 

x := tn2 div twotoi; 

i := 1; 
while i e stage do begin 

tk := k mod twotoi; 
where (tk >= (twotoi div 2)) do 

twotoi := twotoi * 2; 
i := i + 1; 
x := x div 2; 

power := power + x; 

end; 



102 

end; 
end; 

end; 

procedure complexmult(var matrixr, matrixi, weightr, weighti:$l; 
var mskodd:plb; var dirco1:boolean); 

var tmatrixr, tmatrixi : $1; 
matr : $1; 
x, y: integer; 

begin 

if dircol then begin 
x := 1; y := 0 
end 
else begin 
x := 0; y := 1 
end; 

tmatrixr := ma&, 
tmatrixi := matrixi; 
where mskodd do begin 

tmatrixr := shift(tmatrixr, -x, -y); 
tmatrixi := shift(tmatrixi, -x, -y); 

end; 
where not mskodd do begin 

matrixr := shift(matrixr, x, y); 
matrixi := shift(matrixi, x, y); 

end; 
matr := ma-, 
matrixr := (weightr * matrim)-(weighti * matrixi); 
matrixi := (weightr * matrixi)+(weighti * matr); 
matrixr := tmatrixr + matrim, 
matrixi := trnatrixi + matrixi; 

end; 



103 

pi := 3.1415926535; 
tn2 := tn div 2; 
konst := pi / tn2; 
mskodd := odd(id); 

(* check if want IFFT, if so divide by the number of elements*) 
if ifft then begin 

matrixr := matrixr / tn; 
matrixi := matrixi / tn; 

end; 

(* to achieve modulation multiply odd input elements by -1 *) 
(* ie. change sign *) 

if modul then begin 
where mskodd do begin 

matrixr := - matrir, 
matrixi := - matrixi; 

end; 
end; 

for i := 1 to gamma do 
begin 

if ti= 1 then begin 
ti := i; 

butterfly(matrixr, matrixi, tn, gamma, gamma, mskodd, id, dircol); 
power := 0; 
weightr := 1; 
weighti := 0; 

end 
else begin 

if ti = gamma then 
shuffle(mamxr, matrixi, tn, gamma, id, dircol) 

tl := gamma - ti + 1; 
butterfly(matrixr, matrixi, tn, gamma, tl, mskodd, id, dircol); 

else begin 

end; 
powergen@ower, tn2, gamma, ti, id); 
power := power * konst; 
weightr := cos(tpower); 
weighti := - sin(tpower); 

end; 



104 

where mskodd do begin 
weightr := - weightr; 
weighti := - weighti; 

end; 

(* check if want Im, if so cllange the exp to positive power *) 
if ifft then weighti := - weighti; 

complexmult(matrixr, matrixi, weightr, weighti, mskodd, dircol); 

end; 

end; 

Parallel Pascal code of the butterfly permutation for 
the Fast Fourier Transform: 

(* 
procedure butterfly(va.r mamxr, matrixi:pk var m,gamma,numbits:integer; 

var mskodd:plb; var id:pli8; var dirco1:boolean); 
extern rh, ch; *I 

V X  

i, x, y, z, width, dist: integer; 
shiftup, shiftdwn: $6; 
tmxr, mi: $1; 

begin 

tmxr := matrixr; 
tmxi := matrixi; 

width := 1; 
for i := 1 to (numbits - 1) do 

width := width * 2; 

dist := width - 1; 

(* create the shift masks *) 



105 

11 
1 
I 

I 
L 

shiftup := (id < width) and mskodd; 
shiftdwn := (id >= width) and not mskodd; 

width := width * 2; 

z := 0; 
if dircol then begin 

while width < tn do begin 
where id >= width do begin 

shiftup := shift(shiftup, -width, z); 
shiftdwn := shift(shiftdwn, -width, z) 

end; 
width := width * 2; 

end; 

end 
else begin 

while width < m do begin 
where id >= width do begin 

shiftup := shift(shiftup, z, -width); 
shiftdwn := shift(shiftdwn, z, -width) 

end; 
width := width * 2; 

end; 

end; 

(* perform the butterfly *) 
if dircol then begin 

x := dist; y := 0; 

x := 0; y := dist; 

end 
else begin 

end; 

where shiftup do begin 
matrim:= shift(tmxr, x, y); 
matrixi:= shift(tmxi, x, y); 

end; 

where shiftdwn do begin 



106 

matrix:= shift(=, -x, -y); 
matrixi:= shift(tmxi, -x, -y); 

end; 

end; 

Parallel Pascal code of the shuffle permutation for 
the Fast Fourier Transform: 

(* 
procedure shuffle(var matrixr, matrixi:plr; var tn, gamma:integer; 

var id:pli8, var dirco1:boolean); 
extern rh, ch; *I 

var tmxlr, tmxli, tmx2r, tmx2i : $1; 
num, x, y: integer; 

begin 

if dircol then begin 
x := 1; y := 0 
end 
else begin 
x := 0; y := 1 
end; 

num := 2; 

tmxlr := matrix; 
tmxli := matrixi; 
tmx2r := matrix; 
tmx2i := matrixi; 

while num c tn do 
begin 

tmxlr := shift(tmxlr, -x, -y); 
tmxli := shift(tmxli, -x, -y); 
where id = num do begin 

matrix := tmxlr, 
matrixi := tmxli; 



I 

t 
107 

c 

end; 

end; 
num := num + 2; 

end; 

num := tn - 3; 
while num > 0 do 

begin 
tmx2r := shift(tmx2r, x, y); 
tmx2i := shift(tmx2i, x, y); 
where id = num do begin 

matrixr := tmX2q 
matrixi := tmx2i; 

end; 
num := num - 2; 

end; 

Parallel Pascal code of the bit reversal permutation for 
the Fast Fourier Transform: 

(* BIT REVersal using the Bit swapping method 
procedure bitrevb(var matrixr, matrixi:plr; var tn, gamma: integer; var id:pli8; 

var dirco1:boolean); extern rh, ch; 
*) 
type plb = parallel array[O..$7,0..$8] of boolean; 

var lo, hi, wlo, whi : integer; 
numshift : integer, 
x, y : integer; 
tmxr, tmxi : $1; 

..................... 
function bitplane(matrix:$5; bitnum:integer):plb; 
var x, z : integer; 
begin 

z := 1; 
for x := 1 to bitnum do 

z := z * 2; 



108 

matrix := matrix div z; 
bitplane := odd(matrix); 

end; ..................... 

begin 

(* initiallization *) 
(* least significant bit *) 
lo := 0; 
wlo := 1; 

(* most significant bit *) 
hi := gamma -1; 
whi := tn div 2; 

(* Perform the bit reversal *) 
while hi > lo do begin 

tmxr := ma*, 
tmxi := matrixi; 
numshift := whi - wlo; 

if dircol then begin 
x := numshift; y := 0; 

end 
else begin 
x := 0; y := numshift; 

end; 

(* case when more significant bit is 1 and less sign. bit is 0 *) 
(* shift down *) 
where bitplane(id,lo) e bitplane(id,hi) do 
begin 

mamxr := shift(-, -x, -y); 
matrixi := shift(tmxi, -x, -y); 

end; 

(* case when more significant bit is 0 and less sign. bit is 1 *) 
(* shift up *) 
where bitplane(id,lo) > bitplane(id,hi) do 
begin 

matrixr := shift(tmxr, x, y); 



matrixi := shift(tmxi, x, y); 
end; 

lo := lo + 1; 
hi := hi - 1; 
wlo := wlo * 2; 
whi := whi div 2; 

end; 
end; 

I 



REFERENCES 

[ 11 Special issue on "Supercomputers - their impact on science 
and technology", Proceedings of the IEEE, vol. 72 #1, 
January 1984. 

[2] "Computing at the Erontiers of Science and Engineering", 
Computer, vol. 18 #11, November 1985. 

[3] Special Issue, Communications of the ACM, vol. 28 #4, 
April 1985. 

[4] R. W. Hockney and C.  R. Jesshope, Parallel Computers, 
Arrowsmith Ltd., Bristol, 1983. 

[5] A. P. Reeves, "The Massively Parallel Processor: A Highly 
Parallel Scientific Computer", International Worshop on 
Data Analysis in Astronomy, Erice, Italy, April 1986. 

[6] J. L. Potter ed., The Massively Parallel Processor, MIT 
Press, 1985. 

171 General Description of the MPP, NASA, Goddard Space 
Flight Center, April 1983. 

181 A. P. Reeves, "Parallel Pascal: An Extended Pascal for 
Parallel Computers", Journal of Parallel and Distributed 
Computing I ,  pp.64-80, 1984. 

[9] J. Fisher ed., MPP User's Guide, NASA, Goddard Space 
Flight Center, January 1986. 

110 



111 

I 

I 
m 

[lo] K. E. Batcher, "Design of a Massively Parallel Processor", 
IEEE Transactions on Computers, C-29(9) pp.836-840, 
September 198 1. 

[ 1 13 J. Devaney, private communication. 

[12] E. 0. Brigham, The Fast Fourier Transform, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1974. 

[13] A. P. Reeves and C. H. Moura, "Data Mapping and Rotations 
Functions for The Massively Parallel Processor", Proceedings 
of IEEE Computer Society Workshop on Computer Architectures 
for Pattern Analysis and Image Data Base Management, 1985. 

[ 141 D. H. Ballard and C. M. Brown, Computer Vision, Prentice 
Hall, Englewood Cliffs, New Jersey, 1982. 

[15] P. J. Burt, "The Pyramid as a Stucture for Efficient Computation". 

[ 161 P. J. Burt, "Laplacian Pyramid as a Compact Image Code", 
IEEE Transactions on Communications, Vol. 31 #4, 
pp.532-540, 1983. 



APPENDIX C: PERMUTATION mTNCTION DOCUMENTATION 



~ 

F F T ( 2 )  UNM Programmer’s Manual 

- 

F F T ( 2 )  

NAME 
F F T  - fast fourier transform 

snvo P SIS 
{$library fft.pl) 

procedure fft(var mxr, mxi:plr; var n, 
var dircol, modul, ifhboolean); 
extern rh, ch; 

TYPES 
plr = parallel array [rl..rh,cl..ch] of real; 
pli8 = parallel array [rl..rh,cl..ch] of 0..255; 

rh = the largest row number of the input matrix 
ch = the largest column number of the input matrix 

Id is the index matrix. It is equal to id1 when dircol is true, and equal to  id2 when dircol is false 
(see mat(2) for information on id1 and id2). 

The fit is performed concurrently to  n sets of n elements. A set of elements is either a row (if dir- 
col is false) or a column (if dircol is true) of the matrices nzr, the real part, and mzi, the ima- 
ginary part. The ft procedure uses the butterfly, shuffle, and bit reversal permutations from the 
library f€tpermut.pl. Modulation is performed when ’modul’ is true, and an IFFT is performed 
instead of the FFT if ’ifft’ is true. 

EXTERN CONSTANTS 

VARS 

DESCRIPTION 

AUTHOR 
Maria C. Gutierrez 

7 t h  Edition PPL 1 



EXCHANGE ( 2 ) UNM Programmer’s Manual 

- 

EXCHANGE ( 2 ) 

NAME 
exchange - data permutation 

{$library exchanges.pl} 
SYNOPSIS 

p r o c e d u r e  exchange (va r  mx:pla; var n, gamma, 
v a r  dirco1:boolean); e x t e r n  rh, ch; 

TYPES 
pla = parallel array [rl..rh,cl..ch] of btype; 
pli8 = parallel array [rl..rh,cl..ch] of 0..255; 
Where btype is any data type 

rh = the largest row number of the input matrix 
ch = the largest column number of the input matrix 

Id is the index matrix. It is equal to  id1 when dircol is true, and equal to id2 when dircol is false 
(see mat(2) for information on id1 and id2). 

The permutation is performed concurrently to n sets of n elements. A set of elements is either a 
row (if dircol is false) or a column (if dircol is true) of the matrix mz. For each set, the ezchange 
permutation consists of complementing bit ’bitnum’ of the binary input address, where ’bitnum’ is 
in the range of 1 to  gamma. Thus, this permutation consists of exchanging every pair of elements, 
where two elements form a pair if their addresses are the same except for the kth bit. 

Maria C. Gutierrez 

EXTERN CONSTANTS 

VARS 

DESCRIPTION 

AUTHOR 

7th Edition PPL 



SHUFFLE ( 2 ) UNM Programmer’s Manual 

NAME 
shuffle, sub-shuffle, super-shuffle - data permutations 

{$library shuffles.pl} 
SYNOPSIS 

procedure shuffle(var mx:pla; var n, gammahteger;  
var dirco1:boolean); extern rh, ch; 

procedure subshuffle(var mx:pla; var n, gamma, 
var dirco1:boolean); extern rh, ch; 

SHUFFLE ( 2 ) 

procedure supshuffle(var mx:pla; var n, gamma, 
var dirco1:boolean); extern rh, ch; 

TYPES 
pla = parallel array [rl..rh,cl..ch] of btype; 
pli8 = parallel array [rl..rh,cl..ch] of 0..255; 
Where btype is any data type 

rh = the largest row number of the input matrix 
ch = the largest column number of the input matrix 

Id is the index matrix. It is equal to id1 when dircol is true, and equal to id2 when dircol is false 
(see mat(2) for information on id1 and id2). 

The permutations are performed concurrently to n sets of n elements. A set of elements is either a 
row (if dircol is false) or a column (if dircol is true) of the matrix mz. For each set, the shufle per- 
mutation consists of a circular left shift of the bits of the input address. The resulting permutation 
consists of splitting in half the set of n elements and then interleaving them like in a perfect card 
shuffle. Similarly, the sub-shufle and the aupet-shufle consist of a circular left shift of the ’num- 
bits’ least significant bits (sub-shuffle) and most significant bits (super-shuffle); 

EXTERN CONSTANTS 

VARS 

DESCRIPTION 

AUTHOR 
Maria C. Gutierrez 

7th Edition PPL 1 



BUTTERFLY ( 2 ) U N M  Programmer's Manual 

- 

BUTTERFLY ( 2 ) 

NAME 
sub-butterfly, super-butterfly - data permutations 

{$library .PI} 
SYNOPSIS 

procedure bu t t e r f ly (va r  mx:pla; var n, gamma, 
var dirco1:boolean); e x t e r n  rh, ch; 

procedure s u p b u t f l y ( v a r  mx:pla; v a r  n, gamma, 
var dirco1:boolean); e x t e r n  rh, ch; 

TYPES 
pla = parallel array [rl..rh,cl..ch] of btype; 
pli8 = parallel array [rl..rh,cl..ch] of 0..255; 
Where btype is any data  type 

rh = the largest row number of the input matrix 
ch = the largest column number of the input matrix 

EXTERN CONSTANTS 

VAUS 
Id is the index matrix. It is equal to id1 when dircol is true, and equal to id2 when dircol is false 
(see mat(2) for information on id1 and id2). 

The permutations are performed concurrently to n sets of n elements. A set of elements is either a 
row (if dircol is false) or a column (if dircol is true) of the matrix mz. For each set, the butterfly 
permutation consists of exchanging bit 'numbits' (msb) with bit '1' (lsb). Similarly, the super- 
butterfly consist of exchanging bit 'gamma' (msb) with bit 

Maria C. Gutierrez 

DESCRIPTION 

AUTHOR 

7th Edition PPL 1 



BIT-REVERSAL ( 2 ) UNIX Programmer’s Manual 

NAME 
bit reversal, sub-bit reversal, super-bit reversal - data permutations 

{$library bitrevbs.pl} 
SYNOPSIS 

procedure b i t r evb(va r  mx:pla; v a r  n, gamma:integer;  
var dirco1:boolean); e x t e r n  rh, ch; 

procedure s u b b r b ( v a r  mx:pla; v a r  n, gamma, 
var dirco1:boolean); extern rh, ch; 

p r o c e d u r e  s u p b r b ( v a r  mx:pla; var n, g a m m a ,  
var dirco1:boolean); e x t e r n  rh, ch; 

TYPES 
pla = parallel array [rl..rh,cl..ch] of btype; 
pli8 = parallel array [rl..rh,cl..ch] of 0..255; 
Where btype is any data type 

rh = the largest row number of the input matrix 
ch = the largest column number of the input matrix 

EXTERN CONSTANTS 

BIT-REVERSAL ( 2 ) 

VARS 
Id is the index matrix. It is equal to  id1 when dircol is true, and equal to id2 when dircol is false 
(see mat(2) for information on id1 and id2). 

The permutations are performed concurrently to  n sets of n elements. A set of elements is either a 
row (if dircol is false) or a column (if dircol is true) of the matrix mz. For each set, the bit reversal 
permutation consists of reversing the order of the bits of the input address; it is like taking the 
mirror image of the address. Similarly, the sub-bit reversal and the super-bit reversal permuta- 
tions reverse the ’numbits’ least significant bits (sub-bit reversal) and most significant bits 
(super-bit reversal); 

DESCRIPTION 

AUTHOR 
Maria C. Gutierrez 

7th Edition PPL 1 


