
DEVELOPMENT OF A GRAPHICAL DISPLAY ON THE DMS TEST BED

FINAL REPORT

N88 - 1486 4

q,?,

NASA/ASEE Summer Faculty Fellowship Program -- 1987 ..? '2

Johnson Space Center _ _ _ _!-_ _

Prepared by:

Academic Rank:

University & Department:

NASA/JSC

Directorate:

Division:

Branch:

JSC Colleague:

Date:

Contract Number:

Robert A. Donnelly, Ph. D

Associate Professor

Auburn University
Department of Chemistry
Auburn University, AL 36849

Engineering and Development

Avionics Systems

Flight Data Systems

Michael M. Thomas

August 26, 1987

NGT 44-001-800

9--1"



ABSTRACT

The DMS test bed is a model of a data network aboard Space

Station. Users of the network share data relevant to the functional

status of various systems (Guidance, Navigation and Control, Environ-

mental Control and Life Support, etc.) aboard the Station. Users may

inquire the status of myriad sensors, obtaining readings of Station

subsystem status in real-time via the Data Acquisition and Distribution

Serv ice.

This project is aimed at development of a graphical display of the

status of a simulation of the Environmental Control and Life Support

System. Two broad issues were addressed: (I) Flexible, extensible

software design; (2) The impact of utilizing standard processors,

languages, and graphics packages implementing the software design

concept.

Our experience gained with DEC hardware, the DEC implementation of

the GKS graphics standard, and with Ada can be su_arized as follows.

DEC hardware seems adequate to the display tasks which form one part of

the present research project. Highly graphics-intensive applications

run slowly on the MicroVax GPX when it is programmed using the various

DEC implementations of the GKS standard. Use of the GKS standard for

graphics can provide code portability provided the FORTRAN/77 to GKS

binding is used. Since no binding to Ada is currently available it

makes sense to provide a procedural interface between Vax Ada and the

FORTRAN/77 binding. This was accomplished, and can be used by other

generations of graphics programmers who must program in the development

environment provided by DEC.

9-2



I. INTRODUCTION

The DMS test bed is a model of a distributed communications network

which is proposed for the Space Station. Users of the network have

access to data generated by several subsystems likewise attached to the

network. Users may inquire the status of these subsystems (and their

components) through DADS (Data Acquisition and Distribution Service).

Each element of requestable data (a subsystem or sensor status, or an

engineering measurement) is uniquely identified by a measurement

identifier (MSID).

One purpose of the present project is development of an interactive

graphical display of the status of a simulation of the Environmental

Control and Life Support subsystem (ECLSS). Sets of MSID's defined in

the graphics software are transported over the network to the ECLSS

simulation software using DADS. DADS then returns the simulated status

of sensors aboard ECLSS, which are then displayed on a high-resolution

computer graphics terminal. The software package is interactive,

allowing the user to display the status of various components of the

ECLSS subsystem.

A second, equally important, aspect of this research project is

concerned with the impact of "standard" hardware and software on

implementation of the software package. Developers of the DMS test bed

have declared the MicroVax GPX as the standard display device. GKS is

a well-known standard for rendering two-dimensional graphical images,

which is available on DEC hardware. Finally, Ada has been adopted as

the standard programming language aboard the Space Station.

Accordingly, the software package was developed using a mixture of

FORTRAN and Ada (for reasons to be discussed below). It is anticipated

that lessons learned in this research can be helpful to those who

design the final software aboard Space Station.

9-3



If. SOFTWAREDESIGN

Twofeatures of the software design were judged especially

important. First, the software should be designed in such a way that

additional display capabilities could be addedwith a minimumof

alteration to the original package. Second,the software package

should be transportable across host processors equipped with GKS

software.

The first consideration wasaccomplishedby coding a control

structure with "stubs" for added simulations as they becomeavailable.

A control section written in Ada is essentially a menu-driven display

processor, the highest level of which allows the user to select a sub-

system for display. The display requirements for each subsystems can

be made completely invisible to the main routine. Alternately, the

display requirements can be met using a graphics parser written in

FORTRAN and included as a package accessible by the main Ada super-

visory routine. The graphics parser is general enough to provide all

graphics services. Its capabilities can easily be extended as needed

by extension of its dictionary of recognized graphics commands. Net-

work access is provided by a separate Ada package which can be modified

independently of the supervisory routines.

A second feature of the program design is its minimal reliance on

"hard-coded" display items. We accomplished this by utilizing ASCII

input files containing graphics commands directed to the graphics

parser. Dynamic components of each display window are maintained as

retained graphical segments which are defined once and for all at

startup time and inserted into each display window as required. This

strategy results in a flexible display manager: Static components of

each display window can be changed by merely editing the corresponding

9-4



file with a text editor without recompiling the display program itself.

Design of retained segmentsrepresenting standard componentsof a

schematic display, for example, makeit easier for system-wideusers to

interpret graphical displays of system status.

The secondconsideration, software transportability, has been

addressed by mixing languages in the demonstration program. The

reasons for this are discussed in the next Section, where we consider

the impact of the developmentenvironment on programdesign.

Ill THEIMPACTOFSTANDARDSONSOFTWAREDESIGN

GKSis itself merely a method for the device-independent manage-

ment of two-dimensional graphics displays. As such it includes

procedures for storage and manipulation of graphical segments, for

implementation of software windowsand view ports, and for interaction

with graphical input devices such as the keyboard and mouse. Device

independenceallows the applications programmerto concentrate on the

display task at hand, without the need to consider the specific

characteristics of a particular hardwaredevice. The functional con

trol of graphics displays afforded by the GKSroutines is judged

adequate for the graphical manipulations required in the current dis-

play task.

The DEC/Vaximplementation of the GKSstandard has a significant

impact on programmerswriting in FORTRAN/77or Ada. The GKSpackage

used in this research is revision 3.0 of the DECVax software produced

by Digital EquipmentCorporation. The issues we consider in this Sec-

tion are: (1) Existence of standard interfaces to GKSthrough FORTRAN

and Ada; (2) Documentationand ease of software use by graphics

novices and experts; (3) "Low-level" support provided for control of

graphics input devices and display hardware; and (4) Theavailability

of expert consulting services from the software vendor.

9-5



There are several interfaces to GKSprocedures provided by DEC.

Eachprogramminglanguage (Ada, Basic, C, FORTRAN,Pascal, etc.) uses a

different interface, so that no single set of procedure calls exists.

That is, the namesof the routines are not the samein different

languages, and the numberand type of argumentspassedto procedures

differ from language to language. Here we focus on three such inter-

faces, Vax FORTRAN/77to VAXGKS,ANSIFORTRAN/77to GKSusing the

standard FORTRANbinding, and VaxAda to Vax GKS. As of this writing

there is no standard binding betweenAda and GKS. Twosuch bindings

have been proposed independently by ANSand ISO, but neither is avail-

able on DECmachinesat present. (Parenthetically, we remark that an

alternative interface to graphics routines is provided by UIS, the

native graphics interface on the MicroVax. This is probably the

highest performance, most powerful interface, but could not be used in

this research. First, it is specific to the MicroVax GPX, and there-

fore requires non-portable code. Second, its use requires compilers

and linkers which are unavailable on the DMS MicroVax. Third, DEC

currently supplies no interface to UIS routines from Ada.)

The net result of the profusion of interfaces to GKS and their

varying levels of documentation and functionality is that we chose to

use a mixed-language program: The control structure was written in

Ada, while direct access to graphics was provided by the FORTRAN/77

binding to GKS. We accomplished this by writing an Ada package

specification containing pragma interfaces which allowed importing the

FORTRAN/77 binding to GKS. Several procedures found to be only

accessible through FORTRAN are accessed only through that language.

The net result of this strategy is the generation of a single, standard

interface between either FORTRAN/77 or Ada and the portable GKS

binding. Transportability of the graphics software is thus possible

9-6



betweenprocessors equipped with FORTRAN/77,Ada, and GKS. Only a

single level of documentation on the interface to GKSneed be provided

to FORTRANand Adaprogrammersusing this system.

Wefound the documentation provided by DECto be generally inade-

quate. The highest level of documentation is provided for Vax

FORTRAN/77to Vax GKS. There is only minimal documentation on the

FORTRAN/77binding to GKS,and no documentation on the Vax Ada to Vax

GKSinterface. Several features of the FORTRAN/77binding to GKSare

completely unspecified in the systemdocumentation, even though this

interface is claimed to meet the highest standard of portability

betweenprocessors equipped with GKSsoftware.

This lack of adequatedocumentation is particularly undesirable.

The complexity and profusion of procedure calls required to perform

simple tasks is certain to confuse programmers with little training in

graphics. Code fragments produced to document each procedure call are

discussed briefly, but examples of only the simplest type of procedure

call are given. The environment in which a given procedure call can be
o

made is not generally discussed, so that one is required to read and

study the entire two-volume manual set in order to trace errors. DEC

has a rather unorthodox model of segment storage which can be confusing

to the novice programmer. Its method of segment definition requires

careful study, and is largely undocumented. Finally, access to

graphics primitives (a circle, for example) is provided through

graphics drawing primitives (GDP's). This is a most unorthodox method

of generating these primitives, is tedious to code, largely undocu-

mented, and error-prone. We have had extensive experience with a wide

variety of graphics software and hardware. This implementation of GKS

is by far the most complex one we have encountered. In fact, though

9-7



Adawasunknownto us at the start of the research project, it was

mucheasier to learn that language than it was to becomefamiliar with

GKS.

Tasks requiring precision control of graphics input devices are not

easily accomplished in the Vax implementation of GKS. Wehave been

unable, for example, to find a meansof controlling the foreground and

backgroundcolors of a "pop-up" menufrom software. The font used in

displaying the menuitems is not under software control, unless one is

prepared to write a special-purpose graphics handler routine (outside

of GKS). Control of hardware windowsappears possible only by use of

the non-standard Vax FORTRAN/77to Vax GKSinterface. Importantly, the

GKS software does not make use of the specialized hardware aboard the

MicroVax GPX. Highly graphics-intensive applications run unacceptably

slowly on the MicroVax for this reason.

Finally, we find that software support from DEC appears to be

largely inadequate. Those to whom we have spoken are largely unknowl-

edgable of grahics in general, and of procedural inter-relationships in

DEC's GKS in particular. There seems to be little support given to the

standard FORTRAN/77 binding to GKS.

IV. CONCLUSIONS

Our experience gained with DEC hardware, the DEC implementation of

the GKS graphics standard, and with Ada can be summarized as follows.

DEC hardware seems adequate to the display tasks which form one part of

the present research project. Highly graphics-intensive applications

run slowly on the MicroVax GPX when it is programmed using the various

DEC implementations of the GKS standard. Use of the GKS standard for

graphics can provide code portability provided the FORTRAN/77 to GKS

binding is used.

9-8



The lack of adequate documentation on the GKS software makes it

unlikely that novice graphics programmers will be able to use the

system easily. It is therefore likely that modern display techniques,

which make use of multiple windows and view ports, and of segment

transformation techniques, will remain largely the province of

experienced graphics designers. This is unfortunate, as the use of

modern techniques makes for quickly-developed, expandable, transport-

able computer codes.

The Ada programming language is easy to learn, and possesses many

desirable features. It is strongly favored in recursive applications,

such as the menu-driven display processor developed here. Since no

binding to Ada is currently available it makes sense to provide a

procedural interface between Vax Ada and the FORTRAN/77 binding. This

was accomplished, and can be used by other generations of graphics

programmers who must program in the development environmentprovided by

DEC.

Finally, it appears that there are in fact no "standards" yet

available on DEC hardware. Though GKS is a graphics standard suitable

for two-dimensional display management, the only interface presented to

meet a portability standard is provided by the largely undocumented

binding to FORTRAN/77. No similar binding of GKS to Ada exists.

Indeed, no link between Ada and the UIS procedures native to MicroVax

yet exist. The net result is a lowest-common-denominator software

implementation which is not designed to make most efficient use of

existing hardware.

9-9


