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ABSTRACT

A conservative finlte-volume difference scheme is developed

for the potential equation to solve transonic flow about airfoils

and bodies in an arbitrarily shaped channel. The scheme employs

a mesh which is a nearly conformal "0" mesh about the airfoil and

nearly orthogonal at the channel walls. The mesh extends to

infinity upstream and downstream, where the mapping is singular.

Special procedures are required to treat the singularities at

infinity, including computation of the metrics near those points.

Channels with exit areas different from inlet areas are solved; a

body with a sting mount is an example of such a case.
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INTRODUCTION _""

This presentation describes a "Finite-Volume Scheme for Transonic

Potential Flow About Airfoils and Bodies in an Arbitrarily Shaped

Channel" by Jerry C. South, Jr.; Michael L. Doria; and Lawrence L.

Green (ref. I). The work was done primarily while Dr. Doria was

working as an ASEE Research Fellow in the Theoretical Aerodynamics

Branch. A 1982 AIAA paper by Doria and South (ref. 2) explains the
basic formulation which is summarized here. This work focuses on

several improvements which have made the scheme more useful and

accurate.
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GRID GENERATION

The grid generation procedure uses a sequence of _chwarz-

Christoffel and shearing transformations, first proposed by

Caughey (ref. 3), to map the physical airfoil-in-channel problem

to a uniform rectangular computational domain. The mapping

results in a nearly orthogonal "0"-type mesh extending from the

airfoil surface to the tunnel wall. The mapping provides for grid

point clustering near the airfoil and particularly at the leading

and trailing edges. The grid generation procedure now accepts

very general body and channel shapes (2-D or axlsymmetric) which

can be described either analytically or by input coordinates which

are spline-fitted.

• Sequenceof Schwarz-Christoffel and shearing
transformations proposed by Caughey (ref. 3)

• Nearly orthogonal'_)"- type mesh

• Clustering of grid points at L. E. and T. E.

• Acceptsvery general body and channel shapes
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GRID--NACA 4409 IN DIVERGING TUNNEL
Dg i_oo_ Qu.az,n_

This "0"-type grid for an NACA 4409 airfoil in a diverging tunnel

demonstrates many of the grid generation procedure capabilities.

The airfoil is cambered, at angle of attack, and offset from the

tunnel centerline. Coordinates for the airfoil were input and

spline-fitted. Also, the tunnel wall is rather arbitrarily

shaped. One set of coordinate lines forms rings between the body
surface and the tunnel wall. Another set of coordinate lines

emanates from the body and terminates at the tunnel wall. One grid
line emanates from the body but extends to upstream or downstream

infinity, where the mapping is singular and special procedures are

required. Grid points are clustered near the leading and trailing
edges. The grid produced is twice as fine as that on which the

flow problem is solved to allow for accurate metric calculation by
central differences.

I
I

I
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COMPUTATIONAL DOMAIN

This is a sketch of the computational domain for the alrfoil-in-

tunnel problem. The airfoil surface is mapped onto the X-axis.

The tunnel wall is mapped into the line Y = I, with the lower wall

being on the left and upper wall on the right. Coordinate lines

which form rings in the physical plane are mapped into lines of

constant Y, and those coordinate lines radiating from the body in

the physical plane are mapped into lines of constant X. The line

in the physical plane extending to upstream infinity is mapped into

the Y-axis and the line extending to downstream infinity is split

between X = 1 and X = -I. A typical streamline starting at

upstream infinity, passing over the airfoil and terminating at

downstream infinity is shown. Cells A, B, C, and D each have as

one corner a point in the physical plane at infinity where the

mapping is singular and special procedures, described subsequently,

are required.

Tunnel wall 7
(lower) /

c I I
Mean line --_

Trailing edge-_
(lower)

X = -1.0

Y,]

A_B

ATypical ,,
streamli me-

L/Airfoil surface X = 1.0

_unnel wall

(upper) _-Y= 1.0

g/_---Mean line
¢

"-. ./ /- Traili ng edge

-- / (upper)
_X,i

Cells A, B, C and D have singular points at corners
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GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The continuity equation is written in Cartesian coordinates for

either planar 2-D flow if o = 0 or axisymmetric flow if o = I.

Assuming isentropic flow, the density is given as a function of the

Mach number, M_; the total velocity, q; and the ratio of specific

heats, y. Assuming irrotationality, the streamwise and normal

components of velocity are related to a disturbance potential, _,

by the expressions shown.

._

(y pu) +(yapv) = 0
x y

[1 + .5 (y-1) Moo2(1 - q2)] l/(y-1)

u- 1 +(I)x

V=¢_
Y

= 0 for planar 2D

1 for axisymmetric
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COORDINATE TRANSFORMATION

For a generalized transformation between physical coordinates (x,y)

and computational coordinates (X,Y), the metrics gll, g12, and g22

and the Jacobian are shown. In a perfectly orthogonal mapping, g12

would be zero. For the mapping considered here, g12 is several

orders of magnitude smaller than gll and g22" The partial deriva-

tive Xy in g22 will require special treatment near the singular

points at infinity.

x = x(X,Y) y= y(X,Y)

gll-(Xx)2 + (YX)2

g12- XxXy + YxYY

g22- (Xy)2 + (yy)2

j - XxYY - XyyX
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GOVERNING EQUATIONS IN CURVILINEAR COORDINATES

The transformed governing equation and expressions for the

contravariant velocity components in terms of the disturbance

potential are shown. The component U is in the direction around

the airfoil in the physical plane and V is in the direction normal

to the airfoil surface and tunnel wall. Notice that U depends on

g22 which requires special treatment near the singular points at

infinity. Also, since the mapping is not orthogonal, g12 is not

zero and U and V both depend on _X and _y.

(yapJU)x + (yapJV)y - 0

JU - yy + (g22 OX - g12Oy )/J

JV - -Yx + ( -g12(I)x + gll(l)Y )/J
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FINITE DIFFERENCE EQUATIONS

The mass balance for a typical four-sided cell is shown, using

compass-point notation (N, S, E, and W) to designate the cell

faces. The retarded-density formu%atlon is used to provide

numerical stability in supersonic regions and to allow for shock

capturing. In this formulation, the isentroplc density, P, is

replaced by a retarded density, _, which is shifted upwind in the

streamwise direction, _, if the local Mach number is greater than

unity. The contravariant components of velocity are expressed in

terms of the metrics and the disturbance potential; the resulting

simultaneous equations for _ are solved iteratively by AF2,

ZEBRA I, or VLOR.

Retardeddensity method

(yO _.JU)E_(yO_-JU)w + a(yO_JV) N

- a (y°-_JV)S =0

p = f (M) = 0 at subsonic points

0 < !.=< 1at supersonic points

a= AX/AY

Express JU and JV in terms of e, glt' g12 and g22

solve for e using AF2, ZEBRA I or VLOR
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ADDED NASS SOURCES/SINKS

Cells A, B, C, and D contain singularities at one corner and are

actually five-sided cells in the physical domain since they extend

to upstream or downstream infinity. The mass flowing across the

fifth face of these cells has not been accounted for in writing the

flnite-difference equations, and it is necessary to include for

these cells a source or sink term as shown in the mass balance

equation. The form of these source or sink terms can be rigorously

derived from the form of the singularity of the mapping at these

points and must be included to calculate flows in channels where

the inlet area is different from the exit area, such as diverging

or converging tunnels.

SA= -( PlNUlN ) [(YML ) -(IN YLW)IN]

SB=-(PlNUlN)[ (yUw)IN-(yML) NIl

°°_YML _

_"Y_w' ' ' '"'""' ' '

Y

Lower wall Upper wall

IC A_,B
I '\ //

I ' /\

I
Airfoil surface X
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LOGARITHMIC DIFFERENCING OF METRICS

The mass flux across the face adjoining cells A and B (or

equivalently, cells C and D) is not, in general, zero and should

be calculated as part of the solution. This requires calculating

the U contravariant velocity component through this face which

implies evaluating g22 in the cell face. However, as the computa-

tional coordinate Y + 1 along X = 0, the physical coordinate x

behaves logarithmically in Y. Since the physical x becomes

negatively infinite when Y = i, that is, at the upstream singular

point, central differencing to obtain Xy along this face is

impossible. Instead, the derivative is evaluated using the form

shown, derived from the logarithmic behavior of x in Y along

the coordinate line leading to the singularity. Without this

modification, the solution could not be converged fully since

the maximum residual would "hang up" at fairly large values in

cells A, B, C, and D.

As Y-----lalong X=0, x=AIn(1-Y)

x ( 1 ) = _ central differencing impossible

instead use (Sx/SY) w = 2(x w - XSW)/(AY In2)

_411, I I I I

Y

Lower wall Upper wall

C A#,B D/

I '"\ /

1 I "_

Airfoil surface X
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FREE-AIR BOUNDARY CONDITION

For cell faces along solid boundaries at the airfoil and tunnel

walls, the mass flux is set to zero to enforce the boundary

condition. This is equivalent to a Neumann or derivative boundary

condition on _. The far-field behavior in free air, however,

is different from that found in a tunnel. Thus, an alternative,

Dirichlet condition for _ in the outer ring has been included as an

option; it properly simulates the far-field behavior in free air if

applied sufficiently far away from the airfoil. The expression is

derived from the disturbance potential for a compressible vortex.

Use of this free-air boundary condition instead of the solid-wall

boundary condition has the added benefit that the angle of attack

can be changed without remapping the problem, as is necessary for

in-tunnel cases.

_ I- n-I_I, JMAX-I 2_ [_'- ta (13tane ) ]

Lowerwall

C • • e A

Y

I Upper wall

• • • D/
/I'\ /

/
\ /

Airfoil surface X
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EXIT CONDITION FOR SUPERSONIC FLOW

The final improvement involves specifying the value for the

disturbance potential in cells C and D, which is consistent with

supersonic flow at the exit. In supersonic flow, all signals

propagate downstream only. No influence can be felt upstream from

a point farther downstream. To simulate this behavior at a super-

sonic exit, it is assumed that _XX = 0. The potential in cells C

and D is expressed in terms of those upwind on the same ring. This

is substituted into the tridiagonal system and solved using the

horizontal scheme ZEBRA I. Thus, the exit mass flux is allowed to

adjust to conditions upstream of the exit. Anomalous Mach numbers

appeared near the exit if this boundary condition was not used,

although convergence was achieved.

(¢_XX)ij
m

• Solve for ¢) in

• Substitute into

¢)i-i, j -2¢)ij + ¢)i+I, j) I AX2

cell D from ¢)XX = 0
horizontal tridiagonal system

Y

C

Lower wall

A ,B
I'\

Upper wall

D/
i

/

, /
\

jh

Airfoil surface X
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NACA 4409 IN DIVERGING TUNNEL

Computed constant Mach number contours around an NACA 4409 airfoil

in a diverging tunnel for an upstream Mach number of 0.5 are

shown. The airfoil is at 8 degrees angle of attack, has camber,

and is offset from the tunnel centerline. There is a supersonic

region around the upper surface leading edge and a strong shock

at about I0 percent of the airfoil chord. Downstream of the

divergence the flow has a Mach number lower than the inlet Mach

number, as would be expected from continuity.

Moo = O.5, a =8°

#
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ELLIPSOID ON STING

Computed constant Mach number contours are shown for an

axisymmetric case of an ellipsoid with a sting in a straight

wall tunnel with supersonic flow at the inlet and exit. For the

upstream Mach number of 1.15, a bow shock can be seen ahead of

the ellipsoid with an embedded subsonic region between the bow

shock and the body. Another subsonic region appears near the

ellipsoid/sting junction. If either one of these subsonic

regions, surrounded by supersonic flow, was large enough to

intersect the wall, the problem would be ill-posed with the

current boundary conditions and would eventually diverge.

Typical of axisymmetric cases, only the upper half of the

physical domain is computed.

Moo= I. 15, H = I

l
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NLR 730I IN FREE AIR

The computed constant Mach number contours and surface pressure

coefficient for the NLR 7301 airfoil are shown. The upstream Mach

number is 0.721 and the angle of attack is -0.194 degrees. The

airfoil was designed in the hodograph plane to be shock free at

these conditions; it is a quite sensitive flow to compute. The

present solution shows a weak shock and a slightly underdeveloped

supersonic region relative to the design. The calculated lift

coefficient is 0.610 compared to the design of 0.595. It is

interesting to note that the design point for this airfoil lies in

the range of nonuniqueness for the conservative full-potential

equation, as shown by Salas and Gumbert (ref. 4).

NIo== O.721, a = -0. 194°

\_ /_ _ Design

' -2. 0 ,, Calculation
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S U MMARY

A conservative flnlte-volume scheme for transonic potential flow

around bodies in an arbitrarily shaped channel, including conver-

ging or diverging walls and stings, has been presented. The concept

of logarithmic differencing to obtain metrics near singularities

has been applied to correct a previous convergence problem. A

free-air Dirichlet-type boundary eonditlon has been added as an

option. An extrapolation-type boundary condition for supersonic

flow at the exit has been included. More details of these and

otheraspects of this procedure can be found in a 1982 AIAA paper (ref. 2)

and in a 1985 paper from the 3rd Symposium on Numerical and

Physical Aspects of Aerodynamic Flows (ref. i).

• Conservative, finite-volume scheme
for transonic potential flow

Arbitrary bodyand channel shapes
(converging/diverging tunnel, flared-sting)

• Logarithmic differencing (convergence)

• Free-air boundary condition

• Exit condition for supersonic flow
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