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Abatract

Improvements to a time-accurate approximate
factorization (AF) algorithm have been implemented for
steady and unsteady transonic analysis of realistic aircraft
configurations. These algorithm improvements have been
made to the CAP-TSD (Computational Aeroelasticity
Program - Jransonic Small Disturbance) code developed
recently at NASA Langley Research Center. The code permits
the aeroelastic analysis of complete aircraft in the flutter
critical transonic speed range. The AF algorithm of the CAP-
TSD code solves the unsteady transonic smali-disturbance
equation. The algorithm improvements include: an
Engquist-Osher (E-O) type-dependent switch to more
accurately and efficiently treat regions of supersonic fiow,
extension of the E-O switch for second-order spatial
accuracy in these regions, nonreflecting far field boundary
conditions for more accurate unsteady applications, and
several modifications which accelerate convergence to
steady-state. Calculations are presented for several
configurations including the General Dynamics one-ninth
scale F-16C aircralt model to evaluate the algorithm
moditications. The modifications have signiticantly
improved the stability of the AF algorithm and hence the
reliability of the CAP-TSD code in general. The paper
presents detailed descriptions of the algorithm
improvements along with results and comparisons which
demonstrate the improved stability, accuracy, and efficiency
of the CAP-TSD code.

Nomenclature
c airfoil chord
Cia unsteady lift-curve slope
Cr wing reference chord
Co pressure coefficient
k reduced frequency, wce/2U
M freestream Mach number
NSUP  number of supersonic points
R residual
t time, nondimensionalized by freestream speed and

wing reference chord
freestream speed

V)

a instantaneous angie of attack
o mean angle of attack

o amplitude of pitch oscillation
v ratio of specific heats

At nondimensional time step

n fractional semispan

¢ disturbance velocity potential
@ angular frequency

Subscripts

t tail
w wing

Introdyction

Presently, considerable research is being conducted to
develop finite-difference computer codes for calculating
transonic unsteady aerodynamics for aeroelastic
applications.! These computer codes are being developed to
provide accurate methods of calculating unsteady airloads for
the prediction of aeroelastic phenomena such as flutter and
divergence. For example, the CAP-TSD2 unsteady transonic
small-disturbance (TSD) code was recently developed for
transonic aeroelastic analyses of complete aircraft
configurations. The name CAP-TSD is an acronym for
Computational Aeroelasticity Program - Iransonic Small
Disturbance. The new code permits the calculation of
unsteady flows about complete aircraft for aeroelastic
analysis in the flutter critical transonic speed range. The
code can treat configurations with arbitrary combinations of
lifting surfaces and bodies including canard, wing, tail,
control surfaces, tip launchers, pylons, fuselage, stores, and
nacelles. In Ref. 2, steady and unsteady pressures were
presented for several complex aircraft configurations which
demonstrated the geometrical applicability of CAP-TSD.
These calculated results were in good agreement with
available experimental pressure data which vatidated CAP-
TSD for multiple component applications with mutual
aerodynamic interference effects. Preliminary aeroelastic
applications ot CAP-TSD were presented in Ref. 3 for a
simple well-defined wing case. The case was selected as a
first step toward performing aeroelastic analyses for
complete aircraft contigurations. The calculated flutter
boundaries compared well with the experimental data for
subsonic as well as supersonic freestream Mach numbers,
which gives confidence in CAP-TSD for aeroelastic
prediction.

The CAP-TSD code uses a time-accurate approximate
factorization (AF) algorithm recently developed by Batina4
for soiution of the unsteady TSD equation. The AF algorithm
involves a Newton linearization procedure coupled with an
internal iteration technique. In Ref. 4, the algorithm was
shown to be efficient for application to sieady or unsteady
transonic flow problems. It can provide accurate solutions
in only several hundred time steps, yielding a significant
computational cost savings when compared to aliernative
metnods. For reasons of practicality and affordability, an
efficient algorithm and a fast computer code are
requirements for realistic aircraft applications.

The purpose of this paper is 16 describe recent changes to
the CAP-TSD cnde which have significantly improved the
stability of the AF algorithm and the accuracy of the results.
The algorithm modifications include: (1) improved type-
dependent differencing to treat regions of supersonic flow,
(2) extension of the type-dependent difterencing for second-
order spatial accuracy. (3) nonrefiecting far field boundary
conditions for unsteady applications, and (4) several
modifications 1o accelerate convergence 10 steady-state. The
paper presents detailed descriptions of these algorithm
improvements along with results and comparisons which
assess the improved stability, accuracy, and efficiency of the
CAP-TSD code.



Algorithm Improvements
Engquist-Osher Type-Dependent Switch

Algorithms based on the TSD equation typically use
central differencing in regions of subsonic flow and upwind
differencing in regions of supersonic flow. This, of course,
allows for the correct numerical description of the physical
domain of dependence. The original CAP-TSD code of Ref. 2
used the MurmanS type-dependent switch to change the
spatial differencing. The Murman switch, however, admits
nonphysical expansion shocks as a part of the solution and
has been shown 10 be less stable than monotone methods.6.7
For example, unsteady results for a NACA 64A006 airfoil
were presented in Ref. 7 which demonsirated an order of
magnitude increase in time step using a monotone algorithm.
Therefore, an Engquist-Osher (E-O) monotone switch,
simitar 1o that of Ref. 6, has been incorporated within the AF
algorithm of the CAP-TSD code. The E-O switch is based on

sonic reference conditions and does not admit expansion
shocks as part of the solution. Use of the E-O switch also
generally increases computational efticiency because of the
larger time steps which may be taken. Mathematical details
of the required algorithm changes are described in a
subsequent section.

-Qr r i iff

Most TSD algorithms are only first-order-accurate
spatially in regions of supersonic flow. This is due to the
first-order upwind differencing that is typically used to
treat these regions. Use of second-order upwind differencing
has been shown to improve the accuracy of the solution while
retaining the numerical stability of the first-order
method.8 Consequently, the E-O type-dependent swilch of
the AF algorithm has been extended for second-order spatial
accuracy in supersonic regions of the fiow. Comparisons of
resulls obtained wusing first-order and second order
differencing, 10 be presented, demonstrate the improved
accuracy of the second-order method.

nrefl n Fiel ndar nditi

For unsteady applications, the far field boundary
conditions can have a significant influence on the accuracy of
the solution.  Steady-state boundary conditions are
inadequate for unsteady calculations, since dislurbances
reaching the boundaries are reflected back into the
computational domain. These retlected disturbances can
propagate into the near field and thus produce inaccusate
results. One solution to this problem is 10 locate the grid
boundaries far away to minimize the eftect of the boundary
conditions. This is generally not an acceptable remedy
because of the higher computational cost which results from
an increased number of grid points required 1o discretize a
larger computational domain. The more appropriate solution
is the use of nonreflecting far tield boundary conditions
which absorb most of the waves that are incident on the
boundaries and consequently allow the use of smaller
computational grids.2 Nonretlecting boundary conditions
similar to those of Whitlow9 have been incorporated within
the CAP-TSD code. These boundary conditions are consistent
with the AF solution procedure and are described in more
detail below. Results obtained with and without the
nonreflecting boundary conditions are presented which
demonstrate their effectiveness.

Steady-State Convergence Acceleration

Finally, several algorithm changes have been made to
accelerate convergence 1o steady-state. Besides the E-O
switch, these changes include: (1) deletion of the time-
dependent terms from the residual of the AF algorithm, (2)
deletion of all of the time-derivatives of the TSD equation,
and (3) over-relaxation of the residual. The effects of each
of these modifications on the steady-state convergence are
demonstrated in the results presented herein.

Transonic Small-Disturbance Equation
The flow is assumed to be governed by the general

frequency modified TSD potential equation which may be
written in conservation law form as

of, of of, of

LI P T (1)
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where

f,=-A0 - Bo, (2a)
r‘=Eo‘+Fo;+Go; (2b)
f, =6, +Hoo {2¢c)
f;=9, (2d)

The coefticients A, B, and E are defined as

A=M, B=2M  E=1-M (3)

Several choices are avaifabie for the coefficients F, G, and H
depending upon the assumptions used in deriving the TSD
equation.2 The coetficients are herein defined as

1 >
F=-sys DM (4a)
- 2
(l=3(7-3’M (4b)
2
H=-(y- DM (4c)

Approximate Factorization Algorithm

An approximate lactorization algorithm was developed4
1o solve the moditied TSD equation (Eq. (1)). In this section,
the AF algorithm is described.

neral ripti

The AF algorithm consists of a Newlon linearization
procedure coupled with an internal iteration technique. For
unsleady flow calculations, the solution procedure involves
two steps. Firsl, a time linearization step (described below)



is performed to determine an estimate of the potential field.
Second, internal iterations are performed to provide time
accurate modeling of the flow field. Specifically, the TSD
equation (Eq. (1)) is writien in general form as

n+i

R@ ) =0 (5)

where ¢"+1 represents the unknown potential field at time
fevel (n+1). The solution to Eq. (5) is then given by the
Newton linearization of Eq. 5 about ¢’

. R
RO+ 58020 (6)

In Eq. (6), ¢° is the currently available value of ¢7+1 and
Ao = ¢N+1 - ¢°. During convergence of the iteration
procedure, A¢ will approach zero so that the solution will be
given by ¢n+1 = ¢°. In general, only one or two iterations
are required to achieve acceptable convergence. For steady

flow calculations, itarations are not used since time accuracy
is not necessary when marching to steady-state.

Mathemptical Formulation

The AF algorithm is formulated by first approximating
the time derivative terms (¢1t and ¢xt terms) by second-
order accurate finite-difference formulae. The TSD equation
is rewrilten by substituting ¢ = ¢° + A¢ and neglecting
squares of derivatives of A¢ which is equivalent o applying
Eq. (6) term by term. The resulting equation is then
rearranged and the left-hand side is approximately factored
into a triple product of operators yielding

L L L Ae=-o RO.6"0". 0"  (7)
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In EQ. (7) o is a relaxation parameler which is normally set
equal 10 1.0. To accelerate convergence to steady-state, the
residual R may be over relaxed using o > 1. Equatior (7) is
solved using three sweeps through the grid by sequentially
applying the operators L, Ly, and L; as

§-sweep: L, A;=-0R (9a)
n - sweep. Ln A; = A (9b)
{ - sweep: l.; AP = AB (9c)

Further details of the algorithm development and solution
procedure may be lound in Rel 4.

Engquist-Osher Tvpe-Dependent Swilch

An Engquist-Osher type-dependent mixed difterence
operator has been implemented in the AF algorithm 1o treat
supersonic regions of the flow. The E-O swilch is based on
sonic reference conditions and is applied to both sides of Eq.
(7). For example, in the residual (Eq. (8g}) the terms that
are upwind biased at supersonic points are defined by
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In Egs. (11) the j and k subscripts corresponding to the
spanwise and vertical directions, respeclively, have been
omitted for clarity. Similar differencing is used on the left-
hand side of Eq. (7) where the first two terms of Fy (Eq. 8d)

are upwind biased at supersonic points.

Second-Order-Accurate Spatial Differencing

The AF algorithm with the E-O switch as defined by Eq.
(10} is only first-order accurate in Supersonic regions of
the flow. To achieve second-order accuracy at supersonic as
well as subsonic points, EqQ. (10) is extended as
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Similar modifications to the left-hand side of Eq. (7) result
in a pentadiagonal system of equations for subsonic flows
with embedded supersonic regions and a tridiagonal system of
equations for purely subsonic flows. Furthermore, the
treatment of the ¢xt term in the TSD equation is only first-
order accurate in space because of the one-sided differencing
used. Similar to Ref. 8, the ¢xt term is backward differenced
to enhance diagonal dominance and consequently maintain
numerical stability.

Boundary Conditiona

Elow-tangency. - The flow tangency boundary
conditions are imposed along the mean plane of the respective
lifting surfaces and the wakes are assumed to be planar
extensions from the trailing edges to the downstream
boundary of the finite-difference grid. The numerical
implementation of these conditions2 allows for copianar as
well as non-coplanar combinations of horizontal (canard,
wing, horizontal tail, launchers) and vertical (pylons,
vertical tail) surfaces. Bodies such as the fuselage, stores,
and nacefles are treated using simplified boundary conditions
on a prismatic surface rather than on the true surface.2 The
method is consistent with the small-disturbance
approximation and treats bodies with sufficient accuracy to
obtain the correct global effect on the flow field without the
use of special grids or complicated coordinate
transformations.

Far Field, - The conditions imposed upon the outer
boundary of the computational region are similar to the
nonrefiecting boundary conditions reported by Whitiow.9
The conditions employed here are given by

Upstream: ¢6=0 (13a)
Downsltream: -;-(FB + 7?__—-)@ +0 = 0 (13b)
<t C
D
Above: 50,+9,=0 {13c)
D
Below: 5@.-o,=0 (13d)

Right spanwise: ng + °, =) (13e)

Left spanwise: o-9 =0 (13f1)

(tor full-span modeiing)
Symmetry plane: 9, =0 (139)

y

{for half-span modeling)



2
where C = E + 2F0xandD-J4A+B /C . These boundary
conditions are numerically imposed by redefining the Lg, Ly,

and Ly operators in Eq. (7) as well as the right-hand side R,

at the appropriate grid points. The equation to be solved at
boundary grid points may then be written symbolically as

LLL A¢=-6R 14)
tncM ° (

where the “tilde" indicates that the quantity has been
rewritten to account for the boundary conditions. For
example, along the downstream boundary the three operators
and right-hand side are defined as

L = ( 9

3 JE xag (15a)
L“=1 (15b)
L=1 15
. (15¢)
g 1 . n n-l B

R=-3-(30 -4 +¢ )+ 3 )§¢ (15d)
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Iime-Linearization Step

An initial estimate of the potentials at time level {(n+1)
is required to start the iteration process. This estimate is
provided by performing a time-linearization calculation.
The equations governing the time-linearization step are
derived in a similar fashion as the equations for iteration.
The only ditference is that the equations are formulated by
lingarizing about time level (n) rather than the iterate level

*).

CAP-TSD Code

The AF algorithm has been used as the basis of the CAP-
TSD code for transonic unsteady aerodynamic and aeroelastic
analysis of realistic aircralt configurations. The code can
treat configurations with arbitrary combinations of lifting
surfaces and bodies including canard, wing, tail, control
surfaces, tip launchers, pylons, fuselage, stores, and
nacelles. The present capability has the option of half-span
modeling (Eq. (13g)) for symmetric cases or full-span
modeling (Eq. (13f)) to allow the treatment of
antisymmetric mode shapes, fuselage yaw, or unsymmetric
configurations such as an oblique wing or unsymmelric wing
stores. Steady and unsieady CAP-TSD pressures for several
realistic aircraft configurations, including comparisons
with experimental data. were presented in Ref. 2. The
calculated results were in good agreement with the
experimental pressure data which validated CAP-TSD for
multiple component applications with mutual aerodynamic
interference effects. Preliminary aeroelastic applications of
CAP-TSD compared well with experimental data for subsonic
as well as supersonic freestream Mach numbers which gives
confidence in the code for aeroelastic prediction.3

Besults and Discussion

Results are presented for several configurations to
demonstrate and evaluate the modifications to the AF
algorithm of the CAP-TSD code. Calculations are first
presented for ¢ flat plate airfoil t0 assess the effectiveness of
the nonreflecting far field boundary conditions. Calculations
are next presented for the F-5 wing!0 and the ONERA M6
wing!! to demonstrate the improvements due to the
Engquist-Osher switch, the second-order accurate
supersonic differencing, and the steady-state convergence
acceleration. Finally, steady and unsteady results are
presented for the General Dynamics one-ninth scale F-16C
aircraft model12.13 to investigate application of the modified
algorithm to a realistic aircraft configuration.

16~ Reflecting boundary
conditions
12
8
Reol
€t ul

0 —

Imaginary
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(a) reflecting boundary conditions.

Nonref lect ing boundary
congitions
————— Kernel function

imoginary

-8 1 1 i i J
0 .2 4 .6 .8 1.0
Reduced frequency k

{b) nonrellecting boundary conditions.

Fig. 1 Comparisons of unsteady hft-curve slope for a flat
plate airfoil at M = 0.85.



Elat Piate Airfoil Resuils

Unsteady results were obtained for a fiat plate airfoil at
M = 0.85 10 test the nonreflecting far field boundary
conditions. The fiat plate airfoil was selected 1o allow direct
comparison of results with the exact kernel function method
of Bland.'4 The boundary conditions were tested by
computing the lift coefficient due to the airfoil pitching about
the quarter chord. Such unsteady forces are typically
determined by calculating several cycles of forced harmonic
oscillation with the last cycle providing the estimate of the
forces. Alternatively, the forces may be obtained indirectly
from the response due to a smoothly varying exponentially
shaped pulse.15 In this procedure, the airfoil is given a
small prescribed pulse in a given mode of motion (in this
case pitching) and the aerodynamic transients calculated.

- M=0.9

Murman switch D
1

-

F-5 wing

Log
(error)

-3 at = 0.5
-4 1 L1 1
4 50 100 150 200 250
Iteration

(a) steady-state convergence.

6
Murmon switch Q

NSUP
NSGP(f tnal)

i 1 1 §
] 5 100 150 200 250
Iterotion

(b} number of supersonic points.

Fig. 2 Effect of step size on the solution computed using
the Murman switch for the F-5 wing at M = 0.9 and

ao = 00,

The harmonic response is obtained by a transfer-function
analysis using fast Fourier transforms. Use of the pulse
transter-function technique gives considerable detail in the
frequency domain with a significant reduction in cost over
the alternative method of calculating multiple oscillatory
responses. For the flat plate airfoil, pulse transient
calculations were performed using 1024 time steps with
At = 0.2454. The amplitude of the pulse was 0.50. The grid
exiended 25 chordlengths above and below the airfoil, and 20
chordlengths upstream and downstream of the airfoil.
Parallel results were obtained using reflecting (steady-
state) and nonreflecting far field boundary conditions as
shown in Fig. 1. The results are plotted as real and
imaginary components of the unsteady lift-curve slope Cia as

a function of reduced frequency k. Computations using the
reflecting boundary conditions, shown in Fig. 1(a), produce

2 r M=0.9
Engquist-0sher switch
1 r At = 0-5
F-5 wing
0
Log -
(efror)
-2 unsready resiouo]
-3 -
Steady residuol
-4 4 1 1 1 g
v} 50 100 150 200 250
{teration
(a) steady-state convergence.
6~ M =0.9
tngquist-0sher switcn |:>
5| at = 0.5
F-5 wing
4
NSUP ; Unsteogdy resigual
p
NSUP(final) Steady residual
2
1
1 i i { i
0 50 100 150 200 250
Iterotion

{b) number of supersonic points.

Fig. 3  Efiect of deleting lime derivatives in the residual on
the solution computed using the Engquist-Osher
switch for the F-5 wing at M = 0.9 and ao = 0°.



oscillations in both the real and imaginary parts for
0 < k < 0.2. The oscillations are produced by reflected
disturbances which propagate back into the near field and
contaminate the solution. When the calculation was repeated
using the nonreflecting boundary conditions, shown in Fig.
1(b), the oscillations no longer occur since the boundary
conditions absorb most of the disturbances that are incident
on the grid boundaries. Furthermore, these results are in
excellent agreement with calculations from the kernel
function method of Ref. 14.

E-5 Wing Results
Calculations were next performed for the F-5 wing,10 to

assess the algorithm modifications to CAP-TSD. The F-§
wing has an aspect ratio of 3.16, a leading edge sweep angle

. M= 0.9
Engauist-Osher switch Q
1 - at = 0.5
F-5 wing
0

Originol residual (o = 1,0)

Lg Over-relaxed residual (o = 2.0)
terror)
-2
-3
-4 Lt
0 S0 100 150 200 250
Iteratton

(a) steady-state convergence.

6 M=10.9
Engquist-0sher switch Q
5 | at = 0.5
F-5 wing
u —
NSUP
NSUP(finol) origingl resioual to = 1.0)
2 Over-reloxed residugl (o < 2.0}
1
| 1 1 1 }
0 S0 100 150 200 25
Iteration
(b) number of supersonic points.
Fig. 4 Effect of over-relaxing the residual (with time

derivatives deleted) on the solution computed using
the Engquist-Osher switch for the F-5 wing at M =
0.9 and ao = 00.

of 31.99, and a taper ratio of 0.28. The airfoil section of the
wing is a modified NACA 65A004.8 airfoil which has a
drooped nose and is symmetric aft of 40% chord. The F-5
calculations were performed using a constant step size for a
total of 500 steps. The freestream Mach number was
selected as 0.9 and the wing was at 0° angle of attack. The
resulls were obtained to study the steady-state convergence
characteristics of the modified AF algorithm. The results are
presented in the form of convergence histories and the
number of supersonic (NSUP) points versus the iteration
number.

In the original AF aigorithm of Ref. 4, the Murman type-
dependent switch was used. Results obtained using the
unmodified code are presented in Fig. 2. The steady-state
convergence is shown in Fig. 2(a); the number of supersonic

2r M=09
Engquist-Osher switch [>
1F at = 0.5
F-5 wing
0k
Log 1
terror) unsteady olgoritnm
2L Steady algorithm
-3
-4 1 1 1 1 )
0 SO 100 150 200 250
Iterotion
(a) steady-state convergence.
6 M=09
Engguist-0sher switch Q
5 | at = 0.5
F-5 wing
4 H
unsteady algorithm
NSUP 3
NSUPtf1nal) Steady algorithm
2
1 V
i 1 1 1 )
0 50 100 150 200 250
Iteration
(b) number of supersonic points.
Fig. 5 Effect of deleting all TSD time derivatives on the

solution computed using the Engquist-Osher switch
for the F-5 wing at M = 0.9 and ao = 0°.



points (NSUP) normalized by the final value are shown in
Fig. 2(b). For aeroelastic analysis where airloads are
required rather than pressures, the solution is considered to
be converged to engineering accuracy when a three to four
order-of-magnitude reduction in the solution error is
obtained. The "error” in the convargence history, as defined
herein, is the ratio of the maximum |A¢) after n iterations to
the maximum |a¢| in the initial solution (first iteration).
Two sets of results are plotted corresponding to two values of
step size, At = 0.1 and 0.5. For At « 0.1, the rate of
convergence is slow and the number of supersonic points
oscillates about the final value. Increasing the step size to
At = 0.5 improves the rate of convergence and the
osciltations in NSUP are significantly damped. The resulls
for At = 0.5 also indicate that the number of supersonic
points is initially more than four and one-half times the
final value and that "spikes” begin to appear in the
convergence history after 150 steps. These spikes, which
represent a numerical instability, are due to a large
transient caused by the impulsive start from a uniform
stream using a large step size. If the caiculations were
started with a smaller step size, and then the step size
increased to the larger value, the numerical instability can
be avoided. Also, as shown in Refs. 2 and 4, the slep size may
be cycled through very large values such as At = 5.0 to
achieve faster convergence to steady-state.

The F-5 calculations with At = 0.5 were then repeated
with the E-O swilch replacing the Murman switch. These
results are labeled “unsteady residuai” in Fig. 3. The curves
are identical (within plofting accuracy) to the At = 0.5
curves of Fig. 2 except that the spikes in the convergence
history are absent. The E-O swilch is more robust than the
Murman switch and thus the calculation remains siable.
Furthermore, the rate of convergence to steady-state could
be increased by deleting the time derivatives in the residual.
These resuits, which are labeled “steady residual” in Fig. 3,
show that after the first 70 steps the solution converges
faster and the initial overprediction of NSUP is less than that
computed using the unsteady residual.

The convergence to steady-state could be further
accelerated by over-relaxing the residual as shown in Fig. 4.
The results labeled “original residua!” are the same as the
“steady residual” curves presented in Fig. 3. The over-
relaxed residual resulls of Fig. 4 were obtained by doubling
the residual using o = 2.0. These resulls indicate a faster
rale of convergence, especially in the first part of the
calculation, and that NSUP is within 2% of its final value
after only approximately 50 steps.

To turther investigate the convergence characteristics of
CAP-TSD. the algorithm was modified to solve the steady TSD
equation by deleting alt of the time derivatives. Calculations
for the F-5 wing were performed using At = 05ando = 1.0
to directly compare with paraliel results obtained by solving
the unsteady TSD equation. These comparisons are presented
in Fig. 5. The convergence history computed using the steady
algorithm is monotonically decreasing and very smooth in
comparison with the unsteady algorithm convergence
history. The steady algorithm solution converges faster and
does not produce the large initial overprediction of NSUP
that is characteristic of the unsteady algorithm. The number
of supersonic points converges rapidly to within 2% of ils
final value in only approximately 25 steps. Over-relaxing
the residual of the steady algorithm also further accelerates
the convergence to steady-state (not shown).

ONERA M6 Wing Resulls

To test the accuracy of the modified CAP-TSD algorithm,
calculations were performed for the ONERA M6 wing.11 The
M6 wing has an aspect ratio of 3.8, a leading edge sweep

angle of 300, and a taper ratio of 0.562. The airfoil section
of the wing is the ONERA "D" airfoil which is a 10%
maximum thickness-to-chord ratio conventional section.
The freestream Mach number was selected as M = 0.84 and
the wing was at 3.06° angle of attack. These conditions were
chosen for comparison with the tabulated experimental
pressure data of Ref. 11. This rather well-known case is a
very challenging one, especially for a TSD code, because of
the complex double shock wave which occurs on the upper
surface of the wing.

Steady-state calculations were performed for the M6
wing by using the AF aigorithm with the E-O switch. The
results were obtained by cycling the step size through values
as large as At = 2.0 for a total of 500 steps. This relatively
large step size corresponds to two root chords of travel per
time step. A comparison of the resulting CAP-TSD pressures
with the experimental pressure data is given in Fig. 6 for
two chords along the span. Results for i = 0.44 are shown in
Fig. 6(a); resulls for n = 0.65 are shown in Fig. 6(b). The
data indicate that there is a relatively weak highly-swept
supersonic-to-supersonic shock wave which forms forward
near the leading edge. The primary supersonic-to-subsonic
shock which occurs in the midchord region of the wing,
coalesces with the first shock. Outboard toward the tip, the
two shocks merge to form a single supersonic-10-subsonic
shock wave. The CAP-TSD resulits, obtained using first-
order-accurate dilferencing in supersonic regions, are in
fairly good agreement with the data in predicting the overall
pressure levels, although differences occur in the regions of
the shocks. In general, the leading edge suction peak is well
predicted but the supersonic-to-supersonic shock is
smeared. When the calculation was repeated using the
second-order-accurate spatial differencing, a significant
improvement was obtained in the accuracy of the results.
The comparisons in Fig. 6 show that the supersonic-to-
supersonic shock is much more sharply captured by the
second-order method and consequently the calculated
pressures are now in very good agreement with the
experimental data. Calculations were also performed for the
M6 wing using the original algorithm with the Murman
switch. These calculations were unsuccessful because of a
numaerical instability which was produced by the highly
expanded flow about the leading edge of the wing.

An unsteady caicufation was aiso performed lor the M6
wing at M = 0.84, to investigate the robustness of the
modified algorithm for time-dependent applications. In this
demonstration calculation, the wing was forced to oscillate in
pitch about a line perpendicular to the root at the root
midchord. The amplitude of the motion was 2° peak-to-peak
about the mean angle of attack of ao = 3.060. The reduced
frequency was selected as k = 0.1 and only 300 steps per
cycle of motion were used. This corresponds to a step size of
At = 0.1047. Three cycles of motion were computed to
obtain a periodic solution. Unsteady pressure distributions,
obtained using first-order and second-order accurate
supersonic differencing, are shown at the maximum pitch
angle (a = 4.06°) in Fig. 7. Results for | = 0.44 are shown
in Fig. 7(a); results for n = 0.65 are shown in Fig. 7(b).
Similar 10 the steady-state results, these pressure



comparisons illustrate that the supersonic-to-supersonic
shock is more sharply captured by the second-order method.
Further instantaneous pressure distributions at two points
during the thirg cycle of motion are shown in Fig. 8 for five
span stations along the wing. Pressures at the wing
maximum angle of attack (a = 4.069) and pressures at the

wing minimum angle of attack (a = 2.069) are both
presented in the figure. As the wing pitches up, the shocks
move aft and the supersonic-to-subsonic shock grows in
strength. As the wing pitches down, the shocks move forward
and the supersonic-to-supersonic shock is more sharply
defined. For this case, both of the shocks oscillate over
approximately 10% of the chord during a cycle of motion.
Also, the supersonic-to-supersonic shock at f{ = 0.80
periodically appears and disappears during a cycle of motion.
The results illustrate the large shock motions that the
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Fig. 6 Effects of first-order and second-order accurate

supersonic differencing on the steady pressure
distributions of the ONERA M6 wing at M « 0.84
and ao = 3.060.

modified AF algorithm is capable of computing. The
improved aigorithm captures the shocks sharply and is
sufficiently robust 10 compute this complex unsteady flow
using only 300 steps per cycle of motion.

General Dvramice F-16C Aircraft Model Resuits

Results were also obtained for the General Dynamics
F-16C aircraft model!2 to investigate application of the
modified algorithm to a realistic aircraft configuration.
Shown in Fig. 9 are the F-16C components that are modeled
using CAP-TSD. The F-16C is modeled using four lifting
surfaces and two bodies. The lifting surfaces include: (1)
the wing with leading and trailing edge control surfaces, (2)
the launcher, (3) a highly-swept strake, aft strake, and

shelf surface, and (4) the horizontal tail. The bodies
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Fig. 7 Effects of first-order and second-order accurate

supersonic differencing on the unsteady pressure
distributions of the ONERA M6 wing during the
third cycle of rigid pitching at M = 0.84, ao =
3.060, a1 = 1.0, and k = 0.1,
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Instantaneous pressure distributions on the ONERA M6 wing during the third cycle of

rigid pitching at M = 0.84, ao = 3.06°, a1t = 1.0°, and k = 0.1,

include: (1) the tip missile, and (2) the fuselage. Other
salient features of the F-16C modeling include 3° linear
twist washout for the wing, a leading edge control surface
hinge line that is straight but not of constant-percent chord,
and 10° anhedral for the horizontal tail. In these
calculations, the freestream Mach number was M = 0.9 and
the F-16C aircraft was at 2.380 angle of attack. Also, the
leading edge control surface of the wing was deflected
upwards 20 for comparison with the experimental steady
pressure data of Ref. 13. Furthermore, the calculations
were performed on a grid which conforms to the leading and
trailing edges of the lifting surfaces and contains 324,000
points. Since the grid is Cartesian, it was relatively easy to
generate, even for such a complex configuration as the
F-16C aircraft. Also, the calculations required only about
0.88 CPU seconds per time step and thirteen million words
of memory on the CDC VPS-32 computer at NASA Langley
Research Center.

Steady-stale calculations were performed for the F-16C
aircraft using the AF algorithm with the E-O and Murman
switches. The E-O resulls were obtained using both the
first-order and second-order accurate supersonic
differencing. Steady pressure comparisons are given in Fig.
10 for three span stations of the wing and one span station of
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Fig. 9 CAP-TSD modeling of the General Dynamics one-

ninth scale F-16C aircraft model.
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the tail. Both sets of E-O results are presented for
comparison with the experimental data. The results obtained
using the Murman switch were originally published in Ref.
2. These results are identical to plotting accuracy with the
first-order E-O results, and therefore are not shown. The
steady pressure comparisons indicate that there is a
moderately strong shock wave on the upper surface of the
wing and the CAP-TSD pressures agree well with the
experimental pressures. For the tail, the flow is
predominantly subcritical and the calculated results again
agree well with the data. Comparison of pressures computed
using first-order and second-order accurate supersonic
differencing shows very small differences. The largest
difference, for example, occurs on the wing at fw = 0.79
where the second-order calculation predicts a slightly
stronger shock.

Unsteady results were also obtained for the F-16C
aircraft fo investigate the robustness of the modified
algorithm for realistic-aircraflt time-dependent
applications. For simplicity, the calculation was performed
for a rigid pitching motion where the entire aircraft was
forced to oscillate about the mode!l moment reference axis at
a reduced frequency of k = 0.1. The oscillation amplitude
was chosen as a1 = 1.50 which is three times the value used
1o obtain similar results presented in Ref. 2. Three cycles of
motion were computed using 300 steps per cycle of motion
corresponding to At = 0.1047. Calculations were performed
using both the Murman and E-O switches. The solution using
the original algorithm with the Murman switch, however,
was numerically unstable for this case as shown in Fig. 11.
Instantaneous pressure distributions at time steps 94 and
95 are piotted in the figure, computed using the Murman
(Fig. 11(a)) and E-O (Fig. 11(b)) switches. The numerical
instability begins in the region of the launcher/tip-missile
where the grid spacing is smallest. Figure 11(a) shows the
instability in the form of an oscillation in the wing upper
surface pressure distribution at fw = 0.94 from
approximately 30% to 60% chord. The program
subsequently failed during step 96 which is 21 steps after
the maximum pitch angle in the first cycle of motion. The
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Fig. 10 Comparisons between CAP-TSD steady pressure distributions computed using first-order
and second-order accurate supersonic differencing with the experimental pressure data
for the wing and tail of the F-16C aircraft model at M = 0.9 and ao = 2.38°.

calculation involving the modified algorithm (E-O swilch
with the first-order accurate supersonic differencing) is
stable, however, as shown in Fig. 11(b). Here the pressure
distributions for steps 94 and 95 are very similar and the
calculation proceeds with no difficulty. in fact, the modified
AF algorithm with the E-O switch is numerically stable for
this case with either the first-order or second-order
supersonic differencing.

Unsteady pressure distributions along the wing and tail
during the third cycle of motion are shown in Fig. 12,
computed using the E-O switch with the second-order
accurate supersonic differencing. Two sets of calculated
pressures are presented corresponding to the aircraft at the
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1 Upper surface

(a) numerical instability with Murman

switch.

maximum (a = 3.889) and minimum (a = 0.88°) pitch
angles. Comparison of the results indicates that large
changes in pressure occur along the upper and lower
surfaces of the wing as the aircraft oscillates in pitch. For
example, the shock on the wing upper surface oscillates over
more than 10% of the chord during a cycle of motion. Also,
the shock is approximately twice as strong at the maximum
pitch angle as it is at the minimum pitch angle. For the tail,
the changes in the pressure distributions due to aircraft
pitching are relatively very small in comparison with the
changes in wing pressures, as further shown in Fig. 12. The
tail is located considerably aft of the pitch axis and thus its
motion is plunge dominated which results in much smaller
airloads for the low value of k considered.
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Fig. 11 Effect of type-dependent swilch on numerical stability for rigid pitching of the F-16C
aircraft model at M = 0.9, ao = 2.38°, at = 1.5°, and k = 0.1.
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Congluding Remarks

Improvements 1o a time-accurate approximate
factorization (AF) algorithm have been implemented for
steady and unsteady transonic analysis of realistic aircraft
configurations. These algorithm improvements have been
made to the CAP-TSD (Computational Aeroelasticity
Brogram - Iransonic Small Disturbance) code developed
recently at NASA Langley Research Center. The AF algorithm
of the CAP-TSD code solves the unsteady transonic small-
disturbance equation. The paper described recent changes to
the code which have significantly improved the stability of
the AF algorithm and the accuracy of the results. The
algorithm modifications include: an Engquist-Osher (E-O)
type-dependent switch to treat regions of supersonic flow,
extension of the E-O switch for second-order spatial
accuracy, nonreflecting far field boundary conditions for
unsteady applications, and several modifications to
accelerate convergence 1o steady-state.

Calculations were presented for the F-5 wing and ONERA
M6 wing which demonslrated applications of the algorithm
improvements. The results revealed the superior stability
characteristics and computational efficiency of the E-O
swilch. Much larger time steps were possible using the E-O
swilch, even for comparatively difficult cases. For the
particularly challenging case of the M6 wing at M = 0.84 and
ao = 3.069, the AF algorithm with the E-O switch was found
to be stable for time steps as large as At = 2.0. This
relatively large step size cofresponds to two root chords of
travel per time step. Comparisons of resuits obtained using
first-order and second-order supersonic differencing
clearly demonstrated the improved accuracy of the second-
order method. Changes to the AF algorithm for convergence
acceleration, namely deleting time-derivatives from the
original unsteady algorithm and over-relaxing the residual,
resuited in faster rates of convergence to steady-state.
Converged solutions were obtained in only several hundred
time steps for the F-5 and M6 wings. An unsteady
calculation for the M6 wing undergoing a rigid pitching
oscillation demonstrated the robustness of the modified AF
algorithm. In this calculation, the shocks oscillated over
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approximately 10% of the chord and the flow was computed
using only 300 steps per cycle of motion. This rather
ditficult case could not be computed using the original
algorithm.

Calculations were also presented for the General
Dynamics one-ninth scale F-16C aircraft model to
demonstrate application of the modified CAP-TSD code to a
realistic aircraft configuration. The F-16C components that
were modeled included: the wing with leading and trailing

edge control surfaces; a highly-swept strake, aft strake, and
shelf surface; the tip launcher and missile; the horizontal
tail, and the fuselage. Steady pressure results at M = 0.9
and oo = 2.380 compared well with the experimental data.
Unsteady results were presented for the entire F-16C
aircraft undergoing a rigid pitching motion with a three
degree peak-to-peak oscillation amplitude. The calculation
was a challenging one for the modified algorithm since the
flow was computed using only 300 steps per cycle of motion.
In this calculation, the shock on the upper surface of the
F-16C wing oscillated over more than 10% of the chord
which further demonstrates the robustness of the modified
algorithm. Also, similar to the M6 wing example, this case
could not have been computed using the original algorithm.
Therefore, the modifications have significanlly improved the
numerical stability of the AF algorithm and the general
reliability of the CAP-TSD code for realistic aircraft
applications.
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