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ABSTRACT

The requirement for low vibrations has achieved the status of a

critical design consideration in modern helicopters. There is now a

recognized need to account for vibrations during both the analytical

and experimental phases of design. Research activities in this area

have been both broad and varied and notable advances have been made

in recent years in the critical elements of the technology base

needed to achieve the goal of a "jet smooth" ride. The purpose of

this paper is to present an overview of accomplishments and current

activities of government and government-sponsored research in the

area of rotorcraft vibrations and structural dynamics, focusing on

NASA and Army contributions over the last decade or so. Specific

topics addressed include: airframe finite-element modeling for static

and dynamic analyses, analysis of coupled rotor-airframe vibrations,

optimization of airframes subject to vibration constraints, active

and passive control of vibrations in both the rotating and fixed sys-

tems, and integration of testing and analysis in such guises as modal

analysis, system identification, structural modification, and vibra-

tory loads measurement.

INTRODUCTION

Since the first U.S. helicopter went into production over four

decades ago (fig. I), excessive vibrations have plagued virtually all

new rotorcraft developments. The problem transcends national bound-

aries and is not unique to the U.S. helicopter community. An account

of the vibration problems encountered in the development of an early

Soviet helicopter (fig. 2) is given by Alexander Yakovlev in refer-

ence i. Yakovlev's account was popularized when excerpts from his

book appeared in the magazine Aviation Week (December 28, 1959). The

frustration of trying to solve an elusive vibration problem became so

intense that, as the designer writes, "It got to the point where,

instead of calling greetings when we met in the morning, we shouted

at each other: 'How is it going - still shaking?' 'It's shaking;

it's shaking!' 'When will this damned shaking stop?'" More recent

accounts of the impact of vibrations on Army helicopter developments
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are given in references 2 and 3 in which problems experienced during

initial flight testing of the UH-60 Black Hawk (fig. 3) and AH-64

Apache (fig. 4) are described. The problems encountered on these

helicopters included: higher than expected rotor vibratory loads,

unanticipated rotor-airframe interactions, airframe resonances near

excitation frequencies, excessive empennage vibrations, and ineffec-

tive vibration control devices. As a result, vibration levels on the

prototype aircraft were significantly above Army specifications

throughout the flight envelope.

Helicopters are susceptible to vibrations due to the inherent

cyclic nature of the airloads acting on the rotors. The vibrations

normally pervade both the rotor and the airframe and can seriously

degrade both service life and ride qualities. Vibrations also

frequently limit the maximum speed in forward flight. Considerable

progress has been made over the past 40 years in reducing the level

of vibration in helicopters as indicated in figure 5. While improve-

ments have been significant, it should be noted that the procurement

specifications have consistently been for levels of vibration lower

than could usually be achieved on production helicopters. In the

case of the Army UTTAS (Utility Tactical Transport Aircraft System)

and AAH (Advanced Attack Helicopter) development programs in the

mid-1970s, for example, the specifications originally required vibra-

tion levels not exceeding 0.05g. Because none of the competitors

could meet this specification, it had to be increased to 0.10g. How-

ever, even with this relaxed requirement, the vibration levels in the

UH-60 and AH-64 (the winning designs in the two competitions) were

reduced to 0.10g only after making numerous structural and configura-

tion changes which included raising main rotors, adding aerodynamic

fuselage fairings, modifying hub absorbers, installing airframe

absorbers, changing local stiffnesses, modifying crew seats, and iso-

lating stabilators. (It should be pointed out that the 0.10g levels

achieved are for the delivered aircraft and that structural changes

which occur during normal aircraft operations tend to degrade vibra-

tion characteristics. Levels of 0.20g are more typical of fielded

Army helicopters). The dramatic reduction in the level of vibration

noted in figure 5 has, for the most part, been achieved through the

use of add-on vibration control devices of one type or another.

These devices, while quite effective in reducing vibrations, have

tended to cost an increasing percentage of the design gross weight.
The weight penalty associated with the addition of absorbers to

reduce vibration levels to 0.10g can be as high as 2.5 percent of

design gross weight. For a fixed design gross weight, this repre-

sents a reduction of from i0 to 15 percent in primary mission pay-

load. Isolation systems have also gained popularity in recent years.

These mechanisms, which are designed to uncoupled the rotor dynamic

system from the fuselage, appear to have somewhat reduced weight

penalties with respect to other passive vibration control devices.

Even though excessive vibrations have always been prevalent in

new helicopter developments, until recently, helicopter manufacturers

have not addressed vibrations as part of the regular structural

design process. The UTTAS RFQ in 1971 was the first instance when a

procuring agency specified the level of vibration to be addressed in
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a competitive design. With only a few exceptions, helicopters have

been designed to performance requirements while relying on past expe-

rience to account for vibrations. Excessive vibrations (which

invariably occur) are "tinkered out" during ground and flight test-

ing. The vibration levels to be regarded as acceptable are usually

negotiated during this tinkering process (recall the UTTAS and AAH

experience). Oftentimes modifications to reduce vibrations to

acceptable levels continue well into the operational phase of a heli-

copter.

The cost required to solve vibration problems during the devel-

opment cycle is qualitatively illustrated in figure 6 which shows the

trend of engineering manpower requirements dedicated to vibration

reduction. During the design phase, effort increases gradually until

first flight. At this point an abrupt increase occurs (the beginning

of the so-called "crisis period") that extends well into the develop-

ment cycle. This increase significantly raises development costs and

leads to slipped delivery schedules. Operational costs are also

increased both due to the attendant weight penalties associated with

vibration treatments and due to the increased maintainability

requirements for vibration control devices. Clearly, the payoff from

minimizing crisis engineering and eliminating overruns is signifi-

cant. As previously mentioned, helicopter companies have relied

little on analysis during design to limit vibrations. However,

because of the vibration problems encountered in the UTTAS and AAH

development programs, there has emerged a consensus within the indus-

try on the need to account for vibrations more rigorously during both

the analytical and experimental phases of design. This need has

resulted in the subject of helicopter vibrations receiving consider-

ably increased attention in recent years (see, for example, refs. 4

to 9). The goal (unofficially) set down by the industry is to

achieve the vibration levels associated with fixed-wing aircraft, the

so-called "jet smooth" ride. To achieve this goal will require the

development of advanced vibration design methodologies (ref. i0).

Vibration design can be broadly classified into three interde-

pendent activities: (i) passive design to select rotor and airframe

parameters which yield low inherent vibrations; (2) design of vibra-
tion control devices to minimize rotating and fixed-system vibratory

loads; and (3) vibration testing to verify design concepts and to

compensate for any deficiencies in analytical capabilities. The

interactive nature of these activities is depicted in figure 7 which

shows one representation of the helicopter vibration design cycle.

The diagram indicates that the problem involves analytical and exper-

imental considerations of the rotor, the airframe, and the coupling

between the rotor and the airframe. The primary sources of high

vibrations are cyclic loads transmitted to the airframe by the main

and tail rotors as well as aerodynamic excitation of the tail boom

and empennage by the main rotor wake. For the most part, passive

vibration design combines past experience with rudimentary analysis.

Special and general-purpose aeroelastic analyses are used to design

for minimum blade vibratory loads. Large-scale finite-element models

are used to verify adequate placement of airframe natural frequencies

with respect to operating frequencies. Comprehensive rotor-airframe
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coupling analyses which account for flexible hub structural dynamics

and interactional aerodynamics have only become available recently

and have not yet been validated. Correlation with test and compara-

tive studies of these state-of-the-art helicopter rotor and airframe

vibration analyses have confirmed what the Black Hawk and Apache

experiences have demonstrated, namely, the inadequacies of existing

passive vibration design methods.

Underlying all considerations related to vibrations and serving

as a unifying element is structural dynamics. Every consideration of

a helicopter system includes dynamic phenomena in some form (fig. 8),

and the importance of structural dynamics is well recognized

(ref. ii). The key role played by structural dynamics in the broader

context of aerospace vehicle design as well as an assessment of

structural dynamics needs are given in references 12 and 13. How-

ever, while structural dynamics clearly plays a principal role in

determining the vibration characteristics of modern rotorcraft, it is

not regarded as a sufficiently mature discipline by the helicopter

industry on which to base vibration design decisions. (It is inter-

esting to note that such is not the case for stability, with analyti-

cal predictions often influencing design decisions). Good structural

dynamic characteristics are essential for the success of any rotor-

craft. The modern helicopter is more susceptible to high vibrations

because of increased operational demands for high-speed and nap-of-

the-earth flight, high maneuverability and agility, improved crew

effectiveness, advanced weapons delivery, increased structural integ-

rity, high reliability, and low maintenance. As a result, vibrations

has achieved the status of a critical design consideration in modern

helicopters. The challenge is now, more than ever, passed on to the

dynamicist. Indeed, it may well emerge that the success or failure

of future rotorcraft developments will rest on the dynamicist.

Research activities in the U.S. in the area of rotorcraft vibra-

tions and structural dynamics have been both broad and varied. Nota-

ble advances have been made in recent years in the critical elements

of the technology base needed to achieve the goal of a "jet smooth"

ride. The purpose of this paper is to present a management overview

in the style of an executive summary of accomplishments and current

activities of government and government-sponsored research in the

area of rotorcraft vibrations and structural dynamics. The overview

focuses on NASA and Army contributions over the last decade or so.

Both in-house and contracted research and development efforts per-

taining to design analyses for vibrations, vibration control, and

vibration testing are described. Emphasis throughout is placed on

the airframe. Rotorcraft aeroelastic stability, rotor blade vibra-

tory airloads, rotor dynamics, and associated wind-tunnel testing are

not addressed except if needed to provide for continuity. This sepa-

ration between the rotor and the airframe is primarily a separation

between aerodynamics and structural dynamics. In practice, this sep-

aration is not possible because of the interaction between the rotor

and the airframe in producing vibrations. Specific topics addressed

include: airframe finite-element modeling for static and dynamic ana-

lyses, analysis of coupled rotor-airframe vibrations, optimization of

airframes subj_ect to vibration constraints, active and passive con-
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trol of vibrations in both the fixed and rotating systems, and inte-

gration of testing and analysis in such guises as modal analysis,

system identification, structural modification, and vibratory loads

measurement. NASA and Army funded efforts with the university commu-

nity are also included. The information used as a basis for the

overview was obtained by reviewing the material identified in a com-

puterized literature search and from the extensive personal libraries

of the authors. Of the hundreds of potentially relevant reports and

papers reviewed those that were judged to be significant for the pur-

poses of the paper are cited as references.

PREPARATORY REMARKS

With a view toward providing a better perspective of NASA and

Army vibrations research, some material of a background nature is

given in this section.

Current NASA rotorcraft research has evolved from the autogyro

research begun by NACA in the 1930's. Valuable contributions to

rotorcraft development have resulted from NACA/NASA research since

that time. While there has always been a close association between

NACA/NASA and the military rotorcraft research and development

agencies, particularly with the Army, the relationship with the Army

was strengthened in 1965 when the Army Aeronautical Research Lab was

established at the Ames Research Center. In 1970 the Army estab-

lished research labs at the Langley Research Center and the Lewis

Research Center and formed what is currently called the Aviation

Research and Technology Activity (ARTA) of the U.S. Army Aviation

Systems Command (AVSCOM). These labs represented an important

adjunct to the NASA organization and sparked a resurgence in NASA

rotorcraft research activities aimed at strengthening and exploiting

the joint research which was made possible by the collocated Army
labs.

The first major NASA program addressing vibrations was the Civil

Helicopter Technology Program (refs. 14 and 15). Although the pri-

mary goal of this program was ride quality research aimed at civil

acceptance of helicopters for transports, vibrations was of interest

because it was a major factor contributing to public acceptance of

helicopters. In March 1978, NASA's Office of Aeronautics and Space

Technology formed a special Rotorcraft Task Force to review rotor-

craft technology needs and to prepare an appropriate rotorcraft

research program aimed at advancing technology readiness. The Task

Force solicited inputs from the rotorcraft industry, NASA research

centers, and other government agencies. The National Research Coun-

cil (NRC) and the Rotorcraft Subcommittee of the NASA Aeronautics

Advisory Committee conducted independent reviews of the proposed NASA

program. As a result of counsel received from all quarters, a plan

was finalized and published in October 1978 (ref. 16). The review

conducted by the NRC was published under separate cover (ref. 17).

The Task Force proposed a 10-year, $398 million (FY 78 dollars) pro-

gram with four major elements: aerodynamics and structures, flight

control and avionic systems, propulsion, and vehicle configurations.
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Each of the four major elements was divided into two or more specific

areas of emphasis. Vibrations was cited as one of three key areas

under aerodynamics and structures. As enunciated in the Task Force

Report, the focus was to be on providing the technology and design
methodology for accurate prediction and substantial reduction of air-

frame vibrations. The Task Force Report was the catalyst for the

NASA Langley Research Center to begin formulating a rotorcraft struc-

tural dynamics program to meet the needs of the helicopter industry

with respect to airframe vibrations. The overall objective of the

proposed program, which was defined in close cooperation with the

industry and coordinated with the Army, was to establish in the U.S.

a superior capability to utilize airframe finite-element analysis to
support the design of helicopter airframe structures. Viewed as a

whole, the program includes efforts by NASA, universities, and the

helicopter industry. In the initial phase of the program, teams from

the major manufacturers of helicopter airframes would formulate

finite-element models of selected airframes of both metal and compos-
ite construction and carry out ground vibration tests and correla-

tions to evaluate the analysis models. To maintain the necessary

scientific observation and control, emphasis throughout these activi-

ties would be on advance planning, documentation of methods and

procedures, and thorough discussion of results and experiences, all

with industry-wide critique to allow maximum technology transfer

between companies. The finite-element models formed in this phase

would then serve as the basis for the development, application, and

evaluation of both improved modeling techniques and advanced analyti-

cal and computational techniques to enhance the technology base which

supports design of helicopter airframe structures. Here again,

procedures for mutual critique have been established which call for a

thorough discussion among the program participants of each method

prior to the applications and of the results and experiences after

the applications. Because of the emphasis on design methodology, the

aforementioned rotorcraft structural dynamics program was given the

acronym DAMVIBS (Design Analysis Methods for VIBrationS).

In 1979, primarily because of the problems experienced during
the UTTAS and AAH development programs, the Director of what is now

the U.S. Army Aviation Research and Technology Activity requested

that an assessment of helicopter vibration research be made. Infor-

mation for this assessment was obtained by surveying the helicopter

industry, Army research labs, and appropriate NASA research centers.

This review addressed the status of past, present, and planned

research efforts within the Army as well as joint Army/NASA programs.

The results of this assessment were published in 1982 (ref. 18). The

five major disciplines which were critically reviewed included: rotor

vibratory loads, airframe structural dynamics, rotor-airframe cou-

pling, vibration control devices, and vibration testing. As a result

of this comprehensive review, and with a consensus of the rotorcraft

community, significant technology voids were identified and areas for

future research were recommended. The technology deficiencies can be

summarized into two areas of concern relative to helicopter vibra-

tions. First, the inability of present design methods to accurately

predict rotor vibratory loads and coupled rotor-airframe vibrations.

Hence, the need to resort to add-on vibration control devices. Sec-
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ond, a lack of definitive procedures which make maximum use of vibra-

tion test data, instead of trial-and-error testing, to resolve vibra-

tion problems. To address these technical concerns, Army vibration

research in recent years has been directed to rotor-airframe coupling

analysis, advanced active and passive vibration control demonstra-

tion, and improved vibration testing methodology development.

The Army program (ref. 18) was reaffirmed and the proposed NASA

DAMVIBS program was formally presented to the helicopter industry at

a finite-element modeling workshop focusing on rotorcraft structures

which was held at Langley Research Center in February 1983 (refs. 19

and 20). Because of the complementary nature of the two programs,

industry consensus was to proceed with both programs. Army funding

for the contracted activities envisioned under their program did not

materialize so only the in-house work was initiated. NASA funding

for the DAMVIBS program was approved and the program was implemented

in April 1984 with the awarding of task-type contracts to each of the

four primary helicopter airframe manufacturers (Bell Helicopter

Textron, Boeing Vertol, McDonnell Douglas Helicopter Company (at that

time Hughes Helicopters, Inc.), and Sikorsky Aircraft). Work com-

pleted to date under the NASA and Army programs as well as the status

of current activities and near-term plans are also discussed in

appropriate sections of the paper.

DESIGN ANALYSIS FOR VIBRATIONS

As discussed in the Introduction, designing a helicopter for low

vibrations may be viewed as consisting of essentially three interde-

pendent activities: (i) design technology, wherein the use of analy-

sis during design (i.e., design analysis) is employed to establish

dynamically passive or vibration-benign rotors and airframes; (2)

control technology, whereby vibration control devices are designed to

further reduce rotating and fixed-system vibratory loads; and (3)

test technology, wherein vibration testing is used to verify design

concepts and to compensate for any deficiencies in analytical capa-
bilities. This section is concerned with the first of these activi-

ties, namely, the use of vibration analysis to support design of air-

frame structures. Three specific areas are discussed: (i) airframe

finite-element modeling; (2) analysis of coupled rotor-airframe

vibrations; and (3) airframe structural optimization.

Airframe Finite Element Modeling

Structural analysis methods employed in the aerospace industry

today are based mostly on the finite-element method. The finite-

element method is a numerical matrix technique for obtaining approxi-

mate solutions to a wide variety of engineering problems. Although

originally developed about 25 years ago to analyze complex aircraft

structures, it has since been extended and applied to a wide variety

of problems spanning many fields of engineering. In particular, the

finite-element method has assumed a premier role in the design and

analysis of aerospace structures both in this country and abroad.
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The idea of the finite-element method is to provide a library of

structural elements (rods, beams, shear panels, plates, etc.) which

can be connected together so as to model any structure of interest.

A computer then automatically carries out the computations necessary

to determine specified categories of behavior of the structure under

specified loads. Finite-element analysis is the standard method for

airframe structural analysis in the U.S. and is now routinely used as

a design tool to calculate static internal loads on each airframe

element to permit sizing and stress analysis. Within the U.S. heli-

copter industry, finite-element analysis as embodied in the NASTRAN

computer code is used exclusively. NASTRAN (ref. 21) is the very

widely emplaced, general-purpose computer code for finite-element

analysis of structures originally developed under NASA sponsorship in

the late 1960s. (Several commercial versions of the code have become

available since that time, with the version developed by the MacNeal-

Schwendler Corporation (ref. 22) being the most widely used). The

remarkable collection of terms and symbols referring to various enti-

ties of the code has become a highly effective universal vocabulary.

The increased accuracy of finite-element-analysis based methods (such

as NASTRAN) over earlier strength-of-materials based methods of ana-

lysis for prediction of internal load distributions has contributed

significantly to the ability to design more efficient (lighter

weight) aircraft structures.

The major fixed-wing aircraft manufacturers developed their own

special-purpose finite-element codes soon after the emergence of the
finite-element method in the late 1950's and well in advance of the

introduction of NASTRAN in 1970. Hence, the use of NASTRAN in this

industry, while extensive, has been generally no more than supplemen-

tal to their own well-established codes in airframe design work. The

U.S. helicopter industry, on the other hand, lagged the fixed-wing

industry in the development of their own finite-element analysis

codes for design so when NASTRAN became available in 1970 it was

promptly adopted by the helicopter industry. NASTRAN is now used

exclusively in this industry to support both static and dynamic

design.

Some early accounts of the use of NASTRAN in the helicopter

industry are contained in references 23-26. The integration of

NASTRAN into the airframe design process at Bell Helicopter is

described in reference 23. The reference outlines pre-processing

procedures for automatic generation of the airframe finite-element

model and distribution of non-structural weight to the three-

dimensional model and a post-processing procedure for reformatting

the output so that it is more directly useful to the stress analyst.

Initial experiences at Bell with the use of the various options in

NASTRAN for static and dynamic analysis are described in reference

24. A brief historical perspective of the adoption and subsequent

application of NASTRAN for analysis of helicopter airframes at

Sikorsky Aircraft are given in reference 25. With respect to the

ability of a finite-element analysis to design a lighter weight air-

craft, Sikorsky credits the use of NASTRAN during the design of the

UH-60 Black Hawk with reducing the structural weight by about ten

percent. Some additional industry accounts of the early use of
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NASTRAN in design may be found in reference 26. As NASTRAN became

more firmly established in the helicopter industry, analytical and

experimental investigations based on the use of finite-element models

began to become more common. Some of the more noteworthy of these

finite-element modeling applications are summarized in the remainder

of this section.

Combined experimental/analytical investigations conducted on

Army OH-58A and OH-6A helicopters are reported in references 27 and

28, respectively. Those studies were some of the earliest aimed at

determining engine response to airframe vibrations. The objective

was to provide the data needed to establish a set of improved engine

vibration specifications for engine manufacturers. The finite-

element models developed as part of those studies are shown in fig-

ures 9 and i0, respectively. In each case, the finite-element model

of the airframe was coupled to a model of the engine based on mobil-

ity data supplied by the engine manufacturer. Analytical predictions

were reported to have agreed reasonably well with test data in both

studies.

Some early modeling and correlation work conducted by Sikorsky

on the CH-53A is reported in references 29 to 31. The initial

finite-element model, described in reference 29, was based on an in-

house code originally developed for civil engineering structures. The

model was rather simple, with the forward and aft portions of the

fuselage modeled as beams cantilevered from a detailed three-

dimensional model of the center fuselage section. A companion sim-

plified NASTRAN model (ref. 30) was later used to develop a complete,

three-dimensional finite-element model of the CH-53A used in the NASA

Civil Helicopter Program (fig. Ii). This program (refs. 14 and 15),

which was directed at evaluating helicopters for short-haul transpor-

tation, utilized a CH-53A modified to incorporate an airline passen-

ger compartment. The modified CH-53A underwent an extensive shake

test program and a detailed comparison was made between test results

and NASTRAN results (ref. 31). Good agreement was noted for the fun-

damental airframe bending and transmission pitch frequencies, but

poor agreement resulted for the lateral/torsion modes and the higher

frequency transmission modes. The predominant vibratory loads imposed

on an airframe by the rotor occur at the blade passage frequency

which equals N times the rotational frequency, where N is the number

of blades. It is customary to refer to this frequency as N-per-rev

or N/rev. For the six-bladed CH-53A this frequency is 18.5 Hertz.

Since the higher frequency transmission modes control the 6/rev

vibratory response in the CH-53A airframe, the analysis was judged to

be an unreliable design tool for predicting even the primary vibra-

tion levels. It was thus concluded that further development of

finite-element modeling techniques was required before such analyses

could reliably predict N/rev response at critical stations on an air-

frame.

The role of NASTRAN in the design of the Rotor Systems Research

Aircraft (RSRA) is discussed briefly in reference 32. The RSRA

(fig. 12) was intended to serve as a flying test bed for a variety of

advanced rotors for helicopters. The requirement to mount different
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rotors posed several unique vibration design problems for the air-

frame. NASTRAN was used extensively to provide the structural dynam-

ics representations for the usual analytical checks on vibrations.

An upgraded version of the original finite-element model of the RSRA

in a compound configuration is shown in figure 12.

In 1973 the Army initiated a program to evaluate NASTRAN as a

tool for vibration analysis of helicopter airframes. The first part

of the program was to develop a NASTRAN model of the AH-IG helicopter

that would represent the low-frequency (below 30 Hertz) vibration
characteristics of the airframe. The documentation of the model was

required to be clear and complete so that government personnel could

independently make changes to the model and use it for in-house ana-

lyses. Following development of the NASTRAN model, the validity of

the model was assessed by comparing the model with static and dynamic
tests. References 33 to 37 describe the results obtained under this

program. The NASTRAN finite-element model, which was developed under

the technical direction of a NASA/Army team, is shown in figure 13

and described in detail in reference 33. Figure 14 illustrates the

type of documentation which was provided for the stiffness modeling

under the contract. The figure shows a drawing of the actual struc-

ture (with skins removed) of the fuselage portion of the airframe.

An exploded view of the finite-element model corresponding to the aft

(shaded) part of the fuselage is depicted in the middle of the fig-

ure. This sketch is the familiar "wire-frame" diagram that is custo-

marily shown when graphically illustrating a finite-element model.

The sketch at the bottom of the figure is an exploded view of one of

the bulkheads in the model and shows the individual rods and shear

panels which represent that particular bulkhead. Detailed sketches

of this type appear for every bulkhead, frame, panel, etc. in the

airframe. Each sketch is also accompanied by a set of tables which

describes the structural elements, constraints which need to be

imposed on the model, and an explanation of the basis for omitting

degrees of freedom not employed for the dynamic analysis. Reference

34 contains the results of static and dynamic tests and comparisons

of results from those tests with results from NASTRAN analysis. Some

frequency response comparisons which are typical of those obtained

from the ground vibration test are given in figure 15. In general,

measured frequency response characteristics were found to be in fair

to good agreement with NASTRAN predictions only through about 15-20

Hertz (This corresponds to about 4/rev for the two-bladed AH-IG). A

report (ref.38) recently generated under the DAMVIBS program in sup-

port of an industry-wide coupled rotor-airframe vibrations activity

(to be described in the next section) summarizes all the modeling and

testing which has been conducted on the AH-IG, including some recent

testing conducted by Kaman Aerospace Corporation. As a consequence

of these well-documented activities on the AH-IG, the AH-IG is prob-

ably the best known airframe of any aircraft described in the open

literature. This has resulted in the AH-IG finite-element model

being used extensively throughout government, industry, and academia.

The vibrations portion of the rotorcraft research program plan

laid out in 1978 by the Rotorcraft Task Force (ref. 16) contained an

airframe modeling/test assessment activity. This proposed task area
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was to involve participation by NASA and industry in a workshop envi-
ronment to assess and document industry design procedures, difficul-
ties with software, modeling techniques, and shake test procedures.
All work was to be conducted on a production aircraft. NASA funding
for that activity was approved and, as a result of a competitive pro-
curement, a contract was awarded Boeing Vertol in 1980. The subject
vehicle was to be the CH-47D. An unusual requirement of the contract

was that each major step of the program be presented to and critiqued

by the other three primary helicopter airframe manufacturers. Also

unique was the requirement that plans for the modeling, testing and

correlation be formulated and submitted to both NASA and industry

representatives for review prior to undertaking the actual modeling

and testing. Boeing was also required to make a study of current and

future uses of finite-element models and to keep meticulous records

on the manhours required to form the vibrations model. The latter

"time and motion" study was intended to provide a basis on which to

schedule finite-element modeling for any new helicopter development

program. The contract also called for thorough documentation of the

model, but not to the level of detail which had been required for the
AH-IG. References 39-43 constitute the formal documentation of all

work done under the contract. A concise summary of the program may

be found in reference 44. The finite-element model developed under

the program is shown in figure 16. An example of the type of model-

ing guides required as part of the modeling plan is given in figure

17, which shows static and mass modeling guides for a typical frame

in the CH-47D. Figure 18 illustrates the types of comparisons which

were obtained between measured and computed frequency responses. In

general, the agreement between test and analysis was acceptable only

through about 15-20 Hertz (3/rev for the 3-bladed CH-47D corresponds

to 11.25 Hz). The modeling activity demonstrated that a finite-

element model suitable for internal loads, structural member sizing,

and vibrations can be developed, and that there is no need to form

separate static and dynamic models as has usually been the practice.

The study further showed that the cost of such a combined static and

dynamic model is about five percent of the manhours of a typical air-

frame design effort. Of the five percent, four percent is already

typically expended in most companies to form the internal loads

model; the vibrations model is another one percent. The "time and

motion " study showed that a vibrations model could be formed early

enough in a new helicopter development program to influence the air-

frame design. A number of items were identified during the modeling

and correlation effort which have the potential for improving the

correlation. These include: consideration of nonuniformly distrib-

uted modal damping, the inclusion of secondary effects such as

stringer shear area, assumptions on stringer continuity across splice

joints, and the inclusion of suspension system effects. An example

of the type of improvement which could be achieved by better treat-

ment of damping is indicated in figure 19. Usual practice is to use

the same (assumed) value of damping for each mode in forced response

analyses. The figure shows the results of a preliminary exercise in

which modal damping has been adjusted in some of the more important

modes in an effort to improve correlation with test results. In the

case shown the damping has been varied to obtain the best match away

from the response peaks.
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As a consequence of the CH-47D modeling and correlation activi-

ties, it became clear that the key to engendering in the industry the

needed confidence to use finite-element models for vibration design

was more industry hands-on experience along the lines of the CH-47D

program. Also identified as being essential was a workshop environ-

ment which fostered the discussion of modeling details and the inter-

change of ideas. Prior to the CH-47D program, finite-element model-

ing work conducted by the industry was fragmented for the most part

with each company going its own way and (sometimes) preparing a

report (which wasn't always available to competitors). The transfer

of technology related to modeling was minimal at best. The NASA

rotorcraft structural dynamics program, known as DAMVIBS, was defined

with a view toward providing the necessary focus and environment of

shared experiences for the common good of all. As previously men-

tioned, the DAMVIBS program was implemented in April 1984 with the

award of contracts to the four primary helicopter airframe manufac-

turers. The industry participants, working under task-type con-

tracts, have already been issued several tasks for the modeling and

testing of both metal and composite airframes. Three NASA/industry

meetings have already been held under the DAMVIBS program (September

24-25, 1984; October 1-3, 1985; December 2-4, 1986) at which industry

participants have either presented their plans for conducting an

activity or the results and experiences of a completed activity.

Draft final reports for the completed tasks have been submitted and

are in various stages of NASA review. Finite-element modeling and

correlation activities have been completed on the McDonnell Douglas

AH-64A (fig. 20). Modeling of the Sikorsky UH-60A and Bell D-292

(ACAP) are complete and correlations are under way (figs. 21 and 22).

The ground vibration test of the Boeing Model 360 (fig. 23) has been

completed; modeling is nearing completion at which time correlation

studies will begin. The results of the unfinished studies will be

presented at the next DAMVIBS meeting (tentatively scheduled for late

1987). From the modeling and correlation results obtained to date

under the DAMVIBS program, metal airframes continue to exhibit

acceptable agreement through only about 15-20 Hertz. Preliminary

results also show that the dynamics of composite airframes are essen-

tially the same as metal airframes. While correlations are not yet

completed, preliminary results indicate that agreement between test

and analysis for composite airframes is similar to that obtained for

metal airframes (still a problem above about 15-20 Hz). Preliminary

results also indicate that damping levels in composite airframes are

about the same as in metal airframes (2-4 percent critical).

The CH-47D modeling activities and attendant industry critique

demonstrated that all companies are using essentially the same tech-

niques to model metal aircraft. The DAMVIBS program has demonstrated

that the same is true for composite airframes. In the basic modeling

studies being conducted under the DAMVIBS program only the primary

(major load carrying) structure is represented fully (stiffness and

mass) when forming the finite-element model. This is consistent with

usual modeling practice. There are many components (e.g., transmis-

sions, engines, and stores) and secondary structure (e.g., fairings,

doors, and access panels) which are represented in the model only as
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lumped masses. This may be a major contributing factor to the dis-
agreement noted between analysis and test at the higher frequencies.
In an attempt to answer this question, a DAMVIBS activity called
"Finite-Element Modeling of Difficult Components" has been recently

initiated. The aim of the "difficult components" activity is to iso-

late the effects of modeling assumptions and to develop improved

modeling guides for components which require more detailed modeling

representation. The first study is being conducted by Bell utilizing

an AH-IG helicopter. The airframe will be stripped down to primary

structure and sequentially built back up to its full configuration,

as suggested by figure 24. At each stage, a ground vibration test

and an analysis based on a suitably modified finite-element model

will be performed and the results compared. The end results will be

the identification of modeling procedures which need to be improved.

Current plans are to conduct a similar type activity on a composite

airframe.

Effects of support systems and excitation systems on airframe

elastic responses measured in a ground vibration test are typically

assumed to be negligible. However, if there are differences between

test and analysis, the question of possible extraneous effects asso-

ciated with these systems often arises. It is clear that correla-

tions would be interpreted with more confidence if these effects were

included in the analysis. NASA has devised a scheme for including

the effects of support systems and excitation systems in the finite-

element dynamic analysis while taking into account the prestiffening

effects due to gravity. Boeing Vertol applied this method to the

CH-47D. While only minor effects were noted for the CH-47D (refs. 42

and 43) the effects may not be negligible for other configurations.

The method appears promising but additional investigation is needed

before the method can be routinely applied. The work of fully devel-

oping and verifying the method is continuing at Langley using the

finite-element model of the CH-47D airframe. In connection with this

latter effort, several areas in which the finite-element model could

be improved have recently been identified. These latter refinements

are to be done by a joint NASA/Boeing team.

Steady-state vibration response analyses are currently being

used in evaluating the dynamic response of structures to cyclic exci-

tation forces. An undocumented vibration response analysis based on

modal superposition was developed at Langley about 13 years ago in

support of RSRA dynamic studies. (This program was used to do the

forced response analyses for the CH-47D contained in references 42

and 43). Recently, several enhancements were made to the program

making it interactive for rapid evaluation and plotting of responses.

The improved version of this computer program is thoroughly docu-

mented in reference 45.

There are two in-house Army activities of note relating to

finite-element modeling of composite structures. One activity,

recently completed, was aimed at examining the modeling and testing

complexities of composite structures. A prototype composite tail

boom of the type installed on several OH-58A helicopters for environ-

mental evaluation purposes was selected as the test specimen. The
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Engineering Analysis Language (EAL) finite-element computer program
(ref. 46) was used to model the tail boom (fig. 25). Interest was
focused on stud_-_ng the effect of graphite fiber-volume fraction on
static and dynamic behavior because material tests had indicated that
the volume varied by as much as ten percent. Results (refs. 47 and
48) indicated that there was improved agreement with test if measured
values of material properties were used in the analysis. The other
composite modeling activity relates to a blade rather than an air-
frame but it seems appropriate to include it because the blade is
being modeled as a three-dimensional structure. The interest here is
to investigate the potential for improving the dynamic and aerody-
namic performance characteristics of composite rotor blades through
the exploitation of structural coupling associated with ply orienta-
tion. Extension-torsion coupling is currently being studied. A
three-dimensional model of a highly twisted blade such as might be
employed for a tilt rotor is being formed, both to support the design
of a model blade and to support subsequent comparisons with both
static and dynamic tests. A preliminary model of the D-spar of an
untwisted blade as well as of a more recent twisted blade which
includes the trailing edge are shown in figure 26. The model is
being refined and work is under way to include the proper rotational
effects.

Analysis of Coupled Rotor-Airframe Vibrations

There are four technical factors that should be recognized when

dealing with vibrations of a helicopter: (i) vibratory loads induced

by the rotor actions; (2) response of the rotor; (3) coupling of the

rotor and airframe; and (4) response of the airframe. The major

source of vibrations arises from the cyclic loads acting on the rotor

blades due to their interactions with the airstream. The dynamic

characteristics of the rotor and the airframe and the coupling of

these two systems determine the manner in which the helicopter

responds to this excitation. As mentioned in the Introduction, the

purpose of this paper is to present an overview of accomplishments

and contributions associated only with factors (3) and (4) noted

above. The response of airframe structures regarded as separate sys-

tems was addressed in the previous section. In this section atten-

tion is directed to factor (3), namely, the coupling of the rotor and

the airframe to account for their interaction in producing vibra-

tions. The emphasis here, as before, is on the response of the air-

frame as part of a coupled rotor-airframe system.

The analysis methods now employed by industry applicable to

helicopter vibrations generally fall into two categories, namely, (i)

methods for analysis of airframe behavior and (2) methods for analy-

sis of rotor behavior. For nonrotating airframe components, the

NASTRAN computer code, as discussed in the previous section, has

become the standard finite-element analysis tool used throughout the

helicopter industry for structural design. For rotating components,

there has been extensive work on formulating and solving equations of

motion of rotors (see, for example, refs. 49 to 57). These refer-

ences include a number of existing computer simulations of the heli-
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copter in flight. Such simulations, of course, incorporate represen-
tations of both the rotor and the airframe and the connections
between the two and thus theoretically could be applied to calculate
vibrations. However, there is little note in the literature of their
use to calculate airframe vibrations. These simulations have been
applied mainly to evaluate flight controls, to analyze rotor stabil-
ity, and to calculate blade vibratory loads. As a rule, the current
simulations incorporate only cursory, if any, treatment of the air-
frame elasticity, and are cumbersome to use for airframe structural
design work.

It has long been recognized that the interaction or coupling of
the rotor and the airframe is important in analysis of helicopter
vibrations and there has been at least one early attempt at address-
ing the problem analytically (ref. 58). From a practical point of
view, however, the complexity of the problem has been so overwhelming
that it has been customary to separately compute rotor vibratory
loads and then apply them to an analytical model of the airframe for
determining airframe responses. In this method, a (usually) sophis-
ticated aeroelastic rotor airloads program is employed to calculate
the rotor vibratory forces and moments acting at the hub assuming the
hub can not move (rotor rotation is, of course, permitted). These
vibratory loads are then imposed on an airframe finite-element model
to analyze vibrations. In an attempt to approximately account for
the effect of the rotor, an "equivalent" rotor mass is usually
included in the airframe finite-element model. Historically, most
predictions of vibrations have been based on the approach which has
just been described. It is clear that this approach can not account
for interactions between the rotor and the airframe. A simplified
view of how the rotor and the airframe interact to produce vibrations
is depicted in figure 27. Due to the cyclic nature of the airloads
acting on the blades of a turning rotor, the blades respond dynami-
cally and the resulting vibratory loads are transmitted to the air-
frame causing it to respond. The resulting airframe motions cause
the hub to vibrate which alters the aerodynamic loading on the blades
and hence the loads transmitted to the airframe. Depending on the
type and configuration of the hub, this interaction can substantially
alter the loads which are transmitted to the airframe and hence its
vibratory response. However, because of the complexity of such an
analysis, the simplistic approach described above was adapted by
industry as an early expedient to permit a rudimentary consideration
of vibrations. In this regard the method has served the industry
well. However, because of increasing demands for further reductions
in vibrations to achieve the goal of a "jet smooth" ride, it is now
recognized that the simplistic approach is no longer sufficient.
Analysis methods which accurately account for rotor-airframe coupling
must be employed in vibration design analysis.

Two of the earliest descriptions of practical methods for calcu-
lating vibrations of a helicopter as a single system may be found in
references 59 and 60. The analyses described in these references are
impedance coupling techniques which effect a solution in the
frequency domain rather than in the time domain. The impedance cou-
pling technique has been widely used for the vibration analysis of
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mechanical systems which are composed of an assembly of point-
connected components. In this approach each component is analyzed
separately and then coupled together by requiring equilibrium and
compatibility (i.e., matching forces and displacements) at each con-
nection point. In its application to the solution of the coupled
rotor-airframe problem (see, for example, ref. 60), the loads trans-
mitted by the rotor to the airframe are given by the hub loads calcu-
lated assuming the hub is fixed and a (linear) correction term which
accounts for small hub motions. The correction term is the so-called
rotor hub impedance matrix and is obtained by prescribing small hub
motions at the frequencies of interest and calculating the resulting
constraint forces and moments at the hub. It should be pointed out
that the gross vibratory forces exerted by the rotor on the airframe
are given by the fixed-hub forces and that these forces are not, in
general, computed by linear theory. The fixed-hub forces come from
the solution of the underlying nonlinear rotor equations with the
constraint that the rotor-airframe interface points are fixed. The
rotor impedance matrix represents a correction to the gross rotor
forces resulting from small displacements of the rotor from equili-
brium. It is a tenet of design to avoid resonant conditions, and if
such conditions are avoided, the displacements from equilibrium
should be small. Thus, a rotor model linearized in the guise of a
rotor impedance matrix should be nearly as good for vibration predic-
tion as the underlying nonlinear model. The impedance matrix of the
airframe at its interface with the rotor is calculated in a similar
manner. Compatibility relations are then written for the interface
forces and displacements leading to a set of coupled equations in
terms of impedances. The resulting "harmonic balance" equations are
a set of simultaneous linear algebraic equations which are solved for
the hub motions, from which the airframe vibrations are computed.

Calculations based on the theory developed in reference 59 are

compared with flight test data obtained on a Sikorsky H-34 rotor

blade for several rotor-related quantities. However, only limited

analytical results are shown for airframe vibrations and these are

for a different helicopter. Reference 60 reports correlations for a

tandem-rotor helicopter with three-bladed rotors. The correlations

are reproduced in figure 28. While these results fall outside the

period of time surveyed by this paper, they do represent some of the

earliest published comparisons of a coupled rotor-airframe analysis

with airframe vibrations measured in flight. Reference 61 reports a

correlation for a different tandem-rotor helicopter using the analy-

sis of reference 60. The relevant results are reproduced in figure

29. The rotor model was very crude. Specifically, only the fixed-

hub forces obtained from the equilibrium solution were retained in

the linearized rotor equations. The rotor impedance was ignored.

Reference 62 reports correlations for a compound helicopter with a

four-bladed hingeless rotor. Plots indicative of the correlations

are reproduced in figure 30. Nonlinear rotor equations were used in

that analysis, but the airframe was represented by impedances calcu-

lated using a simple stick model representation of the airframe. The

results of an early application of the C-81 flight simulation analy-

sis for computing airframe vibrations on a helicopter with a four-

bladed hingeless rotor are reported in reference 63. Computed
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results for the 4/rev hub vibrations are compared with measured
flight vibrations in figure 31. The airframe was represented by only
three modes: pitch and roll of the pylon about its focal point (the
test vehicle was equipped with a "focused pylon" vibration isolation
system) and a vertical rigid-body mode. A correlation performed for
a helicopter with a two-bladed teetering rotor is reported in refer-
ence 37. In this case, the analysis did not incorporate a model of
the rotor system. The procedure was to measure the flight vibratory
accelerations at the rotor hub and then to impose the measured values
of acceleration on a NASTRANfinite-element model of the airframe.
The calculated response of the airframe was compared with the
response measured in flight. Typical results for the major responses
are shown in figure 32. Reference 64 describes procedures developed
for correlating stresses derived from a NASTRANfinite-element model
of the Bell 214A helicopter with stresses measured in flight.
Although the flight tests were aimed at static structural qualifica-
tion of the airframe in design maneuvers and not vibration, it seems
appropriate to mention it here because C-81 was used to compute the

external forces which were applied to the NASTRAN model. Analytical

stresses were calculated by applying the internal loads calculated by

NASTRAN to the effective cross-sectional area at each of the strain-

gauge positions in the airframe as outlined in reference 64. Excel-
lent correlation was noted.

In an analysis of helicopter vibrations based on a finite-

element model of the airframe, the number of degrees of freedom in

the finite-element model must be reduced. Two approaches are cur-

rently recognized for making this reduction and still preserving the

essence of the finite-element model: (i) representing the airframe by

forced responses (i.e., impedances) calculated at a few frequencies

corresponding to the rotor harmonics of interest; and (2) represent-

ing the airframe by superposition of a few of the natural modes of

vibration. Whichever approach is used, data needed to represent the

airframe with a reduced number of degrees of freedom are calculated

by using a finite-element model of the airframe alone. Modal repre-

sentations can be used for reducing the number of degrees of freedom

when calculating any of the linear structural responses of interest

in practical flight dynamics. This includes problems of aeroelastic

stability and transient response as well as the present problem of

steady-state vibrations. This broad applicability has caused the

modal representation of the airframe to be the choice of developers

of computer simulations of the helicopter in flight (e.g., C-81,

CAMRAD, REXOR). Modal representations of the airframe are also used

in more specialized coupled rotor-airframe formulations (see, for

example, refs. 49 and 65). However, for vibration analysis done to

support design of airframe structures, there are several attendant

advantages to representing the airframe by harmonic forced responses.

Hence, developers of new codes specifically for computing coupled

rotor-airframe vibrations have tended to represent the airframe in

terms of harmonic forced responses.

There have been several research studies using simple math mod-

els of coupled rotor-airframe systems to gain physical insight into

the helicopter vibrations problem and to identify governing parame-
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ters. References 66 to 74 contain solutions of such simplified
rotor-airframe systems and relevant subsidiary analysis procedures.
These and other studies have all shown that the coupling between the
rotor and the airframe has a major effect on all aspects of vibra-
tion. In addition to studies using simplified models, there has been
some work in developing equations of motion of coupled rotor-airframe
systems which devotes particular attention to nonlinearities associ-
ated with the rotor contributions to the coupled equations of motion
(refs. 75 to 78). Reference 75 addressed the problem of developing a
general approach for the dynamic analysis of gyroscopic structures
composed of point-connected substructures by a component mode synthe-
sis technique. The resulting formulation was intended to permit the
determination of the modal characteristics of a helicopter. The
mathematical model underlying the formulation, as well as the simpli-
fied model of a helicopter used to illustrate the formulation, are
shown in figure 33. A computational procedure for deriving explicit
equations of motion for such dynamical systems using symbolic manipu-
lation is described in reference 76. Reference 77 derived the gov-
erning equations of motion for a helicopter rotor with blades having
freedom in flap, lag, and torsion coupled to an airframe modeled as a
rigid body with three translational and three rotational degrees of
freedom. The resulting differential equations are nonlinear and con-
tain periodic coefficients associated with forward flight. Reference
78 derived the governing equations for rotor and airframe subsystems
to use in an impedance matching approach to coupling. The reference
also described a procedure for solving the resulting nonlinear equa-
tions for the coupled vibratory response by an iterative, combined
harmonic-balance, impedance-matching method.

In recent years there have been several attempts to formulate a
general method of vibration analysis suitable for airframe structural
design work. These efforts have specifically addressed practical
methods for calculating helicopter vibrations. Some of these endeav-
ors are discussed below.

Dissatisfaction with first generation predictive capability for
helicopter performance, loads, and vibrations motivated the Army to
begin development of the Second Generation Comprehensive Helicopter
Analysis System (2GCHAS). As a consequence of predesign studies
related to 2GCHAS, several special-purpose codes have been developed
by industry for solution of dynamics problems of coupled rotor-
airframe systems, including vibrations. Two of these are RDYNE
(ref. 79) and DYSCO (refs. 80 and 81). RDYNE (Rotorcraft System
Dynamics Analysis) employs a time-history analysis for computing
rotorcraft response (stability or vibrations). A substructures
approach is employed to model the helicopter. The program has been
applied to at least one flight vibrations analysis, which is dis-
cussed later. Another code that had its genesis in the 2GCHASprede-
sign studies is DYSCO (DYnamic System COupler). The DYSCOprogram
has been under development since 1978 with both corporate (ref. 80)
and government (ref. 81) funding. The program forms coupled equa-
tions of motion using the uncoupled equations of each component.
Each component may contain periodic, nonlinear, and nonanalytic
effects. Solutions can be effected in either the time or frequency
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domain. There is no note in the literature of its use to calculate
coupled rotor-airframe vibrations.

The SIMVIB (Simplified Vibration Analysis) code was developed
under Army sponsorship to provide a design tool for predicting vibra-
tions and for use in research studies (ref. 82). The analysis is
based on a substructures approach and consists of a base program and
a set of external programs (fig. 34). While emphasis is placed on
obtaining solutions for steady-state vibrations by a harmonic balance
method, other types of solutions are available. The results of lim-
ited correlations with data obtained from wind-tunnel tests of dynam-
ically scaled models which include higher harmonic control effects
are presented in that report. On the basis of these comparisons it
was concluded that trends of vibration with airspeed could be pre-
dicted. A recent "application" of SIMVIB to the SH-60B Sea Hawk is
reported in reference 83. In this case the rotor impedance was not
calculated by the program. Instead, 4/rev vibratory hub loads meas-
ured on the UH-60 were scaled to the SH-60B and imposed (within
SIMVIB) as known exciting forces on a six-mode representation of the
airframe. Comparisons of predicted vibration levels with those meas-

ured in flight are given in figure 35.

Reference 84 is an outcome of recent efforts at the NASA Langley

Research Center to establish foundations for adequate representation

and treatment of the airframe structure in design analysis of heli-

copter vibrations. The report presents a body of formulations for

coupling airframe finite-element analysis models to rotor analysis

models and calculating airframe vibrations. The rotor is represented

by a general set of linearized differential equations with periodic

coefficients, and the connections between the rotor and airframe are

specified through general linear equations of constraint. Coupling

equations are derived and then applied to combine the rotor and air-

frame equations into one set of linear differential equations govern-

ing vibrations of the rotor-airframe system. These equations are

solved by the harmonic balance method to yield the system steady-

state vibrations. A key feature of the solution process is to repre-

sent the airframe in terms of forced responses calculated at harmon-

ics of the rotor rotational frequency. A method based on matrix par-

titioning is presented for quick recalculations of vibrations in

design studies when only relatively few airframe members are varied.

A parallel development is given for the case in which the rotor is

represented by impedances. All relations are presented in forms

suitable for direct computer implementation. An illustration of this

is given in figure 36 in which the coefficient matrix in the general

harmonic balance equations retaining all the harmonics has been

pulled out to show its structure. The explicit and practical nature

of the formulation is illustrated by the example of the formula for

the rotor contributions to the harmonic balance equations shown at

the bottom of figure 36. Matrices appearing in the formula, such as

KRLP, come directly from the linearized rotor equations and parame-

ters, such as ULC, are computed by very simple algorithms which are

provided. Such explicit formulas, FORTRAN-like notation, and the

blueprint-like representation of matrices are used throughout the

report to facilitate computer implementation.
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Among the many activities being conducted under the DAMVIBS pro-
gram is one aimed at evaluating existing analysis methods for calcu-
lating coupled rotor-airframe vibrations. In the initial effort in
this area Bell, Boeing, McDonnell Douglas, and Sikorsky have applied
in-house methods for coupled rotor-airframe analysis to calculate
vibrations of the AH-IG helicopter. Comparisons were also made with

existing Operational Loads Survey data (refs. 85 and 86). A finite-

element model of the AH-IG airframe was adjusted by Bell to corre-

spond to the aircraft configuration used in the loads survey. The

updated model was furnished to the other participating manufacturers

as part of the common data utilized for the subject study. Bell was

also required to provide to the other companies a summary of all

modeling, testing and correlation work conducted on the AH-IG

(ref. 38). Bell was further required to assemble the flight vibra-

tion data to be used in the correlation and to describe the rotor

system both mechanically and aerodynamically to the other partici-

pants (ref. 87). The aforementioned exercise on the AH-IG has been

completed and the results have been presented at NASA/industry meet-

ings held under the DAMVIBS program. Draft final reports have been
submitted and are under NASA review. The comparisons shown in fig-

ures 37 and 38 are illustrative of the results obtained. Figure 37

shows a comparison of measured 2/rev and 4/rev vertical vibrations

with predictions made by Bell using C-81. A summary of their results

may be found in reference 88. Figure 38 shows a comparison of 2/rev

vertical and lateral vibrations predicted by each of the four indus-

try participants. These results were also compared with measurements

at two locations in the airframe. The analytical results obtained by

the four companies for the 2/rev vertical, lateral, and longitudinal

vibrations are in fair to poor agreement with measured flight data.

It should be noted that 2/rev is the primary main rotor excitation in

the airframe. Best agreement was generally obtained for vertical

vibrations; the worst for the lateral vibrations.

Boeing Vertol has recently implemented an impedance-based

coupled rotor-airframe analysis (developed in-house) based on the

concepts in references 60 and 61. The method (which was employed in

the aforementioned AH-IG activity) is described in reference 89.

Analytical results obtained for a wind-tunnel model and compared to

test data showed, as had earlier studies, that results which include

coupling differ significantly from results obtained without coupling.

More important, however, their analyses also indicated that mechani-

cal impedance effects predominate over aerodynamic effects for the

scale model tested. If this result remains true for full-scale con-

figurations, it would mean that a good approximation of rotor impe-

dance for use in coupled rotor-airframe vibrations analyses could be

obtained by neglecting (or at least drastically simplifying) the

rotor aerodynamics. Because the computational effort required to

compute rotor impedances which include aerodynamic effects is usually

significant, any substantial reduction in the level of aerodynamic

sophistication would greatly reduce these computations. This is an

area that needs to be investigated further.

There are two NASA in-house activities of note related to
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coupled rotor-airframe vibrations being conducted in support of the
DAMVIBS program. The first activity is part of a continuing effort
aimed at evaluating existing methods of analysis for coupled rotor-
airframe vibrations. Work has been initiated toward the application
of the SIMVIB analysis to the OH-6A helicopter (fig. 39) used in a
recently completed NASA/Army Higher Harmonic Control flight test pro-
gram (ref. 90). Analyses will be made with and without higher har-
monic control and compared with similar results obtained in flight
test. Current plans are to also evaluate the DYSCOanalysis with
respect to its applicability for computing coupled rotor-airframe
vibrations. The other activity is aimed at developing new computa-
tional procedures for coupled rotor-airframe vibration analyses.
The primary effort here will be to encode the computational proce-
dures for coupled rotor-airframe analysis and reanalysis which are
outlined in reference 84.

It is clear that further work is needed in analysis of coupled
rotor-airframe vibrations. Current plans are to conduct another

industry-wide coupled rotor-airframe vibrations analysis under the

DAMVIBS program, this time utilizing a helicopter with a four-bladed

articulated rotor. Also, in an attempt to identify the importance of

aerodynamics in rotor impedance calculations, parametric studies will

be conducted in-house by NASA to evaluate the effects of rotor aero-

dynamic and structural modeling assumptions on predicted airframe

vibrations. Current Army plans call for some combined in-house and

contractual efforts aimed at validating existing codes for coupled

rotor-airframe vibrations analysis using both model and full-scale

data.

Airframe Structural Optimization

The design of aerospace vehicle structures to satisfy static and

dynamic specifications is a complex process. This has become espe-

cially true for modern helicopters primarily because of increasingly

stringent requirements for low vibrations. The structural design

process involves the merging of an analysis procedure with a resizing

and reanalysis procedure in which changes are made to the structure

in an iterative process until a converged design that is best or

optimum in some sense is obtained. With regard to the airframe

structural design process, the selection of the best airframe that

meets all the requirements, in particular the vibration requirements,

is a difficult task. It would appear that structural optimization

tools, properly brought to bear by the design engineer, could go a

long way toward achieving the goal of a design analysis capability

for vibrations. Indeed, even the automation of as much of the cur-

rent design process as possible would clearly serve to reduce design

time and hence cost.

The objective of structural optimization is to design a struc-

ture that minimizes a specified function while satisfying a set of

restrictions imposed on the design. The function with respect to

which the design is optimized is called the objective function

(alternative names which are sometimes used are performance index and
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merit function). For aircraft structures, weight is usually taken to
be the objective function. However, the objective function can be
any quantity of interest. The restrictions placed on the design that
must be satisfied to produce an acceptable design are collectively
called constraints. Typically, constraints impose upper or lower
limits on quantities such as stresses, displacements, natural
frequencies, and structural parameters which are varied. Optimization
procedures start with an arbitrary (but usually feasible) initial
design and proceed by varying structural parameters in stepwise fash-
ion so that the value of the objective function is reduced. The
search is terminated when no further reduction can be made in the
objective function without violating some of the constraints. The
parameters which are varied during the iterative design process are
called design variables. Examples of design variables include member
sizessuch as thicknesses of panels and cross-sectional areas of
stringers, ply thicknesses and fiber orientation angles in composite
material laminates, and physical properties of materials. The opti-
mization problem is nonlinear if either the objective function or any
of the constraints are nonlinear functions of the design variables.
This is the usual case for the class of structural optimization prob-
lems which are of interest here.

A design-optimization algorithm consists of an analysis of the
structure and modification of the design variables at each iteration.
The number of iterations depends on the number of design variables
and on the nature and number of constraints. Analyses of most aero-
space vehicle structures are based on some type of finite-element
model. Modification of design variables can be achieved by employing
an optimizer which is based on either a nonlinear mathematical pro-
gramming method or an optimality criterion method. Optimality crite-
ria methods have the longest history. The basis for this approach is
the a priori specification, based either on intuition or rigorous
mathematical considerations, of a set of conditions to be satisfied
by the optimum design. The premise is that when the structure is
sized to satisfy the condition, the objective function automatically
attains an optimum value. The algorithm which is formulated to res-
ize the structure is usually recursive in nature. The concept of a
fully-stressed design, which has been widely used in static struc-
tural design, is perhaps the best example of these methods. Nonli-
near programming (NLP) methods have their origins in the field of
operations research. These rigorous methods are applicable to a wide
range of problems, of which structural optimization represents only
one particular application. NLP methods use derivatives to determine
move directions in the design variable space. Their main drawback is
that the derivatives may be costly to calculate, especially when the
number of design variables is large. However, the capability to
treat all types of objective and constraint functions makes these
methods very versatile. This is the method of choice for most cur-
rent work related to structural optimization.

Since the beginning of the "modern" field of structural optimi-
zation in 1960 (ref. 91), the published literature in the field has
literally exploded with new papers. For example, reference 92, which
summarizes aeronautical applications of formal optimization methods,
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identified over 8000 aeronautically related titles (including 1381 on
structural optimization) covering various periods between 1964 and
1980. However, despite its long history and continued widespread
interest, as noted in reference 92, there have been few successful
genuine applications to aeronautical problems. In so far as the
helicopter community is concerned, interest in optimization as it
might be employed in helicopter design goes back only a few years. A
preliminary evaluation of optimization techniques as they relate to
typical helicopter design problems is reported in reference 93. The
paper describes the manner of combining nonlinear programming algo-
rithms with conventional engineering analyses and summarizes the
results of applying such algorithms to four different rotor design
problems. The results obtained demonstrated that closed-loop design-
oriented analyses can significantly reduce design time. The 39th
American Helicopter Society Forum the following year featured a panel
devoted to the subject (ref. 94) as well as two papers (refs. 95 and
96). The composition of the panel and the topics addressed are indi-
cated in figure 40. References 95 and 96 treated the related topics
of designing a rotor blade for minimum hub vibrations and of desig-
ning a blade for placement of natural frequencies, respectively.
More recently in 1984, a NASA Symposium on Recent Experiences in Mul-
tidisciplinary Analysis and Optimization held at Langley Research
Center (ref. 97) devoted an entire session to rotorcraft applications
(fig. 41). Additional applications are reported in references 98 and
99. Two recent surveys of the application of structural optimization
methods to helicopter design problems are given in references i00 and
i01. All of the aforementioned references reporting on rotorcraft
applications of structural optimization have addressed the rotor sys-
tem. There has been very little published work within the rotorcraft
community relating to structural optimization of the airframe subject
to vibration response constraints. The remainder of this section
will address work which has been done that is applicable to the air-
frame. The section concludes with a status report of related in-
house work.

The basic idea of airframe structural optimization under vibra-
tion constraints is to design the airframe structure in a way that
minimizes the vibratory response in the important areas. It is
beyond the scope of current design-optimization codes to treat each
element of a structure as a variable in the iterative process.
Hence, it is necessary to identify those few elements in a structure
that should be treated as variables and modified to effect a reduc-
tion in vibrations. This identification process constitutes a task
in sensitivity analysis. In its formal implementation sensitivity
analysis involves calculating changes in the structural response with
respect to (small) changes in the design variables. Such sensitivity
derivatives are used by all NLP-based optimization methods. As men-
tioned earlier, the computation of these derivatives may be costly
when the number of design variables is large. Informal implementa-
tions of sensitivity analysis are usually based on considerations
related to some physical characteristic or behavior of the system,
such as the distribution of element strain energies. Hence, they are
usually employed in optimality criteria based methods. To date, most
applications of optimization to helicopter airframe structures have
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employed optimality criteria type methods. Reference 102 considers
two strain-energy methods for structural modification (detuning) to
achieve vibration reduction. The first method is based on the modal
strain energy concept wherein elements having the highest strain
energy density in a mode are taken to be the best candidates for
modification to obtain a maximum frequency change of that mode for a
minimum weight penalty. The second method is an extension of the
concept of modal strain energy to the case of damped forced response
wherein the strain energy density is determined for all the struc-
tural elements under steady-state vibratory loading. The elements
with the highest strain energy densities are taken as the best candi-
dates for modification of the structural response condition under
study. The damped forced response (DFR) method is an extension of
the optimality criterion of uniform strain energy density proposed in
reference 103 for modes to the case of forced response. Several
applications of the DFR method are described in reference 102, one of
which is reproduced in figure 42. The figure shows the results of
using modal strain energy to tune the frequency of the fourth elastic
mode of the CH-47A. Based on the calculated strain energies, the

structure was stiffened (the thickness of ten elements in the forward

pylon and main cabin side panels was increased with a weight penalty

of 2.5 percent) to move a natural frequency (12.03 Hz) to a higher

position (12.74 Hz) with respect to the excitation frequency (11.45

Hz), thereby reducing the dynamic response. As the table shows, only

the single frequency of interest was significantly altered. A DFR

analysis of the modified airframe confirmed that the vibration levels

had been reduced with respect to those in the original structure in

the area of interest. Based on the studies conducted in reference

102, it was concluded that the DFR method is more general and thus

has a broader range of applicability than the modal strain energy

method. However, the modal approach is appropriate if the structure

is excited close to a resonance, as in the case of the CH-47A in fig-

ure 42. Application of the modal strain energy approach to the

CH-47C is reported in reference 104.

As part of an investigation of structural optimization tech-

niques for vibration reduction, reference 105 evaluated two tech-

niques for vibration reduction through local structural modification,

the forced response strain energy method of reference 102 and the

Vincent Circle method (ref. 106). The latter method is based on a

dynamic property of (damped) linear structures, first noticed by

Vincent of Westland Helicopters, Ltd. Vincent observed that under

sinusoidal excitation the response of a point removed from the point

of excitation traces out a circular locus in the complex plane when

any single structural element stiffness or mass parameter is conti-

nuously varied from minus infinity to plus infinity. The radius of

the circle and the location of its center are indicative of the

extent to which the parameter change can affect the response. Both

methods were applied to an elastic line model of the AH-IG airframe

(fig. 43). The objective was to reduce 2/rev vertical vibration at

the pilot seat due to 2/rev vertical excitation at the main rotor

hub. The results (fig. 43) indicated discrepancies between the two

methods. The DFR method points to the tail boom as the area having

the most potential for reducing vibrations at the pilot seat, while



the Vincent Circle method points to the pylon area. Based on the

studies conducted in reference 105 it was concluded that the Vincent

Circle method was appropriate as an identifier of important elements

when considering local effects in relatively simple structures. How-

ever, for complex structures involving many elements the DFR method

appeared to be preferable for indicating which structural elements

are most responsible for the dynamic amplification.

Other approaches to local structural modification aimed at
vibration reduction are described in references 107 and 108. Refer-

ence 107 describes a sensitivity analysis procedure based on taking

derivatives of the stiffness matrix to identify the elements most

influential on vibratory response. The method is demonstrated by

using a modified version of the elastic line model used in reference

72 and by choosing as design variables Young's modulus of elasticity

in each of the beam elements comprising the model. Reference 108

describes an approach for structural modification which utilizes not

only the analytical model but also dynamically scaled models, optimi-

zation techniques (via optimality criteria) with frequency con-

straints, and system identification methods. The reference illus-

trates the approach by applying it to a simple cantilever beam struc-
ture.

The papers dealing with structural modification cited above are

somewhat misleading. While the term "structural optimization" is

used, none of the papers apply structural optimization in the usual

way. Rather, the term is used to indicate that any local structural
modifications which have been made are the best based on ad hoc con-

siderations such as reduction of dynamic response or reduction of

strain energy in a member. It should be recognized, however, that

the methods described in those papers can be used as the first step

in a procedure for formal optimization because they can identify the

best few elements that can be treated as variables for reducing

vibrations. Once the sensitive elements are identified a formal

optimization procedure can be used to set the precise values of the

parameters characterizing those elements.

There has been considerable research on structural optimization

subject to dynamic constraints. Most of this work, however, is

related to studies in which the only dynamic constraints are those

imposed on natural frequencies. There is much less literature deal-

ing with the problem of structural response under dynamic loading in

which constraints are imposed on both dynamic responses and frequen-

cies. References 109 to iii are representative of work which is

applicable to this more general problem. These papers discuss a phe-

nomenon known as disjoint design space which complicates the struc-

tural optimization process for structures under harmonic excitation.

The problem is associated with airframe natural frequencies which may

move toward coincidence with a (fixed) forcing frequency as design

variables are changed during iteration. These resonances form barri-

ers which cause the feasible design space to be disconnected or dis-

joint.

The success of any optimization procedure rests primarily on the
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efficiency of the analysis tool which is used to analyze the struc-
ture after every update to the design variables, and to a lesser
extent on the efficiency of the optimizer. If the finite-element
model is large (which is usually the case), the analysis step con-
tributes significantly to the time for each iteration in the design
process. There has been considerable effort directed toward means
for reducing the time required for each iteration. Approximate
mathematical models obtained from a first-order Taylor series expan-
sion of the full finite-element model have been proposed to lessen
the analysis time. Other expedients such as the use of design vari-
able linking, reciprocal variables and constraint deletion have also
been proposed. Such methods are described in reference 112, for
example. There have also been attempts to develop algorithms for
efficient reanalysis of structures which have been locally modified
(see, for example, refs. 84, 113, and 114).

Motivated by participation in the initial planning stages of the
DAMVIBS program in early 1983, Ames Research Center began building a
breadboard structural optimization code for helicopter vibrations in
late 1983. The resulting code, called NASOPT, combines MSC/NASTRAN
(ref. 22) with the CONMIN optimization program (ref. 115) and is
described in reference 116. A recent application of NASOPT to the
problem of tuning a helicopter airframe for vibrations is described
in reference 117. One case addressed in that paper was to minimize
the vertical displacement at the pilot seat under 2/rev vertical for-
cing at the main rotor hub while subject to a frequency constraint on
the first vertical bending mode. The design variables were taken to
be the sectional area moments of inertia of each of the 22 beam ele-
ments comprising the longitudinal beam in the elastic line model.
The resulting iteration history for three of the design variables is
shown in figure 44.

The NASA Langley Research Center has a long history of research

in structural optimization (see, for example, the summary of

ref. 118). Most of this activity has, until quite recently, been

centered in the Multidisciplinary Analysis and Optimization Branch

(MAOB). In 1984 the Interdisciplinary Research Office (IRO) was

formed, with optimization personnel from MAOB as its nucleus, to pro-

vide a more focused repository of optimization research. While most

of the early Langley work on optimization has been directed to fixed-

wing aircraft, it has been generic in nature and should be applicable

to rotorcraft. Of particular interest in this regard is the method

for decomposing large optimization problems into smaller subproblems
described in reference 119. Some recent work directed to the dynam-

ics of rotor blades are reported in references 120 and 121.

As part of the NASA/industry rotorcraft structural dynamics pro-

gram, DAMVIBS, an in-house study was recently initiated at Langley on

optimization of rotorcraft airframe structures for vibration reduc-

tion. The objective of the research is to evaluate and develop prac-

tical computational procedures for structural optimization of air-

frame structures subject to steady-state vibration constraints. One

of the key ingredients to any approach based on a NLP method is

design sensitivity analysis. A method for computing the sensitivity
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coefficients for forced response behavior has recently been formu-
lated and implemented in MSC/NASTRANas a new solution sequence to
complement the already available static and frequency sensitivity
analyses. The results of an initial application of this design sen-
sitivity analysis to a simplified elastic line model of the AH-IG
helicopter are presented in reference 122. Some of the results from
that study are reproduced in figure 45 which shows computed dynamic
response sensitivities for the pilot seat with respect to elements in
the tail boom. The forced response strain energies associated with
the tail boom elements are also shown. The results show that ele-
ments in the tail boom would be likely candidates for modification to
effect a favorable change in the response at the pilot seat. It
should also be noted that elements with large sensitivities also gen-
erally have higher strain energies.

The Langley in-house work on airframe structural optimization
described above is continuing. Current near-term plans are to

include structural damping in the formulation for calculating forced

response sensitivities, to study the implications of computing sensi-

tivities of large finite-element models, and to interface the CONMIN

optimizer with the sensitivity analysis. Long-term plans are to

merge this airframe optimization activity with IRO activities on

rotor blade optimization and establish a joint activity aimed at pro-

viding a rudimentary technology base for optimization of coupled

rotor-airframe systems. Current plans are to also initiate some type

of airframe optimization activities (as yet undefined) with industry

under the DAMVIBS program. With respect to the NASOPT code developed

at Ames Research Center, current plans are for Ames to maintain the

code as a research tool for conducting basic research in structural

optimization; long-term plans for the code are unclear at this time.

VIBRATION CONTROL

The most significant vibration levels in a helicopter are caused

by the cyclic airloads acting on the main rotor as it rotates. The

resulting oscillating aerodynamic loads are transmitted to the fuse-

lage as vibratory forces and moments of a frequency equal to the num-

ber of rotor blades N times the rotational frequency or N/rev. The

character and magnitude of these vibratory loads have resulted in the

design of vibration control devices to reduce or minimize these

rotor-induced forced vibrations. Vibration reduction;concepts may be

separated into passive or active methods. Passive devices, as dis-

cussed in this paper, are absorbers in the rotating system, absorbers

in the fixed system, or rotor isolation systems. Active systems

sense vibration levels at one or more locations on the helicopter and

attempt to minimize the sensed vibration levels by use of some type

of active control feedback system. A variety of passive vibration

control systems have been developed and tested over the past 25

years. The Army and NASA have sponsored considerable research in

rotor isolation systems, hub absorbers, and blade absorbers. Refer-

ences 8 and 123 provide an excellent historical and technical pro-

spective of vibration control system development. Since 1975 the

Army and NASA have funded major vibration control system demonstra-
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tion efforts in total main rotor isolation and higher harmonic con-
trol. There have also been some contracted research efforts for the
analysis and testing of hub-mounted and blade-mounted absorbers. As
previously pointed out, only Army and NASA research conducted in the
past decade will be specifically discussed.

Rotating-System Passive Absorbers

One of the simplest passive mechanisms for reducing vibratory
loads in the rotating system is the pendulum absorber. It consists
of a simple mass attached at a distance R from the center of rotation
by a mechanical linkage of smaller radius r (fig. 46). The spring
rate of the pendulum is controlled by centrifugal forces on the mass.
The pendulum natural frequency is proportional to the rotational
speed and the ratio of radii R/r. Therefore, the pendulum acts as a
vibration absorber when the pendulum natural frequency equals the
excitation frequency. Both blade-mounted and hub-mounted pendulum
absorbers have been used in production helicopter. Reference 124
describes a blade-mounted pendulum absorber system that was designed
for the Army AH-64. A general analytical study of pendulum absorber
dynamics is reported in reference 125. This analysis was later
extended to a frequency response analysis in which the spanwise air-
load distribution was varied harmonically to excite the rotor
(ref. 126). The response of this absorber is shown in figure 47.
Another type of rotating-system vibration absorber, the bifilar
absorber, is a centrifugally tuned, pendulum-like device mounted to
the main rotor hub. A bifilar absorber is shown in figure 48. Com-

ponents of a bifilar absorber consist of a support arm and sets of
bifilar masses each of which is comprised of a dynamic mass, and two

cylindrical tuning pins. These pins constrain the mass radially and,

together with the circular tracking holes in the support arm and

mass, define the pendular radius of the mass (ref. 127). The bifilar

rotor hub absorber has been used since the late 1960s. In support of

the bifilar development, a coupled rotor-bifilar-airframe analysis

was used to study the dynamic characteristics. This analysis was

validated by correlation with UH-60 and S-76 helicopter flight test

data as shown in figure 49 (ref. 128). In addition to industry-

sponsored bifilar research, the Army funded research to develop

advanced hub absorber concepts. A two degree-of-freedom rotating

system absorber, the monofilar (fig. 50), was analyzed and tested in

the early 1980's (refs. 129 and 130). The advantages of this concept

compared to the bifilar were reduced weight and the ability to pro-

vide vibration reduction at two frequencies. Coupled rotor-

monofilar-airframe analyses were conducted to design a monofilar con-

figuration for a four-bladed rotor under contract to the Army

(ref. 131). The system was tuned to reduce 3/rev and 5/rev rotating-

system forces. Ground test results showed a significant attenuation

of 3/rev in-plane rotating-system hub forces. However, attenuation

of the 5/rev loads was poor as a result of physical binding of the

monofilar components (ref. 131).
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Nonrotating-System Vibration Isolation

Although no Army or NASA in-house research has been conducted to
develop specific vibration reduction hardware, in the past ten years
efforts have been funded to demonstrate company-developed systems.
The most successful passive isolation systems have been based on the
anti-resonant (nodalization) principle. A schematic of an antireso-
nant isolator is shown in figure 51. By proper selection of the tun-
ing weight and arm length, the inertial force can be made equal and
opposite to the spring force, and therefore no N/rev vibratory forces
are transmitted to the fuselage. Several antiresonant vibration
reduction concepts have been investigated. One concept, described
in reference 132, is the Dynamic Antiresonant Vibration Isolator or
DAVI which was implemented by the KamamAerospace Corporation. The
Kaman DAVI is a passive isolator that provides a high degree of iso-
lation at low frequencies with low static deflections. Research and
development has been conducted on one-dimensional, two-dimensional,
and three-dimensional DAVIs (fig. 52). A two-dimensional DAVI system
was tested on a modified Army UH-IH helicopter to provide isolation

in the vertical, pitch, roll, and fore-and-aft degrees of freedom.

This test demonstrated that the DAVI-modified UH-IH had substantially

lower vibration levels (over 70 percent) when compared to the unmodi-

fied vehicle (fig. 53). The results of this test also demonstrated

that the use of the DAVI could, without affecting flying qualities,

reduce aircraft weight and lower operating costs due to lower mainte-

nance requirements (ref. 132). In a parallel development, Bell

tested a DAVI-type system called the NODAMATIC isolation system

(ref. 133). The NODAMATIC system consists of a focused pylon to iso-

late rotor inplane hub shears and moments and a nodal beam to isolate

rotor vertical shears (fig. 54). Boeing Vertol improved the DAVI by

replacing the elastomeric springs with metal springs to reduce inher-

ent damping. This new system, called the Improved Rotor Isolation

System (IRIS), also provided isolation at twice N/rev (refs. 134-136)

(fig. 55). The IRIS was designed and tested on a Boeing-owned BO-105

(fig. 56).

To demonstrate the full potential of passive isolation, the Army

in 1979 initiated a program for total (six degree-of-freedom) main

rotor isolation. The program was conducted in several phases which

included predesign studies, design and bench test, and flight test.

Predesign studies were conducted of two different mechanical isola-

tion system concepts (refs. 137 and 138). Both designs were deriva-

tives of the Kaman DAVI. A third concept, which used hydraulic iso-

lator units to achieve antiresonance, was also evaluated (ref. 139).

This hydraulic isolator is called the Liquid Inertia Vibration Elimi-

nator (LIVE) and is depicted in figure 57. The LIVE unit consists of

an inner cylinder which is bonded to an outer cylinder with a layer

of rubber. The inner cylinder cavity is filled with a high-density

fluid (mercury). Isolation is achieved when the dynamic pressures

create inertial forces which cancel the spring forces associated with

deformations of the rubber. Reference 140 describes an application

of LIVE. As a result of the predesign effort, the LIVE concept was

selected for detail design and bench testing of total main rotor iso-

lation. The success of this phase resulted in an Army-funded con-
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tract to install a Total Rotor Isolation System (TRIS) on the Bell

206LM helicopter. The testbed aircraft and the LIVE unit installa-

tion are shown in figure 58. The flight test data indicated that

over 95 percent reduction of hub 4/rev (26.3 Hz) vibration levels had

been achieved. Pilot seat vibrations were reduced to 0.04g through-

out the flight envelope, including the transition region which tradi-

tionally has high vibration levels (fig. 59). The prototype TRIS

installation had a weight penalty of 1.7 percent of the aircraft max-

imum gross weight. It was projected that the weight penalty could be

reduced to less than 1 percent (ref. 141) by manufacturing the LIVE

units out of lightweight material, instead of the stainless steel

used for the proof-of-concept test.

The Rotor Systems Research Aircraft (RSRA), which is shown in

figure 60, incorporated a passive isolation system. The system was

designed to provide a satisfactory aircraft vibration environment for

"any" rotor system installed on the aircraft. Although labeled the

"RSRA Active Isolation/Rotor Balance System" or AIBS, this system is

not "active" in the conventional sense. The AIBS (fig. 61) consists

of four piston-in-cylinder units which combine the effects of an air

spring for 4/rev passive isolation with a low frequency centering

action (for active control of transmission alignment). The effective

spring rate of the passive isolation system is controlled and set

prior to flight by the precharge pressure of the system accumulators.

Thus, the AIBS does not sense and react to changing flight vibration

levels in the normal sense of "active" control. The hydropneumatic

isolation system is described in reference 142. Although the reduced

vibration levels measured during the RSRA isolation system shakedown

flight test program were encouraging, the isolation system was not

optimized for minimum cockpit vibrations and the potential for addi-

tional improvement exists (ref. 142).

Active Vibration Suppression

Active vibration suppression systems, as discussed in this sec-

tion, sense vibration levels at one or more locations on the airframe

and actively minimize the sensed vibration levels by the use of an

automatic feedback system (fig. 62). Because the primary source of

helicopter vibrations is the rotor, it is logical to use the feedback

system to manipulate the rotor blades to modify the aerodynamic exci-

tation forces, thus reducing the airframe vibrations. The potential

of direct rotor control to minimize vibrations has been studied since

the 1960's. The early work, however, was limited to analytical

studies because adequate hardware did not exist to implement a system

(ref. 143). The use of active means for suppressing vibratory loads

transmitted to the airframe in flight has become feasible with

advances in high-speed, lightweight microcomputers and with advances

in hydraulic servo-actuator technology.

One promising method of active vibration control, called Higher

Harmonic Control or HHC, superimposes nonrotating swashplate sinu-

soidal motions at the blade passage frequency upon the basic collec-

tive and cyclic flight control inputs. This approach to control
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vibratory loads has been the subject of several analytical studies by

both NASA Ames and the Army (refs. 144 and 145) and wind-tunnel tests

by both government and industry (refs. 146-148). These investiga-

tions, conducted on significantly different types of rotor systems,

all showed that HHC produced substantial reductions in vibration lev-

els transmitted to the airframe. Furthermore, the results indicated

that the amplitude of HHC blade pitch inputs required to achieve the

desired reductions was small, on the order of one degree.

In 1976, NASA Langley and the Army began some preliminary

research into applications of HHC. This work resulted in two major

activities which included: (i) wind-tunnel tests; and (2) a flight

test demonstration. The initial wind-tunnel tests were conducted

open-loop using trial-and-error for setting the amplitudes and phases

of the HHC inputs. While these open-loop tests validated the con-

cept, computerized control was needed to achieve optimum control of

all vibratory forces and moments. The open-loop and closed-loop HHC

test results on a dynamically scaled wind-tunnel model rotor were

reported in references 149 and 150. The HHC method for reducing

vibrations was demonstrated under contract using an OH-6A helicopter.

The preliminary design work, control law development, and flight test

results were reported in references 151 to 153. The open-loop and

closed-loop flight testing of the OH-6A showed conclusively that HHC

can reduce vibration levels in helicopters (fig. 64). Reference 90

constitutes a summary report for that program. Research has conti-

nued on HHC with Sikorsky flying the concept, open-loop, on an S-76

(ref. 154) and the Army funding two preliminary design studies for

implementation of HHC on current and future generation helicopters.

Although individual blade control has been promoted for vibra-

tion reduction using HHC, the complications of moving any control

system into the rotating system have slowed down advances in this

area. Several concepts of direct rotor control with individual

blades have been studied earlier (ref. 155) but to date none have

been tested. Higher Harmonic Control shows much promise for reducing

helicopter vibrations, especially for the next generation helicopters

that may have a fly-by-wire/light control system and a variable speed

rotor. The Army plans to extend HHC technology by sponsoring a

flight demonstration program using a modern, four-bladed, high-speed

helicopter. This program has been given the acronym SOFVIBS (Sup-

pression Of Flight VIBrationS).

The helicopter vibration problem is complex and much time,

effort, money, and man-power have been expended to reduce vibrations.

Nevertheless, the problem has not been completely solved and a great

deal more work remains for the helicopter community before the "jet

smooth" ride is achieved. The vibration reduction systems discussed

in this section only reduce vibrations that are transmitted mechani-

cally to the fuselage from the rotor. While the helicopter industry

has been able to significantly reduce these "mechanically-

transmitted" vibrations in the last 30 years, another source of

rotor-induced vibrations still must be addressed, in particular, wake

impingement on the airframe. Blade tip vortices create pressure

fluctuations on the fin and stabilizer that cause significant fuse-
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lage vibrations. These rotor downwash induced vibrations need to be

controlled or isolated from the fuselage before vibrations in the

helicopter fuselage can ever be totally eliminated (ref. 132).

VIBRATION TESTING

Vibration testing of helicopters involves experimental investi-

gations to establish and to verify airframe dynamics, flight vibra-

tions, and rotor-induced vibratory loads. Ground and flight vibra-

tion testing along with wind-tunnel testing are used to guide heli-

copter design and to evaluate vibration problems. For the most part,

wind-tunnel testing is conducted to verify rotor performance and

basic stability and control characteristics for straight and level

flight. In recent years, wind-tunnel testing has been conducted to

investigate the effects of main rotor wake geometry and aerodynamic
interactions on control surface effectiveness and vibration. As men-

tioned in the Introduction, rotor aeroelastic research and associated

wind-tunnel testing will not be specifically addressed in this paper.

What will be addressed in some detail is progress in helicopter

ground and flight vibration testing methodology. The emphasis of

this paper is on the fixed system, i.e., from the rotor hub through
the airframe.

Most structural dynamicists would probably agree that helicopter

vibration testing requirements are much more critical than corre-

sponding fixed-wing requirements. Vibration testing serves two valu-

able purposes in helicopter development. First, these tests provide

loads and vibrations data to verify design concepts. Second, vibra-

tion testing compensates for voids in existing analytical capabili-

ties. Helicopter vibration problems have been extremely difficult to

quantify and, as a result, have been solved during the development

cycle by trial-and-error testing. A major reason for these cut-and-

try methods has been a lack of definitive procedures which make maxi-

mum use of vibration test data. As conventionally practiced, most

helicopter ground and flight vibration tests provide limited informa-

tion for resolving vibration issues. However, techniques have

evolved over the past decade from combined Army and NASA research

that provide systematic, as opposed to trial-and-error, procedures

for testing, correlating, and evaluating helicopter vibrations. For

the purposes of this paper, vibration testing is separated into four

categories, namely: (i) modal analysis; (2) system identification;

(3) structural modification; and (4) vibratory loads measurement.

Many scientists and engineers are engaged in rotorcraft vibration

research, and vibration testing research in the categories listed

above has increased substantially over the past ten years. The

majority of references listed in this paper emphasizes in-house and

contractual work conducted by the Army and NASA.

Modal Analysis

Modal analysis is the name given to techniques which extract

from test data the natural frequencies, orthonormal modes, and modal
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dampings of a structure. These modal parameters are most often used

to verify analytical models and to determine which parts of a struc-

ture contribute to a given mode of excitation. The theory of modal

analysis dates back to the 1940's (ref. 156). There have been some

methods which use time domain data (refs. 157 and 158) but structural

dynamicists traditionally perform modal analysis using frequency

domain data (refs. 159 to 167). The most common frequency domain

approach uses complex plane data (the so-called Kennedy and Pancu

plots or Nyquist circles). Figure 65 shows an example of these

frequency domain circles. The rate of change of arc length around
the circle and the diameter of the circle are used to determine the

modal parameters. Reference 168 presents a complete derivation and

application of this modal analysis methodology. The availability of

Fast Fourier Transform signal analyzers in the early 1970's provided

the means to apply the Kennedy and Pancu theory (ref. 156) with

speed, accuracy, and fidelity. Modal analysis accuracy is typically

verified by comparing measured frequency responses with synthesized

frequency responses which are calculated using the identified modal

parameters. Figure 66 shows a comparison between test and analysis

for frequency response measurements on an AH-IG helicopter. The

ordinate shift evident in the real part of the response is caused by

the rigid-body contribution which was not included in the synthesized

curve. The rigid-body part is normally calculated from weights and

geometry information.

In the past twenty years helicopter designers have used sophis-

ticated finite-element computer programs for sizing the structure to

meet static load requirements and to provide for the normal analyti-

cal checks on vibrations. Accurate dynamics models of airframes are

necessary not only to assess vibration design against specifications

but to evaluate the vibration effects of configuration changes.
Numerous researchers have conducted correlation efforts of finite-

element model predictions with vibration test measurements

(refs. 29-31, 34, 38, 42, 47 and 48). From a dynamics perspective,

natural frequencies and mode shapes have been used as fundamental

parameters for verifying the accuracy of analytical models. For

example, figure 67 compares calculated and measured mode shapes of an

OH-58 composite tail boom. Elaborate correlation efforts of Army

CH-47D, UH-60A, AH-64, and ACAP airframes have also been conducted by

the helicopter industry under contract to NASA (the DAMVIBS program)

to evaluate the state of the art in finite-element modeling. Besides

comparing the fundamental modal parameters, frequency response com-

parisons between shake test and analysis were used to assess the air-

frame modeling accuracy. The results of these correlation programs

have much in common. First, the presence of modes in analysis which

are not present during test and vice versa. Second, good accuracy on

natural frequencies (less than 5 percent) but correspondingly poor

accuracy on frequency response. And finally, the frequency range of

acceptable correlation is only from 5 Hertz to about 20 Hertz.

Detailed discussions of these correlation efforts were presented in

the vibration analysis section of this paper.

Extensive ground vibration testing of an AH-IG helicopter

(fig. 68) was conducted about seven years ago to obtain data for ver-
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ifying shake test methods and modal analysis techniques. A signifi-

cant finding from this shake test program was the measurement of com-

plex modes (modes that have real and imaginary components) in the

frequency range of interest (fig. 69). Reference 163 provides an

excellent description of the cause and effect of complex modes. In

short, complex modes can result when damping is not uniformly dis-

tributed throughout the structure. As a result, the phase between

response and excitation is not constant and the mode shapes change

with time. In the case of the AH-IG, this "nonproportional" damping

was more than likely caused by the highly damped elastomeric mounts

used to attach the transmission to the airframe. For classical modes

the real part of the frequency response has two turning points near

resonance while the imaginary part has one turning point. The first

mode of figure 66 is an example of a classical mode. However, the

character of the real and imaginary frequency responses can reverse

for complex modes. Figure 69 illustrates this effect for an almost

pure imaginary complex mode at 45 Hertz. As a consequence of this

research, improved shake test methods have been developed in terms of

both frequency response measurement and modal analysis accuracy

(refs. 169 to 173). These improved measurement techniques include

criteria for determining response linearity, reciprocity, complex

modes, local modes, and frequency resolution. The improved modal

analysis techniques which are now available provide a more accurate

and consistent data base for system identification and finite-element

correlation of complex helicopter structures.

System Identification

Uncertainties inherent with analytical modeling techniques have

made experimental modeling a viable approach for augmenting struc-

tural dynamics analysis (refs. 168, 174 to 192). The process of

obtaining structural dynamics equations of motion or improving exist-

ing mathematical models using ground vibration data has been termed

system identification. System identification deals with finding
impedance-type matrices which are abstract inverses of measurable

natural properties of a structure. The objective of system identifi-

cation is to use these mathematical abstracts for estimating struc-

tural response characteristics. The origin of system identification

goes back to the 1960's (ref. 174), but most of the theoretical

development and validation work was performed in the mid to late

seventies. The data required to experimentally derive the equations

of motion are the natural frequencies, orthonormal mode shapes, and

modal dampings which characterize the frequency spectrum of interest.

These parameters are used to determine mass, stiffness, and damping
matrices which define the equations of motion. The model which is

formulated from this system identification process is called a "trun-

cated model" because there are fewer modes used to determine the

model than degrees of freedom in the structure (ref. 175). Multiple

regression is used to solve for the constant coefficient matrices

which make up the equations of motion. The regression parameter is

the difference between the actual frequency response and the approxi-

mated frequency response obtained by using a finite number of modes.

The primary application of this truncated model is to predict the
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effects of mass and stiffness changes on natural frequencies and mode

shapes. Computer experiments have verified the accuracy and limita-

tions of the method (refs. 176 and 177). In addition, the truncated

model methodology has been applied using AH-IG airframe modal test

data. Predicted changes in natural frequencies and mode shapes were

compared with test results to assess its usefulness (ref. 168).

Another system identification technique which provides a capa-

bility for improving an existing analytical model is the so-called

"incomplete model" theory (refs. 178 to 181). This method uses natu-

ral frequency and mode shape test data to update or improve mass and

stiffness matrices. The approach which is used to create the incom-

plete model assumes that the measured modal data are correct and

forces the analytical mass matrix to be orthogonal with the measured

modes. Multiple regression is used to solve for the smallest pos-

sible changes (in a least-squares sense) that satisfy the specified

conditions. In a similar manner, the modal data and improved mass

matrix are combined to improve the stiffness matrix. The requirement

for small changes is not necessary and is only assumed so that the

improved model still represents the physical structure. Engineering

judgement is required to determine acceptable values for these small

changes. A measure of accuracy of the improved analytical model is

obtained by comparing predicted frequency responses with test data.

It should be pointed out that current finite-element models do not

incorporate nonproportional damping and hence can not account for the

effects which lead to complex modes. There has been some research to

develop methods for converting complex modes obtained from test into

classical (or real) modes for model improvement purposes (ref. 182).

The usefulness of these procedures is questionable if the improved

model cannot be used to calculate frequency response for the struc-

ture being tested. Another criterion for evaluating the usefulness

of the incomplete model is its ability to predict the effects of a

change. Figure 70 illustrates how the incomplete model predicts mode

shape changes due to mass and stiffness configuration changes. The

solid curves represent the original mode shapes for a simply sup-

ported beam. The new mode shapes, shown by the dashed curves, were

calculated using the exact beam equations. The data points in figure

70 were determined using the incomplete model. However, one of the

major problems associated with system identification technology is

the inability to physically interpret the changes which are identi-

fied by the analysis. Model improvement techniques must be developed

such that mass and stiffness changes to the original models are phys-

ically meaningful as well as mathematically sound. There has been

some research outside of the Army and NASA on methods which use test

data to identify modeling errors (ref. 183). These techniques pro-

vide information to the analyst as to which model parameters are

causing discrepancies between test and analysis. New ideas such as

these may provide the means for implementing system identification as

part of helicopter vibration design.

Structural Modification

Research into techniques which predict changes in structural
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dynamics or flight vibrations due to structural modifications has

been under way for about fifteen years. One of the first concepts

for evaluating vibration reduction through structural modification

was reported in reference 193. The so-called Vincent Circle method

(ref. 193) was described earlier in the Airframe Structural Optimiza-

tion section. This methodology has been applied and extended by

numerous researchers (refs. 105-108 and 194-202) over the past ten

years. For the most part the Army requirement for these procedures

was motivated by vibration problems which surfaced during helicopter

development testing. More recent Army research has concentrated on

combining structural modification methodology with ground and flight

vibration data to evaluate the effects on vibration. This integra-

tion of structural modification with vibration testing has also been

referred to as "analytical testing" (ref. 195). Unlike the typical

finite-element modeling approach, there Js no airframe math model

that has to be created or modified such that it correlates with shake

test results. The only analytical model required is the structural

change as characterized by single-point or multi-dimensional impe-

dance adjustments. These modifications include simple mass, absor-

ber, isolator, and collinear stiffness changes as well as more ela-

borate skin, stringer, or component changes. The operational equa-

tions require only baseline vibration data and the impedance change

dynamics. Computer experiments have been conducted to demonstrate

the usefulness of this methodology (refs. 195 to 197). The method

has also been applied using AH-IG ground and flight vibration test

data (refs. 195 and 198). Figure 71 illustrates how the method can

be used to predict changes in cockpit vibration due to an absorber

located on the vertical fin. In this example, the "remote" absorber

was tuned for both frequency and damping to produce zero vibration at

the required flight condition. Additional work is under way by Army

researchers to validate the analytical testing methodology. The

approach taken is to analytically make a change, predict its effect,

and then to physically make the change, test the change, and compare

the test results with analysis. This methodology has been verified

on a generic helicopter model (fig. 72). Further research is being

conducted to validate analytical testing using OH-58A ground vibra-

tion data and simulated flight test data. Successful implementation

of this structural modification methodology will provide a much

needed capability to respond to Army field problems and to eliminate

costly trial-and-error testing.

Vibratory Loads Measurement

Higher than expected vibratory loading is a fundamental cause of

high maintenance manhours and low component reliability. In general,

the most critical vibratory loads are generated by the main rotor and

occur at the blade passage frequency or N/rev. An accurate knowledge

of these vibratory loads is needed to improve rotor design, to

evaluate vibration control devices, and to establish fatigue charac-

teristics. In particular, the helicopter industry spends substantial

resources to reduce vibratory loads in an effort to increase reliab-

ility. If the vibratory loads were known, then "ground" flying could

be performed on the complete helicopter using these loads to simulate
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flight. Thus, around-the-clock fatigue testing could be used to

evaluate system reliability. Besides reliability testing, ground

flying can be used with structural modification testing to evaluate

and implement potential fixes to vibration problems before failures
occur in the fleet.

The most common approach for measuring vibratory rotor loads

(both hub shears and moments) uses strain gages on the main rotor

shaft. Slip rings are required to transmit signals from the rotating

system to the fixed system. Because this method was costly, slow,

and often unreliable, Army research began in the mid 1970's on a

method called Force Determination which uses airframe response

measurements and shake test calibration data to determine the main

rotor hub vibratory loads (refs. 203 to 206). Force Determination is

a multiple regression technique (least-squares curve fit) which mini-

mizes the differences between measured responses and calculated

responses. All instrumentation is located in the fixed system (no

slip rings are needed). Accelerometers and strain gages are distrib-

uted throughout the airframe to introduce a high degree of measure-

ment independence and redundancy. The method has been verified on a

generic helicopter dynamic model and full-scale aircraft (refs. 203

and 205). Figure 73 compares flight test, Force Determination calcu-

lated, and ground flying vibration levels at several points along an

AH-IG airframe. These results demonstrated that the calculated main

rotor hub loads can be used to synthesize actual flight vibrations

accurately and with the correct distribution. Force Determination

was also applied to a UH-I helicopter (fig. 74) to evaluate rotor

isolation system effectiveness (ref. 203). In this case the calcu-

lated loads for the baseline aircraft were combined with forced

response measurements obtained from shake testing the aircraft with

the isolation system installed. The predicted "new" flight vibra-

tions were consistent with flight measurements and gave credibility

to the method. Additional work has been performed by other

researchers to improve Force Determination (refs. 207 and 208). Army

in-house research is being conducted to evaluate the limitations of

the method and to develop a full-scale reliability testing capabil-

ity. Several technical issues which are being investigated include

shaker cross talk, load versus response linearity, phase shift sensi-

tivity, and shaker attachment (boundary condition) effects on the

frequency response calibration data. There are other applications of

this technique which are planned through Army in-house research. For

example, Force Determination will be used to study the vibration

effects of main rotor downwash impingement and main rotor wake inter-

actions on tail surfaces.

There is considerable Army and NASA research in vibration test-

ing planned for the next five years. Most of the work emphasizes

verification of current methodologies such as System Identification,

Analytical Testing, and Force Determination. Emphasis will be placed

on using these new vibration testing methods to develop systematic

procedures for solving vibration-related problems. Research will

also be performed to demonstrate the applicability of these new meth-

ods on composite rotorcraft. Finite-element modeling correlation of

composite structures, in particular the Army ACAP airframes, is also
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planned. Other research issues which will be addressed through com-

bined Army and NASA research include standardization of vibration

testing methodology. This standardization will include not only

vibration testing procedures but also data acquisition and analysis

methodology. The results of these efforts will identify how tests

should be performed, what data should be taken to meet vibration

testing objectives, and what data analysis procedures give the best
results.

CONCLUDING REMARKS

Excessive vibrations have plagued virtually all new rotorcraft

developments since the first U.S. helicopter went into production

over forty years ago. The problem is pervasive and transcends

national boundaries. The impact of excessive vibrations on new heli-

copter development programs is significant, both with respect to

increased development costs and slipped delivery schedules. Helicop-

ter companies have relied little on analysis during design to limit

vibrations. With few exceptions, helicopters have been designed to

performance requirements and excessive vibrations were then "tinkered

out" during ground and flight testing. With continued expansion of

flight envelopes and more stringent requirements for crew and passen-

ger comfort and component reliability in modern helicopters, the
requirement for low vibrations has achieved the status of a critical

design consideration. It is clear that vibrations can no longer be

addressed in an ad hoc fashion. There is now a recognized need to

account for vibrations more rigorously in both the analytical and

experimental phases of design. With this as a background, this paper

has presented a summary of NASA and Army contributions, both in-house

and contractual, to rotorcraft vibrations and structural dynamics

technology over the last decade or so. Specific topics that were

addressed include: airframe finite-element modeling for dynamic ana-

lysis, coupled rotor-airframe vibrations, airframe structural optimi-

zation, active and passive control of vibrations, and integration of

testing and analysis in such guises as experimental modal analysis,

system identification, structural modification, and vibratory loads

measurement (force determination). The status of current activities

being conducted under major NASA and Army programs, as well as near-

term plans, were also described. Viewed as a whole, it is fair to

say that the work described constitutes an important contribution to

the critical elements of the technology base needed to achieve the

goal of a "jet smooth" ride. However, much work still needs to be

done before this goal can be reached. To this end, both NASA and the

Army have substantial in-house and contractual research activities

planned over the next five to ten years. The ultimate success of

these efforts will depend not only on the development of more

reliable vibration design tools but also on the practical implementa-

tion of these tools into the design process by industry. It is left

for a status report ten years hence to judge whether we have been
successful.
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Figure  3 . -  UH-60 Black Hawk. 

F igu re  4.- AH-64 Apache. 
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Figure 5.- Trend of helicopter vibration levels.
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Figure 6.- Impact of vibrations on helicopter development.
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Figure 7.- Helicopter vibration design cycle.
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Figure 8.- The helicopter as might be viewed by a dynamicist.
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Figure 9,- NASTRAN finite-element model of OH-58A helicopter. (From ref. 27.)

°

Figure 10.- NASTRAN finite-element model of OH-6A helicopter. (From ref. 28.)
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Figure 11.- NASA CH-53 Civil Helicopter Research Aircraft  showing NASTRAN 
model w i t h  dynamic degrees of freedom indicated and correlation for  the 
f i r s t  vertical  bending mode. (From ref .  31.) 
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Figure 12.- Rotor Systems Research Aircraft  (RSRA)  i n  compound configuration 
and assmia ted  NASTRAN model. (Courtesy S i  korsky Aircraft .  ) 
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ACTUAL HELICOPTER 
AIRFRAME STRUCTURE 

(SKINS REMOVED) 

NASTRAN 
F I N I T E  ELEMENT MODEL 

Figure 13.- AH-1G helicopter showing airframe s t ructure  w i t h  skins removed 
and NASTRAN f in i  te-el ement model. (From re f .  33. ) 
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Ac tua l  S t r u c t u r e  f o r  Reference 
( A f t  fuse lage shown shaded) 
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Fi 2 9 6 . 7 5  

V i e r  looking a f f  

F i  n i  t e - E l  ement Model o f  A f t  Fusel age 

Bul khead De ta i  1 

F i g u r e  14.- T y p i c a l  sketches used i n  d e s c r i p t i o n  o f  AH-1G NASTRAN model. 
(From r e f .  33.) 
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Figure 15.- Comparisons of frequency response results for AH-IG.
(From ref. 34.)
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CH-470 PRIMARY FUSELAGE STRUCTURE 

/ 
BULKHEAD 

STATIC MODELING 

CH-47D NASTRAN STRUCTURAL MOOEL 

Figure 16.- CH-47D he1 icopter showing primary fuselage structure and NASTRAN 
f i  n i  te-el ement model . (From ref .  41. ) 
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Figure 17.- CH-47D static and mass modeling guides for a typical frame.
(From ref. 41.)
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SUGGESTEDIMPROVErIENTS

EFFECTOF VARIATIONIN MODALDAMPING
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Figure 19.- Effect of variation in modal damping used in analysis on
correlation for CH-47D. (From ref. 42.)
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MODEL S T A T I S T I C S  
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80 T R I A 3  
28 REAR 
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Figure 20. - AH-64A he1 i copter, NASTRAN f i n i  te-el ement model and typical 
(From d r a f t  f i n a l  report submitted frequency response comparisons. 

under DAMVIBS program. ) 
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UH-60A NASTRAN MODEL 
STATICS MODEL 

NASTRAN MODEL 
4,341 GRID POINTS 
8756 STRUCTURAL ELEMENTS 
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Figure 21.- UH-GOA helicopter, NASTRAN finite-element model and typical 
(From draft final report submitted frequency response comparisons. 

under DAMV I BS program. ) 
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FREQUENCY RESPONSE COMPARISONS EXAMPLE 

I ,  . I  1 . . I  . '  , ' 0.0000001 o i Ib 16 20 ?b 
rr(luD(0I nul ' 0  8 10 I 6  20 2b 

-0I nu) 
PILOT SEAT VERTICAL RESPONSE PILOT SEAT LATERAL RESPONSE 

TO HUB LATERAL EXCITATION TO HUB VERTICAL EXCITATION 

NASTRAN FINITE ELEMENT MODEL (FEM) 

I 

CQUAD4 1387 

\ ICRTIA3 182 I 

F i  gure 22. - D292 (ACAP) he1 i copter, NASTRAN f i n i  te-el ement model and typical 
(From d ra f t  f inal  report submitted under frequency response comparisons. 

DAMV I BS program. ) 
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la47 STRUCTURAL NODES 

208Q STRUCTURAL ELEMENTS 

Figure 23.- NASTRAN finite-element model of Model 360 composite airframe and 
airframe during ground vibration test. 
under DAMVIBS program. ) 

(From draft final report submitted 
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Figure 25.- OH-58A helicopter and EAL finite-element model o f  composite 
tail boom. (From ref. 47) 
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NASTRAN FINITE ELEMENT MODEL 
IM6/R6376 COMPOSITE DSPAR 

\ '. . __. 

@& NASTRAN FINITE ELEMENT MODEL 
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180 CQUAD8 (CURVED) 
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Figure 26. - NASTRAN f i  ni te-el ement model s o f  composite model ro tor  blades. 
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Figure 27.- A simplified view of rotor-airframe interaction in producing vibrations.
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Figure 28.- Correlation of flight test data with a coupled rotor-airframe

analysis for 3/rev vibration of a three-bladed tandem-rotor helicopter

in high-speed level flight. (From ref. 60.)

Vibratory

acceleration,

±g unit

.5

.4

.3

.2

.I

-- 4/rev cockpit vertical vibration

/

_ /

_ Analysis_ /

Flighttest 
I

100

Airspeed, knots

I
2OO

Vibratory
acceleration,

±9 unit

Figure 29.- Correlation

analysis for 4/rev

(From ref. 61.)
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Figure 30.- Comparison of computed coupled rotor-airframe vibrations with 
measured data for a compound helicopter with four-bladed hingeless rotor. 
(From ref. 62.) 
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Figure 31.- Comparison of computed and measured hub vibrations for a helicopter 
with a four-bladed hingeless rotor. (From ref. 63.) 
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Figure 32.- Comparison of measured 2/rev vertical airframe vibrations with 
C-81 analysis using measured hub accelerations for a two-bladed teetering 
rotor he1 icopter. (From ref. 37. ) 
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Figure 33.- A formulation for dynamic synthesis of gyroscopic structures
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Figure 34.- Arrangement of program blocks in SIMVIB coupled rotor-airframe
vibration analysis program, (From ref. 82.)
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Figure 35.- Comparison of measured 4/rev vibrations for SH-60B with SIMVIB
analysis using hub loads measured in flight. (From ref. 83.)
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Figure 36.- Illustrative example showing manner in which matrices and equa-

tions are depicted in a formulation of rotor-airframe coupling aimed at

providing a basis for implementation of a design analysis capability for

airframe vibrations• (Adapted from ref. 84.)
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Figure 37.- Comparison of measured AH-1G 21rev and 41rev vertical vibrations
with results of C-81 analysis. (Based on results presented in ref. 88)
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Figure 38.- Typical comparisons o f  measured AH-1G 2jrev vibrations w i t h  
analysis by each of four manufacturers. 
d ra f t  f inal  reports submitted under DAMVIBS program. ) 

(From results presented i n  

Figure 39.- OH-6A helicopter used i n  NASA/Army higher harmonic control 
f l  ight tes t  program. 
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OFTIMAL DESIGN

/

PANEL CHAIRMAN: Richard L Bennett

Introduction to Optimal Design

Numerical Optimization Concepts and Definitions --

G.N. Vanderplaats, Naval Postgraduate School

Optimization in the Industrial Design Process -- J.A.
Bennett, General Motors Research Laboratories

Fixed Wing Aircraft Applications to Optimization --

R.T. Haftka, Virginia Polytechnic Institute & State

University

Structural Optimization -- J.S. Arora, University of
Iowa

Future of Optimization -- J. Sobieski, NASA-Langley

Research Center

Figure 40.- Panel on Optimal Design held at 39th Annual National Forum of the
American Helicopter Society. (From ref. 94.)
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Figure 41.- Rotorcraft session at Symposium on Recent Experiences in

Multidisciplinary Analysis and Optimization. (From ref. 97.)
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Figure 45.- Distribution of sensitivity of dynamic displacement and strain
energy in tail-boom elements of AH-IG. (From ref. 122.)
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Figure 46.- Simple Pendulum Absorber. 
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Figure 47.- Response of Blade Mounted Pendulum Absorber. 
(From ref. 126.) 
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Figure 48.- Schematic of Bifilar Assembly. (From ref. 127.)
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Figure 49.- Correlation of UH-60 Bifilar Absorber Flight Test Data

and Analysis. (From ref. 128.)
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Figure 50.- Monofilar Schematic. (From ref. 129.)
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Figure 51.- Schematic of Conventional Fixed-System Vibration Isolator.
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Figure 52.- Three-Dimensional DAVI. (From ref. 131.)
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Figure 53.- DAVI Flight Test Data. (From ref. 132.)

164



VERTICAL_ EXCITATION

NOD, NoD,

WEIGHT_/, ., . i_._. ._ . WEIGHT

_ NODAL BEAM
FUSELAG[ ATTACHMENT

Figure 54.- Isolation by "Nodalized" Beam. (From ref. 133.)
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Figure 55.- Bidirectional IRIS Unit. (From ref. 136.)
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Figure 56.- BO-105 IRIS Installation. (From ref. 137.)
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Figure 57.- Pinned-Pinned LIVE Unit. (From ref. 139.)
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/”’”’ S i x  LIVE Units 

Figure 58.- Total Rotor Isolation System Aircraft and LIVE 
Installation. 
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F igu re  60.- R o t o r  Systems Research A i r c r a f t  - RSRA. 
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Figure 61.- RSRA Aircraft AIBS Schematic. (From ref. 142.)
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Figure 62.- HHC Feedback System.
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Figure 63.- Higher Harmonic Control Closed-Loop Wind Tunnel Test 
Results. (From ref. 150.) 

Figure 64.- OH-6A HHC Flight Test Results. 
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Figure 66.- AH-IG modal analysis correlation. (From ref. 168.)
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Figure 68.- AH-1G shake test configuration. 
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Figure 69.- Frequency response measurement of complex mode. 
(From ref. 168.) 
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Figure 70.- Application of incomplete model theory. (From ref. 178.)
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vibration. (From ref. 198)
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Left rolling pullout at a gross weight of 8465 pounds.

Figure 73.- AH-IG Force Determination results. (From ref. 205.)
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Figure 74.- Force Determination applied to DAVI-modified UH-IH.

(From ref. 203.)
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