
DeveIopment of a Comprehensive Software Engineering Environment

Thomas C. Hartrum
Department of Electrical and Computer Engineering

School of Engineering
Air Force Institute of Technology

Wright-Patterson AFB, Dayton, Ohio, 45433

Abstract
The generation of a set of tools for the software lifecycle is a recur-
ring theme in the software engineering literature. The development of
such tools and their integration into a software development environ-
ment is a difficult task a t best because of the magnitude (number of
variables) and the complexity (combinatorics) of the software lifecycle
process. An initial development of a global approach was initiated at
AFIT in 1982 as the Software Development Workbench (SDW). Also
other restricted environments have evolved emphasizing Ada and d i 5
tributed processing. Continuing efforts focus on tool development,
tool integration, human interfacing (graphics; SADT, DFD, structure
charts, ...), data dictionaries, and testing algorithms. Current efforts
are emphasizing natural language interfaces, expert system software
development associates and distributed environments with Ada as
the target language. The current implementation of the SDW is on
a VAX-11/780 under VMS. Also, a simplified version of the SDW
has been hosted on personal computers. Other software development
tools are hosted under UNIX and are being networked through en-
gineering work stations. This paper discusses the various aspects of
AFIT’s development of software engineering environments.

Introduction
A software development environment is an integrated set of auto-
mated and interactive software development tools that aid the soft-
ware engineer in the development of quality software products. The
specific software products which are associated with the software life
cycle include requirements definitions; design specifications; source
and executable program codes; test plans, procedures, and results; as
well as other associated documentation such as guides and manuals
of operation and maintenance of the software. By definition, software
only exists in its documentation! Thus, extensive records must be
generated, maintained, and managed to properly fulfill the software
engineering objectives. A well planned and implemented software
develapment environment can effectively assist in the generation of
reliable and maintainable computer software.

The typical software development environment includes both hard-
ware and software tools to aid the software engineer in the production
of programs. Software development environments may consist of a
minimal set of tools, such as an editor, a compiler, and a link/loader,
that support only the actual coding of software. However, the most
effective environments are those with an extensive set of powerful in-
teractive and integrated tools that support state-of-the-art method-
ologies for dealing with software from its very conception through its
eventual termination. A specific software development environment
consists of a process methodology along with given hardware and sys-
tem software, manual procedures and support personnel. The process
methodology usually involves a specific set of operations (steps) along
with conceptual tools to support these steps within the software life-
cycle phases mentioned previously.

Gary B. Lamont
Department of Electrical and Computer Engineering

School of Engineering
Air Force Institute of Technology

Wright-Patterson AFB, Dayton, Ohio, 45433

The concept of an integrated software development environment
can be realized in two distinct levels. The first level deals with the
access and usage mechanisms for the interactive tools, while the sec-
ond level concerns the preservation of software development data and
the relationships between the products of the different software life
cycle stages. The first level requires that all of the component tools
be resident under one operating system and be accessible through a
common user interface. The second level dictates the need to store de-
velopment data (requirements specifications, designs, code, test plans
and procedures, manuals, etc.) in an integrated data base that pre-
serves the relationships between the products of the different life cy-
cle stages. This integration of tools and techniques at both levels is a
major objective of any software engineering environment development
effort.

The major objectives are to provide a production software devel-
opment environment for students and faculty and to generate a soft-
ware engineering research testbed. Initially the SDW provided the
overall architecture for a “complete” capability. Itecently, efforts are
focusing on a distributed version of the SDW concept called System
690 in support of the software engineering laboratory course, EENG
690.

Development Lifecycle Model
The definition of the software lifecycle as supported and used by the
various environments consists of the standard six phases; require-
ments definition, preliminary design, detailed design, implementation
(coding), integration and operation and maintenance. This general
methodology is reflected in DOD Standard 2167 [l]. Documentation
must be provided within each phase to support reviews (static) and
testing (dynamic) of results associated with each activity. This ca-
pability can be provided through the use of a data dictionary and
associated data base management system. Software system correc-
tions and enhancements should flow through all previous phases for
“proper” documentation.

Note that validation and testing is not a distinct stage in this
lifecycle, but rather an activity that is performed along the entire
lifecycle. This activity involves the testing of the products of each
stage for internal consistency and completeness with the products
of the previous stages. Furthermore, the products of each stage are
validated against the user’s perception of the requirements.

The Software Development Workbench(SDW) and the distributed
environment, System 690, are developed using this software life cycle
definition with the primary objective of providing integrated and au-
tomated support. Discussion of each environment follows the stages of
its initial lifecycle. The objectives and accomplishments of each stage
of the lifecycle development are presented. The requirements defini-
tion and preliminary design stages deal with a system as it should ex-
ist in its ultimate form, whereas the detailed design, implementation,
integration, and operation stages emphasize a prototype environment
with a menu driven interface and initial tool set.

31

PIK-FAB SNV

SDW Requirements and Design
The first stages of the SDW development effort [2] emphasized the
requirements definition and preliminary design of the ultimate SDW
implementation. Due to the extensive scope of this task, the target
was set a t a fairly high level specification with the individual subsys-
tems specified in greater detail with the use of recursive applications
of the software life cycle.

The results of this task are a set of five primary objectives of
the SDW, thirteen specific concerns for its development [3], a func-
tional model and associated evaluation criteria, a hardware/software
configuration model, and a structure model that identifies all generic
component tool types.

Of the five objectives of the SDW, the reduction of software errors
is the first (41. This is to be achieved by supporting and enforcing the
use of accepted software engineering principles, as well as by using
the computer to augment different testing procedures.

The SDW must also be responsive to change. Realizing that soft-
ware is a dynamic entity, the SDW must be able to support changing
requirements for its operation.

The rapid assessment of design alternatives is also quite impor-
tant. The use of simulation models and prototyping is selected more
and more to assess design operations as well as to aid in determining
the end user’s true needs.

The SDW must also be capable of providing interactive and au-
tomated documentation support. This support must emphasize the
recording, and maintenance of all software development associated
data.

Finally, the SDW must provide mechanisms to assist the software
manager in planning and tracking software development efforts.

The thirteen specific concerns also required to be addressed by the
SDW development effort are: integration, traceability, user-friendliness,
testability, pie-fabricated programming, support for the entire soft-
ware lifecycle, flexibility, consistency and completeness, explicitness
and understandability, documentation support, updateability, lan-
guage independence, and early prototyping. The first five of these

concerns are of special significance to the SDW effort. Integration is
to be realized in terms of both accessing component tools and storing
of the development data. Traceability must also be preserved between
the products of the different stages of the development effort. User-
friendliness is also a very significant concern. The SDW must utilize
the latest concepts of ergonomics in the design of its human inter-
face. This interface should be easily understandable with a simple
logical structure, well laid out display, and a simple command input
mechanism. Prefabricated programming, or the incorporation of ex-
isting software can improve development productivity. Flexibility is
required at both the environment and tool level to allow users to op-
erate in a mode comfortable to their knowledge and experience levels.
That is, the operation of the SDW must allow the user to tailor the
type of prompting, feedback, and structure [5].

A functional model of the software development process using
SADT (Structured Analysis and Design Technique) diagrams [SI was
developed in order to define the SDW process and to select those
aspects of the process that could be automated. Furthermore, a set
of evaluation criteria is established with which to judge the effective-
ness of the environment in satisfying its requirements. However, for
reasons of brevity, these topics are not discussed further.

The configuration model of the SDW shown in Figure 1 illustrates
the basic hardware/software configuration for the environment. The
SDW Executive is the primary interface and controller of the com-
ponent tools. The SDW tool set is broken down into three tool cat-
egories; cognitive tools, that extend the powers of understanding for
the software developer; notational tools, that assist in the produc-
tion and maintenance of associated documentation; and augmentive
tools, that use the powers of the computer to perform much of the
tedious testing and updating activities involved with software devel-
opment. The project data bases are the integrated data storage areas
with one allocated to each development effort. Finally, the Pre-Fab
Software Description and Product Data Bases hold the functional
descriptions and program codes of existing software modules. This
structure provides for easy retrieving and incorporation of modules
into development designs and implementations.

I

0 0

W

- CONlfml - 1-WAY DATA FLOW - 2-WAY DATA FLOW

INTE R A C E I -----

Figure 1: SDW Configuration Model.

32

The structure model of Figure 2 illustrates the generic tool types
that are to be incorporated into the SDW. Those tool types annotated
with a single asterisk are included in the initial implementation of the
SDW, while those with two asterisks are scheduled for the second level
of implementation. Those with three asterisks are to be included
as they are developed or become available. Thus, the frameworks
for the initial and eventual realizations of the SDW are established.
With this background, a detailed design and implementation can be
realized that includes the selection of existing tools as components
and complete development of 0tht.r components.

Current Implementation of the SDW
The detailed design, implementation, and integration stages of the
SDW development effort focus on the accomplishment of an initial
version of the environment. This initial version is composed of soft-
ware development tools that support the pre-implementation activ-
ities of software development as well a8 provide the common capa-
bilities found in most implementation oriented development environ-
ments such as editing, linking, and debugging.

The discussion of this initial version of the SDW is limited to two
topics: the selection of an initial tool set v d the complete develop-
ment of the SDW Executive (SDWE) component that provides the
common access and control mechanisms required to satisfy the first
level of the integration criteria.

The tools selected for inclusion into the initial implementation of
the SDW are taken, for the most part, from one of two sources. Those
tools that specifically support the requirements specification and de-
sign activities were given by the Integrated Computer-Aided Man-
ufacturing Division of the Air Force’s Material Laboratory, Wright-
Patterson Air Force Base. The tools used to provide the rest of the
development support are the standard vendor supplied tools normally
found on the target computer (the Digital Equipment corporation’s
VAX-11/780 under the VMS operating system).

Four distinct tools are selected to support the first two phases
of software development. They are the AUTOIDEF [7], that sup-

ports the Integrated Computer-Aided Manufacturing (ICAM) Def-
inition Techniques (IDEF) [8], the SYSFLOW graphics editor [9],
and the Extended Requirements Engineering and Validation System
(EREVS) [lo].

The AUTOIDEF tools support and aid in the production and
maintenance of three types of IDEF models. IDEF-0 models are
used to provide a functional modelling capability which describes the
flow of data through functional processes. IDEF-1 models provide
an informational modelling technique that describes both the corn-
ponents of a data entity and the relationships between data entities.
Finally, IDEF-2 models are used for dynamic modelling to simulate
transaction flows through network-like systems. The AUTOIDEF
tool greatly simplifies the productioq and maintenance of all three
types of models because of its flexible graphics drawing and modifi-
cation capabilities.

The SYSFLOW graphics editor is an easy to use and flexible tool.
The tools provide a basic set of graphical constructs and character
fonts, together with the capability for the user to define his own con-
structs, to provide a very flexible capability to produce and maintain a
great variety of graphical/textual documentation. This system can be
employed in generating data flow diagrams defining detailed require-
ments or it can be used to define structure diagrams as generated by
transform analysis or transaction analysis [ll] of the requirements in
a data flow or SADT format.

The ICAM Decision Support System (IDSS) provides for the graph-
ical and textual input of IDEF-2 dynamics models. The results of ex-
ecuting these simulation runs are analytical reports on the simulated
system’s performance. The provisions for graphical input of models
and automatic translation into an executable format make the tool a
truly state-of-the-art facility.

The Extended Requirements Engineering and Validation System
(EREVS) was originally developed by TRW, Inc. for the Army’s Bal-
listic Missile Advanced Technology Center. EREVS provides sophisti-
cated facilities for specifying system requirements for concurrent and
real time systems, checking those requirements for consistency and
completeness, illustrating the requirements with a graphical technique

r 0

5 DW t X t C U l I V f I
4 & 4

Sihai -Dircc led Ted Graphics
Editor Editors Ldilorr

Word Slat I st ical
Formatter Praessorr

b & + .
Info-Oriented Functional R q ’ I Dd.
Design lods Design Tools T c d s

.. 1 I 1 . .
Code Consistency

Simulators Generators C heckerr

I
Projecl I

Files Roulines

lest Case Performance Data flcm

C hecker s Checkers

1 I * ’ ... I I ... 1
1 I Ocbuggtrr 1 I lest Result ! I Symbolic I

Comparators frecullorl Todr

Figure 2: SDW Structure Model.

33

ORIGINAL PAGE IS
03 EOOR QUALITY

called R-nets, and then simulating the timing feasibility of the stated
requirements. Although specifically designed for concurrent and real
time software systems, EREVS is an effective aid in developing well
stated and feasible requirements for all types of software systems.

In addition to these tools, the SDW uses the standard VMS avail-
able tools to perform the required compiler, linker, editor, debug-
ger, comparator, and text processing functions. Moreover, DEC’s
Program Development Tools consisting c f programming tools and
project management tools can easily be integrated into the SDW.
The programming tools include the language-sensitive editor (syntax-
directed), the source code analyzer, the symbolic debugger, and the
performance and coverage analyzer (PCA). The project management
tools include the code management system(CMS), the module man-
agement system(MMS), the test manager and the common data dic-
tionary(CDD). Other DEC software products supporting software
development include their data-base management systems (DBMS,
Rdb/VMS, Datatrive), forms management system(FMS), and the ap-
plication control and management system(ACMS).

With this set of components established, the SDW Executive is
developed with common interfaces to specific tools. The SDWE is a
menu and command driven interface to all of the SDW component
tools but also provides access to all of the facilities provided by the
VMS operating system.

In order to structure the accessing of the SDW component tools,
these tools are assembled into groups by related functions. The top
level menu of the SDW allows for the selection of any of these func-
tional groups. Once a functional group is specified, all of the member
tools of that group can be accessed through a new menu.

At any level in the hierarchy formed by these menus, any of the
standard VAX DCL commands may be executed. Furthermore, mul-
tiple levels of the menu hierarchy may be traversed at any time by
simply entering the appropriate command string on a single command
line.

On-line help facilities are provided for all levels of the hierarchy.
These help facilities provide either general help on the environment,
specific help information on any of the currently accessible commands,
and access to the VMS standard help facility. Additionally, utility
functions are provided to enable/disable the automatic displaying of
current menus, to change the type of terminal in use, and to alter the
manner in which the development data is stored.

Specific SDW component tools may either by accessed through
the menu structure and command or by using special commands to
execute the tool directly, thus increasing the flexibility of the envi-
ronment.

provided by this implementation by
establishing isolated data storage areas for each supported develop
ment effort. However, these data storage areas do not at present
provide for the full integration of the data that is defined by the
preservation of the relationships between the different development
products.

The SDW Executive was also designed to be easily modifiable.
Thus, new tools may be easily incorporated into the environment.
Furthermore, a full set of documentation is provided on the SDWE.
This documentation includes a user manual, an installation guide, and
a maintenance guide that is to be used to modify and tune the envi-
ronment for specific applications. The SDW is currently installed on
the AFIT research VAX-11/780. Users have found the environment
to be very easy to learn and use.

Development data storage

Expert Systems and Software Engineering
The integration of artificial intelligence concepts into software engi-
neering environments currently focuses on expert systems. Specific
expert subsystems must be developed for each phase of the software
lifecycle to assist in design development and selection, structural for-
mulation, algorithm determination, structured programming imple-
mentation (object-oriented, abstract data types, control structure),
module and system testing and maintenance. An initial effort t e
wards defining an associated environment resulted in a modification
of the SDW executive using OPS5 for expert system inclusion [12].

Also, this initial-design focused on the analysis and diagnosis of mod-
ules in terms of coupling and cohesion standards.

Another aspect of AI integration into software engineering envi-
ronments was the development of a natural language interface [13].
This activity generated a natural language interface called “COIN”
which uses Lisp and the Flavors package. This initial effort empha-
sized the interface to the data dictionary (DD) package mentioned
previously since the perspective user would have a considerable dia-
log with the DD in defining detailed entries and preforming queries.

Additional efforts involve the use and analysis of transformational
systems that can encompass knowledge-based capabilities for software
production. Example efforts include the Knowledge-based Software
Assistant (KBSA) and REFINE, a wide spectrum language for the
development phases of the software lifecycle. Incorporation of wide-
spectrum languages into a software environment may be feasible and
economical which could be part of environment enhancements.

SDW Enhancements
The first enhancement is to extend and refine the SDW tool set to
provide a full array of capabilities to support the entire software life
cycle. This tool set must also be refined so that only those tools that
are truly effective and useful remain part of the environment. Also,
a user should be able to specify that only a certain sequence of tools
be used in a given project and the SDW would provide only that
environment, such as for Ada real-time applications.

The Pre-Fab Software Description and Product Data Bases must
be completely developed and populated to support the prefabricated
programming concept. After the establishment of a fairly static tool
set, a schema for the Project Data Bases can be developed. These
data bases will hold all of the development data for the products of
each software development effort aa well as the relationships between
the different products of each effort. An initial project in this regard
generated a prototype data dictionary [14] for the SDW using the
DBMS Ingress. This effort was further enhanced with the System
690 project under the UNIX operating system.

The scope of the support provided by the SDW is also to be ex-
panded to aid the software development manager in planning and
tracking the development effort. Responses to queries on the Project
Data Bases will provide the software development manager with near
real time feedback on the status of the development effort.

The current implementation of the SDW is quite flexible and an
easy to use aid for the development of quality software products.
This initial implementation provides extensive support for the pre-
implementation stages of software development. The environment
effectively increases the cognitive and notational powers of the soft-
ware developer.

The ultimate implementation of the environment will support the
entire software development life cycle. Much of the tedious consis-
tency and completeness testing of software will be automated in this
environment. Furthermore, provisions will be included to store and
maintain all development data in a fashion that preserves traceability
between the products of the different life cycle stages. Such an envi-
ronment would be a significant breakthrough in the production and
maintenance of quality software systems.

Distributed SE Environment

Using some of the SDW concepts, a distributed software develop
ment environment called SYSTEM 690 is being developed to support
classroom and research programming projects as well as research into
environment issues. SYSTEM 690 addresses the same objectives of
the SDW but in a distributed environment. The computer environ-
ment used by SYSTEM 690 is both heterogeneous and quite extensive.
Most of the software development is done on a network of VAXes and
Sun workstations running Unix and interconnected by aTCP/IP Eth-
ernet, and on a series of DEC VAXes and MicroVAXes interconnected
by DECNET. The two networks are interconnected by a gateway. All

34

of these systems are also accessible via a Gandalf RS-232 switch that
is connected to a variety of terminals and PCs in offices and labs,
and through dial-up lines to any number of home computers. Soft-
ware development is performed on these computers under a variety of
operating systems using Ada, C, Pascal, Lisp, Prolog, Fortran, and
assembly language.

In SYSTEM 690, specific emphasis is placed on performance mon-
itoring and analysis to provide needed data in such areas as tool per-
formance, tool usage, user acceptance, and the nature of the workload,
both in terms of the size of data and frequency of use of the tools.

Methodology
In order to put a production software system in operation and to de-
velop tools to support that system, the methodology selected was that
mentioned in the SDW discussion, namely the use of DOD Standard
2167 and the ICAM program structure. Again, this methodology
was selected with the goal of supporting the automation of the son-
ware development process, and is centered around the comprehentive
data dictionary system that documents all aspects of the lifecycle
as discussed previously. Each phase of the lifecycle requires it3 own
data dictionary entities, an action entity and a data entity. Figure 3
shows an example of the information contained in these entries for
the design phase. A central concept is that the data dictionary pro-
vides the complete definition of the entire development. In each of
the three major phases, however, some form of graphical representa-
tion provides a more human understandable means of generating and
viewing the data dictionary information. Thus the IDEF model was

Example Da ta Dictionary Entry for Process

NAME: Process Message
PROJECT: NETOS-IS0
TYPE: PROCESS
NUhlBER: 4.0.1
DESCRIPTION: Procenses a NETOS message.
INPUT DATA: msmtr
INPUT FLAGS: NIde
OIJTPUT DATA: Nolle
OU'I'PUT FLAGS: error2
ALIAS: PROC-MSG

COMMENT: Used in earlier deaian. ~~~~~ ~~ ~

CALLING I'ItOCESSES: Process Gessoges and Data
PROCESSES CALLED: Decompose Message

Process Network 4 Messages
Determine Channel Number
Build Queue Buffer for Qty = 1
P u t Buffer in Queue
Level 4 Cleanup

Decompose message.
If network message

else

AbGORITHM:

Process Network 4 Messages

Determine chnnnel number
Build queue buffer
Put buffer in Queue

Cleanup Level 4.

IlEFERENCE TYPE: SADT

REFERENCE TYPE: Text.

11EFERENCE: PROCESS SPOOLER MESSAGE

REFERENCE: Smith's Algorithm's, pp. 23-24.

VERSION: 1.1
VERSION CHANGES: Added "Level 4 Cleanup"

A U T H O R T. C. Hartrum
DATE: 11/25/a5

chosen as developed under the ICAM program. Figure 4 shows a typ-
ical analysis diagram. The underlying abstract data is stored as two
types of data dictionary entries: one for each acfivity (each box on
the diagrams) and one for each data elemenf (each arrow on the dia-
grams). Information relating to the graphical layout of the structured
analysis diagram is not considered part of the requirements analysis
information, and is not included in the data dictionary.

For the design phase, the primary graphical representation is a
structure chart. This is also documented by two types of data dic-
tionary entries: one for each process (each box on the diagram) and
one for each parameter, as shown in Figure 3.

The design process used with SYSTEM 690 uses transform anal-
ysis and transaction analysis to evolve the requirements specification

'into a modular design. Detailed design is accomplished by using PDL
in the algorithm section of the process data dictionary entry. Cur-
rently this is a free form psuedo-code, but in the future will be an
Ada based PDL. Note that an Ada software engineering environment
called ARCADE is being developed with the SDW and SYSTEM 690
efforts.

Similar to the SDW, the primary graphical representation in the
implementation phase is the structure chart, representing the struc-
tural relationship between the actual code modules and showing the
actual passed variables. This is also documented by two types of data
dictionary entries: one for each module (each actual code module, sub-
routine, or function) and one for each passed variable. Of course, in
this phase there is another representation of the eKort, that of the
code itself. The implementation process used is top-down coding,
with integrated testing.

Example Da ta Dictionary Entry for Parameter

NAME: mess-parts
PROJECT: NETOS-IS0
TYPE: PARAMETER ~~~ ~

DESCRIPTION: Decomposed message parameters.
DATA TYPE: Composite, C atructure .
MIN VALUE: None
MAX VALUE: None
RANGE O F VALUES: None
VALUES: None
PART OF: None
COMPOSITION SRC

DST
SPN
DPN
USE
QTY
BufTer

ALIAS: Message Pa r t s
WHERE USED: Decompose Message to Validate Parts.
COMMENT: Part of earlier design

ALIAS: messy-parts
WIIERE USED: P M S ~ from Dump Da ta to Flush Buffer.
COMMENT: Part of existing library.

REFERENCE: MSG-PARTS . ~~ ~~ ~

REFERENCE TYPE: SADT
VERSION: 1.2
VERSION CHANGES: Component USE added
DATE: 11/05/85
AUTHOR T. C. Hartrum
CALLING PROCESS: Process Message

PROCESS CALLED: Decompose Message(parts-list)
DIRECTION: u p
1/0 PARAMETER NAME: parts-list

CALLING PROCESS: Process Message
PROCESS CALLED: Process Network 4 hlessnges
DIRECTION: down
110 PARAMETER NAME: par ts

PROCESS CALLED: Build Queue Buffer for QTY = 1
DIRECTION: down
I / 0 PARAMETER NAME: params

CALLING PROCESS: Process Measage

Figure 3: Design Phase Data Dictionary Example.

35

Figure 4: Example Structured Analysis Drawing.

SYSTEM 690 Approach
When considering an integrated environment, one can view integra-
tion from several perspectives. As shown in Figure 5, this includes in-
tegration of tools a t the user-tool interface, integration between tools
within any lifecycle phase, and integration across the entire lifecycle.

User level integration includes both consistency in interacting with
the operating system (e.g. invoking tools via a menu) and consistency
with interactive tool interfacing. This involves operating system spe-
cific issues a8 well as keyboard and display compatibility problems.
It is planned to integrate the SDW environment with SYSTEM 690
to provide this level of integration, but this has not been done yet
since in a heterogeneous environment a different version is required
for each system.

Integration between tools is basically a question of compatibility
of data, the ability of one tool to use the data generated by another
tool. Compatibility itself can be viewed at a number of levels. In
its most abstract form, compatibility of information is of concern.
This is the biggest bar to integrating commercial tools from different
vendors. Tools that use the same logical information may not have
file format compatibility (a problem which frequently occurs when
trying to integrate documentation from different word processors).
Finally, two tools may not even have physical data format compati-
bility. Floppy disks written on one workstation may not be readable
on a different one.

The tool-tetool interface problem is being attacked at several
levels. Compatibility of information is being controlled through the
use of the data dictionary. File format problems are being handled
through the use of a centralized database. The data dictionary defini-
tions described earlier are decomposed into a set of third normal form
relations which are maintained using the Ingres database management
system. A data manager translates between the database and the file

formats of specific tools. In order to minimize the amount of trans-
lation needed, a standard file format is used for all tools developed
in-house.

Physical file format difficulties are avoided by using networking for
all file transfers. This is available to any P C or workstation with a se-
rial port using standard communication protocols, as well as between
workstations and minicomputers via the Ethernet.

Integration over the lifecycle requires appropriate tools that are
compatible with data used in two or more phases, and additional
mapping data which relates items in the two phases. Currently there
are no multi-phase tools in SYSTEM 690. It is anticipated that any
such tools will be developed in-house, so that the mapping problem
can be handled locally.

SYSTEM 690 Tools
Several classes of tools are in use or being developed for SYSTEM
690 which evolved in part from the SDW and other commercial tools.
They include generic tools applied to the software engineering area,
specialized graphical editors that allow creation or modification of
data in a more graphical problem-oriented format, static analyzers
that check various aspects of an existing design, and computer aided
design (CAD) tools, including expert system and other AI techniques,
that greatly assist the analyst or designer.

A number of old and new tools available for computers can be
used to support the software development cycle. Some of the most
useful are conventional text editors. Classically used for writing code
and documentation, their big advantage is the universal availabil-
ity and compatibility of text editors on all systems from micros to
mainframes. By defining all standard file formats to. contain only
ASCII characters, a great amount of compatibility can be achieved
in a heterogeneous environment. More sophisticated word processors
are sometimes used to develop user's manuals, reports, and other
such documentation. Here compatibility is maintained by defining a
standard format (e.g. troff or 'QX).

In terms of direct support for the SYSTEM 690 methodology,
several tools have been developed to support data dictionary main-
tenance across all phases of the lifecycle. Although graphical tools
to manipulate the data dictionary are being developed, they will be
restricted to the more powerful graphics workstations. Therefore, we
have developed a fill-in-the-blank forms editor for data dictionary en-
tries that runs on a full range of computers [15]. The tool uses its
own abbreviated ASCII files to store the data. Other data dictionary
support tools include translators to convert between different file for-
mats and the relational DBMS, and utilities for printing or viewing
entries in the standard human-readable format [16].

To support the requirements analysis phase, an interactive struc-
tured analysis diagram editor is being developed on a SUN 3 work-
station [17]. This tool makes it easy for an analyst to create and
maintain such a diagram, while simultaneously updating the corre-
sponding data dictionary entries. Similarly, an interactive stcucture
chart editor is being developed to support the design and implemen-
tation phases.

Having all of the lifecycle data stored using a standard database
manager makes it easy to develop static analyzers, tools that can ex-
amine the existing data dictionary information for consistency within
a lifecycle phase and between phases. For the implementation phase
there is also a style checker to analyze source code for adherence to
local standards.

True computer-aided design tools are under development that will
provide more than the ability to easily enter or examine design data.
Several extensions are planned to the structured analysis diagram ed-
itor. These include the automatic placement of symbols and routing
of lines, and software to help the analyst do the functional decompc-
sition. An initial effort along these lines is a program that examines
the data dictionary, and with interactive input from the designer an-
alyzes the coupling and cohesion in a decomposition [12]. Similar
extensions are planned to the structure chart editor. A planned ex-
tension to bridge the gap between the requirements analysis stage
and the design stage will display a structured analysis diagram in

36

User
to
Tool
Integration

Tool
to
Tool
Integration

I
Lifecycle Integration

ORTGIN24L PAGE IS
OF POOR QUALITY;

Figure 5: Types of Integration.

one window, and use transform and transaction analysis, along with
expert systems techniques, to help the designer map directly into a
structured design.

data on the software engineering process. Tools are instrumented to
collect usage and performance data to allow analysis of usage pat-
terns [18] [15] [16]. The start and stop times of not only each tool,
but of specific tool subfunctions, are recorded and stored in the In-
gres database. A standard form for measuring user satisfaction with
a given tool has been developed (191. Standard statistical analysis
packages are then used to analyze the data. A study is underway to
determine what metrics are most needed to support the aA1dysis of
relative productivity for different software development methodolo-
gies.

Testbed Considerations
A second objective of SYSTEM 690 is to provide a software engineer-
ing testbed to allow research into software engineering methodologies,
The primary emphasis to date has been to develop ways of collecting

37

Experiences and Plans
The first attempt at providing computer support was to create data
dictionary entries in human-readable format using standard text ed-
itors and to store them in a common directory on a central VAX.
Although this facilitated compatibility among the systems, the form
of the files made it difficult to analyze or control data content with
software tools.

The next version was a complete move t o a centralized system.
The data dictionary database was implemented under Ingres and an
interactive editor was developed to run on the VAX that directly
interfaced with the database. Although the database greatly simpli-
fied and encouraged the development of static analyzers and other
tools, the load on the VAX from other applications slowed the editor
response time to the point that users became frustrated. This ex-
perience with user dissatisfaction with response times made it clear
that even P C level workstations are preferable for interactive tools.
The development of the formbased editor for the PC has been well
accepted.

Most of our user experience has been in the design phase. The cor-
responding data dictionary hss evolved with use and experience. We
found several cases, mostly in the area of passed parameters, where
what had been adequate for human understanding lacked the needed
precision for machine readability. This required some augmentation
of normal design techniques with rules of constraint to force a consis-
tent and non-ambiguous design.

Finally, system reliability has turned out to be a critical issue.
Although work can still be done when some components of the sys-
tem are down, it is also true that there are more things that can

.go wrong. The communications network has been our biggest prob-

the ability to use “uucp” or ”kermit” over RS-232 backup links has
proved essential. Critical items, such as laser printers and formatting
software should be available on more than one machine.

The real future of the software engineering environment is in the
use of graphic workstations coupled with AI techniques to create tools
that truly aid the designer across all stages of the lifecycle. This
requires a combination of interactive tools on heterogeneous work-
stations to provide a responsive user interface coupled with larger
machines for more computationally intensive AI routines. Research
issues include the determination of where AI can be applied in the
. design process and development of the corresponding expert knowl-
edge, along with the development of techniques for integrating the
heterogeneous environment in a manner transparent to the user.

The other primary research thrust planned is to utilize the in-
strhmentation of the software engineering testbed to evaluate differ-
ent software development methodologies, including rapid prototyp-

‘ing and object oriented design. In addition, investigation of tools
and methodologies are needed for several specialized software devel-
opment environments. These include VHDL, database design, AI
systems, and parallel processing. Also being considered is the possi-
ble inclusion of other Computer-Aided Software Engineering (CASE)
tools into the environments where source code is available. Exam-
ples include CASE packages from Textronix and McDonnell Douglas,
DEASEL: an Expert System for Software Engineering (NASA) and
the Software Engineering Testbed (Boeing/ Carnegie Group).

lem. Although the primary network is the 10 megabyte/sec Ethernet,

References
Department of Defense. Defense Sysfem Software Develop-
ment Military Standard DODSTD-2167, Department of De-
fense, Washington, D.C. 20301, June 1985.

Steven M. Hadfield. An Inferaciive and Aufomafed Software De-
velopmenf Envimnmeni. Master’s thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, December 1982. AD-
A210 920.

L. Osterwell. Software environment research: directions for the
next five years. COMPUTER, 14(4):35-43, April 1981.

Robert L. Glass. Persistent software errors. IEEE Trans. on
Softwan Engineering, SE7(2), March 1981.

A. Wasserman. Automated development environments. COM-
PUTER, 14(4):7-10, April 1981.

Douglas T . Ross. Structured analysis (sa): a language for com-
municating ideas. IEEE Zhnsacfions on Software Engineering,
SE3(1):16-34, January 1977.

An Introduction io SADT: Struciund Analysis and Design Tech-
nique. Softech, Inc., Waltham, Mass., 1976.

Some&, Inc. Iniegraied Compuier-Aided Manufacturing
(ICA M) Function Modeling Manual (IDEFO). User’s Man-
ual UM 110231100, Materials Laboratory, Air Force Wright
Aeronautical Laboratories, Air Force Systems Command,
Wright-Patterson AFB, OH, June 1981.

Kevin b e . Developmeni of Iniemciive Compufer Gmphics
Softwan Sysfem and Graphics Took. Master’s thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, December
1982.

R. Balzer, N. Goldman, and D. Wile. On the transactional im-
plementation approach to programming. In Proceedings, 2nd
Internafional Conf. on Soflwan Engr., Long Beach, CA., 1976.

Meilir Page-Jones. The Practical Guide io Structured Sysfems
Design. Yourdan Press, New York, 1980.

David W. Fautheree. A n Analysis Tool in a Knowledge Based
Software Engineering Environment. Master’s thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, March
1986. ADA172 407.

[13] Stephen A. Wolfe. A Naiural Language Processor and Iis Appli-
cation to a Dafa Dicfionary Sysfem. Master’s thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, December
1985. AD-A164 026.

[14] Charles W. Thomas. An Auiomafed/Inferacfiue Software En-
gineering Tool to Generaie Data Diciionaries. Master’s thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH,
December 1984. AD-A152 215.

[15] Jeffrey W. Foley. Design of a Dafa Dicfionary Edifor in a Dis-
iribufed Software Development Environment. Master’s thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH,
June 1986. ADAx172 406.

(161 Charles W. Hamberger, Jr. Analysis, Definition, and Implemen-
fafion of a Network-based Microcompufer Software Development
Environment for fhe AFIT Digifal Engineering Laboratory. Mas-
ter’s thesis, Air Force Institute of Technology, Wright-Patterson
AFB, OH, March 1986. AD-A172 781.

(171 James W.Urscheler. Design of a Requirement Analysis Design
Tool Infegrafed with a Dafa Dicfionary in a Distribuied Software
Development Environmeni. Master’s thesis, Air Force Institute
of Technology, Wright-Patterson AFB, 011, December 1986. AD-
A177 663.

(181 Thomas C. Hartrum and Charles W. Hamberger, Jr. Develop-
ment of a distributed data dictionary system for software devel-
opment. In Proc. of IEEE 1986 Naf’l Aemspace and Elec. Conf.,
Vol. 3, pages 648-655, Dayton, OH, May 1986.

[19] Thomas C. Mallary. Design of the Human-Computer Inferface
for a Compufer Aided Design Tool for fhe Nomali-afion of Rela-
lions. Master’s thesis, Air Force Institute of Technology, Wright-
Patterson AFB, OH, December 1985. AD-A164 100.

38

