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Introduetlon

The behavior of a wall jet flowing around a curved surface has been the subject of

study for almost two hundred years following the first observations of Young (1} in 1800.

Practical application of this phenomena, popularly known as the Coanda effect, have been

pursued in more recent times with a view to delaying separation of the boundary layer on

lifting surfaces by using a wail jet over a rounded trailing edge: the wall jet causes the

flow to remain attached to the surface, displaces the rear stagnation point and induces

additional circulation, and therefore produces additional lift on the surface. The use of

this phenomena in the design of circulation control wings (CCW) has received considerable

attention in recent years and has been described by a number of investigators (see for

example Wood {z} and Englar(S)).

Despite the fact that the phenomena is being used in practical applications to wing and

rotor design the understanding of the properties of wall jets is still limited and depends

primarily in experimental information regarding the turbulent mixing, its effect on the

spreading rate of the wall jet and the corresponding deceleration of the flow as it proceeds

along the wail. A thorough review was made by Launder and Rodi {4} in 1981 of available

data for wall jets adjacent to surfaces of plane, cylinder and logarithmic spiral surfaces

and substantial use may be made of this information to distinguish the influence of wall

curvature, and rate of change of curvature in the stream direction, on the spreading rate

of the jet. This information together with data from the same review on the mean velocity

profile in the wall jet provides the basis for checking theoretical models of the flow.

In the present paper an attempt is made to formulate the simplest possible model for

the flow of a wall jet emanating from a two dimensional source into quiescent surroundings

in the presence of a wall of arbitrary shape. The method uses self similar profiles for the

mean velocity together with a simple eddy viscosity model. The streamwise and radial

momentum equations are integrated across the wall jet flow to give an expression for the

momentum balance including the effect of the pressure gradient induced by the rate of

change of surface curvature. The streamwise momentum equation is also evaluated at the

point of maximum velocity to provide a second equation and thereby permit a solution

for the two unknown quantities b, the jet half width and u,,, the maximum velocity_

This approach provides approximate closed form solutions for the flow of the wall jet over

surfaces of various shapes (for quiescent surroundings), and in particular permits a direct

comparison with the available experimental results for plane, cylindrical or logarithmic

spiral surfaces.
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The wall jet is considered to comprise two parts: an inner flow _ljacent to the wall

having a highly non-linear velocity profile characteristic of a turbulent wail flow, and an

outer flow having a velocity profile more typical of a free turbulent plane jet.

The primary parameters that describe the flow are shown in figure 1. The jet emerges

from a point source into a fluid at rest and spreads, increasing its width and decreasing

its velocity due to turbulent diffusion in the jet and friction at the wall. At a distance s

downstream of the jet exit the velocity to can be expressed as

u = C1)

where um is the maximum velocity, occurring at y = ymCs), and b = bCs) is the half

width of the jet (at which point u = _u,).

The velocity profile in the outer flow (y > y_) is a_umed to take the form:

where _ = y/b. This velocity profileis suggested by the classicalfreejet solution

found by Tollmlen, modified to give u = u,. at _ = _m. The constant k isdetermined such
I

that u = _u,_ at _ =lCY = b), thus

k = tanh-t (--_) = .8814 (3)

The velocity profile for the inner flow is assumed to depend on the variable (_/_m)x

as suggested by turbulent wall flow, and is chosen to give a maximum value tt = tim at

= _m: the following profile satisfies these conditions

The value _m, giving the location of maximum velocity, is determined by matching

the second derivative of the velocity profiles as given by equations (2) and (4), (the first

derivative is zero since this is the maximum velocity point).

The result is written

-. (I+k.) (s)
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Before proceeding with the analysis, a comparison is made in figure 2 of the velocity

profiles with the experimental data of "l_ailland (6)(s). The data are typical of those taken

by a number of authors for wall jet flows over plane and curved surfaces and show that

the assumed profile given by equations (2) and (4) is reasonable. Additionally in figure 3

a comparison is made of _,_, given by equation (5), with the experimentally determined

values given by Forthmann (7), Sigalla (s) Bradshaw & Gill (°), Pate] (z°) and Giles (ll). All the

data falls within a band .14 < _m < .16 corresponding to 7 > n > 6 for Reynolds number

R, in the range 10 4 to 10s; thus the values of n are consistent with those expected for

turbulent wall flows.

In this paper the two primary flow variables to be determined are the jet half width,

b, and the maximum velocity u_. The continuity and momentum equations for an incom-

pressible fluid are written

+ (h_)= 0 (6)

and

hu_ + hv_-_(hu) - -h ap (7)

where

"_ -1hap (e)

h=l+y/R

Equations (6) to (8) can be combined to give

,_.(,, )+ _ _. = -_ ) (o)

neglecting terms of 0 (_T). Integration across the flow gives the integral form of the

momentum equation:

d 1 dR+ =-.o/, c,o 
This equation retains the term which reflects the curvature-induced pressure gradient

which may be large compared with to�p, the wall shear stress.
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Substitution of the velocity profiles (equations 3 and 4) into the integrak of equation

(1o) gives

(11)

where

2

A, = (l + 3.)(1 + kn) -l

1 4 1 ' ]+_n+l (1+ kn) -2

From equation (II) itcan be seen that in the absence of curvature effectsthe wall jet

momentum (bu_) decreases with distance due to skin frictionat the wall. However for a

wall of decreasing radius of curvature (_, < O) itispossible for the wall jet momentum

to increase with distance along the wall. This willoccur if

dR) 1b= --_s > C/c._ -_

An approximate form of equation (11) valid for large n and for (7/-, 0 may be written

1 d (log2-_) b' dR

_,_ _ (bu_) -4- Ic _z _ = 0
(11a)

a result which is applicable for large Reynolds number.

Since there are two unknown quantities in equation (11) it is necessary to use a second

relationship in order to determine b and urn. It is convenient to use the momentum equation

(7) evaluated at the point of maximum velocity, (ie where u = u., -_ = O) which may be

written

u_'_8 + -_ + p Ssj. = _ + .
(12)

The terms on the left hand side may be written in dimensionless form, neglecting

terms of O(b/R) 2 as follows:
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and

I d 2
-- 2(1 +l[-_.'_s(bu')-_slb/Rkn)

Finally,

b lap b d [£°°u2 y]

[____,.___s(bu.) dR]

_n b 1 d 2 b

Thus the left hand side of equation (12) becomes

] i/ 11 + kn -_.'_s (bu_) - -_ 1 1 -_ kn b/R "_s

2(n) b2dRS2ds

In the limiting case of large n this expression simplifies to

1 1 d db 4 _ 2dR

In order to evaluate the right hand side of equation (12) it is necessary to express I" in

terms of u through an eddy viscosity ¢ based on a length scale b(1- _,,,) and a characteristic

velocity u,. It is convenient to write

K 1 (13)
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where K is a constant to be determined experimentally. The function g(_) is chosen such

that g(_.,) = I and also satisfies the appropriate boundary condition at _ = O.

The shear stress takes the form

--'--(_ !
P

or, substituting for u = u,.l(_) and

Similarly,

f K
-- 4-_(I - _,.)[fg-b/R fg]

(is)

p_ _ = (l - _.) (fg + Cg') - (rg + H) (16)

where t denotes a deriwtlve with respect to _.

Since f(_,_) - g(_.,) = I and j"(_..) = 0 the foregoing expressions evaluated at

-- _.. combine to give:

h 0_r 2,) _ u____2_{_(1_ _.)(1 + _. b/R)f'_(1- b/R g'/f). -.I-O(b/R)'} (17). b

The quantity f" is evaluated from

as

2k=

f'((_')= (1- (_.),

Turning now to the function g(_) which describes the vaxiation with _ of the eddy

viscosity,g(_) isassumed to take the form:

_[_)= (U_-)'(_ + (i- _)U_-) (is)
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where the exponent m and the constant a are determined by satisfying the condition
that

p,---_=, = _ c/,,t _=o

Substitution for e and u gives

(since _ = kn)

Thus

O/km=l-landa=--
n K

and g_(_.) is evaluated as

(zg)

(20)

1 O/k)(1+ kn) (20a)

Thus equation 17 becomes

2b (hat 2, ,.{l+kn 1+

[1-n/2 + n2(Z - C-z_-3]

1 + kn 2K/Jb/R I

which has the form, for n large and C! --* O:

(21)
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Substitution into equation (12), and elimination of the quantity i d 2.--r _;(bu=) using equa-

tion (11a) gives finally, an expression for the spreading rate _:

_db=K I+ b/R + _-_d6 l°g2) (b/R _) b/R +O(b/R)2k (as)

In this equation K is to be determined experimentally for the flat plate (R --. co)

and the term involving (b/R_) is retained since this may be the same order as _- (for a

=_

It is clear from equation 22 that the influence of small curvature (small b/R) may be

quite significant since the quantity _ b/R appears in the expression for the spreading

rate.

Comparison with Experimental Results

In order to validate the foregoing analysis a comparison is made of the spreading rate

as given by equation (22) with available experimental results for two cases, namely, the

circular cylinder (R = constant) and the logarithmic spiral (_ = const ).

(a) Circular Cylinder

In this case equation 22 reduces to a linear differential equation for b/R namely

db [ n b/R]_s=g I+_

The solution to this equation may be written in the form

(72 )

"-.b/S
b g t (23)
, log(1+ b/n)

or, neglecting terms of O(b/R) s,

( n b/R) (23a)b/8= K 1+_-_

The constant K is determined from the flat plate wall jet (b/R - O) as K = .07, and

equation (23a) with k = .8814 gives
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b/o= O_(l+ 4b/a) (.= _) (23b)

b/a - .07(1 -t- 3.4b/R) (n - 6) (23c)

These expressions are shown in figure 4 together with the av'Mlable experimental re-

suits of Fekete (12), and Wilson and Goldstein (Is). In this regard the review by Launder and

Rodi(") suggest that the data of Fekete is possibly more representative of two dimensional

flow than that of Wilson and Goldstein. It is in fairly good agreement with the theoretical

expression for n = 6 (the Reynolds number is in the range 4 to 13 x 10s).

(b) Logarithmic Spiral

For a logarithmic spiral R/s = constant and equation (22) has a self similar solution

k [1 +" b/R]

b/s [1

,_ .o_[1+ SblRl
[1- b/_l

.0711+ 6.8b/R 1
[1-b/R]

(24)

(. = 7) (24a)

(n--6) (24b)

A comparison of these curves with the experimental results of Guitton and Newman (14)

and Kamemoto (15) is made in fig. 5. Here Guitton and Newman's results axe considered to

be most representative of two dimensional flow. Equation (24) reflects the much greater

increase of b/s with b/R for the logarithmic spiral, compared to the circular cylinder

equation (23a), and this trend is also seen in the experimental data.

Conclusions

From theforegoing analysis and comparison with experimental results it is seen that

the wall jet is influenced by three effects:

(a) The turbulent diffusion in the wall jet giving rise to a linear spreading rate db/ds =
K _ .07.

(b) A coupling between the eddy viscosity and the curvature of the wall arising from the

term _(eu/R) in the stress gradient and yielding a contribution of -_ - K_b/R.
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(typically this contribution is O(_5/R) for Reynolds numbers typical of laboratory

experiments), and

(c) A curvature-induced streamwise pressure gradient giving rise to a contribution of
2 dR

O(5/R) _-,. When _ < O this effect causes the jet momentum (bu_) to increase in

the streamwise direction and help confine the jet to a thin layer as it proceeds along

the surface. This is an inertial term, largely independent of Reynolds number, and is

an essential feature of Coanda turning of the flow.

These influences are additive and give an approximate relationship between the spread-

ing rate _, the half width of the jet and the surface radius of curvature R, of the form

which can be integrated to give b(s) when the wall shape R(s) is known.

The use of this result for the circular cylinder (R = const) shows good agreement

with the previous experimental results of several authors. This provides some confidence

that a simple algebraic eddy viscosity model, used in conjunction with the appropriate

expression for the shear stress (including curwture terms), is sufficient to describe the

primary features of the wall jet.
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Figure i. Geometry of two dimensional wall-jet.
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Figure 2. Comparison of assumed velocity profile with experimental data.
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Figure 3. Comparison of calculated values of Em for n = 6.7 with experimental
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Figure 4. Comparison of theory and experiment for the wall jet spreading rate,

b/S, as a function of b/R for circular cylinders.
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