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Two algorithms for channel routing using simulated annealing are presented. Many of the 

channel routers of the past are for the most part based on greedy algorithms in which special 

heuristics are applied to generate monotonic improvement. These algorithms are called greedy 

because they d e r  from inappropriate selections, getting stuck at suboptimal solutions. Simu- 

lated annealing is an optimization methodology which allows the solution process to back up out 

of local minima that may be encountered by inappropriate selections. By properly controlling 

the annealing proccss. it is very likely that the optimal solution to an NP-complete problem 

such as channel routing may be found. Previous simulated annealing channel routers only per- 

mitted transformations which resulted in a routing without overlapping between nonconnected 

wires. The algorithm presented here proposes very relaxed restrictions on the types of allow- 

able transformations. including overlapping nets. By freeing that restriction and controlling 

overlap situations with an appropriate cost function. the algorithm becomes very flexible and 

can be applied to many extensions of channel routing. The selection of the transformation util- 

izes a number of heuristics. still retaining the pseudorandom nature of simulated annealing. 

The algorithm has been implemented as a serial program designed for a workstation. and a 

parallel program designed for a hypercube computer. The details of the serial implementation 

are presented, including many of the heuristics used and some of the resulting solutions. A 

description of the Intel ipSC Hypercube is given, details on how the channel routing problem 

was partitioned onto the hypercube are discussed. and results for an example and some perfor- 

mance calculations are presented. Finally, some concluding remarks are made concerning the 

applicability of simulated annealing to the channel routing problem, and some possibilities for 

future research work are discussed. 
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INTRODUCI'ION 

1.1, Motivation 

During the past few years, we have seen the complexity of VLSI circuit designs increase 

rapidly. One reason for the increase in complexity is the technological advances in the area of 

mask production and fabrication. making it possible to use smaller and smaller devices. 

Another reason for the increase in complexity is the automation of the design process, through 

the use of Computer-Aided Design (CAD) tools. Without the aid of computer programs in the 

design process. the complexity of the design would be far too great for any engineer to handle. 

The design process can be divided up primarily into eight stages as follows [l]: 

1) System Specification (A4rchitectural Design 1) 
2) Functional Design (Architectural Design II) 
3)  Logic Design 
41 Circuit Design 
5 )  Circuit Layout 
6) Design Verification 
7) Ten and Debugging 
8) Prototype Test and Manufacture 

Stage five of the design process includes the placement and routing of components. There are 

usually three steps distinguished at this stage. namely : 

1) Cell Placement 
2) Global Routing of Wires 
3) Detailed Routing of Wires 

A great deal of research has been directed in these three areas over the last few years in an effort 

to develop algorithms to perform these complex tasks in a reasonable amount of time. All three 

of these problem are known to be NP-complete, which means that no known algorithm exists 

which can optimally solve any of these problems in polynomial (nonesponential) time with 
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respect to the size of the problem. For this reason, all the heuristics and algorithms that have 

been developed are only able to produce near optimal results. 

The detailed routing step can be modeled in many different ways. Some of these ways 

include: 

1) River Routing 
2) Channel Routing 
3) Switchbox Routing 

The focus of this thesis is to discuss a new algorithm for channel routing. 

1.2 Channel Routing Problem 

The general channel routing problem deals with placing wires connecting modules of a cir- 

cuit within a surface area of the chip using the connection layers provided by the given fabrica- 

tion technology. The surface area can be thought of as a general rectilinear shape. an L shape. a 

rectangular shape, or any other maskable shape. The wires may be fabricated using any of the 

connection layers available. 

In gate array and standard cell designs. the module placement step determines the positions 

of cell blocks in predetermined row sites on the chip. Space is provided between the rows of 

cells to connect terminals of cells to the respective terminals of other cells. These spaces are 

labeled channels. The global routing step then determines which wires to assign to be routed in 

each of the channels available. Finally. a detailed routing is performed on each channel to select 

the exact placement of conductors in the channel. These conductors are called nets. 

In this thesis, it will be assumed that the channel boundaries form a rectangle. and that the 

wire terminals are located at uniform spacings (grid based) along the top and bottom edges. 

Furthermore. only two layers will be used such that all horizontal net segments are routed in 

one layer and all vertical net segments are routed in the other layer. 

Under these assumptions. the goal then is. given a sequence of net terminals along the top 

and bottom borders of a rectangular channel. to determine a placement of the net segments so as 
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to minimize the size of the channel space and length or resistance of all connections made. An 

example of a terminal assignment for a channel is shown in Figure l.l(a). Figure l.l(b) shows 

one possible routing of the previous channel. In this figure. horizontal segments are shown in 

solid lines. vertical segments in dashed lines. 

The channel density is dehed  as the theoretical minimum number of tracks rquired to 

successfully and completely route a given channel. The density of any column is easily com- 

puted by counting the number of nets that must pass through the given column. The channel 

densify is then the masimum column density of all columns of the channel. Since this number . 

is channel dependent. it must be calculated for each problem. 

1 4 5 1 6 7  4 9 10 10 
~~ . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . .  .......... * ........ .<.. ..)... i... .>. .. <... .; ... .:. . ..; .... :... .. . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  .......................................................... . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  .. ...>...!... .>...! .... )...<. . ..f. ...: ....! .... >...! .... f .... . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  - - . .  

2 3 5 3 5 2 6 8 9 8 7 9  

(a> Terminal Assignment 

1 4 5 1 6 7  4 9 10 10 

(b) Possible Routing 

Figure 1.1. Example Channel with Density 5 
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Doglegging is a term used to describe nets that occupy two or more tracks of the channel. 

Each net consists of a set of horizontal segments and a set of vertical segments. There are two 

forms of doglegging: restricted and unrestricted. Restricted doglegging only allows a net to be 

split into two tracks at a column in which a terminal of the net is found. A simple way to 

model this is to break nets with more than two terminals (multiterminal nets) into two- 

terminal subnets. This is shown in Figure 1.2(a). Each subnet is free to occupy any track of the 

channel. and separations of tracks will automatically occur at  the columns in which terminals 

are found. Unrestricted doglegging allows a net to be split so that it occupies two tracks at  any 

point along the channel. This is shown in Figure 1.2(b). 

One effective graphical technique used to determine relative positions of nets with respect 

to each other is the vertical constraint graph WCG). Each net of the channel is represented by a 

node in the graph. A directed edge from vertex i to vertex j indicates thar in column c of th; 

channel a terminal pin for net i is located along the top of the channel and a terminal pin for 

net j is located along the bottom of the channel. In order to avoid overlap between the vertical 

segments of nets i and j , the track selected for net i must lie above the track selected for net j .  

Figure 1.3 shows the vertical constraint graph for the example channel of Figure 1.3. 

A A B 
I I 

I I 
I + 
1 I + I 

I 
I I 
I I 
I I 

A A B B 

(a) Restricted (b) Unrestricted 

Figure 1.2. Doglegging Esamples 
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Figure 1.3. Vertical Constraint Graph 

If a cycle exists in the vertical constraint graph. then it is impossible to successfully route 

the channel without allowing unrestricted doglegging. Figure 1.4(a) shows a channel example in 

which there is a cycle in the VCG. and Figure l.J(b) shows how unrestricted doglegging is used 

to avoid the cyclic constraints. 

The channel routing problem described above has been proven to be N-P complete. 

1.3. Previous Work 

The channel routing problem, in all of its various formulations. has been a focus of much 

research interest for the past 15 to 20 years. Most of the earlier work was directed toward wire 

routing of multilayered printed circuit boards. After the introduction of LSI and VLSI fabrica- 

tion methods. research intensity increased, with many new ideas presented. 

One of the first algorithms presented was Lee’s More Ruufer (21. Lee based his algorithm 

on the idea of wavefront expansion of a single net and selection of the shortest path found 

between the source and sink terminals. Some of the problems with this method include the 

large amount of memory required. the often inadequate wiring of the last nets to be placed. and 

the tendency to use excessive numbers of vias. Originally, the algorithm was intended for PCB 
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(a) Example 

1 2 1  3 

I I I I 
I I I I -. 
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I I - 

I I I 

4; 
I I t 

3 2  2 

(b) Solution 

Figure 1.4. Cyclic Constraint Problem 

routing, but was easily applied to rectangular channels in integrated circuits. 

The nest major contribution was nearly ten years later when Hashimoto and Stevens [3] 

introduced the Loft-Edge Algorithm. This algorithm routes one track at a time. trying to max- 

imize the use of the space in the current track. Nets are placed in a left-to-right fashion until 

the track is filled. The algorithm’s performance is strongly dependent on the order in which 

nets are placed and the presence of vertical constraints in the channel routing problem. 

6 
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Deutsch made several improvements to the Left-Edge Algorithm in his Dogleg Chcvvrel 

Router [4]. most notably being his inclusion of doglegging. Through an effective use of dogleg- 

ging and other improvements. he was able to achieve better results than with the Simpler Left- 

Edge Algorithm. 

A new approach taken by Yoshimura and Kuh [5] derived routing heuristics from graph 

theory concepts. Nets are first grouped according to the vertical constraint graph and an inter- 

val graph based on horizontal constraints. Next. merging takes place between groups of nets to 

minimize the longest path in the modified vertical constraint graph. Their results demonstrated 

a large improvement over the Dogleg and Left-Edge Algorithms, especially in the minimum 

number of tracks required and overall processing time. 

Around the same time. another heuristic-based router was developed by Rivest and Fiddu- 

cia [6] called the r e e d y  chumel rourer. This router applies the same principles as the Left-Edge 

and Dogleg routers do: however. the channel is scanned on a column-by-coiumn basis instead of 

track-by-track methods of the former. Unrestricted doglegging is allowed: however, it may be 

necessary to add estra columns on the end of the channel to complete the wiring. 

Another approach. which combines aspects of both track-by-track and column-by-column 

routers. was presented by Sangiovanni-Vincentelli and Santornauro. called YACR2. for "Yet 

Another Channel Router 2" [71. Instead of requiring extra columns at the end of the channel. 

this router may require extra columns in the middle of the channel. 

A new approach. taken by Bumein and Pelavin [8]. applies linear and dynamic program- 

ming to the channel routing problem which is decomposed hierarchically. The results they have 

presented show a further improvement over previous channel routers. 

A far different approach was proposed by Joobbani and Siewiorek [9]. They have applied 

principles of artificial intelligence and expert systems to the channel routing problem. The task 

of channel routing is divided into subtasks which are assigned to subtask esperts. The eiforts of 

these upens are then coordinated to produce high quality channel routine. 
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Shin and Sangiovanni-Vincentelli developed MIGUTY: A 'RipUp Md Reroute' Detailed 

Router in 1986 [IO]. Mighty is a very powerful router, able to route chaMek of various shapes, 

including switchboxes. Mighty is a two-layer router: however, vertical routing is not restricted 

to a single layer and horizontal routing to the other layer. Heuristics are applied for placing 

nets one at  a time, displacing some nets slightly to make room for blocked nets. and ripping up 

some nets currently placed to allow other nets to be placed first. 

Finally, another approach was taken by Leong, Wong, and Liu[ll] through the application 

of a new optimization technique called simulated annealing. Their routing program produced 

very good results: however, the program run time was far too long. 

The above papers were chosen because they represent the major research contributions and 

directions taken in channel routing over the past few decades. Then have been many other 

papers published not mentioned that discuss improvements to previous algorithms. theoretical 

bounds on channel routing, and less restricted problem Statements (including gridless and mul- 

tilayered channel routing). For a good set of references on channel routing, see the introduction 

to the book by Hu and Kuh (11. 

1.4. Tllesisoutline 

In the remainder of this thesis, research in serial and parallel algorithms for channel rout- 

ing based on the simulated annealing methodology will be presented and discussed. This thesis 

is organized as follows. Chapter 2 discusses the simulated annealing methodology and how it is 

applied to channel routing. Frst. simulated annealing is presented as a recent approach to solv- 

ing multivariate optimization problems. Xext. a previous application of simulated annealing to 

channel routing is discussed in detail. Subsequently. our approach to channel routing is 

presented. Finally, we discuss how to apply this approach to the basic channel routing problem 

and also to extensions of channel routing which include unrestricted doglegging, obstacle 

avoidance, and switchbox routing. Chapter 3 will dtst present the details of the serial imple- 

mentation of the channel router. After discussing some of the heuristics used. the results of the 
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serial version will be given. Chapter 4 will present the details of the parallel implementation of 

the channel router. The targeted parallel machine will be described, followed by descriptions of 

how the problem was partitioned onto the parallel architecture. Some of the heuristics will be 

discussed, and then the results will be presented. Finally, Chapter 5 will summarize the 

research accomplished and draw some conclusions from the work. 
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21. Simulated Annealing Methodology 

In 1983. Kirkpatrick. Gelatt. and Vecchi [121 demonstrated the similarities between sta- 

tistical mechanics and multivariate or combinatorial optimization and proposed a technique for 

optimization. Their technique, called simulated cuvreding, is analogous to the process of slowly 

cooling a bar of metal so that large uniform crystalline structures are formed. These crystalline 

structures represent the lowest possible energy states for that material. The probability of a 

given state xi with energy €(xi is given by 

where kb is Boltzman's constant and T is the absolute temperature. 

To simulate the annealing process of metals. one must first determine how the state of a 

system is defined. A methodology for permuting one state into another must be outlined. The 

selection of components to move can be made in either a purely random fashion or by applying 

specific heuristics generated for the problem at hand. An approximation to the energy of the 

states must also be formulated. usually in the form of a cost function that accurately represents 

the criteria to be minimized. Finally, a simulated temperature range and a schedule for decre- 

rnenting the temperature must be selected to achieve an optimal cost-to-temperature ratio 

throughout the annealing process. 

In 1953. Metropolis et d. E131 outlined an efficient procedure for deciding whether or not a 

given state will erist at a given temperature. At each step of the annealing process. a pseudo- 

random move is made and the resulting change in cost PC from the previous state to the new 

state is calculated. Then. the probability of accepting the new state is 
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With this negative esponential function. it is very likely that new states causing a cost increase 

will be accepted at  high temperatures, but not a t  low temperatures. Figure 2.1 shows the gen- 

d i z e d  simulated annealing algorithm which can be applied to many ditferent problems. 

It is precisely this aspect of simulated annealing that makes it attractive over other optimi- 

zation methods. Nearly all of the channel routers presented in the fitst chapter apply a set of 

heuristics in solving the problem. The problem with simply using heuristics is that they can 

easily lead the optimization to a local minimum which could be far  from the optimal solution of 

the problem. Once the local minimum is found. these algorithms are stuck. Simulated anneal- 

ing allows one to get out of local valleys. Figure 2.2 graphically shows local and global minima 

in a typical optimization problem. 

However, there is a price to be paid. Simulated annealing is basically an iterative trial- 

and-error algorithm, and calculating each cost change could be expensive in time and computing 

resources. It is critical. therefore, to determine the cost criteria carefully and eficiently. 

Set Initial Temperature and State 
WHILE (Stopping Criteria Not Satisfied) DO 

FOR Inner-hp-Count - 1 TO MAX DO 
Select Elements to Move 
Select Move Operation 
Calculate Cost Change 
Evaluate AccepdReject Based on Temperature and Cost 
IF (Accept) THEN 

Ad just Tempraturc 
Update State Information 

END Inner Loop 
END While Stopping Criteria Not Satisfied 
Display Final Results 

Figure 2.1. General Simulated Annealing Algorithm 
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Objective 
Function 

20 40 60 80 lo0 
Search Space 

Figure 2.2. Local and Global Minima in an Annealing Cost Function 

In their original paper, Kirkpatrick, Gelart. and Vecchi showed how to apply simulated 

annealing to the problem of chip partitioning, cell placement, global wiring, and the classical 

Traveling SOIeJNzn Roblem. Other researchers have applied simulated annealing to logic 

minimization [13]. cell placement [lS, 161, global routing [171, and detailed (channel) rout- 

ing [ll] since then. Furthermore. many of the simulated annealing algorithms have been paral- 

lelized with some very interesting results. Some of these include partitioning and routing [MI, 

standard cell placement [19,20.21]. macro cell placement [22], and floorplanning [23]. 

2.2 Simulated Annealing Applied to Channel Routing 

As was noted above. determining the optimal assignment of nets in the tracks of a channel 

has been proven to be an NP-complete problem. Although many people have reported good 

results from applying heuristics to the problem. we feel that far better results in general may be 

attained by applying simulated annealing. Heuristic algorithms are usually greedy algorithms 

in the sense that only downhill moves are accepted. If a local minimum is encountered any- 

where, these algorithms will accept that state as the minimum. even though a better state may 

esist. 
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2.2.1. The ikst simulated annealing channel router 

In 1985, Leong, Wong. and Liu presented the first channel routing algorithm based on 

simulated annealing [ll]. Their algorithm borrows ideas from the net merging router of 

Yoshimura and Kuh [SI. All nets of a given channel are divided into subnets and the vertical 

constraint graph G is formed. This graph is then partitioned into groups in which subnets in one 

group represent subnets placed in the same routing track with no horizontal overlap incurred. 

One of three different types of operations is then chosen randomly and applied to ran- 

domly chosen mbnets to create a new channel state. These operations (or moves) include 

displacing one subnet from one group to another. exchanging two mbnets in different groups. 

and extracting a subnet from a group to form a new group. Further. only legal moves are per- 

mitted: at no time will a move that creates overlap between two subnets be allowed. 

Lcong [24] has demonstrated that this set of moves is sufficient to perform all necessary permu- 

tations on the state of the channel. 

The cost function applied to determine the acceptance or rejection of a move is a combina- 

tion of three characteristics of the current and new states of the channel. These are 

1) Channel Width 
2) Longest Path in G 
3) Track Sparsity 

The channel width requires no calculation. the longest path is found by searching the modified 

vertical constraint graph 6 ,  and the sparsity of each individual track must first be calculated to 

find the overall sparsity of the channel. 

Since annealing takes a long time to complete. one option is to parallelize the process. If 

moves are to be attempted in parallel, some mechanism must be used to prevent two separate 

moves from causing an illegal channel state. An example of how this might occur is shown in 

Figure 2.3. 

Without shared data. there is no easy way to have parallel selection of mbnets and moves. 

.Also. after a set of moves is attempted in parallel. the modified vertical constraint graph. G ,  
I 
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1 2 Overlap \ , , 

I I 
I 
I I 

I P2 

2 1  

(a) Before 

2 1  

(b) After 

Figure 2.3. Example of Illegal Move 

must be modified to reflect each move. This is done before acceptance decisions are made, and if 

a subset of moves is rejected, reformulation must take place. Furthermore. it is difficult to 

incorporate avoidance of obstacles. such as power and ground wiring, into the vertical and hor- 

izontal constraint checking. 

For these reasons, we decided to investigate alternative approaches to applying simulated 

annealing to the channel routing problem. 

2.2.2. A ncw simulated annealing algorithm for channel routing 

The algorithm presented here is less restrictive during the annealing process than the algo- 

rithm of Leong, Wong. and Liu. First. an algorithm for channel routing is presented. Second. 

extensions of the channel routing algorithm to include unrestricted doglegging. obstacle 

avoidance. and switchbox routing are described. 
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2.22.1. channel routing 

Four aspects of our channel router will be discussed here. The first is the set of moves per- 

mitted to operate on a given channel state. All moves of subnets are legal. We do not distin- 

guish between moving a subnet to an empty area of a track or moving it on top of another sub- 

net. creating overlap that must later be removed. Overlaps of subnets are handled during the 

evaluation of the cost function. A similar idea was successfully used in the Timberwdf cell 

placement program based on simulated annealing 1151. 

There are two basic move types used, displacement and exchange. Displacement moves 

allow a subnet residing in a given track Ti to be moved to track TI. Track Tj is either an esist- 

ing track, or a new track. Displacing subnets to existing tracks is the source of the majority of 

the improvements made to the channel state. It is possible through this move to eliminate 

tracks completely by moving all subnets in the track to other tracks. If the annealing process 

gets stuck at  a local minimum, displacing subnets to a new track can be used to free up the 

channel enough to get out of the local minimum. 

The second set of moves permitted is exchange moves. These moves are also used to pro- 

vide more freedom to the annealing process. Although no tracks are ever freed up by this move, 

eschanging two subnets does provide improvements in cases where a sequence of two moves is 

necessary. -411 exchange moves can be subdivided into a sequence of two displacement moves. 

The first part displaces one subnet into the track of the second subnet. usually causing horizon- 

tal overlap between the two subnets. The second part displaces the second subnet to the original 

track of the first. Since overlap is usually induced momentarily. the first displacement would 

be accepted with an extremely low probability. Thus in situations exemplified by Figure 2.3. it 

is far better to use the exchange move than two displacement moves. 

The second aspect of our channel router is the cost function used for calculating the cost of 

a new channel state after randomly selected moves have been applied to the current state. Since 

the goal of our channel router is to provide a near optimal routing of the given channel. the cost 
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for a given state of the channel is a function of the amount of overlap between unique nets 

(OL), the length of the nets (NL), the width of the channel (WC), and the fraction of the track 

not occupied by nets (FU). For each proposed move. the cost change incurred if the move was to 

be accepted is calculated as follows and used to evaluate move acceptance: 

It is necessary to adjust the values of the parameters CY , B , y , and 6 to optimize the annealing 

process. These values should be determined through a study of numerous trials on a variety of 

problems. 

The third aspect of our channel router is the data structure employed. Since overlap is an 

important part of the cost function and requires the most computation. the design of the data 

structure should concentrate on providing efficient calculation mechanisms. Each net occupying 

a given track is given a structure in a linked list that specifies the grid points of the left and 

right endpoints of the subnet segment found in the horizontal track. Each track list is linked 

with the list of the preceding track to form a two-dimensional linked data structure. The sub- 

net structures in each track list are also sofled by leftmost gridpoint value so that searches may 

be terminated early without traversing the entire linked list. Linked list structures are used for 

the track data because the number of subnets in a track varies greatly from track to track. along 

with the total number of tracks varying throughout the annealing process. 

For the vertical segments of subnets placed in specidc columns. there is no need for linked 

lists (at least not in the case of channel routing) and so dynamically allocated column structure 

arrays are used. The number of columns is always fixed. and each column has exactly two end- 

points where net terminals are located. The only other way to place more nets in a column is by 

unrestricted doglegging. Since those numbers are very small it is possible to use fixed sued 

arrays. Figure 2.4 shows the linked list structure used for the track data. 
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Figure 2.4. Track Data Linked List Structure 

Finally, the fourth aspect of our channel router is the annealing schedule used. Many 

researchers have investigated optimal and efficient cooling schedules for annealing processes. 

The cooling algorithm can be modeled by Markov-Chains. One method has been developed to 

approximate the optimal cooling schedule by analyzing ked-length Markov-Chains in polyno- 

mial time [25]. Another method attempts to control convergence by adjusting the temperature 

so that the average cost decrease is uniform [26]. 

Initially we decided to take a simplified approach by applying a predefined temperature 

adjustment schedule. The annealing temperature T is adjusted based on the following schedule: 

Ti+l = ALPHA (T i )  x Ti 

in which the function ALPHA (TI ranges from 0.8 for large values of T to 0.95 for small values 
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of T. This schedule allows more permutations at low annealing temperatures to make many 

small improvements. To determine the initial temperature, 100 random moves with a positive 

cost change are evaluated without accepting any of them. The average cost change ACUST’, 

for those move is then calculated and TzNn is solved for as follows: 

The value 0.90 is used because at  the initial temperature we would like to accept 9Wo of all 

moves attempted. 

2.222. Extensions to the channel routing algorithm 

The algorithm presented above can easily be extended to include unrestricted doglegging, 

obstacle avoidance. and switchbox routing. 

To allow unrestricted doglegging it is necessary to add two more move .types to the set 

already used. one to split a selected subnet into two different tracks at a selected column, and 

one to restore a separated subnet back into a single track. Furthermore. a penalty or cost should 

be assessed to any move that creates unrestricted doglegs because of the additional vias required. 

In cases where cycles are found in vertical constraint graphs. it is necessary to allow unres- 

tricted doglegging. 

Since overlaps are allowed during the annealing process. the algorithm is also well suited 

for extending to include obstacle avoidance. Obstacle avoidance is important to consider if some 

sections of the routing area could be used for power or ground routing or any other element of 

the chip that must be placed there. By applying a very high cost to any subnet occupying those 

areas it is possible to retain the necessary freedom for the subnets at high temperatures to be 

piaced almost anywhere, and then as the temperature is reduced. those interferences can gradu- 

ally be eliminated. 
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Switchbox routing is similar to channel routing, except nets are given terminals on all sides 

of the rectangle instead of just two sides. Although this problem is much more diflkult than the 

channel routing problem, it is not as m c u l t  to extend our algorithm to handle switchboxes. 

Since there are many more constraints on the placement of subnets. it is even more important to 

allow the subnets to overlap during high temperature annealing. In some sense. at high tem- 

peratures it appears that each subnet is being placed in the best location independent of all other 

nets around it, and as the temperature is reduced, the effect of the other nets is slowly increased. 

The linked list representation of the track data could easily be replaced with a representation 

similar to that used for the column data. Unrestricted doglegging would have to be included to 

successfully route nearly all switchbox examples. 
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cHGpTER3 

SERIAL IMPLEMENTA'ITON 

3.1. Implementation Details 

The algorithm presented in the previous two chapters was implemented as a serial version 

with approximately 7,000 lines of C code and was executed on a Sun Microsystems 3/50 works- 

tation under Sun CPJIX 4.2. Release 3.4. 

3.2 Heuristics 

In the following we will discuss various heuristics used for different characteristics of the 

annealing algorithm. After a simple initial implementation of the simulated annealing algo- 

rithm, i t  was clear that many more improvements on the algorithm would have to be made. 

The initial placement of nets and selection of moves. nets. and tracks for displacement were ori- 

ginally made in a purely random fashion. It is necessary to include some intelligent heuristics 

to all of the selection processes in order to achieve convergence within a reasonable amount of 

time. In the following pages. we will attempt to describe those heuristics that were applied to 

the uniprocessor implementation. 

3.21. Initial placement 

One simple heuristic was used for the initial placement of the nets into tracks. First, nets 

with all terminals on the top border of the channel are placed in unique tracks. No horizontal 

overlap is created because subnets in the Same track always belong to the same net. Next. all 

nets that have terminals along the top and bottom borders of the channel are placed, one per 

track. Finally, all nets that have all terminals along only the bottom border are placed. one per 

track. 
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3.2.2. Move selection 

Sechen [15] reported that for a simulated annealing algorithm for standard cell placement, 

the number of displacement moves should outweigh the number of eschange moves. The ratio 

used was 5:l in favor of displacements. After a series of tests. we found that for channel rout- 

ing, a ratio between 15:l and 20:l produced better results. 

After further analysis of the moves selected at  low temperatures, it was decided that 

exchange type moves should be eliminated for temperatures below a given threshold. The cost 

function used is able to accurately predict overlap for a given subnet displacement. but due to 

the complexity of the calculations. the overlap between exchanging subnets is only approxi- 

mated. Because of this. overlap could mistakenly be created at  low temperatures, not allowing 

enough time for the annealing to gradually clear it out. 

3.23. Net selection 

Net selection could be one of the most important aspects of the annealing process. If the 

best placed subnets are always selected to be moved, it will be impossible to make any progress. 

Originally, the mbnet to be selected was drawn at random from the set S of subnets. This 

approach is analogous to walking a random path in a forest. hoping to find the way out. 

c. 

One solution to the problem is to apply a weighting to each subnet in the set S. forming S. 

Subnets currently incurring some overlap should be weighted much higher than subnets with no 

overlap. This can be reflected by adding a cost term proportional to the amount of overlap the 

given subnet has. The subnets with overlap should be selected more often, and overlap should 

be quickly eliminated. A similar idea was also use by Kling and Banerjee [27] for selecting the 

queue ordering of modules in an evolution-based standard cell placement (ESP) program. 

Another possible factor that could be included in the selection of subnets is the current 

position of the subnet with respect to the best possible placement of that mbnet taken individu- 

ally. This idea applies primarily to "n" and "u" shaped subnets as shown in Figure 3.1, or in 
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other words, subneiG having either both terminals along the top border of the channel or both 

terminals along the bottom border. There are two reasons for wanting these types of subnets 

drawn to their respective borders. The first is that it frees up the central tracks so that other 

subnets having both top and bottom terminals may use those. The second reason. more impor- 

tantly, is that it shortens the length of the conducting wires of those subnets. reducing the resis- 

tance and propagation delay. We decided to add another term to the approximated subnet cost 

to reflect the escess length that is proportional to that length. During the high temperature 

ranges of the annealing process. the effect of the length is much less than the effect of the over- 

lap, so to save computation time, the length computation is only added below a given tempera- 

ture threshold. 

One other subnet selection biasing technique is to increase the probability of selecting sub- 

nets in nearly vacant tracks. If it is possible to displace a subnet out of an almost vacant track, 

then it might be possible at the same time to eliminate that track and decrease the channel 

width. 

u u 

I I 
I I 
I I 

- 
I I 
I I 
I I 

n n 

Figure 3.1. "d and 'u" Shaped Subnets 
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3.2.4. Track selection 

Selecting the track to displace a subnet to is also a very important decision. Purely ran- 

dom selection is simply not enough to secure improvements quickly, especially at high tempera- 

tures when bad track selections are accepted equally well as good track selections. Note. how- 

ever, that it is important not to eliminate "bad" moves because they are an integral part of the 

annealing process. 

The first method for biasing track selection to consider is to increase the probability of 

selection of a track based on track vacancy. Since subnets are selected to vacate nearly empty 

tracks, the track selected for displacement to should be reasonably full. or few gains are made. 

Another heuristic applied to *n" and *u* shaped subnets is to bias the displacement track 

selection toward those tracks on the inside of the subnet. This approach should encourage such 

subnets to move toward the border tracks to reduce wire length and congestion. Again. it is 

important not to over-bias the selection because it is absolutely necessary that some subnets 

move away so that better subnets can be moved inward. 

In physical annealing, during very low temperatures. molecular movement is usually lim- 

ited to a very small area around the molecule's current position. This same idea has b u n  

applied by many in standard and macro-cell placement by simulated annealing [20.22.281. The 

idea can take on two forms: One. a fixed sized window enabled for temperatures below a thres- 

hold, and two, a variable sized window proportional to the temperature. The first is the easiest 

to implement. but the second is better suited to annealing because of its gradual changes. X 

thorough testing was not done to determine the feasibility of either approach: further research 

in this area is necessary. 

A more accurate way of determining which track to choose is to evaluate the anticipated 

overlap and wire length changes that would occur for each track under consideration. This 

estimated cost is then used to find the weighted probability of seiection for each track. 

Although this is one of the better heuristics. it is also very costly in computation time. 
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33. Results 

Due to the large number of variations possible in heuristics. a thorough testing of each 

heuristic independently was impossible. Many trial runs were performed combining many of 

the heuristics together and adjusting the parameters and heuristics by analyzing the output of 

each run. Instead of listing the results of every trial, this section will present the results of 

applying some of the "better" heuristics to one channel example in particular. 

The ratio of exchange to displacement moves to eschange moves was 15:l. The threshold 

temperature for cutoff of exchange moves and including net length in the cost calculations was 

20.0 At each temperature 500 iterations were performed. The density of the channel was 12. 

and there were 21 nets broken up into 39 subnets. 

The weighting applied to each subnet was a function of the overlap. the current track 

vacancy. and if below the threshold. the excess length of the mbnet. Subncts for displacement 

and the first subnet for exchanging were selected randomly biased by the calculated weighting. 

The second subnet selected for exchanging was biased by precalculating the resulting overlap for 

each eligible subnet. 

The tracks for displacement were biased by calculating the expected overlap if the track 

was selected and adding a constant factor to bias "n" and "u" shaped nets toward the appropriate 

border. N o  windowing was used in selecting either the tracks or subnets. 

Figure 3.2 shows the final solution for the 12 track example. Figure 3.3 shows the anneal- 

ing cost with respect to temperature for that example. Figure 3.4 shows the average overlap 

with respect to temperature. Finally, Figure 3.5 shows the average number of tracks with 

respect to the temperature. 
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Figure 3.2. Final 12 Track Solution - Serial 
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Figure 3.3. Annealing Cost vs. Temperature - Serial 
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Figure 3.4. Subnet Overlap vs. Temperature - Serial 
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Figure 3.5. Average Xurnber of Tracks vs. Temperature - Setial 
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PAMLLEL IMPLEMENTATION 

Once we demonstrated the viability of our simulated annealing approach to solve the chan- 

nel routing problem, we decided to implement a parallel version which was the original intent 

of this thesis. The parallel algorithm would serve to cut down the run time of the algorithm. 

The machine for which the parallel version is targeted is the Intel iPSC Hypercube. The iPSC 

was chosen because one machine is readily available for use here at  the University of Illinois for 

testing. However, even though a system was wailable. due to lack of time and resources. no 

testing could be performed on it. Instead, simulations were carried out using the Intel Hyper- 

cube Simulator, version 3.0 running on a Sun Microsystems 3/50 workstation. 

4.1. Hypercube Architecture 

A hypercube computer is a collection of P = Xv processor nodes interconnected by a 

binary N-cube topology. Each node of the hypercube is a self-contained computer with a cpu. 

memory. and communication hardware. Each node can communicate directly with exactly N 

neighbors through communications channels connecting adjacent nodes. Figure 4.1 illustrates a 

four-dimensional (16 node) hypercube, showing the nodes and communication channels between 

them. Each node is labeled with a unique N-bit binary number so that adjacent node numbers 

differ in exactly one bit position. 

The diameter of a network is defined as the maximum number of hops required to send a 

message between any two nodes. and the node CoMectivity is the maximum number of commun- 

ication lines required for any single node. For the hypercube, the diameter and node connec- 

tivity are both logz P. The hypercube offers a good balance between node connectivity and com- 

munication diameter. Furthermore, the topology of the hypercube allows a USCT to embed many 

dif€erent communication mappings such as meshes. trees, linear arrays, and smaller dimensional 
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Figure 4.1. Four-Dimensional Hypercube 

cubes. Each of the sixteen nodes of the available iPSC contains an Intel 80286 cpu. an Intel 

80287 numeric coprocessor. 4.5 MBytes RAM. and communication hardware based on the Intel 

82586 Ethernet Controller Chip. It is possible to have up to a seven-dimensional ipSC hyper- 

cube: however, such an array is difficult to draw and harder to visualize. 

The iPSC cube nodes are connected to a System Manager computer through which a user 

can interface. The cube manager is made up of a monitor, hard and floppy disk drives. and eth- 

m e t  ports for connecting to both the cube and other computers on a local area network. 

4.2. Hypercube Software 

A typical program to be run on the ipSC is made up of two separate executable parts. One 

part, called the host program. is executed by the hofl or System Manager provides the user 

interface, file access, and downloading of the node program to each node. The second part, called 

the node program. is executed by each node in parallel. Since the hypercube is a message-passing 

based architecture. special constructs and functions are used to establish communication for the 

node with the host and for the node with other nodes. 
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The functions used for sending and receiving messages have the form: 

send(ci. type. buf. Ien. node, pid); 
r e d c i .  type, buf. ten. &cnt. &node. &pid): 

where 

ci 

type- Type of message being sent or waiting to  be received 

buf - Starting address of buffer to read message from or to write message into 

Im = Number of bytes to send or the size of the receive buffer 

node- Number of node to send to or number of node received from 

pid - Process id of process sending message 

cnt - Number of bytes actually received 

- Channel identifier for the channel to transmit the message on 

Other functions are available for reading the clock, checking the status of a channel. writing to a 

logfile, and some diagnostic functions. 

43. Intel Hypercube Simulator 

The Intel Hypercube Simulator is a tool distributed by Intel to provide the user with an 

environment for developing and debugging programs written for the hypercube. The simulator 

simulates the actual hypercube by forking a UNLY process for each node. Communication 

between nodes is simulated by using U r n  pipes and signals. Aside from a few minor limita- 

tions. Intel claims that programs successfully run on the simulator will run on the hypercube 

with few to no changes. 

The material for the preceding sections of this chapter was taken from 

[29.30.31.32,33.34]. 
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4.4. Implementation Details 

Before developing an algorithm for implementation on a hypercube, one should consider 

first the number of processors required. how the problem can best be partitioned, how to map 

that partition onto the hypercube, and what data structures would be most efficient for such an 

implementation [35]. Given a highly parallelizable problem like matrix multiplication. choosing 

the right partitioning, mapping, and data structure could greatly affect the performance of the 

implementation. For example. partitioning the data of a matrix according to the back diagonals 

of the matrix would not make any sense. For this reason. care must be taken in developing the 

parallel algorithm and implementation. The parallel algorithm implementation for channel 

routing is outlined in Figure 4.2, and will be discussed in more detail in the following sections. 

44.1. Selected topology 

Since the hypercube topology can be used to embed many other topologies. we choose to 

map the processors into a linear array as shown in Figure 4.3. The lines and arcs on the figure 

show the communication channels for the three-dimensional hypercube as it  is embedded into a 

line. Adjacent procssors in the array are chosen to be adjacent nodes of the hypercube. 

Determine Initial Annealing Temperature and Parameters 
Make Initial Track Assignment to Each Processor of Hypercube 
'WHILE (Temperature > E )  DO 

FOR Inner-Loop-Count - 1 TO . W - I  DO 
FOR Cube-Dimension - 0 TO log (P) - 1 DO 

Randomly Select One Subner in Each Processor in Parallel 
Randomly Select P/2 Moves For Node Pairs of Cube-Dimesion in Parallel 
Evaluate Cost Change for Each Move Between Pairs of Nodes in Parallel 
Evaluate AccepdReject Based on Temperature and Cost in Parallel 
IF (Accept) THEN 

Update Local State Information 
Broadcast Updates to All Other Nodes 

END Dimensions of Cube 
Adjust Temperature in each Node 

END Inner Loop 
END While Stopping Criteria Not Met 
Display Final Results 

Figure 4.2. Parallel Algorithm for Channel Routing 
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Figure 4.3. Domain Map for Three-Dimensional Hypercube 

following a pseudo-gray code. The pattern is not a true gray code since we chose not to have the 

topmost and bottommost processors adjacent. This distributes the long range connections more 

evenly. 

4.4.2. Data partitioning 

After the initial placement of the subnets into tracks (similar to the serial implementa- 

tion). sets of adjacent track are assigned to corresponding nodes in the linear array of Figure 4.3. 

The tracks are distributed as evenly as possible so that the work load of each node is as uniform 

as possible. The channel area is divided into strips of tracks because the algorithm used assumes 

that subnets are dispiaced or exchanges between different tracks. 
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Each node is given information about the horizontal space used by each subnet in each 

track assigned to it. In other words, each node receives Uph of the corresponding serial linked 

list structure for the tracks. It is unnecessary for each node to know what sections of its 

neighbor's tracks are occupied or not. However. a copy of the entire column data array is main- 

tained in each node because of faster accessing and the small amount of updating required for 

the column data. 

4.43. Parallel m o m  

The moves used to transform one channel state into another will still be based on the dis- 

placement and exchange moves of the serial algorithm. In this case. however. two nodes 

cooperate together as a pair to perform the desired transformation. During the evaluation of a 

move. one processor of the pair acts like a master. and the other a slave. The following moves 

can then be identibed: 

MOVE 0: Intra-Displace - each node of a pair performs a displacement move within 
its own sets of subnets and tracks 

MOVE 1: Inter-Displace - master node displaces a subnets from its domain to a track 
within the domain of the slave node. 

MOVE 2: Intra-Exchange - each node of a pair performs an exchange move within its 
own sets of subnets and tracks 

MOVE 3: Inter-Exchange - master and slave nodes each select a subnet to exchange 
with each other 

By applying the Inter-processor moves, it is possible to utilize the connections to nodes not adja- 

cent on the linear array to move a subnet a large distance up or down the channel in a single 

move. 

It is important to select which node should be the master and which node should be the 

slave for a given iteration. The node numbers of the two nodes of a pair always differ in 

exactly one bit posirion. An algorithm specifying that the node with a one in the bit position 

should be the master and the other, the slave, would not work because then sooner or later. all 

of the slave's subnets would get displaced to the master. Instead. the mastership of a pair of 
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nodes should alternate after each iteration. 

The selection of the move is performed at the beginning of an iteration by the master pro- 

cessor. The ratio of intraproccssor to interprocessor moyes is 1:l. Intraprocessor moves improve 

the performance and speedup. but interprocessor moves are equally necessary to be able to move 

the subnets throughout the Channel. The ratio of displacement moves to exchange moves ranges 

between 15:l and 20:l. the same as in the serial implementation. 

Since the hypercube has no shared memory, it is necessary for the nodes of a pair to com- 

municate through messages while evaluating each current move. Figure 4.4 illustrates the com- 

munication requirements for each of the four types of moves discussed earlier, and Figure 4.5 

lists the steps performed by the master and slave processors in evaluating the move. Note that 

for MOVE 3, Inter-Exchange, it is possible to overlap the first message sent by the master with 

the first message sent by the slave to gain some parallelism. Furthermore, some calculations can 

be performed by each processor during the transmission of the first message. 

MOVE 0 MOVE 1 

MOVE 2 MOVE 3 

Figure 4.4. Move Communication Requirements 
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SLAVE 

Select Subnet m 1 
Select Move 
Calculate Cost Change for Removing m 1 
Send Subnet mn 1 Data to Slave (m 1) 

Case (MOVE) 
0: Select New Track mt 1 

Calculate Cost for Placing mn 1 in mt 1 
If (Accept(Cost Change)) 

End Case 0 
Update mn 1 

1: Wait For Cost Data From Slave (12)  
.. . 
... 
Receive Cost Data From Slave (s 2)  
If (Accept(Cost Change)) 

End Case 1 
Update mn 1 

2: Select Subnet mn2 for Exchange With llyz 1 
Calculate Cost for Placing mn 1 in mt2 
Calculate Cost for Placing mn2 in nrt 1 
if (,Accept(Cost Change)) 

Update mn 1 and mn 2 
End Case 2 

3: Wait for Subnet m 1 From Slave (s 1) 
Receive Subnet sn 1 Data From Slave (s 1) 
Calculate Cost of Placing m 1 in mt 1 
Wait for Cost Change Data From Slave (s2) 
Receive Cost Change Data From Slave (s 2) 
If (Accept(Cost Change)) 

Updatemnlandm1 
End Case 3 

End Casc(M0VE) 
Broadcast Updates 

Select Subnet sn 1 
Calculate Cost Change for Removing sn 1 
Wait for Subnet mn 1 Data From Master (rn 1) 

Receive Subnet mn 1 Data From Master (rn 1) 
case (MOVE) 

... 

0: Select New Track st 1 
Calculate Cost for Placing m 1 in sr 1 
If (Acccpt(Cost Change)) 

End Case 0 
Update sn 1 

1: Select New Track sr 1 
Calculate Cost for Placing mn 1 in st 1 
Send Cost Change to Master (52)  
End Case 1 

2: Select Subnet sn2 for Exchange With sn 1 
Calculate Cost for Placing sn 1 in st 2 
Calculate Cost for Placing sn2 in sr 1 
If (AcccpdCost Change)) 

Update sn 1 and sn 2 
End Case 2 

3: Send Subnet sn 1 Data to Master (I 1) 
Calculate Cost of Placing mn 1 in st 1 
Send Cost Change Data to Master (s 2) 
End Case 3 

End Case(M0VE) 
Broadcast Updates 

Figure 4.5. ?vaster/Slave Move Evaluation Steps 
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4.4.4. Parallel updating 

The data defining all aspects of a subnet are split up into two separate structures, the track 

linked lists and the column data array. If a move is evaluated favorably (using the same cost 

and acceptance evaluation functions as the serial implementation). the information in the data 

structures must be updated to reflect these changes. It should be noted. however, that with 

evaluating moves in parallel. the information is. for all purposm. out of date. Processor pair 

(i  , j )  evaluates their rnoveb). tacitly assuming the rest of the data on the channel is constant, 

while at  the same time processor pair (k I) is doing likewise. It is very possible that the moves 

may offset each other and result in the state of the channel being worse than expected. 

Jones and Banerjee [20] have found that the convergence properties were nearly main- 

tained despite the use of parallel moves similar to what we propose. Furthermore. they were 

able to apply those results to a uniprocessor or serial implementation of their placement algo- 

rithm [36]. They applied what was termed pseudqxnzZ&L moves in which a series of moves 

would be evaluated and accepted before performing an update on the data structure. By doing 

this, they were able to maintain the convergence of their algorithm while decreasing the compu- 

tation time dramatically. It is possible to apply pseudo-pluallel movej because of the nondeter- 

ministic behavior of annealing. An offshoot of that idea, shown by Grover 1161. is to use 

approximate cost calculations to save computation time. As others have pointed out [37.221, it  

is important to carefully control parallel or approximated moves, especially at low tempera- 

tures. 

As shown in Figure 4.2, updating of all data structures is performed after each pair of pro- 

cessors has esecuted moves in parallel. Every node must receive the updated information. so 

some method must be used to broadcast the information across the network. The simplest 

method. provided the hypercube network could support the function. is to have every node 

broadcast the information to every other node. Unfortunately, the iPSC hypercube does not 

have appropriate hardware for global communication: instead. a global send is performed by 
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sending a copy of the message out on a tree embedding E381. Another possible method is to 

embed a ring network into the hypercube and transmit update information around the network 

until it returns to the originating node. The tree broadcast scheme is O(2og PI, but contention 

and congestion on the channels will likely slow the performance down considerably. On the 

other hand. the ring network scheme is O(P), but will not have problems with contention and 

congestion because of the uniform uni-directional flow of data around the network. 

43. Heuristics 

In general. nearly all of the heuristics discussed in the previous chapter for the serial 

implementation were also applied in the parallel implementation. modified slightly for the 

different moves and data structures. One problem faced by using the Intel Hypercube Simulator 

was the extremely long time needed for each trial run. It became important then to h d  addi- 

tional heuristics to speed up the convergence of the algorithm. 

The first idea was to improve the selection of the second subnet of an intraprocessor 

exchange move. Assuming that the first subnet i is already chosen. it is possible to evaluate the 

overlap that would occur for each subnet of the set of possible subnets to be chosen. This over- 

lap can then be used to bias the selection of the subnet in favor of the subnets causing the least 

damage, and which will likely provide some improvement. 

The nest heuristic applied was to adjust the constant factor y for the change in channel 

width of the cost function to reflect whether or not tracks should be removed, added. or neither. 

For example. if the channel density for a problem is D ,  and if along the annealing process the 

current channel width is D + 2, then it is favorable to increase the chances of removing a track 

and decrease the chances of adding a track. If. however, the current channel width is D , then it 

is usually better not to create new tracks or remove any of the current tracks. 

The final heuristic used is to approximate the vertical constraint graph G created from the 

original problem statement and estimate track positions based on the struczure of the graph. 

Figure 4.6 and Table 4.1 show the solution to a simple channel routing problem. the vertical 



37 I 
I 
I 
I 

constraint graph for the problem. and the data resulting from approximating the vertical con- 

straint graph. Source nodes of G are nodes which only have directed arcs pointed away from 

the node. Sink nodes are nodes which only have directed arcs pointed into the node. Assuming 
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Figure 4.6. Vertical Constraint Graph Example 
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Table 4.1. Approximated VCG Data 

Subnet 

1 
2 
3 
4 
5a 
5b 
6 
7 
8 
9a 
9b 
10 

Position 
in Path 

1 
4 
3 
1 
2 
2 
3 
2 
3 
2 
2 
1 

Total Path 
Length 

3 
4 
3 
3 
3 
3 
4 
4 
3 
3 
3 
4 

Percentage 
of Total 

0.25 
0.80 
0.75 
0.25 
0.50 
0.50 
0.60 
0.40 
0.75 
0.50 
0.50 
0.20 

Approximate 
Track 

2 
5 
5 
2 
3 
3 
4 
2 
5 
3 
3 
1 

for now that there are no cycles, for each node of the graph one can find a path through that 

node which starts at  a source node and ends at  a sink node. Let pi be the longest path from 

source to sink passing through node i . For node i the final track placement can be approximated 

by the position of the node along pi. For channel width w ,  net number 7 of the example would 

be assigned to'a zone ranging from track 0 . 2 5 ~ ~  to track 0.50Xw. 

This approximation can then be applied to the cost evaluation at several points. One possi- 

ble use is for subnet selection. Subnets not placed in the tracks of their zones can be biased for 

selection higher rhan those inside their zone. Another way to apply this is in the selection of 

tracks for displacement. Tracks to be selected can be biased inversely proportional to the dis- 

tance from the subnet's zone. 

4.6. Algorithm Results 

For reasons similar to those in Chapter 3. we will be presenting a summary of the results 

of one Channel routing problem for the set of heuristics that arrived at the best results. The 

same channel routing problem with channel density twelve was used for the testing. 
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The ratio of displacement-to-exchange moves was 15:l. At the same time, the temperature 

was decreased according to the annealing schedule. and the number of iterations at that tempera- 

ture was increased by 45% over the number of iterations at the previous temperature. The cost 

factor y was dynamically changed to d e c t  the need to add or remove tracks in the channel. 

Finally, the VCG was approximated and the information was used to bias the selection of sub- 

nets by weighting mbnets not found in their expected track range with a higher probability. 

Furthermore, the approximated track position was used to bias the selection of tracks for dis- 

placement. 

The h a 1  routing solution for the twelvttrack example is shown in Figure 4.7. The plots 

of Cost vs. Temperature, Average Overlap vs. Temperature, and Average Number of Tracks vs. 

Temperature are found in Figures 4.8.4.9, and 4.10. respectively. 

4.7. Performance Analysis 

Although the parallel implementation used the Intel Hypercube Simulator. we did perform 

an analysis of the expected speedup of the algorithm when run on the Intel iPSC Hypercube. 

Figure 4.7. Final 12 Track Solution - Parallel 
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Figure 4.8. ,4nnealing Cost vs. Temperature - Parallel 

"1 
c 

Ave. Overlap 

0.01 0.1 1 10 
1.0 / Annealing Temperature 

Figure 4.9. Subnet Overlap vs. Temperature - Parallel 

40 I 
1 
I 

8 
I 



41 

0 '  I I I I 
0.01 0.1 1 10 

1.0 / Annealing Temperature 

Figure 4.10. Average Number of Tracks vs. Temperature - Parallel 

4.7.1. Computation costs 

The amount o f  time spent on processing each new move was measured by applying the 

CLOCK0 function of the simulator to random moves repeated thousands of times. Since the 

simulator was run on a Motorola 65020 CPU and the hypercube uses Intel 80286 processors. 

some adjustment must be made to account for the difference in processing speeds. The 68020 is 

rated at 2.7 AMPS. while the 80286 is rated at 0.78 MIPS. This is a dserence of approximately 

3.5. Table 4.2 gives the computation times for the master and slave nodes for each of the four 

types of moves for both the 68020 and the 80286. The computation costs for updating subnets 

after each move are also given in Table 4.2. 

4.7.2. Communication costs 

The simulator does not provide any mechanism for estimating the amount of time needed 

to send a message from one node to one of its neighbors. so we will use timing information 

reported in the literature for sending onthop messages on the Intel iPSC Hypercube [391. Table 

4.3 summarizes the message timing for the different types of messages used in our implementa- 

tion. The messages m l .  sl. and s2 are from Figure 4.4. The update message is the packet 
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- 
MC68020 CPU 80286 CPU 

Operation (Measured (Pro jetted) 
Master Slave Master Slave 

Table 4.2. Computation Timing (msec) 

iMOVE 0 17.0 15.8 59.5 55.3 
MOVE1 11 8.4 1 6.3 1 29.4 I 22.0 1 
MOVE 2 
MOVE 3 

22.0 1 17.1 I 77.0 59.9 
5.8 I 3.5 I 33.3 25.9 

~~ 

I II 

Operation 
MOVE0 

I 48 bytes I 48 bytes 16 bytes 48 bytes 
I 1.83 I - - - 

MOVE 1 
MOVE 2 

1.83 - I 1.74 - 
1.83 - I -  - 

transmitted around the broadcast ring for updating subnets after a move. There are two other 

MOVE3 

types of messages used, one is for sending the original net data from the host to the nodes and 

1.83 I 1.83 1.74 - 
- I 

the other is for sending the final routing data from the nodes back to the host. These. however. 

do not affect the speedup of the algorithm and are not discussed here. 

4.73. Speedup calculations 

Assuming a 16 node hypercube. the ratio of moves is 15:15:1:1, respectively. for MOVE 0. 

MOVE 1. MOVE 2. and MOVE 3. which means that during every iteration in which pairs of 

nodes are evaluating a move. at least one pair will be performing either MOVE 0 or AMOVE 1. 

MOVE 0 and Move 2 are bottleneck moves because of the computation required. The average 

time for the bottleneck moves then can be found by weighing each move by its probability of 

occurrence. The average move computation time per iteration is then 60.6 nu. Since there is an 
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equal probalility of selecting intcrprocessor moves and intraprocessor moves, approximately 

half of the node pairs will evaluate a single move and the other half will evaluate parallel 

moves. Thus there are usually 0.75 X P moves at once. or for the sixteen-node case. twelve 

parallel moves. Including the communication costs for messages m 1. I 1. and 12 gives a worst- 

case move time of 62.5 m e c  for one iteration. Using a tree-based broadcast strategy, the com- 

munication time is log P X 1.83 mec. The update computation time is 18.0 m, giving a total 

time of 

(4 x 1.83) + 18.0 + 62.5 = 87.8 m e c  

For the uniprocessor case. twelve moves would require 

(11.25 X 59.5) + (0.75 x 77.0) + 14.0 = 745.6 m e c  

to complete, resulting in an overall speedup of 8.4 on a 16 processor hypercube. 
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CHAPTER5 

CONCLUSIONS 

5.1. Summary of Results 

In this thesis. we have presented serial and parallel algorithms for channel routing using 

simulated annealing. Simulated annealing is a powerful optimization tool and we have demon- 

strated its use in a new uniprocessor channel routing algorithm. This algorithm permits maxi- 

mal freedom to the nets in the channel being assigned to achieve near-optimal results. 

The algorithm has been parallelized for implementation on a hypercube computer. The 

channel is partitioned horizontally by tracks. and adjacent nodes of the hypercube cooperate in 

parallel to gradually improve the state of the routing. The data have been partitioned to try to 

minimize the overhead of message passing between pairs and complete updates. 

5.2 Convergence Issues 

One important issue to consider carefully in the design of any algorithm for simulated 

annealing is how quickly the algorithm will converge. There is always a tradeoff between the 

total number of moves attempted and the time taken to evaluate each move. It is an intractable 

problem to analyze the problem enough to find one move that would solve the whole problem, 

and it would take extremely large numbers of moves to solve the problem without analyzing 

any of them. Between those extremes is the optimal point for minimizing total time to con- 

verge. To find that point it is necessary to perform many tests on various strategies and param- 

eters for selecting and evaluating moves. 

One of the main features of the algorithm presented here is the allowing of channel states 

at high temperatures that would be unacceptable as the final solution. These states usually 

include overlap between nonconnected wires. It has been shown that for certain annealing algo- 

rithms convergence is guaranteed. but since illegal intermediate States are allowed, there is no 

I 
I 
I 
I 
1 
1 
1 
1 
8 
8 
I 
I 
1 
8 
1 
1 
I 
I 
8 



45 

longer any guarantee of convergence. For this reason, it is essential to evaluate all aspects of the 

algorithm carefully. 

5.3. Applicability of Simulated Annealing 

Part of the issue of applicability of simulated annealing to channel routing involves the 

convergence question. If convergence is not achieved. nearly all of the time in a reasonable 

amount of time, then the problem. by nature. may not be well suited for simulated annealing. 

For the algorithm presented, good convergence was achieved for small cases. especially for the 

serial version. However, for large examples. the quality of the results dropped off. This may be 

due in part to improper selection and evaluation heuristics. 

Another aspect concerns the nature of the problem itself and how the current model affects 

it. For simulated annealing, the choice of neighboring spaces is very important. The algorithm 

of Leong. Wong, and Liu [ll] only allowed legitimate solutions to be in the neighboring space of 

a current channel state. This greatly reduces the number of possible moves. 

The algorithm we propose here allows any possible permutation of the current channel 

state to be in its neighboring space. It is then much harder to determine the best state to select 

next. so much more computation is needed. There is another tradeoff here between the benefits 

of the new algorithm's flexibility and the added work to determine the next state. This is an 

important area of future research. 

5.4. Parallelizability of the Channel Routing Algorithm 

How to write parallel algorithms has been a lively topic over the past decade. There are 

many ways to look at the parallelization of the serial simulated annealing algorithm for channel 

routing, and the method presented in this thesis is the way we determined to be the best suited 

for the hypercube facilities available. Our approach can be looked at as a parallelization of indi- 

vidual moves. or multiple moves at once. Another approach is to parallelize the computation of 

a single move. hopefully providing a high enough computation / communication ratio to be 
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effective. Sets of moves can be parallelized in which each node performs serial annealing on the 

entire channel for a k e d  number of moves. then all nodes combine and take the best of the 

results. This method may be an effective alternative. but it seems to sidestep parallel algorithm 

designing. 

For the algorithm presented. there are a few issues of concern. First. the cost of updating 

each node after every set of parallel moves is high because of the overhead. Research into par- 

tial or delayed broadcasting is necessary. Second. the overall parallelism is limited. Most chan- 

nels for routing in industry consist of fewer than 100 tracks. It  is impractical to distribute 

those tracks to more than 32 hypercube nodes. The theoretical speedup is limited to 32. asmm- 

ing linear speedup. which is unlikely. Other ways to partition the problem to allow for higher 

ranges of speedup should also be looked into. 

55 .  FutureResearch 

Throughout this thesis work. a good. solid base algorithm for simulated annealing has been 

developed. The current results indicate a need for more research into the areas mentioned 

above. Furthermore. other applications of this algorithm should be studied. 
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