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1 Introduction

We consider solutions to the incompressible Navier-Stokes equations
u + wu, + vy, + wu, + Vp =vAu, v > 0,
U, + vy +w, =0,

on a 2x-periodic square, where u = (u,v,w) is the velocity vector, p the pressure
and v the kinematic viscosity. Solutions of the Navier-Stokes equations for small
viscosity are usually turbulen{; such flows posses a lot of structure in both space
and time. The viscosity of the fluid controls the level of turbulence within a flow
by affecting the energy dissipation. As the viscosity is decreased the size of the
smallest features, or scales, diminishes. The relation between the viscosity, the
minimum scale and the total energy dissipation is of fundamental interest for the
understanding of turbulence.

The mathematical theory for the Navier-Stokes equations is not complete for
three dimensional flows: the global regularity is not known and no global bound for
the velocity gradients is available. However, both these results are known in two
space dimensions. Whether the results from two-dimensional flows are of physical
relevance is open to discussion since, in the absence of viscosity, flows in two di-
mension conserve both energy and enstrophy, while in three dimensions only the
energy is conserved. Nevertheless, results on two-dimensional turbulence may be of
significance for large scale oceanographic and atmospheric motions.

Assuming global regularity, we relate the minimum scale of the flow to [Du]_,
the global bound of the velocity gradients. Our main result, precisely stated in

theorem (2.1), is that the minimum scale is essentially no smaller than
— 12
Am.:'n. = Vl/z/lDuloo / :

By comparison, a commonly accepted minimum scale for two dimensional flows,
Azp, (see Lilly [19], Orszag [20]), is based on the total dissipation rate of the en-
strophy per unit volume. The enstrophy is defined as the square of the L;-norm of

the vorticity. From dimensional arguments it follows that

Aep = ul/!/ﬂl/e’




where

n = 20 / / el + 1€, |12d2dy

is the total rate of enstrophy dissipation per unit volume and £ is the vorticity.
In three space dimensions the corresponding minimum scale is the Kolmogoroff
dissipation scale [15]

Asp = u3/4/€1/41

where
=2 / / f aall? + 1y 12 + [ju, | *dedydsz,

is the total rate of energy dissipation per unit volume.

The estimates for the minimum scale can be used to determine the decay rate
of the energy spectrum, assuming that a power law does in fact exist.

From our results in two dimensions we conclude that the energy spectrum,
E(k), behaves like k=% when there is a maximum rate of enstrophy dissipation in
the flow. The k=3 power law is in accordance with the Batchelor-Kraichnan theory
of enstrophy cascade [3] [16]. The high rate of dissipation can not remain for long
times without the flow disappearing. Indeed, numerical experiments show that the
solutions rearrange themselves into organized structures which dissipate enstrophy
at a much smaller rate. Saffman’s work [22], which predicts a power law k¢,
seems to describe the behavior of the system at this later stage of evolution. Our
theory does not predict the power law but only relates it to the rate of enstrophy
dissipation; the k~* law would correspond to 7 of order v1/2,

In three space dimensions there is no a priori bound for [Du|_. However, if
we assume that

|Du|  ~ u'llz,

then when the energy dissipation rate ¢ is of order one, we obtain the Kolmogoroff
power law, E(k) = k~5/3, and the Kolmogoroff scale Amin = Asp = v3/4.

Some of the first calculations on two-dimensional turbulence were performed by
Lilly [19], Fox and O1szag [9], Herring, Orszag, Kraichnan and Fox {12], Fornberg (8],

and Barker {1], among others. More recent computations on meshes of up to 1024 x
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1024 points are described in, for example, Brachet, Sulem [7], Brachet, Meneguzzi,
and Sulem [6], Herring, and McWilliams [11] and Benzi et al [4]. In some cases the
small viscosity limit of the equations was approximated by the continuous removal
of the high frequency Fourier coefficients [8]. In other cases the true dissipation
term is integrated although some extra smoothing of high frequencies is sometimes
required to suppress the growth of aliasing errors [1). Another approach is to replace
the viscosity term by a super-viscosily, that is a higher power of the Laplacian
operator [7], [11]. This operator allows simulations with a formal viscosity which is
much smaller. The minimum scale is nevertheless comparable to the computations
presented in this paper.

The numerical simulation of three dimensional flows is still limited by the
power of current computing machines. Currently, the largest three dimensional
simulations seem to have been performed on 128° meshes. However, by exploiting
the symmetries of the Taylor-Green problem, Brachet et al. were able to effectively
solve with a 2563 resolution [5]. They find the slope of the spectrum to be least
steep when the rate of energy dissipation reaches a maximum. The numerical results
seem to agree at this point with the Kolmogoroff scale. For further references on
three dimensional computations see the review article by Hussaini and Zang [14].

We restrict ourselves to two dimensional simulations. Our numerical approach
has been to attempt to faithfully solve the viscous Navier-Stokes equations. The
computations were performed using the pseudo-spectral method, Kreiss and Oliger
(18], and Orszag [21]. There is no extra viscosity added to the numerical simulation
through smoothing or chopping of the high frequencies, although the fourth-order
predictor corrector time integrator produces a small amount of it. Numerical simu-
lations are used to confirm the theoretical estimates and to show that the estimates
can be achieved for certain initial conditions. Results are shown for the time de-
velopment of a flow which initially is maximal dissipative. We also show results of
forced problems. In this case there is no easy a priori bound for the maximum norm

of the vorticity. We found numerically that the forcing should be proportional to
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the viscosity in order to obtain order one velocities. More numerical work on this
subject is still necessary.

In section 2 we present the analytical results. In section 3 we present numerical
computations in two space dimensions which substantiate and illustrate various
features of the proof. Finally, in section 4 we discuss the implications of the °

minimum scale result to the decay rate of the erergy spectrum.

2 Analytical Results
In this section we will prove some results about the rate of decay of the Fourier

coefficients for solutions of the incompressible Navier-Stokes equations,

u, + vu, +vu, + wu, + Vp =vAu, v >0, (2.1a)

v, + vy +w, =0, (2.1b)

on the region @ =: {0 < 2,9,z < 27} and for t > 0. We assume that u =
(u(x, t), v(x,t), w(x,t)) is 2x-periodic in x = (2, y, 2).

At t = 0 we give the initial data

u(x,0)=ue(x) , V-up=0.

/ ude = 0,
1]

/ u(x,t)dx =0 , fort>0. (2.2)
o

For simplicity we assume that
which implies

We assume that (2.1) has a bounded solution for all {imes and want to show

that the smallest scale is essentially proportional to (v/[Du]_)'/2. Here

|Du]_ =sup|Du|e and |Du|e = sup(|fu/dz|,|0u/8y|,|0u/dz]).
t x

In general let
6Pu

Pyy —
DPu= 272 0yrza,_pa’
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denote any derivative of u of order p, where p = p; + p2 + ps.
We are interested in the case when v < 1 and |Du|_ > const > 0. Let us
further assume that for every natural number p there is a constant C, such that

the initial conditions satisfy the bounds

gm0 = e (153 PO+ IS0 + 15,0 < 6 P

(2.3)

Here |f|o = sup,.q |f(x)| denotes the maximum norm and

(f,g>=/nf-g dx , ) =(£.1),

the Lj-scalar product and norm. Then we prove

Theorem (2.1): We assume (2.3) holds and develop u into a Fourier series

u(x,t) =Y ik, ) <M, k= (k1 ks, ks).
k

For every natural number j and any real number a > 0 there are constanis K and

K which depend on j, a and C; (1=1(j,a)), such that

) , |D 'J+1+a
sup la(k, t)]* < K-,—W
and ita
sup |u(k t)]? < KJﬁTllld—zJ”

The estimate of the theorem can be rewritten in the form

1/2
sup Iu(k <K ID“I (lDqu) 1

v k|

2j

We see that the spectrum becomes vanishingly small once |k| > (| Du|_ /v)!/? with
[Gi(k,t)| decaying faster than any power of ([Du_ /v)*/2|k|~1. It is natural to define

the minimum scale of the flow to be proportional to (v/|Du]_)'/2.
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In three space dimensions there is no a priori bound for [Du|_. One can

speculate what the right order of magnitude is. For example, if we assume that

|Du|, ~ V-I/z,

we obtain

supla(k, )" < K L34k,

Va

which corresponds to the Kolmogoroff scale [19] of Ain = v3/%.

In contrast, for two space dimensions an a priori bound for |Duj_ can be

obtained. The vorticity, £ = u, — va., which satisfies
€ + uée + vy =vAS,
obeys the maximum principle
€lec = sup [€(x,2)| < sup {(x, 0)].
Therefore, assuming that the initial data satisfy

sgplf(x, 0)] <1, (2.4)

we shall prove that |Du|_ is essentially bounded independent of v, in the sense

that for every B > 0 there is a constant K; = K;(8) such that

Thus if the initial data have derivatives of order one then the smallest scale is
essentially of the order v1/2,

Our proof is also valid for Burger’s equation. In this case one can prove that
| Dulo < const v~ !sup|Du(z,0)]eo-
3

Thus our result predicts that the minimum scale is of order »~!. This bound can

be attained in the presence of shocks.



2.1 Estimates for p < 3

From now on we shall assume that an estimate for |Du|_ exists. Integration

by parts give us the basic energy estimate

”u”2 - _VHlv

N -t
QIQ

where
= = 1220 “( b LT LT

Since by assumption (2.3), |ju(-, 0)”2 < const , it follows
2u/ Hi(t)dt < ||ju(-,0)]|*> < const and lha(-, )i < ja(-,0)])* < const . (2.6)
0

Now differentiate (2.1). For any first space derivative Du we obtain

18

> 37| Pl + I = —v(IDu, I + | Duy | + | Du, 1),

where
I = (Du, D(vu, + vu, + wu,)) = IT + III,

II = (Du,uvDu, + vDu, + wDu,),

III = (Du, Du u, + Dvu, + Dw u,).
Integration by parts and V - u = 0 shows that II = 0. Again by integration by

parts we obtain
III < const |Du| H2.

Therefore
1 8 2 2 2 2 2
2 5o/l Dull? < const |Dulo, B} — w(|Dus | + Dy [ + |1 D ),

that is
18

20tH1 < const IDuINHI —VHz

Integrating the last inequality with respect to ¢ gives us,

2 3 onst |Du) ‘21'1'—11"1'1'.
H3(t) < H(0) + const D L,,/oHl( )dr — 2 /OH,( )d



Therefore by (2.3) and (2.6)
H2(t) < const |_D_u-|_°£ and V/ HZ(t)dt < const LDE—IQ— (2.7)
v 0 v

For the second denvatives we obtain

3 5o lID78ll + I = w0 + D%, | + | DPu ),
where
I =(D*ua, D*(uu, + vu, + wu,)) = II + IIT + IV,
II =(D*u,uD%u, + vD*u, + wD?,) =0,
11T =2(D*u, DuDu, + DvDu, + DwDu,) < const |Du|o H2,
IV =(D*u, D*u u, + D*v u, 4+ D?w u,) < const |[Du|, H?.
Therefore,
%%sz < const |Du| H} — vH].

Integrating the last inequality with respect to ¢ and using (2.3), (2.7) gives us

—_—3 —_—2
D hnd D
H(t) < const l——uzl#'-'i and V/ H}(t)dt < const l——%’f’— (2.8)
| 74 0 74
For the third derivatives we obtain
1
E(D"‘u, Du) + I = —u(||D*u,|* + || D%, ||? + || D3u,|?),

where by Leibniz’s rule

I= (D%, D%uu, +vu, +wu,))=II+III+IV +V,
II = (D%, uD%u, + vD%u, + wD%u,) = 0,
111 = 3 (D*u, Du D*a, + Dv D*u, + Dw D?u,) < const [Du|, H?,
IV =3 (D%, D*u Du, + D*v Du, + D*w Du,) < const |Du|oo Hy H3,

V = (D%, D*uv u, + D’ u, + D*w u,) < const |Du|, HZ.



Therefore

H? < const |Du|(HZ + HyH,) — vH?,

H} 1
< const |Du|o H2 + const |Du|§°—ui - -z—uH.f,

S

1
2

thus using (2.3), (2.7) and (2.8)

Dul. . D
H3(t) < const u3°° and u/ H2(t)dt < const V3°° . (2.9)
0

2.2 The estimates for general p

We now prove theorem (2.1) for arbitrary p. First we obtain energy estimates
for H, in terms of [Diu|_, 1 < j < max(1,[(p — 1)/3]). These estimates are used
to obtain bounds for W‘” in terms of I_D_u—loo. Finally improved estimates are
obtained for H,, I_D“"_ulc,o and mw using interpolation inequalities; the theorem
then follows. We start with
Lemma (2.1): For every p there is a constant K, such that

|(D?u,D? (vu, + vu, + wu,))
mex(1,((p-1)/3])

<K, |Du|°°H: + Hpy1 E |07 uloo Hy-;

i=1
Here

[z] = largest integer <z and |Diuj, = max | D*ul|.
x,|k|=j

Proof: We need to estimate expressions of the form
(D?u, D*~*u D*u, + D*~*y D*u, + D**w D*u,) for k=0,...,p—1.

We integrate by parts to decrease the order of DPu. In doing this the order of
D?=ky, DP~*y and D?~*w or the order of D*u,, D*u, and D*u, will increase.

For each new term generated through integration by parts,

(D%, D%u D%u,) + (D%, D*?v D%u,) + (D%, D%*w D%u,),
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we can decrease the order q and increase one of g; or gs until one of the following
conditions is satisfied:

(1) g—1<gs<gandg; <gq

(2) g<g2<qg+landgs<g—1
Note that in case (1) if g3 = q then

(D%, D¥uD%a, + D%vD%, + D??wD%,) = 0.

It follows that
I = (D?u, D?(uu, + vu, + wu,) )
can be written as a sum of terms
A= (D%, D %!y DI 'n, + D720ty Ditly, 4 DIy Pily,),
1<2p-29+1<yg,
B := (D%, D%y D?29"1q, 4 prtly P-4ty 4 DIty pIP-2-ly,),
1<2p-2¢-1<q-1,
C := (D%, D% D* %%y, + D% D**~%y, + DIy D*?~3q,),
0<2p—-29<g-—2
Expression A: If 2p — 2g + 1 = 1 then the estimate follows, otherwise integration

by parts is applied to expression A,

A= (D?P %, D?~9*! (D%uD* 'u,) ) + (D=9, DP9+ (DD 1y, ) )

+(D*"%w, D*~9*! (D%uD 'u,) )

to reduce the order of the factors D?P~29+1y D¥»-2e+ly gpd D2P-29+1y In this

way we can write A as a sum of terms
(D%, D?" % D¥"'u, + D*~ % D9 'u, + D* %w D% u,),

where

p—q>1, ¢g<p+1, and 1+ =p+qg+1
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Also, 1 < 2p—2q+1 < gimplies
1
p—g<mex(1,3(p-1)).

The required estimates can be obtained in the following cases:
(i) f p— g = 1 then either g; = g2 = p or one of the g; = p+ 1 and the other is
equal to p — 1.
(ii) One of the g; is equal to p + 1.
When neither (i) nor (ii) is satisfied then ¢; < p+ 1 and p— g > 1, and we can
reduce D?~9 further. This shows that A can be estimated in the desired way.
Expression B: Correspondingly, by reducing the order of D??~29~1u,, D?~29" 1y,

and D?*?~29-1y,, B can be written as sum of terms
(D%*u, D%y DP~9"lu, 4 D%y D?P~9 1y, 4 DBy DP9 1u,) := II,

where
g <p+l, qg+@=p+tg+l and p—g-12>0.
Also 2p — 2¢ < q implies 0 < p~ g —1 < [3(p — 3)]. II can be estimated in the
following two cases:
() fp—g-1=0thengy=p+1,g:=p—1org =g, =p, and
II < const |Du|oo Hpy1 Hp-1, or
II < const |Du|, H).
(i) g1 =p+lorga=p+1.
Otherwise ¢; < p+1and p—qg—1> 0 and hence we can diminish p— g — 1 further.

Therefore we obtain the desired estimates for B.

Expression C: Integration by parts allows us to diminish the order of D??~2%qu

obtaining terms of the form

(D% u, D%y D~ 'u, + D%y D?~9"'u, + D?w D?"9"u,)

where

gi<p+l, q+q=p+q+1 and p—q—-12>0.
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Using the same argument as for B we obtain the desired estimate. This proves the

lemma.

Differentiating (2.1) p-times gives us

-;-%(D’u, DPu) + (D?u, D*(uvu, + vu, + wu,) )

= —(||D?u,|* + || D?u, ||” + || DPu,||?)
Therefore we obtain from lemma (2.1)
P mex(1,[(p-1)/3])
—H? <const | |Dul|eH? + Hpsy by |Diu|o Hpo; | — 2vH?,,

ot ? :
i=1

r-i

p mex(Lle-nys)
<const | |Du|H} + - Z |Diu|? H? -vH},,

i=1
Using the notation
L, = / HZ(t)dt
0

the last inequality implies

W 1 max(1,[(p—1)/3]) 2
H(t) < const | ——= +[Dul, L, + - ,Z_; [Diu[ L,-; | (2.10)
and
TP Tha max(1,[(p—1)/3))
| Du| | Du| 1 —2
Lypy1 < const ( VP+1°° + ” 2L, + 3 Z |Diu|  Ly_; (2.11)
i=1
To begin with let us obtain estimates for H, and L,q, for p = 4,...,7. In most

applications this is all what is needed. From our previous results we know that

—2 —3

Ly < const |£—usl—°'i and L4 < const lDu4|°° .
v v
Therefore (2.10) and (2.11) give us
—t —
| Du| — 1——2 | Dul|
HZ(t) <const (—V-;—g'f- + |Du|Ls + ;IDuImLs < const —V{Q,
“ -—-—4
1 — D
Ly <consl (IDusI” 4 1Pule —z—lDu[:La) < conat | “5|°°,
v v v v
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The estimates for H2?, Lg, HZ and Ly follow in the same way.

For p = 7 we obtain

7

——T
D — 1 ——  Q—
HZ(t) < const (I Uleo + |Du| L7+ —|Du|:°Le + —|D2u|:°L5) .
v v v

Thus we have to estimate |[D?u|?,. By Sobolev inequalities

const H?

ID™ufl, < eHpys + ’

€

and we obtain for ¢ = Hp/Hpys
|DPu|?, < const Hyp s H,.

In particular
————9/2

u
|D%u|?, < const HgHs < const I Vgl;o

Now we use the usual interpolation inequality (see for example [10])
|D'ul?, < e|DPul?, + const V-1 (-Npu?,, 1<j<p
which gives us for € = (|Du|?, /| DPul?, )(r-)/(p-1)
|Diul?, < const (|DPul? )i ~V/(P=1)(|pu? )p-i)/(p-1),

For j =2, p =3 we obtain

T=——18/4
|D?ul?, < const (|D%ul?,)!/?(|Du|%)Y? < const l—Jj’:—
v
Therefore
Du] ul74—1/4 Du| ul'I+1/4
H2(t) < const jﬁr and Lg < const —Vo—_ﬁ'iﬁ-.

(2.12)

(2.13)

(2.14)

Using (2.14) we can in the same way estimate H? and H2. These estimates are

not as sharp as required by theorem (2.1). To obtain the required estimates we

have to estimate H? for general p and then improve the lower order estimates using

interpolation inequalities.
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Using (2.10) and (2.11) recursively and the estimates for H, and L, 1, forp < 6
we obtain
Lemma (2.2):

—r3—2k

[Dirul,, ... [Divul, [Dul
H+1 < const Z — , (2.15)
Ja..da

where the sum ss over all {k, j;,p;,q;} satisfying the consiraints

Th = P+1-Z(Jl"1)_2k+zqtv

i=1
1< <[m/3] , psri=pi—-di-1-q , 0<qg<pi—ji for i=1,...,k
0<qg@<p+1, Gu=pr—~Jx, PL=P—q , k>0

Note that n, = p+1 forp<5.
Proof: We first obtain estiamtes for Ly, from (2.11). H?,, is bounded by v times

this estimate for L, ;3.

max(1,(p/8)])
Lyiz < const (TDulls ju*+? + ([Duly /v)Lysr + -2 Y DRl Lyiies)
< const ( A + B + = C )

where we have labeled the three terms on the right hand side as A, B and C. In the
recursive reduction of L,;; we must consider all possible terms which may arise;
at each new stage one must consider the effect of using expression 4, B or C. In
the general case one chooses B gg-times followed by term C with j = j;, then B
¢1-times, C with j = j; and so on until finally finishing with term A or B and using
the estimates for L, with p < 6. In this fashion the general term will be

S — e
[Dul,, [Diu], [Dul, [Diu], [Duly,
yAo v? sl 2 R

2 2 WE“
=|Ditu|_ ...[D”lllu, mﬁT

We define 1, = 2k + Y_ ¢;. The constraints on j;, g; and p; follow from the manner

in which the general term was obtained.
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—_— —_— -
Now we use (2.13) to estimate |D/¢u|_, in terms of [D?P~1u|_ and [Du]_,

)

Ty —2h
9 _f:‘;_ 2y 2icd ,
o (®) < const Y TTal. 2 #pu 2 7 D2
J1.-.dn

—=—1+4p(7s - 3)/(p-2)

< const Z |DP-1 Iz(l 7=r) [Dul,,

J1dn

YT
Therefore by (2.2) and Sobolev inequalities
IDP‘luI < const (H? pt1 :_1)
< const Hp 11

s 3;,) Du l1+p(‘r|. ~-38)/(p-2)

< const max | |D?~lu|_
T yTh

It follows that L
Dul,, =

o0

SP-2)ats

2
|DP-1u|_ < const max
™

One more application of the interpolation inequalities gives for 1 < j <p -1

P11 —1
_IDuIJ+ +!.—_5

—_—2
Diu|_ < st m - %
| |°° = con 'r?x i-1+3 -l—,,;_‘

In order to obtain our final estimate we need to show that that ¥ = min, n,

tends to infinity as p tends to infinity. Recall that

™= p+1—z(1.—1)—2k+zq.,

=0

1<5i<[pm/3], Pivi=p—-Jdi-1-a , 0L<q<p—ji for i=1,...,k
0<a<p+1, g=px—Jx, PL=P—q , k>0
From j; < [pi/3] < p;i/3 it follows that
Pit12pi— zpi — 1—gq;,

= (pi+1+3) > E(P-‘ +3) - g,

= (o +3)> G+ 9 - Y1
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This last expression can be written as

(p+3) — Do (da )

pr +3

k 2 1+1033/2 (

Since g4 = px — jx > (2/3)px we have

k-1
2
T = 2k + § :qs>2k+“Pl¢+ S :qt
1=0 =0

Now consider the two cases
() Tio(3/2)'a > (p+3)/2
(i) Y15 (3/2) e < (p+3)/2

In case (i) it follows that

k-1

5_‘,(3/2)" g > 2(3/2)‘«;. > (p+3)/2

= Zq.- > (2/3)*Y(p + 3)/2
i=0
= 7 > 2k+(2/3)* (p +3)/2

Minimizing this last expression with respect to k (> 0) gives
T > const log(p) for some const > 0.

In case (ii) we have

p+3
2(pa +3))

> m2>22+ 21083/2( )) + (2/3)1”'

k Z 1 +10g3/3(

(

Since 0 < pp < p+ 1 it follows that as a function of p,, the above expression has
the bound
T > const log(p) for some const > 0.

Hence 7 = ming 7 > 6log(p) as p tends to infinity, for some constant § > 0. Thus



-17-

Theorem (2.2): For every j > 1 and any a > 0, we can choose p sufficiently large

so thal )
j+1l4a

—2 u
|Diu|_ < const I_V?I——“;T’

(2.16)

where the constant depends on p and Cp1 introduced in the estimates for the initial

conditions (2.3) .

By using (2.16) in (2.15) we obtain

Theorem (2.3): For every j > 1 and any a > 0, we can choose p sufficiently large
so that

sz(t) < const Lll‘ﬂ:—a, (2.17)
yita

where the constant depends on p and Cpyy .

Using the simple estimates for HJ? in terms of maximum norms gives

Theorem (2.4): For every j > 1 and any a > 0, we can choose p sufficiently large

30 that )
i +14a

H(t) < const Iu—lil_%ﬁ— (2.18)
where the constant depends on p and Cpy, .
Theorem (2.1) now follows from Parseval’s relation.
It may seem curious that the initial conditions satisfy
2 D,
H;(0) < const _1-1—5—92’

while we are able to prove that (2.18) holds. However, (2.18) can be derived from

(2.17) as follows (for convenience we drop the a’s) :
Dul ¢]
H,-2 < const uﬂ
v?
P42

| Dul
= |D?u|?, < const H:+2 < const ” >+3

and thus using the interpolation inequality (2.13)
|D7u)?, < const (|DPu|? ) ~1/(P=1)(| pu? )r=i)(r-1)
DulP¥? . ol /o
< const (17%-)(’ /(» 1)(|Du|:°)(’ iM(p-1) .
i t1ta

|Dul,,

< —_—
< const ~7-1%a
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(2.18) now follows.

2.3 Estimates for two space dimensions
In this section we obtain a sharp bound for |Du|_ for two dimensional flows.

In this case the incompressible Navier-Stokes equations can be written in vorticity

form

§+ubs+v6 =vAE , v>0, (2.19a)

uy+v, =0, uy—v,=¢, (2.19b)

where £ is the vorticity and u,v are the velocity components.

Lemma (2.2): The solutions of (2.19) salisfy the mazimum principle

If(a t)loo < M(v 0)'00-

Proof: This well known result follows from the fact that at a local maximum
(minimum) of ¢, £, = €, =0 and § <0 (> 0).
We would first like to show that |Dul,, is bounded for all time. Note that our
energy estimates of the previous section are still valid if we integrate tot =T > 0
instead of integrating to = oo. For this section only, let us redefine the quantities

which depend on this bound on the time. For example we define

T
Du_ = sup|Dulec and I, = / H(t)dt.
t<T 0

We know from basic results that | Dul,, exists and is bounded for some finite time
interval [0,T). We will now derive estimates for |[Du|_ which are independent of
T. 1t follows from the results of the previous section that we can obtain estimates
for all derivatives which are also independent of T. Then from well known results
we can conclude that |Du|., exists and satisfies these same bounds for all times.

Lemma (2.3): For any a; > 0 there ezisls a constant C(a,) such that

[Du],,, = sup|Duje < Clar)[é(",0)lc3* v, (220)
t<T
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Proof: For any 8 with 0 < 8 < 1 we define the Holder semi-norm by

ID®floo = sup lf(xl)—'f(xz)l.A

x3,x3¢f} le - leﬁ

Using the notation
|DPu|o = max{|DPu|e, | DPv|oo}

the usual Hélder estimates for the solutions of Laplace’s equation (see for example

(10] ), tell us that for any B > 0 there is a constant C(8) such that
1Dl < O(8)[¢]oo- (2.21)
Also, the convexity of Holder norms (see [13])
D42 |, < conat |DH+s gL, [ DM+ fli

k+a=t(k1+a1)+(l—t)(kz +az)>1, 0<t<i, a,aj,az > 0,

and Young’s inequality give us for any € > 0
|Dulo < €|D?u|o + conat ¢ P| D'~ Puy.

Using the Sobolev inequality (2.12) for [D?u|_ and (2.21) we obtain

—7/2

{Du| < const el oo + const e P[D1-Pu]|_,

= 72

[ —
< const e-—V—.,/—i—+e C(B)l¢l

Choosing
148 _ (il
&8 = E(8)[El.. ——75
| Dl
gives




Thus

o L\ M(1-88/2)
[Dul,,, < const (C(A)IE]..) L~ 18/(2-59)

and the lemma follows since [€] < [¢(-,0)}co-
In two space dimensions estimates on the vorticity appear more naturally. In
[17) we proved the results of theorem (2.1) in the two-dimensional case using the

vorticity formulation of the equations. In that paper the quantities

o7 ¢

T3(t) = gl + sl (222)
? Oz? 8y )
take the place of the HZ. The estimate corresponding to (2.18) is
|—1—)—1'1—|1’+2+u
J2(t) < const H},,(t) < const ‘—,,Tﬁ‘a— (2.23)

We refer to the J, in the section on numerical results.



~21-

3 Numerical Results

We first describe the procedure we use to numerically solve the two-dimensional
Navier-Stokes equations. In brief, we discretize in space using the Fourier (pseudo-
spectral) method and solve in time using a fourth order predictor-corrector method.
The equations are solved in Fourier space and the diffusion term vAw is treated in
a fully implicit manner. We now proceed to present more details.

We solve the two-dimensional incompressible Navier-Stokes equations in the

vorticity stream function formulation:

§e + (u€)a + (v€), =vAE+ f (3.1a)
Ay = ¢, (u,v) = (¥y, —¥2)- (3.1b)

The computational domain is taken to be a 27 periodic square. The solution is
represented as a truncated Fourier series with w denoting the discrete approximation

to £ and & denoting the discrete Fourier transform of w:

%Nl"l ;Nz—-l
w(z,p,t)= Y 3 Ok, s, t)eihrmthan),
-}N;+1 —-}N+1
Similarly the Fourier transform of ¥ and f are denoted by 1/3 and f respectively.

The equation for the Fourier coefficient &(ky, kj,1) is

Oy + ik (TD) + iky(30) = —v(k? + k2)o + § (3.2a)

(k3 +R3) =@ (3.2b)

The convolutions #w and 9@ (i.e. the Fourier transforms of the products uw and vw)
are computed from #, ¥ and & by transforming to real space, forming the products
and then transforming back to Fourier space, (pseudo-spectral method). It is not
hard to see that the computation of &, can be done with five two-dimensional fast
Fourier transforms (FFT’s). In fact, only four FFT’s are needed since one can write

(reference Basdevant [2])

Yowy — Pywe = ((#’0)2 - (1"7)’)-, — [(Ye¥s)eo — (Yaty)ys)-
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However, in the calculations presented here the less efficient method was used.
The equations (3.2) can be written in the form of a large system of ordinary
differential equations:
— = F(y,1) (3.3)
where y is the vector with components &(ky, k3).
Time stepping is performed using a predictor-corrector applied directly to equa-
tion (3.3). Let y,, denote the approximation to y(nAt) and F,, = F(y,,nAt). We

use the fourth order Adams predictor-corrector scheme given by

At
yp - y-n + 'ﬁ(stn - lan_]_ + 5Fn-—2) (3.48.)
At
Ynt1 =Ya + ﬁ(gF, + 19F,. - 5Fn_1 + Fn_z). (34b)

Here y, is the result of the Adams-Bashforth predictor, F, = F(y,,(n + 1)At)
and y, 41 is the corrected value obtained from approximating the implicit Adams-
Moulton scheme. A single time step thus requires two evaluations of the right hand
side F. The classical fourth order Runge-Kutta method is used to obtain starting
values for (3.4). These are required initially and whenever the time step is changed.

For stability reasons one may want to integrate the diffusion term, vAw, in an
implicit manner. In the Fourier representation this term is very simple and thus can
be easily treated in a fully implicit and accurate manner. We write the equations

(3.3) in the following way

d .
_d% =G(y,t) —Ay A= diag(...,v(k? + k2),...).

where the right hand side F has been split with A the diagonal matrix corresponding

to the diffusion term. This last equation can be written in the form
d
E(eMy) = el @,
Now apply the time stepping procedure (3.4) to this equation viewed in terms of the

new dependent variable eAty. After division by eA! the predictor-corrector scheme

which results is
At
y, = e Ay, + -1-2-(2.'se-A'“(;n — 16e 242G, _, + 5e7344G,_,)  (3.5a)

At
Yni1 =e Aty 4 579Gy + 19¢ 481G, — 5e7244!G,_; + e 312G, _,).(3.5b)
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The Runge-Kutta scheme is transformed in a similar fashion. The terms e~*(*i+*3)at

are stored and need only be recalculated when At changes. These resulting schemes
are exact in the absence of the convection terms (G = 0).
The variable time step is chosen by stability and accuracy considerations with

At chosen to satisfy the condition
At
CFLpin € (Jt|oo + Iv[“)T < CFLpmax (3.6)

where h = 2/N, (N = max(Ny, N;)). The stability region of the explicit predictor-

corrector method (3.4) is shown in figure 1.

1.4 L 4
Predictor Corrector P(EC)'E 4

P 3rd Order Adams Bashforth
hx.z C 4th Order Adams Moulton =
g0 1
=1.0 .
-l ]
bl 3 3 -
] r- -
- 1
AP -
d
2 h
o '] A d 4 A Lok i Y L 2 L r 4 r i 4 ]
2.0 -1.8 -3.6 -1.4 -1.2 )0 -8 -6 -4 -2 0

Real

Figure 1 Stability region for the predictor-corrector scheme.

When (3.4) is applied to the model problem y' = Ay, the time step is restricted
by (approximately) |A|At < 1.2 if A is purely imaginary and by —AAt <1.9if Ais
real. One expects the implicit predictor-corrector scheme (3.5) to have better sta-
bility properties than the explicit one (3.4). CFL;, and CFLy,, are the minimum

and maximum allowable values for the Courant-Friedrichs-Lewy number:

t
CFL := ([u]e + |vlm)%.
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CFL,,.x would be taken less than the stability limit for the model problem. (The
choice of k in our definition of CFL instead of the true h = 2x/N means that we can
compare CFL directly to the normal stability limit for the model problem.) When

the condition (3.6) is violated the new time step is chosen so that

At
(|u|°° + Ivloo)_i: = CFLopt.

3.1 Verification of the Numerical Approximation

In this section we present results which illustrate the accuracy of the numerical
approximation that we use. In test 1 we show that the time stepping procedure
is accurate to fourth order in At. In test 2 we consider the convergence of the

numerical solution as the number of modes is increased.

Test 1: Accuracy of the time stepping procedure

It is easy enough to choose the forcing f in the Navier-Stokes equations (3.1)
so that the true solution is known to be some given function. Numerous tests of this
kind were performed. In all cases the numerical solutions converged to the exact
solutions at a rate very close to fourth order in the time step At.

As a more realistic study of the convergence of the time stepping routine we
consider a sequence of calculations with fixed random initial data and decreasing
time steps. The initial conditions are identical with those used in section (3.2) for
the decay of random initial data. Keeping the same initial conditions, and with
N; = N; = 128, v = 1074, the equations were solved with three different (fixed)
time steps: At = .05, At = .025 and At = .0125. The computed maximum value
for the CFL number in each run was 1.2, .6 and .3, respectively. (Recall that the
stability limit for the explicit version of the predictor-corrector scheme is about 1.2
on the imaginary axis. We were able to obtain good results for values of the CFL
number as large as 1.5, which substantiates the belief that the implicit predictor-
corrector scheme has better stability properties.) We use the results from the three

runs to estimate the rate of convergence as a function of At as well as to estimate
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the actual error. We measure both the discrete maximum error and the I error

defined by

1
— . ap. 2 _ 2 : s )2
!wlw - (f:;.:f) Iw(zﬂy]), a'nd Iw|2 L N1N2 ( - )Iw(z”yJ)l *
4,V;5

By assuming that the computed solution is converging to the true solution as O(At?)

we can determine approximate values for p and the errors
Eow(t, At) := |weomputea("s t; At) — Wirue(*, 2; At)|oo = O(ALP),

Ez(t, At) = |wcomputed(',t; At) - wtrue('at; At)|z = O(Atp)

These values are given in table I for the maximum norm errors and in table II for

the I; errors.

t E (At = .05) Eo(At = .025) E (At = .0125) P

10. 0.68 x 10~2 0.47 x 10-83 0.32 x 10~4 3.9
20. 0.27 x 10~2 0.18 x 103 0.13 x 104 3.9
30. 0.97 x 10~3 0.69 x 10~* 0.49 x 10~8 3.8
40. 0.69 x 10~3 0.47 x 10~4 0.32 x 10~5 3.9
50. 0.48 x 10~3 0.31 x 104 0.20 x 10~ 4.0

Table II - Estimated maximum errors and convergence rate: O(At?)

t E,(At = .05) E»(At = .025) E,(At = .0125) P

10. 0.40 x 10-3 0.29 x 104 0.21 x 10~% 3.8
20. 0.17 x 10°3 0.12 x 10~4 0.86 x 10~® 3.8
30. 0.73 x 10~* 0.50 x 10~5 0.34 x 108 3.9
40. 0.56 x 10~* 0.37 x 108 0.24 x 108 3.9
50. 0.48 x 10~* 0.31 x 10~% 0.20 x 108 4.0

Table II - Estimated [, errors and convergence rate: O(AtF)

Test 2: Convergence for random initial data
We consider the computation which is described in section (3.2) under the
heading of Run 1: Decay of Random Initial Data. This computation was run with

N = N, = N; = 128 (w13s) and also with N = 256 (w3s5¢). The initial conditions for
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the two runs were the same to single precision (about 6 —7 decimal digits), although
the actual computations were done in double precision. The variable time step was
determined by the parameters (CFLmin, CFLopt, CFLmax) = (.8,1.,1.2) In table II
we indicate the maximum difference and the I, difference between the two runs at
various times. Due to the variable time step the solutions were not compared at
exactly the same times. The difference between the times is given in the table as
t256 — t128. Note that the maximum difference between the two solutions occurs at
smaller times. Later on when the solution becomes smoother the errors are smaller.

Further details of this run can be found in the next section.

t |wase)oo |wass — w128]oo |wase — wizsl2 ta56 — t128
0. 1.00 .10 x 108 .38 x 10°¢ 0.0

10. 75 .55 x 101 45 x 102 +.42 x 105
20. .67 .20 x 1071 .29 x 102 ~.21 x 10°83
30. .60 .15 x 107! .21 x 102 +.23 x 108
40. .59 J10x 107! 73 x 10°3 +.18 x 1071
50. .58 73 x 1072 .58 x 10~3 +.23 x 10~4
60. 57 .43 x 102 .88 x 10-3 —-.19x 103
70. .56 51 x 10~2 .88 x 10~3 +.25 x 10~83
80. .56 .26 x 10~2 .38 x 10~3 +.37 x 10~4
90. .56 227 x 1072 .36 x 103 +.12 x 10~*
100. .55 .31 x 102 37 x 10°3 —-62x10"*

Table II - Convergence of random initial data v = 10~
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3.2 Computational Results
In this section we present the results of four different runs:
(1) Run I: Decay of random initial data, v = 10"%, N = 256 and N = 128.
(2) Run II: Decay of random initial data, » = 105, N = 512.
(3) Run III: Decay of smooth random initial data, » = 2 x 10~%, N = 256.
(4) Run IV: Random forcing, » = .5 x 1073, v = .5 x 1074,

Run I: Decay of random initial data, v = 10-4, N=256 and N=128.
For the first run we consider the time evolution of the Navier-Stokes equations

for random initial data. The initial conditions for the vorticity were chosen so that

|&(k1, k2)| = ke = |(ky, k)],

C
(k + (VvE)®)’
with a random phase. (Actually the initial spectrum was set to zero for all wave
numbers above some large value of k.) The constant C was determined by nor-
malizing the maximum value of the vorticity to be 1 at t = 0, |uw(:,+,0)|c = 1.
The value of the viscosity was taken as ¥ = 10~* and the number of modes was
N; = N, = 256. We show
1) contour plots of the vorticity (figure 2 ). Dashed lines indicate negative contour
values.
2) surface plots of &(k;, k2) in the cosine-sine representation. The discrete Fourier
series for & is actually represented in the computer code as a real series in
cosines and sines. The surface plot shows the magnitude of the coefficients of

this series. The coefficients are ordered in the following manner:

Fc16; €187 C€1€2 C182 C1€s  ...]
81C1 8181 81C2 8182 48:1C3
C3C; €281 C2C32 Cz82 C3Cs
8§32C1 #8281 82C2 8382 83C3 ... |
CsCy Cg81 CsCz C3é83 CsCs

R : AN

where c,c; is the coefficient of cos(kz) cos(ly), ci 8; the coefficient of cos(kz) sin(ly),

and so on. The lowest frequency modes are located at the fop of the surface

plot (figure 3 ). Only the first 128 modes are shown in the surface plots.
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3) plots of the energy, enstrophy, J;, J;, Js as a function of time, and the decay
of the vorticity spectrum as a function of k. In figure 4 a we plot the square

root of the total energy
/211l + [1ol1)*2,

the square root of the enstrophy

lfaoll,

and
V2 I4(t) = v 2 (Jlwe |1 + [lwy ||?)/?

as functions of time. In figure 4 b we plot the normalized versions of v1/2Jy(t),

v?¥/27,(t) and v%2Js(t). Recall that

or¢

2 _ f_ﬁ 2 Z 2
Jp(t) - Hazp” + Hayp” .

In each case the functions plotted are scaled so their maximum value is 1. This
maximum value is indicated on the plot as the value of Scale. In figure 4 c some
gelected Fourier coefficients are plotted as functions of time. Finally in figure
4 d we show log-log plots of @(k) versus k. The quantity &(k), k = 1,2,...
is defined to be the average value of |&(I,,1;)| over all wave vectors (I;,1;) for

which k is the closest integer to I = |(13,1,)]:

o= 3 wemi)/( ¥ 1)

[1-k|<1/2 l1-kj<1/2

We plot log;o(@(k)) versus log,o(k) for different times. Lines with slopes —1
and —2 are also marked. Note that if &(k) ~ k= then E(k) ~ k~2="1,

For comparison, in figures 5 - 6 , we show the results of the same run when only
half as many modes were used, N = 128. Essentially the only noticeable difference
is in the plot of the spectral decay. A quantitative comparison of the 256 and 128

runs was given in section (3.1).

Run II: Decay of random initial data, v = 1075, N = 512.
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The value of v is taken as 10~%. The initial conditions are the same as Run I.
The number of modes was N; = N, = 512. The results are shown in figures 7 -
8 . Note that for technical reasons the contour plots were made by projecting the
solution to a 256 x 256 grid. It is interesting to compare this run (v = 10~5) to the

previous run (v = 10~4).

Run III: Decay of smooth random initial data, v = 2 x 10~5.
In this run we begin with initial data which is much smoother than in the

previous runs. The initial vorticity spectrum is chosen so that
&k, k)| = Che™ $(4/ke) g 35

with random phase. The constant C is chosen so that |w(-, -, 0)|e = 1. The viscosity
was 2 x 107° and the number of modes was N = 256. These initial conditions are
similar to those used by Brachet and Sulem [7]. We have run for longer times than

the results shown in [7]. Plots for this run are given in figures 9 - 10 .

Run IV: Random forcing.

In this run we consider the problem when the equations are forced in a range of
low Fourier modes. For the forced problem there appears to be no easy way to obtain
a sharp bound on the maximum of the vorticity. We have found experimentally that
when the forcing is chosen to be O(1) the solution grows and does not remain O(1).
For example in figure 11 we show the results of a run in which the forcing f is
chosen so that |f|o = 1 and in which the initial vorticity is gero. In particular the

amplitudes and phases of the the fourier components of the forcing were chosen as

(€11 €187 C1C2 C182 CiCy €183 r+12 -4 -16 +4 +20 -—-121
81C1 81817 8;c3 8187 8;C3 8183 +8 -24 -20 412 +28 +4
C2C1 C28; C32C3 C383 C3aCs Caégs - C, +12 -8 432 +24 +8 436
82C1 838, #832C; 8383 83Cy #8383 -12 +12 44 432 -4 -16
CsCi C38; CsCz; C383 CsCs Cs8s —4 -36 -—-16 -36 -—24 +4

Lasc) 838, 83C2 8383 83Ccs 838y [ -20 -20 -—-36 48 -—28 +12J
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where the scaling factor C, was chosen to ensure that |f|lo = 1. In this run
v =10"% N; = N; = 256 and (CFLmin, CFLypt, CFLmax) = (.5,.8,1.). In figure

11 b we have made plots of the maximum norms

MAX(U) = max(lu(-, ) t)’oo’ ,1’(" '7t)'°°)

MAX(DU) = max( 5511 Ol |2 (11Dl g s Dl 151 Dl

and

MAX(W) = [w(:)*1t)|oo-

Even by time ¢ = 200 the solution continues to grow.

In contrast when the forcing is chosen to be O(v) we do not see growth in the
|w(-,+,2)|oo. This observation is presented in figures 12 - 13 where we have made
runs with » = 5 x 1073 (N = 128) and v = .5 x 10~* (N = 256). The initial
conditions for |&] were defined by the matrix of coefficients given above but in this
case the constant C, was chosen so that |w(-,-,0)|cc = 1. The forcing was constant

in time and defined from the relation

vAw+ f=0.

4 Discussion
We have shown that for both two and three dimensional flows the minimum

1/2

scale, Apin, is essentially proportional to v*/?/[Duj_ We now relate this
minimum scale to the decay rate of the energy spectrum.
Let us assume that at a given time f the energy spectrum has a power law

behavior in some range of wave numbers, the inertial range,
E(k) ~k~2,  Jy=0(1) < k < O(1/Amin)-

We have proved that the quantities

1Y, 1

vl 2, 2 2
e (13 + 15 + 15 017

2(y
| Du| ’HH )=

oo |
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remain of order one, provided they are initially so. When this order one bound is
achieved we call the flow mazimal dissipative. Note that 2vH? is the rate of energy
dissipation, €, and that the rate of enstrophy dissipation 7 is bounded by vHZ.
Assuming that the leading order contribution to the integral for H2(t) is deter-
mined from wave numbers in the inertial range and using the power law behavior

for E(k) we obtain

-8-1/2

yr-1 2 Pl 1/Amin ) I_'D;T
L H2(t) — /;. WP Bk~ T

| Du|

1

(o o] (o <]

In two space dimensions we know that |_D_lll°° is essentially bounded by the
maximum norm of the initial vorticity. Let us thus assume that the initial values
are scaled so that ]_DT]OQ 18 of order one. In this case

vr-l

|Du|

T Ha () ~ P32, (4.1)

oo

and for maximal dissipative flows it follows that E(k) ~ k=3, the power law behavior
predicted by the Batchelor-Kraichnan theory [3][16].

In three dimensions if we speculate that [Du|_ = O(v~7), then

yP1
H? ~ p(B+1/2)48-3/2
[Du] "7
[o o]

In this way for maximal dissipative flows, we obtain a relation between the power

law behaviour of the energy spectrum and the size of |Duj_:

When [Du|_ = O(v~1/2), and v = 1/2, we obtain 8 = 5/6 and E(k) = k~5/3, the
power law behavior predicted by Kolmogoroff [15].

We now return to the numerical results of the random initial data runs, refer-
ence figures 2-4 and 7- 8. The initial conditions were chosen so that E(k) ~ k3.
The numerical results show that this k=3 power law seems to remain over an initial

time interval. The numerical results further indicate that as the flow evolves, the
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quantities v* J:, which behave like v? Hp 1, slowly decrase and the energy spectrum
steepens. In a later regime the flow is dominated by the presence of large regions
of relatively constant vorticity. There seems to be some evidence from the figures
to suggest that the quantities J? decay by a factor of about Apis = v1/2 and that
£(k) ~ k=15, E(k) ~ k~%. When
pr-1

|Du,

PHI Hy(t) ~ w2,

the argument in (4.1) predicts 8 = 2, and is thus consistent with the numerical
results. These results are in agreement with Saffman’s theory for two dimensional
turbulence [22].

In figure 1 we outline an hypothesized behaviour of 1?J2(t) for the decay of
two-dimensional turbulence. In the first stage of development of the flow, v? J: may
show an overall increase as the flow evolves to a state of maximal dissipation. (Of
course, depending on the initial data, this maximal dissipative state may nrever be
reached.) This dissipation rate can not continue for a long time interval but must
decrease. The power law then slowly changes from k=3 to a more rapid decay. The
flow becomes organized into coherent structures, a regime with v*J? ~ vl/2 (7)
and where Saffman’s theory would predict E(k) ~ k~*. This regime presumably
exists for long times, since the viscosity now plays a minimal role. This scenario is
suggested by our computations and other similar ones. In particular, Brachet and

Sulem [7] show high resolution computation with initial data
E(k) ~ cke~(k/*ko)

similar to the one presented in this paper (reference figures 9 - 10 ). They found an
increase in the energy power law reaching a maximum at about k~3. At this stage
the rate of enstrophy dissipation is maximum, in accordance with our analytical
results.

It is conceivable that a similar scenario is present in the decay of three dimen-
sional turbulence. In two dimensions when large coherent structures are formed

the main contribution to H;(t) comes {rom one dimensional layers separating these
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structures. When the solutions across the layers have a simple structure, one can

argue that that
-1 1/2

r+1
|Dul,

v

H:(t) ~ Amin ~

iz
loo

Correspondingly, in three dimensions the same argument can be made assuming that
the regions of rapid variation are concentrated along two dimensional structures of
width A.,;,. Thus in either case we obtain a new relation between the power law

behaviour of the energy spectrum and the size of |Du|_ = O(v™7):

2

P=17

In two dimensions v = 0 and we again obtain E(k) ~ k~*. I, in three dimensions
[Du|_ ~ v'/2, we obtain E(k) ~ k~%/3, Large three dimensional simulations are
necessary to confirm the validity of the assumption made on the size of |Du|_, on

the time evolution of HZ(t) and the sharpness of our estimates.
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Figure 2 Contour plots of the vorticity for random initial data, v = 10~* N = 256.
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Figure 3 Surface plots of vorticity spectrum for random initial data, v = 107 % N = 236.
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Figure 14 Hypothetical behaviour for 17 J3(t)
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