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In this article, a lower bound for the decoder error probability (PE[U] ) of a linear

maximum distance separable (MDS) code is derived by counting the dominant types of

decoding words around code words. It is shown that the lower bound derived in this

article is similar in form, and close numerically, to the upper bound derived in [2].

I. Introduction

Let C be a linear code of length n, dimension k, and mini-

mum distance d. Let q be a positive power of a prime. An

(n, k, d) linear code C over GF(q) is maximum distance sepa-

rable (MDS) if the Singleton bound is achieved;that is, d = n -

k + 1. A code is t-error correcting if for some integer t, 2t _<

d-1.

In [1], by repeated use of the inclusion and exclusion prin-

ciple, an exact expression for Du, the number of decodable

words of weight u, is derived. Also in [1 ], the exact decoding

error probability PE(U) of a linear MDS code is evaluated.

However, the formulas derived in [1] are complicated and

clumsy, and offer no mathematical insight. In this article,

by assuming that q/> n, the lower bounds of PE(U) and D(u)

are derived from a completely different approach-simply by

counting the dominant types of decoding words around code

words. In Sections II and III the lower bound derived in this

article is shown to be similar in form, and close numerically,

to the upper bound derived in [2]. In Section IV, with the

assumption that q >_ n, the lower bound of PE(U) as a func-

tion of u is shown to achieve its minimum value at u = d - t.

Thus, the lower bound for u = d - t is the overall lower bound

of PE(u ). For q < n, this may not be true.

II. Lower Bound of the Number of Code
Words of Weight w

Let A w denote the number of code words of weight w. A

lower bound ofA w is given by the Ibllowing theorem:

Theorem 1 :

where

Aw>_C(n) q-d+l(q _ 1)w

(q - l )d

d<_w<_n (1)
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Proof: From [ 1 ], A w is given by the following expression:

w--(;) r. (-1;w-l 
i=0

w-d (W- 1) qW-l-i= (;)(q-1)q-a+' _] (-1)i i
i=0

(;)

ii]
i=w-d+l

Consider the bracketed term in Eq. (5). Since q/> n, it is an

ascending function of w. So if we denote

w-d+

c-- -
w=d+l

(q - 1)a

we have

Aw>_C(;)q-a+l (q-1) w d<_w<.n

where C is a scaling factor very close to 1.

Consider the second term of the above expression. Since

q >_n,

(W; 1)qW--l-i_ (7+_)qW-l-i-I

ford_<w_<n andw-d+l_<i_<w-l. It is not hard to see

that the following inequalities are obtained:

Aw>_ (;)q-d+l(q_ 1)w (2)

A
w <- (;)q-d+l(q-l)W I1

w = d,d+2,d+4 ....

w- 1 ) qd-2w-d+1
+

(q - l)W-J

III. Derivation of Lower Bound

Let d be a decodable word. Then J can be expressed

uniquely as a sum c + e, where F is a code word and g is an
error pattern of weight less than or equal to t. Let d have

weight u and F have weight s, s _< t. The weight of F is then
confined within a certain set of values, depending on the value

of u and s. The main idea of deriving the lower bound of the

number of decodable words of weight u is to count a certain

"dominant" subset of code words that, when added to appro-

priate error patterns, gives rise to decodable words of weight u.
Let us define

and

f (w w- 1 ) qd-2

-d+l

- _q- 1)w_,

w = d+l,d+3, d+5 ....

B = (w:w is the weight of a code word that is at a dis-
U,$

tance s from a decodable word of weight u}

We then have the following expression for Bu, s depending
on the value of u and s:

(3)

(1) Ifd-t<_u<.d- l <_n-t,

thenBu, s= {w:d<_w<_u+s}

(2) Ifd<_u<-d+t -1 <_n-t,

(4) then Bu, s = (w:d<_w<u +s}

(3) Ifd+t<_u<_n-t,

thenBu,s= (w:u-s<<.w<_u+s}

(4) Ifn-t+l<u<<-n:

If u + s_<n, then Bu,s= (w:u- s<<.w<_u + s}

(5) If u + s >n, thenBu,s= {w:u- s<_ w<_n)
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We can then express Du as follows:

Du = Z Z Aw × {#°ferr°r patterns of weight (6)
s W_Bu, s s that give rise to a decodable

word of weight u from a code

word of weight w}

We see that in the case d -t <_ u <_ d - 1, an allowable error

pattern must be of weight s E {d - u ..... t} C {0, 1 ..... t}.

In the case d _< u _< n, an allowable error pattern must be of

weight s E {0, 1 ..... t}.

We also observe that for a linear MDS code, if q _>n and q

is large, then

-- 2>>1 for most d _< w _< n

Thus, for the purpose of finding a lower bound of Du, we do

not need to consider all w E Bu, s. We need only count those
w's that give rise to most decodable words of weight u. It is

!

then logical to consider only those w E Bu, s C Bu, s where
B'u,s is a subset of Bu, s (Bu, s consists of the larger numbers in

Bu,s), instead of all w CBu, s. We now define Bu, s as follows:

(1) Ifd-t<_u<.d- l _n-t,

thenB'u, s= {w:d <_ w<.u + s}

(2) Ifd<.u<_d+t-l<_n-t,

thenB'u,s= (w:u <_ w<_u +s}

(3) Ifd+t<.u<_n-t

then Bu, s = {w :u <<.w <_u + s)

(4) Ifn-t + l <_u<.n:

Ifu+s<_n, thenBu, s= {w:u<<. w<_u + s)

Ifu+s>n, thenB'u,s= {w:u<.w<.n}

Before we proceed, we want to categorize the decodable
words according to the following definition.

Definition 1 :

Let d be a decodable word which can be expressed in the
form ay = _+ _'. Let T_- denote the set of nonzero coordinates

of b-and T_-denote the set of nonzero coordinates of _.

(1) d-is defined to be of type A if T_ C T_-.

(2) d-is defined to be of type B if it is not of type A.

It can be shown that for a given u, the number of type-A

decodable words of weight u is usually much greater than the

number of type-B decodable words of weight u for most u.

However, an explanation of the above claim is complicated

and clumsy, and it is very hard to present a formal proof. A

crude and oversimplified explanation is that type-A decodable

words lie within Hamming spheres of code words of weights

up to u + t, whereas type-B decodable words lie in the Ham-

ming sphere of code words of weights only up to u + t - 2.

As was mentioned before, A w >2> A_v_l for most w. This
partly explains why the number of type-A decodable words

is much greater than the number of type-B decodable words of
weight u.

Summing up the above results, a lower bound of the num-

ber of decodable words of weight u is given by the following
expression :

Aw×
s wEB'

u_s

{# of error patterns of weight

s that give rise to a type-A

decodable word of weight u

fiom a code word of weight w}

(7)

We have four cases to consider, depending on the value of u.

(1) d-t<_u<.d-1

In this case, s E {d -u ..... t} and w EBu, s = {d,d +

1 .... ,u+s}. There are(s) ways of choosing s coordinates
that give rise to type-A decodable words. But in order to have

a type-A decodable word of weight u, the w - u nonzero

coordinates in ?-must match with the corresponding w - u
nonzero coordinates in _-to give w - u zeros in these coordi-

nates. The remaining s - (w - u) coordinates of _-must also

match the corresponding s - (w - u) coordinates of ?-to give a

nonzero value in each of the s - (n - w) coordinates. There are

(q _ 2)s- (u-w) ways to do so.

Thus, the number of decodable words of weight u, where
d - t <_ u _<d - 1, is lower bounded as follows:

t (W)(w)s (q _ 2) s_Du>_ E E Aw -u

$=d-u W_Bu, s

( W --tl )

We then substitute the lower bound ofA w in Eq. (1) for the

above expression, and we have a lower bound of Du as follows:

t u+$

Ou>_ Z Z C(;)q-d+m(q-l) w
s=d-u w=d
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We see that

(:t(w)(w:.)
can be expressed as

(:)(:_u)
Let X = w - u. The above expression can be rewritten as

Du >_ E C
s=a-u x=a-u _-_--_-11

Next, it is not hard to see that for the given ranges of u, s and w,

t-q-Z-f-l J[q- 2_s-w+u > (_- l)q- 2 t

Also, for the purpose of consistency with the equations that

follow, the lower limit of the first summation on the RHS of

the above expression can be replaced with 0 and thus our final

expression is

where

D)C(q-_q 1) d-1 tq-2_t__ 1] (_) (q- 1) u-d+l

,. )

(2) d<_u<_d+t

In this case s E{0, 1 ..... t} and wE{u,u + 1,... ,u + s}.
The derivation of lower bound of the number of decodable

words of weight u is very similar to case 1, and the details
of derivation are omitted. Since the smallest value of the

code word weights that are involved in counting is u, the

scaling factor of the lower bound is now

u - 1 ) qd-2
C '= 1- u-d+l

(q - 1) u-1

which is closer to 1 than C. The lower bound of Du is then

given by

D _>C' (q
u \7--U

X _ _ (n_U)(sU_x) (q-l) s
s=O X=0

The lower bound can again be simplified by recalling the

famous combinatoric identity

and the final expression for this case is

Du_C'(_) d-l lq-21t_-__ll(_)(q-l) u-d+l

= C' q - 2 (q _ l )u_a+ 1

X V(t) d<_u<_d+t

(3) d+t+ l <_u<_n-t

In this case, s E{0,...,t) and w E{u .... ,u +s}. The

derivation is exactly the same as in case 2, and the lower

bound is given by

D >>'C' _q l) a-' _-f- ll[q- 2_t (_u) (q- 1)u-d+l

× V(t) d+t+l<_u<_n-t

(4) n-t + l <<.u<_n
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In thiscase,if u + s _< n then w E{u ..... u + s}, and if

u + s > n then w _(u ..... n). The derivation of the lower

bound is slightly different from those of cases 2 and 3, but

the final expression turns out to be the same. That is,

Du c' (q-ql)Cl-ltq - t )u-a+l1f (q- 1

× V(t) n-t+l<_u<<.n

In summary, the lower bound of the number of decodable

words is given by the following equations:

D>_C(q--_)a-l[q-2V( n)_-q--Z-T_l'(q - 1) u-a+l

-ld //

x _ X s-_, (q-1)_
s=O h=d-u

d-t<_u<_d-1 (8)

d-Ilq-2 V 1)._d+,

×V(t) n-t+l<_u<.n (9)

where

and

C' = 1
u-1 )qa-2u-d+l

(q - 1)'`-1

We have shown in [1 ] that the decoder error probability is

related to the number of decodable words via Eq. (2) and thus

the decoder error probability PE (u) is lower bounded as follows:

q--2 t t

PE(U)>Cq-a+I (#_-i-i) s_=ox S=_d_'`(n;u) (sUx)(q_l)S

d-t<<.u<_d-1 (10)

PE(u)>_C'q-a+l [q - 2_ t
_qZ-l-l] V(t)

d<<.u<<.n (11)

where

d) qa-2
C=I_ 2

(q - 1) a

and

C ' = I

u-1 )qd-2u-d+l

(q- 1)"-1

IV. Overall Lower Bound of PE (11)

In this section, an overall lower bound of PE (u) for all u is
given by the following theorem and corollary.

Theorem 2:

If q ) n, then the lower bound OfPE(U ) in Eqs. (10) and
(11) is smallest for u =d - t.

Proof: First of all, it is not hard to see that the lower bound

in Eq. (10) is always smaller than the lower bound in Eq. (11)
because Inl is always greater than the incomplete Vandermonde

_.s! t n-u
convolution Y'x=a-'` (x)(tux).Ms°,thescaling fact°rC'in
Eq. (11) is always greater than the scaling factor C in Eq. (10).

Thus, to prove the theorem, we need only consider the lower

bound of PE (u) for d - t _<u _<d - 1. It is not hard to see that
a sufficient condition is to show that

d-t<<.u<<.d-1

It is obvious that

t

k=d-u
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We now proceed to show that

h=d-u

Let l = t- d + u and m = t- X;we have

x=a_u (n X u m=0 t-m-u) (t-X) (q-1)t = _ (n-d+t-l)

x(d-t+l)(q-1)tm

Since d_> 2t + 1 and O<,l<_t- 1,

Thus,

(n-d+t-l)t_m (d-t+l)m (q-1)t
m=O

>1 Z -d + t-I -dt -m (q - 1)t = t
m=O

+ 9 (q - 1)t

and the theorem is proved.

Corollary:

An overall lower bound OfPE(U ) for all u is

P_(u) <_C [q -2it eE(d-t)

 g=r-l ! t (q- 1)'

where

Proof: A direct result from Theorem 2.

V. Remarks

For q i> n, the upper bound and lower bound OfPE(U ) give

a good estimation of PE(u). The upper bounds [2], lower
bounds, and exact values of the PE (U)'S of the NASA code and

the JTIDS code are tabulated in Table 1 and Table 2, respec-
tively. We observe that the estimated values (upper bound and

lower bound) are more or less of the same order of magnitude
as the exact value in each case.

Also, we have shown that with the assumption that q t> n,

an overall lower bound OfPE(U ) (for all u) is given by

[q-2]tPE(d_t)
c 7-:-f_]

For q < n, this may not be true.
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Table 1. Decoder error probability of the NASA code*

Weight Lower bound Actual value Upper bound

17 7.769 X 10 -15 9.464 X 10 -15 2.956 Z 10 -14

18 1.665 × 10 -14 1.913 X 10 -14 2.957 X 10 -14

19 2.171 X 10 -14 2.401 X 10 -14 2.957 X 10 -14

20 2.361 X 10 -14 2.660 × 10 -14 2.957 × 10 -14

21 2.414 X 10 -14 2.602 × 10 -14 2.957 X 10 -14

22 2.425 X 10 -14 2.608 X 10 -14 2.957 X 10 -14

37 2.450 X 10 -14 2.609 × 10 -14 2.957 X 10 -14

*NASA code (255,223);q = 256; t = 16.

Table 2. Decoder error probability of the JTIDS code*

Weight Lower bound Actual value Upper bound

9 1.340 x 10 -6 3.750 × 10 -6 9.250 X 10 -6

10 5.741 x 10 .6 1.439 x 10 .6 9.349 x 10 .6

11 1.310 x 10 -6 2.951 X 10 -6 9.350 X 10 -6

12 2.123 × 10 -6 4.329 × 10 -6 9.350 × 10 -6

13 2.767 × 10 -6 5.189 × 10 -6 9.350 x 10 -6

14 3.140 x 10 .6 5.547 x 10 -6 9.350 × 10 -6

25 4.328 x 10 -6 5.626 x 10 -6 9.350 x 10 -6

*RS code (31, 15);q = 32;t = 8.
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