# NASA Reference Publication 1130

1988

Galileo Probe Parachute Test Program: Wake Properties of the Galileo Probe at Mach Numbers From 0.25 to 0.95

Thomas N. Canning Portola Valley, California

Thomas M. Edwards Ames Research Center Moffett Field, California



and Space Administration Scientific and Technical

Information Division

#### GALILEO PROBE PARACHUTE TEST PROGRAM:

#### WAKE PROPERTIES OF THE GALILEO PROBE AT MACH NUMBERS FROM 0.25 TO 0.95

Thomas N. Canning\* and Thomas M. Edwards

Ames Research Center

#### SUMMARY

The results of surveys of the near and far wake of the Galileo Probe are presented for Mach numbers from 0.25 to 0.95. The trends in the data resulting from changes in Mach number, radial and axial distance, angle of attack, and a small change in model shape are shown in crossplots based on the data. A rationale for selecting an operating volume suitable for parachute inflation based on low Mach number flight results is outlined.

#### INTRODUCTION

The deployment, inflation, performance, and stability of a parachute in the wake of a payload to which it is attached are frequently sensitive to the velocity gradients of the wake itself. This sensitivity is expected to be particularly great for cases in which the wake diameter is comparable to that of the parachute because the radial velocity gradient is largest at the periphery of the parachute before the parachute is fully open. That is to say, a very small parachute (such as a drogue) may deploy and inflate satisfactorily in a large wake (because only small differences of imposed velocity occur near it), whereas a somewhat larger parachute might inflate slowly or not at all. In contrast, the larger parachute may inflate satisfactorily in the wake of a small payload - the usual configuration employed in parachute development and structural tests. The descent parachute configuration of the Pioneer Venus Large Probe (ref. 1) is believed to have exhibited a "reluctance" to open at Mach numbers above 0.6 both for the system tests in the Earth's atmosphere and for the actual Probe during its flight in the atmosphere of Venus. The rather gradual inflation did not compromise the collection of scientific data in the Venutian atmosphere because no critical events, such as entering a recognized cloud layer, occurred before the altitude for parachute deployment and inflation. In the case of the Galileo Probe (ref. 2), on the other hand, it is most important to deploy and inflate the parachute somewhat earlier, i.e., at higher Mach number, in order to remove the instrumented descent configuration from the aeroshell and permit operation of the cloud-analysis instrument before entering the first clouds in the postulated atmosphere of Jupiter.

During Earth-based flight tests to verify adequate system behavior for the Galileo flight conditions, however, the inflation was achieved at an undesirably low Mach number; once inflation was complete, the performance and stability proved to be the same as the earlier tests and flights. Rather than accept the loss of the scientific data and the risk of even further delayed inflation for the flight in the atmosphere of Jupiter, it was decided to investigate the reasons for the marginal behavior and to seek means to ensure prompt inflation at the desired flight Mach number. In order to relate the anticipated wake-survey data to the earlier experience, tests at conditions spanning those for both Venus and Jupiter were desired. Two types of tests were believed necessary in order to guide decisions on design variations: wake-flow surveys and tests of scale model parachutes. This report describes the wake-flow study and suggests a simple rationale for employing the summary plots derived from the data. Tests of a scale model parachute are reported in reference 3.

#### TEST EQUIPMENT AND TEST FACILITY

#### **Probe Models**

The wakes of two one-eighth-scale models (6-in. diameter) of the Galileo Entry Probe aeroshell were surveyed in the NASA Ames 6- by 6-ft transonic wind tunnel to define the initial operating environment of the descent parachute. The principal configuration represented the expected form of the "ablated" Galileo Probe deceleration-module heat shield. The second configuration represented the "ballasted" configuration to be used in a planned system drop test to verify that parachute deployment, inflation, performance, and stability were satisfactory. The two model profiles are shown in figure 1. In addition to matching the forebody profile for the

<sup>\*</sup>Mechanical Engineer, 276 La Cuesta Drive, Portola Valley, CA 94025.

system drop test, the model in figure 1(b) also is essentially the same as that of the Pioneer Venus Large Probe; thus the results from both programs can be directly related. The principal difference between the latter model and the Pioneer Venus Large Probe is the short cylinder between the  $45^{\circ}$ half-angle cone and the base. In neither case was the form of the afterbody (from the rim of the cylinder aft) made to simulate a real configuration because of the expected insensitivity to the afterbody of the distant wake flow and most of the reverse-flow region. At high Reynolds numbers (above critical for transition), the flow separates at the cone-cylinder junction at subsonic and transonic speed.

The models were affixed to the support structures at a pivot located 0.084 model diameter ahead of the base plane. Thus, when positive angles of attack were set, the center of the model base moved slightly in the direction of negative Z.

The area surrounding the model noses was covered by a fairly densely spaced single layer of glass spheres out to a radius of 0.167 model diameter to assure early transition to turbulent boundary-layer flow. This feature in combination with the nominal test Reynolds number 1.5 million, was used to assure good simulation of full-scale flow. A brief sequence of tests was run at  $Re_D$  equal to 3 million and showed no alteration of flow patterns.

#### **Model Supports**

Two types of support were used during the tests. All of the data reported herein were obtained with the models supported on the sting-strut assembly shown in figure 2. A few preliminary tests were run with the ablated-form model mounted conventionally on a long slender sting equipped with a fixed rake of five pitot-pressure tubes located 2.6 model diameters from the model base. Tests were conducted with and without the strut in place about 0.3 model diameter from the base. The strut reduced the size of the wake significantly at M = 0.95; therefore, the two-diameter extension sting was installed to reduce the interference. Subsequent surveys with the traversing survey probe described later revealed a wake profile which matched that of the sting-mounted model much more closely. Directly comparable tests using only the five-tube probe were not possible, but it was concluded that support interference was reduced to a degree which would allow accurate determination of data trends with Mach number, distance downstream and angle of attack, and model profile. The strut was stabilized with guy wires to avert possible coupled torsionbending oscillations.

#### Wake Survey Apparatus

All of the data presented herein were obtained using the pitot-static probe illustrated in figure 3. Included on this

probe were forward- and aft-facing pitot tubes; the forwardfacing tube incorporated a coaxial static-pressure tube as well (four orifices at 0.29 model diameter from its tip). This spacing permitted good determination of flow properties in weak and moderately strong axial pressure gradients. The aft-facing pitot tube was about 1 model diameter downstream of the static-pressure taps, so that strong gradients made interpretation of the data in the reverse-flow region difficult. After completing the far-wake survey, the forward-facing pitotstatic probe was accordingly converted to aft-facing (fig. 3(b)) by bending it through 180°. The orifice nearest the inside of this bend was sealed with epoxy to avoid the strongest aerodynamic effects of the bend. Even with this alteration, the strong pressure gradients in the reverse-flow region required that the separation between pitot and static orifices be recognized in obtaining the data. This was accomplished by traversing the probe in increments of 1.75-in. (0.29 model diameter) and using the measurement in adjacent test sequence points to obtain spatially coincident measurements of pitot and static pressures.

The same procedure can, in effect, be achieved with the far-wake results by interpolation of the static-pressure data to obtain coincident determination of the pressures; this has not been done in reducing the data because the gradients there are an order of magnitude less severe than in the reverse-flow region.

Pitot and static-pressure measurements made using probes of this sort are degraded if the local flow is highly inclined (more than 10°) relative to the tube axis. Since this degradation is small for angles less than about 10°, the only regions in the wake where errors are expected to be large are well removed from the axis in the near wake. Approximate numerical analysis of the wake profiles downstream of the model by more than 5 model diameters indicated that radial inflow into the accelerating wake resulted in inclinations of less than 3°. Unsteadiness of the flow in the wake doubtless interfered with the static-pressure determination; since the goal of the present surveys was to determine the qualitative influence of Mach number, position, and angle of attack on dynamic-pressure distribution, the small and slowly changing bias on the static-pressure measurement was ignored in studying the data.

The pitot-static probe was located at the tip of the short radial arm so that as the survey assembly was rolled, the probe moved to the left or right to survey at positions other than the vertical plane of symmetry. The location of the roll mechanism is indicated in figure 4.

Vertical positioning of the survey probe was accomplished by translating the wind tunnel model-support body of revolution (BOR) by simultaneous operation of its two positioning screws. Streamwise positioning of the survey probe was effected by means of the linear-actuator mechanism connected between the probe arm and the roll mechanism. The maximum extension range of the linear actuator was slightly less than 4 model diameters; it was therefore necessary to position the model-support strut at several stations along the test-section ceiling to achieve the full streamwise array of surveys desired.

#### **Deflections of Survey Apparatus**

As noted above, the entire survey apparatus was cantilevered from a large floor-to-ceiling strut located in the entrance to the wind tunnel diffuser. The maximum cantilever length is approximately 12 ft. Late in the test program it was discovered that aerodynamic loads deflected the apparatus upward by an amount that is believed to be influenced by extension length, dynamic pressure, Mach number, roll position, and position relative to the model's wake. Additionally, backlash in the vertical-positioning drive may have yielded a small irregularity in vertical position, although calibration tests without airflow revealed no such effect greater than about 0.5% of the model diameter. The aerodynamic deflection, on the other hand, produced in one case a deflection of at least 8% of the model diameter. As far as could be determined, this deflection was nearly constant for a given test condition and streamwise position of the survey probe (axial and roll), so that the shapes of the vertical profiles of dynamic pressure, Mach number, etc., were preserved, but the absolute position of the survey probe relative to the model axis was not accurately known. From a study of the flow-profile plots, the effect of the elastic deflection can be seen to yield a "movement" of the wake progressively in the +Z direction as the dynamic pressure increased; i.e., increasing Mach number at constant Reynolds number. A similar lateral deflection may have occurred as well, but observation was not possible.

Interpretations of the profiles of flow properties were therefore based on the assumption that vertical deflection was constant throughout any one run, i.e., vertical traverse. Also, where effects of angle of attack were under study, it was assumed that deflection was independent of angle of attack.

#### TESTS

Most of the test period was spent obtaining the complete survey of the static and pitot pressure variations in the wake of the "ablated" model configuration supported on the strut. The matrix of test conditions and survey points is detailed in table 1. The abbreviated test matrix for the second, i.e., "ballasted," model consists of runs 333 through 335. In this listing an entry is made in a column only at the run at which that parameter is changed. The special tests, designed to reveal the extent of support interference on the nominal wake properties, are not included.

The test sequence was dictated by the most efficient use of tunnel time, except that the special support interference study was accomplished first to obtain early assurance that support interference would not be excessive.

While the test airflow conditions were being established, the survey apparatus was maneuvered into the desired position: for height, Z, by raising the BOR conventionally used for model support, for lateral position, Y, by rotating the roll positioner on the BOR and extending the survey apparatus linear actuator to the desired streamwise position, X. Each run thereafter consisted of a vertical traverse to all the points at which measurements were needed.

Succeeding runs were made at the remaining lateral positions desired for the same axial station before moving to the next axial station. Once the three linear dimensions had been adequately surveyed, the next Mach number was established and the desired spacial survey was completed. The time required to position the survey probe was sufficient to assure equilibration of the pressure sensors without additional delay.

The only occasions requiring breaks in the wind tunnel operation were those to adjust the streamwise location of the model-support strut and its guy wires, adjust the angle of attack of the model (by rotation about the pivot inside the model), or exchange the ablated model for the ballasted model. At each such break in the testing, the glass-bead boundary-layer trip area was inspected and refurbished as needed.

#### RESULTS

All of the wake-survey results for both the ablated and ballasted configurations supported on the short sting with strut are provided in table 2. Table 2 has been subdivided into four sections. Sections 2a and 2c present data for the ablated model shape with the pitot-static probe facing forward. Section 2b presents data for the ballasted model profile, and section 2d presents data for the ablated shape with the pitot-static probe facing aft. Data were taken at Mach numbers of 0.25, 0.60, 0.80, 0.85, 0.90, and 0.95 at a Reynolds number of 0.75 million based on model diameter. The pitot-static surveys yielded profiles of Mach number, dynamic pressure, velocity, and static pressure as functions of vertical position relative to the horizontal axis of the small sting at selected lateral positions and several axial stations between 1 and 11 model diameters downstream from the model base.

Definitions of column headings are presented in table 2. To preserve direct accountability of the table, the actual run numbers and order of table 1 may facilitate rapid location of a desired test listing. Gaps in the number sequence represent runs made at a Mach number of 1.1; these runs were deleted because of serious disturbance of the flow by the normal-shock wave upstream of the linear actuator of the survey system. A few unexplained anomalies have been observed in individual sequence (i.e., data-point) listings. These anomalies have not been deleted.

Selected groups of runs have been plotted and crossplotted in figures 5 through 8 to reveal the shape, Mach number, distance, and angle-of-attack effects on the properties of the wake. In these plots attention is concentrated on the variation of the ratio of local dynamic pressure to freestream dynamic pressure. Other parameters, such as velocity or pitot pressure, may be as meaningful in applying the results for various purposes. Sufficient information is tabulated so that such plots may be constructed.

All of the tabulated results, with the exception of runs 367 through 390, are presented with no post-test alteration. These exceptions are the tests made with the modified (reversed by a  $180^{\circ}$  bend) pitot-static tube. In these tests, very strong axial gradients resulted in a large static pressure difference between the positions of the pitot and static pressure orifices. Therefore, the X increment used in these tests was selected so that the static pressure determined at a particular sequence point could be used with the pitot pressure obtained at the previous sequence point. The tabulated data have been treated in this manner.

With considerable effort the same kind of correction can be applied to the data from surveys at 3.5 model diameters, and farther, behind the base. There is little to be gained, however, because the pressure gradients are an order of magnitude less severe than in the reverse flow near the model base.

#### DISCUSSION OF RESULTS

#### **Far-Wake Region**

The momentum defect in the wake of a simple nonlifting body is directly equivalent to the drag of the body. The wakes of the two aerodynamic models used in this study illustrate that the ballasted model has slightly less drag than the more bluff ablated model used in most of the tests. The profiles of dynamic pressure (fig. 5) show a smaller loss in the wake core of the ballasted model than in the wake core of the ablated model. The extent and precision of the surveys in this study are not sufficient to determine the absolute drag coefficients with great accuracy, but the difference is clear. While the two configurations showed only modest differences in dynamic pressure loss (and gradients of dynamic pressure), much greater changes were observed for the ablated model as Mach number and distance from the model to the survey station were changed. The lower portion of each part of figure 6 illustrates the rapid increase of dynamic pressure in the wake core as the survey station is moved downstream from the wake stagnation point -0 dynamic

pressure. Even as far downstream as 11 model diameters, the continued recovery toward free-stream conditions is clear.

This acceleration of the wake core is achieved at the cost of deceleration of the airflow immediately outside the wake; at all times the total loss in momentum flux must represent the model drag. This redistribution of momentum is summarized in the contour plots of constant dynamic pressure presented in the upper portions of figure 6. At some distance downstream of the body, probably about 6 model diameters from the base, the profiles become "similar." That is, when normalized to the maximum loss in velocity at the core and to the local wake diameter, the profile plots will remain unchanged. Once similarity is established, the radial gradients are seen to vary as the 1.5 power of the maximum loss at the core.

#### The Effects of Angle of Attack

The total drag of bodies like those tested in this study is quite insensitive to angle of attack, for angles of attack very much less than the body cone half angle; therefore the total change in loss of momentum in the wake was correspondingly slight as angle of attack increased to  $20^{\circ}$ . The generation of even a modest lift force, however, results in the discharge of a trailing vortex system which rolls up into a vortex pair at great distances downstream. This vortex system causes the wake to move in a direction opposite to that of the lift vector. This deflection of the wake is the most prominent feature in the vertical profiles of dynamic pressure ratio at angles of attack of both plus and minus  $10^{\circ}$  and  $20^{\circ}$  (fig. 7). The surveys revealed no further major changes in the dynamic pressure profiles.

#### **Reverse-Flow Region**

In deploying the Galileo Probe parachute, it is necessary first to propel a small drogue through the near wake of the probe (where the flow moves toward the base). Further, the drogue must then remove the afterbody heat shield and drag it through the volume of reverse flow before the main parachute can be drawn aft in turn. In order to permit estimation of the performance requirements placed on the drogue, the reverse-flow region was surveyed in detail using the modified pitot-static probe (runs 367 through 390). These data are summarized as contour plots of dynamic pressure in figure 8.

The length of the reverse flow increases significantly as Mach number increases from 0.25 to 0.95. The relative severity of the reverse flow, on the other hand, diminishes.

The dynamic pressure profiles deduced (from crossplotting the data) to act along the axis of the flow core are shown in figure 8.

#### APPLICATION OF RESULTS TO DESIGN OF GALILEO PROBE PARACHUTE CONFIGURATION

Experience with the Pioneer Venus Large Probe (ref. 1) and with the System Drop Test Configuration for the Galileo Probe (ref. 2) suggested a "reluctance" to inflate at Mach numbers above 0.60. In these cases the parachutes were deployed at approximately 5.5 Probe diameters behind the Probe base. The present data indicate that at this location and flight speed the loss of dynamic pressure near the wake core was severe and the wake diameter was comparable to that of the parachute itself. It is believed that these features combined to cause poor inflation. The result of increasing the Mach number was to aggravate the loss of dynamic pressure and increase the wake size. A slight aggravation was noted when the blunter shape of the Galileo (ablated form) was substituted for that of the Pioneer Venus Large Probe. In order to promote satisfactory parachute inflation for the more severe Galileo requirements, it is necessary, therefore, to find that region in the wake which appears to be more conducive to reliable inflation than that for the Pioneer Venus case at Mach 0.60.

The mixing of external-flow air with the wake is found to produce a rapidly improving wake profile with increasing distance downstream. A comparison of the appropriate profiles suggests that proper parachute inflation can be achieved for the Galileo at a Mach number of 0.80 by incorporating only a modest increase in deployment distance.

#### CONCLUSIONS

The wakes of the Galileo Probe and a system drop test configuration have been surveyed to determine the variation of flow properties between the model base and a station almost 11 model diameters downstream.

It was found that (compared to the Pioneer Venus Large Probe) the wake of the more bluff configuration (the shape representative of the expected ablated heat shield after entry into Jupiter) had slightly larger dynamic pressure losses and that the severity of these losses increased markedly with Mach numbers from 0.25 to 0.95. Further, it was found that entrainment of adjacent air monotonically increased the wake size and the dynamic pressure in the core.

It was also found that the length of the reverse-flow region immediately downstream of the model increased slightly with increasing Mach number whereas the relative severity of the reverse flow diminished substantially.

A simple rationale was described whereby a region in which a parachute might be expected to inflate at high speed may be identified based on successful parachute operation at lower speed.

Ames Research Center

National Aeronautics and Space Administration Moffett Field, California, August 24, 1984

#### REFERENCES

- 1. Nolte, L. J.; and Sommer, S. C.: Probing a Planetary Atmosphere – Pioneer Venus Spacecraft Description. AIAA paper 75-1160, Sept. 1975.
- Givens, J. J.; Nolte, L. J.; and Pochettino, L. R.: Galileo Atmospheric Entry Probe System – Design, Development, and Test. AIAA paper 83-0098, Jan. 1983.
- Corridan, R. E.; Givens, J. G.; and Kepley, B. M.: Transonic Wind-Tunnel Investigation of the Galileo Probe Parachute Configuration. AIAA Paper 84-0823, Apr. 1984.

Mach Run Mach Run  $X/D_B$  $X/D_B$  $Y/D_B$  $Y/D_B$ Alpha Alpha No. No. No. No. 0.95 0.02 194 0.95 8.5 -0.45 +20144 7.0 0 195 10.9 145 8:5 -0.44 0.90 0 146 0 196 0.90 8.5 147 0.44 197 0.85 10.9 ¥ ¥ 8.5 0.80 7.0 0 198 0.85 148 -0.44 199 0.80 10.9 0.41 149 8.5 150 0 200 0 ¥ 151 ¥ 0.44 201 -0.38 -0.48 0 202 152 0.60 7.0 8.5 0.43 8.5 -0.44 203 153 154 0 204 0 0.44 205 -0.36 155 156 0.95 -0.39 206 -0.45 157 0 207 0.60 10.9 0.41 0.43 208 0 158 -0.38 159 10.5 0.41 209 210 -0.48 160 0 211 8.5 0.43 161 -0.38 162 -0.48212 0 163 10.0 0 213 -0.36 0.45 0.80 10.9 0.41 214 164 10.9 165 0 215 0.25 0.41 -0.38 0 166 216 -0.48 217 -0.38 167 168 10.0 0 218 -0.48 219 0.43 169 0.60 10.9 0.41 8.5 0 220 0 170 -0.38 171 221 -0.36 172 -0.48 222 -0.45 0 223 0.95 10.9 0.41 -20 173 10.0 174 0.90 10.9 224 0 175 0.90 0.85 225 -0.38 0.85 0.85 226 -0.48 176 177 0.85 10.9 227 8.5 0.43 178 0.25 0.41 228 0 179 0 229 -0.36 -0.38 180 230 -0.45 0.90 10.9 181 -0.48 231 0 182 10.0 0 232 0.90 8.5 7.0 0 233 0.85 10.9 183 8.5 -0.45 234 0.85 8.5 184 235 0.80 10.9 0.41 185 0 0.43 236 186 ¥ 0 0 187 0.95 10.9 0.41 +20 237 -0.38 188 0 238 -0.48 239 189 -0.36 8.5 0.43 -0.48 240 190 0 0.43 -0.36 191 8.5 241 -0.45 192 0 242 ᡟ 193 ¥ -0.36 243 0.60 10.9 0.41

TABLE 1.- TEST CONDITION LISTING

Run Mach Run Mach  $X/D_B$  $Y/D_B$  $X/D_B$  $Y/D_R$ Alpha Alpha No. No. No. No. 0 294 0.25 -0.45 +10244 0.60 10.9 -20 8.5 -10 -0.38 295 0.95 10.9 0.41 245 246 -0.48 296 0 -0.38 247 8.5 0.43 297 298 -0.48 248 0 249 -0.36 299 8.5 0.43 250 -0.45 300 0 251 0.25 10.9 0.41 301 -0.36 252 302 -0.45 0 -0.38 303 0.90 10.9 253 0 8.5 254 -0.48 304 0.90 255 8.5 0.43 305 0.85 8.5 0 306 0.85 256 10.9 257 -0.36 307 0.80 0.41 -0.45 258 308 0 259 0.95 10.9 0.41 +10309 -0.38 260 0 310 -0.48 -0.38 8.5 0.43 261 311 262 -0.48 312 0 263 8.5 0.43 -0.36 313 264 -0.45 0 314 -0.36 265 315 0.60 10.9 0.41 -0.45 266 316 0 267 0.90 10.9 0 317 -0.38 8.5 -0.48 268 0.90 318 10.9 269 0.85 319 8.5 0.43 8.5 ¥ 270 0.85 320 0 271 0.80 10.9 0.41 322 -0.45 272 0 323 0.25 10.9 0.41 273 -0.38 324 0 274 -0.48 325 -0.38 275 -0.48 8.5 0.43 326 8.5 0.43 276 0 327 -0.36 277 328 0 278 -0.45 329 -0.36 279 0.60 10.9 0.41 330 -0.45 280 0 333 0.95 5.5 0 0 -0.38 281 334 0.80 282 -0.48 335 0.25 283 8.5 0.43 340 0.95 3.5 284 0 341 5.5 0.44 285 -0.36 342 0 286 -0.45 343 -0.44 287 0.25 10.9 0.41 344 7.0 0 288 0 345 0.90 7.0 289 -0.38 346 5.5 290 -0.48 347 3.5 291 8.5 0.43 7.0 349 0.85 292 0 350 5.5 ł 293 -0.36 351 3.5

TABLE 1.- CONTINUED

| Run<br>No. | Mach<br>No. | X/D <sub>B</sub> | Y/D <sub>B</sub> | Alpha | Run<br>No. | Mach<br>No. | X/D <sub>B</sub> | Y/D <sub>B</sub> | Alpha |
|------------|-------------|------------------|------------------|-------|------------|-------------|------------------|------------------|-------|
| 352        | 0.80        | 3.5              | 0                | 0     | 372        | 0.90        | 0.25             | 0                | 0     |
| 353        | 1           | 5.5              | 0.44             |       | 373        |             | 0.40             |                  | 1     |
| 354        |             |                  | 0                |       | 374        | ₩           | 0.50             |                  |       |
| 355        |             | ♥                | -0.44            |       | 375        | 0.85        | 0.17             |                  |       |
| 356        | ♥           | 7.0              |                  |       | 376        |             | 0.25             |                  |       |
| 357        | 0.60        | 7.0              | •                |       | 377        |             | 0.40             |                  |       |
| 358        |             | 5.5              | 0.44             |       | 378        | ♥           | 0.50             |                  |       |
| 359        |             |                  | 0                |       | 379        | 0.80        | 0.17             |                  |       |
| 360        |             | ♥                | -0.44            |       | 380        |             | 0.25             |                  |       |
| 361        | 🕈           | 3.5              | 0                |       | 381        |             | 0.40             |                  |       |
| 362        | 0.25        | 3.5              | 0                |       | 382        | ♥           | 0.50             |                  |       |
| 363        |             | 5.5              | 0.44             |       | 383        | 0.60        | 0.18             |                  |       |
| 364        |             |                  | 0                |       | 384        |             | 0.25             |                  |       |
| 365        |             | ♥                | -0.44            |       | 385        |             | 0.40             |                  |       |
| 366        | ♥           | 7.0              | 0                |       | 386        | ♥           | 0.50             |                  |       |
| 367        | 0.95        | 0.17             |                  |       | 387        | 0.25        | 0.18             |                  |       |
| 368        |             | 0.25             |                  |       | 388        |             | 0.25             |                  |       |
| 369        |             | 0.40             |                  |       | 389        |             | 0.40             |                  |       |
| 370        | ♥           | 0.50             |                  |       | 390        | ♥           | 0.50             | ♥                | •     |
| 371        | 0.90        | 0.17             | *                | *     |            |             |                  |                  |       |

TABLE 1.- CONCLUDED

----

#### TABLE 2.- MEASURED WAKE PROPERTIES

Ł

|            | Heading Definitions                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run:       | Serial number within the test program.                                                                                                                      |
| Test P TN: | Identifier for the entire test program.                                                                                                                     |
| CONF:      | Configuration of model and support system.                                                                                                                  |
| 5          | Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section; forward-facing pitot-static probe. (Sections 2a and 2c.) |
| 6          | Ballast-profile model supported as in 5. (Section 2b.)                                                                                                      |
| 7          | Ablated model supported as in 5, except that pitot-static probe is bent to face downstream. (Section 2d.)                                                   |
| Mach:      | Mach number in free-stream wind tunnel flow.                                                                                                                |
| RN/L:      | Reynolds number per unit length (1 ft) in free-stream flow.                                                                                                 |
| PT:        | Pressure in stagnation chamber upstream of wind tunnel test section, pounds per square foot.                                                                |
| Q:         | Dynamic pressure of wind tunnel free-stream airflow. Q = 0.7 $M^2 \times P$ , pounds per square foot.                                                       |
| <b>P</b> : | Static pressure of wind tunnel free-stream airflow, pounds per square foot.                                                                                 |
| TT:        | Temperature of air in stagnation chamber of wind tunnel, °F.                                                                                                |
| Alpha:     | Inclination of model axis to an intersecting line parallel to the free-stream direction.                                                                    |
| Seq:       | Serial number of data record within run.                                                                                                                    |
| X/DB:      | Distance from model base to streamwise station of pitot orifice on pitot-static tube, diameters of model base.                                              |
| Y/DB:      | Horizontal component of distance from axis of short sting to pitot orifice on pitot static tube, diameters of model base.                                   |
| Z/DB:      | Vertical component of distance from axis of small sting to pitot orifice of pitot-static probe, diameters of model base.                                    |
| MF/M:      | Ratio of Mach number determined from measured pitot and static pressures on the pitot-static probe to Mach.                                                 |
| MA/M:      | As above, but using the pressure acting on the aft-facing pitot probe.                                                                                      |
| QF/Q:      | Ratio of dynamic pressure acting on pitot-static probe to the free-stream dynamic pressure.                                                                 |
| QA/Q:      | As above, but using the pressure acting on the aft-facing pitot tube.                                                                                       |
| VF/V:      | Ratio of air velocity deduced from pitot-static tube to free-stream velocity.                                                                               |
| VA/V:      | As above but using aft-facing pitot tube.                                                                                                                   |
| CP:        | Static pressure acting on pitot-static probe minus free-stream static pressure, all divided by free-stream dynamic pressure. $CP = (PF - P)/Q$ .            |
| PF:        | Static pressure acting on static pressure orifices of pitot-static probe, pounds per square foot.                                                           |
| PF/P:      | Ratio of static pressure acting on pitot-static probe to free-stream static pressure.                                                                       |

Table 2(a)

Configuration 5 – Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section: forward-facing pitot-static probe.

## ORIGINAL PAGE IS OF POOR QUALITY

|                 | 0 E / D   | 1.013       | 1.009         | 1.004         | 0.993       | 165.0       | 0.988       | C. 530      | 0.973       | 0.974       | 112.0       | 0.979       | 0.986       | 9999.<br>C  | 1.019       | 1.029       |               |        |                  | pF/0          | 1.021       | 1.013       | 1.009       | 1.000       | 0.596       | 0.993         | 0.992       | 0.986       | 0.988       | 0.586       | 0.984       | 3.588       | 1.004       | 1.021       | - 00 -      |
|-----------------|-----------|-------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|--------|------------------|---------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                 | C D       | 0.021       | 0.015         | 0.005         | -0.012      | -0.014      | -0.020      | -0-031      | -0-043      | -0-041      | -0.036      | -0.033      | -0.023      | -0.002      | 0.030       | 0.046       |               |        |                  | C P           | 0.033       | 0.021       | 0.015       | 100.0       | -0.006      | -0.012        | -0.012      | -0.022      | -0.019      | -0.023      | -0.025      | 610.0-      | 0.006       | 0.033       |             |
|                 | V A /V    | •           |               |               |             |             |             |             |             |             |             |             |             |             |             |             |               |        |                  | V A /V        |             |             |             |             |             |               |             |             |             |             |             |             |             |             |             |
| ALPHA           | DA/U VF/V | 0.905       | 0.936         | 0.933         | 0.909       | 0.883       | 0.849       | 0.323       | 0.805       | 0.793       | 0.776       | 0.801       | 0.347       | 0.946       | 0.980       | 116.0       |               |        | 0.00             | 0A/Q VF/V     | 0.976       | 0.981       | 0.969       | 0.914       | 0.894       | 0.830         | 0.854       | 0.836       | 0.332       | 0.842       | 0.856       | 0.884       | 0.946       | 0.976       |             |
| 11              | 0F/0      | 0.804       | 0.865         | 0.853         | 0.796       | 0.744       | 0.679       | 0.628       | 0.594       | 0.574       | 0.549       | 0.590       | 0.674       | 0.877       | 6.973       | 0.962       | ŢŢ            |        | 1.01             | 0F/0          | 0.963       | 0.969       | 0.937       | 0.811       | 0.768       | 6:1.0         | 0.691       | 0.654       | 0.648       | 0.663       | 0.688       | 0.744       | 0.881       | C.964       | 1<br>1<br>1 |
| <u>ר</u> מ<br>מ | N A N     |             |               |               |             |             |             |             |             |             |             |             |             |             |             |             | 0             |        | 585              | NV VN         |             |             |             |             |             |               |             |             |             |             |             |             |             |             |             |
| 5 K C           | MF/W      | 158 * 0     | <b>c.</b> 926 | <b>C-</b> 922 | C.895       | 0.866       | 0.829       | C-800       | 0.781       | 0.767       | c.75C       | 0.776       | C.827       | 0.937       | (.977       | C.967       | Ċ.            |        | 242.0            |               | 0.972       | C.978       | 0.964       | 0.901       | 0.878       | 0.863         | 0.834       | 0.814       | 0.810       | C.829       | 0.836       | 0.868       | 0.937       | 0.972       |             |
| L PT<br>687     | Z/DB      | -2.02       | -1.52         | -1.01         | -0.68       | -0.52       | -0.35       | -0.18       | -0.01       | 0.15        | 0.32        | 0.48        | 0.65        | 0.99        | 1.45        | 1•95        | La l          |        | 0 001            | Z/CB          | -2.03       | -1.52       | -1.03       | -0-65       | -0.52       | -0.36         | -0.19       | -0.02       | 0.14        | 0.31        | 0.48        | 0.64        | 0.58        | 1.49        |             |
| H RN/           | Y/08      | 0.02        | 0.02          | C• C2         | 0.02        | 0.02        | 0.02        | 0.02        | 0.02        | 0.02        | 0.02        | 0.02        | 0.02        | C- C2       | 0.02        | 0.02        | H RN/         |        | 16.1 4           | ۲/ <u>۳</u> . | -0-44       | -0-44       | -0-44       | - C • 44    | -0-44       | - 6 - 6 - 0 - | - 64 - 6-   | -0-44       | -0-44       | -0-44       | -0-44       | -0-44       | -0-44       | -0-44       |             |
| F NAC           | X / 0B    | 7.04        | 7.04          | 7.04          | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | 7.04        | N<br>N<br>U   | C<br>C | 9 <b>1 • 9</b> 4 | X/CB          | 8.49        | 8.49        | E.49        | 8.49        | 8.49        | E. 49 .       | 8.49        | 8.49        | 8.49        | 8.49        | 8.49        | 8.49        | 8.49        | 8.49        |             |
| TST P IN CONF   | MACH Q    | 0.948 242.6 | 0.948 242.6   | 0.947 242.2   | 0.948 242.7 | 0.948 242.7 | 0.948 242.7 | 0.948 242.7 | 0.948 242.7 | 0.948 242.7 | 0.947 242.2 | 0.947 242.2 | 0.947 242.2 | 0.947 242.2 | 0.947 242.2 | 0.948 242.7 | TST P IN CONF |        |                  | MACH C        | 0.949 242.5 | 0.947 241.6 | 0.948 242.6 | 0.947 242.1 | 0.947 242.1 | 0.947 242.1   | 0.947 242.1 | 0.947 242.2 | 0.947 242.2 | 0.946 241.7 | 0.946 241.7 | 0.946 241.7 | 0.947 242.2 | 0.948 242.7 |             |
| RUN             | SEC       | H           | ~             | <b>m</b>      | 4           | ŝ           | 9           | •           | ω           | σ           | 0           | 11          | 12          | <b>E1</b>   | 14          | 12          | NNA           | 1 4 5  |                  | SEG           | <b>م</b> سو | 2           | m           | 4           | ŝ           | v             | -           | ω           | σ           | 10          |             | 12          | 13          | 14          |             |

|         |       |        |           |        |          | ٠       |         | •       |         |         |        |        |        |        |       |       |       |              |      |                                 |         |        |               |        |        |        |        |        |        |        |        |        |        |        |       |          |
|---------|-------|--------|-----------|--------|----------|---------|---------|---------|---------|---------|--------|--------|--------|--------|-------|-------|-------|--------------|------|---------------------------------|---------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|----------|
|         |       | pF/D   | 1.009     | 1.010  | 1.000    | 0.996   | 0.593   | 166.0   | 0.989   | 0.586   | 0.585  | 0.583  | 0.987  | 065.0  | 1.002 | 1.021 | I.02€ |              |      | DE /D                           |         | 1.014  | 1.010         | 1.008  | 1.002  | 1.000  | 165.0  | 0.994  | 0.588  | 0.987  | 0.985  | 0.586  | 0.987  | 0.997  | 1.018 | 1.026    |
|         |       | СÞ     | 0.014     | 0.015  | 0.001    | -0.007  | -0.011  | -0.014  | -0.018  | -0.023  | -0.023 | -0.027 | -0.020 | -0.017 | 0.003 | 0.034 | 0.042 |              |      | 60                              |         | 0.022  | 0.016         | 0.013  | 0.003  | -0.001 | -0.005 | -0.009 | -0.018 | -0.020 | -0.023 | -0.022 | -0.021 | -0.005 | 0.028 | 0.041    |
|         |       | V A /V |           |        |          |         |         |         |         |         |        |        |        |        |       |       |       |              |      | V V V V                         | ~ ~ ~ ~ |        |               |        |        |        |        |        |        |        |        |        |        |        |       |          |
| PHA     | • 00  | VLA DI | 0.909     | 0.938  | 0.936    | 0.911   | 0.835   | 0.871   | 0.841   | 0.840   | 0.820  | 0.824  | 0.821  | 0.346  | 0.924 | 0.975 | 0.978 | рнд          | 00   |                                 |         | 0.982  | 0.934         | 0.977  | 0.940  | 0.947  | 0.950  | 0.931  | 0.912  | 0.901  | 0.389  | 0.891  | 0.918  | 0.967  | 0.984 | 0.979    |
| AL      | 4 0   | 0 0    | 7         | 0      | 8        | ¢.      | 6       | 0       | 4       | 0       | ŝ      | 0      | 8      | m      | ~     | -     | 5     | ۷            | 0    |                                 |         | 2      | 5             | \$     | ~      | 0      | 4      | 1      | 2      | 5      | õ      | 4      | 60     | 17     | 30    | 5        |
| TT      | 70.   | QF/    | 0.80      | 0.87   | 0.85     | 0.80    | 0.74    | 0.72    | 0.66    | 0.66    | 0.62   | 0.63   | 0.62   | 0.67   | 0.83  | 0.96  | 16.0  | L L          |      |                                 |         | 16.0   | 0.97          | 0.95   | 0.86   | C-8E   | 0.88   | 0.84   | 0.79   | 0.77   | 0.75   | 0.7    | 0.80   | 0.92   | 0.98  | 6.0      |
| ٩       | 384   | MVVW   |           |        |          |         |         |         |         |         |        |        |        |        |       |       |       | C.           | 300  |                                 |         |        |               |        |        |        |        |        |        |        |        |        |        |        |       |          |
| ى       | 243.5 | NF/N   | 0.895     | 0.928  | 0.926    | C.858   | 0.868   | 0.852   | C.819   | 0.819   | 0.756  | 0.801  | 0.798  | 0.825  | 0.912 | C.970 | 0.975 | U            | 21.7 |                                 | 211     | 0.979  | <b>C.9</b> 82 | 0.974  | C.930  | 0.938  | 0.942  | 0.920  | 0.895  | 0.887  | 0.872  | 0.874  | 0.906  | 0.961  | 136.0 | 276-0    |
| ЪТ      | 688   | 2/08   | 2.02      | L • 53 | L•02     | 0.69    | 0.53    | 0.36    | 0.19    | 0.02    | 0.15   | 0.31   | 0.48   | 0.64   | 0.98  | 1.48  | 1.98  | Ld           | 00.  | α<br>α<br>α<br>α<br>α<br>α<br>α | 20/7    | 2.03   | 1.52          | 1.02   | 0.69   | 0.52   | 0.36   | 0.19   | 0.02   | 0.14   | 15.0   | 0.48   | 0.65   | 0.98   | 1.48  | 1-98     |
| RN/L    | 1.478 | VDB 1  | 0.00      | - 00.0 | 0.00 -1  | 0.00 -( | 0.00 -( | 0.00 -( | )- 00.0 | 0.00 -( | 0.00   | 00.0   | 00-00  | 00.00  | 00.00 | 0.00  | 0.00  |              |      | I - 4 - I                       | A / LE  | 0.44 - | 0.44 -        | 0.44 - | 0.44 - | 0.44 - | 0.44 - | 0.44 - | 0.44 - | 0.44   | 0.44   | C.44   | C - 44 | 0.44   | 0.44  | 0-44     |
| NACH    | 0.952 | X/CB   | 8.49 (    | 8.49 ( | 8.49 (   | 8.49    | 8.49    | 8.49    | 8.49    | 8.49    | 8.49   | 8.49   | 8.49   | 8.49   | 8.49  | 8.49  | 8.49  |              |      | 166.0                           | X/LB    | 8.49   | 8.49          | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49  | 8-49     |
| TN CONF | 66 5  | G      | 243.5     | 244.0  | 243.5    | 244.0   | 244.0   | 244.0   | 243.5   | 243.5   | 244.0  | 244.0  | 244.C  | 243.5  | 243.0 | 243.0 | 242.7 | CINE<br>CINE |      | 1<br>0<br>0<br>1<br>0<br>0      | 3       | 243.5  | 243.5         | 244.C  | 243.5  | 243.5  | 243.5  | 244-0  | 243-5  | 243.5  | 244.0  | 244.0  | 243.5  | 243.5  | 243.5 | 0 846    |
| TST P   | 571 1 | MACH   | 0.952     | 0.954  | 0.952    | 0.953   | 0.953   | 0.953   | 0.951   | 0.951   | 0.952  | 0.952  | 0.952  | 0-950  | 0.949 | 0.949 | 0.948 | 1 171        | 1    | 115                             | MACH    | 0.951  | 0.951         | 0.953  | 0.952  | 0.952  | 0.952  | 0.953  | 0-951  | 0.951  | 0.952  | 0.952  | 0.951  | 0-951  | 0.951 | 070 0    |
| RUN     | 146   | SEG    | , <b></b> | 2      | <b>~</b> | 4       | ŝ       | 40      | -       | æ       | σ      | 10     | 11     | 1      | 1     | 14    | 15    |              |      | 147                             | SEG     | 1      | 2             | ŝ      | 4      | ŝ      | -      | ~      | .α     | σ      | 01     |        | 1      | 13     | 14    | - LC<br> |
|         |       |        |           |        |          |         |         |         |         |         |        |        |        |        |       |       |       |              |      |                                 |         |        |               |        |        |        |        |        |        |        |        |        |        |        |       |          |

| PF/P<br>1.011<br>1.007<br>1.001                                                                                          | 0.998<br>0.996<br>0.996<br>0.997<br>0.997<br>0.997<br>0.993<br>0.993<br>1.004<br>1.004<br>1.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PF/P<br>1 • C09<br>0 • 994<br>0 • 9989<br>0 • 9989<br>1 • C09<br>1 • C09<br>1 • C003<br>1 • C003<br>1 • C109<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CP<br>0.023<br>0.016<br>0.003                                                                                            | -0.009<br>-0.009<br>-0.0013<br>-0.0113<br>-0.0113<br>-0.0113<br>-0.013<br>0.019<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.020<br>0.021<br>0.021<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.0200000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V A V                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∧ ∨ ∧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ALPHA<br>0.00<br>0.400<br>0.893<br>0.911<br>0.915<br>0.915                                                               | 0.883<br>0.831<br>0.831<br>0.831<br>0.834<br>0.834<br>0.834<br>0.834<br>0.830<br>0.982<br>0.983<br>0.983<br>0.983<br>0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALPHA<br>0.00<br>0.00<br>0.986<br>0.986<br>0.986<br>0.861<br>0.861<br>0.861<br>0.9861<br>0.933<br>0.956<br>0.953<br>0.956<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11<br>70.7<br>27/0<br>0.786<br>0.818<br>C.820<br>C.820                                                                   | 0 7 - 7<br>0 7 - 9<br>0 661<br>0 665<br>0 655<br>0 751<br>0 980<br>0 9800<br>0 9800<br>0 9800000000000000000000000000000000000 | 7 7 7<br>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
| 5 7 7<br>7 7 7<br>7 7<br>7 7<br>7                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 4 4 9<br>7 2 3 3<br>7 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 223<br>233<br>233<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                    | CC 8 8 2 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L PT<br>5 757<br>2/08<br>-2.02<br>-1.52<br>-1.61                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 74 847<br>74 877<br>74 75<br>74 75<br>74 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T B I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| л карала<br>2005<br>2005<br>2005<br>2005<br>2005                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 TN CCI<br>66<br>223-5<br>223-0<br>223-0<br>223-0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2223<br>2223<br>2223<br>2223<br>2223<br>2223<br>2223<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 571<br>571<br>6.803<br>0.801<br>0.801<br>0.801                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 754<br>771<br>777<br>777<br>777<br>777<br>777<br>777<br>777<br>777<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| と コ S L S S S S S S S S S S S S S S S S S                                                                                | 100080000040<br>111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>K I S</b><br>24日<br>56日のうみちらてきのしこうから                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# ORIGINAL PAGE IS **DE POOR QUALITY**

1.019 1.009 1.000 762.0 0.998 0.995 1.004 1.006 1.013 1.014 1.011 1.006 1.004 1.003 1.000 1.000 1.010 1.016 1.004 0.998 1.002 165.0 DF/D 1.0.1 013 1.006 0.996 1.009 DE/ --0.000 -0.007 -0.010 -0.003 -0.011 0.032 0.013 0•007 -0•002 -0•006 0.025 0.020 0.009 0.010 0.004 0.014 0.028 0.029 0.042 0.013 0.00.0-0.001 0.019 0.022 0.029 0.035 -0.005 0.024 <u>م</u> ð V A /V V A /V 0.988 0.978 0.978 0.929 0.937 0.919 0.910 0.910 0.928 0.983 0.983 0.909 0.882 0.871 0.856 0.863 0.850 0.852 0.852 0.840 0.860 0.887 0.948 0.980 VF/V 894 0.911 V F / V 776.0 0.984 • ALPHA 0.00 04/0 ALPHA 0.60 0.4/0 C-967 C.961 0.853 C.869 C.870 C.870 0.832 0.832 0.832 0.832 C.810 C.810 C.855 C.930 66.3 QF/Q 0.792 0.822 0.816 0.750 0.770 0.719 0.697 0.697 0.697 0.697 0.697 0.719 67.2 QF/0 0.974 0.767 892 972 968 975 972 3 . . 00 4 9 <del>2</del> W / MN 491 MV/W ۵ 220.6 NF/N 220.7 MF/W 0.883 0.893 0.893 C.980 C.975 C.921 416.0 0.929 0.923 0.910 0.897 0.896 0.849 0.835 0.835 0.825 0.846 0.925 0.870 C.858 O.841 £53. 006-0 0.875 0.942 0.981 C.98C 0.960 0.978 C.982 749 2 Z/D8 16 751 3 Z/DB 1 -2.03 0.  $\mathbf{O}$ -1.52 -1.03 -1.53 -1.03 -0.70 -0.53 -0.52 -0.36 -0.19 0.15 0.30 0.48 0.66 0.98 -0.19 0.15 0.31 0.48 0.64 0.98 1.48 1.98 -0.68 -2.03 F d anω F d 4.5 PNJL CCNF MACH PN/L 5 C-800 1-516 Y/CB 0.00 0.00 0.00 0.00 0.00 0.00 00.00 NACH 571 1 66 MACH 0 3.801 220.6 -802 220.6 799 220.1 799 220.1 798 219.6 8 7 219.1 8. 220.7 219.6 219.6 220.1 220.1 220.6 220.1 220.1 220.1 20 220.6 220.1 221.2220. D. 571 1 C-8CC 0.799 0.797 0.798 0.797 0.798 0.797 0.797 0.797 0.797 661.0 661.0 661.0 661.0 861.0 861.0 861.0 861.0 861.0 861.0 861.0 C. 80C 0. 800 MACH C.8CC 0.800 551.0 0.800 801 σ 0.800 0.800 799 SI ð  $\circ$ m 550 150 S50 13 4500 ŝ σ 10 12 4 4 N N LCN . 5 m ω σ C  $\geq$ U.Y 4 Ľ

### ORIGINAL PAGE IS OF POOR QUALITY

|       |       | DF/D   | 1.006  | 1.006         | 1.001         | 1.001  | 0.599      | 192.0        | 162.0         | 166.0  | C•598  | 79.597 | 965.0  | 0.598         | 1.001 | 1.000 | 1.004  |
|-------|-------|--------|--------|---------------|---------------|--------|------------|--------------|---------------|--------|--------|--------|--------|---------------|-------|-------|--------|
|       |       | نە     | 0.023  | 0.026         | 0.003         | 0.032  | -0.003     | -0.014       | -0.013        | -0.013 | -0.009 | -0.013 | -0.017 | -0.010        | 0.004 | 0.002 | 0.017  |
|       |       | V A /V |        |               |               |        |            |              |               |        |        |        |        |               |       |       |        |
|       |       | VF/V   | 0.911  | 0.916         | 0.921         | 0.893  | 0.867      | 0.843        | 0.827         | 0.820  | 0.852  | 0.852  | 0.362  | 0.897         | 0.971 | 0.995 | 0.989  |
| AHQLA | 0.00  | 0A/0   |        |               | -             | -      |            |              | -             |        | -      | •      |        |               | -     | _     | -      |
| 77    | 67.0  | 01 40  | 0.824  | 0.834         | C.840         | 0.786  | C.738      | 0.693        | 0.667         | 0.655  | 0.711  | c.710  | 0.726  | 6.793         | 0.939 | 066.0 | 0.981  |
| ٥     | 702   | NV N   |        |               |               |        |            |              |               |        |        |        |        |               |       |       |        |
| o     | 176.6 | NF /N  | C.9C5  | <b>c.</b> 910 | 6.916         | C.885  | C. 855     | <b>C.834</b> | 0.818         | C-81C  | C.844  | 0.844  | C.854  | <b>C.</b> 891 | C•965 | 366-0 | G. 988 |
| Ld    | 895   | Z/08   | 2.02   | 1.53          | 1.02          | 0.69   | 0.52       | 0.95         | 0.18          | 0.01   | 0.16   | 0.33   | 0.48   | 0.65          | 55.0  | 1.45  | I•99   |
| J/Na  | 1.513 | Y/DB   | 0.02 - | 0.02 -        | C. C2 -       | 0.02 - | C. C2 -    | 0.02 -       | 0.02 -        | 0.02 - | 0.02   | C•C2   | 0.02   | 0.02          | C.C2  | 0.02  | 0.02   |
| NACH  | 0.599 | ( / CB | 1.05   | 1.05          | 1.05          | 1. C5  | 1.05       | 1.05         | 1.05          | 7.C5   | 1.05   | 1.05   | 1.05   | 1.05          | 1.05  | 7.05  | 1. C5  |
| CONF  | ŝ     | î      | . 6    | •             | 4.            | 4.     | 4.         | .4           | 4.            | 0      | 4.     | 4      | 4.     | 0             | ÷.    | . 2   | • 5    |
| N I N | 1 66  | e      | 176    | 176           | 175           | 175    | 175        | 175          | 175           | 176    | 175    | 175    | 175    | 176           | 176   | 177   | 177    |
| TST   | 571   | MACH   | 0.599  | 0.559         | 0.597         | 0.557  | 0.557      | 0.597        | <b>7253.0</b> | 0.598  | 0.557  | 155.0  | 0.597  | 0.558         | 0.599 | 0.600 | 0.601  |
| RUN   | 152   | SEQ    | اسو    | 2             | <del>n)</del> | 4      | <b>u</b> v | \$           | 7             | ß      | σ      | 10     | 11     | 12            | 13    | 14    | 5      |

| 0E /0                  | 1.009   | 1.005  | 1.002  | 1.001  | 100.1      | 0.598   | 0.999  | 1.001  | 665.0  | 0.998  | 0. 998       | 1.002  | 1.005  | 1.005   | 1.007                                   |
|------------------------|---------|--------|--------|--------|------------|---------|--------|--------|--------|--------|--------------|--------|--------|---------|-----------------------------------------|
| ٤                      | 0.035   | 0.019  | 0.007  | 0.003  | 0.003      | -0.006  | -0.002 | 0.006  | -0.005 | -0.006 | -0.006       | 0.007  | 0.022  | 0.019   | 0.027                                   |
| V A V                  |         |        |        |        |            |         |        |        |        |        |              |        |        |         |                                         |
| VF/V                   | 616.0   | 0.985  | 0.960  | 0.934  | 0.880      | 0.890   | 0.867  | 0.365  | 0.871  | 0.879  | <b>0.895</b> | 0.924  | 0.947  | 0.982   | 0.983                                   |
| ALPHA<br>0.00<br>0.40  |         |        |        |        |            |         |        |        |        |        |              |        |        |         |                                         |
| TT<br>67.2<br>GF/0     | 0.964   | 0.972  | 0.918  | 0.807  | 0.763      | 0.779   | 0.739  | 0.735  | 0.744  | 0.758  | C.789        | 0.846  | C•895  | 0.967   | 179.0                                   |
| 101<br>1 × 1 × 1       |         |        |        |        |            |         |        |        |        |        |              |        |        |         |                                         |
| C<br>177.8<br>NF/N     | C.978   | 0.984  | 0.957  | 0.898  | 0.873      | 0.883   | 0.860  | C. E57 | 0.863  | C.872  | 0.889        | 0.919  | C.944  | 0.981   | 0.982                                   |
| рт<br>896<br>2/Гв      | 2.03    | 1.52   | 1.03   | 0.69   | 0.52       | 0.35    | 0.19   | 0.02   | 0.14   | 0.31   | 0.48         | 0.65   | 0.58   | I.48    | 1.58                                    |
| RN/L<br>1.518<br>//DE  | 0.44 -  | 3.44 - | 0.44 - | 0.44 - | - 44 -     | 0.44 -  | 0.44 - | 0.44 - | 0.44   | 0.44   | 0.44         | 0.44   | 2.44   | 0.44    | 0.44                                    |
| VACH<br>0.602<br>(/DB  | - 49 -1 | - 64 - | - 65.5 | - 64.9 | - 49 -     | 3.49 -( | 9-49-6 | 64.6   | - 64.9 | - 65-3 | 3.49 -(      | 9-49-1 | - 65-8 | 3.49 -( | - 49 -(                                 |
| CONF<br>5              | 8       | ~      | ۍ<br>۳ | 0      | ~~~        | ~       | ÷.     | م      | ~      | ÷.     | ۍ<br>ب       | ۳<br>۳ | ۳      | °~      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 2 9 0<br>2 9 0         | 177.    | 176.   | 176.   | 176.   | 177.       | 177.    | 176.   | 176.   | 176.   | 176.   | 176.         | 176.   | 176.   | 177.    | 177.                                    |
| TST P<br>571 1<br>MACH | 0.602   | 0.559  | 0.599  | 0.598  | 0.601      | 0.601   | 0.559  | 0.599  | 0.599  | 0.599  | 0.559        | 0.599  | 0.559  | 0.600   | 0.600                                   |
| RUN<br>SEO<br>SEO      | -       | 2      | m      | 4      | <b>U</b> N | Q       | ~      | œ      | σ      | 10     | 1            | 12     | 13     | 14      |                                         |

1.000 • 005 0.999 1.000 0.996 ..003 100.1 1.000 0.998 1.004 666.0 0.998 0.999 .003 pr/p 1.004 0.022 -0.002 0.011 0.003 -0.003 -0.008 -0.005 -0.014 -0.010 -0.001 ഹ 0.001 0.011 0. a V A /V 0.874 0.872 0.885 0.939 0.926 0.878 0.850 0.869 0.889 0.911 0.930 0.899 0.847 066 VF/V 0.939 ٠ 0.00 ALPHA QA70 67.3 CF/0 0.857 0.855 0.855 0.858 0.858 0.858 0.858 0.858 0.858 0.758 0.758 0.751 0.751 0.751 0.751 0.770 C.979 O.983 0.778 0.877 7 C3 N V V N ۵. 4T 5 4 2/68 μF/ν • 2/68 μF/ν • 06 -2.02 C.9<sup>c</sup> • -1.53 0 • -2.02 MF/W C.9C6 0.921 C.926 C.893 C.871 C.842 0.861 0.838 0.867 0.864 0.878 0.882 C.935 9.8 9.8 9.8  $\mathbf{c}$ -0.53 0.14 ω 0.64 0.98 ω .98 •98 ω -0-69 -0.19 -0.02 0.31 0.4 5 0.597 1.507 X/DB Y/DB Z 8.49 0.00 -1 8.49 0.00 -1 00.00 00.00 00.00 00.0 00-00 MACH 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.4 **LONF** 176.6 175.4 176.0 176.0 176.6 176.6 176.6 176.6 176.6 177.2 177.2 177.2 177.2 176.6 176.6 L N 99 0 571 1 ۵ 0.600 0.600 MACH 0.598 566 599 599 599 600 0.600 ST . 212 RUN 154 SFO 4500 ω σ 0 4 S N m 

1.006 ..002 • 000 .002 or∕a .. 004 .005 • 003 .002 .001 .006 .001 .001 .006 0.015 0.007 0.004 0.007 0.0010 0.005 •001 •023 110.0 0.023 0.003 a U Ó O V A /V 0.935 0.929 0.925 0.918 0.905 0.984 0.989 0.977 0.909 0.889 0.908 0.924 0.959 VF/V 0.982 98 • 0.00 0.4/0 ALPHA C.859 0.856 0.856 0.836 0.836 0.836 0.836 0.836 0.816 0.816 0.846 0.972 0.981 0.957 0.968 67.3 QF / Q 0.916 76.0 702 N / VN 0 1.515 896 177.2 Y/DB Z/CB MF/W C.44 -2.03 C.983 C.983 O.988 C.976 C.931 O.925 C.925 C.925 C.9C3 0.882 0.919 0.957 0.986 0.899 C.9C3 0.48 -1.52 -0.52 -0.69 -0.36 0.14 • 64 0.98 Id -0.19 0.31  $\alpha$ -0.03 • 4 σ Ľ 0 RN/L 0.600 1.515 (/DB Y/DB 7 0.44 C.44 0.44 0.44 C.44 0.44 0.44 0.44 0.44 C.44 4 4. .4 0.4 4 0 TN CONF WACH 8.49 8.49 8.49 8.49 8.49 8.49 8.49 ۲. س 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 66 C 571 1 MACH TST P 0.600 0.600 0.600 0.600 11 RUN 155 SEQ H CI M 5 σ 0 ຕາ 4 \$ ω 4 5

|        |        | pF/p      | 41 1-026 | 38 1-074 | 24 1.015 |        | 03 1.002 | 000 1 000 | 160-0 71 | 19 0.988 | 15 0.990 | 17 0.989 | 15 0.997 | 100 0 401  |        |           |          | 45 I.C28 |   |         |         |             | 711 1 013 |         | 1010    | 08 1.005 | 3 0.998 | 1 0.993  | 3 0.992 | 9 0.588 | 0 0.987 | 7 0. 583 | 2 0.986 | 6 0.990 | 666 0 10      | 14 1.021   | 9 1.031 |
|--------|--------|-----------|----------|----------|----------|--------|----------|-----------|----------|----------|----------|----------|----------|------------|--------|-----------|----------|----------|---|---------|---------|-------------|-----------|---------|---------|----------|---------|----------|---------|---------|---------|----------|---------|---------|---------------|------------|---------|
|        |        | VA/V CP   | 0-0      | 0.0      | 0.0      |        | 0 0      | 0.0       | 0-0-     | 0-0-     | 0-0-     | 0-0-     |          |            |        |           |          | 0.0      |   |         |         |             |           |         |         | 0-0      | 0.0-    | -0-0     | -0-01   | -0-01   | 20-0-   | -0-05    | -0.02   | -0.01   | -0-00         | 0.03       | 0.04    |
| AL PHA | 0.00   | DA/Q VF/V | 0.971    | 0.975    | 0.972    | 0.935  | 0.911    | 0.899     | 0.888    | 0.869    | 0.843    | 0.846    | 0.852    | 0.881      | 0.939  | 0.984     |          | 016.0    |   | AI PHA  | 0.00    |             |           | 0.933   | 0.931   | 0.909    | 0.896   | 0.877    | 0.838   | 0.831   | 0.818   | 0.820    | 0.820   | 0.833   | 0.919         | 0.977      | 0.974   |
| T T    | 8 64.8 | M QF/Q    | 0.957    | 0.963    | 0.948    | 0.857  | 0.807    | 0.781     | 0.753    | 0.714    | 0.669    | 0.673    | C-69D    | 0.744      | 0.865  | C.979     | 0 0      | 1        |   | 11      | 0 66.9  |             | 0.812     | 0-865   | 0.856   | 0.804    | 0.774   | 0.732    | 0.662   | 0.646   | 0.623   | 0.624    | 0.626   | 0.652   | 0.821         | 0.968      | 0.969   |
| ۵.     | .2 37  | N MA/     | 6        | 0        | 7        | 4      | 7        | 4         | 2        | 0        | 2        | 5        | 0        | <b>6</b> 0 | 6      | <b></b> 1 | <i>c</i> | J        | - | ۵       | .7 380  | V V W V     |           |         | 0       | 10       |         | ~        | ~       | •       |         | _        |         |         |               | -          | -       |
| 2      | 79 241 | B MF/     | 3 C.96   | 3 0.97   | 2 0.96   | 5 0.92 | 2 0.89   | 6 0.88    | 9 0.87   | 3 C.85   | 4 0.82   | 1 0.82   | 8 0.83   | 4 0.86     | 9 0.92 | 8 C.98    | R 0.07   |          |   | U<br>L  | 31 241. | NE /        | 0.89      | 3 0.92  | 2.0.92( | C. 89    | 0.88]   | . C. 859 | C.81    | C.805   | 751.0 1 | 151.0    | 161.0   | C.811   | 906-0         | 16.0       | 0.965   |
| N/L P  | 482 6  | B Z/D     | 5 -2.0   | 5        | 5 -1.0   | 5 -0.6 | 5-0-2    | 5 -0-3    | 2 -0 -1  | 5-0-0    | 5 0.1    | 5 0.3    | 5 0.4    | 5 0.6      | 5 0° 3 | 5 1.4     | 5 1.9    | •        |   | V/L PI  | 478 68  | 27/04       | l -2.02   | 1-1-5   | I -1.02 | -0-6     | 1-0-53  | 1-0.36   | -0-13   | -0.02   | 0.14    | . 0.31   | 0.45    | 0.64    | 0.98          | I.48       | 1.59    |
| ACH R  | 954 1. | B Y/D     | 8 -0.4   | 8 -0.4   | 8 -0.4   | 8 -0.4 | 8 -0.4   | 8 -0.4    | 8 -0.4   | 8 -0-4   | 8 -0.4   | 8 -0-4   | 8 -0-4   | 8 -0-4     | 8 -0-4 | 8 -0.4    | 8 -0-4   |          |   | ACP PA  | 954 1.4 | 3017 F      | 0.0       | 3 -0.01 | 3 -0.01 | 3 -0°C   | 3 -0.01 | 0-0- 0   | -0-01   | 8 -0.01 | 8 -0.01 | -0-01    | -0-01   | -0-01   | -0-0-         | -0-0-      | -0-0- 8 |
| CNF V  | 50.    | X/C       | 8.4      | 8.4      | 8.4      | 8.4    | 8.4      | 8.4       | 8.4      | 8.4      | 8.4      | 8.4      | 8.4      | 8.4        | 8.4    | 8.4       | 8.4      |          |   | UNF NI  | 50.5    | X/C         | 8.48      | 8.45    | 8*48    | £•4{     | 8.48    | 8.48     | 8.45    | 8.48    | 8.45    | 8•46     | 8•46    | 8.48    | ε <b>.</b> 46 | 8.48       | 8.48    |
| PINC   | 1 66   | с ,<br>с  | 241.2    | 240.1    | 240.7    | 240.7  | 240.1    | 240.1     | 239.6    | Z40•I    | 241.7    | 241.8    | 241.8    | 241.2      | 240.8  | 241.3     | 240.8    |          |   | D IN CI | 1 66    | a           | 241.7     | 242.3   | 241.2   | 241.2    | 240.7   | 241.2    | 241.2   | 241.2   | 241.2   | 241.2    | 241.2   | 241.2   | 241.2         | 241•2      | 240.8   |
| 151    | 571    | MACH      | 0.954    | 0.951    | 0.952    | 0.952  | 0.951    | 166.0     | 066.0    | 166.0    | 0.954    | 0.953    | 0.953    | 0.951      | 0.949  | 0.950     | 0.949    |          |   | TST     | 571     | MACH        | 0.954     | 0.955   | 0.952   | 0.952    | 0.950   | 0.951    | 0.951   | 0.951   | 0.951   | 0.951    | 0.951   | 0.951   | 0.951         | 1.451      | 0•949   |
| RUN    | 156    | S T C     | ~ (      |          | 4 1      | r J    | <b>0</b> | ~ 0       | 00       | л (<br>, | 2:       | ::       | 77       |            | 14     |           | 16       |          |   | RUN     | 151     | C<br>L<br>V | -         | 2       | 3       | 4        | ŝ       | 9        |         | ευ      | 6       | 10       |         | 17      |               | 4 I<br>1 , | 15      |

## ORIGINAL PAGE IS OF POOR QUALITY

\_\_\_\_

1.017 0.595 0,993 065 \*0 0.987 0.993 0.989 1.000 966 • 0 1.02 .005 1.018 1.013 1.001 1.019 bF/P 0.027 -0.016 -0.012 -0.007 -0.017 0.029 0.028 0.021 0.007 0.002 -0.010 -0.007 ĉ V A /V 0.978 0.950 710.0 0.892 0.874 0.874 0.888 0.939 0.911 0.877 0.935 0.929 0.978 0.971 0.979 VF/V 0.00 QA/Q ALPHA 0.802 0.754 0.729 0.724 0.724 0.724 0.833 0.963 974 0.945 0.858 0.865 0.842 0.969 QF /0 7.8 6 MA/M а 381 C.973 C.974 0.858 0.871 0.859 0.855 0.855 0.855 0.876 0.942 C.974 C.966 C.924 O.929 Ś C.917 C 242.5 MF/M C.975 0.48 0.64 0.58 1.48 1.98 E1 684 2/08 -2.03 0 -1.53 0 -1.53 0 -1.53 0 -0.36 2 -0.36 -0.19 -0.02 0.14 51 NACH RN/L 0.954 1.481 ŝ CCNF 242.9 242.9 242.3 242.3 242.3 242.3 242.3 242.3 242.9 241.8 241.8 241.8 241.8 241.8 241.8 241.9 241.9 241.0 66 0 2 0.954 0.953 0.953 0.954 0.952 0.952 0.950 0.950 0.950 0.950 0.950 0.947 1 112 1 112 MACH 0.954 14 112 - NEARONOO RUN 158 SEQ

.018 C2 8 1.002 0.588 0.991 0.991 966.0 1.008 1.007 1.022 1.018 1.013 1.019 --0.014 0.003 0.029 0.020 0.012 0.012 0.011 0.010 -0.010 0.040 0.030 0.035 đ V A /V 0.978 0.957 0.929 0.929 0.919 0.906 0.935 0.897 0.933 0.903 0.888 116 0.976 0.975 VF/V 0.00 0A/9 ALPHA 0.962 0.963 0.925 0.856 0.858 0.858 0.828 0.801 0.801 0.802 0.768 0.770 0.754 0.967 0.852 416. 68.8 QF/0 M / M 381 ٥ 319.0 242.9 vF/N 0.972 0.906 C.892 C.895 C.875 C.888 C.872 0.922 0.881 16. C.918 179.0 C.950 0.13 78 684 Z/DB 0.63 -0.19 0.46 9.29 19.0 -1-53 -0.54 1-9-I -2.05 -1.04 4. -0.71 5 0.954 1.478 RN/L C.41 C.41 C • 41 0.4] 0.41 Y/CB C. 41 0.41 NACE 1C-87 1C-87 1C-87 1C-87 1C.87 10.87 1C.87 1C.87 1C.87 1C.87 1C.87 1C.87 1C.87 5.87 0.87 X/CB LND UDNE 241.4 241.4 542.5 241.2 241.6 241.6 241.6 241.5 241.5 241.5 241.5 241.5 241.5 241.4 241.4 241.4 2 66 0,949 0,949 0,949 0,949 NW2R0280012845 RUN 159 SEC

> ORIGINAL PAGE IS OF POOR QUALITY

| OR        | IGINA | · .    |    |
|-----------|-------|--------|----|
| <u>OF</u> | POOD  | PAGE   | IS |
|           |       | QUALIT | Y  |

,

|          |             | pF/p      | 1.016 | 1.014 | 1.007       | 1.003 | 1.003 | 665.0  | 1.005    | 1.001 | 1.002 | 1.002 | 0.996  | 1.001 | 1.004 | 1.007 | 1.022 | 1.031 |          |         | of/p      | 1.020 | 1.021 | 1.021    | 1.012 | 1.010 | 1.007 | 1.001 | 1.002 | 0.9999 | 0.599  | 1.003 | 1.003 | 1.006    | 1.019    | 1.C29 |
|----------|-------------|-----------|-------|-------|-------------|-------|-------|--------|----------|-------|-------|-------|--------|-------|-------|-------|-------|-------|----------|---------|-----------|-------|-------|----------|-------|-------|-------|-------|-------|--------|--------|-------|-------|----------|----------|-------|
|          |             | d D       | 0.025 | 0.023 | 0.012       | 0.005 | 0.005 | 100.0- | 0.008    | 0.002 | 0.004 | 0.003 | -0.006 | 0.001 | 0.007 | 0.011 | 0.035 | 0.049 |          |         | م         | 0.032 | 0.033 | 0.034    | 0.019 | 0.016 | 0.011 | 0.002 | 0.004 | -0.002 | -0.002 | 0.006 | 0.005 | 010-0    | 0.030    | 0.047 |
|          |             | V A / V   |       |       |             |       |       |        |          |       |       |       |        |       |       |       |       |       |          |         | V A /V    |       |       |          |       |       |       |       |       |        |        |       |       |          |          |       |
| ALPHA    | 0.00<br>0   | 0A/Q VF/V | 0.912 | 0.939 | 0.939       | 0.913 | 0.895 | 0.885  | 0.881    | 0.865 | 0.347 | 0.845 | 0.852  | 0.843 | 0.854 | 0.903 | 0.965 | 0.976 | ALPHA    | 0.00    | QA/Q VF/V | 0.968 | 0.973 | 0.962    | 0.927 | 0.902 | 0.892 | 0.889 | 0.875 | 0.867  | 0.863  | 0.866 | 0.870 | 0.921    | 0.968    | 776.0 |
| 11       | 69.6        | 0F/0      | 0.821 | 0.875 | 0.869       | 0.812 | 0.776 | 0.753  | 0.750    | 0.716 | 0.685 | C.631 | 0.689  | 0.676 | 0.699 | 0.795 | 0.941 | 0.974 | TT       | 70.5    | QF /0     | 0.944 | 0.957 | 0.932    | 0.849 | 0.796 | 0.772 | C.762 | 0.737 | 0.719  | 0.712  | 0.720 | 0.739 | 0.830    | 0.945    | 0.974 |
| Q.       | <b>3</b> 83 | N/VN      |       |       |             |       |       |        |          |       |       |       |        |       |       |       |       |       | ۵.       | 383     | M / M     |       |       |          |       |       |       |       |       |        |        |       |       |          |          |       |
| 0        | 5 241.9     | NF / N    | 0.899 | 0.929 | 0-929       | c.900 | 0.880 | 9.868  | C.864    | C.846 | C.826 | C.824 | 0.832  | C.822 | C-834 | C.888 | 0.959 | 0.972 | ى        | 3 244.0 | ドード       | 0.962 | 0.968 | C.955    | C.916 | 0.888 | 0.875 | 0.872 | 0.857 | 0.848  | 0.844  | 0.847 | C.858 | 0.908    | C-963    | 0.973 |
| L PT     | 3 685       | Z/08      | -2.04 | -1.55 | -1.04       | -0.71 | -0-54 | -0.37  | -0.37    | -0.20 | -0.03 | 0.12  | 0.29   | 0.46  | 0.63  | 16.0  | 1.46  | 1.97  | L PT     | 9 688   | 2/08      | -2.03 | -1.54 | -1.04    | -0.71 | -0-54 | -0.37 | -0.20 | -0.04 | 0.14   | 0•30   | 0-47  | 0.63  | 0.96     | 1.47     | 1.97  |
| F PN/    | 0 1.47      | Y/DB      | -0-03 | -0.03 | -0-03       | -0.03 | -0.03 | -0-03  | -0.03    | -0-03 | -0.03 | -C+C3 | -0-03  | -0.03 | -0.03 | -0-03 | -0.03 | -0-03 | H RN/    | 4 1.47  | Y/CB      | -0-38 | -0-38 | -0.38    | -0.13 | -0.38 | -C•38 | -0.38 | -0-38 | -0.38  | -0-38  | -C.38 | -0.38 | -0.38    | a n • 0- | -0.38 |
| NF VAC   | 5 0.95      | X/08      | 10.87 | 10.87 | 10-87       | 10.87 | 10.87 | 10.87  | 1 C - 87 | 10.87 | 10.87 | 10.87 | 10.87  | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | NF NAC   | 5 0.95  | X/CB      | 10.87 | 10.87 | 10.87    | 10.87 | 1C.87 | 10.87 | 10.87 | 10.87 | 10.87  | 10.87  | 10.87 | 10.87 | 10.87    | 10.87    | 1C.87 |
| P TN CCI | 1 66        | Ċ         | 241.5 | 242.4 | 242.4       | 242.9 | 242.9 | 242.5  | 244.5    | 244.C | 243.5 | 243.5 | 242.6  | 242.6 | 242.6 | 242.2 | 242.7 | 242.7 | P TN CCI | 1 66    | ø         | 244.C | 243.5 | 243.5    | 242.5 | 243.5 | 243.C | 242.7 | 242.2 | 241.8  | 241.8  | 241.3 | 241.8 | 242.3    | 242.3    | 242.3 |
| TST      | 571         | MACH      | 0.950 | C.951 | 0.951       | 0.953 | 0.953 | 0.953  | 0.955    | 0.953 | 0.951 | 0.951 | 0.948  | 0.948 | 0.948 | 0.947 | 0.948 | 0.948 | TST I    | 571     | MACH      | 0.954 | 0.953 | 0.953    | 0.949 | 0.951 | 0.949 | 0.948 | 0.947 | 0.945  | 0.945  | 0.944 | 0.945 | 0.946    | 0.946    | 0.946 |
| RUN      | 160         | SEQ       |       | 2     | <b>~</b> `` | 4     | ഹ     | 9      | ~        | œ     | 6     | 10    | 11     | 12    | 13    | 14    | 15    | 16    | RUN      | 161     | SEC       | -     | ~     | <b>m</b> | 4     | ŝ     | Ŷ     | ~     | ω     | σ      | 10     | 11    | 12    | <b>.</b> | 14       | 15    |

|                | d/∃d          | 1.022   | 1.019   | 1.013   | 1.008   | 1.005   | 1.004    | 1.001   | 1.001       | 6665.0   | 166.0   | 0.999    | 1.000   | 1.007     | 1.025   | 1.033   |        |             | DF/D                            | 965-0  |
|----------------|---------------|---------|---------|---------|---------|---------|----------|---------|-------------|----------|---------|----------|---------|-----------|---------|---------|--------|-------------|---------------------------------|--------|
|                | CD            | 0.035   | 0.031   | 0.021   | 0.013   | 0.008   | 0.006    | 0.001   | 0.001       | -0.001   | -0.005  | -0.001   | 0.001   | 0.011     | 0.040   | 0.053   |        |             | d D                             | -0-004 |
|                | V A /V        |         |         |         |         |         |          |         |             | -        |         |          |         |           |         |         |        |             | V A /V                          |        |
| -              | VF/V          | 0.975   | 0.978   | 0.909   | 0.929   | 0.919   | 0.905    | 0.891   | 0.890       | 0.873    | 0.866   | 0.470    | 0.887   | 0.926     | 0.967   | 0.973   | 4      | 0           | VF/V                            | 0.882  |
| AL PHA         | 04/0          |         |         |         |         |         |          |         |             |          |         |          |         |           |         |         | AL PH/ | 0.0(        | 0A/0                            |        |
| TT<br>20       | 0F/0          | 0.963   | 0.968   | 0.941   | 0.849   | 0.825   | 0.795    | 0.766   | 0.764       | 0.729    | 0.715   | 0.725    | 0.757   | 0.842     | 0.947   | 0.968   | 11     | 70.9        | 0F/0                            | 0-746  |
| a .            | WAN<br>WAN    |         |         |         |         |         |          |         |             |          |         |          |         |           |         |         | ٩      | 385         | MA/M                            |        |
| י<br>ט ט<br>ני | NF/N          | 179.0   | C.974   | 0.964   | c.918   | 0.906   | c.850    | 0.875   | 0.874       | 0.854    | 0.847   | 0.851    | c.870   | 0.915     | 0.961   | 0.968   | ى      | 244.C       | NL /N                           | 0.865  |
| PT .           | 583<br>2/08   | 2.04    | 1.53    | 1.04    | 0.10    | 0.54    | 0.37     | 0.20    | 0.04        | 0.12     | 0.30    | 0.46     | 0.62    | 16.0      | 1.47    | 1.96    | La     | 683         | Z/CB                            | 76.0   |
| RN/L           | 1.4//         | - 48 -  | - 48 -  | - 48 -  | - 34.0  | - 48 -  | .48 +    | - 84.0  | .48 -       | .48      | 0.48    | 0.48     | 0.48    | 0.48      | .48     | 0.48    | RN/L   | 1.479       | 1/08                            |        |
| VACH           | 0.952<br>X/CB | 0.87 -( | 0.87 -( | C.87 -( | C-87 -( | 0.87 -( | C.87 -(  | 0.87 -( | C.87 -(     | C.87 - ( | C.87 -( | C. 87 -( | 0.87 -( | C. 88 - ( | C.87 -( | C.87 -( | NACH   | 0.952       | X/CB                            | 0000   |
| CONF           | ົີ            | 5       | 5 1(    | 0       | 0       | 0 1     | τ̈́<br>υ | 0 1     | -<br>-<br>- | C        | C I     | 0        | 5       |           | 0       | 1       | CCNF   | <b>L</b> C) | , ,                             | c      |
| D T V          | 0 0<br>0<br>1 | 243.    | 243.    | 244.    | 244     | 244.    | 244.     | 244     | 244.        | 244.     | 244.    | 244      | 243.    | 244.      | 244     | 243.    | D TN   | 1 66        | 0<br>-                          | 246    |
| TST            | 571<br>MACH   | 0.952   | 0.952   | 0.954   | 0.954   | 0.954   | 0.954    | 0.954   | 0.954       | 0.954    | 0.954   | 0.954    | 0.952   | 0.953     | 0.953   | 0.950   | TST    | 571         | MACH                            | 050    |
| RUN            | 162<br>SEC    |         | ~       | e       | 4       | ŝ       | Ś        | ~       | ω           | 6        | 10      | 11       | 12      | 13        | 14      | 5       | RUN    | 163         | S<br>E<br>C<br>E<br>C<br>E<br>C | -      |

0.994 0.993 0.993 0.993 0.993 1.004 1.019 1.019 -0.010 -0.011 -0.014 -0.019 -0.008 -0.008 0.008 0.031 0.972 0.972 0.972 0.972 0.972 0.972 0.440 0.714 0.686 0.688 0.688 0.688 0.688 0.688 0.588 0.573 0.795 0.795 0.976 9, 99 9, 99 9, 99 110, 00 110, 00 110, 00 110, 00 110, 00 246.0 949.0 949.0 949.0 949.0 949.0 949.0 949.0 949.8 949.8 948.8 948.8 948.8 948.8 948.8 948.8 948.8 

i

## ORIGINAL PAGE IS DE POOR QUALITY

|        |         | pr/p    | 1.020 | 1.015 | 1.010    | 1.005 | 1.007 | 1.004 | 1.007 | 1.000   | 1.000  | 0.995  | 0.599  | 799.0          | 1.006                                                                                            | 1.009         | 1.011 |
|--------|---------|---------|-------|-------|----------|-------|-------|-------|-------|---------|--------|--------|--------|----------------|--------------------------------------------------------------------------------------------------|---------------|-------|
|        |         | СÞ      | 0.045 | 0.034 | 0.022    | 0.011 | 0.015 | 0.009 | 0.015 | 0000-0- | -0.000 | -0.011 | -0.003 | -0.016         | 0.013                                                                                            | 0.020         | 0.023 |
|        |         | V 4 / V |       |       |          |       |       |       |       |         |        |        |        |                |                                                                                                  |               |       |
|        |         | VF/V    | 0.976 | 0.982 | 0.969    | 0.939 | 0.925 | 0.918 | 0.905 | 0.911   | 0.910  | 0.903  | 0.907  | 0.921          | 0.949                                                                                            | 0.984         | 0.989 |
| ALPHA  | 0.00    | 0 / NO  | -     | •     | -        |       | -     | -     | -     | -       |        | -      |        | -              | -                                                                                                | -             | -     |
| 11     | 70.6    | 0F/0    | 0.967 | 0.974 | 0.941    | 0.872 | 0.846 | 0.830 | 0.806 | 0.813   | 0.809  | 0.793  | 0.803  | 0.830          | C.894                                                                                            | 0.972         | 0.985 |
| ۵.     | 495     | N/VN    |       |       |          |       |       |       |       |         |        |        |        |                |                                                                                                  |               |       |
| Ċ      | 223.0   | NE / N  | 0.973 | C.98C | 0.965    | 0.932 | C.917 | C.909 | C.895 | 0.902   | 006-0  | C.893  | C.857  | C.913          | 0.943                                                                                            | <b>C.9</b> 82 | C•987 |
| L PT   | 3 757   | Z/08    | -2.05 | -1.54 | -1.03    | -0.10 | -0.53 | -0.37 | -0.21 | -0.05   | 0.13   | 0.29   | 0.47   | 0.63           | 0.96                                                                                             | 1.47          | 1.97  |
| IN A   | 1.51    | Y/0.P   | 0-41  | 0.41  | C.41     | 0.41  | C.41  | 0.41  | 0.41  | C.41    | 0.41   | C.41   | 0.41   | 0.41           | 0.41                                                                                             | 0.41          | C.41  |
| F WACH | 5 0.802 | X / C9  | 10.88 | 1C.88 | 1C.88    | 1C.88 | 1C.88 | 1C.88 | 1C.88 | 10.88   | 1C.88  | 1C.88  | 10.88  | 1 <b>C.</b> 88 | 10.88                                                                                            | 10.88         | 1C.88 |
| N CCN  | 50      | G       | 3.0   | 2.0   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5   | 2.0     | 2•5    | 3.1    | 3.5    | 3.5            | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3.5           | 3•0   |
| L d    | 1 6     | r       | 2 22  | 9 22  | 0 22     | 0 22  | 0 22  | 0 22  | 0 22  | 8 22    | 0 22   | 1 22   | 2 22   | 3 22           | 3 22                                                                                             | 3 22          | 1 22  |
| TST    | 571     | MAC     | 0.80  | 0.79  | 0.80     | 0.80  | 0.80  | 0.80  | C. 80 | 0.79    | C. 80  | 0.80   | 0.80   | 0.80           | 0.80                                                                                             | 0.80          | 0.80  |
| RUN    | 164     | SEQ     |       | 2     | <b>m</b> | 4     | ſ     | 9     | 2     | 80      | σ      | 10     | 11     | 12             | 13                                                                                               | 14            | 15    |

| 0117<br>0015<br>0015<br>0015<br>0015<br>0005<br>0005<br>0003<br>0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.013<br>0.022<br>0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>∧ ∧ ∨</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VF/V<br>VF/V<br>0.907<br>0.924<br>0.830<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.937<br>0.977<br>0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ALPHA<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7 1 1<br>7 1 1 1<br>7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.870<br>0.959<br>0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22<br>22<br>22<br>22<br>23<br>24<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -930<br>-974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.96<br>1.46<br>1.97<br>0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| × ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1<br>0 8 8 8<br>0 8 8 8<br>0 8 8 8<br>0 8 8 8<br>0 1 1 1<br>0 1 1 1<br>0 1 1 1<br>0 1 1<br>0 1 1 1 1 1<br>0 1 1 1 1 1<br>0 1 1 1 1 1 1 1<br>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ST P 751 P 779<br>757 222<br>300 222<br>302 222<br>302 222<br>301 222<br>301 222<br>301 222<br>301 222<br>301 222<br>301 222<br>301 222<br>301 222<br>301 222<br>302 222<br>300 222<br>300<br>2000 20000000000 | 301 22<br>301 22<br>301 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 0.6<br>15 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|              | c                                       | 2 6    | n o             | ~        | د        | • •      | . v    | د               | . 0     |           | 0        | ~      |         | 5           | 2      | 4        |        |          | ~      |        | - 0    | \ .r        |        |             | •      | ~      |          | .*     | <b>.</b> | .+              |        | 10          | _          |
|--------------|-----------------------------------------|--------|-----------------|----------|----------|----------|--------|-----------------|---------|-----------|----------|--------|---------|-------------|--------|----------|--------|----------|--------|--------|--------|-------------|--------|-------------|--------|--------|----------|--------|----------|-----------------|--------|-------------|------------|
|              |                                         |        |                 |          | 00.1     | 1.00     | 1-00   | 00-1            | 0.999   | 0.99      | 1-00     | 1-00   | 1.00    | 1.00        | 1.01   | 1.01     |        |          | 05 70  |        |        | 1.006       | 1.004  | 1.002       | 1.002  | 1.000  | 1.001    | 1.004  | 1.001    | 1.004           | 1.004  | 1.005       | 1-010      |
|              |                                         | 0-029  | 0.021           | 0-015    | 110-0    | 0.008    | 0.013  | 110-0           | -0.003  | -0.003    | -0-001   | 0.004  | 0.006   | 0.013       | 0.027  | 0.030    |        |          | ٥L     | 120-0  | 02000  | 0.013       | 0.009  | 0.005       | 0.004  | -0.001 | 0.002    | 0.010  | 0.001    | 0.008           | 0.010  | 0.010       | 0-022      |
|              |                                         |        |                 |          |          |          |        |                 |         |           |          |        |         |             |        |          |        |          | V A /V |        |        |             |        |             |        | -      |          |        |          |                 |        |             |            |
|              | VEZV                                    | 984    | 984             | .961     | .918     | .891     | .879   | .878            | . 880   | .868      | .886     | .889   | .899    | . 940       | • 978  | .983     |        |          | VFIV   | 983    | - 988  | .969        | .921   | .902        | .897   | .896   | .897     | • 884  | . 892    | . 902           | .912   | • 944       | - 980      |
| ALPHA        | 00.00                                   |        | , 0             |          | 0        |          | 0      | 0               | 5       | 0         | 0        | 0      | 0       | 0           | 0      | 0        | AL PHA | 0.00     | DA/G   |        | 0      | 0           | 0      | 0           | 0      | 0      | 0        | 0      | 0        | 0               | 0      | 0           | C          |
| 11           | 0.10                                    | 0.976  | 0.972           | 0.921    | 0.830    | 0.777    | 0.755  | 0.753           | 0.751   | 0.729     | 0.763    | 0.771  | 0.792   | 0.876       | 0.962  | 0.976    | 77     | 70.4     | 0F / 0 | 0.974  | 0.982  | 0.938       | 0.836  | 797.0       | 787.0  | 0.782  | 0.786    | 0.764  | 0.775    | 197.0           | 0.818  | 3.884       | 1.965      |
| d 0          | 164<br>N / N                            | Ī      |                 |          |          |          |        |                 |         |           |          |        |         |             |        |          | ۵      | 497      | N V N  |        |        | -           |        | U           |        | Ŭ      | U        | Č      | C        | U               | 0      | Ŭ           |            |
| с<br>237 ғ   | N - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | C.982  | 0.982           | 0.956    | 0.909    | 0.880    | 3.866  | 3.865           | 0.867   | 0.854     | 0.874    | 0.877  | .889    | 0.933       | .975   | 0.981    | G      | 222.5    | NE / N | .980   | 1.98.  | .9566       | .912   | .892        | .386   | .885   | .886     | .872   | .880     | .891            | .902   | • 9 3 8     | 978        |
| PT<br>757    | 2/08                                    | 2.04   | 1.54            | 1.04     | 0.71 (   | 0.54 1   | 0.35 ( | 0.21 (          | 0.04 (  | 0.13 (    | 0.29 (   | 0.47 ( | 0.63 (  | 0.57 (      | 1.47 ( | 1.97 (   | ЪЪ     | 757      | 2/CB   | 2.04 ( | 1.54 0 | 1.04 C      | 0.71 0 | 0.52 0      | 0.37 0 | 0.21 0 | 0.04 0   | 0.12 0 | 0.29 0   | 0.47 0          | 0.63 0 | 3.96 C      | 46 0       |
| 1 512        | 1.0.14                                  | 0.38 - | <b>J</b> • 38 - | 3.38 -   | 3.38 -   | 1.38 -   | 3•38 - | <b>J</b> • 38 - | 38 -    | <b>38</b> | 38       | .38    |         | ω<br>•<br>• | 38     | 38       | RN/L   | 1.514    | 108    | - 48 - | - 48 - | • 48 -      | •48 -( | - 48 -      | •48 -( | •48 -0 | •48 -(   | • 4 8  | •48 (    | • 48            | • 48   | •48         | <b>4</b> 8 |
| MOCH<br>NACH |                                         | .88 -( | . 88 -(         | .88 -(   | . 88 -(  | . 88 - ( | .88 -( | . 88 -          | • 88 -( | . 88 -(   | . 88 - ( | • 88   | . 88 -( | .88 -(      | .88 -( | • 88 - ( | NACH   | 0.800    | /08 /  | .88 -0 | .88 -0 | .88 -0      | .88    | - 88<br>- 0 | .88    | .88 -0 | - 68 - C | .88    | • 88 - C | • 88 <b>-</b> 0 | .88 -0 | - 88<br>- 0 | - 88 - C   |
| CONF<br>5    |                                         | 5 10   | 5 10            | 5        | 5        | 5 I C    | 10     | 5               | 6 10    | 1 10      | 10       | 0 10   | C 1C    | 0 10        | 5 10   | 1 1C     | CONF   | <b>n</b> | ×      | 57 5   | 2 I C  | 0<br>1<br>0 | -      |             |        |        |          |        |          | 10              |        | 5,          |            |
| D T N        | 20                                      | 222.   | 222.            | 222.     | 222.     | 222.     | 222.   | 222.            | 222.    | 223.      | 222.     | 223.   | 223.    | 223.        | 222.   | 223.     | O TV   | 1 66     | o      | 222.   | 222.   | 222.        | 223.(  | 223.(       | 223.(  | 222    | 223.(    | 223•(  | 223      | 223             | 223    | - CZZ       | - 272      |
| TST<br>571   | MACH                                    | 0.300  | 0.800           | 0.800    | C. 8 C O | 0.800    | 0.800  | 0.800           | 0.799   | 0.801     | 0.800    | 0.801  | 0.801   | 0.801       | C. 800 | 0.801    | TST    | 571      | MACH   | 0.800  | 0.800  | 0.800       | 0.801  | 0.901       | 0.801  | C. 8CU | 0.802    | 0.802  | 0.803    | 0.803           | 0.802  | 0.802       | 0.802      |
| RUN          | S E C                                   | -      | 2               | <b>f</b> | 4        | Ś        | \$     | -               | œ       | σ         | 10       | 11     | 12      | 13          | 14     | 1        | NDa    | 167      | SEO    | 1      | 2      | <b>س</b> ا  | 4      | n i         | 01     | ~ (    | ω        | r (    |          |                 | 21     | n ,         | 4          |

|        |        | 0 L / D  |          | 6 1.003 | 100 1 0 | 1001 2  | 0 1.000           | F00 0 V  | 144.0 0 | 965 0 6                |       | 2 1.001           | F 1.003          |               | 4 T.006 | 200 1 6          | 0 T•000 | 200 1 3 |              |
|--------|--------|----------|----------|---------|---------|---------|-------------------|----------|---------|------------------------|-------|-------------------|------------------|---------------|---------|------------------|---------|---------|--------------|
|        |        | c c      | <u>د</u> | 0.00    |         | 0.00    | 00.0-             |          | -0.00   | 00-00-                 |       | 0.00              | 00.00            |               | 0.01    | r<br>c           | 1.01    |         |              |
|        |        |          | V 4 V    |         |         |         |                   |          |         |                        |       |                   |                  |               |         |                  |         |         |              |
|        | -      | 11 L L L | V - / V  | 0.870   |         | 0.864   | 0.852             |          | 0.818   | 0.870                  |       | 0.870             | 000 0            |               | 0.932   | 100              | 0.480   | 000 0   | 1.404        |
| AL PHA | 0.00   |          | D/A/U    |         |         |         |                   |          |         |                        |       |                   |                  |               |         |                  |         |         |              |
| 11     | 70.3   |          | 0110     | 736     |         | 0.723   | 0.701             |          | 0.748   | 022 0                  |       | 0.734             | <b>565 0</b>     |               | 0.859   |                  | C.974   |         | 1.482        |
| ۵      | 497    |          |          |         |         |         |                   |          |         |                        |       |                   |                  |               |         |                  |         |         |              |
| ى<br>v | 777.5  |          | N / 1 N  | 0 053   |         | C.850   | 758.0             |          | 0.866   | 054                    | 0.0.0 | 0.857             | 020 0            | 0.010         | 0-924   |                  | 0.984   |         | 0.988        |
| 1d     | 4 757  | •        | 2/08     | 74      |         | -0.20   | 20                |          | 0.15    |                        | 00.00 | 0.47              |                  | 0.03          | 0.97    |                  | 1-47    |         | 1.97         |
| RN/I   | 1.51   |          |          |         | 2       | 00-0    |                   |          | 00-00   |                        | 00    | 00-00             |                  | 00-00         |         |                  | 00-00   |         | 00.0         |
| NACH   | UCA C  |          | X / DB   |         |         | C 2 C O |                   |          | 00-00   |                        | 00.0  | ر <sup>ر</sup> 00 |                  | <b>C</b> • 00 |         |                  | 00.00   |         | <b>c.</b> 00 |
| CONF   | U<br>C | ٦        |          |         | -1      | u       |                   | <b>-</b> | ۔<br>س  |                        | •     | 6                 | •                | 0             | ۔<br>ر  | <b>۲</b>         |         | •       | -<br>0       |
| IN     | 77     | 0        | C        |         | • 7 7 7 | 222     | 1 C<br>1 C<br>1 C | • 7 77   | 222     | )<br>] (<br>] (<br>] ( | 222.  | 223               | -<br>-<br>-<br>- | 223.          | 223     | •<br>•<br>•<br>• | 222     | 1       | 223.         |
|        |        | 110      |          |         | 0.800   | 000     |                   | 0.800    | 0.8.00  |                        | 0.800 | 108 0             |                  | 0.801         |         |                  | C B C I |         | 0.801        |
| NIIN   |        | 001      | Cuv      |         | -1      | r       | 4 1               | 5        | 7       |                        | 41    | 4                 | c                | -             | 0       | D                | a       |         | 10           |

ORIGINAL PAGE IS OF POOR QUALITY

|               | pF/D             | 1.CO8     | 1.005 | 1.003 | 1.001      | 1.002      | 1.002      | 1.000 | 1.003  | 1.001 | 1.003 | 1.003 | 1.002 | 1.006         | 1.008 | 1.004 |
|---------------|------------------|-----------|-------|-------|------------|------------|------------|-------|--------|-------|-------|-------|-------|---------------|-------|-------|
|               | Cb               | 120.0     | 0.019 | 0.011 | 0.004      | 0.008      | 0.008      | 0.001 | 0.013  | 0.003 | 0.012 | 010.0 | 0.006 | 0.022         | 0.030 | 0.014 |
|               | V A /V           |           |       |       |            |            |            |       |        |       |       |       |       |               |       |       |
|               | VF/V             | 0.985     | 0.987 | 0.973 | 0.935      | 0.924      | 0.924      | 0.919 | 0.906  | 0.916 | 0.902 | 0.919 | 0.931 | 0.946         | 0.973 | 0.992 |
| ALPHA<br>0.00 | 0 A / 0          |           |       |       | -          |            | -          |       |        |       |       |       |       |               |       |       |
| 11<br>69.1    | 0F /0            | 0.976     | 0.978 | 0.945 | 0.867      | 0.847      | 0.847      | 0.836 | 0.814  | 0.830 | 0.806 | 0.838 | 0.861 | <b>C.</b> 892 | 0.950 | 0.985 |
| ч<br>СОС      | M A / W          |           |       |       |            |            |            |       |        |       |       |       |       |               |       |       |
| 3170.0        | MF /N            | 480.0     | 7.987 | 126-0 | 126-0      | 026-0      | 0.920      | 0.914 | 0.900  | 0.911 | C.896 | 0.914 | 0.927 | 0.942         | C.971 | 156.0 |
| PT<br>904     | 7/08             | 2.04      | 1.54  | 70-1- | 02.0       | -0-55      | -0.37      | -0-20 | -0-02  | 0.13  | 0.29  | 0.46  | 0.64  | 0.98          | 1.46  | 1.97  |
| RN/L          | V 7 7 P          |           |       |       | - 17-0     | - 17-0     | 1410       |       | 6.41 - | 0.41  | 0.41  | 0.41  | 0.41  | C-41          | 0.41  | 0.41  |
| F VACH        | 20000<br>2 7 7 8 | 10 00     |       |       |            | 10.98      | 10.88      | 10.88 | 10.88  | 10.88 | 10.88 | 10.88 | 10.58 | 10.88         | 10.88 | 10.88 |
| TN CCN        | υc               |           |       | 110.4 | 1 0 0 4    |            | 5-121      | 178.4 | 178.4  | 178.4 | 178.4 | 178-4 | 178.4 | 178.4         | 7871  | 178.4 |
| TST P         |                  |           |       |       |            |            | 200 0      | 0.603 |        | 0.403 | 0.603 | 0.603 | 0.603 | 0.603         |       | 0.603 |
| RUN           | 2010             | 3 -<br>10 |       | 2     | <b>n</b> x | <b>t</b> U | <b>N N</b> |       | - α    | σ     |       |       |       | 1 F           | 4     |       |

666.0 1.005 1.005 1.000 1.002 1.002 1.002 1.002 1.001 ..006 1.002 666.0 1.000 1.00.1 0.599 0.598 1.001 .005 .007 .000 1.c01 .003 I.C04 1.005 ...... 0.999 0110 1/10 0.020 0.004 -0.002 -0.005 0.003 0.008 0.008 0.022 0.002 0.007 0.000 0.004 0.016 0.024 0.019 0.044 0.007 -0-001 -0.010 0.028 -0.003 0.005 100.0 -0.00-0.014 0.021 0.004 0.021 <u>م</u> d C V A /V V A /V 0.879 0.885 0.888 0.875 0.901 0.970 0.836 0.387 0.894 **U** • 902 0.392 0.897 0.400 0.892 0.932 0.953 0.896 0.982 V F/ V 0.929 0.931 0.901 0.929 179.0 0.924 0.903 0.893 0.925 0.983 V F/V 0.913 **779.0** 0.00 0.00 AL PHA AHQJA QA/Q QA/Q 65.0 0.859 0.863 C.760 0.753 0.805 0.963 0.970 0.948 0.957 0.907 0.824 0.794 0.784 0.802 QF /0 0.786 0.771 0.776 0.773 0.788 0.944 0.967 QF /0 0.775 0.801 64.1 0.849 0.808 0.786 0.798 0.849 0.792 0.858 700 MA/M 697 N V V N с. ۵ 174.1 NF/V 177.1 C.925 C.927 616.0 C.872 0.868 0.896 0.920 0.968 C.975 C-95C C.890 O.886 O.886 C.886 0.881 C.88C 0.880 558.0 C.924 0**.**969 C**.**980 NE / N C.878 0.894 C.981 0.897 C.886 0.388 C.894 C-982 890 168 -1.54 -1.04 -0.21 0.62 -0-53 -0.36 -0.20 0.12 1.47 0.13 0.46 0.29 0.46 1.46 - 51 0.63 F d Z / DB -2.04 -0-55 -0.38 Y/PB Z/DB -0.38 -2.04 -C.38 -L.54 -1.04 -0.70 0.96 1.96 -0.71 -0.04 **b** J/Na 5 0.596 1.509 5 0.602 1.519 PN/L -0.03 -0.03 -0.03 -0.03 Y/DB E0.0--0.03 -0.03 -0.03 -0.03 -0-03 -0.38 -0.38 -0.38 -C.38 -C.38 -0.38 -0.38 -0.38 -0-38 -C.38 -0.03 -0.03 -0.03 -0-03 -0.38 œ -0.0 -0-38 ri, ပို P TN CONF MACH VACH X / D.B X / DB 1C.87 1C.87 C.87 C.87 O.87 0.87 C.87 C 87 C 87 C 87 C 87 C-87 C-87 C.87 C.87 C.87 C . 87 C.87 C.87 C.87 C.87 1 C . 87 C.87 C+87 C.87 C.87 C.87 10.87 .C.87 C.87 C.87 TST P TN CCNF 175.9 175.5 176.5 176.5 175.3 175.3 177.1 175.9 177.1 177.1 177.1 177.1 177.1 174.1 177.7 177.7 174.1 175.3 **(**1) 177.1 177.1 177.1 176.5 175. 175. 175. 177. 176. 66 C 66  $\mathbf{C}$ 571 1 MACH 571 I 0.558 0.598 0.558 0.558 0.558 0.598 MACH 0.596 0.556 0.602 0.602 0.602 C.6C2 0.600 0-600 0.600 0.600 0.601 0.602 0.602 0.602 0.604 0.602 0.600 0.601 0.602 0.602 0.604 0.602 0.601 0.601 TST 10 RUN 170 SEQ  $\sim$ 21 3 S 4 SON ω **o** o 4 Ś KUN N 171 SEQ Ľ١. Q ŝ σ 2 m 4 ភ

|        |         | 0      | 05       | 40          | 60      | 10       | 22         | 66       | 66       | 00       | 98       | 02       | 02           | 40       | 00            | 94       | 10          |        |         | 4                | 86       | 66      | 76         | <b>8</b> 6 | 00     | 02      | 00     | 96      | 55      |
|--------|---------|--------|----------|-------------|---------|----------|------------|----------|----------|----------|----------|----------|--------------|----------|---------------|----------|-------------|--------|---------|------------------|----------|---------|------------|------------|--------|---------|--------|---------|---------|
|        |         | d      | 1.0      | 1.0         | 1.0(    | 1. C     | 1.0(       | ŏ•0      | 5°0      | 1.0      | 5°0      | 1.0(     | 1.00         | 1.0      | 1.0           | 1.0      | 1.0         |        |         | u<br>a           | 6.0      | б • О   | ъ.<br>• 0  | ě.0        | 1.0    | 1.0(    | 1.0    | 1.0(    | 1-0(    |
|        |         | СР     | 0.020    | 0.016       | 0.013   | 0.005    | 0.008      | -0.003   | -0.005   | 0.002    | -0.006   | 0.008    | 0.008        | 0.014    | 0.001         | 0.016    | 0.027       |        |         | СÞ               | -0.007   | -0-003  | -0.010     | -0.006     | 0.001  | 0.007   | 0.002  | 0.022   | 0.018   |
|        |         | V A /V |          |             |         |          |            |          |          |          |          |          |              |          |               |          |             |        |         | V A /V           |          |         |            |            |        |         |        |         |         |
|        |         | VF/V   | 0.985    | 0.984       | 0.966   | 0.921    | .905       | .907     | .892     | 0.895    | 0.903    | .897     | .911         | .908     | 0.951         | 0.975    | .982        |        |         | V F / V          | 0.864    | 0.879   | 0.879      | 0.884      | .874   | 0.887   | 0.900  | .926    | 0.970   |
| ALPHA  | 0.00    | 0A/Q   | •        | U           | ~       | •        |            | Ŭ        | )        |          | Ŭ        |          | )            | )        |               |          |             | AL PHA | 0.00    | 0 A / 0          |          | •       | Ŭ          |            | Ŭ      |         |        | )       | 9       |
| TT     | 65.5    | 01-10  | 0.973    | 0.969       | 0.931   | 0.839    | 0.811      | 0.811    | 0.784    | 0.789    | 0.803    | 0.796    | <b>C.821</b> | 0.817    | 0.898         | 0.952    | 0.968       | ŢŢ     | 66.2    | 0140             | 0.732    | 0.759   | 0.759      | 0.768      | 0.751  | 0.776   | 0.800  | 0.853   | 120.0   |
| ۵      | 698     | MA/M   |          |             |         |          | -          |          |          |          |          | -        |              | -        |               |          | -           | ۵      | 159     | W / M            |          |         | -          |            |        | _       | -      | -       |         |
| Ċ      | 176.5   | NF/N   | .584     | .983        | .963    | -915     | .900       | 106.     | .886     | .888     | 163.0    | 168.     | .905         | .902     | .948          | .974     | 186.        | G      | 177.1   | MF/N             | .856     | .871    | .872       | .877       | .866   |         | .894   | .921    | . 968   |
| ۲q     | 891     | Z/08   | 2.04 0   | 1.54 0      | 1.04 C  | 0.71 C   | 0.54 0     | 0.38 0   | 0.21 0   | 0.04 0   | 0.12 0   | 0.29 0   | 0.47 C       | 0.63 0   | 0.56 0        | 1.47 0   | 1.96 0      | F 1    | 168     | Z/08             | 0.37 0   | 0.20 C  | 0.03 0     | 0.14 0     | 0.30 0 | 0.47 0  | 0.63 0 | 0 12.0  | J 247 1 |
| RN/L   | 1.514   | Y/DB   | 0.48 -   | 0.48 -      | 0.48 -  | 0.48 -   | 0.48 -     | 0.48 -   | 0.48 -   | 0.48     | 0.48     | 0.48     | 0.48         | 0.48     | C.48          | 0.48     | 0.48        | RN/L   | 1.514   | Y/DP             | - 00.0   | - 00.0  | 1 00 • 0   | 00.00      | 0.00   | 00.00   | 0.00   | 0°.C    | 00.00   |
| F WACH | 5 0.601 | X/DB . | 10.87 -( | 1 C . 87 -1 | IC.87 - | 1C-87 -( | 1C.87 -1   | 10.87 -( | 1C-87 -4 | 10.87 -1 | 10.87 -1 | IC.87 -( | 10.87 -(     | 1C.87 -( | 10.87 -1      | 10.87 -( | 10.87 -1    | F NACH | 5 0.602 | X/CB             | - 66 ° 5 | 66 * 5  | 66*5       | 66*5       | 66*5   | 1C.00   | 10.00  | 10.00 ( | 66.6    |
| TN CON | 66      | 0      | 176.5    | 177.1       | 177.1   | 177.1    | 177.1      | 177.1    | 177.1    | 177.1    | 177.1    | 177.1    | 177.1        | 177.1    | 177.7         | 177.1    | 176.5       | TN CON | 66      | G                | 177.1    | 177.1   | 177.1      | 17.7       | 177.7  | 177.1   | 176.5  | 176.5   | 76.5    |
| TST P  | 571 1   | MACH   | 0.601 ]  | 0.602       | 0.602   | 0.602 ]  | 0.602      | 0.602 ]  | 0.602 ]  | 0.602    | 0.602 ]  | 0.602    | 0.602 ]      | 0.602 ]  | 0.604 ]       | 0.602    | 0.601       | TST P  | 571 1   | MACH             | 0.602    | 0.603 ] | 0.603      | 0.604 ]    | 0.604  | 0.602 ] | 0.601  | 0.601   | 3.601 1 |
| PUN    | 172     | SEQ    | -1       | 2           | m       | 4        | <b>i</b> n | Ŷ        | ~        | œ        | ¢        | 10       | 11           | 12       | <b>.</b><br>1 | 14       | <u>ا</u> سم | RUN    | 173     | 0<br>S<br>E<br>O | -        | 2       | <b>M</b> 1 | 4          | 5      | \$      | ~      | œ       | σ       |

1.030 0.595 1.003 966.0 1.022 1.013 1.007 1.008 1.011 0.599 1.010 666.0 1.021 oF/p .023 DF/ 1.01/ 1.02 0.018 0.014 0.019 0.036 0.045 0.025 0.039 -0.008 -0.003 0.053 0.024 0.012 -0.007 -0.001 0.041 ĉ d U V A /V V A /V 0.933 0.939 0.907 0.879 0.865 0.858 0.858 0.858 0.870 0.870 0.875 0.911 VF/V 0.934 0.929 970 964 VF/V 0.929 0.00 0A/0 0.00 04/0 ALPHA **ALPHA** 0.879 0.885 0.753 0.713 0.819 0.866 0.805 0.724 0.726 0.736 0.936 0.956 0.868 68.6 QF 10 0.711 0.864 0.709 0.738 69.2 0140 412 M / M 412 NVVW ۵. ۵ 233.8 234.7 NL /N C.924 C.924 C.924 C.863 C.863 0.845 C.854 0.858 0.915 C.840 C.84C NF / N C.860 C.855 0.847 C.958 C.965 569 697 2708 -1.98 -1.54 -0.54 Z/08 -2.03 -0.20 -0.04 0.13 0.30 0.46 0.62 16.0 1.46 **7**2. -1.03 -0.70 -1.52 RN/L MACH RN/L 5 0.902 1.479 Y/08 -0.03 -0.03 -0-03 X/CB Y/DB 8.49 -0.01 -0.03 -0.03 -0.03 -0.03 -0-03 -0.03 -0.03 -0.03 -0.03 10.0--0.03 -0.03 E0.0-TST P IN CONF MACH NACH X/CB 10.87 1C.87 1C.88 1C.88 1C.87 1C.87 1C.87 1C.87 1C.87 1C.87 1C.87 10.87 10.87 1 C. 87 C. 88 C.87 ŝ CONF 234.1 234.8 235.3 234**.**8 234.3 234.4 234.4 235.3 234.3 234.7 235**.1** 235.6 235.1 235.1 N 66 6 66 0 571 1 MACH 571 1 LL. 0.902 0.902 0.902 0.900 0.900 0.900 0.900 MACH 0.902 0.902 0.903 0.900 0.902 0.903 0.903 0.903 0.904 **TS1** RUN 174 SEQ  $\simeq$ 2 175 SFQ 450  $\boldsymbol{\omega}$ σ ---m  $\mathbf{C}$ 4 NN N

1.027 1.015 1.010 0.589 1.003 0.989 0.992 1.006 008 792.0 0.584 1.013 10 . • اسر 0.005 0.048 0.026 -0.019 0.015 0.017 -0.019 -0.014 0.023 0.011 0.880 0.852 0.855 0.835 0.835 0.831 0.831 0.827 0.933 0.895 0.921 0.849 0.831 0.976 0.658 0.668 0.866 0.750 0.645 0.962 0.784 0.650 0.661 C.699 C.919 C.924 C.881 C.865 0.834 0.815 C.8C6 0.910 C.824 0.810 C.811 C.831 0.97 -0.53 -0.19 -0.01 0.14 -1.03 0.47 0.64 10.97 -0.69 15.0 1.47 -0.01 -0.01 -0.01 -0-01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.0-8.49 8.49 8•49 8•49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 233.8 233.6 233.6 233.9 233.9 233.9 233.9 234.3 235.2 232.6 235.1 235.1  $\mathbf{c}$ 233.7 233.0 234.1 0.901 0.956 0.895 85 • 0 2 m 4500 æ Q 212 14

|                                              | VA/V CP PE/P                | 0.030 1.015                                       | 0.024 1.012   | 0.014 1.007            |                        |                        |                                         |                        |                      |                       |                       |                       |                       | 0.037 1.019           |                   |                         |                     |                         | 0.026 1.013             | 0.026 1.013             | 0.018 1.009             |                         |                         | 0 010 1 003             |                         |                        |                        |                        | 201°T 200°0            |                        | 0.011 1.096            | 110-1 220-0            | 0.036 1.018 |
|----------------------------------------------|-----------------------------|---------------------------------------------------|---------------|------------------------|------------------------|------------------------|-----------------------------------------|------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------------|---------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------|
| AL PHA<br>0.00                               | CA/Q VE/V                   | 0.915                                             | 0.933         |                        | 0.879                  | 210.0                  | 1 - H - H - H - H - H - H - H - H - H - | 0.833                  | 0.823                | 0-844                 | 0.867                 | 0.936                 | 0.974                 | 0.978                 | VHO IV            |                         |                     |                         | 066.0                   |                         | 0.920                   | 0.805                   | 0.470                   | 0 . 871                 | 0.873                   | 0.876                  | 0.871                  | 0.872                  | 2 0 0 0                | 0.000                  | 0.976                  |                        | N-N-0       |
| 0 IT<br>452 69.8                             | MA/N CF/O                   | 0.830                                             | 0.364         | 622 U                  | 0-735                  | 0.685                  | 0.669                                   | 0-662                  | 0.646                | 0.684                 | 0.722                 | 0.865                 | 0.959                 | C.968                 | P 11              | 453 70.0                | WA/W OF 10          | 979.0                   | 0946                    |                         | 782 0                   | 0.100                   | 0-750                   | 0.739                   | 0.738                   | 0.742                  | 0.734                  | 0.737                  | 0-765                  | 0-843                  | 0.952                  | 0.970                  | 010.0       |
| NF WACH PN/L PT C<br>5 0.852 1.458 726 229.7 | X/CB Y/CB Z/CB MF/W         | 6.443 -C.01 -Z.03 0.964<br>8.40 -0 01 -1 53 5 035 |               | E-49 -C.Cl -0.69 C.877 | 8.49 -0.01 -0.53 0.857 | 8.49 -0.01 -0.36 0.827 | 8-49 -C.01 -0.19 C.820                  | 8.49 -C.CI -0.02 C.815 | 8-49-C.01 0.31 C.8C5 | 8-49 -0.01 0.48 C.827 | 8.49 -0.01 0.65 0.851 | 8-49 -0.01 0.97 C.528 | 8.49 -C.01 1.48 0.971 | 8.49 -0.01 1.98 C.975 | JE MACH RAJL PT C | 5 C.850 1.457 727 229.4 | X/CB Y/CE Z/CB ME/N | 10.87 -0.03 -2.05 0.920 | 1C+87 -0.03 -1.53 C.925 | 1C.87 -0.03 -1.03 C.916 | 1C.87 -C.C3 -0.71 C.884 | 10.87 -0.03 -0.55 0.872 | 1C.87 -C.03 -O.38 C.865 | 10.87 -C.C3 -0.20 C.857 | 10.87 -0.03 -0.03 C.859 | 10.87 -C.C3 0.13 C.861 | 1C-87 -C.03 0.29 C.857 | 1C-87 -C-03 0.46 0.857 | 10.87 -0.03 0.63 0.875 | 10.87 -0.03 0.96 0.915 | 1C.87 -C.03 1.46 C.970 | 1C.87 -C.03 1.97 C.97£ |             |
| RUN TST P TN CCI<br>176 571 1 66             | SEC MACH 0<br>1 0.057 220 7 | 2 0.852 229.7                                     | 3 0.853 230.1 | 4 0.853 230.1          | 5 0.853 230.1          | 6 0.853 230.1          | 7 0.853 230.1                           | 8 0.853 230.1          | 10 0.852 229.8       | 11 0.852 229.E        | 12 0.852 225.8        | 13 0-853 230-1        | 14 0.853 230.1        | 15 0.851 229.3        | PUN TST P TN CON  | 177 571 1 66            | SFQ MACH C          | 1 0.850 229.4           | 2 0.850 229.4           | 3 0.850 229.4           | 4 0.850 229.4           | 5 0.850 229.0           | 6 0.850 229.C           | 7 0.850 229.0           | 8 0.848 228.6           | 9 0.849 229.1          | 10 0.849 229.1         | 4 622 058 0 11         | 12 0.850 229.4         | 13 0.850 229.4         | 14 0.852 229.8         | 15 0.852 229.8         |             |

•

1.000 0.9999 665°0 665°0 665 0.599 1.000 666.0 0.599 0.599 1.000 0.599 0.599 0.999 -L 66 :0 -0.010 -0.012 -0.012 -0.012 -0.010 -0.010 -0.019 ¢, -0.012 -0.012 -0.014 -0.015 -0.012 -0.012 -0.021 -0-01 ŝ 0.000 0.000 0.000 0• 000 0.000 U. 000 0.000 0.000 0.000 0.000 000 000 0.000 0.000 3 . 0.929 909 0.920 0.929 0.984 918 950 986 F/V 6.995 366 0.919 0.939 0.924 0.916 0.911 • ් > • <u>.</u> 0 ALPHA 0.00 0.000 0000-0 000 0.000 c. 000 c. 000 0 A V O 000.0 000-0 000-0 000.0 c. 000 0.00.0 0.000 0.967 0.937 0.841 0.851 0.851 070.1 0.844 0.827 0.861 66.4 QF/Q 0.837 0.380 .901 0.989 0.843 O O Ó 0000.0 0.000 0.000 0.000 0.000 811 0000-000 0.000 0.00.0 000-0 0.000 0 79.5 MF / N C.984 C.968 556°D C.923 C.528 C.915 516.0 0.928 055°) 526°) C.986 C.955 C.917 C.918 C.91C 0.96 1.47 1.96 -0.71 -0.54 -0.37 -1.54 0.13 0.38 0.46 0.63 891 Z / DB -0.20 -0.03 -2.04 **P** C.250 1.517 1 J/Na ¥7.08 C • 41 C • 41 O • 41 0.41 C.41 C.41 C.41 C.41 C.41 C.41 C.41 C • 41 C • 41 C • 41 C • 41 MACH x / FB 0 87 10 87 10 87 10 87 10 87 10 87 10 87 10 87 10 87 10 87 10 87 10 87 ŝ CONF 11 C( 66 0 779.5 779.5 779.5 779.5 779.5 5-51 5-51 5-51 79-51 5-52 5-52 5-52 5-52 D. 571 1 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 № S RUN 178 SFG 10 12 27.45078 δ 4 5

0.9999 665°0 0.9999 0.599 DF/D 0.999 665 665 0.999 665.0 665\*0 0.999 0.999 000 000 . . 0 --0.021 -0.028 -0.025 -0.925 -0.030 -0.019 -0.030 -0.019 -0.010 -0.010-0.021 -0.021 -0.021 -0.021 ð 0.000 0• 000 0• 000 0.000 0.000 0.000 2/2 0.000 0.000 000 0.000 0.000 > 0.912 0.914 0.896 VF/V 0.940 416 0.947 931 984 992 0.945 0.394 0.911 0.891 0.894 0.927 0 . 0 0 0.00 ALPHA c.000 0.000 0A/0 0.00.0 0.000 c•000 c•000 0.00.0 000.0 000.0 c.000 0.000 .000 c.000 000.0 0.827 0.792 66.2 QF/Q 0.881 0.891 0.894 C.829 C.796 0.801 C.796 0.857 0.833 C.864 0.833 968 986 °• • 0.000 0000-0 0.000 1812 MA/N 0.000 0.000 0.000 000.0 0.000 0.000 ۵ 78.8 MF/W C.935 C. 944 C.946 C.911 C.852 0.895 C.892 0.990 619.0 0.926 016.0 C.913 C-93C N **-**587 56 Ċ Ĵ 5 0.249 1.512 1892 X/CB Y/DP Z/DP 10.87 -0.03 -2.04 C 1C.87 -0.03 -1.54 C 10.87 -0.03 -1.04 C 1C.87 -0.03 -0.71 C C -0.37 0.13 0.46 0.63 6 -0.04 0.54 • 4 σ ٠ RN/L -0-03 -0-03 -0.03 -0.03 -0.03 -0.03 -0.03 NACH C.87 C.87 C-87 C-87 C-87 0.87 0.87 87 ω 000 ഹ CCNF 66 0 78.8 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.178.1 8.1 œ αu **.** . N L 78. 78. œ τ 571 571 0.246 0.246 0.246 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 Φ σ ST 4  $\sim \sim$ • PUN 179 SEQ 10 22 NW4W9200 3 4 ഹ

|        |         | pr/p    | 0.999  | 1.000  | 0.9999   | 665.0   | 0.9999   | 0.999         | 665*0   | 665*0     | 0.999  | 0.999  | 0.999   | 665*0   | 0.999            | 0.599   | 666°0   |
|--------|---------|---------|--------|--------|----------|---------|----------|---------------|---------|-----------|--------|--------|---------|---------|------------------|---------|---------|
|        |         | C D     | -0.019 | -0.010 | -0.021   | -0.023  | -0-021   | -0.012        | -0.012  | -0.021    | -0.021 | -0.021 | -0.021  | -0.021  | -0.012           | -0.021  | -0.019  |
|        |         | V A / V | 0.000  | 0.000  | 0.000    | 0.000   | 0.000    | 0.000         | 0.000   | 0.000     | 0.000  | 000000 | 0.000   | 0.000   | 0.000            | 0.000   | 0.000   |
| _      | _       | VF/V    | 0.994  | 0.980  | 0.946    | 0.938   | 0.924    | 0.907         | 0.891   | 0.902     | 0.911  | 0.901  | 6.904   | 0.955   | 0.942            | 0.966   | 166*0   |
| ALPHA  | 0.00    | 0A/Q    | C.00U  | 0.00.0 | 0.00.0   | 000.0   | 0.00.0   | c.000         | 0.00.0  | c. 000    | 0.00.0 | 0.000  | c.000   | 000.0   | C.00U            | 0.000   | 0.000   |
| 11     | 65.9    | 0F/0    | C.987  | 0.960  | C•892    | 0.822   | C.852    | <b>C.</b> 820 | 0.792   | 0.811     | 0.827  | 0.810  | 0.815   | 0.910   | 0.836            | 0.932   | 0.981   |
| ٩      | 1812    | N / VN  | 0000-0 | 0000.0 | 0.000    | 0.00.00 | 000.0    | 0.000         | 000.0   | 0000.0    | 0000.0 | 0.000  | 0.000   | 0.000   | 0.000            | 0.00.0  | 0.000   |
| e      | 78.1    | NF / N  | 0.954  | C.98C  | C.945    | C.907   | C.923    | 0.506         | 068.0   | C•5C1     | 0.910  | 005.0  | 0.903   | 0.954   | <b>C * 5 * 2</b> | 0.566   | C• 591  |
| L pT   | é 1891  | Z/08    | -2.03  | -1.54  | -1.05    | -0-71   | -0-54    | -0.37         | -0.21   | -0-05     | 0.13   | 0.30   | 0.46    | 0.63    | 0.56             | 1.47    | 1•96    |
| H PN/  | 8 1.50  | Y/08    | -0-38. | -C.38  | -0-38-0- | -0.38   | - C.38 - | -0-38         | -0.38   | - C • 3 8 | -0-38  | -0.38  | -0.38   | -0.38   | -0-38            | -0.38   | -0.38   |
| F VAC  | 5 0.24  | X / CB  | 10.87  | 10.87  | 10.87    | 1C-87 - | 10.87 -  | 10.87         | 10.87 - | 10.87     | 10.87  | 10.87  | 1C.88 · | 1C - 88 | 1C.88 ·          | 1C.88 · | 10.87 - |
| TN CCN | 66      | o       | 78.1   | 78.8   | 78.1     | 78.1    | 78.1     | 78.1          | 78.8    | 78.8      | 78.1   | 78.1   | 78.1    | 78.1    | 78.8             | 78.8    | 78.8    |
| TST P  | 1 1 L S | MACH    | 1.248  | 1.249  | .248     | .248    | 1.248    | .248          | 3.249   | .249      | 3.248  | 0.248  | .248    | 3.248   | 0.249            | .249    | .249    |
| NUA    | 180     | SEG     | 10     | 2      | n<br>O   | 4       | 50       | 9             | 2 2     | 8         | 0      | 10 0   | 11 0    | 12 0    | 13 0             | 14 C    | 150     |

I.

|        |         |          |         | 666.0  | 1,000   |         | 566 · C | 0.999  | 0,040       |         | 666°0                                  | 0.999                 | 00000   |         | 0.999           | 0.999     | 000 0   |         | 777.0  | 0.999   |         | )<br>)<br>)<br>)<br>) | 1.000                                                              |
|--------|---------|----------|---------|--------|---------|---------|---------|--------|-------------|---------|----------------------------------------|-----------------------|---------|---------|-----------------|-----------|---------|---------|--------|---------|---------|-----------------------|--------------------------------------------------------------------|
|        |         | c c      | 7       | -0.019 | -0-010  |         | -0.014  | -0.012 | -0-012      |         | 120.00-                                | -0.028                |         |         | -0.030          | -0-012    | -0-012  |         | 710.0- | -0.012  |         |                       | -0.010                                                             |
|        |         |          | V A / V | 0.000  | 0-000   |         |         | 0.000  | 0.000       |         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0.000                 | 0.000   |         | 0.000           | 0.000     | 00000   |         | 000.00 | 0.000   | 0.000   |                       | 0.000                                                              |
|        |         | V. 2 V V |         | 166.0  | 0.976   | 0.955   |         | 0.913  | 0.906       | 000     | 000                                    | 0.924                 | 0.915   |         | 0.400           | 0.915     | 0.909   | 1000    | 176.0  | 0.952   | 0.990   |                       | 0.990                                                              |
| AI PHA |         |          |         | 000-0  | 0.00.0  | 0.000   |         | 000-0  | c. ouo      | 0.000   |                                        | 000-0                 | 0.000   |         | 000-0           | 0.000     | 000.0   | 0000    |        | c. 000  | 0.000   |                       | 000.0                                                              |
| TT     | 65.7    | OF/O     |         | 104.0  | 0.951   | 0.910   |         | U•8.5I | 0.818       | C2822   |                                        | 0.852                 | 0.834   |         | 0.000           | 0.835     | 0.823   | 0.858   |        | 0.905   | 0.979   |                       | 6.919                                                              |
| ٩      | 1812    | N / VN   |         | 222.0  | 0.000   | 0.000   |         | 000.00 | 000.0       | 000-00  |                                        | 0.000                 | 0.000   |         | 000.00          | 000.0     | 0.000   | 0.000   |        | 0.000   | 000000  |                       | 000.00                                                             |
| ى      | 78.8    | NE / N   | 100 0   |        | C-975   | C.954   |         |        | C.905       | 102-0   |                                        |                       | C.914   | 0000    |                 | - 615 - 2 | 0° 908  | 100     |        | 192.    | 065-0   |                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Lo .   | 1892    | Z/DB     | 5       | -<br>  | -I-54   | 1.04    |         |        | 0.53        | 0.38    |                                        | .12.0                 | 0.04    | 0 1 2   |                 | 0.25      | 0.47 (  | 0.63 (  |        | 0.96 (  | 1.46 (  | 1 07 1                | 1 - 2 - 1                                                          |
| RN/I   | 1.514   | Y/DB     | 37.0    |        | - 84° - | C-48 -  | - av 0  |        | 0•48 -      | C.48 -  | 0 × 0                                  | 1<br>0<br>1<br>1<br>0 | C.48 -  | 0.49    |                 | C• 4 8    | 0.48    | C.48    |        | C. 4 X  | 0.48    | 375                   | 0                                                                  |
| F NACH | 5 0.249 | X / 0.3  | 10.87 - |        | - J8.JI | 10.87 - | 10.87 - | ~ 1    | - / R * ) T | 10.87 - | 1 0 07                                 |                       | 10.87 - | 10.87 - |                 | 10.87     | 10.87 - | 1C.87 - |        | 10.87 - | 1C.87 - | 1 C 87 -              | - C - C -                                                          |
| TN CON | 66      | c        | 78.8    |        | 8.81    | 78.1    | 78.8    |        | C + 5 /     | 78.8    | 2 a C                                  |                       | 78.8    | 78.8    | ) L<br>)<br>- P | n • n -   | 19.5    | 5-51    | 300    | C • A - | 19.5    | 79.5                  | •                                                                  |
| TST P  | 571 1   | MACH     | 0.249   |        | 557-1   | 3.248   | 7.249   |        | 062.0       | 0.249   | 0720                                   |                       | J. 249  | .249    |                 |           |         | 0.250   | 0000   |         | 3.250   | 1.250                 |                                                                    |
| RUN    | 181     | SEQ      | 1       | Ċ      | V       | m       | 4       | ·u     |             | 9       | 7.6                                    | - (                   | ×<br>×  | 6       |                 |           |         | 12 (    | 12     |         | 14 0    | 150                   | ><br>1<br>1                                                        |

|         |         | F/V VA/V Co PF/P |          | 894 0.000 -0.076 0.999 | 394 0.000 -0.076 0.999<br>336 0.000 -0.022 0.999 | 394         0.000         -0.076         0.999           886         0.000         -0.022         0.999           836         0.000         -0.021         0.999 | 394       0.000       -0.076       0.999         886       0.000       -0.022       0.999         836       0.000       -0.021       0.999         832       0.000       -0.024       0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 894       0.000       -0.076       0.999         886       0.000       -0.022       0.999         886       0.000       -0.021       0.999         832       0.000       -0.024       0.999         392       0.000       -0.024       0.999         301       0.000       -0.024       0.999 | 894       0.000       -0.076       0.999         886       0.000       -0.022       0.999         836       0.000       -0.021       0.999         835       0.000       -0.024       0.999         892       0.000       -0.024       0.999         892       0.000       -0.024       0.999         901       0.000       -0.024       0.999         905       0.000       -0.012       0.999 | 894       0.000       -0.076       0.999         886       0.000       -0.022       0.999         886       0.000       -0.021       0.999         892       0.000       -0.024       0.999         892       0.000       -0.024       0.999         901       0.000       -0.024       0.999         916       0.000       -0.023       0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 894       0.000       -0.076       0.999         886       0.000       -0.022       0.999         886       0.000       -0.021       0.999         832       0.000       -0.024       0.999         901       0.000       -0.024       0.999         906       0.000       -0.012       0.999         916       0.000       -0.023       0.999         959       0.000       -0.021       0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 894       0.000       -0.076       0.999         886       0.000       -0.022       0.999         886       0.000       -0.021       0.999         886       0.000       -0.024       0.999         892       0.000       -0.024       0.999         901       0.000       -0.021       0.999         905       0.000       -0.012       0.999         916       0.000       -0.021       0.999         959       0.000       -0.021       0.999         969       0.000       -0.021       0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|---------|------------------|----------|------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALPHA   | 0.00    | JA/Q VF/         | 000 0 AG |                        | .000 0.88                                        | R8 0 000 88 88 900 900 88 89 900 900 88 900 900                                                                                                                  | 58 0 000<br>88 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88 0 000<br>88 0 000                                                                                                                                                                                                                                                                          | 96 0 000<br>96 0 000<br>98 0 000<br>88 0 000<br>88 0 000                                                                                                                                                                                                                                                                                                                                        | 16 0 000<br>06 0 000<br>58 0 000<br>88 0 000<br>88 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000 0 90<br>000 0 88<br>000 0 86<br>000 0 0 86<br>000 0 86<br>0000 0 86<br>000 0 000 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 950 0 900<br>96 0 900<br>90 0 900<br>900                                                                                                                                                                                                                                                                                    |
|         | 65.5    | QF/Q Q           | .796 0.  |                        | .782 0.                                          | .782 0.                                                                                                                                                          | -782 0-<br>-782 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -782 0.<br>-782 0.<br>-792 C.                                                                                                                                                                                                                                                                 | -782 0.<br>-782 0.<br>-792 C.<br>-810 0.                                                                                                                                                                                                                                                                                                                                                        | -782 0<br>-782 0<br>-792 C<br>-1-792 C<br>-1-792 C<br>-1-792 C<br>-1-818 0<br>-836 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 782 0.<br>782 0.<br>1.792 0.<br>1.810 0.<br>1.818 0.<br>1.836 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 782 0.<br>782 0.<br>782 0.<br>810 0.<br>818 0.<br>918 0.<br>918 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q       | 1812    | WA/W             | 0.000.0  |                        | 0.000.0                                          | 0.000.0                                                                                                                                                          | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 | 0.000 0<br>0.000 0<br>0.000 0<br>0.000 0                                                                                                                                                                                                                                                      | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ç       | 78.8    | MF/N             | 3.852 0  |                        | 3.885 0                                          | 3.885 0<br>3.885 0                                                                                                                                               | 3.885 0<br>3.885 0<br>0.891 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ).885 0<br>3.885 0<br>3.885 0<br>0.891 0<br>0.900 0                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 | ).885<br>).885<br>).885<br>0.891<br>0.891<br>0.900<br>0.915<br>0.915<br>0.915<br>0.915<br>0.915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 885 0<br>885 0<br>8885 0<br>8885 0<br>8885 0<br>8885 0<br>8885 0<br>90 8885 0<br>90 8855 0<br>90 80 80 80 0<br>90 80 80 80 0<br>90 80 80 0<br>90 80 80 0<br>90 80 80 80 0<br>90 80 80 80 0<br>90 80 80 80 80 0<br>90 80 80 80 0<br>90 80 80 80 80 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L p1    | 4 1892  | Z/CP             | -0.37 (  |                        | -0.19 (                                          | -0.19 0                                                                                                                                                          | -0.19 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.19 C                                                                                                                                                                                                                                                                                       | 0.19<br>0.13<br>0.13<br>0.13<br>0.46<br>0.13                                                                                                                                                                                                                                                                                                                                                    | -0-19<br>-0-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-0 | -0-19<br>-0-0-0-04<br>-0-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-04<br>-0-0 | -0-19<br>-0-19<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-09<br>-0-00-00-00<br>-0-00-00-00-00-00-00-00-00- |
|         | 1.514   | γ/ŋ<br>Β         | - 00-0   |                        | 00.0                                             | 00<br>- 00<br>- 0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 5 0.245 | X / DP           | IC.00    |                        | 1C.00                                            | 10.00<br>10.00                                                                                                                                                   | 10.00<br>10.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00<br>10.00<br>10.00<br>5.59                                                                                                                                                                                                                                                               | 1C 00<br>1C 00<br>1C 00<br>5 59<br>9 59                                                                                                                                                                                                                                                                                                                                                         | 1C.00<br>1C.00<br>1C.00<br>9.99<br>5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.00<br>110.00<br>10.00<br>10.00<br>9.99<br>9.99<br>9.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1C•00<br>1C•00<br>5•59<br>5•59<br>5•59<br>5•59<br>5•59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TN CONF | 56      | 0                | 78.8     |                        | 79.5                                             | 79.5                                                                                                                                                             | 20.01<br>20.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                              | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 677<br>677<br>677<br>677<br>677<br>677<br>677<br>677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TST P   | 5711 (  | MACH             | 0.249    |                        | 0.250                                            | <b>3.</b> 250                                                                                                                                                    | 0+250<br>0+250<br>0+250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, 250<br>0, 250<br>0, 250<br>0, 250                                                                                                                                                                                                                                                          | 0.250<br>0.250<br>0.250<br>0.250                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RUN     | 182     | SEQ              | -        |                        | 2                                                | 20                                                                                                                                                               | 0000<br>0 m 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000<br>0000                                                                                                                                                                                                                                                                                 | 000000<br>0 m 4 m 0                                                                                                                                                                                                                                                                                                                                                                             | 000000<br>0 m 4 m 0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000000<br>0 m 4 m 0 m 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|        |        | pF/p       | 1.000     | 666*0  | 665*0   | 0.999  | 0.999  | 0.999        | 666.0   | 0.998  | 0.598        | 666*0  | 0.598        | 0.999  | 0.599        | 0.999        | 666•0         |
|--------|--------|------------|-----------|--------|---------|--------|--------|--------------|---------|--------|--------------|--------|--------------|--------|--------------|--------------|---------------|
|        |        | СР         | -0.010    | -0.019 | -0.012  | -0.025 | -0.025 | -0.019       | -0.025  | -0-039 | -0-037       | -0-025 | -0.037       | -0-028 | -0.021       | -0.019       | -0.019        |
|        |        | V A /V     | · 000 • 0 | 0.000  | 0.000   | 0.000  | 0.000  | 0.000        | 0.000   | 0.000  | 0.000        | 0.000  | 0.000        | 0.000  | 0.000        | 0.000        | 0.000         |
|        |        | VF/V       | 0.937     | 0.950  | 0.937   | 0.902  | 0.850  | 0.855        | 0.814   | 0.833  | 0.886        | 0.868  | 0.894        | 0.909  | 0.947        | 0.992        | 166.0         |
| ALPHA  | 00 • 0 | QA/Q       | 0.000     | 0.000  | 000.000 | C. U00 | 0.00.0 | 0.00.0       | 000 • 0 | 0.00.0 | 0.00.0       | C. UQU | 0.00.0       | c. 000 | c. 000       | 0.00.0       | <b>000-</b> 0 |
| 11     | 65.4   | QF /0      | 0.876     | 0.901  | 0.877   | 0.811  | C.720  | 0.727        | 0.659   | 0690   | 0.782        | 0.750  | 0.796        | 0.824  | 0.895        | 0.982        | 0.981         |
| ٩      | 1812   | W V V W    | 0000.0    | 0.000  | 0000.0  | 0.000  | 0.000  | 0.000        | 0000.0  | 0000.0 | 0.000        | 0.000  | 0.000        | 0.000  | 000.00       | 0000.0       | 0000.0        |
| U      | 78.8   | NF / N     | 0.936     | 0-95C  | 0.937   | 0.901  | (•845  | <b>0.853</b> | 0.812   | 0.832  | 0.885        | C.867  | 0.893        | C.9C8  | C.947        | 155.0        | 156°0         |
| L pT   | 5 1892 | Z/FR       | -2.02     | -1.51  | -1.01   | -0.68  | -0.52  | -0-35        | -0.19   | -0.01  | 0.15         | 0.32   | 0.48         | 0.66   | 56*0         | 1.45         | 1.95          |
| ING -  | 1.51   | Y/CP       | 0.01      | 0.01   | 0.01    | C•01   | 0.01   | C.01         | 0.01    | C.01   | 0.01         | 0.01   | 0.01         | 0.01   | 0.01         | 0.01         | 0.01          |
| VACH   | 0.245  | X/CB       | 7.05      | 7.05   | 7.05    | 7.05   | 7.05   | 7.05         | 7.05    | 7.05   | 7.05         | 7.05   | 7.05         | 7.05   | 7.05         | 7.05         | 7.05          |
| N CONF | с<br>С | с<br>С     | 8•8       | 8.1    | 8.1     | 8°8    | 8.1    | 8 <b>.</b> 8 | 8.8     | 8°8    | 8 <b>.</b> 8 | 8.8    | 8 <b>.</b> 8 | 8.8    | 8 <b>.</b> 8 | 8 <b>.</b> 8 | <b>9 •</b> 8  |
| STPT   | 71 1 6 | LCH<br>VCH | 249 7     | 7 842  | 248 7   | 249 7  | 248 7  | 1 642        | 1 642 J | 7 945  | 249 7.       | 7 642  | 249 7        | 7 642  | 7 945        | 1 542        | 1 640         |
| UN TS  | 83 51  | NN UH      | 1 0.2     | 2 0.3  | 3 0.2   | 4 0.5  | 5 0.2  | 6 0.2        | 7 0.2   | 8 0.5  | 0.6          | 10 0.2 | 11 0.2       | 12 0.2 | 13 0.5       | 14 0.2       | 15 0.2        |
| α.     | -      | S          |           |        |         |        |        |              |         |        |              |        |              |        |              |              |               |

l

| PF/P<br>0.999<br>1.000<br>1.000                                                                  | 0, 999<br>0, 9990<br>0, 9990<br>0, 9990<br>0, 9990<br>0, 9990<br>0, 9990<br>0, 9990<br>0, 9990<br>0 | 665 °0<br>665 °0<br>665 °0<br>665 °0<br>665 °0<br>665 °0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | рғ/Р<br>1.000                                                                                    |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| CP<br>-0.017<br>-0.010<br>-0.010                                                                 | -0.017<br>-0.021<br>-0.033<br>-0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.039<br>-0.039<br>-0.023<br>-0.021<br>-0.012<br>-0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0100<br>-0-010<br>-0-010                                                                         |
| × ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V ∧ V<br>0.0000                                                                                  |
| VF/V<br>0.992<br>0.973                                                                           | 0.908<br>0.884<br>0.909<br>909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.937<br>0.895<br>0.895<br>0.929<br>0.929<br>0.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VF/V<br>0-932                                                                                    |
| AL PHA<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALPHA<br>0.00<br>0A/0<br>0.000                                                                   |
| TT<br>65.3<br>0F/0<br>0.984<br>0.972<br>0.972                                                    | 0.822<br>0.778<br>0.804<br>C.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.801<br>0.801<br>0.806<br>0.865<br>0.861<br>0.981<br>0.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TT<br>65.3<br>0670<br>0.887                                                                      |
| 3 1812<br>MA/M<br>0.0000<br>0.000                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 1811<br>MA/W<br>0.000<br>0.000                                                                 |
| С<br>МГ/М<br>0.992<br>С.985<br>С.573                                                             | C • 9C 1<br>C • 898<br>C • 5C 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C. 8996<br>C. 8996<br>C. 923<br>C. 923<br>C. 933<br>C. 933<br>C. 933<br>C. 933<br>C. 933<br>C. 935<br>C. 9355<br>C. 9355<br>C. 9355<br>C. 9355<br>C. 9355<br>C. 9355<br>C. 9355<br>C. 9355                                                                                                                                                       | C<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| L PT<br>5 1892<br>2/08<br>-2.03<br>-1.52                                                         | -0-10-10<br>-0-35<br>-0-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L PT<br>5 1891<br>-2,02<br>-1,53                                                                 |
| 9<br>9<br>1<br>7<br>1<br>7<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 1   1   1<br>0 0 0 0 0<br>4 4 4 4<br>0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F RN/<br>91.51<br>-0.01<br>-0.01                                                                 |
| F VAC<br>5 0 24<br>X/CB<br>8 49<br>8 49                                                          | 8 8 8 8 8 8<br>• • • • • •<br>• • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F VAC<br>X 7.24<br>8.49<br>8.49                                                                  |
| TN CCN<br>66<br>C<br>78.8<br>78.8<br>78.8                                                        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 779.88<br>28.88<br>28.88<br>28.87<br>28.87<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88<br>28.88 | 11 CCN<br>56<br>738<br>88<br>88                                                                  |
| TST P<br>571 1<br>MACH<br>0.249<br>0.249<br>0.249                                                | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 250<br>00 249<br>00 250<br>00 200<br>00 200<br>00 200<br>00 20000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TST P<br>571 P<br>MACH<br>0.249<br>3.249                                                         |
| 285<br>285<br>285<br>285<br>285<br>285<br>285<br>285<br>285<br>285                               | 450000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 810<br>850<br>200                                                                                |

|        |         | pr/p       | 1.000   | 1.000   | 1.000   | 665.0   | 0.999   | 0.599  | 0.998         | 665.0   | 0.999  | 0.9999 | 0.999  | 0.999  | 0.599   | 1.000  | 1.000        |  |
|--------|---------|------------|---------|---------|---------|---------|---------|--------|---------------|---------|--------|--------|--------|--------|---------|--------|--------------|--|
|        |         | ڻ <u>م</u> | -0.010  | -0.010  | -0.010  | -0.012  | -0.021  | -0.025 | -0.037        | -0.033  | -0.033 | -0.033 | -0.028 | -0.033 | -0.021  | -0.001 | 010-0-       |  |
|        |         | V A / V    | 0.000   | 0000.0  | 0.000   | 0.000   | 0.000   | 0.000  | <b>U.</b> 000 | 0.000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000   | 0.000  | 0.000        |  |
|        | -       | VF/V       | 0.932   | 0.942   | 166.0   | 0.909   | 0.873   | 0.878  | 0.887         | 0.8555  | 0.876  | 0.388  | 0.915  | 0.933  | 0.949   | 0.982  | 0.995        |  |
| ALPHA  | 0.00    | 0A/Q       | 0.00.0  | 0.000   | 0.00.0  | 0.00.0  | c. 000  | 0.00.0 | 0.00.0        | 0.00.0  | 000.0  | c. 000 | 0.00.0 | 000.0  | 0.00.0  | C.000  | 000-0        |  |
| 11     | 65.3    | 0F/0       | 0.867   | 0.886   | 0.902   | 0.823   | C.759   | 0.768  | 0.783         | 0.728   | 0.764  | 0.785  | 0.834  | 0.868  | 006-0   | 0.964  | 0.989        |  |
| ٩      | 1811    | MAZM       | 0000.0  | 0.000   | 0000.0  | 0000.0  | 0.000   | 0.000  | 000.000       | 0.000   | 0.000  | 0.00.0 | 0000.0 | 0.000  | 000.000 | 000.0  | 0.000        |  |
| U      | 78.8    | N/ JR      | C.931   | C.942   | 036.0   | C. 508  | C.872   | 0.877  | C.886         | C • 854 | C.875  | C.887  | 0.914  | 5-6-D  | C.945   | 0.982  | C.9955       |  |
| - PT   | 5 1891  | 1/08       | -2.02   | -1.53   | -1.03   | -0-65   | -0.53   | -0.36  | -0.20         | -0.02   | 0.15   | 0.31   | 0.48   | 0.65   | 0.98    | 1.48   | <b>1.</b> 98 |  |
|        | 9 1.51! | Y/DB       | - 10-0- | - 10.0- | - 10-0- | -0-01 - | - 10.0- | -10.0- | - 0.01 -      | - 10-0- | -0.01  | -0.01  | -0.01  | -0.01  | -0.01   | -0.01  | -0.01        |  |
| L VAC  | 5 0.24  | X/FB       | 8.49    | 8.49    | 8.49    | 8.49    | 8.49    | 8.49   | 8.49          | 8.49    | 8.49   | 8.49   | 8.49   | 8.49   | 8.49    | 8.49   | 8.49         |  |
| TN CCN | 66      | C          | 78.8    | 78.8    | 78.8    | 2-62    | 78.8    | 78.8   | 78.8          | 2°61    | 78.8   | 78.8   | 3.97   | 2.61   | 79.5    | 80.2   | 2.91         |  |
| TST P  | 571 1   | MACH       | 0.249   | 0.249   | 0.249   | 0.250   | 0.249   | 0.249  | 0.249         | 0.250   | 0.249  | 0.249  | 0.250  | 0.250  | 0.250   | 0.251  | 0.250        |  |
| 2      | 85      | 2          | -       | 2       | ~       | 4       | ŝ       | \$     | ~             | e<br>e  | 6      | 10     |        | 12     | 13      | 14     | 15           |  |

555 °C 6655 °C 6655 °C 6655 °C 5555 °C 0•999 0-999 0.999 0.999 666 u/⊐ 666 000 000 0 ċ \_\_\_\_\_ **C**. . CP -0.019 -0.019 -0.021 -0.021 -0.021 -0.029 -0.029 -0.029 -0.023 -0.012 -0.012  $\mathbf{O}$ C 10. -0.01 0 U. 000 0. 000 000 0.000 **.** 0.993 0.978 0.978 0.913 0.913 0.913 0.912 0.912 VF/V 0.993 906 0.910 944 0.982 988 0.906 ੱ ं ిం AL PHA 0.00 04/0 0.000 0.000 0.000 0.000 0000.0 c. 000 c. 000 c. 000 c. 000 0.00.0 0.000 0.000 0.000 c.000 000.000 918 818. 65.4 67.4 67.7 0.986 0.986 0.955 0.818 0.832 0.861 C.872 C.828 O.837 827 890 964 5 976 ్ర • 0 . 5 0 0.000 1811 M / M 000 000 0.000 0.000 00 ۵. 0 0 0 N 08 80•2 ₩F / Y 506.0 0.999 0.999 0.997 0.978 0.978 0.928 0.928 0.928 0.537 0.531 0.915 c.905 c.905 .944 .982 m a ŝ 2/08 2/08 -2.03 -1.52 -1.65 -1.63 -0.69 3-0.36 -0.17 -0.02 0.14 0.31 0.48 0.64 Fa. • 4 σ • F MACH PN/L 5 0.251 1.528 • • • • • • • • **C**11 4.  $\mathbf{c}$ 00 CONF Ο. ----

| 0E/D                      | 1.031   | 1.029   | 1.021   | 1.015   | 1.013   | 1.011   | 1.010       | 1.007  | 1.005   | 1.005 | 1.006        | 1.003   | 1.004 | I.004    | 1.006   | 1.025   |
|---------------------------|---------|---------|---------|---------|---------|---------|-------------|--------|---------|-------|--------------|---------|-------|----------|---------|---------|
| a<br>C                    | 0.049   | 0.046   | 0.033   | 0.023   | 0-020   | 0.017   | 0.015       | 0.010  | 0.007   | 0.009 | 0.009        | 0.005   | 0.007 | 0.006    | 0.010   | 0-040   |
| V A / V                   |         |         |         |         |         |         |             |        |         |       |              |         |       |          |         |         |
| A<br>0<br>VF/V            | 0.971   | 0.971   | 0.960   | 0.929   | 0.933   | 0.944   | 0.930       | 0.932  | 0.920   | 0.901 | <b>0.902</b> | 0.895   | 0.906 | 0.925    | 0.961   | 0.974   |
| ALPH/<br>20.00<br>04/0    |         |         |         |         |         |         |             |        |         |       |              |         |       |          |         |         |
| TT<br>63.8<br>0F/0        | 0.962   | 096.0   | 0.942   | 0.854   | 0.861   | 0.884   | 0.852       | 0.855  | 0.827   | 0.789 | 0.792        | 0.775   | 0.798 | 0.838    | 0.917   | 0.963   |
| 979<br>879<br>878         |         |         |         |         |         |         |             |        |         |       |              |         |       |          |         |         |
| 240.7<br>NF /N            | C.966   | 0.966   | 0.960   | 0.918   | 0.922   | 0.935   | C.919       | C.922  | C.907   | 0.386 | 0.888        | C.879   | C.891 | 0.914    | 0.954   | C•965   |
| PT<br>679<br>2/DR         | 2.04    | 1.54    | 1.04    | 0.71    | 0.53    | 0.37    | 0.20        | 0.04   | 0.12    | 0.29  | 0.46         | 0.63    | 0.96  | 1.16     | 1.47    | 1.96    |
| RN/L<br>1.484<br>7/DB     | 0.41 -  | 0.41 -  | - 15.0  | 0.41 -  | 0.41 -  | 0.41 -  | 0.41 -      | 0.41 - | 0.41    | C.41  | 0.41         | C.41    | 0.41  | 0.41     | C.41    | 0.41    |
| F MACH<br>5 0.952<br>X/PB | 10.88   | 1 C. 88 | 1C.88   | 10.87   | 10.87   | 10.88   | 1C.88       | 1C-88  | 1C.88   | 1C.88 | 10.88        | 1C.88   | 1C.88 | 1 C - 88 | 1C-88   | 10.87   |
| TA CCN<br>66              | 240.7   | 240.7   | 240.7   | 240.1   | 240.1   | 239.6   | 240.1       | 239.6  | 239.6   | 239.6 | 238.8        | 238.8   | 239.3 | 239.3    | 239.7   | 239.3   |
| TST P<br>571 1<br>MACH    | 0.952 2 | 0.952   | 0.952 2 | C.950 2 | 0.950 ¿ | 0.950 2 | 2 0 2 6 * 0 | 0.950  | 0.950 2 | 0.950 | 0.947 2      | . 749.0 | 0.948 | 0.948    | 2 576 0 | 0.948 2 |
| 20N<br>550                | 0       | m       | 4       | ഹ       | Ŷ       | ~       | ω           | σ      | 10      | 11    | 12           | 13      | 14    | 5        | 16      | 17      |

|         |        | p pr/p    | 031 1.020 | 040 1.026  | 032 1.021   | 026 1.016     | 025 1.016 | 019 1.012 | 015 1.010 | 015 1.009 | 012 1.008 | 014 1.009 | 005 1.003 | 004 0.598 | 008 0.595 | 004 0.998 | 009 1.006 | 040 1.025 |         |         | b pr/p    | 031 1.020 | .028 1.018 | .024 1.016   | 022 1.014 | 024 1.015 | .027 1.017 | .018 1.011 | 021 1.013 | .013 1.008 | .009 1.005 | .005 1.003 | 001 0.599 | .008 1.CO5 | 005 1.003 | .015 1.009 | .043 1.027 |
|---------|--------|-----------|-----------|------------|-------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|---------|-----------|-----------|------------|--------------|-----------|-----------|------------|------------|-----------|------------|------------|------------|-----------|------------|-----------|------------|------------|
|         |        |           | •0        | •0         | •0          | •0            | •0        | •         | •         | •0        | •         | •0        | •0        | • 0 -     | •0-       | •0-       | •0        | 0         |         |         |           | 0         | 0          | .0           | •         | •         | 0          | 0          | 0         | ċ          | c          | 0          | 0-        | 0          | o l       | 0          | 0          |
| ALPHA   | 20.00  | 0A/Q VF/V | 0.912     | 0.926      | 0.928       | 0.916         | 0.902     | 0.899     | 0.895     | 0.891     | 0.891     | 0.887     | 0.895     | 0.894     | 0.902     | 0.903     | 0.943     | 0.972     | ALPHA   | 20.00   | QA/Q VF/V | 0.973     | 0.975      | 0.968        | 0.936     | 0.915     | 016.0      | 0.909      | 0.912     | 0.893      | 0.881      | 0.894      | 0.886     | 0.895      | 0.922     | 0.941      | 0.966      |
| 11      | 65.3   | QF /Q     | 0.824     | 0.856      | 0.857       | 0.828         | 0.799     | 061.0     | 0.781     | 0.773     | 0.771     | 0.765     | 0.776     | 0.769     | 0.783     | 797.0     | 0.877     | 0.959     | TT      | 66.3    | 0F/0      | 0.956     | C.958      | C•940        | C.869     | 0.825     | 0.316      | 0.811      | 0.818     | 0.777      | 0.751      | 0.773      | 0.756     | 0.778      | 0.830     | 0.877      | 0.948      |
| ٩       | 377    | MV/W      |           |            |             |               |           |           |           |           |           |           |           |           |           |           |           |           | ۵       | 378     | MA/W      |           |            |              |           |           |            |            |           |            |            |            |           |            |           |            |            |
| C)      | 240.6  | ME /N     | 0.895     | C.914      | C.916       | <b>C.</b> 902 | 0.887     | 0.384     | C.879     | C.875     | 0.875     | C.871     | C.880     | 0.878     | 0.887     | 0.894     | C.934     | 0.967     | Cr      | 3 241.2 | MF/N      | 0.968     | C-97C      | C.962        | C-926     | 0.901     | 0.356      | C.895      | C.899     | C.878      | 0.364      | C.878      | C.370     | C.38C      | 0.910     | 0.932      | 0.961      |
| L PT    | 7 678  | Z/08      | -2.04     | -1.55      | -1-04       | -0.70         | -0-54     | -0.38     | -0.21     | -0-04     | 0.13      | 0+29      | 0.46      | 0.62      | 0.56      | 1.16      | 1.46      | 1.97      | L pT    | 6 670   | Z/DP      | -2.04     | -1.54      | -1.05        | 11.0-     | -0.54     | -0.37      | -0.21      | -0.04     | 0.13       | 0.30       | 0.47       | 0.64      | 15.0       | 1.17      | 1.46       | 1.96       |
| F RN    | 4 1.47 | Y/08      | -0-03     | · 20 • 0 - | - 20-0-     | -0-03         | -0.03     | -0-03     | -0-03     | -0-03     | -0.03     | -0-03     | -0.03     | -0-03     | -0-03     | -0.03     | -0.03     | -0.03     | ли<br>ч | 4 1.47  | Y/CB      | -0.38     | -0.38      | -0.38        | -0.38     | -0.38     | -C.38      | -0.38      | -0.38     | -0.38      | -0.38      | -0.38      | -0.38     | -0.38      | -0.38     | -0.38      | -0-38      |
| VF VACI | 5 0.95 | X/DB      | 10.88 -   | 10.88 -    | 10.88 -     | 1C.88         | 10.88 -   | IC.88.    | 10.88     | 10.88     | 1C.88     | 10.88     | 1C.88     | 10.88     | 10.88     | 10.88     | 10.87     | 10.87     | NF VAC  | 5 0.95  | X/Cq      | 10.87     | 10.87      | 10.88        | 10.87     | 10.87     | 10.87      | 1C.87      | 10.88     | 10.87      | 10.87      | 10.87      | 10.87     | 10.87      | IC.87     | 1C.87      | 10.87      |
| TN CC   | 66     | Ç         | 240.6     | 240.1      | 240.1       | 24C.1         | 240.1     | 235.6     | 239.6     | 239.3     | 239.3     | 239.3     | 238.9     | 238.9     | 239.3     | 240.2     | 240.2     | 239.3     | C TN CC | 66      |           | 241.2     | 241.7      | 241.7        | 241.1     | 240.1     | 240.1      | 239.1      | 239.1     | 239.2      | 239.6      | 239.3      | 239.7     | 239.7      | 239.3     | 239.3      | 238.0      |
| TST P   | 571 1  | MACH      | 0.954     | 0.953      | 0.952       | 0.951         | 0.951     | 0.950     | 0.950     | 0.948     | 0.948     | 0.948     | 0.946     | 0.946     | 0.947     | 0.950     | 0.950     | 0.948     | 1 121   | 571     | MACH      | 0-954     | 0.956      | 0.957        | 0.956     | 0.953     | 0.953      | 0.949      | 0.949     | 0.949      | C.950      | 0.948      | 0.945     | 0°045      | 0.947     | 0.947      | 0.944      |
| RUN     | 188    | SEQ       | -         | 2          | <b>6</b> 7) | 4             | 5         | 9         | 2         | æ         | 6         | 10        | 11        | 12        | 13        | 14        | 15        | 16        | NIN     | 189     | C L V     | ,         | 5          | ( <b>m</b> ) | 4         | U)        | v          | 1          | 8         | 5          | 10         | 11         | 12        | 13         | 14        | 51         | 16         |

1.005 1.009 1.008 1.005 1.007 1.002 1.009 1.004 1.021 1.020 1.013 0.970 1.002 1.021 965-0 0.588 0.983 1.023 1.022 1.013 1.011 0.592 f/p 1.019 1.000 1.026 1.008 1.000 166.0 1.001 1.000 0.981 027 ۵ \_ 0•033 0•032 0.029 0.020 0.033 0.006 0.007 0.015 500.0 0.034 -0.000 0.013 0.012 0.047 0.002 -0.000 £00°0 0.003 0.014 0.021 0.017 0.012 -0.007 -0.015 -0.019 -0.026 -0.013 -0.000 0.038 -0.031 0.041 3 ð V A /V V V V 0.921 0.916 0.945 0.978 0.977 0.966 0.928 0.922 0.924 0.940 0.910 0.927 0.893 0.975 TT6.0 0.966 0.928 0.943 0.895 VF/V 0.931 0.952 0.974 0.895 VF/V 0.929 980 0.908 0.893 0.927 0.939 0.975 . AL PHA 20.00 20.00 0A/0 ALPHA 0 A / 0 0.938 0.836 C.845 O.850 0.963 0.822 CF/Q 0.851 0.831 819 0.849 0.769 C.800 0.852 0.872 0.800 0.777 0.765 0.756 11 67.1 899 966 0F 70 0.941 853 855 975 0.969 0.965 0.775 69.1 0.880 0.843 941 0.834 0.968 5 . 00 0 . N/VN 384 382 MA/W ۵ ۵ 242.0 C.917 MF /N C.974 C.96C C.910 0.915 0.920 0.908 C.936 0.877 NF / N 0.973 C.97C C.96C C.917 0.933 C•930 C.922 0.896 C.97C .903 0.929 0.972 C.854 C.877 C.880 0.918 0.886 C.880 0.912 0.944 **C.915** 0.976 C.97 242  $\circ$ 9 1.483 685 Y/DR Z/DB 5 0.952 1.479 684 X/08 Y/08 Z/08 -2.03 -1.05 -0.65 0.14 0.48 0.63 -0-37 0.47 0.96 -0.36 0.65 -0.48 -2.05 -0.48 -1.54 0.29 .16 -1.52 -0-15 ω -0-04 0.12 •46 -1.03 -0.03 ω ω a Fa. -0.54 PT 6. 36.0 4. σ, NACH RN/L 0.949 1.483 RN/L 0.43 0.43 -C.48 -0.48 -0-48 -0.48 -C.48 -0.48 .48 0.43 C+43 0.43 C. 43 - 43 C.43 • 43 -C.48 C.43 C.43 0.43 • 43 -0.48 -0.48 -0.48 -0.48 -0.48 -C.48 4. 4 9 Ó C NACH X/CB 0.87 X/08 8.49 C. 87 10.87 8.49 8.49 8.49 C. 87 0.87 0.87 E.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 C. 87 C.87 C.87 C.87 C. 87 C. 87 C.87 0.87 8.49 8.49 8.49 8.49 TN CCNF ŝ CONF 242.0 242.0 242.4 242.4 242.4 242.4 242.4 242.4 242 4 242 4 242 4 242.4 242.4 242.4 241.5 241.5 S 241.9 5 4. SU ) 15 σ  $\mathbf{\circ}$ 241.9 241. 241. 241.9 241.( 242. • 66 242 66 O Z O 24 u. TST F 571 1 MACH 151 P 571 1 MACH 0.949 0.952 0.952 0.952 0.951 0.951 0.951 0•952 0•953 0.954 0.957 0.957 0.950 0.950 0.950 0.956 0.956 0.956 0.948 0.950 0-950 0.950 0.950 0.948 0.951 948 0.950 . : PUN 190 SFQ 0 5 m 5 2 3 14 123 ~ œ o 0 ŝ RUN NUN 191 SFG 0 4 m S ~ ω o 15 16

|              |          | V CP PF/P     | 0.021 1.014 | 0.026 1.017 | 0.017 1.011 | 0.009 1.006 | 0.009 1.006 | -0.002 0.999 | -0.004 0.598 | -0.010 0.994 | -0.019 0.988 | -0.018 0.588 | -0.022 0.986 | -0.025 0.984 | -0.013 0.592 | -0.004 9.997 | 0.011 1.007 | 0.042 1.026 |              |                                                                                             | ۷ (۵ ۵۶/۵     | 0.031 1.020 | 0.028 1.C18 | 0.028 1.018 | 0.017 1.011 | 0.009 1.006 | 0.001 1.001 | -0.003 0.598 | -0.008 0.995 | -0.012 0.992 | -0.016 0.990 | -0.014 0.991 | -0.011 0.993 | -0.007 0.996 | -0.014 0.591 | 0.007 1.005 | 0.039 1.025 |
|--------------|----------|---------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|---------------------------------------------------------------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|
| ALPHA        | 20.00    | CA/U VE/V VA/ | 0.913       | 0.927       | 0.935       | 0.919       | 0.914       | 0.900        | 0.886        | 0.872        | 0.835        | 0.879        | 0.368        | 0.868        | 0.391        | 0.926        | 0.962       | 179.0       |              | 20-00                                                                                       | DA/O VE/V VA/ | 0.976       | 0.977       | 0.971       | 0.935       | 0.915       | 0.904       | 0.901        | 0.899        | 0.893        | 0.887        | 0.865        | 0.878        | 0.903        | 0.939        | 0.979       | 0.980       |
| TT           | 3 68.6   | M 0F/0        | 0.821       | C.853       | 0.865       | 0.825       | 0.816       | 0.782        | 0.754        | 0.724        | 0.744        | 0.734        | 0.711        | 0.710        | 0.759        | 0.833        | 616.0       | 0.973       | ŢŢ           | 1 64 6                                                                                      | M CF/O        | C•963       | 0.964       | 0.950       | 0.865       | 0.819       | 0.791       | 0.783        | 0.776        | 0.763        | 0.751        | 0.709        | 0.734        | 0.785        | 0.856        | 0.956       | 0.976       |
| <b>a</b> .   | 4 38     | VA/           |             |             |             |             |             |              |              |              |              |              |              |              |              |              |             | _           | ۵            | 2 C                                                                                         | MA/           |             |             |             |             |             |             |              |              | _            |              |              |              |              |              |             | _           |
| U            | 5 242.   | N / J N       | 0.900       | C.916       | 0.925       | 0.906       | 0.901       | C.885        | C-865        | C-853        | 0.868        | C.862        | (•84S        | C-850        | C.875        | C.914        | 0.955       | C.974       | L.           | 242                                                                                         |               | C.972       | 6.973       | C.966       | 0.925       | 0.902       | C.885       | 0.886        | 0.883        | 0.877        | 0.871        | C-846        | C.860        | 0.888        | 0.929        | 0.976       | C.976       |
| L pT         | 89 83    | Z/C8          | -2.03       | -1.53       | -1.02       | -0-65       | -0.53       | -0.36        | -0.19        | -0.01        | 0.15         | 0.31         | 0.48         | 0.65         | 0.58         | 1.18         | 1.48        | 1.98        | 10           | 5 × 57                                                                                      | 2/58          | -2.02       | -1.52       | -1.03       | -0-69       | -0.52       | -0.36       | -0.19        | -0.01        | 0.14         | 0.32         | 0.48         | 0.65         | 0.58         | 1.18         | 1.48        | 1.58        |
| L RV         | 1 1.47   | Y/C8          | -0-01       | -0.01       | -0-01       | -C•C1       | -0-01       | -0-01        | -0-01        | -0.01        | -0-01        | -0-01        | -0.01        | 10.0-        | -0.01        | -0-01        | -0-01       | -0.01       |              | 0 1 67                                                                                      |               | -0-36       | -0.36       | -0.36       | -0.36       | -0.36       | -0.36       | -0.36        | -0.36        | -0.36        | -0.36        | -0-36        | -0.36        | -0.36        | -0-36        | -0-36       | -0.36       |
| F VAC        | 5 0.95   | X/58          | 8.49        | 8.49        | 8.49        | 8.49 -      | 5.49 ·      | 8.49 -       | 8.49         | E. 49 -      | 8.49 -       | 8.49         | 6 4 9        | 8.49         | E. 49        | E.49 -       | E.49        | E.49 .      |              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | X/CB          | £ • 49      | 8.49        | 8.49 -      | 8.49        | 8.49        | 8.49        | 8.49         | 8.49         | 8.49         | 8.49         | 64.8         | 8.49         | 8.49 -       | 8.49         | E.49        | 8.49        |
| TST P TN CCN | 571 1 66 | MACH C        | 0.951 242.4 | 0.952 242.3 | 0.951 241.6 | 0.953 242.9 | 0.953 242.5 | 0.953 242.9  | 0.951 242.4  | 0.951 242.4  | 0.951 242.4  | 0.951 242.4  | 0.952 242.9  | 0.952 242.9  | 0.952 242.9  | 0.951 242.4  | 0.950 241.5 | 0.950 241.9 | IST D TV CCN | 571 1 66 C                                                                                  | MACH 0        | 0.952 242.3 | 0.952 242.3 | 0.953 242.5 | 0.952 242.9 | 0.954 243.4 | 0.952 242.9 | 0.950 241.9  | 0.949 241.4  | 0.949 241.4  | 0.949 241.4  | 0.949 241.4  | C.947 241.C  | C.948 241.5  | 0.946 241.1  | C.949 242.C | 0.948 241.5 |
| RUN          | 192      | SEG           | -           | 2           | ŝ           | 4           | ŝ           | 9            | 2            | ω            | ნ            | 10           | 11           | 12           | 6            | 14           | 15          | 16          | NIId         |                                                                                             | N LO          |             | ~           | <b>~</b> 1) | 4           | Ś           | 9           | 2            | ¢            | σ            | 10           |              | 12           | 2            | 14           | 15          | 16          |
|                |                | 4/V Co bE/p  | 0.032 1.020 | 0.031 1.020 | 0.022 1.014 | 0.012 1.008 | 0.007 1.004 | 0.001 1.000 | -0-006 0-596 | -0.007 0.996 | -0.017 0.589 | -0.021 0.987 | -0.022 0.586 | -0.017 0.589 | -0.008 0.995 | -0.011 0.593 | 0.004 1.002 | 0.041 1.026 |   |                |                                                                                             | 4/V CP PF/P  | C-037 1.C21 | 0.032 1.018 | 0.028 1.016 | 0.030 1.617 | 0.029 1.016 | 0.034 1.019  | 0.020 1.011 | 0.020 1.011 | 0.019 1.011 | 0.021 1.012 | 0.021 1.012 | 0.023 1.013 | 0.020 1.011 | 0.023 1.013 | 0.042 1.024 | 0.054 1.031 |
|----------------|----------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|---|----------------|---------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ALPHA          | 20-00          | DA/Q VF/V VA | 616*0       | 179.0       | 0.974       | 0.939       | 0.927       | 0.922       | 0.928        | 0.909        | 0.905        | 0.900        | 0.874        | 0.876        | 0.916        | 0.960        | 0.979       | 0.980       |   | ALFHA<br>Do co |                                                                                             | DA/U VF/V VA | 0.928       | 0.933       | 0.427       | 0.905       | 0.902       | 0.888        | 0.884       | 0.884       | 0.878       | 0.881       | 0.879       | 0.875       | 0.896       | u.919       | 0.937       | 0.965       |
| TT             | 2 69.5         | N GF/O       | 016-0       | 0.966       | 0.954       | 0.869       | 0.843       | 0.827       | 0.836        | 0.797        | 0.784        | 0.772        | 0.723        | 0.729        | 0.811        | 0.903        | 0.954       | 0.978       | + | י<br>ה         | 1.00 5                                                                                      | M 0F/0       | 0.860       | 0.869       | 0.854       | 0.808       | 0.803       | 0.778        | 0.763       | 0.763       | 0.751       | 0.758       | 0.755       | 0.747       | 0.786       | 0.835       | 0.880       | 0.949       |
| <b>D</b> .     | <b>.</b><br>38 | V MA/        | <b>LL</b> \ | <b>6</b> 0  | 0           | œ           | Q           | 5           | 6            | 4            | 0            | 4            | ę            | 8            | <b>6</b> 1)  | <b>(</b> 7)  | ç           | Ŷ           | C | 2 C            |                                                                                             | N *** V      | æ           | 4           | -           | Ci          | ሙ           | <b>C</b> 11  | υ.          | Б           | 2           | Ģ           | 4           | ۍ<br>ا      | 2           | œ           | ~           | Cr.         |
| С <sup>у</sup> | 4 242          | NF /         | C.97        | C.97        | C.97        | 0.92        | 0.91        | 0.90        | 0.916        | C•85         | C.891        | C• 88.       | C.85         | C. 85        | 06.0         | 0.95         | C.97        | C-97        | C | י ר<br>י<br>י  |                                                                                             |              | C.918       | C.92        | C.91        | C•85        | C . 88      | C.97         | C.86        | 0.86        | C•86.       | C.86(       | 0.86/       | 0.85        | 0.88        | 0.901       | C • 92      | 0.95        |
| /r o1          | 74 68          | 27.0B        | -2.03       | -1.52       | -1-02       | -0-69       | -0.52       | -0-35       | -0.19        | -0.02        | 0.14         | 0.31         | 0.48         | 0.65         | 0.58         | <b>1.18</b>  | 1.48        | 1.98        |   |                |                                                                                             | Z / DB       | -2.05       | -1.54       | -1.04       | -0.71       | -0-55       | <b>-0</b> 38 | -0.21       | -0.04       | 0.13        | 0.29        | 0.46        | 0. 63       | 16.0        | 1.17        | 1.46        | 1.96        |
| H PN           | 2 1.4          | Y/08         | -0.45       | -0-45       | 24-0-       | -0.45       | -0.45       | -0.45       | -0.45        | -0-45        | -0.45        | -0.45        | -0-45        | -0.45        | -0.45        | -0-45        | -0.45       | -0-45       |   |                |                                                                                             | Y/CB         | -0.03       | £0°0-       | -0.03       | -0.03       | -0-03       | -0.03        | -0.03       | -0.03       | -0.03       | -0.03       | -0.03       | -0.03       | -0-03       | -0.03       | -0.03       | -0.03       |
| F VAC          | 5 0.95         | X/C8         | 8.49        | 8.49        | 8.49        | 8.49        | 8.49        | 8.49        | 8.49         | 8.49         | 8.49         | 8.49         | 8.49         | 8.49         | 8.49         | £•49         | 8.49        | 8.49        |   |                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | X/CB         | 1C.88       | 1C.88       | 1C.88       | 10.88       | 10.88       | 10.87        | 1C.88       | 10.87       | 10.87       | 10.87       | 10.87       | 10.87       | 10.87       | 10.87       | 10.87       | 10.87       |
| TST P TN CCN   | 571 1 66       | MACH Q       | 0.952 242.3 | 0.955 243.4 | 0.955 243.4 | 0.956 243.9 | 0.956 243.9 | 0.956 243.9 | 0.955 243.4  | 0.955 243.4  | 0.954 242.9  | 0.954 242.9  | 0.954 242.9  | 0.954 242.9  | 0.954 242.9  | 0.952 242.3  | 0.953 242.5 | 0.954 243.4 |   | 101 F IN LLN   |                                                                                             | MACH         | 0.902 233.0 | 0.903 232.5 | 0.902 232.4 | 0.901 231.5 | 0.901 231.9 | 0.901 231.5  | 0.901 231.5 | 0.901 231.9 | 0.900 231.5 | 0.900 231.5 | 0.900 231.5 | 0.900 231.5 | 0.900 231.5 | 0.900 231.5 | C.900 231.5 | 0.898 231.1 |
| PUN            | 194            | SEC          | 2           | <b>6</b> 0  | 4           | ŝ           | 9           | ~           | æ            | ¢            | 2            | 11           | 12           | 13           | 14           | 15           | 16          | 17          |   |                | 140                                                                                         | SEG          | 2           | <b>m</b>    | 4           | ŝ           | 9           | 2            | œ           | 6           | 10          | 1           | 12          | 5           | 14          | 5           | 16          | 17          |

|        |         | pF/P      | 072 1.041 | 068 1.038 | 024 1.013   | 006 1.003 | 018 1.010 | 012 1.007 | 008 1.005 | 011 1.006 | .006 1.004 | 010 1.005 | 005 1.003 | .005 1.003 | .020 1.011 | 012 1.006 | 033 1.019 | 041 1.023 |        |         | PE/P      | 054 1.027 | 049 1.025 | 036 1.018   | 025 1.012 | 018 1.009 | 005 1.003 | 008 0.996 | 016 0.992 | 010 0.995 | 004 1.002 | 018 1.009 | 012 1.006 | 015 1.008 | 019 1.010 | 027 1.014 | 036 1.018 |
|--------|---------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|------------|-----------|-----------|-----------|--------|---------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|        |         | VA/V C    | •0        | 0         | •           | •         | •         | •         | 0         | •         | 0          | 0         | •         | •0         | 0.         | •         | 0         | •         |        |         |           | •0        | 0.        | •0          | •0        | •0        | •         | •01       | •0-       | •0        | •0        | •         | •0        | •0        | •0        | •0        | •0        |
| ALPHA  | 20.00   | DA/Q VF/V | 0.00.0    | 0.912     | 0.935       | 0.921     | 0.894     | 0.884     | 0.869     | 0.853     | 0.863      | 0.835     | 0.338     | 0.857      | 0.907      | 0.941     | 0.966     | 0.973     | ALPHA  | 20-00   | 0A/Q VF/V | 0.903     | 0.918     | 0.919       | 0.909     | 0.906     | 0.903     | 0.898     | 0.396     | 0.889     | 0.878     | 0.884     | 0.883     | 0.917     | 0.937     | 0.971     | 0.978     |
| 11     | 65.3    | 0F/0      | 0.818     | 0.842     | 0.867       | 0.830     | 0.783     | 0.760     | C.729     | 0.702     | 0.717      | 0.668     | 0.672     | 0.707      | 0.809      | 0.875     | 0*6*0     | 0.961     | 11     | 67.2    | 9F / 9    | 0.816     | 0.844     | 0.840       | 0.817     | 0.807     | 797.0     | 0.781     | 0.775     | 0.763     | 0.747     | 0.765     | 0.759     | 0.827     | 0.871     | 0.948     | 0.967     |
| ٩      | 404     | N/VN      |           |           |             |           |           |           |           |           |            |           |           |            |            |           |           |           | ۵      | 451     | M / M     |           |           |             |           |           |           |           |           |           |           |           |           |           |           |           |           |
| ى      | 231.5   | NE / N    | 0.886     | 006-0     | C.925       | 016.0     | 0.880     | 0.869     | C.852     | 0.835     | C.845      | 0.815     | C.819     | C.835      | 0.895      | C.932     | 0.961     | C.969     | Ç      | 228.3   | NF/N      | 0.851     | C.907     | 0.909       | C.858     | C.894     | C-851     | 0.886     | 0.884     | 0.876     | C.864     | C.871     | 0.865     | c.906     | 0.929     | 0.967     | C.975     |
| - p1   | 159 !   | 2/58      | -2.03     | -1.53     | -1.02       | -0-69     | -0.53     | -0.36     | -0.19     | -0.02     | 0.15       | 0.31      | 0.47      | 0.64       | 0.98       | 1.18      | 1.47      | 1.58      | p1     | 124     | 2/08      | -2.04     | -1.54     | -1.04       | 11.0.     | -0.54     | -0.38     | -0.21     | -0-04     | 0.13      | 0.29      | 0.46      | 0.63      | 0.56      | 1.17      | 1.47      | 1.97      |
| N/NA   | 1.474   | Y/DB      | 0.01 -    | - 10-0    | - 10-0      | - 10-0    | - 10-0    | - 10-0    | - 10-0    | - 10-0    | C.CI       | 0.01      | C.C1      | 10.0       | 0.01       | c.c1      | 0.01      | c.01      | 1/Na   | 1.500   | 7.0.B     | C.C3 -    | C.03 -    | 0.03 -      | 0.03 -    | C•03 -    | - 63 - C  | 0.03      | C+ C3 -   | 0.03      | C• 03     | 0.03      | 0.03      | C• C3     | 0.03      | 0.00      | C•03      |
| F VACH | 5 0.900 | X/CP      | - 64.3    | 8.49 -    | 8.49 -      | 8.49 -    | 8-49 -    | 8.49 -    | 8.49 -    | E.49 -    | - 64.3     | 8.49 -    | 8.49 -    | 8.49 -     | E.49 -     | 8.49 -    | 8.49 -    | E.49 -    | F NACH | 5 0.850 | X / CB    | 10.87 -   | 1C-87 -   | 10.87 -     | 10.87 -   | 1C+87 -   | 10.87 -   | 10.87 -   | 10.87 -   | 10.87 -   | IC.87 -   | 10.87 -   | 1C.87 -   | 10.87 -   | 10.87 -   | 10.87 -   | 10.87 -   |
| TN CCN | 66      | 0         | 231.5     | 229.9     | 230.5       | 232.3     | 231.9     | 231.5     | 231.9     | 231.5     | 231.5      | 233.1     | 233.1     | 232.7      | 232.7      | 232.3     | 232.3     | 233.2     | TN CON | 66      | 0         | 228.3     | 227.9     | 227.6       | 226.8     | 226.8     | 227.6     | 228.0     | 229.1     | 229.4     | 228.5     | 228.5     | 229.1     | 229.1     | 228.6     | 228.6     | 228.2     |
| TST p  | 571 1   | MACH      | 006.0     | 0.853     | 0.855       | 0.902     | 0.902     | 0.902     | 0.902     | 0.902     | 0.902      | 106.0     | 0.901     | 0.899      | 0.899      | 0.898     | 0.898     | 0.900     | TST P  | 571 1   | MACH      | 0.850     | 0.849     | 0.847       | 0.845     | 0.845     | 0.847     | 0.848     | 0.852     | 0.854     | 0.853     | 0.852     | 0.852     | 0.852     | 0.852     | 0.852     | 0.851     |
| RUN    | 196     | SEC       | -         | 2         | <b>6</b> 7) | 4         | ŋ         | Ŷ         | ٢         | ω         | σ          | 10        | 11        | 12         | 13         | 14        | 15        | 16        | RUN    | 197     | SEO       |           | 2         | רי <b>ק</b> | 4         | นา        | \$        | ~         | œ         | 6         | 2         | 11        | 12        | <u> </u>  | 14        | 10<br>1   | 16        |

|        |        | ۵         | ~        | 8            | 4            | ~      | :     | 0      |        | 5     | 0        | -      | 80     | 5     | C     | ~     | σ     | . <b></b> . |        |         | 0         | C       | 5            | ω          | 4       | 4      | 0       | 0       | LC.       | Ŷ              | 4     | ŝ     | 5     | 5             | 2        | 6      | (     |
|--------|--------|-----------|----------|--------------|--------------|--------|-------|--------|--------|-------|----------|--------|--------|-------|-------|-------|-------|-------------|--------|---------|-----------|---------|--------------|------------|---------|--------|---------|---------|-----------|----------------|-------|-------|-------|---------------|----------|--------|-------|
|        |        | DF/       | 1.01     | 1.00         | 1.00         | 1.00   | 1-00  | 66.0   | 0.59   | 1.00  | 0.99     | 0.99   | 0.99   | 1.00  | 1.01  | 1.00  | 1.00  | 1.01        |        |         | DE/       | 1.01    | 1.00         | 1.00       | 1.00    | 1.00   | 1.00    | 1.00    | 1.00      | 1.00           | 1.00  | 1.00  | 1.00  | 1.00          | 1.00     | 1.00   |       |
|        |        | 5         | 0.026    | 0.017        | 0.008        | 0.005  | 0-004 | -0.001 | -0.004 | 0.001 | -0.003   | -0.006 | -0.005 | 0.011 | 0.022 | 0.016 | 0-020 | 0.023       |        |         | d<br>C    | 0.023   | 0.019        | 0.018      | 500-0   | 600.0  | 0.001   | 100.0   | 0.012     | 0.013          | 0,009 | 0.006 | 0.011 | 0.010         | 0.016    | 0.020  |       |
|        |        | V A /V    |          |              |              |        |       |        |        |       |          |        |        |       |       |       |       |             |        |         | V A / V   |         |              |            |         |        |         |         |           |                |       |       |       |               |          |        |       |
| ALPHA  | 20.00  | CA/G VF/V | 0.912    | 0.925        | 0.931        | 0.916  | 0.908 | 0.898  | 0.894  | 0.882 | 0.898    | 0.895  | 0.883  | 0.883 | 0.911 | 0.950 | 0.972 | 0.986       | AL PHA | 20.00   | 0A/0 VF/V | 0.984   | 0.985        | 196.0      | 0.934   | 116.0  | 0.905   | 016.0   | 0.839     | 0.831          | 0.838 | 0.892 | 0.898 | 0.937         | 0.948    | 0.976  |       |
| 11     | 68.6   | 0F/0      | 0.824    | C.846        | 0.855        | 0.823  | 0.807 | 0.787  | 0.778  | 0.757 | 0.786    | 0.780  | 0.756  | 0.762 | 0.821 | C.898 | 0.947 | 0.978       | TT     | 69.1    | 0F/0      | 0.973   | 0.975        | 0.935      | 0.861   | 0.815  | 0.800   | 0.810   | 0.774     | 0.759          | 0.771 | 0.777 | 161.0 | <b>C.</b> 868 | 0.893    | 0.955  |       |
| ۵      | 458    | M A / W   |          |              |              |        |       |        |        |       |          |        |        |       |       |       |       |             | C      | 456     | NV/W      |         |              |            |         |        |         |         |           |                |       |       |       |               |          |        |       |
| ى      | 222.1  | NF/N      | £36°3    | C.916        | <b>C.923</b> | 0.906  | 0.898 | C.887  | C.883  | C.870 | C.887    | 0.884  | 0.871  | C.87C | C.902 | C.544 | 0.969 | C.984       | ى<br>ى | 223.0   | ME / N    | C.981   | <b>C.983</b> | 0.963      | C.926   | 0.901  | 0.894   | c.900   | 0.877     | 0.869          | C.876 | 0.881 | 0.887 | 0.929         | 0.942    | 0.973  |       |
| L pT   | 0 758  | 2/08      | -2.04    | -1.54        | -1.04        | -0.71  | -0.54 | -0.38  | -0.21  | -0.03 | 0.13     | 0.30   | 0.46   | 0.63  | 0.96  | 1.16  | 1.46  | 1.96        | L p1   | 0 757   | Z/C8      | -2.04   | -1.54        | -1.04      | -0.70   | -0-54  | - 12-0- | -0.20   | -0-04     | 0.13           | 0.30  | 0.46  | 0.62  | 16.0          | 1.17     | 1.47   |       |
| H RN   | 8 1.52 | Y/DB      | - 0.03 - | -0.03        | -0.03        | - 0.03 | -0-03 | -0.03  | -0-03  | -0.03 | -0-03    | -0.03  | -0-03  | -0-03 | -0.03 | -0.03 | -0.03 | -0.03       | H PN/  | 1 1.52( | 4/DB      | -0-38 - | -0-38        | - C. 38 -  | -0-38 - | -0-38- | -0.38-  | -0.38 - | - C. 38 - | -0-38          | -0.38 | -0-38 | -0.38 | -0.38         | -0-38    | -C•38  | 000   |
| IF VAC | 5 0.75 | X / CB    | 1C.87    | 10.87        | 10.87        | 10.87  | 1C.87 | 1C.87  | 1C.87  | 10.87 | 10.87    | 10.87  | 1C.87  | 10.87 | 10.87 | IC.87 | 10-87 | 1C.87       | F NAC  | 5 0.80  | X/CB      | IC.87   | 10.87        | 1C.87      | 1C.87   | 10.87  | 10.87   | 10.87   | 10.87     | 10.87          | 10.87 | 10.87 | 1C.87 | 10.87         | 1 C • 87 | 1C.87  | 10 07 |
| TN CON | 66     | G         | 222.1    | 222.6        | 223.1        | 223.1  | 223.5 | 223.5  | 223.5  | 223.5 | 223.0    | 223.0  | 224.C  | 224.5 | 224.C | 224.C | 224.1 | 224.1       | TN CCN | 66      | e         | 223.0   | 223.C        | 222.5      | 222.5   | 223.C  | 223•C   | 223.C   | 223.5     | 224 <b>.</b> C | 224.C | 223.5 | 223.5 | 223.C         | 223.0    | 222.5  | 222 0 |
| TST P  | 571 1  | MACH      | 0.798    | 0.799        | 0.801        | 0.801  | 0-802 | 0.802  | 0.803  | 0.803 | 0.802    | 0.802  | 0.804  | 0.805 | 0.804 | 0-804 | 0.803 | 0.803       | TST P  | 571 1   | MACH      | 0.801   | 0.801        | 0.800      | 0.800   | 0.802  | 0.802   | 0.802   | 0.803     | 0.804          | 0.804 | 0.802 | 0.802 | 0.801         | 0.801    | C. 800 | 100 0 |
| RUN    | 200    | SEC       |          | <b>r</b> 1 1 | <b>(*</b> 1  | 4      | ŝ     | Ŷ      | ~      | ε     | <b>D</b> |        |        | 12    | 2     | 14    | 15    | 16          | NUS    | 201     | 0 ± S     |         | 2            | <b>r</b> 1 | 4       | ŝ      | Ŷ       | ~       | ∞         | 6              | 10    | 11    | 12    | 61            | 14       | 15     |       |

1.009 .015 .005 L. C02 1.003 1.004 •000 ..004 1.012 1.008 1.002 1.000 0.594 966.0 79.597 1.000 1.005 r/D .000 .007 .008 1.006 1.014 ..004 1.001 .014 •004 .005 .007 DE/D .007 0.020 0.004 600°0 0.007 0.012 0.015 0.015 0.018 0.020 0.013 0.018 0.001 0.002 -0.013 0.032 0.012 0.032 0.026 -0.006 000.0-0.029 0.005 00000 0.009 0.008 -0.009 0.032 0.016 -0.010 0.015 0.012 e. O 8 V V V V V V 0.985 0.985 0.928 0.937 0.915 0.890 0.908 0.983 0.975 0.917 0.913 0.889 0.891 0.890 0.889 0.904 VF/V 0.983 0.938 0.928 0.916 0.954 VF/V 0.931 0.936 0.988 0.983 0.932 0.914 0.907 0.975 0.989 0.981 ALPHA 20.00 ALPHA 20.00 04/0 0A/Q 69**.**6 0F/0 0.972 0.975 0.870 0.853 0.866 0.822 0.816 0.769 0.803 C.950 C.856 C.824 0.918 0.823 C.774 0.777 0.778 0.977 0.969 0.821 0.900 69.3 0F/0 0.974 0.802 0.866 0.933 0.970 C.847 C.950 777.0 126.0 p 497 458 MA/M W V V W ۵ 222.C 223.1 C.980 C.983 C.981 C.931 ME / N 0.880 0.875 0.920 C.930 0.979 C.981 C.924 C.928 0.903 0.963 0.906 C.906 0.988 0.877 0.925 C-92C C.972 0.894 C.879 C.971 0.878 C.858 646.0 C-907 C.983 0.987 C.978 8 1.515 757 2 V/DR 2/DR W C.43 -2.03 C. 20 758 2 Z/CB 0.43 -1.53 0 0.43 -1.53 0 0.43 -1.04 0 0.43 -0.65 0 -C.48 -2.04 -C.48 -1.54 12. -0.53 -0.15 -1.04 -0.70 -0.37 0.13 0.25 0.46 0.64 96.0 1.16 1.47 F 0.14 0.31 0.49 0.65 0.98 1d -0.53 ထ ထ -0-04 œ 1.1 1 - 4 ( 1.95 F MACH RN/L 5 C+8C1 1+520 F NACH RN/L 5 0.758 1.515 -0.48 -0.48 -0.48 -0.48 -0.48 0.43 0.43 Y/DB 0.43 C.43 -C.48 -0.48 -C.48 ω -C.48 ω α 3 5 ന m **m** 3 -0-45 -0-48 -0.48 -0-41 0.4 0.4 0.4 0.4 0.4 4.0 0.4 -0.4 
 TST
 P
 TN
 CENF
 WACH
 5
 7
 5
 7
 1
 6
 5
 0
 7
 5
 8
 7
 1
 6
 5
 0
 7
 5
 8
 7
 1
 6
 5
 0
 7
 5
 8
 7
 1
 6
 5
 0
 7
 5
 8
 7
 1
 6
 7
 1
 6
 7
 1
 6
 7
 1
 5
 1
 1
 6
 1
 1
 6
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 1
 1
 1 1C-87 1C-87 X/08 C.87 C.87 C.87 C.87 C.87 C.87 1C. E7 1C. 88 1C. 87 1C. 87 0.87 C.87 C.87 8.49 8.49 8.49 C.87 CONF TST P TN CC 571 1 66 MACH C 0.801 223.1 0.800 222.5 0.802 222.5 0.802 223.5 223.5 223.5 222.5 223.1 223.1 223.6 222•C 222.1 222.6 222.6 222.6 222.5 223.0 222•C 222•L 222•L 222.1 222.1 222.5 222•0 222•0 222•0 222**.1** 222.1 222.1 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.799 0.802 0.803 0.803 0.800 0.801 0.758 0.801 0.800 0.800 0.802 0.802 0.799 0.798 0.758 0.800 0.801 0.798 0.800 0.800 0.759 0.799 0-801 ·52.0 5 12 203 SEQ 2 PUN 202 SEQ 0 50 13 14 15 NUN 3 SO 12 5 ω o 0 \_ 0 5 ထ σ O 4 S 16

|       | ç             | 2 0                                   |        | 6          | ñ      | 0        | 2        | 2        | <b>P</b> | ç        | 6      | ~        | 2             | ñ        | 6       | يسم    | r.       |            |             | ٩       | m            | 4      | 2              | 5      | Ś               | Π       | S      | 2       | 2      | 8        | 1       | n      |             | <u>a</u> ) | 0       |
|-------|---------------|---------------------------------------|--------|------------|--------|----------|----------|----------|----------|----------|--------|----------|---------------|----------|---------|--------|----------|------------|-------------|---------|--------------|--------|----------------|--------|-----------------|---------|--------|---------|--------|----------|---------|--------|-------------|------------|---------|
|       |               | , , , , , , , , , , , , , , , , , , , |        | 1.00       | 1.00   | 1.00     | 1.00     | 65.0     | 0.99     | 1.00     | 0.99   | 0.99     | <b>55 °</b> 0 | 1.00     | 1.00    | 1.01   | 1.01     |            |             | DF/     | 1.01         | 1.01   | 1.00           | 1.00   | 1.00            | 1.00    | 1.00   | 1.00    | 65 •0  | 0.99     | 1.00    | 1.CO   | 1.00        | 1.00       | 1.00    |
|       | ç             | ر در<br>د در د                        | 0.025  | 0.019      | 0.007  | -0.001   | 0.004    | -0.006   | -0.006   | -0.001   | -0.003 | -0.006   | -0.006        | 0.006    | 0.020   | 0.025  | 0.028    |            |             | aC      | 0.028        | 0.031  | 0.015          | 0.007  | 0.003           | 0.003   | 0.001  | 0.004   | -0.006 | -0.005   | 0.002   | 0.007  | 0.002       | 100.07     | 0.019   |
|       |               | <b>V A /</b>                          |        |            |        |          |          |          |          |          |        |          |               |          |         |        |          |            |             | V A /V  |              |        |                |        |                 |         |        |         |        |          |         |        |             |            |         |
|       |               | V F / V                               | 1.912  | 0.930      | .908   | .896     | .876     | 0.877    | .872     | .856     | .853   | .859     | 0.885         | 0.930    | 0.962   | .979   | .984     |            |             | VF/V    | .984         | .982   | .975           | 0.938  | .901            | j.893   | .879   | 0.866   | 0.871  | .875     | .873    | .898   | .939        | 919.0      | -986    |
| ALPHA | 20.00         | UA/U                                  |        |            | 0      | J        |          | )        |          | U        | J      | J        |               | 0        | 0       | 0      | 7        | ALPHA      | 20.00       | 0 A / O |              |        |                | J      | 0               |         |        | U       | 0      |          | 9       | 0      |             | Ú          | J       |
|       | 69 <b>.</b> 6 | CF/0                                  | 0.823  | 0.858      | 0.809  | 0.782    | 0.746    | 0.746    | 0.735    | 0.709    | 0.703  | 0.713    | 0.760         | 0.853    | 0.925   | 496.0  | 0.977    | TT         | 69.9        | QF / Q  | C.976        | 0.973  | 0.951          | C.869  | 0.795           | 0.778   | 0.750  | 0.728   | 0.734  | 0.742    | C.740   | 061.0  | C.869       | 136.0      | 779-0   |
| ۵.    | 454           | ~ / ~ ~                               |        |            |        |          |          |          |          |          |        |          |               |          |         |        |          | o.         | 496         | N V N   |              |        |                |        |                 |         |        |         |        |          |         |        |             |            |         |
| ف     | 223.6         | 2 / J 2                               |        | 0.922      | 0.858  | C.884    | 0.863    | 0.865    | C.859    | C.842    | C.839  | C.845    | 0.873         | 0.922    | 0.958   | C.976  | 0.982    | 0          | 223.0       | NF /N   | <b>C.982</b> | 036°C  | C-972          | 0.931  | <b>C.</b> 89C   | C.881   | C.866  | C.852   | 0.858  | 0.862    | C.8€C   | C.887  | C.932       | C.977      | 0.984   |
| L d   | 759           | E7.08                                 |        | 1.02       | 0.69   | 0.52     | 0.36     | 0.20     | 0.02     | 0.14     | 0.31   | 0.47     | 0.64          | 0.98     | 1.18    | 1.48   | 1.98     | ld         | 757         | Z/08    | 2.02         | 1.52   | 1.03           | 0.69   | 0.53            | 0.36    | 0.19   | 0.02    | 0.14   | 0.31     | 0.48    | 0.64   | 85.0        | 1.18       | 1.48    |
| RN/L  | 1.521         | /0B                                   |        | - 10.      | - 10.  | - 10.    | - 10.    | - 10-    | - C1 -   | •01      | • 01   | .01      | 10.           | •01      | 10.     | •01    | • 01     | D/Nd       | 1.517       | 10.8    | - 36 -       | - 36 - | - 36 -         | • 36 - | • 36 F          | - 36 -  | • 36   | • 36    | •36    | • 10     | • 16    | • 30   | 9<br>6<br>1 | •36        | -36     |
| VACH  | C.802         | / [] 3                                | 0- 67. | .49 -0     | .49 -0 | - 49 - C | .49 -0   | - 49 - C | - 65.    | .49 -0   | .49 -0 | - 49 - 0 | .49 -0        | - 49 - C | - 49 -0 | .49 -0 | - 49 - C | NACH<br>N  | 0.801       | /CB Y   | .49 -0       | .49 -0 | <u>0</u> - 64. | 0- 65. | <u>.</u> 49 – C | • 49 -0 | .49 -0 | - 49 -0 | •49 -0 | · 49 - C | .49 -0  | •49 -C | - 49 - 0    | •49 -0     | - 49 -0 |
| CNF   | י א<br>עי     | × (                                   | n a    | ິພ         | e<br>S | S<br>S   | 2)<br>2) | ພ<br>ບ   | 8        | ш)<br>СО | e<br>S | ω<br>u   | e<br>S        | e<br>B   | 8       | ຍ<br>ບ | ω<br>w   | <b>UNE</b> | <b>لا</b> ء | ×       | 8            | 8      | ω<br>Ω         | ພ<br>ບ | 8               | ω<br>Ω  | 8      | 8       | ω<br>ω | ω<br>w   | ec<br>L | e<br>e | e<br>C      | ω<br>υ     | ω<br>   |
| TN    | <b>2</b> 2    | C (                                   | 223.0  | 222.6      | 222.6  | 222.     | 222.4    | 222.(    | 222.(    | 222 .    | 222.   | 222 .    | 222.          | 223.(    | 223.0   | 222.1  | 222.     | N IN       | 66          | Ċ       | 223.(        | 223.(  | 223.(          | 223.(  | 223.(           | 223.(   | 223.(  | 223.(   | 222    | 222 •    | 222 •   | 222•(  | 222.        | 222.(      | 222.0   |
| TST F | 571 1         | MACH                                  | 0.802  | 0.799      | 0.799  | 0.799    | 0.799    | 0.758    | 0.758    | 0.800    | 0.800  | 0.800    | C. 8CO        | 0.901    | 0.801   | 0.799  | 0.800    | TST F      | 571 1       | MACH    | 0.801        | 0.801  | 0.801          | 0.801  | 0.8CI           | 0.801   | 0.801  | 0.801   | 0.800  | C•800    | 0.800   | 0.758  | 0.799       | 0.799      | 0.799   |
| RUN   | 204           | S T C                                 |        | . <b>m</b> | 4      | ſ        | N.       | ~        | æ        | 6        | 10     | 11       | 12            | 2        | 14      | 15     | 16       | RUN        | 205         | SEQ     | -            | 2      | ~              | 4      | ي.<br>س         | ¢       | ~      | ω       | σ      | 10       |         | 12     | 13          | 14         | 5       |

0.599 1.014 1.004 0**.** 598 1.008 1.009 1.003 1.000 1.000 1.003 .013 .005 .003 1.002 0.998 1.003 1.003 1.004 1.002 1.002 1.004 165.0 1.001 I.C04 799.0 1.001 110.1 1.C02 2007 DE/ 0.029 0.034 0.007 0.007 0000.0 0.008 0.011 0.034 0.015 0.010 0.015 0.031 0.018 0.011 0.004 -0.004 -0.005 100.0 -0.006 0.006 710.0 •024 0.011 -0.002 -0.007 0.004 0.044 0.014 -0.001 0.017 0.004 å Ō V A /V V A /V 0.983 0.982 0.982 0.975 0.929 0.909 0.872 0.886 0.975 0.933 0.920 0.867 0.964 0.934 0.926 0.920 0.923 0.976 VF/V 0.987 0.986 VF/V 0.897 0.909 0.894 0.960 0.978 0.993 0.936 0.942 0.969 0.983 AL PHA 20.00 ALPHA 20.00 QA/Q 0A/0 0.975 9.8 01 70 0.974 0.974 0.952 0.852 0.812 0.787 0.779 0.726 0.736 0.763 C.808 0.911 0.955 0.979 0.980 0.957 C.987 0.932 C.872 0.861 0.865 0.864 C.849 C.836 0.839 0.821 0.854 0.953 0.971 68.7 0F/0 0.885 750.0 0.776 496 MA/K 702 M / M D. 177.2 NE/N 222.5 NF / N 0.981 C.980 C.972 0.854 0.359 C•961 C•961 0.899 0.855 0.932 0.926 0.926 0.929 C.956 0.976 0.914 306-0 0.979 0.879 0.886 0.883 0.874 C-973 0.986 396-0 0.915 0.923 C. 939 0.967 C-921 0.975 C.98. 15 757 Z/DB X/CB Y/CB Z/DR E-49 -0.45 -2.03 C E-49 -0.45 -2.03 C B-49 -0.45 -1.53 C B-49 -0.45 -1.53 C 896 -2.05 -1.54 -1.05 -0.68 -0-36 -0.03 0.31 0.64 0.58 -0.54 -0.38 -0.19 0.48 0.12 0.47 0.63 0.96 ω -0.20 0.25 1.47 ω -0.71 1.17 F a -0.04 1.14 1.4 5 с. • 5 9.600 1.510 X/UB Y/UP Z/ 10.87 0.41 -24 RN/L 5 0.800 1.515 RN/L C • 41 O • 41 O • 41 -0.45 -0.45 -0-45 -0.45 -0.45 • 4 5 0.41 C.41 0.41 14.0 -0-45 -0.45 -0.45 -0-45 -C.45 -0.45 0.41 -0.45 0.41 C.41 C.41 0.41 0.4] 0.4] C • 4] 5-5 VACE NACH Е.49 Е.49 LC.87 LC.88 LC.88 8.49 8.49 8.49 ε.49 8.49 8.49 8.49 8.49 67\*3 8.49 8.49 1 C • 87 1 C • 87 1 C - 87 1 C - 87 1 C - 87 1 C - 88 1 C - 88 1 C - 88 l C. 88 C-87 C-87 C. 87 C. 88 CONF P TN CONF 222 6 222 6 222 6 222 6 222 6 5 222 6 С 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 177.2 C 222.5 222.5 223.1 223.1 223.1 222•0 222•0 222•5 222 • 5 222 • 5 4 u١ 221.5 N N ŝ **N** N 221.5 2 223.] 571 1 66 221. 177.2 177. 177.5 177.2 177.2 177.2 ١. 177. 55 177. 571 1 MACH 0.800 0.759 0.800 0.758 MACH 0.600 0.600 0° + 6 0 0 0.800 0.800 0.600 0.600 TST C. 6 C O 0.801 0.758 0.758 561.0 0.799 0.800 0.800 0.800 •8C1 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 RUN 206 SFQ 4  $\infty$ σ C **^**: 3 4 ŝ Ś 207 SEC **(† 1)** RUN σ,  $\mathbf{o}$ 2  $\infty$ 4

| PUN           | ISI    | P IN CC   | NF NA         | NA HU       | 1 PT   | C         | C     | 11     | ALPHA        |        |         |       |  |
|---------------|--------|-----------|---------------|-------------|--------|-----------|-------|--------|--------------|--------|---------|-------|--|
| 208           | 571    | 1 66      | 5 0.6         | 02 1.5      | 13 89  | 6 177.8   | 101   | 68.4   | 20.00        |        |         |       |  |
| SEQ           | MACH   | c         | X/DB          | Y/DR        | 2/08   | NF / N    | N / N | 0F / 0 | QA/U VF/V    | V A /V | a D     | DF/D  |  |
|               | 0.602  | 177.8     | IC.87         | -0.03       | -2.04  | C.97C     |       | 0.851  | 0.925        | •      | 0.019   | 1.005 |  |
| 2             | 0.602  | 177.8     | 10.87         | -0.03       | -1.55  | 0.929     |       | 0.866  | 0.933        |        | 0.016   | 1.004 |  |
| m             | 0.602  | 177.8     | <b>IC.</b> 88 | -0.03       | -1.04  | C.925     |       | C.859  | 0.929        |        | 0.019   | 1.905 |  |
| 4             | 0.602  | 177.8     | 10.87         | -0-03       | -0.71  | 0.914     |       | 0.835  | 0.919        |        | 0.001   | 1-000 |  |
| ŝ             | 0.602  | 177.8     | 1C.87         | -0.03       | -0.54  | C.857     |       | 0.804  | 0.903        |        | 0000-0- | 1.000 |  |
| 6             | 0.603  | 178.4     | 1C.87         | -0-03       | -0.38  | 0.888     |       | 0.792  | 0.895        |        | 0.012   | 1.003 |  |
| ~             | 0.602  | 177.8     | 10.87         | -0.03       | -0.21  | 0.885     |       | 0.785  | 0.892        |        | 0.004   | 1.001 |  |
| ŝ             | 0.602  | 177.8     | 10.87         | -0.03       | -0.03  | 0.883     |       | C.780  | 0.890        |        | 0.003   | 1001  |  |
| 6             | 0.602  | 177.8     | 10.87         | -0-03       | 0.13   | 0.871     |       | 0.762  | 0.878        |        | 0-018   | 1-005 |  |
| 10            | 0.602  | 177.8     | 10.87         | -0.03       | 0.30   | 0.854     |       | 0.798  | 0.400        |        | -0.002  | 0.999 |  |
| 11            | 0.602  | 177.8     | 10.87         | -0.03       | 0.46   | C.885     |       | 0.786  | 0.891        |        | 0-016   | 1-004 |  |
| 12            | 0.602  | 177.8     | 10.87         | -0.03       | 0.63   | 0.895     |       | 0.802  | 106-0        |        | 0.008   | 1,002 |  |
| 13            | 0.602  | 177.8     | 10.87         | -0.03       | 0.96   | 526-0     |       | 0.865  | 0.933        |        |         | 1.002 |  |
| 14            | 0.602  | 177.8     | 10.87         | -0.03       | 1.16   | 0-954     |       | 0-912  | 0.957        |        |         | 1 000 |  |
| 5             | 0.600  | 177.2     | 1 5 . 87      | F0-0-       | 74.    | 070       |       | 170.0  |              |        |         |       |  |
|               |        |           |               |             |        |           | -     |        | 116.0        |        | 110.0   | 500•1 |  |
| <b>C</b><br>1 | 0-602  | 111.8     | IC-87         | -0-03       | 1.97   | C • 9 8 3 |       | C.971  | 0.934        |        | 0.022   | 1.006 |  |
|               |        |           |               |             |        |           |       |        |              |        |         |       |  |
| RUN           | 151    | F TN CC   | NF WA         | CE RN       | 11 PT  | Ċ.        | ۵     | 11     | VHU IV       |        |         |       |  |
| 209           | 571    | 1 66      | 5 0.6(        | 00 1.51     | 53 11  | 6 177.2   | 702   | 6.8.3  | 20.00        |        |         |       |  |
| SFC           | MACH   | U         | X / L B       | 4 U D P     | 7 / 08 | NE / N    | N / N |        | DATO VEIN    |        |         | 01.0  |  |
|               | 0-600  | 177.2     | 1 C - 87      | 86.0-       | -2-04  | 180.0     |       |        |              |        | 0,00    |       |  |
| 5             | 0.000  | 177.2     |               |             |        |           |       |        | 707 • 0<br>0 |        |         |       |  |
| 1 6           |        |           |               |             |        |           |       |        | 0. 202       |        | CT0.0   | 1.004 |  |
| 1 -           |        |           |               |             |        |           |       | 0.938  | 016.0        |        | 100.0   | I.C02 |  |
| t I           |        | 7 - 1 - 7 | 12.11         | 2<br>1<br>1 | 11.0-  | C•924     | ~     | 0.858  | 0.929        |        | 0.016   | 1.004 |  |
| <b>^</b> '    | 0.602  | 177.8     | 1C•87         | -C•38       | -0.54  | 0.895     | •     | 0.811  | 0.905        |        | 0.011   | 1.003 |  |
| Ø             | 0.602  | 177.8     | l C. 87       | -0.38       | -0.37  | 0.894     | •     | 0.801  | 0.900        |        | 0.007   | 1.002 |  |
| ~             | 0.602  | 177.8     | 10.87         | -0.38       | -0.21  | C.911     | -     | 0.831  | 0.916        |        | 0.004   | 1.001 |  |
| æ             | 0.602  | 177.8     | l C • 87      | -0.38       | -0.04  | 0.852     | •     | 0.796  | 0.398        |        | 0.003   | 1.001 |  |
| σ             | 0.602  | 177. 5    | 1C.87         | -C.38       | 0.13   | 0.885     | C     | 0.792  | 0.895        |        | 0.013   | 1.003 |  |
| 10            | 0.602  | 177.ε     | 1C•88         | -C.38       | 0:00   | C.885     |       | 167.0  | 0.895        |        | 0.006   | 1001  |  |
|               | 0.600  | 177.2     | 10.87         | -0.38       | 0.47   | 0.900     | Ŭ     | 0.812  | 0.906        |        | 0.004   | 1.001 |  |
| 12            | 0-600  | 177.2     | 10.87         | -0.38       | 0.63   | C.9C2     | •     | 0.817  | 0.908        |        | 0.017   | 1.004 |  |
|               | 0.602  | 177.8     | 1C.87         | -0.38       | 0.96   | 0.927     |       | 0.863  | 0.931        |        | 0.019   | 1.005 |  |
| 14            | 0.602  | 177.8     | 10.87         | -6.38       | 1.17   | C.938     | Ŭ     | 0.884  | 0.942        |        | 0.016   | 1.004 |  |
|               | 0.600  | 177.2     | 10.87         | -0.38       | 1.47   | C.964     | ·     | 0.934  | 0.967        |        | 0.019   | 1.005 |  |
| 16            | C. 600 | 176.6     | 10.87         | -0.38       | 1.96   | 0.985     |       | 0.976  | 0.986        |        | 0.020   | 1.005 |  |

|                  |         | pr/p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.006  | 1.005 | 1.005  | 1.008        | 1.003 | 100.1  | 1.003 | 1.001 | 1.001  | 1.001 | 1.002   | 1.001 | 1.000   | 1.003 | 1.006 | 1.006 |       |        | 0/10     | 1-002 | 1.004  | 1.008 | 1.005 | 1.005        | 1.001 | 1.000    | 0.996   | 0.598  | 665.0  | 1.003 | 1.002    | 100.1  | 1.004     | 1.006  | 1.005    |
|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|--------------|-------|--------|-------|-------|--------|-------|---------|-------|---------|-------|-------|-------|-------|--------|----------|-------|--------|-------|-------|--------------|-------|----------|---------|--------|--------|-------|----------|--------|-----------|--------|----------|
|                  |         | Cb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.024  | 610.0 | 0.019  | 0.031        | 0.013 | 0.004  | 0.011 | 0.003 | 0.003  | 0.003 | 0.010   | 0.003 | 0.000   | 0.011 | 0.023 | 0.024 |       |        | a)       | 0.010 | 0.015  | 0.031 | 0.020 | 0.019        | 0.004 | -0-001   | -0.017  | 600.0- | -0.002 | 0.012 | 0.008    | 0.004  | 0.016     | 0.024  | 0-020    |
|                  |         | V / V /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |       |        |              |       |        |       |       |        |       |         |       |         |       |       |       |       |        | V A /V   | •     |        |       |       |              |       | ,        |         | •      | ·      |       |          |        |           |        |          |
| PHA.             | 00.00   | V/Q VF/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.984  | 0.987 | 0.965  | 0.921        | 0.914 | 0.909  | 0.900 | 0.906 | 0.904  | 0.904 | 0.901   | 0.921 | 0.945   | 0.972 | 0.976 | 0.986 | PHA   | .00    | VIO VEIV | 0.993 | 0.66.0 | 0.970 | 0.928 | 0.931        | 0.931 | 0.923    | 0.916   | 0.899  | 0.907  | 0.898 | 0.920    | 0.955  | 0.964     | 0.981  | 0.985    |
| AL               | 2 20    | QA<br>QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      | 8     | 0      | 9            | ~     | 6      | -     | 1     | -      | 2     | ŝ       | Ģ     | 2       | ŗ     | 4     | 9     | ٩L    | 1 20   | 0 07     | 8     | ŝ      | ŝ     | 8     | Ç.           | 6     | ņ,       | ŝ       | 6      | 2      | 8     | 6        | -      | 6         | S.     | 4        |
|                  | 68.     | QF /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.97  | 0.97  | 0.93   | 0.84         | 0.82  | C. 81  | 0-80  | 0.81  | 0.80   | 0.80  | 0.80    | 0.84  | 0.88    | 0.94  | 0.95  | 0.97  | 11    | 64.    | QF/      | C.98  | 0.98   | 0.94  | 0.85  | 0.85         | 0.85  | 0.34     | 0.82    | 0.79   | 0.81   | 0.79  | 0.83     | 0.90   | 0.92      | 0.96   | 0.97     |
| ٩                | 702     | MA/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |        |              |       |        |       |       |        |       |         |       |         |       |       |       | ۵     | 691    | M / M    |       |        |       |       |              |       |          |         |        |        |       |          |        |           |        |          |
| C                | 176.6   | NF/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C.983  | 0.986 | 0.962  | <b>c.916</b> | 0.908 | C.9C3  | C.854 | 006.0 | C.898  | 0.898 | 0.895   | 0.916 | C.942   | c.97c | 0.974 | 0.985 | C     | 174.5  | MF / N   | 256.0 | 0.985  | 0.968 | 0.924 | <b>C.926</b> | C.92€ | 0.918    | C.91C   | 0.893  | c.9c1  | 0.852 | 0.915    | C.952  | 0.962     | 0.979  | 0.984    |
| Ld               | 895     | Z/CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.04   | 1.53  | 1.05   | 0.71         | 0.54  | 0.37   | 0.21  | 0.04  | 0.12   | 0.29  | 0.47    | 0.63  | 0.96    | 1.17  | 1.47  | 1.56  | La    | 882    | Z/DB     | 2.03  | 1.53   | 1.03  | 01.0  | 0.52         | 0.36  | 0.19     | 0.02    | 0.14   | 0.31   | 3.48  | 0.64     | 0.97   | 1.17      | 1.48 I | - 98 - 1 |
| RN/L             | 508     | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48 - 2 | 1 84  | 48 -   | 48 -(        | 48 -( | 48 -(  | 48 -( | 48 -( | 48 (   | 48 (  | 48      | 48 (  | 48 (    | 48    | 48    | 48    | J/Ng  | 1.503  | 0.0      | 4.9   | 43 -   | 1 54  | 43 -( | 43 - (       | 43 -( | 43 -(    | 43 - (  | 43 (   | 4.3    | 43 (  | 43       | 4.9    | 43        | 43     | 43       |
| ACH              | 566     | B </td <td>7 -0.</td> <td>8 -0.</td> <td>7 -0.</td> <td>7 - C</td> <td>-0- 2</td> <td>7 - 0.</td> <td>7 -0.</td> <td>7 -0.</td> <td>1 -0'</td> <td>7 -0.</td> <td>7 - 0.</td> <td>7 -0.</td> <td>7 -0.</td> <td>7 -0.</td> <td>7 -0.</td> <td>7 -0.</td> <td>ACH</td> <td>109</td> <td>B<br/>Y</td> <td>8.0.</td> <td>6</td> <td>8</td> <td>8.0.</td> <td>8</td> <td>8</td> <td>0.<br/>8</td> <td>30.</td> <td>8</td> <td>с<br/>8</td> <td>8</td> <td>8<br/>0</td> <td>8<br/>0</td> <td>с.<br/>8</td> <td>6<br/>0</td> <td>6<br/>6</td> | 7 -0.  | 8 -0. | 7 -0.  | 7 - C        | -0- 2 | 7 - 0. | 7 -0. | 7 -0. | 1 -0'  | 7 -0. | 7 - 0.  | 7 -0. | 7 -0.   | 7 -0. | 7 -0. | 7 -0. | ACH   | 109    | B<br>Y   | 8.0.  | 6      | 8     | 8.0.  | 8            | 8     | 0.<br>8  | 30.     | 8      | с<br>8 | 8     | 8<br>0   | 8<br>0 | с.<br>8   | 6<br>0 | 6<br>6   |
| N<br>N<br>N<br>N | 2.<br>5 | 2/X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.8   | 1C.8  | 1 C. 8 | 10.8         | 1C.8  | 10.8   | 10.8  | 10.8  | 1 C. 8 | 10.8  | 1 C • 8 | 1C.8  | 1 C • 8 | 1C.8  | 1C.8  | 1C.8  | N L N | 5<br>0 | 0 / X    | 8.4   | 8•4    | 8•4   | 8.4   | 8.4          | 8.4   | 8•4      | 8.4     | 8.4    | 8.4    | 8.4   | 8•4      | 8.4    | 8•4       | 8.4    | 8.4      |
| TN CO            | 66      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 176.6  | 176.6 | 177.2  | 177.2        | 177.8 | 177.2  | 177.2 | 177.2 | 177.2  | 177.2 | 177.2   | 177.2 | 176.6   | 176.6 | 177.2 | 177.2 | TN CC | 66     | Q        | 174.5 | 173.9  | 174.5 | 173.9 | 174.0        | 173.4 | 174.6    | 174.6   | 175.1  | 175.1  | 174.5 | 173.9    | 173.5  | 173.9     | 173.5  | 173.9    |
| TST P            | 571 1   | MACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ). 599 | 3.599 | 0.600  | 0.600        | 0.602 | 0.600  | 009.0 | 0.600 | 009.0  | 0.600 | 3.600   | 0.600 | 3.599   | 3.599 | 0.600 | 0.600 | TST P | 571 1  | MACH     | 0.601 | 0.600  | 0.601 | 0.599 | 0.599        | 3.598 | 0.600    | 1.96.01 | 0.602  | 0.602  | 109.0 | C+ 6 C O | 0.600  | 0.599<br> | 3.559  | 3.599    |
| RUN              | 210     | SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1      | 2 (   | 3      | 4            | Ś     | 6      | -     | 8     | )<br>6 | 10 (  | 11 (    | 12 (  | 13      | 14 (  | 51    | 16 (  | RUN   | 211    | SEO      | 2     | m      | 4     | ŝ     | 9            | ~     | <b>c</b> | 6       | 01     |        | 12 (  |          | 14     | 5         | 10     | 17       |

|               |          | A/V CP PE/P  | 0.029 1.007 | 0.006 1.001 | 0.006 1.002 | 0.016 1.004   | 0.012 1.003 | 0.001 1.000 | -0.002 0.999 | 0.002 1.000 | -0.001 1.000 | 0.001 1.000 | 0.004 1.001 | 0.002 1.000 | 0.003 1.001 | 0.009 1.002 | 0.019 1.005 | 0.015 1.004 |               |            | A/V CP PF/P  | 0.022 1.006   | 0.028 1.007 | 0.012 1.003 | -0.002 0.999 | 0.005 1.001 | -0.002 0.999 | -0.002 0.599 | 0.007 1.002 | 0.006 1.001 | 0.001 1.000     | 0.004 1.001 | 0.001 1.000 | -0.003 0.999 | 0.006 1.002 | 0.017 1.004     | 0.012 1.003 |
|---------------|----------|--------------|-------------|-------------|-------------|---------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|------------|--------------|---------------|-------------|-------------|--------------|-------------|--------------|--------------|-------------|-------------|-----------------|-------------|-------------|--------------|-------------|-----------------|-------------|
| ALPHA         | 20.00    | DA/Q VF/V VI | 0.912       | 0.932       | 0.938       | 0.897         | 0.831       | 0.870       | 0.865        | 0.866       | 0.869        | 0.873       | 0.871       | 0.889       | 0.938       | 0.961       | 0.983       | 0.989       | ALPHA         | 20.00      | DA/Q VF/V VI | 0.987         | 0.981       | 0.974       | 0.934        | 0.896       | 0.886        | 0.875        | 0.864       | 0.861       | 0.880           | 0.882       | 0.908       | 0•964        | 0.977       | 0.983           | 0.993       |
| 11            | 64.9     | 0F /0        | 0.828       | 0.862       | 0.873       | 797.0         | 0.766       | 0.744       | 0.735        | 0.738       | 0.741        | 0.749       | 0.746       | C.779       | 0.872       | 0.920       | 0.969       | 0.980       | TT            | 66.1       | 0F/0         | 0.978         | 0.957       | 0.948       | 0.864        | 0.792       | 0.772        | 0.753        | 0.735       | 0.728       | 0.762           | 0.767       | 0.815       | 0.923        | 0.953       | 0.967           | 0.987       |
| ٩             | 695      | MA/M         |             |             |             |               |             |             |              |             |              |             |             |             |             |             |             |             | Q.            | 654        | M A / M      |               |             |             |              |             |              |              |             |             |                 |             |             |              |             |                 |             |
| 3             | 174.6    | MF /N        | 0.907       | 0.928       | 656.0       | <b>C.</b> 891 | 0.874       | 0.863       | 0.858        | C.859       | C.861        | C.865       | 0.863       | 0.883       | C.934       | C.958       | 0.982       | 0.988       | U             | 175.8      | N L L N      | <b>C.9</b> 86 | 036.0       | 0.972       | 066.0        | 0.889       | 0.879        | 0.868        | 0.856       | C-853       | 0.873           | 0.875       | 0.903       | C.961        | c.976       | 0.981           | C.992       |
| Ld            | 886      | Z/D8         | 2.02        | 1.53        | 1.03        | 0.69          | 0.53        | 0.36        | 0.19         | 0.02        | 0.14         | 0.31        | 0.48        | 0.64        | 96.0        | 1.18        | 1.48        | 1.98        | 1d            | 887        | 2/C8         | -2.03         | 1.52        | .1.03       | 01.0         | -0.52       | .0.36        | -0.19        | -0.02       | 0.15        | 0.31            | 0.48        | 0.65        | 0.98         | 1.18        | 1.45            | I.98        |
| RN/L          | 1.504    | Y/CB         | - 10.0      | c.01 -      | 0.01 -      | C.01 -        | - 10-0      | - 10.0      | 0.01 -       | - 10.0      | 0.01         | C.C1        | 0.01        | 0.CI        | 0.01        | 0.01        | 0.01        | 0.01        | J/Ng          |            | 470P         | 0.36 -        | 0.36 -      | 0.36 -      | 0.36 -       | 0.36 -      | C+36 -       | 0.36 -       | 0.36 -      | 0.ª36       | 0.36            | 0.36        | 0.36        | 0.36         | 0.36        | 0.36            | C•36        |
| NACH          | 0.5555   | X/CB         | E.49 -      | 8.49 -      | 8.49 -      | 8.49 -        | - 64.8      | E.49 -      | E.49 -       | - 64.8      | E.48 -       | 8.48 -      | E.48 -      | E.49 -      | E.49 -      | 8-48 -      | E.49 -      | - 64•3      | NACE          | 0.602      | X/CR         | 8.49 -        | - 64.9      | E.48 -      | - 64.3       | 8•48 -      | 8.49 -       | - 64.8       | 8.49 -      | 8.49 -      | - 6 <b>†</b> •3 | - 64•3      | 8.48 -      | - 64 - 3     | 8 • 48 -    | 8.48 -          | 8.48 -      |
| TST P TN CONF | 571166 5 | MACH Q       | 0.559 174.6 | 0.558 174.0 | 0.558 174.0 | 0.559 174.6   | 0.598 174.C | 0.558 174.0 | 0.602 175.8  | 0.600 175.2 | 0.600 175.2  | C-600 175.2 | 0.600 175.2 | C.6C0 175.2 | 0.600 175.2 | 0.599 174.6 | 0.600 175.2 | C.6C0 175.2 | TST P TN CCNF | 571 1 66 5 | MACH C       | 0.602 175.8   | 0.602 175.8 | 0.600 175.2 | 9.600 175.2  | 0.559 174.6 | 0.559 174.6  | 0.559 174.6  | 0.600 175.2 | 0.601 175.8 | 0.559 174.6     | 0.599 174.6 | 0.599 174.6 | 0.599 174.6  | 0.599 174.6 | 0.599 174.6     | 0.558 174.C |
| RUN           | 212      | SEC          | 1           | 2           | <b>~</b> `` | 4             | ŝ           | Ŷ           | 2            | 8           | 6            | 10          | 11          | 12          | 13          | 14          | 51          | 16          | RUN           | 212        | SEC          | 1             | 2           | <b>6</b> 1) | 4            | <b>U</b> N  | ¢            | ~            | œ           | 6           | 10              | 11          | 12          | <b>F</b> 1   | 14          | ເກ<br><b></b> 1 | 16          |

1.000 1.000 665.0 1.005 1.004 1.002 1.000 1.000 1.005 0.999 1.000 ..002 0.999 1.001 0.999 pr/p 1.000 0.999 666.0 0.999 C. 599 0.999 0.999 0.599 665.0 0.999 1.005 1.003 1.002 1.000 1.000 1.001 1.00 -Lud 0-007 0-001 0-016 0-002 0-010 0.006 0.002 -0.002 0.019 -0.010 -0.010 0.019 0.019 -0.010 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.028 -0.019 -0.010 0.011 0.007 0.002 0.003 0.032 -0.021 -0.021 -0.012 -0.021 d 0.000 000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00.0 V A /V V V V . • 166.0 0.926 0.902 0.887 0.8888 0.979 0.950 0.940 0.939 0.939 395 0.899 0.950 619.0 0.945 0.983 0.987 0.879 0.8888 0.886 0.910 VF/V 0.991 0.932 0.932 0.961 0.987 VF/V 779.0 0.948 0.987 0.930 0.971 0.981 AL PHA 20.00 04/0 ALPHA 20.00 000.0 0.000 0A/Q 0.00.0 000.00 0.000 000-0 0.000 0.000 0.000 C.000 0.000 0.000 000-0 000.00 0.000 0.000 0.958 006.0 0.978 0.779 0.773 0.891 0.974 0.955 0.851 0.804 0.778 777.0 779.1 0.993 006.0 0.882 0.922 0.941 66.2 0/30 0.979 0.798 0.762 0.817 0.959 .965 01 10 0.981 0.881 0.379 0.867 0.867 0.836 0.989 0.893 65.1 0.000 .000 953 44/ N N V V N 000.000 000 000 1811 0.000 0.000 0000-0 0.000 0.000 0.000 0.00.00 0.000 00000 0.00.0 0.000 0 . 4. 5. 7. E. 7. E. 7. E. 7. C. 0 175.2 NF/N 0.893 C.9876 C.986 C.976 C.88C 516.0 C.882 0.879 C.945 C.944 0.856 0.856 C.872 0.904 0.945 0.980 156.0 156.0 C.949 C.931 C.961 0.881 C • 54 C 0.935 C.938 0.932 015-0 .587 0.975 C.914 0.98 UT UT . 1 887 Z/CB 5 C.250 1.523 1892 0.14 -0.53 -0.19 -0.54 -0.36 0.48 98. -1.54 -0.70 . 63 •64 .48 0.12 0.25 0.47 • 56 .16 .46 -0.45 -2.03 -0.45 -1.03 ω Z/DB -0.21 P 1 -0.45 -1.52 -0-02 PT -2.04 -1.05 -0.04 -0.37 σ. • 0 C 0 0 PN/L PN/L 5 0.600 1.503 4 / J, P -0.45 -0-45 Y/08 -0.45 -0.45 -0.45 -0.45 -0-45 -0.45 ŝ ŝ 0.41 C.41 C.41 C.41 C.41 -0.45 0.41 0.41 C.41 C-41 0.41 0.41 -0.45 C.4 -0-4-C. 4 C . 4 0.4 4. -0.4 ပို VACH VACH HUVN X/CB 8.49 8.49 8.49 8.49 8.49 8.49 e,49 8.49 8.49 8.49 x/CB 10.87 10.87 10.87 10.87 10.87 10.88 10.887 10.87 10.87 10.87 10.87 10.87 10.87 10.87 10.87 10.87 8.49 8.49 8.49 8•48 8.49 8.48 8.49 CONF **JUDU** 175.2 174.6 175.2 175.8 175.2 175.8 175.8 175.8 175.8 175.2 74.6 174.6 174.6 79.5 79.5 78.8 78.8 78.8 78.8 5.67 5.67 5.87 5.87 79.5 79.5 74.6 175.2 78.1 8°8 **u**n 5 - 51 .61 T.V 66 IN 66 O Ċ ۵ 571 1 ¢1 571 1 MACH 0.600 0.250 0.250 0.249 0.249 C.250 0.251 0.251 c.600 0.602 0.601 0.602 0.602 0.602 0.600 MACH 0.249 0.249 0-250 0-250 0-250 0-250 0-250 0.251 0.599 0.600 C.600 0.599 0.599 0.599 0.599 0.600 ST ST RUN 214 SEQ  $\mathbf{c}$ 13 14 12 215 SEQ 4 ഹ 9  $\boldsymbol{\omega}$ σ  $\underline{c}$ \$ RUN SUN 4 S 9  $\infty$ **O** 2 12 13 14 15 16

|       |       | pr/p    | 1.000  | 666.0  | 1.000        | 1.000   | 665*0   | 0.599                | 0.999   | 0.999  | 666.0   | 0.999   | 0.599      | 0.999   | 0.995  | 0.999    | 9.999          | 1.000   |  |                                         |
|-------|-------|---------|--------|--------|--------------|---------|---------|----------------------|---------|--------|---------|---------|------------|---------|--------|----------|----------------|---------|--|-----------------------------------------|
|       |       | d U     | -0.010 | -0.019 | -0.010       | -0.010  | -0.012  | -0.021               | -0.021  | -0.021 | -0.024  | -0-021  | -0.021     | -0.021  | -0.012 | -0.021   | -0.028         | -0.008  |  |                                         |
|       |       | V 0 / V | 0.000  | 0.000  | 0.000        | 0.000   | 0.000   | 0.000                | 0.000   | 0.000  | 0.000   | 0.000   | 0.000      | 0.000   | 0.000  | 0.000    | 0.000          | 0.000   |  |                                         |
|       |       | VF/V    | 0.946  | 0.951  | 0.950        | 0.913   | 0.904   | 0.915                | 0.905   | 0.847  | 0.903   | 0.903   | 0.888      | 0.896   | 0.944  | 0.959    | 0.992          | 0.992   |  |                                         |
| ALPHA | 20.00 | OA/O    | 000.0  | 0.000  | 0.000        | 0.000   | c.000   | 0.00.0               | 0.000   | 000.0  | 000.0   | c. J00  | 0.00.0     | 0.00.0  | 0.000  | 0.00.0   | 0.00.0         | 0.000   |  | ALPHA                                   |
| 77    | 64.5  | QF /0   | 0.893  | 0.902  | 006.0        | 0.832   | 0.815   | 0.834                | 0.817   | 0.803  | 0.813   | 0.813   | 0.785      | 0.801   | 0.889  | 0.919    | <b>C.9</b> 82  | 0.983   |  | TT<br>54.2                              |
| ٩     | 1804  | MA/W    | 000.0  | 000-00 | 0.00.0       | 0000.0  | 0.000   | 0.000                | 000.000 | 000.0  | 000 • 0 | 0.00.00 | 0.000      | 0.000   | 000.00 | 000.00   | 0.000          | 000.0   |  | 0 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 |
| Q     | 78.8  | ME /N   | 0.945  | C.950  | C.945        | C.913   | - 206-0 | C.914                | C • 504 | 0.896  | C. 502  | C.902   | C.887      | 358.0   | 0.943  | 555.0    | 256*0          | 155.0   |  | ۵<br>۲۵<br>۲۰                           |
| ۲q .  | 1884  | Z / D8  | -2.04  | 1.54   | 1.04         | 0.71    | 0.54 (  | 0.37 (               | 0.20    | 0.04 ( | 0.13 (  | 0.29    | 0.47       | 0.63 (  | 0.96   | 1.16 (   | 1.46           | 1.57    |  | 1884                                    |
| RN/L  | 1.515 | Y/C8    | 0.03 - | C.03 - | - E0.0       | C•C3 -  | 0.03 -  | - 60-0               | 0.03 -  | 0.03 - | C•03    | 0.03    | 0.03       | 0.03    | c•03   | 0.03     | 0.03           | C• C3   |  |                                         |
| MACH  | C.250 | X/CB    | C.87 - | C.87 - | C.88 -       | C. 88 - | C.87 -  | C.87 -               | C. 87 - | C.87 - | 0.87 -  | 0.87 -  | 0.87 -     | C. 88 – | C.88 - | C • 88 - | 0.88 -         | C. 87 - |  | VACH<br>C - 7 FO                        |
| CONF  | 5     |         | 3.8    | .8 1   | 3.8 <u>1</u> | - 8 ·   | .8 1    | <b>1.</b> 8 <b>1</b> | .8 1    | .8     | .8 1    | .5 1    | - 2<br>- 1 | - 2 ·   | • 5 T  |          | <b>1.8 1</b> ( |         |  | L<br>C<br>C<br>N<br>F                   |
| d L   | 1 66  | C       | ~      | 78     | 28           | 78      | 78      | 28                   | 2       | 18     | 28      | 52      | 5          | 5       | ~      | 52       | 78             | 5       |  | 2 4<br>4 4<br>4 4                       |
| TST   | 571   | MACH    | 0.250  | 0.250  | 0.250        | C.250   | 0.250   | 0.250                | 0.250   | 0.250  | 0.250   | 0.251   | 0.251      | 0.251   | 0.251  | 0.251    | 0.250          | 0.251   |  | TST<br>571                              |
| PUN   | 216   | SEQ     | 1      | 2      | <b>(</b> *1  | 4       | ŝ       | 9                    | -       | 80     | ¢       | 10      | 11         | 12      | E I    | 14       | <b>1</b><br>2  | 16      |  | NUN<br>VIZ                              |

|              |        | pF/p    | 0.999  | 0.999  | 665.0   | 665.0   | 1.000    | 666.0   | 0.999         | 0.999   | 666.0         | 665.0   | 666.0   | 665*0   | 666.0         | 666.0   | 1.000         | 1.000   |
|--------------|--------|---------|--------|--------|---------|---------|----------|---------|---------------|---------|---------------|---------|---------|---------|---------------|---------|---------------|---------|
|              |        | CD<br>C | -0.019 | -0.019 | -0.019  | -0.012  | -0.010   | -0.030  | -0.030        | -0.012  | -0.012        | -0.012  | -0.021  | -0.021  | -0.019        | -0.019  | -0.010        | -0.010  |
|              |        | V A /V  | 0.000  | 0-000  | 0000-0  | 0.000   | 0.000    | 0000.0  | 0.000         | 0.000   | 0.000         | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   | 0.00.0        | 0.000   |
|              | _      | VF/V    | 1.001  | 0.992  | 0.978   | 0.936   | 0.910    | 0.900   | 0.902         | 0.915   | <b>U.</b> 893 | 0.913   | 0.921   | 116.0   | 0.951         | 0.976   | 0.990         | 0.992   |
| <b>ALPHA</b> | 20.00  | 0 A / O | 0000-0 | 0.000  | 0.000   | c.000   | C. 000   | c.000   | c.000         | 0.000   | c. 000        | 0.000   | c.000   | c.000   | 0.000         | c. 000  | c.000         | c.000   |
| Ĩ            | 64.2   | CF/Q    | 100.1  | 0.984  | 0.955   | C.874   | 0.825    | 0.808   | 0.811         | 0.836   | 0.796         | 0.832   | 0.846   | 0.838   | 0.902         | 0.951   | 0.979         | 0.984   |
| ۵.           | 1804   | NVN     | 0.000  | 0000.0 | 0.000   | 0.000   | 0000.0   | 0.000   | 000.0         | 0.000   | 0.000         | 000.0   | 0.000   | 0.000   | 0.00.0        | 0.000   | 0000.0        | 0.000   |
| C            | 78.5   | MF/N    | 1.001  | C.952  | C.978   | C.935   | 506.0    | C.855   | C.901         | C.914   | C.892         | c.912   | C. 52C  | 916.0   | <b>C.</b> 95C | C.976   | 056*0         | C.592   |
| ۲<br>م       | E 1884 | Z/CP    | -2.04  | -1-53  | -1.04   | -0-71   | -0.54    | -0.37   | -0.20         | -0-04   | 0.13          | 0*30    | 0.47    | 0.63    | 0.56          | 1.16    | 1.46          | 1.96    |
| T A A H      | 0 1.51 | ¥ / D B | -0-38- | -0-38  | -0-38 - | -C•38 - | -0.38    | -0.38 - | -0-38         | -0-38   | -0-38         | -0.38   | -0-38   | -0.38   | -0-38         | -0.38   | -0.38         | -0-38   |
| F VACI       | 5 0.25 | X/CB    | 10.87  | 1C.87  | 1C.88 - | 10.87   | 1 C • 88 | 10.87   | 10.88         | 1C.88 - | 1C.88 -       | 1C.88 · | 10.87 - | 1C.88 - | 1C.88 -       | 10.88 - | 1C.88 ·       | 1C.83 · |
| TN CCN       | 66     | e       | 78.8   | 78.8   | 79.5    | 2.67    | 79.5     | 78.8    | 78.1          | 79.5    | 79.5          | 3-62    | 78.8    | 78.8    | 78.8          | 78.8    | 19.5          | 2.61    |
| ISI P        | 571 1  | MACH    | 0.250  | 0.250  | 0.251   | 0.251   | 0.251    | 3.250   | <b>).2</b> 49 | 0.251   | 0.251         | 0.251   | 0.250   | 0.250   | <b>).</b> 250 | 0.250   | <b>).</b> 251 | 0.251   |
| NUN          | 217    | SEC     | 1      | 2      | m       | 4       | in.      | 6       | ~             | 0<br>0  | 6             | 10      | 11      | 12 (    | 13            | 14 (    | 15 (          | 16 (    |

1.000 0.599 666 0.999 .000 .000 666 666 665 .000 999 665 0.999 665.0 0.999 0.999 č . 0 0 • ò 0 0 -0.010 -0.010 σ ¢ -0-019 -0.019 -0.021 -0.021 -0-012 -0-010 -0.010 -0.019 -0.019 -0.019 -0.021 -0.021 -0•019 -0-01 0.000 000 000 000 000 000 000 000 000 0000 A / V C C C 000 0.000 5 . --0 . 3 ే . . 0 • : 0.938 0.961 0.917 0.907 0.923 0.995 0.922 0.923 616 0.929 955 0.960 998 F/V 0.925 0.923 1.000 . 0 5 : 20.00 0.000 0.000 0 A / O 0.00.0 0.00.0 0.000 0.00.0 c.000 0.000 C.000 ALPHI 0.000 0.976 0.922 0.839 0.849 0.848 0.842 C.853 0.920 0.989 0.995 1.000 0.849 64.2 CF/0 0.820 0.862 0.849 016 0 1803 VA/N 0.000 0.000 0.000 0.000 0.000 0.000 000.000 0.00.0 0.000 0.000 0.00.0 000.0 0.00.0 0.000 8 2 U 2 • 8 2 U 2 • 8 0.988 C.96C 0.916 C.922 0.921 c.906 0.922 C.922 ω C-924 C.929 3 tr) œ 1.000 0.918 500 C.96( υ υ 555 ₽ Щ. ئ ి 0.250 1.515 1883 (/D8 Y/D8 Z/D8 -1.53 -0.70 -0.54 -0.21 0.13 0.30 0.46 0.63 1.16 1.47 -2.05 F d 1.1 g -RN/L -0•48 -0•48 -0.48 -0.48 -0.48 -0-48 ω œ ω -C.48 ω -0.48 ω ω ω ω -0-48 -0.45 -0-48 -0.48 -0.48 -0-48 -0.41 4 ٠ 0 NACH X/DB 0.88 C.88 C.88 C.87 C.88 C.88 C• 88 C• 88 C. 88 C.88 C.88 0.87 0.87 C.87 C.87 C.88 ഹ CONF 5-52 5-52 5-52 **w**h տտ 79. -62 571 1 671 1 0.250 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 **c** 0.251 0.251 0.251 0.251 0.251 S  $\sim$ m RUN 218 SEQ 0 m + 1 0 m 0 σ 0 4 S

665°0 0.999 0.999 666 DF/D 666.0 0.599 0.999 0.599 665.0 0.999 0.999 0.999 666.0 0.999 66 0 • -0.021 -0.021 -0.021 -0-017 610.0--0-019 -0-019 -0.019 -0.019 Φ -0.019 -0.021 -0.021 -0.021 -0.021 -0.021 •01. 9 0.000 0.00.0 0.000 0•000 0•000 000 000 000 000 0.000 0.000 0.000 0.000 0.000 0.000 e . > 5 • • 0.979 0.979 0.935 0.939 616.0 0.926 0.913 906 959 0.996 0.936 992 993 VF/V 0.903 0.913 981 0 5 . • ్ర 0 20.00 ALPHA QA/Q c. 000 c. 000 0.000 c. 000 c. 000 0.000 0.00.0 c.000 000-0 0.000 0.000 0.000 c.000 0.000 C.989 C.957 C.872 C.881 0.855 C.830 63.9 166.0 C.874 C. 983 0F/0 0.823 0.918 0.842 0.813 0.830 0.960 84 6.0 1803 MA/M 0.000 0.000 0.000 000 .000 0.000 0.000 000.0 0.00.00 0.00.0 0.000 0.00.0 0.000 000.000 0.00.0 . 75.5 MF /W 356.0 C. 534 C. 939 0.918 0.908 956\*0 972.0 C.925 C.512 C.902  $\sim$ 93 F 0 0.958 C m 0.980 56. 56 C.91 Ĵ 5 C+251 1+523 1884 X/CB Y/DE Z/DB + 8-49 0-43 -2-03 C 8-49 C+43 -1-52 C -0.68 -0.53 0.14 0.31 -0.35 ω ω 4 ω -0-02 -0.18 0.43 0.98 4. σ . PN/L • • 4 4 4 4 • 43 • 43 4.4. • 4 • • 4 • **(\***) • 3 m 61 0.43 • 4 3 4. 4. 44 O  $\mathbf{O}$  $\odot$ O  $\mathbf{O}$ 0 O 00 O NACH 8.49 8.49 8.49 8•49 8•49 49 ÷ w **L**ND 80.1 80.1 80.1 ٠ 2 66 C 80 0.252 0.252 0.252 0.252 0.252 0.2552 0.2552 219 5 F Q NATION 121 10 RUN ω 9 14 2

|             |       | pF/p    | 666.    | 666.    | • 999     | 666.    | • 599  | 666.   | 666.         | 665.    | 666.   | 665.   | 666.   | 666.    | 665.   | 666.   | 000.    | 666.    |       |       | pF/p    | 666.      | 666.    | 666.    | 666.    | 665.    | 666.    | 666.   | 666.   | 666*        | 666.   | 666.   | 666.    | 666.         | • 999   | 665 -       |
|-------------|-------|---------|---------|---------|-----------|---------|--------|--------|--------------|---------|--------|--------|--------|---------|--------|--------|---------|---------|-------|-------|---------|-----------|---------|---------|---------|---------|---------|--------|--------|-------------|--------|--------|---------|--------------|---------|-------------|
|             |       |         | 0       | 0<br>6  | 0 1       | 20      | 0 1    | 0      | 0            | 000     | 0 1    | 30     | 2 0    | 20      | 0      | 1 0    | 0       | 7 0     |       |       |         | 4         | 0       | 0<br>6  | 0       | 10      | 1       | 8      | 0      | 2 0         | 10     | 0      | 0       | 10           | 0 6     | 0           |
|             |       | d<br>C  | -0-01   | -0-01   | -0.02     | -0.01   | -0-02  | -0.01  | -0-02        | -0.03   | -0.02  | E0.0-  | -0.02  | -0.01   | -0.02  | -0.02  | -0-01   | -0.01   |       |       | ð       | -0-01     | -0-01   | -0-01   | -0-01   | -0.02   | -0.02   | -0.02  | -0.02  | -0-02       | -0.02  | -0.02  | -0-02   | -0.02        | -0.01   | 10-01-      |
|             |       | V / J / | 0000    | 000.0   | • 000 • 0 | 000.0   | 000 •0 | • 000  | .000         | 000.    | 000.00 | 000.0  | 000.0  | 000.0   | 000.0  | 000.0  | .000 .0 | 0000.   |       |       | V A / V | • 000 • 0 | . 000 . | .000    | . 000 . | .000.   | • 000 • | . 000. | • 000  | 000.0       | .000   | .000.  | · 000 • | • 000 • (    | . 000 . | 000 - 0     |
|             |       | VF/V    | .935 0  | . 940 C | .945 0    | 006.    | .887 0 | .858 C | .880 0       | • 864 Ú | .864 0 | .897 ( | .891 C | .892 (  | .940 0 | .981 C | . 996   | .995 0  |       |       | /F/V    | .993 0    | 996 0   | .975 0  | 935 0   | .898 0  | .882 0  | .902 C | .879 0 | 907 0       | .894 C | .871 0 | .927 0  | . 943 C      | .981 C  | 995         |
| HA          | 00    | <u></u> | 0       | 000     | 0         | 0       | 0      | 0      | 0 0          | 0       | 0      | 0 0    | 0      | 0.0     | 0 0    | 000    | 0       | 0       | HA    | 00    | 0       | 0         | 0       | 0<br>0  | 0<br>0  | 0       | o<br>o  | 0<br>0 | o<br>o | 0<br>0      | o<br>o | 00     | 0       | 000          | 0<br>0  | 0           |
| ALP         | 20.   | 0A/     | 00 ° 0  | 00.0    | 00-0      | 0.00    | 0.00   | 0.00   | <b>c.</b> 00 | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00   | 0.00   | 0.00    | 0.00    | ALP   | 20.   | 0A/     | 0.00      | 0.00    | 0.00    | C-00    | 0.00    | 0.0     | 00.0   | 0.00   | <b>C- D</b> | 0.00   | C. 00  | 0.0     | <b>C.</b> 00 | 0.00    | 000         |
| 11          | 63.9  | 0F/0    | 0.872   | 0.882   | 0.891     | 0.808   | 0.784  | 0.733  | 177.0        | 0.744   | 0.744  | 0.801  | 161.0  | 0.792   | 0.882  | 0.960  | 166.0   | 0.989   | 11    | 63.7  | CF/0    | 0.986     | 0.991   | 0.950   | 0.872   | 0.804   | 0.775   | 0.811  | 0.170  | 0.820       | 0.796  | 0.756  | 0.856   | 0.887        | 0.962   |             |
| ٩           | 1803  | MA/M    | 0.000   | 0.000   | 00000     | 0.00.00 | 000.0  | 0.000  | 000.0        | 0000.0  | 0.000  | 0.000  | 000.0  | 0.000.0 | 0.000  | 0.000  | 0.00.00 | 000.000 | ۵.    | 1803  | NVVW    | 0.000     | 000.0   | 0.00.00 | 0.000.0 | 0000.0  | 0.000   | 000.00 | 000.00 | 0000.0      | 0000.0 | 0000.0 | 0000.0  | 000.000      | 0.000   |             |
| G           | 2.02  | NF/N    | 0.534   | 0.940   | 3.944     | C. 899  | 0.886  | 0.857  | 518.0        | 0.863   | 0.863  | 0.896  | 0.890  | 0.850   | 0.940  | 0.980  | 956.0   | 0.955   | ı     | 3*5L  | NF/N    | £55 °0    | 956*0   | 0.975   | \$25.0  | 0.897   | C.881   | 106.0  | 0.878  | 0.906       | 0.892  | C.87C  | 0.926   | C+542        | 186.0   |             |
| μŢ          | 1884  | 2/DP    | -2.03 ( | 1.53    | 1.02 (    | .0.69   | 0.52   | 0.35 ( | . 51.0.      | 0.02    | 0.14   | 0.31 ( | 0.47   | 0.65    | 9.98   | 1.18   | 1.48    | 1.98    | 1 d   | 1884  | Z/DR    | 2.02      | 1.52 (  | 1.03    | 0.69 (  | 0.53 (  | 0.36    | 0.19 ( | 0.03 ( | 0.15        | 0.31   | 0.48   | 0.65    | 0.98         | 1.18    | ~ ~ ~       |
| <b>PN/L</b> | 1.523 | 470B    | 0.01 -  | c.01 -  | - 10-0    | - 10.0  | - 10.0 | 0.01 - | - 10-0       | - 10-0  | C. C1  | 0.01   | 0.01   | 10.0    | 10.0   | 0.01   | 0.01    | 0.01    | RN/L  | 1.524 | Y/DB    | 0.36 -    | 0.36 -  | 0.36 -  | 0.36 -  | 0+36 -  | 0.36 -  | 0.36 - | 0.36 - | 3.36        | 0.36   | 0.36   | 0.36    | 0.36         | 0.36    | 20.00       |
| NACH        | 0.251 | / 58    | - 46 -  | - 65.   | - 65.     | - 64.   | - 65 - | - 49 - | - 44 -       | - 49 -  | - 64.  | - 46 - | • 49   | - 46 -  | - 64.  | - 64.  | - 64.   | - 65.   | NACH  | 0.251 | 109     | - 65.     | - 64.   | - 65.   | - 49 -  | - 46 -( | - 65.   | - 64.  | - 64.  | - 40        | - 49 - | - 65.  | - 64.   | - 65.        | - 65.   | 0           |
| CNF         | ŝ     | ×       | ω       | ω       | æ         | ω       | æ      | æ      | ω            | ω       | æ      | æ      | ω      | œ       | ω      | ω      | ω       | ω       | CNF   | r     | ×       | ω         | ω       | e       | œ       | æ       | œ       | ω      | ω      | œ           | ω      | ω      | ω       | ω            | æ       | c           |
| TN C        | 66    | Q       | 2.97    | 2.91    | 79.5      | 80.1    | 79.5   | 79.5   | 79.5         | 2-61    | 2.95   | 2.91   | 79.5   | 80.1    | 79.5   | 79.5   | 79.5    | 5.61    | TN C  | 66    | C       | 79.5      | 79.5    | 79.5    | 79.5    | 79.5    | 3*62    | 3.91   | 2.91   | 2.61        | 2.91   | 79.5   | 5-61    | 79.5         | 5.95    | u<br>u<br>u |
| IST P       | 571 1 | MACH    | .251    | •251    | .251      | • 252   | .251   | .251   | .251         | .251    | .251   | .251   | .251   | .252    | .251   | .251   | .251    | .251    | d ISI | 571 1 | MACH    | .251      | .251    | .251    | .251    | .251    | •251    | .251   | .251   | .251        | .251   | .251   | .251    | .251         | .251    | 1 1 1       |
| RUN         | 220   | SEQ     | 1 0     | 2 0     | 0         | 4       | 5 0    | 6 0    | 7 0          | 8       | 06     | 10 0   | 11 0   | 12 0    | 13 0   | 14 0   | 15 0    | 16 0    | NNA   | 221   | SFQ     | 1 0       | 2 0     | 30      | 4 0     | 5<br>0  | 60      | 7 0    | 8      | 06          | 10 0   | 11 0   | 12 0    | 13 0         | 14 0    | 15.0        |

• 000 • 000 1.000 0.999 665.0 665\*0 666.0 0.999 .000 1.000 .000 000 665.0 0.999 665 0 0.999 'n • -0.010 -0.010 -0.012 -0-015 -0.013 -0.010 -0.010 -0.008 -0.010 -0.012 -0.012 -0.013 -0.012 -0.006 -0.012 -0.021 0• 000 0• 000 0.000 0.000 0.000 0.000 000 000 000 000 000 000 000 A V ే 0 • 3 .0 • • F/V 0.991 166.0 0.975 0.903 0.897 875 0.912 0.978 0.988 0.880 0.883 0.904 0+6+0 0.957 166 0 • -20.00 ALPHA 20.00 ALPHA 0.000 c. 000 0000 0.000 0.000 0.000 0.000 c.000 OA/U 0.00.0 000.0 c.000 c. 000 c.000 000.000 0.00.0 0.00.0 0.772 0.777 0.955 63.7 QF/0 0.981 0.981 C.950 0.815 0.813 0.834 186 66.3 0.803 0.763 0.830 0.882 0.914 0.000 0.000 . 1802 WA/M 0.000 0.00.0 000.000 0000.0 000.00 000.000 0.000 0.000 000.000 0.000 0.00.0 0.00.0 ۵ 80.1 MF/W 156°0 C.9C2 0.903 5:6.0 0.913 0.911 ω 0.896 0.879 0.882 C.874 s 0.978 166.0 156.0 C.95{ 85. 681 0.252 1.531 1884 (/DB Y/DP Z/DB 0.64 -1.52 0.14 -0.70 -0.51 0.48 0.98 •18 .47 -0.45 -2.03 -0.03 0 -0.18 P 1 5 1.9 RN/L C.954 1.480 DNNL DNNL -0.45 -0.45 -0-45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 ŝ ŝ ŝ -0-45 -0.45 4 4.0ö VACH VA CH 5 0 • 2 \ X / DB 8 • 49 • 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 •49 8•49 • 49 - 49 α œ ഗ TN CLNF LADU UCNE 80.1 80.1 80.1 80.1 80.1 80.1 80.1 30.1 80.1 80.1 80.1 80.1 80.1 80.1 80.1 80.1 80.1 I.V 99 09 66 ۵. 571 1 ۵. 0.252 0.252 0.252 TST TST RUN 222 SFQ m 450N0 O 0  $\sim$ 5 4 ഗ

.025 .019 •00 • • 004 .008 .004 .005 .005 .006 .009 •010 .021 .016 .025 . 032 F/P .038 0.040 0.030 0.010 0.007 0.008 0.014 0.032 0.039 0.050 .024 .060 0.012 0.008 0 V A V 0.975 0.972 0.961 0.917 0.893 0.894 0.883 0.883 0.887 0.887 0.887 0.887 0.887 0.953 0.953 0.953 0.971 VF/V 0.965 .96 OA/Q 0.824 0.775 0.768 0.764 0.763 0.790 0.912 0.966 0.959 0.794 0.957 0.966 C.964 QF /0 380 MA/M 241.7 NF/N 0.954 C.967 0.874 0.872 905 0.888 C.878 C.885 179.0 C.866 0.945 0.963 0.968 C.871 0.966 96 3 -1.54 0.12 10.97 -0.04 0.46 0.62 1.17 -2.04 -0.53 15.0 - 47 Z/08 -0.70 -0.37 -0.20 9 9 9 • **Y/CB** 0.41 0.41 0.41 C.41 C.41 C-41 0.41 C.41 C.41 0.41 C.4 C • 4 ] 0.4 C.4 4 4. 5 Ĵ C 833 X/CB C•83 C•88 C•88 C • 87 C • 87 C • 87 67 87 87 ω 3 3 00 241.7 242.8 242.8 242.8 242.8 242.8 242.8 242.8 242.8 242.8 242.E 241.7 42.8 ~ (7) ω **(7)** 241. 242. . . 42.4 C? Ň 571 1 MACH 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.955 0.955 0.955 0.957 0.957 0.956 RUN 223 SEC  $\sim$ m 4 ഗ  $\mathbf{Q}$ ~ ထ σ 10 2 (m 4 ŝ S 5 ω П

| VA/V CP PF/P<br>0.036 1.023<br>0.036 1.023<br>0.012 1.008<br>0.012 1.008<br>0.011 1.007<br>0.011 1.007<br>0.011 1.003<br>0.011 1.003<br>0.011 1.003<br>0.013 1.008<br>0.013 1.008<br>0.013 1.008<br>0.014 1.003<br>0.014 1.003<br>0.014 1.003<br>0.014 1.003<br>0.014 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V/V CP<br>0.053 1.033<br>0.053 1.033<br>0.027 1.021<br>0.027 1.021<br>0.021 1.001<br>0.013 1.008<br>0.013 1.008<br>0.013 1.008<br>0.014 1.002<br>0.014 1.002<br>0.015 1.014<br>0.015 0.014 1.002<br>0.014 1.002<br>0.015 0.014 0.002<br>0.014 0.002<br>0.014 0.002<br>0.015 0.014 0.002<br>0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T ALPHA<br>• 6 -20.00<br>• 0 -903<br>• 0 -903<br>• 0 -925<br>• 0 -838<br>0 -848<br>0 -848<br>0 -848<br>0 -848<br>0 -848<br>0 -848<br>0 -856<br>0 -836<br>0 -836<br>0 -856<br>0 -8656<br>0 -8 | ALPHA<br>20.00<br>74/0 VF/V VE<br>0.969<br>0.969<br>0.974<br>0.962<br>0.974<br>0.975<br>0.873<br>0.873<br>0.873<br>0.858<br>0.858<br>0.858<br>0.858<br>0.858<br>0.858<br>0.858<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.873<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.974<br>0.975<br>0.974<br>0.975<br>0.9774<br>0.9773<br>0.9774<br>0.9774<br>0.9773<br>0.9774<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9773<br>0.9774<br>0.9773<br>0.9774<br>0.9774<br>0.9774<br>0.9774<br>0.97750<br>0.9774<br>0.9774<br>0.97740<br>0.97750<br>0.97750<br>0.97750<br>0.97750000000 |
| 88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 11<br>383 68.8 -<br>0.957<br>0.957<br>0.731<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.737<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.773<br>0.773<br>0.735<br>0.773<br>0.735<br>0.773<br>0.773<br>0.735<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.774<br>0.773<br>0.774<br>0.773<br>0.774<br>0.773<br>0.774<br>0.773<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.775<br>0.774<br>0.775<br>0.774<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.77500<br>0.7750000000000                                                                              |
| F WACH PN/L PT<br>5 0.956 1.482 684 24<br>X/EB Y/DP Z/FB WF<br>10.87 -0.03 -1.55 C-9<br>0.87 -0.03 -0.54 0.82<br>0.87 -0.03 0.53 0.83<br>0.85 -0.03 0.53 0.83<br>0.95 -0.95<br>0.95 -0.9                                                                                                                                                                                       | ACH PN/L PT   950 1.475 684 241   8 Y/PR Z/D8 241   7 -0.38 -2.04 0.964   7 -0.38 -1.54 7.970   7 -0.38 -1.54 7.970   7 -0.38 -1.54 7.970   7 -0.38 -1.54 7.970   7 -0.38 -1.54 7.970   7 -0.38 -1.54 7.970   7 -0.38 -1.54 7.970   7 -0.38 -0.67 0.835   -0.38 -0.15 0.835   -0.38 0.13 0.835   -0.38 0.13 0.855   -0.38 0.63 0.835   -0.38 0.63 0.855   -0.38 0.915 0.855   -0.38 0.956 0.957   -0.38 0.956 0.955   -0.38 0.956 0.955   -0.38 0.956 0.955   -0.38 0.956 <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RUN TST P TA CCA<br>224 571 1 66<br>1 0.955 243.4<br>2 0.955 243.4<br>4 0.955 243.4<br>5 0.955 243.4<br>6 0.953 242.9<br>7 0.953 242.9<br>1 0.951 242.4<br>10 0.951 245 245 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RUN TST PTN CENF<br>225 571 66 5 0<br>1 0.950 241.8 10.8<br>2 0.950 241.8 10.8<br>4 0.950 241.8 10.8<br>5 0.952 242.3 10.8<br>6 0.952 242.3 10.8<br>7 0.952 242.3 10.8<br>7 0.952 242.3 10.8<br>7 0.952 242.3 10.8<br>7 0.949 243.1 10.87<br>8 0.949 243.1 10.87<br>8 0.949 243.1 10.87<br>0.949 243.1 10.87<br>0.949 243.1 10.87<br>0.948 242.7 10.87<br>0.948 242.7 10.87<br>0.948 242.7 10.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|           |                     | 0.038 1.C24 | 0.038 1.024 | 0.020 1.013 | 0.013 1.008   | 0.009 1.006 | 0.003 1.002 | 0.004 1.003 | 0.006 1.004 | 0.003 1.002 | 0.002 1.001 | 0.007 1.005 | 0.020 1.012 | 0.033 1.021   | 0.039 1.024 | 0.049 1.C31 | 0.053 1.033 |   |         |         | CP DF/D   | 0.035 1.022 | 0.033 1.021 | 0.025 1.016   | 0.006 I.004 | 0.003 0.598   | 3.010 0.994 | 0.010 0.593 | .012 0.993 | 0.013 0.992 | 0.010 0.554 | 1.005 0.997 | 0.002 1.001 | 0.023 1.014 | 0.031 1.020 | 0.044 1.028 | 0.044 1.028 |
|-----------|---------------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---|---------|---------|-----------|-------------|-------------|---------------|-------------|---------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           |                     |             |             |             | •             |             | ~           | 0           |             | )<br>_      | 2           | •           | Č           | 0             |             | 2           | 0           |   |         |         | 1 VA/V    |             |             |               |             | Ĩ             | Ĩ           | ĩ           | 1          | )<br>T      | )<br>I      | ĩ           | ~           | _           | 0           | •           |             |
| ALPHA     | -20.00<br>00/0 VE/V | 216.0       | 0.972       | 0.959       | 0.904         | 0.878       | 0.876       | 0.860       | 0.873       | 0.877       | 0 837       | 506 • 0     | 0.919       | 0.95(         | 0.962       | 0.967       | 0.970       |   | ALPHA   | -20.00  | 04/0 VF/V | 0.976       | 0.976       | 179.0         | 0.923       | 0.915         | 0.912       | 0.885       | 0.874      | 0-868       | 0.886       | 0.896       | 0 • 92      | 0.961       | 0.970       | 0.969       | 0.977       |
| 11        | 04.0                | 0.959       | 0.959       | 0.919       | C.798         | 0.745       | 0.742       | C.709       | 0.734       | 0.739       | 0.759       | 0.806       | 0.832       | 0.907         | 0.936       | 0.952       | 0.962       | 1 |         | 70.5    | QF/Q      | C.966       | 0.963       | 0.948         | 0.832       | 0.812         | 0.801       | 0.748       | 0.728      | 0.716       | 0.750       | 0.773       | 0.831       | 0.925       | C.950       | 0.955       | 0.973       |
| 0 0 0     |                     |             |             |             |               |             |             |             |             |             |             |             |             |               |             |             |             | ( | a       | 384     | M / M     |             |             |               |             |               |             |             |            |             |             |             |             |             |             |             |             |
| 5         | N 4 4 • C           | 0.968       | C.968       | 0.953       | 058°)         | C.86C       | C.860       | C.841       | 0.855       | 0.859       | C.871       | 0.855       | 0.907       | <b>C.94</b> 2 | C.956       | C.961       | 0.965       | ſ | Ċ       | 243.5   | vF/v      | C.972       | 0.971       | <b>C.</b> 966 | C.91C       | <b>c.</b> 902 | 358.0       | 0.868       | 0.856      | 0.850       | C.865       | C.881       | 0.911       | C.955       | 0.965       | 0.964       | 619.0       |
| PT<br>200 | 7/0P                | 2.04        | 1.55        | 1.04        | 0.71          | 0.54        | 0.37        | 0.20        | 0.04        | 0.13        | 0.29        | 0.46        | 0.64        | 15.0          | 1.16        | 1.47        | 1.97        | 1 | 1 d     | 688     | 3/28      | 2.03        | 1.53        | 1.03          | 0.69        | 0.52          | 0.36        | 0.19        | 0.03       | 0.14        | 0.31        | 0.49        | 0.65        | 0.58        | 1.18        | 1.48        | 1.98        |
| RN/L      | 1.4 C C             | C • 48 -    | C.48 -      | 0.48 -      | <b>C.48</b> – | C-48 -      | C.48 -      | C.48 -      | C.48 -      | C.48        | 0.48        | C.48        | C.48        | 0.48          | C.48        | C.48        | C.48        |   | RN/L    | 1.477   | Y/DB      | - 54.0      | 0.43 -      | 0.43 -        | 0.43 -      | - 64.0        | 0.43 -      | 0.43 -      | C.43 -     | 0.43        | 0.43        | C.43        | 0.43        | 0.43        | 0.43        | 0.43        | 64-0        |
| F VACH    | x/ra                | 10.87 -     | 1C.87 -     | 10.87 -     | 10.88 -       | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 1C.88 -     | 1C+88 -     | 1C.88 -     | 10.87 -     | 10.88 -       | 10.87 -     | 10.87 -     | 10.87 -     |   |         | 5 0.952 | X / 0.8   | 8.49        | 8.49        | 8.49          | 8.49        | 8.49          | 8.49        | 8.49        | 8.49       | 8.49        | 8.49        | 8.49        | 8.49        | E.49        | 8.49        | E.49        | E.49        |
| Th CCN    |                     | 244.C       | 244.0       | 243.5       | 243.5         | 243.5       | 243.C       | 243.C       | 243.C       | 243.5       | 243.5       | 243.5       | 243.5       | 242.6         | 242.2       | 242.2       | 241.8       |   | TN CCNI | . 66    | c         | 243.5       | 244.0       | 243.5         | 243.5       | 243.5         | 244.0       | 244.0       | 244.0      | 243.5       | 243.5       | 243.5       | 243.C       | 242.2       | 242.2       | 242.2       | 242.3       |
| TSTF      | MACH                | 0.953       | 0.953       | 0.952       | 0.952         | 0.952       | 0.950       | 0.950       | 0.950       | 0.951       | 0.951       | 0.951       | 0.951       | 0.948         | 0.947       | 0.947       | 0.945       |   | TST F   | 571 1   | MACH      | 0.952       | 0.953       | 0.952         | 0.951       | 0.951         | 0.952       | 0.952       | 0.952      | 0.951       | 0.951       | 0.951       | 0.949       | 0.947       | 0.947       | 0.947       | 0.946       |
| RUN       |                     | <b>.</b> –  | 2           | ŝ           | 4             | ŝ           | φ           | -           | ω           | თ           | 10          | 11          | 27          | 13            | 14          | 15          | 16          |   | КUN     | 227     | SEQ       |             | 2           | <b>~</b> ~)   | 4           | ŋ             | ¢           | -           | œ          | ნ           | 10          | 11          | 12          | 13          | 14          | 15          | 16          |

- - --

|         |         | d/       | 12      | 10           | 66      | 95      | 16        | 06           | 89          | 89       | 62       | 94       | 66       | 06      | 16      | 24      | 31        | 31            |          |         | d/       | 20      | 19       | 08           | 98      | 94       | 92      | 06           | 92       | 95          | 76      | 66          | 02       | 18      | 22      | 28      | C<br>r   |
|---------|---------|----------|---------|--------------|---------|---------|-----------|--------------|-------------|----------|----------|----------|----------|---------|---------|---------|-----------|---------------|----------|---------|----------|---------|----------|--------------|---------|----------|---------|--------------|----------|-------------|---------|-------------|----------|---------|---------|---------|----------|
|         |         | L.       | 1.0     | 1.0          | 6.<br>0 | 0° 5    | 6.0       | <b>6 °</b> 0 | <b>6</b> •0 | 6.0      | 5 ° 0    | 6.0      | 0.9      | 1.0     | 1.0     | 1.0     | 1.0       | 1.0           |          |         | u<br>d   | 1.0     | 1.0      | 1.0          | 5°0     | 6.0      | 0.5     | 6 <b>.</b> 0 | 6.0      | <b>5</b> •0 | 6.0     | <b>6</b> •0 | 1.0      | 1.0     | 1.0     | 1.0     | 0 - 1    |
|         |         | ٥٥       | 0.019   | 0.015        | 100.0-  | -0.008  | -0.015    | -0.016       | -0.017      | -0.018   | -0.013   | -0.010   | -0.002   | 0.010   | 0.026   | 0.038   | 0.049     | 0.049         |          |         | C P      | 0.031   | 0.030    | 0.013        | -0.004  | -0°010   | -0.012  | -0.016       | -0.013   | -0.008      | -0.004  | -0.001      | 0.004    | 0.028   | 0.036   | 0.044   | 0.048    |
|         |         | V A /V   |         |              |         |         |           |              |             |          |          |          |          |         |         |         |           |               |          |         | V A /V   |         |          |              |         |          |         |              |          |             |         |             |          |         |         |         |          |
| PHA_    | 00.00   | A/Q VF/V | 0.912   | 0.939        | 0.939   | 0.902   | 0.871     | 0.826        | 0.807       | 0.807    | 0.818    | 0.840    | 0.859    | 0.387   | 0.954   | 0.969   | 0.966     | 0.974         | ۸H       | 00.00   | AVO VEZV | 0.909   | 0.975    | 0.972        | 0.918   | 0.866    | 0.839   | 0.835        | 0.836    | 0.833       | 0.853   | J. 883      | 0.916    | 0.958   | 0.973   | 0.971   | 0.973    |
| r Al    | .7 -2(  | 10 0/    | 17      | 11           | 52      | 34      | 0         | 68           | 96          | 36       | 52       | 55       | 33       | 5       | 60      | 52      | 10        | 70            | ۲<br>۵۱  | 1 -20   | 0        | 17      | 19       | <b>5 † †</b> | 18      | 3        | 52      | 5            | 57       | 55          | 26      | 6           | 8        | 12      | 59      | 60      | 56       |
| F       | 70.     | CF.      | 0.8]    | 0.8          | 0.86    | 0.78    | C. 72     | 0.6          | 0.60        | 0.60     | 0.62     | 0.66     | 0.70     | 0.76    | 0.90    | 0.95    | 0.95      | 0.9           | <b>F</b> | 71.     | 95       | 0.94    | 0.94     | 0.94         | 0.81    | 0.71     | 0.66    | 0.65         | 0.65     | 0.65        | C. 65   | 0.74        | 0.81     | 0.92    | 6.0     | 0.9     | 0.96     |
| ۵.      | 385     | M / M    |         |              |         |         |           |              |             |          |          |          |          |         |         |         |           |               | C        | 385     | WA/W     |         |          |              |         |          |         |              |          |             |         |             |          |         |         |         |          |
| ø       | 243.0   | NF / N   | 0.858   | 0.929        | C.929   | 0.888   | C.852     | C.803        | 0.783       | 0.783    | 0.794    | C.818    | 0.839    | 0.871   | 0.946   | 0.964   | 0.960     | 0.970         | ري       | 245.1   | NF / N   | 0.964   | C.971    | 0.968        | 0.906   | 0.847    | 0.817   | 0.813        | 0.814    | C.811       | C-833   | 0.866       | C.903    | 0.951   | 0.969   | 0.966   | 0.969    |
| Ld      | 688     | 2/08     | 2.02    | <b>1.</b> 52 | 1.C2    | 0.69    | 0.53      | 0.36         | 0.19        | 0.01     | 0.14     | 0.31     | 0.48     | 0.64    | 0.98    | 1.18    | 1.48      | 1 <b>.</b> 98 | PT<br>DT | 691     | Z/08     | 2.03    | I.53     | 1.03         | 0.69    | 0.52     | 0.36    | 0.18         | 0.01     | 0.15        | 0.31    | 0.48        | 0.65     | 9.58    | 1.19    | 1.48    | 1.98     |
| RNJL    | 1.475   | (/DB     | - 10-0  | - 10•0       | - 01 -  | - 10-0  | - I).CI - | - 10-0       | 0.01 -      | - 10-0   | 10.0     | 0.01     | 10.0     | 0.01    | 10.0    | 10.0    | 10.0      | 10.0          | RNJ      | 1.484   | 108      | 1.36 -  |          | - 36 -       | 3.36 +  | 3-36 -   | 3.36 -  |              |          | 3.36        | 36      | 3.36        |          | 0.36    | 0 - 3 G | 0.36    | 36       |
| NACH    | 0.950   | X/08 )   | 8.49 -( | 8.49 -(      | 8.49 -( | 8.49 -( | 8.49 -(   | 8.49 -(      | 8.49 -(     | 8.49 -(  | 8.49 -(  | 8.49 -(  | 8.49 -(  | 8.49 -( | 8.49 -( | 8.49 -( | 6 • 49 -( | 8.49 -(       | N D C H  | 0.953   | X/C8 /   | 8.49 -( | 8.49 -(  | 8.49 -(      | 8.49 -( | 8.49 -(  | 8.49 -( | 8.49 -(      | 8.49 -(  | 8.49 -(     | 8.49 -( | 8.49 -(     | 8.49 -(  | 8.49 -( | 8.49 -( | 8.49 -( | 8-49 -(  |
| TN CONF | 56 5    | G        | 43.0    | 5°64         | +3 • 5  | 44.0    | 44.0      | 43.5         | 43.5        | 43.5     | 44.C     | 43.0     | 43.0     | 43.5    | 13.0    | 43.C    | 42.7      | 42.3          |          | 56 5    | C.       | +5. I   | 45.1     | 45.1         | 45.7    | +5.7     | +2-1    | +5.7         | 44.6     | 44.6        | 44.6    | 44.6        | 44.6     | 44.6    | 44.6    | 44.2    | 44.2     |
| TST P   | 571 1 ( | MACH     | .950 24 | 1.952 24     | .952 24 | .954 24 | 1.954 21  | 1.952 24     | .952 24     | 1.952 24 | 1.953 24 | 1.950 24 | 1-950 24 | .951 24 | 949 24  | .949 24 | 948 24    | 1.946 24      |          | 571 1 6 | MACH     | .953 24 | 1.953 24 | .953 24      | .954 24 | 1.954 24 | .954 24 | -954 24      | 1.951 24 | - 651 24    | .951 24 | .951 24     | 1.951 24 | .951 24 | .951 24 | -949 24 | 1-949 24 |
| NNA     | 228     | SFO      | 10      | 2 0          | 3       | 4       | 0<br>4    | 6 0          | ~           | 0<br>8   | с<br>5   | 10 0     | 11 0     | 12 0    | 13 0    | 14      | 15 0      | 16 C          |          | 229     | SEG      | 1 0     | 20       | 9            | 4 0     | 50       | С<br>У  | 7 0          | 0<br>8   | 6           | 10 0    | 11 0        | 12 C     | 13 0    | 14 0    | 15 0    | 16 0     |

------

.019 • 013 1.019 1.010 • 000 1.015 666.0 0.999 .024 1.019 0.995 0.992 165.0 .020 .028 ..026 • C15 1.001 .005 .017 .026 0.991 165.0 1.010 .028 bF/p 0.986 PF/P .034 066.0 966.0 .031 0.002 0.009 -0.001 0.030 0.030 0.016-0.002 -0.006 0.021 0.026 0.039 0+034 -0.014 -0.013 -0.004 •040 0.042 0.031 -0.016 0.032 0.044 0.059 0.046 0.027 0.017 -0.006 0.046 0.050 -0.021 0.001 e d C V A VV V A JV 0.926 0.889 0.871 0.856 0.846 0.895 0.937 0.974 0.923 0.966 0.932 0.860 0.959 VF/V 0.878 0.892 VF/V 0.976 0.360 0.853 0.858 0.865 0.926 0.922 0.879 0.864 0.869 **0.**884 0.967 0.978 0.973 0.971 0.974 0.970 20.00 ALPHA ALPHA -20.00 0 A V O 0 A / Q 0.967 71.6 0.730 0.767 0.879 0.925 0.950 0.958 0**.**948 0.828 0.733 0.837 0.934 0.957 QF/0 0.873 0.718 71.5 QF /0 0.964 0.759 0.687 0.766 0.842 0.756 0.737 0.701 0.684 0.706 0.795 0.969 0.866 0.707 0.959 0.696 417 W V N а 387 MV VM С. 237.0 244.1 C.915 C.923 C.863 C.854 O.838 0.828 MF/W C.974 0.969 C.910 C.873 0.860 C.915 C.852 C.962 0.972 NL IN C.927 0.841 0.838 0.846 0.376 C.960 C.968 0.969 C.847 C.865 C.833 0.966 C.911 C.842 0.381 0.965 C-952 180 691 3 Z/CP 32 1.483 706 Y/CP Z/CP 0.48 0.65 -0.53 -0.36 0.14 0.58 • 45 -0-65 •49 -0.71 0.13 0.30 0.95 1.16 1.96 ω -2.04 -1-55 -1.04 -0.55 -0.04 0.47 0.64 -0.19 -0.02 -0.21 -0.45 -1.03 F d -2.03 -0.45 -1.51 I.1 **1**•9 5 C.9C2 I.483 5 0.950 1.480 RN/I D/Na -C.45 -0.03 -0.45 -0-45 -0.45 -0.45 -0.03 -0.45 -0-03 -0.03 -0.03 Y/08 -0.45 -0.45 -0.45 U \ Ľ SU1 -0.03 -0.45 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0-45 -0.45 -0.45 -0.45 e e 01 NACH HUVN X/CP 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 X/CB 10.87 1C.87 1C.87 1C.87 1C.87 8.49 8.49 8.49 8.49 C.87 C.87 0.87 C.87 C.87 0.87 C. 87 C. 87 0.87 0.87 10.87 TN CONF TN CONF 237.C 237.1 236.7 237.C 236.5 237.1 237.5 237.5 236.7 236.6 245.1 245.1 S 236.2 235.8 236.1 236.1 244.1 245.1 245.1 245.1 245**.**] 245**.**] 245.1 244.1 245.1 244. 236.( 245.1 245.1 244.( 236 . 96 0 e 66 ۵. 571 1 ۵. 571 1 MACH 0.902 MACH 0.950 0.952 0.950 0.899 0.899 0.899 0.899 0.901 0.902 0.903 0.9003 0.9003 0°853 0°900 0.952 0.952 006.0 0.899 0.901 951 TST TST 0 29 0 PUN 230 SEC 2 12 14 Ś PUN 231 SEQ 5 14 5 M + 10 VO M ω  $\boldsymbol{\sigma}$ m 4 Ŷ ~ ω σ 16

|         |         | ú∕sa dù   | 0.035 1.020 | 0.038 1.022   | 0.012 1.007 | 0.015 1.009 | 0.011 1.006 | 0.011 1.006     | 0.011 1.006 | 0.003 1.002 | 0.015 1.008     | 0.012 1.007      | 0.019 1.011 | 0.021 1.012 | 0.027 1.015 | 0.033 1.019  | 0.042 1.024 | 0.044 1.025    |              |        | CP PF/P     | 0-030 1-015           | 0.030 1.015    | 0.019 1.010    | 0.014 1.007   | 0.010 1.005 | 0.014 1.007   | 0.016 1.008 | 0.010 1.005    | 0.013 1.007      | 0.014 1.007    | 0.008 1.004     | 0.011 1.006     | 0.022 1.011 | 0.025 1.013      | 0.028 1.014    | 0.039 1.020    |
|---------|---------|-----------|-------------|---------------|-------------|-------------|-------------|-----------------|-------------|-------------|-----------------|------------------|-------------|-------------|-------------|--------------|-------------|----------------|--------------|--------|-------------|-----------------------|----------------|----------------|---------------|-------------|---------------|-------------|----------------|------------------|----------------|-----------------|-----------------|-------------|------------------|----------------|----------------|
|         |         | V A / V   |             |               |             |             |             |                 |             |             |                 |                  |             |             |             |              |             |                |              |        | V A /V      |                       |                |                |               |             |               |             |                |                  |                |                 |                 |             |                  |                |                |
| ALPHA   | -20.00  | 0A/Q VF/V | 0.930       | 0.932         | 0.936       | 0.896       | 0.863       | 0-824           | 0.817       | 0.823       | 0.822           | 0.851            | 0.859       | 0.891       | 0.950       | 0.970        | 0.973       | 0.973          | ALPHA        | -20.00 | DA/Q VF/V   | 0.923                 | 0.931          | 0.918          | 0.896         | 0.872       | 0 • 866       | 0.360       | 0.868          | 0.879            | 0.880          | 0.895           | 0.908           | 0.946       | 0.969            | 0.980          | 0.976          |
| 11      | 71.4    | 0F /0     | C-863       | 0.870         | 0.865       | 0.784       | 0.719       | C.649           | 0.638       | 0.644       | 0.647           | 0.698            | 0.715       | 111.0       | 0.903       | <b>0.948</b> | 0.962       | 0.961          | LL           | 71.1   | 0F/0        | 0.848                 | C.864          | 0.832          | 0.785         | C.738       | 0.728         | 0.719       | 167.0          | 0.753            | 0.756          | 0.781           | 0.809           | 0.891       | 0.944            | 0.967          | 0.964          |
| ۵       | 415     | N/Vn      |             |               |             |             |             |                 |             |             |                 |                  |             |             |             |              |             |                | ٩            | 452    | M / M       |                       |                |                |               |             |               |             |                |                  |                |                 |                 |             |                  |                |                |
| G       | 5 237.4 | N / LN    | C.92C       | 0.923         | C.927       | 0.882       | 0.845       | 0.803           | 0.796       | C.8C2       | 0.801           | C. 832           | C.841       | 0.876       | C.943       | 0.965        | C.965       | C.968          | ى            | 225.3  | MF /N       | C.914                 | C-923          | C•9C8          | <b>C.</b> 883 | 0.857       | <b>C.</b> 850 | C.844       | C.853          | C. 865           | C.866          | 0.882           | 0.857           | 0.939       | C.965            | 116.0          | C.972          |
| - p1    | 102     | Z / DB    | -2.03       | -1-53         | -1.02       | -0.69       | -0-53       | -0.36           | -0-19       | 10.0-       | 0.16            | 0.33             | 0.48        | 0.64        | 0.98        | 1.18         | 1.48        | 56°1           | Ъ1           | 2126   | Z/CB        | -2.04                 | -1.54          | -1.04          | -0.71         | -0-55       | -0-37         | -0.20       | -0-04          | 0.13             | 0.29           | 0•46            | 0.63            | 1.6.0       | 1.16             | 1.46           | 1.56           |
| RNA     | 1.484   | Y708      | - 10-0      | <b>c.01</b> - | 0.01 -      | - 10-0      | C. C1 -     | - 10-0          | C. C1 -     | - 10-0      | 0.01            | c. c1            | 0.01        | 0.01        | C.C1        | 10.0         | 0.01        | 10.0           | RN/I         | 1.452  | <b>4/DP</b> | 0.03 -                | 0.03 -         | - 20-0         | C• 03 -       | C+C3+       | 0.03          | 0.03 -      | 0.03 -         | 0.03             | 0.03           | 0.03            | 0.03            | 0.03        | c•03             | c• c3          | 0.03           |
| NACH    | 0.904   | X/D3      | 8.49 -      | 6 49 -        | 8.49 -      | 8.49 -      | 8.49 -      | 8.49 -          | E. 49 -     | 6.49 -      | 8.49 -          | 8.49 -           | 8.49 -      | 8.49 -      | 8.49 -      | 6.49 -       | 8.49 -      | B.49 -         | PACE<br>VACE | 0.851  | X/C8        | C. 87 -               | C.87 -         | C-87 -         | C. 87 -       | 0.87 -      | C-87 -        | C-87 -      | C.87 -         | C. 87 -          | C.87 -         | C.87 -          | 0.87 -          | 0.87 -      | 0.87 -           | C.87 -         | c. 87 -        |
| TA CONF | 66 5    | ç         | 37.4        | 37.4          | 37.4        | 37.4        | 37.C        | 36.6            | 36.6        | 36.6        | 36.1            | 36.2             | 35.7        | 35.3        | 36.2        | 36.2         | 35.3        | 35.3           | TN CCNF      | 66 55  | Ľ           | 29.3 1                | 29.3 1         | 29.8 1         | 29.8 I        | 29.8 1      | 29.8 1        | 29.4 1      | 29.4 1         | 29.1 1           | 29.5 1         | 29.5 1          | 30.2 1          | 30.2 1      | 30.1 I           | 30.5           | 30.C 1         |
| TST P   | 571 1   | MACH      | 0.904 2.    | 0.904 2       | 0.904 2     | 0.904 2     | 0.902 2     | <b>0.901</b> 2: | 0.901 2.    | 0.900 2     | <b>3.</b> 899 2 | <b>0.899 2</b> . | 0.898 2.    | 0.896 2     | 3.899 2     | 3.899 2.     | 0.896 2     | <b>).896</b> 2 | TST P        | 571 1  | MACH        | <b><b>3.851 2</b></b> | <b>3.851 2</b> | <b>0.852 2</b> | 0.852 2.      | 0.852 2.    | 3•852 24      | 0.850 2     | <b>J.850 2</b> | <b>).</b> 849 2. | <b>7.850 2</b> | <b>3.851</b> 2. | <b>0.853</b> 2. | 0.853 2     | <b>).</b> 853 2. | <b>).854</b> 2 | <b>0.854 2</b> |
| RUN     | 232     | SFO       | 7           | 2             | m           | 4           | 5           | 9               | ~           | 8           | 6               | 10 (             | 11          | 12 (        | 13 (        | 14 (         | 15 (        | 16 (           | RUN          | 233    | SEC         | 1                     | 2              | <b>m</b> )     | 4             | 5           | \$            |             | 8              | 6                | 0              |                 | 12              | 13          | 14               |                | 16 (           |

-----

-----

1.005 1.011 1.007 1.007 1.010 .007 1.003 100.1 1.010 pF/p .003 1.001 1.C12 1.007 .010 ..016 ..005 ..006 ..003 1.005 .007 .001 .003 .010 .005 .004 ..... .002 •000 .010 PF/P 018 1.013 0.005 0.013 0.011 0.002 0.002 0.003 0.006 0-020 0.013 0.021 0.028 0.021 0.025 0.039 0.035 0.014 0-020 0.022 0.006 0000.0 0.016 0.011 0.015 0.012 0.004 0.011 0.013 0.022 0.029 <u>a</u> å V A /V V A /V 0.859 0.839 0.835 0.835 0.842 0.842 0.858 0.870 0.917 0.881 0.890 0.955 0.988 VF/V 0.931 0.941 0.972 0.912 0.908 0.915 0.970 0.983 0.929 0.982 VF/V 0.978 0.919 316.0 0.916 0.913 0.930 0.980 0.964 ALPHA -20.00 -20.00 ALPHA 0 A V O 0 A O 0.715 0.678 71.0 0.669 0.959 70.9 0F/0 0.834 C.818 0.819 0F/0 0.874 0.760 0.681 0.853 0.854 0.925 0.681 0.711 0.777 0.912 0.980 978 0.970 0.825 0.811 0.822 0.941 0.972 0.853 0.834 0.736 0.967 0.947 0.821 0.972 F 452 WVVW 496 シント 0 ۵ 230.6 223.0 106.0 C.824 C.842 C.855 C.877 0.977 0.969 0.922 569.0 0.843 0.974 NF / N 216.0 NF /N C.817 C.949 C.986 016.0 906-0 C. 899 0.905 .867 0.984 0.902 0.904 0.922 .821 0.825 0.921 C.907 0.967 0.959 0.979 C.981 151 728 0.14 -1.54 • 48 0.99 -0.53 **Z/DB** -2.03 -1.53 -0-69 -0.19 0.64 1.18 •48 1.95 -2.04 -0.20 0.12 Fa -1.03 -0.53 -0.36 0.31 Z/08 0.25 0.46 -0.02 0.64 16.0 1.16 •46 10 -0.37 -0.04 • 6 5 0.854 1.497 5 0.801 1.513 PN/L X/CB Y/DB **RN/L** -0.01 -0.01 Y/DB 0.41 E.49 -C.CI -0.01 C.41 -0.01 -0.01 10.0-10.0-0.41 0.41 .41 0.41 -0.01 -0.01 -0-01 C-41 0.41 0.41 -0.01 -0-01 -0.01 C.41 0.41 0.41 -0.01 C.41 0.41 0-0-0.41 0.41 VACH N C H E.49 . 8.49 8.49 8.49 8.49 8.49 8.49 8.49 • 49 8.49 8.49 8.48 8.49 8.49 E.49 LC.87 LC.87 LC.87 X/CB 10.87 1C.87 1C.87 1C.87 .C.87 0.97 10.87 1 C. 87 10.87 10.87 C-87 0.87 TST P IN CONF CONF 229**.** E 229**.** 4 227.9 227.9 229.5 230.6 231.2 230.6 228.2 228.2 223•0 222•5 223•1 223.1 222.5 222.5 223.1 223.5 229.8 229.1 229.1 229.1 227.5 230.2 222.5 223.0 223.0 223.0 222.5 222.5 223.5 2 66 C 571 1 66 C c. 0.852 0.852 0.850 0.849 0.849 0.849 0.847 0.847 0.854 0.854 0.852 MACH 0.857 0.801 0.800 0.800 0.800 0.800 MACH 0.801 0.800 0.846 0.846 0.850 0.846 0.853 0.800 0.802 0.803 0.802 0.801 0.801 0.801 0.801 0.801 **TST** 571 234 234 550 4 ŝ Ø -Ø 6 C - $\sim$ **6**13 4 W 235 SEQ N ŝ RUN .+  $\mathbf{S}$ ~ œ 0 n 2 \$ ហ σ -Ś

|       |             | c/ ۲   | 315    | 908    | 005    | 100    | 004     | 03     | 100     | 204      | 100    | 202    | 204      | 008     | 600    | 010      | 015    | 014            |        |
|-------|-------------|--------|--------|--------|--------|--------|---------|--------|---------|----------|--------|--------|----------|---------|--------|----------|--------|----------------|--------|
|       |             | ā      |        | 1.     | 1.(    | -      | 1.(     | -      | 1.      | <b>-</b> |        |        | <b>.</b> | 1.(     |        | <b>.</b> |        | 1.(            |        |
|       |             | C b    | 0.034  | 0.017  | 0.011  | 0.003  | 0.008   | 0.006  | 0.003   | 0.008    | 0.002  | 0.005  | 0.010    | 0.018   | 0.021  | 0.023    | 0.033  | 0.030          |        |
|       |             | VIEV   |        |        |        |        |         |        |         |          |        |        |          |         |        |          |        |                |        |
|       |             | VF/V   | 0.907  | 0.925  | 0.920  | 0.890  | 0.881   | 0.875  | 0.881   | 0.875    | 0.886  | 0.894  | 0.893    | 016.0   | 0.941  | 0.965    | 0.976  | 0.983          |        |
| ALPHA | -20.00      | 0A/0   |        |        |        |        |         |        |         |          |        |        |          |         |        |          |        |                |        |
| 11    | 70.8        | 0F /0  | 0.817  | 0.847  | 0.834  | 0.773  | 0.756   | 0.746  | 0.755   | 0.746    | 0.765  | 0.781  | 0.780    | 0.817   | 0.880  | 0.933    | 0.960  | 0.974          | ÷      |
| ٩     | 497         | MA/M   | -      |        |        | -      |         |        |         |          | -      |        |          |         |        | -        |        |                | C      |
| 9     | 222.5       | ME / N | 0.897  | C.917  | C.911  | C.879  | 0.868   | 0.863  | 0.868   | C-862    | C.874  | 0.883  | 0.882    | 0.900   | C.924  | C.961    | 0.973  | C <b>•</b> 980 | c      |
| Ld    | 757         | Z/08   | 2.04   | 1.55   | ·1.04  | .0.7I  | 0.54    | 0.37   | 0.20    | 0.04     | 0.13   | 0:30   | 0.46     | 0.63    | 0.96   | 1.15     | 1.47   | 1.97           | 10     |
| RN/L  | 1.512       | Y/DB   | 0.03 - | 0.03 - | - 20.0 | 0.03 - | C. C3 - | 0.03 - | C. 03 - | - 20-0   | 0.03   | C• C3  | C.03     | C. 03   | 0.03   | c. 03    | C• C3  | 0.03           | 17 40  |
| NACH  | C.800       | LCB    | - 18.  | - 18.  | - 87 - | - 18.  | - 13.   | - 19 - | . 87 -  | - 18.    | - 87 - | - 73 - | . 87 -   | - 19.   | - 87 - | . 87 -   | - 19-: | - 18.          |        |
| CONF  | <b>لا</b> م | ×      | 5 10   | .1 10  | .1 10  | .1 10  | .0 10   | .0 10  | •C 1C   | .0 10    | .0 10  | .0 10  | .0 10    | • C 1 C | .0 10  | .5 10    | .5 10  | .1 10          |        |
| F TN  | 1 66        | Ċ      | 222,   | 223,   | 223,   | 223.   | 223,    | 223,   | 223.    | 223      | 223,   | 223.   | 223,     | 223.    | 223,   | 223.     | 223.   | 223,           | i<br>F |
| 121   | 571         | MACH   | 0.800  | 0.801  | 0.801  | C.8C1  | 0.801   | 0.801  | 0.801   | 0.801    | 0.301  | 0.801  | 0.801    | 0.801   | 0.801  | 0.802    | 0.802  | C.8C1          | TCT    |
| RUN   | 236         | SEG    |        | 2      | n      | 4      | ŝ       | 9      | ٢       | æ        | 6      | 10     | 11       | 12      | 13     | 14       | 15     | 16             |        |

|                  | 0      | RI<br>E     | GI<br>PC | NA<br>002 | AL<br>R | P<br>QU | A(<br>JA | GE<br>LI' | IS<br>TY | 5       |         |         |         |        |         |         |        |         |
|------------------|--------|-------------|----------|-----------|---------|---------|----------|-----------|----------|---------|---------|---------|---------|--------|---------|---------|--------|---------|
|                  |        | pF∕p        | 1.020    | 1.016     | 1.007   | 1.004   | 1.002    | 1.001     | 1.003    | 1.006   | 1.008   | 1.003   | 1.010   | 1.007  | 1.010   | 1.007   | 1.006  | 1.007   |
|                  |        | СЪ          | 0.044    | 0.035     | 0.016   | 0.009   | 0.004    | 0.001     | 0.006    | 0.013   | 0.018   | 0.007   | 0.023   | 0.016  | 0.022   | 0.015   | 0.013  | 0.016   |
|                  |        | V A /V      |          |           |         |         |          |           |          |         |         |         |         |        |         |         |        |         |
|                  |        | VF/V        | 0.974    | 0.975     | 0.962   | 0.916   | 0.893    | 0.889     | 0.876    | 0.883   | 0.878   | 0.891   | 0.894   | 0.916  | 0.946   | 0.968   | 0.989  | 0.989   |
| ALPHA            | -20.00 | OA/O        |          |           |         |         |          |           |          |         |         |         |         |        |         |         |        |         |
| <b></b>          | 70.8   | 0F/0        | 0.962    | 0.959     | 0.924   | 0.825   | 0.778    | 0.770     | 0.747    | 0.762   | 0.754   | 0.777   | 0.787   | 0.828  | 0.891   | 0.935   | 0.981  | 0.982   |
| a.               | 497    | MA/M        |          |           |         |         |          |           |          |         |         |         |         |        |         |         |        |         |
| ى                | 222.5  | ML / N      | 0.971    | c.972     | 0.958   | C.906   | 0.881    | 0.877     | 3.863    | C.870   | 0.865   | C.880   | 0.883   | C-9C7  | 0.939   | 0.964   | 796.0  | 0.988   |
| l d              | 2 757  | Z/DB        | -2.04    | -1.54     | -1.05   | -0.71   | -0-54    | -0.37     | -0-19    | -0.03   | 0.13    | 0.30    | 0.47    | 0.63   | 0.96    | 1.17    | 1.47   | 1.96    |
|                  | 0 1.51 | Y/DB        | -0-38    | -0.38 -   | -0-38 - | -0.38 - | -0-38 -  | -0-38 -   | -0-38 -  | -0.38 - | -0.38   | -0.38   | -0-38   | -0.38  | -0.38   | -0-38   | -0.38  | -0.38   |
|                  | 5 C.8C | X/CB        | 1C.87 -  | 10.87     | 10.87   | 10.87 - | 10.87    | 10.87 -   | 1C.87 .  | 10.87   | 10.87 - | 1C.87 - | 10.87 - | 1C.87  | 10.87   | 1C.87 - | 1C.87  | 10.87 - |
|                  | 66     | 0           | 22.5     | 22.6      | 22.C    | 22.6    | 22.0     | 22.0      | 22.5     | 22.5    | 22.6    | 22.6    | 23.1    | 23.6   | 22.6    | 22.5    | 22.5   | 23.5    |
| a ISI            | 571 1  | MACH        | .800 2   | .799 2    | .798 2  | .799 2  | .798 2   | . 799 2   | .800 2   | .800 2  | .799 2  | . 799 2 | .800 2  | .801 2 | . 759 2 | .800 2  | .800 2 | .803 2  |
| N<br>N<br>N<br>N | 237    | U<br>U<br>V | 0<br>1   | 2 0       | 9<br>8  | 4       | 50       | 9         | 7 0      | о<br>8  | 6       | 10 0    | 11 0    | 12 0   | 13 0    | 14 0    | 15 0   | 16 0    |

\_\_\_\_\_

|              |          | ¢a b⊧/b   | 0.035 1.016 | 0.032 1.014 | 0.021 1.009 | 0.009 1.004 | 0.011 1.005 | 0.009 1.004 | 0.002 1.001 | 0.009 1.004 | 0.009 1.004 | 0.002 1.001        | 0.008 1.004 | 0.012 1.005 | 0.015 1.007 | 0.013 1.006 | 0.027 1.012 | 0.032 1.014 |              |          | Cb bE/D   | 0.025 1.011 | 0.016 1.007 | 0.014 1.006 | 0.004 1.002 | 0.003 1.001 | -0.001 1.000 | 965*0 600*0-       | -0.014 0.993 | 0.001 1.001        | 0.014 1.006 | 0.010 1.004    | 0.009 1.004 | 0.019 1.009 | 0.023 1.010 | 0.022 1.010 | 0.025 1.011 |
|--------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|--------------|--------------------|--------------|--------------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|
|              |          | V VAV     | 0           | •           | .0          | 7           |             |             |             | 0           | 7           | •                  | -           | ~           | 10          | •           |             | ~           |              |          | V VA/V    | 10          | ~           | 0           | .+          |             | `<br>~       | '<br>.0            |              | .+                 | ~           | •              | ~           |             | m           | .0          | 10          |
| AL PHA       | -20.00   | QA/Q VF/V | 0.980       | 0.979       | 0.955       | 0.90        | 0.898       | 0.891       | 0.891       | 0•89(       | 0 . 88      | 06*0               | 0.901       | 0.92        | 356•0       | 0.96        | 0.981       | 0.98        | ALPHA        | -20.00   | DA/O VE/V | 0.985       | 0.989       | 0.98(       | 0.934       | 516*0       | 0.913        | 906*0              | 0 895        | 0 . 884            | 0 897       | 506 <b>•</b> 0 | 0.927       | 0.961       | 0.978       | 0.986       | 0.985       |
| 11           | 70.7     | 0F/0      | 179.0       | 0.968       | 0.910       | C.8C8       | 161.0       | 0.777       | 0.774       | 0.775       | C.770       | 0.792              | 0.808       | 0.841       | 0.908       | 0.938       | 016.0       | 0.975       | 11           | 7.07     | 0140      | 0.978       | 0.982       | 0.962       | 0.859       | 0-8-0       | 0.816        | 0.799              | C.775        | C•769              | C•790       | 0.812          | 0.848       | 0.922       | 0.961       | 776.0       | 0.978       |
| ۵            | 154      | W / M     |             |             |             |             |             |             |             |             |             |                    |             |             |             |             |             |             | ۵            | 197      | w / Am    |             |             |             |             |             |              |                    |              |                    |             |                |             |             |             |             |             |
| ى            | 222.0    | NF/N      | C.978       | 776.0       | C.95C       | 0.897       | 0.887       | 0.879       | 0.879       | 0.878       | 0.875       | C•850              | C.857       | 0.915       | C.950       | 0.965       | 679.0       | 0.980       | Ŀ            | 223.1    | NF / N    | C.983       | C.988       | C.978       | 0.926       | 0.910       | C.9C4        | 0.896              | 0.883        | 0.872              | 0.886       | 658.0          | 0.919       | C.956       | 0.975       | C.984       | 0.983       |
| L d          | 0 757    | Z/08      | -2.04       | -1.55       | -1.04       | -0.70       | -0.54       | -0-36       | -0.20       | -0.04       | 0.13        | 0.29               | 0.47        | 0.63        | 0.96        | 1.16        | 1.47        | 1.97        | Ld.          | 4 758    | Z/D8      | -2.03       | -1.52       | -1.03       | -0-65       | -0.52       | -0.36        | -0.19              | -0.02        | 0.14               | 0.30        | 0.48           | 0.65        | 0.98        | 1.19        | 1.48        | 1.58        |
| NA A         | 1.51(    | ¥/08      | - 34°-      | - 84.0      | C.48 -      | - 84.0      | 0.48 -      | C.48 -      | - 84°-0     | C.48 -      | 0.48        | 0.48               | 0.48        | 0.48        | C.48        | 0.48        | 0.48        | C.48        | I/Na         | 1.514    | Y / DB    | 0.43 -      | C.43 -      | 0.43 -      | C.43 -      | C.43 -      | 0.43 -       | 0.43 -             | C.43 -       | 0.43               | 0.43        | 64.0           | C • 43      | C + 3       | 0.43        | 0.43        | 0.43        |
| F WACH       | 5 0.799  | X / DB    | 10.87 -     | 10.87 -     | 1C.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 1C.87 -            | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | 10.87 -     | F WACH       | 5 0.801  | X / CB    | 8.49        | 8.49        | 8•48        | 8.49        | 8•48        | <u>8</u> .48 | 8.49               | 8.49         | 8.49               | 8.49        | 8.49           | e 4 4 9     | E.49        | ٤•49        | 8•48        | 8.48        |
| TST P IN CON | 571 1 66 | MACH 0    | 0.799 222.0 | 0.758 222.0 | 0.757 221.5 | 0.797 221.5 | 0.798 222.C | 0.798 222.C | 0.798 222.0 | 3.800 222.5 | 3.800 222.5 | <b>0.800 222.5</b> | 0.799 222.0 | 3.800 222.5 | 3.800 222.5 | 0.800 222.5 | 3.801 222.4 | 0.801 222.4 | TST P IN CCN | 571 1 66 | MACH 0    | 0.801 223.1 | 0.801 223.1 | 0.801 223.0 | 3.803 223.5 | 0.803 223.5 | 3.803 223.5  | <b>J.804 224.0</b> | 0.804 224.C  | <b>).804 224.C</b> | 0.802 223.C | 0.801 223.0    | 2.8C0 222.5 | 3.800 222.5 | 3.799 222.6 | ).758 222.C | ).758 222.C |
| RUN          | 238      | SEQ       | 1           | 2           | с<br>С      | 4           | ບ<br>ທ      | 9           | 7 (         | 8           | 6           | 10                 | 11 (        | 12 (        | 13 (        | 14          | 15          | 16 (        | NUA          | 239      | SEC       | -           | 2           | 3           | 4           | ŝ           | 6 (          | 7 (                | C)<br>CD     | 6                  | 10          | 11 (           | 12 (        | 13 (        | 14          | 15 (        | 16 (        |

\_\_\_\_\_

----

|        |        | 0 C / D   | 110 1   |         |           |            | 1.142      | 100.1  | 0.596  | 0.997  | 0.596  | 0.995            | 0.595   | 0.598         | 700         |        |        |        | I - UU | 1.C11         |       |       |            | 07.00          |          | 1.014  | 1.013  | 1.010  | 1.003  | 1.000  | 0.999  | 0.996  | 1.997      | 0.999      | 0.599      | 000.1       | 1.001      | 1.007   | 600-1          | 1-009       | 1.011   |
|--------|--------|-----------|---------|---------|-----------|------------|------------|--------|--------|--------|--------|------------------|---------|---------------|-------------|--------|--------|--------|--------|---------------|-------|-------|------------|----------------|----------|--------|--------|--------|--------|--------|--------|--------|------------|------------|------------|-------------|------------|---------|----------------|-------------|---------|
|        |        | a J       |         |         |           |            |            | 0.00   | 010-0- | -0.006 | -0-010 | 110.0-           | -0-011  | +00-0-        | 0.008       |        |        |        | 010-0  | 0.025         |       |       |            | c D            |          |        | 0.028  | 0.023  | 0.006  | -0.000 | -0.003 | -0-010 | -0.008     | -0.003     | -0.003     | -0-00       | 0.003      | 0-015   | 0.019          | 0.021       | 0.025   |
|        |        | V A VV    |         |         |           |            |            |        |        |        |        |                  |         |               |             |        |        |        |        |               |       |       |            | V V VV         |          |        |        |        |        | •      | •      | •      | ,          | ,          | •          | ,           |            |         |                |             |         |
| AH PHA | -20.00 | DA/O VE/V | 0.00    | 0.10 0  | 0.970     | 0.852      |            | 610-0  |        | 0. 643 | 0.838  | 0.347            | 0 - 868 | 0.877         | 0.901       | 0.955  | 0.976  | 0.985  |        | 0.986         | -     | ALPHA | -20.00     | 0A/0 VF/V      | 0.980    |        |        | 606.0  | 0.918  | 0.881  | 0.864  | 0.344  | 0.459      | 0.858      | 0.875      | 0.395       | 0.915      | 0.958   | 0.974          | 0.945       | 0.936   |
| 11     | 70-6   | 0F 70     | 0.806   | 0.875   | 0.837     | 0.800      | 0.751      | 112 0  |        |        | 0.013  | 0.689            | C.727   | 0.745         | 0.796       | 0.907  | C.952  | 0.977  |        | 0.979         | ,     |       | 70.5       | 0F/0           | C.970    | 0.968  |        |        |        |        | 0. 723 | 0.684  | 111.0      | 0.712      | 0.742      | 0.782       | 0.821      | 0.914   | 0.950          | .975        | 616.0   |
| ۵.     | 497    | NV/N      |         |         |           |            |            |        |        |        |        |                  |         |               |             |        |        |        |        |               | c     | 2     | 457        | N V N          |          |        |        |        |        |        |        |        |            | Ŭ          | <u> </u>   | Ŭ           | Ŭ          | U       | 0              | U           | 0       |
| U      | 222.0  | MF / W    | 0.892   | 506-0   | 0.912     | C.837      | 0-866      | 0.846  | 30.00  |        | 770.0  | C • 8 3 Z        | C•855   | <b>C.864</b>  | C.891       | C.949  | 519.0  | 0.984  |        | 0•38 <b>4</b> | ç     | و     | 222.5      | N / L N        | 0.978    | 978°   | 965    |        | 070    |        |        | 570.   | 642.       | .844       | - 862      | .884        | •906       | • 953   | 116.           | • 983       | • 584   |
| L pT   | 0 757  | Z / DB    | -2.02   | -1.53   | -1.03     | -0.69      | -0-53      | -0-36  | 0.0    |        |        | C. I.)           | 15.0    | 0 <b>.</b> 48 | 0.65        | 76.0   | 1.17   | 1.48   | 1 C 0  | 04.1          | FO    | - 1   | 151        | Z/08           | 2.03 (   | 1.52 ( | 1-03   | 0.69   | 0.52   |        |        |        |            | 0.14 0     | 0.32.0     | 0.48 0      | 0.65 C     | 0•58 C  | 1.19 0         | 1.48 U      | 1.58 U  |
| Na t   | 1.51   | Y/DB      | . 10-0- | . 10-0- | - 10-0-   | - 10-0.    | 0.01       | - 10-0 | 10-0-  |        |        |                  | 10.0    | 0.01          | <b>c.c1</b> | 10.0   | c.01   | 0.01   |        | 10.0          | IN NG |       | E1 - 1 - 1 | Y/DB           | 0.36 -   | 0.36 - | C.36 - | C-36 - | - 36 - |        | 2.0    |        |            |            |            | 9.99        | 1.36       | 0       |                | 0 1<br>11 1 | 0       |
| NAC    | 0.799  | X/08      | 6,49 -  | 8.49 -  | 8.49 -    | - 64•3     | 8.49 -     | - 64-3 | 8.49   | 8.40   |        | 7 ( <b>7</b> • 0 | 6 • 4 A | 8•49 -        | 8.49 -      | 8.49 - | - 64.9 | 9.49 - | - 67 - |               | A C F |       | 0.8CC      | (/ LB          | - 49 -   | - 65 - | - 49 - | - 64-  | - 49 - | - 67   | - 07   | 07     |            |            |            | . 49 -      | - 65.      | - 44    | 0- 65 <b>.</b> | ) - 54.     | 1 64.   |
| LCNE   | ŝ      |           | 0       | 0       | 44.1<br>• | <b>u</b> 1 | <b>u</b> 1 | u .    | u v    | u      | ، د    |                  | 2       | 0             | 0           | с<br>ч | 0      | 0      | u      |               | L N F |       |            | ~              | <b>w</b> | 8      | 1      | 8      | 1      |        | , α    | - u    | ) 0<br>) 0 | 0 0<br>0 0 | 0 0<br>0 0 | ນ (<br>ເກີຍ | ຍ (<br>ກ.ເ | ມ<br>ເກ | 00 0<br>4 1 U  | υ c<br>ι ι  | ט<br>זי |
| D T V  | 1 66   | с<br>т    | 9 222   | 9 222   | 3 221     | 222        | 222        | 222    | 222    | 222    | 000    |                  |         | 223           | 223         | 223    | 223    | 223    | 222.   | 1             | d I v | 1 22  | 00         | 3              | 222      | 223.   | 223.   | 223.   | 223.   | 223    | 223.   | 222    | , L C C    | - C C C    | 222        | • 222       | • 277      | • 7 7 7 | .227           | • • • • • • | •122    |
| TST    | 571    | MACI      | 52.0    | 0.79    | 0.79      | 0.80(      | 0.800      | C- 800 | 0.800  | 0-800  | 0.801  |                  |         |               | 0.801       | 0.801  | 0.801  | 0.801  | C-800  |               | 151   | 571   |            | MACH           | 0.800    | 0.801  | 0.801  | 0.801  | 0.801  | 0.801  | 0.801  | 0.800  | 108-0      |            |            |             |            |         |                |             |         |
| RUN    | 240    | SEC       | 1       | 2       | 3         | 4          | ŝ          | Ŷ      | 7      | 8      | σ      | È C              |         | 1;            | 17          | -      | 14     | 5      | 16     | •             | RUN   | 170   |            | 9.<br>11<br>12 | - (      | N      | n      | 4      | LL)    | Ś      | ~      | ŝ      | σ          |            |            |             |            |         | 1 1            |             | 2       |

. . . . . . . . . .

|            |           | لأنه مداه   | 0.027 1.012 | 0.022 1.010 | 0.011 1.005 | 0.008 1.004 | 0.004 1.002 | 0.002 1.001 | -0.005 0.998 | 0.004 1.002 | -0.006 0.597 | -0.000 1.000 | 0.006 1.003  | 0.006 1.003 | 0.015 1.007 | 0.009 1.004 | 0.015 1.007 | 0.021 1.009 |               |           | Co pr/p     | 0.043 1.011 | 0.046 1.012 | 0.035 1.009 | 0.023 1.006 | -9.005 0.999 | 0.002 1.2000 | 200.1 010.0 |             | 0.028 1.007 | 0.032 1.008 | 0.014 1.005 | -0.001 1.000 |             | 0.00/ 1.002 | 0.015 1.004 | 0.032 1.008 |
|------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|---------------|-----------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
| A H        | 00        | D VE/V VA/V | 0.934       | 0.986       | 0.976       | 0.910       | 0.834       | 0.876       | 0.866        | 0.863       | 0.872        | 0.872        | 0.396        | 0.921       | 0.959       | 0.935       | 0.939       | 0.987       | НА            | 00        | Q VE/V VA/V | 0.975       | 0.973       | 0.950       | 0.920       | 0.928        | 0.912        | 0.912       | 0.913       | 0.906       | 0.906       | 0.924       | 0.941        | 0.962       | 0.978       | 0.987       | 0.978       |
| TT ALPI    | 70.6 -20. | CF/0 04/1   | 0.977       | 610.0       | 136-02      | 0.814       | 0.761       | 0.745       | 0.724        | 0.723       | 0.735        | 0.738        | <b>C.186</b> | 0.833       | 0.915       | 0.970       | 0.981       | C.980       | TT ALP        | 64.8 -20. | 1 0F/0 0A/  | 0.957       | 0.955       | 0.905       | 0.842       | 0.852        | 0.821        | 0.824       | 0.828       | 0.816       | C.818       | 0.847       | 0.878        | 0.922       | 0.955       | 0.975       | 0.961       |
| C.         | 222.6 498 | NE N NA/M   | .982        | .985        | 513         | .900        | .872        | .863        | .852         | .850        | .859         | .859         | .885         | .912        | .954        | .983        | .987        | 0.985       | ۹<br>۵        | 175.8 695 | ME /N MA /N | 513         | 179.0       | 747<br>2    | 0.915       | 0.924        | 0.906        | 0.906       | 0.908       | 006-0       | 0.901       | c.919       | 759.0        | 0.960       | 0.976       | C.986       | C.977       |
| PU/L PT    | 1.514 758 | /08 Z/08    | .45 -2.03 C | .45 -1.53 0 | .45 -1.04 0 | .45 -0.67 0 | .45 -0.53 0 | .45 -0.36 0 | .45 -0.19 0  | .45 -0.02 0 | .45 0.14 0   | .45 0.31 0   | .45 0.48 0   | .45 0.65 0  | .45 0.98 (  | .45 1.18 (  | .45 1.48 (  | .45 1.98 (  | PN/L PT       | 1.511 887 | /DB Z/DB    | .41 -2.05 ( | .41 -1.54 ( | .41 -1.04 ( | .41 -0.71   | .41 -0.53 (  | .41 -0.37 (  | .41 -0.20   | .41 -0.03   | .41 0.13    | .41 0.25    | .41 0.47    | .41 0.63     | 1.41 0.97   | .41 1.16    | .41 1.47    | .41 1.96    |
| CNF MACH   | 5 0.799 1 | X/DB Y/     | 8.48 -0.    | 8.49 -0.    | 8.48 -0.    | 8.49 -0.    | 8.49 -0.    | 8.48 -0     | 8.49 -0.     | 8.49 -0.    | 8.49 -0      | 8.49 -0      | 8.49 -0      | 8.49 -0     | E.49 -C     | 8-49-0      | 8-49 -C     | 8.49 -0     | LNF WACH      | 5 0.601   | X/DB Y      | 10.88 0     | 16-88 0     | 10.88 0     | 1C-88 C     | 10.88 0      | 1C.88 C      | 2 1C.88 C   | 1C.88 C     | 2 1C.88 C   | 1C.88 0     | 10.88 C     | 0 1C.88 C    | 2 IC.88 0   | e 1C.88 C   | 2 IC.88 0   | 9 1C.88 0   |
| TST P TN C | 571 1 66  | MACH 0      | 0.799 222.6 | 0.800 222.5 | 0.799 222.0 | 0.799 222.0 | 0.799 222.0 | 0-799 222-0 | 0-799 222-0  | 0.799 222.0 | 0.800 222.5  | 0.800 222.5  | 0.800 222.5  | 0-800 222.5 | 0.800 222.5 | 0.758 222.0 | 0-800 222.5 | 0.800 222.5 | T A T A T A T | 571 1 66  |             | 0-601 175-6 | 0.557 174.0 | 0.596 173 4 | 0.556 173.5 | 0.599 174.6  | 0.601 175.8  | 0.600 175.2 | 0.600 175.2 | 0.600 175.2 | 0.599 174.0 | 0.596 173.4 | 0.597 174.(  | 0.600 175.2 | 0.602 175.1 | 0.600 175.2 | 0-602 175-1 |
| RUN        | 242       | C L V       | , <u></u>   | • •         |             | 4           | ſ           |             | -            | · œ         | ) <b>o</b>   | 10           |              | 1           | : -         | 14          | - 4C<br>-   | 16          | NIID          | 242       |             | 2           | <b>7</b> I  | 1 <b>4</b>  | · u         | <b>\$</b>    | 2            | 80          | σ           | 10          | 11          | 12          | 13           | 14          | 15          | 16          | 17          |

|             |        | bF/⊅      | 1.000     | 1.001         | 1.004     | 1.004         | 1.002    | 1.005     | 1.005  | 1.002          | 1.002   | 1.003   | 1.004   | 1.003  | 1.003       | 1.005   | 1.005        | 1.010   |        |        | pr/p      | 1.007  | 1.005   | 1.005         | 1.005    | 1.001   | 666*0   | 1.003          | 0.930           | 1.001         | 1.003           | 1.006         | 1.007          | 1.007    | 1.003  | 1.007    | 1.007  |
|-------------|--------|-----------|-----------|---------------|-----------|---------------|----------|-----------|--------|----------------|---------|---------|---------|--------|-------------|---------|--------------|---------|--------|--------|-----------|--------|---------|---------------|----------|---------|---------|----------------|-----------------|---------------|-----------------|---------------|----------------|----------|--------|----------|--------|
|             |        | d<br>U    | -0.001    | 0.005         | 0.014     | 0.015         | 0.007    | 0-020     | 0.020  | 0.010          | 0.008   | 0.011   | 0.018   | 0.013  | 0.011       | 0.022   | 0.019        | 0.038   |        |        | CD        | 0.026  | 0.020   | 0.019         | 0.018    | 0.003   | -0.002  | 0.011          | -0.277          | 0.003         | 0.012           | 0.024         | 0.029          | 0.027    | 0.014  | 0.029    | 0.027  |
|             |        | VA/V      |           |               |           |               |          |           |        |                |         |         |         |        |             |         |              |         |        |        | V A /V    |        |         |               |          |         |         |                |                 |               |                 |               |                |          |        |          |        |
| ALPHA       | -20.00 | QA/U VF/V | 0.936     | 0.934         | 0.926     | 0.893         | 0.894    | 0.873     | 0.869  | 0.880          | 0.892   | 0.892   | 0.890   | 0.916  | 0.946       | 0.950   | 0.983        | 0.978   | ALPHA  | -20.00 | QA/Q VF/V | 0.981  | 0.982   | 0.949         | 0.909    | 0.894   | 0.893   | 0.884          | 0.916           | 0.909         | 0.905           | 0.902         | 0.914          | 0.933    | 0.963  | 0.979    | 0.984  |
| 11          | 65.1   | 0F/0      | 0.868     | 0.865         | 0.852     | 0.789         | 061.0    | 0.752     | 0.745  | 0.765          | 0.785   | 0.786   | 0.784   | 0.833  | 0.892       | 0.901   | 0.969        | 0.963   | T T    | 65.3   | CF/0      | 0.967  | 0.967   | 0.899         | C.820    | 0.788   | 0.786   | 0.772          | 0.771           | 0.816         | 0.812           | 0.808         | 0.832          | 0.869    | 0.926  | 0.963    | 0.972  |
| D.          | 969    | MA/M      |           |               |           |               |          |           |        |                |         |         |         |        |             |         |              |         | ۵      | 695    | NV N      |        |         |               |          |         |         |                |                 |               |                 |               |                |          |        |          |        |
| ى           | 175.2  | MEZN      | 0.932     | <b>C</b> •929 | c.921     | <b>c.</b> 886 | 0.888    | C.865     | C.861  | 0.873          | C.886   | 0.886   | C.884   | C.911  | 0.943       | C.946   | <b>C.982</b> | C.977   | C3     | 175.2  | NF/N      | C.98C  | C.981   | <b>C.</b> 946 | C.903    | 0.887   | 0.887   | 0.878          | C.910           | C06*0         | C.900           | <b>C.</b> 856 | 506 <b>°</b> 0 | 0.929    | C.961  | 0.978    | C-983  |
| Ld .        | 883    | 2/08      | -2.04     | -1.54         | -1-04     | -0.71         | -0.54    | -0.37     | -0.20  | -0.04          | 0.13    | 0.30    | 0.46    | 0.63   | 0.98        | 1.15    | 1.46         | 1.96    | Ld .   | 5 887  | 2/C8      | -2.05  | -1.53   | -1-05         | -0.70    | -0.54   | -0.38   | -0.21          | -0.05           | 0.12          | 0.30            | 0.46          | 0.63           | 0.96     | 1.16   | 1.47     | 1.96   |
| LAN I       | 1.50   | 47.CB     | · C• 03 - | - E0-0        | - C. 03 - | - 60 • 0      | 0.03 -   | · c. c3 - | - 20-0 | · C• 03 -      | E0 * 0. | .0.03   | ·0•03   | 0.03   | 0.03        | ·c. 03  | -0-03        | E0 • 0. | I RN/I | 1.500  | γ/08      | - 35-0 | 0.38 -  | - 38 - J      | 0.38 -   | 0.38 -  | - 85.0  | 0.38 -         | - 3 E • O       | 0.38          | 0.38            | C.38          | 0.38           | C. 38    | 0.38   | 0.38     | C. 28  |
| N A C H     | 0.500  | X/CR      | C. 83 -   | 0.88 -        | C. 88 -   | C. 88 -       | C.88 -   | C. 88 -   | 0.88 - | C. 88 -        | C.88 -  | C. 88 - | C. 88 - | C.88 - | C.88 -      | C. 88 - | C. 88 -      | C. 88 - | NACH   | 0.600  | X/DR      | 0.88 - | C. 88 - | C • 83 -      | C . 88 - | C. 83 - | C. 88 - | <b>C.</b> 88 - | <b>C</b> • 88 - | <b>C</b> 88 - | <b>C • 88</b> - | C. 38 -       | C-87 -         | C • 87 - | C.87 - | C.87 -   | C.87 - |
| <b>UCNE</b> | U)     |           | • 2 1     | •4 1          | • 4       | • 2 1         | •2 1     | • 8       | • 8 1  | <b>۔</b><br>ع• | • € 1   | • 0 1   | • C ]   | •0     | -<br>-<br>- | • ć 1   | • € 1        | • ć 1   | UD0    | ŝ      |           | • 2    | • € 1   | • 8           | • 2 1    | • 2 1   | • 2 1   | •2 1           | • 2 •           | • 8           | •2 1            | • 2           | • € 1          | • 2 1    | • €    | • 8<br>• | - 2 -  |
| D T V       | 1 66   | U<br>I    | 0 175     | 3 175         | 3 176     | 1 175         | 1 175    | 2 175     | 2 175  | 1 175          | 9 174   | 8 174   | 8 174   | 8 174  | 8 174       | 9 174   | 9 174        | 9 174   | NL d   | 1 66   | ю         | 0 175  | 9 174   | 2 175         | 0 175    | 0 175   | 0 175   | 1 175          | 1 175           | 2 175         | 0 175           | 0 175         | 9 174          | 0 175    | 9 174  | 1 175    | 0 175  |
| TST         | 571    | MACI      | 0.60      | 0.60          | 0.60      | 0.60          | 0.60     | 0.60      | 0.60   | 0.60           | 0.59    | 0.59    | 0.59    | 0.59   | 0.59        | 0.59    | 0.59         | 0.59    | TST    | 571    | MACI      | 0.60   | 0.55    | 0.60          | 0.60     | 0.60    | C.60    | 0.60           | 0.60            | 0.60          | 0.60            | 0.60          | 0.55           | C. 6C    | 0.59   | 0.60     | 0.60(  |
| RUN         | 244    | O H O     | T         | 2             | <b>m</b>  | 4             | <b>n</b> | Ś         | -      | œ              | 6       | 10      | 11      | 12     | 13          | 14      | 15           | 16      | RUN    | 245    | SEO       | -      | ~       | <b>(7</b> 1)  | 4        | רע      | 9       | -              | 8               | 6             | 10              | 11            | 12             | 13       | 14     | 4)<br>   | 16     |

1.002 1.007 1.006 1.003 1.002 1.003 1.004 1.007 b F∕p 1.004 • 004 .006 ú∕ ⊐ 666\*0 1.002 1.001 1.003 1.000 1.000 100.1 .001 .006 .007 .005 .003 .002 1.003 1.001 1.001 1.002 1.004 1.002 1.005 0.014 0.009 0.018 0.004 0.004 0.014 0.011 0.015 0.012 0.016 0.022 0.028 0.0011 0.007 0.006 0.024 0.007 0.003 0.014 0.028 0.024 0.028 0.020 0.005 -0.003 00000 -0.001 0.007 0.007 0.015 σ •01 C b 6 C V A /V V A /V 0.961 0.905 0.897 0.897 0.981 0.983 0.895 0.906 0.906 0.915 0.925 0.983 0.985 0.918 0.913 0.908 0.950 116.0 0.896 VF/V 0.934 VF/V 0.985 0.978 0.922 0.931 0.986 0.987 0.899 0.973 ALPHA -20.00 -20.00 AL PHA 0 A V O QA/C 0.967 0.971 0.971 0.921 0.796 0.793 0.792 0.812 0.812 65.7 0F/0 0.831 0.849 C.899 0.946 0.969 0.974 0.967 0.974 0.957 0.820 0.825 0.813 0.793 66.1 01 - 10 0.834 0.820 0.799 0.840 0.865 0.944 0.972 0.975 0.979 696 N / VN 695 M V M C ٥ 175.2 0•982 0•958 0•950 0•950 0.895 C.890 0.889 006-000 C-900 C.920 0.969 NF/N 0.910 0.946 C.980 C.984 O.977 C.912 0.908 0.908 C.9C2 0.905 0.852 026.0 0.985 C.982 0.984 0.917 C.890 179.0 C.98( ¢ 6.0 0 1.503 887 V/DB Z/DB C-43 -2.03 C -0.20 -0.37 1.46 -0.65 -0.52 -0.36 0.12 0.30 0.47 0.63 1.17 -1.03 -0.15 0.15 70.97 79. -1.52 -0.54 -0.04 F a -0.71 0.45 0.66 σ ω œ ω .6•0 1.1 5.1 5 0.599 1.502 MACH RN/L C.6C0 1.5C3 C • 43 0 • 43 -C.48 0 • 43 0 • 43 0 • 43 -0.48 -0-48 -0-48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 0.43 -0.48 C+43 0.43 0.43 0-43 3 3 -0-4 0.4 0.4 0.4 C. 4 . 3 NACH HUVA X/CB 8.49 X/DR C.87 C.88 C.88 C.87 C.83 C.83 C.87 C.88 C.87 C.87 88 TST F TN C 571 1 66 4ACH 6 660 175-2 660 175-2 600 175-2 600 175-2 70 175-2 00 175-2 70 175-2 8 175-2 8 175-2 8 J CONF CONF 174.6 174.6 174.6 174.6 175.2 175.2 175.2 175.2 175.2 175.8 175.8 175.8 175.8 175.8 175.8 175.8 99 0 175.2 ω 175.1 N . دی 2 0 571 I MACH 0.599 0.599 0.559 0.559 0.660 0.660 0.660 0.660 0.660 0.660 0.602 0.602 0.559 0.602 0.602 0.602 0.602 0.602 0.600 TS1 0.600 0.602 60. RUN 246 SEQ m 45.00 20 113 RUN 247 SFC ω σ 4 ŝ 9 NMYUNNON 2 120452

|                                                      | Cb bE/b               | 0.026 1.007                  | 0.011 1.003                  | 0.007 1.002                  | 0.003 1.001                  | -0.004 0.999                 | 0.000 1.000                  | 0.001 1.000                  | 665 0 200 0-                 | 0.003 1.001                 | 0.000 1.000                 | 0.002 1.000                 | -0-003 0-999                | 0.009 1.002                 | 0.015 1.004                 | 0.029 1.007                 | 0.028 1.007                 |                        |                            | CP OF/P               | 0.025 1.006                  | 0.025 1.006                  | 0.006 1.001                  | 0.001 1.000                  | 0.006 1.001                  | 0.003 1.001                  | -0.004 0.999                 | -0.007 0.598                 | -0.003 0.999                | -0.005 0.999                | 0.013 1.003                 | 0.005 1.001                 | 0.006 1.001                 | 0.014 1.004                 | 0.019 1.005                 | 0.014 1.004                 |
|------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| ALPHA<br>-20.00                                      | CA/Q VE/V VA/V        | 0.916                        | 0.931                        | 0.926                        | 0.894                        | 0.869                        | 0.852                        | 0.837                        | 0.867                        | 0 - 864                     | 0.862                       | 0.880                       | 0.903                       | 0.956                       | 0.978                       | 0.979                       | 0.982                       | ALPHA                  | -20.00                     | CA/Q VE/V VA/V        | 0.945                        | 0.983                        | 0.972                        | 0.922                        | 0.882                        | Ú <b>.</b> 865               | 0 • 364                      | 0.875                        | 0.871                       | 0.874                       | 0.885                       | 0.922                       | 0.965                       | 0.977                       | 0.988                       | 0.990                       |
| P TT<br>695 66.2                                     | MA/M GF/Q             | 0.835                        | 0.861                        | 0.851                        | 0.789                        | 0.742                        | 0.712                        | 0.685                        | 0.738                        | 0.734                       | 0.729                       | 0.763                       | 0.804                       | 0.910                       | 0.956                       | 0.963                       | 010.970                     | p TT                   | 695 66.5                   | WA/W QF/Q             | 0.974                        | 179.0                        | 0.942                        | 0.841                        | 0.765                        | 0.735                        | 0.733                        | 0.752                        | 0.745                       | C•750                       | 0.773                       | 0.843                       | C.928                       | 0.956                       | 0.979                       | 0.981                       |
| TN CONF MACH RN/L PT C<br>66 5 0.600 1.503 887 175.2 | C X/DB Y/DP Z/CP MF/W | 175.2 E.49 -C.01 -2.02 C.911 | 175.2 8.49 -0.01 -1.53 0.926 | 175.2 E.49 -C.C1 -1.C2 C.921 | 175.2 8.49 -0.01 -0.70 0.888 | 175.2 E.49 -0.01 -0.53 0.862 | 175.8 E.49 -C.Cl -O.36 C.844 | 175.8 8.49 -0.01 -0.19 C.828 | 175.8 8.49 -C.Cl -O.C2 C.859 | 175.8 8.49 -0.01 0.14 C.856 | 175.8 8.49 -0.01 0.32 0.854 | 175.8 E.49 -C.C1 0.47 C.873 | 175.8 8.49 -C.01 0.64 C.897 | 175.8 8.49 -C.Cl 0.98 C.953 | 175.E 8.49 -0.01 1.17 C.976 | 175.8 8.49 -0.01 1.48 0.978 | 175.8 8.49 -0.01 1.98 0.981 | TN CONF MACH PN/L PT C | 66 5 C.600 1.502 887 175.2 | Q X/CB Y/DB Z/CB WF/M | 175.2 8.49 -0.36 -2.02 C.984 | 175.2 8.49 -0.36 -1.52 0.982 | 175.2 8.49 -0.36 -1.03 C.970 | 175.2 8.49 -0.36 -0.70 C.917 | 175.2 8.49 -0.36 -0.52 0.875 | 175.2 8.49 -0.36 -0.36 0.857 | 175.2 8.49 -C.36 -O.17 C.856 | 175.2 8.49 -0.36/-0.02 C.868 | 175.2 8.49 -0.36 0.15 0.863 | 175.2 8.49 -C.36 0.32 0.867 | 175.8 8.49 -0.36 0.48 C.878 | 175.8 8.49 -0.36 0.65 0.918 | 175.8 8.49 -0.36 0.98 C.962 | 175.8 8.49 -0.36 1.18 0.976 | 175.8 8.49 -0.36 1.48 0.987 | 175.8 8.49 -0.36 1.98 C.989 |
| RUN TST P<br>248 571 1                               | SEQ MACH              | 1 0.600 ]                    | 2 0.600                      | 3 0.600                      | 4 0.600 1                    | 5 0.600 1                    | 6 0.602 1                    | 7 0.602 1                    | 8 0.602 ]                    | 9 0.602 ]                   | 10 0.602 ]                  | 11 0.602 1                  | 12 0.602 ]                  | 13 0.602 1                  | 14 0.602 ]                  | 15 0.602 ]                  | 16 0.602 1                  | RUN TST P              | 249 571 1                  | SEC MACH              | 1 0.600 1                    | 2 0.600                      | 3 0.600                      | 4 0.600                      | 5 0.600                      | 6 0.600 ]                    | 7 0.600                      | 8 0.600 1                    | 9 0.600                     | 10 0.600                    | 11 0.602 1                  | 12 0.602                    | 13 0.602 1                  | 14 0.602 1                  | 15 0.602 ]                  | 16 0.602 ]                  |

1.000 0.999 666.0 0.599 0.9999 0.9999 1.000 .005 .003 665.0 1.004 0.999 1.000 ..003 666.0 1.000 F00. .006 .003 1.001 .002 .005 pF/p 665.0 066 1.001 0.599 0.999 0.999 DF/1 õ ٠ -0.021 0.003 .019 -0.012 0.013 0.006 0.006 0.003 0.014 0.011 .011 0.002 -0-015  $\sim$ -0.021 -0.010 0.002 4 5 0.025 0.021 0.002 0.007 -0.021 -0.021 -0.021 -0-01 -0.021 0.01 10. <u></u> 0 C 00 VA/V 0.000 0.000 000 000 000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 V A /V . ; • • •0 0.984 0.965 0.920 0.885 0.885 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.987 0.911 0.917 0.986 0.986 0.986 0.948 0.936 0.928 0.943 066 0.985 116 993 0.995 m 0.909 ŝ 0.949 F/V 0.996 0.931 0.980 VF/V 0.941 0.91 0.94 • • . > -20.00 04/9 ALPHA ALPHA -20.00 0A/Q 0.000 C.000 0.000 0.000 000.0 0.00.0 0.000 C• 000 0.00.0 0.000 C. 000 c.000 0.000 0.000 0.00.0 000.0 066.0 66.7 0F/9 0.974 0.972 0.930 0.840 0.774 0.777 0.777 0.777 0.777 0.777 0.753 0.819 0.819 0.819 0.923 0.923 0.968 0.969 0.969 0.969 65.1 QF/Q 0.991 0.898 0.874 0.832 0.859 0.824 0.887 0.864 0.883 0.979 0.961 986 C.899 0.392 0.941 T • 0.00.00 0.000 0000 0.000 0.000 0.000 0.000 000 694 Ma/m 000 79.4 1754 MF/W MA/W ٥. ۵. . 175.8 MF /N 0.955 0.982 0.985 0.985 6995 C•945 C•542 **C.915** C.878 O.872 O.891 O.905 525 0.878 870 930 s ω 3 ထ α) 0 Ø 0.963 0.879 0.912 0.984 C.983 955 0 0.948 16-0 C.928 0.901 94( C.94 )12.0 C.98( 66 56 ి . 0 3 ి 03 887 2708 -2.03 0 0.251 1.515 1875 (/CB Y/DE Z/DB -0.03 0.44 0.48 0.48 0.65 0.98 1.49 0.98 -0.69 -0.52 -2.05 -1.53 -1.04 -0.70 -0.54 -0.36 1.49 1.98 -0.22 0.63 0.12 0.29 0.47 79.0 1.16 •47 -1.52 -1.02 -0.18 РŢ -0.04 Ы σ RN/L 0.602 1.503 RN/L Y/DB -0.45 -0.45 -0.45 -0.45 -0.45 -0-45 C.41 -0-45 -0.45 -C • 45 .41 0.41 ŝ 0.41 0.41 0.41 0.41 41 ŝ 5 0.41 .41 •41 -0-45 -0-45 -0-45 -0.45 4. .4 . 4 4 • 4 4. 0.4 5 0 I  $\mathbf{c}$ O C  $\mathbf{O}$ 0  $\mathbf{O}$ NACH NACH • 49 .49 X/TB C. 77 C. 83 C .49 ထတ ŝ CONF ŝ 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 75.4 778.8 779.4 779.4 778.8 778.8 778.8 778.8 778.8 80.1 80.1 8°.1 T N ľ 66 90 O Ó 571 I MACH ۵. ۵ ----TST F 571 1 MACH 0.600 0.600 0.602 0.600 0.249 0.250 0.600 TST 0.602 0.602 0.600 0.600 1264 22220 251 SFQ 2 50 2 50 5 F C 0 ŝ RUN 20450700 21

565-0 1.000 666.0 565.0 0.999 0.9999 0.9999 1.000 666 °0 666°0 666°0 665°0 1.000 0.599 666.0 .000 666.0 666 665 999 0/4 0.999 0.999 665.0 0.999 1.000 0.999 1.000 0 . . -0.010 -0.012 -0-021 -0.030 -0.012 -0-019 S C) -0.010 -0.030 -0.012 -0.012 -0.021 -0.017 -0.010 -0-014 -0.006  $\sim \sim$ 2 \$ 9 -0.001 -0.021 -0.021 -0.021 -0.021 00.00 -0.02 -0.01 -0-01 -0-01 -0-01 -0.02 -0-01 -0.01 8 8 0.000 0.000 0.000 0.000 0.000 0000 000 000 000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 V A /V 0 • • 0 • . • 0.927 0.66.0 0.980 0.983 0.991 VF/V 0.986 0.960 0.917 0.895 0.912 0.908 0.928 0.905 0.994 0.992 0.979 0.919 0.384 ŝ 0.922 0.928 3 0.937 VF/V 0.925 0.912 0.931 0.915 0.987 0.998 0.991 0.931 0.92 0.931 ALPHA -20.00 -20.00 ALPHA 0.000 0.00.0 QA/Q 000.0 000.0 0.000 0.000 0.00.0 000.0 0.00.0 C•000 0A/Q c. 000 0.000 0.000 0.000 0.000 0.000 0.00.0 0.000 0.000 c.000 c.000 0.000 0.000 0.000 0.000 000.0 c.000 0.000 0.00.0 0.000 0.000 63.5 GF/0 C.849 0.959 3.9 0.965 0.984 0.842 877 QF /0 0.859 C.857 0.981 876 0.972 0.920 0.852 0.838 0.829 0.799 0.829 0.822 0.864 0.930 m 0.979 0.958 0.866 0.836 0.778 0.854 0.859 0.974 0.995 0.981 0.988 0 0 6 0.000 0000.0 0.000 0.000 0.000 0000.0 0000.0 WA/W 0.000 000 000 0.00.0 0.00.0 M / M 0.00.0 • 000 1794 0.000 0.000 0.000 0.000 0.000 0.000 0.00.000 0.000 0.00.0 0.00.0 0000.0 0.000 0.000 00000 000. 0.000 1794 0.00.0 D č 0 \*\* 8 \* 2 \* 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 \* / 4 8 Ó Ó 5.4 0.982 0.986 C.959 C.524 0.894 C•965 C.975 C.924 C.921 NH / N 122.0 .926 055 C.931 C.936 0.980 755 C.911 116.0 155 365 \* 3 0.916 10.507 0:5:0 0.915 ω 0.882 0.927 1-98-U C.918 355.0 Ĵ . O 874 0.250 1.514 1874 (/CB Y/DB Z/DB 3.49 0.43 -2.03 Y/DP Z/CP -C.48 -2.05 -0.48 -1.53 -1.52 -1.03 0.29 0.46 -0.54 -0.37 -0.20 -0-45 -0-53 -0-35 -1.04 -0.04 0.63 .97 9 • 64 0.12 0.03 • 14 ÷ ω a) œ Р -0.19 5 • • .4 6. \*\* 35 \*0 Ï, 40 00 -----5 0 - 2 - 5 2 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 2 - 5 2 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 0 0  $\mathbf{O}$ PN/L RA JL 64. 0.43 0 • 4 3 0 • 4 3 0.43 -0.48 .48 .48 0.43 C. 43 0.43 C.43 -0.48 ω  $\boldsymbol{\alpha}$ œ  $\mathbf{n}$ (m) m ~ 0.4 0.4 44 4. 4. 4 0.4 . о Т o 1 U I 0 1 O Ó NACH ļ VACH C•88 C•88 C•88 8.49 8.49 8.49 8.49 8.49 8.49 ビビン CCNF 78 • 8 78 • 8 78 • 8 78 • 8 78 • 1 78 • 1 78 • 1 78 • 1 78 • 1 4 4 5 5 78.1 1V 66 66 T N O O **Q** 571 1 p 0.249 0.249 0.249 0.249 MACH 249 249 249 249 248 249 248 248 248 571 . S ŝ . .... 00 • • 1221 NONTOOF О 255 SEC nm 4m 50 10 12222 ω δ 5 16 S ω 0

665

.

4

010

Õ

000

•

166

5

000

98]

000

C

55

ω

0.4

78

•

|            |           |        |        |        |               |        |        |        |        |        |        |        |        |        |        |        |        | QI     | <u> </u> | PO      | OF     | 2 (    | ຸວຸບ   | AI     | JT     | Ϋ́     |        |        |        |        |        |        |        |        |               |        |
|------------|-----------|--------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|
|            | bF∕0      | 0.999  | 0.9999 | 0.999  | 666*0         | 0.9999 | 665.0  | 0.9999 | 666*0  | 0.999  | 0.999  | 0.599  | 0.999  | 0.999  | 0° 595 | 1.000  | 1.000  |        |          | bE/b    | 1.000  | 0.999  | 0.999  | 665.0  | 665.0  | 0.9999 | 0.9999 | 0.599  | 665.0  | 665°U  | 0.999  | 0.9999 | 1.000  | 0.998  | 665.0         | 0,099  |
|            | CD        | -0.016 | -0.014 | -0.021 | -0.012        | 120.0- | -0.012 | -0.012 | -0.021 | -0.021 | -0.021 | -0.021 | -0.012 | -0.021 | -0.017 | -0.005 | -0.010 |        |          | ٥Ĵ      | -0.010 | -0.015 | -0.021 | -0.012 | -0.012 | -0.021 | -0.021 | -0.023 | -0.021 | -0.012 | -0.012 | -0.012 | -0.008 | -0.039 | -0.015        | -0.014 |
|            | V / J / V | 0.000  | 0.000  | 0.000  | 0* 0 00       | 0.000  | 0-000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.009  | 0.000  | 0.000  | 0.000  |        |          | V / V / | 0.000  | 0.000  | 000.0  | 000.0  | 0.000  | 0.000  | 0.000  | 00000  | 0.000  | 0.000  | 000.0  | 0.000  | 0.000  | 0.000  | 0.000         | 00000  |
| 40         | VF/V      | 0.935  | 0.942  | 0.941  | <b>0.</b> 896 | 0.878  | 0.845  | 0.857  | 0.875  | 0.863  | 0.889  | 0.912  | 0.916  | 0.959  | 0.993  | 0.938  | 0.994  | ۵      | 0        | VF/V    | 0.938  | 0.991  | 0.954  | 0.915  | 0.899  | 0.876  | 0.891  | 0.899  | 0.890  | 0.874  | 0.921  | 0.915  | 0.948  | 1.001  | <b>U.</b> 996 | 0.995  |
| ALPH       | 0A/0      | 0.000  | 0.000  | c.000  | 0.000         | 0.00.0 | 0.000  | 0.000  | C. UUO | 0.000  | 0•000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.00.0 | 0.000  | ALPH   | -20.0(   | 0A/O    | 0.000  | C. 000 | 0.000  | 0.000  | 0.000  | 0.000  | c. 000 | 0.00.0 | 0.000  | 0.00.0 | 0.000  | C. 000 | 0.000  | C•000  | 0.000         | 0.000  |
| 11<br>63_3 | 0F/0      | 0.871  | 0.886  | 0.884  | 0.801         | 0.767  | 0.712  | 0.731  | 0.762  | 0.741  | 0.787  | 0.829  | 0.837  | 0.919  | 0.984  | 0.976  | 0.988  | 11     | 63.1     | 0F/0    | 0.975  | 199.0  | 0.908  | 0.836  | 0.806  | 0.764  | C.790  | 0.806  | 0.789  | 0.761  | 0.846  | 0.836  | 0.898  | 1.000  | 166.0         | 0.989  |
| d 1794     | W/ 2W     | 0.000  | 0.00.0 | 0.000  | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.00.0 | 0      | 8 1794   | MA/M    | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.00.0 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000         | 0.00.0 |
| 34         | MF /N     | 0.934  | 0.942  | C.941  | 0.895         | C. 876 | 0.844  | 0.855  | C. E73 | 0.861  | C.888  | C.911  | C.915  | C.955  | 256.0  | 935.0  | 6.554  | ى      | 78.      | NF/N    | C.988  | 156*0  | 0.554  | 0.914  | 0.898  | C.875  | 0.885  | 0.898  | 0.385  | 0.873  | C.920  | C.914  | C•948  | 1.001  | 956.0         | 0.955  |
| L PT       | Z/08      | -2.03  | -1.52  | -1.01  | -0.10         | -0.53  | -0.36  | -0.19  | -0.02  | 0.14   | 0.30   | 0.48   | ŋ.65   | 10.97  | 1.18   | 1.48   | 1.95   | L pT   | 6 1874   | Z/DB    | -2.02  | -1.52  | -1.03  | -0.69  | -0.52  | -0.35  | -0.19  | -0.03  | 0.14   | 0.31   | 0.48   | 0.65   | 0.58   | 1.17   | 1.48          | 1.58   |
| A H PV/    | Y/DE      | -0.01  | 10.0-  | -0.01  | -0.01         | 10.0-  | -0.01  | -0.01  | -0.01  | -0.01  | -0.01  | -0-01  | -0.01  | -0.01  | -0.01  | -0.01  | 10-0-  | H RN   | 0 1.51   | Y/DR    | -0.36  | -0.36  | -0.36  | -0.36  | -0.36  | -0-36  | -0-36  | -0-36  | -0-36  | -0.36  | -0-36  | -0.36  | -0-36  | -0-36  | -0.36         | -0-36  |
| F NAC      | X/08      | 8.49   | 8.49   | 8.49   | 8.49          | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | F NAC  | 5 0.25   | X/CB    | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49          | 8-49   |
| TA CCN     | ge        | 78.1   | 77.4   | 78.1   | 78.8          | 78.1   | 78.8   | 78.8   | 78.1   | 78.8   | 78.8   | 78.8   | 79.4   | 79.4   | 79.4   | 79.4   | 78.8   | TN CCN | 66       | 0       | 78.8   | 78.8   | 78.1   | 4.61   | 78.8   | 78.8   | 78.8   | 78.8   | 79.4   | 79.4   | 79.4   | 4.67   | 4.97   | 77.4   | 78.8          | 78.8   |
| TST P      | MACH      | 3.249  | 0.248  | 3.249  | 0.250         | 3.249  | 0.250  | 0.250  | 0.249  | 0.250  | 0.250  | 0.250  | 0.252  | 0.252  | 0.252  | 0.252  | 3.250  | TST P  | 571 1    | MACH    | 0.250  | 0.250  | 0.249  | 0.252  | 0.250  | 0.250  | 0.250  | 3.250  | 0.252  | 0.252  | 0.252  | 0.251  | 3.251  | 0.248  | 2+250         | 3.250  |
| RUN        | S H C     | -      | 2 (    | 3      | )<br>*        | 5      | 9      | 2      | 8      | 6      | 10 (   | 11 (   | 12 (   | 13 (   | 14 (   | 15 (   | 16 (   | RUN    | 257      | SEG     | 1      | 2      | m      | 4      | ى<br>د | 0      | 2      | υ<br>Ω | 6      | 10     | 11 (   | 12 (   | 13 (   | 14 (   | 15 (          | 16 (   |

ORIGINAL PAGE IS

| 571 166 5 0.245 TSL 1794 62.9 -20.00 0.991 0.007 PF/P   0.249 78.1 8.49 -0.45 -1.52 0.557 0.000 0.990 0.000 0.990 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.999 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z | TST P | TN CCN | VH NA( | CH RN   | L PI   | U<br>L         |          | ٩   | 11     | ALPHA   |       |         |        |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|--------|--------|---------|--------|----------------|----------|-----|--------|---------|-------|---------|--------|-------|
| MACH   C   X/CB   Y/DB   Z/CP   VF/W   MA/M   GF/O   GA/Q   VF/V   VA/V   CP   PF/P     0.2249   78.1   8.49   -C.45   -1.52   C.955   0.000   0.994   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.000   0.999   0.0999   0.0999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999   0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 571 1 | 66     | 5.0    | 49 1.51 | C 18   | 74 78          | .1 17    | 94  | 62.9   | -20.00  | _     |         |        |       |
| 0.249 78.1 8.49 -C.45 -2.03 C.55C 0.000 0.991 0.000 0.990 0.000 -0.001 1.000<br>0.256 78.8 8.49 -C.45 -1.52 C.59C 0.000 0.928 0.000 0.964 0.000 -0.021 0.999<br>0.256 78.8 8.49 -C.45 -0.70 C.894 0.000 C.779 0.000 0.881 0.007 -0.021 0.999<br>0.256 78.8 8.49 -C.45 -0.70 C.887 0.000 0.773 0.000 0.881 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 -0.36 C.887 0.000 0.773 0.000 0.881 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 -0.36 C.887 0.000 0.773 0.000 0.919 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 -0.15 0.889 0.000 0.841 C.000 0.919 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.15 0.889 0.000 0.789 C.000 0.919 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.15 0.888 0.000 0.789 C.000 0.929 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.31 C.928 0.000 0.789 C.000 0.929 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.31 C.928 0.000 0.789 C.000 0.929 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.31 C.928 0.000 0.789 C.000 0.929 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.31 C.928 0.000 0.789 C.000 0.929 0.007 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.509 0.999 0.000 0.975 0.000 0.928 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.48 C.928 0.000 0.975 0.000 0.928 0.000 0.973 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.45 0.48 C.928 0.000 0.975 0.000 0.993 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.45 0.491 0.975 0.000 0.993 0.000 0.973 0.000 -0.021 0.993<br>0.249 78.1 8.49 -C.45 0.45 0.491 0.975 0.000 0.993 0.000 0.973 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.45 0.400 0.976 0.000 0.974 0.000 0.994 0.000 -0.017 0.999<br>0.249 78.1 8.49 -C.45 0.45 0.000 0.975 0.000 0.943 0.000 -0.017 0.999<br>0.249 78.1 8.49 -C.45 0.45 0.400 0.975 0.000 0.944 0.000 0.914 1.000<br>0.244 78.1 8.49 -C.45 0.914 0.976 0.000 0.945 0.000 0.914 1.074 0.004<br>0.954 242.3 10.88 0.41 -1.04 0.941 0.946 0.000 0.945 0.000 0.914 1.071                                                                                                                                                                                                                                                                       |   | MACH  | 0      | X/08   | Y/08    | 10/2   | AN S           | N N      | W/1 | 0F/0   | 04/0    | VF/V  | V A /V  | c b    | pF/p  |
| 0.249 78.1 8.49 -0.45 -1.52 C.990 0.979 C.000 0.990 0.000 -0.909 0.000 0.999 0.000 0.999 0.000 0.999 0.000 0.994 0.000 -0.021 0.999 0.299 0.200 0.894 0.000 -0.021 0.999 0.299 0.249 78.1 8.49 -0.45 -0.52 0.894 0.000 0.773 0.000 0.881 0.007 -0.021 0.999 0.299 0.2249 78.1 8.49 -0.45 -0.36 C.887 0.000 0.773 0.000 0.885 0.000 -0.919 0.000 -0.929 0.999 0.2249 78.1 8.49 -0.45 -0.19 0.918 0.000 0.919 0.000 -0.929 0.909 0.249 78.1 8.49 -0.45 -0.19 0.918 0.000 0.885 0.000 0.919 0.000 -0.929 0.999 0.249 78.1 8.49 -0.45 -0.19 0.918 0.000 0.789 0.000 0.919 0.000 -0.021 0.999 0.249 78.1 8.49 -0.45 0.11 0.928 0.000 0.789 0.000 0.919 0.000 -0.021 0.999 0.2249 78.1 8.49 -0.45 0.11 0.928 0.000 0.789 0.000 0.929 0.000 -0.021 0.999 0.249 78.1 8.49 -0.45 0.11 0.928 0.000 0.789 0.000 0.929 0.000 -0.021 0.999 0.299 0.200 0.249 78.1 8.49 -0.45 0.12 0.928 0.000 0.789 0.000 0.929 0.000 -0.021 0.999 0.299 0.200 0.249 78.1 8.49 -0.45 0.12 0.999 0.000 0.789 0.000 0.929 0.000 -0.021 0.999 0.299 0.200 0.249 78.1 8.49 -0.45 0.48 0.979 0.000 0.929 0.000 0.929 0.000 -0.021 0.999 0.299 0.200 0.249 78.1 8.49 -0.45 0.48 0.979 0.000 0.928 0.000 0.978 0.000 0.928 0.000 1.979 0.000 0.928 0.000 0.978 0.000 0.928 0.000 0.970 0.000 0.978 0.000 0.978 0.000 0.928 0.000 0.928 0.000 0.928 0.000 0.978 0.000 0.928 0.000 0.978 0.000 0.928 0.000 0.928 0.000 0.928 0.000 0.928 0.000 0.928 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.948 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.000 1.000 0.949 0.000 0.000 1.000 0.000 1.000 1.000 0.000 1.000 0.948 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.000 0.000                                                  |   | 0.249 | 78.1   | 8.49   | -0.45   | -2.03  | 3 0* 55        | 0.0      | 002 | 0.581  | 0.000   | 0.990 | 000.000 | -0.007 | 1.000 |
| 0.250 78.8 8.49 -C.45 -1.03 C.954 0.000 0.984 0.0021 0.999   0.249 78.1 8.49 -C.45 -0.879 0.000 0.884 0.0021 0.999   0.249 78.1 8.49 -C.45 -0.52 C.887 0.000 0.814 0.000 0.815 0.000 0.999 0.999   0.249 78.1 8.49 -C.45 -0.35 C.887 0.000 0.842 C.0001 0.999 0.999   0.249 78.1 8.49 -C.45 -0.15 C.818 0.000 0.842 C.0001 0.919 0.999   0.249 78.1 8.49 -C.45 -0.15 C.918 0.000 0.841 C.000 0.918 0.907 0.999   0.249 78.1 8.49 -C.45 0.15 C.928 0.000 0.929 0.000 0.918 0.999 0.000 0.999 0.999 0.000 0.929 0.001 0.999 0.999 0.000 0.918 0.999 0.000 0.918 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 0.249 | 78.1   | 8.49   | -0-45   | -1.52  | 2 C• 59        | C 0.0    | 000 | 0.979  | c.000   | 066.0 | 0.000   | -0.010 | 1.000 |
| 0.2250 78.8 8.49 -C.45 -0.70 C.894 0.000 0.896 0.000 0.891 0.000 0.999   0.2249 78.1 8.49 -C.45 -0.52 0.879 0.000 0.811 0.000 0.999   0.2249 78.1 8.49 -C.45 -0.36 C.887 0.000 0.841 0.000 0.919 0.000 0.999   0.2249 78.1 8.49 -C.45 -0.15 C.818 0.000 0.841 0.000 0.919 0.000 0.999   0.2249 78.1 8.49 -C.45 0.31 C.928 0.000 0.841 0.000 0.999 0.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 0.250 | 78.8   | 8.49   | -C.45   | -1.03  | 3 0.96         | 4 0.0    | 000 | 0.928  | 0.000   | 0.964 | 0.000   | -0.021 | 0.999 |
| 0.249 78.1 8.49 -C.45 -0.52 0.879 0.000 0.381 0.007 -0.021 0.999   0.249 78.1 8.49 -C.45 -0.36 C.887 0.000 C.385 0.0021 0.999   0.250 78.1 8.49 -C.45 -0.36 C.887 0.000 0.841 C.000 0.919 0.070 -0.999   0.250 78.1 8.49 -C.45 -0.15 0.518 0.000 0.841 C.000 0.919 0.070 -999   0.249 78.1 8.49 -C.45 0.15 0.588 0.000 0.841 C.0021 0.999   0.249 78.1 8.49 -C.45 0.31 C.928 0.000 0.913 0.001 0.999   0.249 78.1 8.49 -C.45 0.48 C.921 0.996 0.001 0.993 0.001 0.993 0.001 0.999   0.249 78.1 8.49 -C.45 0.48 C.973 0.090 0.913 0.001 0.995 0.001 0.995 0.001 <td></td> <td>0.250</td> <td>78.8</td> <td>8.49</td> <td>-0-45</td> <td>-0-7(</td> <td>0 C.85</td> <td>4 0.0</td> <td>000</td> <td>0.799</td> <td>000.0</td> <td>0.896</td> <td>0.000</td> <td>-0.021</td> <td>0.999</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 0.250 | 78.8   | 8.49   | -0-45   | -0-7(  | 0 C.85         | 4 0.0    | 000 | 0.799  | 000.0   | 0.896 | 0.000   | -0.021 | 0.999 |
| 0.249 78.1 8.49 -C.45 -0.36 C.883 0.000 C.780 C.000 0.885 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 -0.19 0.918 0.000 0.847 C.000 0.919 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 -0.15 C.988 0.000 0.789 C.000 0.929 0.000 -0.021 0.999<br>0.249 78.1 8.49 -0.45 0.31 C.928 0.000 0.789 C.000 0.929 0.000 -0.021 0.999<br>0.249 78.1 8.49 -0.45 0.31 C.928 0.000 0.861 0.000 0.929 0.000 -0.021 0.999<br>0.249 78.1 8.49 -0.45 0.31 C.928 0.000 0.879 0.000 0.929 0.000 -0.021 0.999<br>0.249 78.1 8.49 -0.45 0.31 C.928 0.000 0.973 0.000 0.929 0.000 -0.021 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.973 0.000 0.928 0.000 1.0999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.928 0.000 1.0993 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.977 0.000 0.945 0.000 1.0003 1.000<br>0.249 78.1 8.49 -0.45 1.28 C.988 0.000 0.977 0.000 0.945 0.000 1.0003 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.982 0.000 0.977 0.000 0.945 0.000 1.0003 1.000<br>0.249 78.1 8.49 -0.45 1.28 C.988 0.000 0.977 0.000 0.945 0.000 7.0003 1.000<br>0.249 78.1 8.49 -0.45 1.28 C.988 0.000 0.977 0.000 0.945 0.000 7.0003 1.000<br>0.249 78.1 8.49 -0.45 1.28 C.988 0.000 0.977 0.000 0.945 0.000 7.000 7.0003 1.000<br>0.244 78.1 8.49 -0.45 1.28 C.988 0.000 0.977 0.000 0.945 0.000 7.000 7.000 0.945 0.000 7.000 0.945 0.000 0.945 0.000 0.945 0.000 0.945 0.000 0.945 0.000 0.945 0.000 0.945 0.000 0.946 0.000 0.945 0.000 0.946 0.000 0.946 0.000 0.937 1.007<br>0.034 2.42.3 10.88 0.41 -1.034 0.946 0.000 0.946 0.000 0.946 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 |   | 0.249 | 78.1   | 8.49   | -0.45   | -0.52  | 2 0.87         | 9 0.0    | 000 | 0.773  | 0.000   | 0.881 | 0.000   | -0.021 | 0.999 |
| 0.249 78.1 8.49 -C.45 -0.19 0.918 0.000 0.841 C.000 0.918 0.000 -0.021 0.999<br>0.250 78.8 8.49 -C.45 -0.02 C.518 0.000 0.841 C.000 0.918 0.000 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.31 C.928 0.000 0.789 C.000 0.929 0.000 -0.021 0.999<br>0.256 78.8 8.49 -C.45 0.31 C.925 0.000 0.929 0.000 -0.021 0.999<br>0.256 78.1 8.49 -C.45 0.31 C.925 0.000 0.973 0.000 -0.929 0.000 -0.999<br>0.249 78.1 8.49 -C.45 0.50 0.939 0.000 0.975 0.000 0.938 0.000 -0.017 0.999<br>0.249 78.1 8.49 -C.45 0.58 0.939 0.000 0.975 0.000 0.938 0.000 -0.017 0.999<br>0.249 78.1 8.49 -C.45 1.18 0.988 0.000 0.975 0.000 0.938 0.000 -0.017 0.999<br>0.249 78.1 8.49 -C.45 1.18 0.988 0.000 0.975 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.48 C.985 0.000 0.976 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.48 C.982 0.000 0.976 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.48 C.982 0.000 0.976 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.48 C.982 0.000 0.976 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.58 C.988 0.000 0.976 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.58 C.988 0.000 0.977 0.000 0.938 0.000 700 700 700<br>0.249 78.1 8.49 -C.45 1.58 C.988 0.000 0.977 0.000 0.938 0.000 1.0008<br>0.249 78.1 8.49 -C.45 1.98 C.988 0.000 0.977 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.988 0.000 0.977 0.000 0.945 0.000 0.945 0.000 0.945 0.000 0.941 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 0.249 | 78.1   | 8.49   | -0-45   | -0-36  | 5 C.88         | 0.0      | 000 | C. 780 | c. 000  | 0.385 | 0.000   | -0.021 | 0.999 |
| 0.250 78.8 8.49 -C.45 -0.C2 C.518 0.000 0.841 C.000 0.918 U.0C0 -0.021 0.999<br>0.249 78.1 8.49 -C.45 0.15 C.888 0.000 0.789 C.000 0.929 0.0C0 -0.021 0.999<br>0.250 78.8 8.49 -0.45 0.31 C.928 0.000 0.861 0.000 0.929 0.0C0 -0.021 0.999<br>0.249 78.1 8.49 -0.45 0.48 C.577 0.000 0.861 0.000 0.928 0.0C0 -0.021 0.999<br>0.249 78.1 8.49 -0.45 0.65 0.939 0.000 0.973 0.0C0 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.973 0.0C0 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.939 0.0C0 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.977 0.000 0.938 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.988 0.000 0.977 0.000 0.935 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.977 0.000 0.938 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.988 0.000 0.977 0.000 0.935 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.988 0.000 0.977 0.000 0.935 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.988 0.000 0.977 0.000 0.938 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.989 0.000 0.977 0.000 0.938 0.0C0 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.989 0.000 0.977 0.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.989 0.000 0.977 0.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.989 0.000 0.977 0.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.98 C.989 0.000 0.977 0.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.04 682 241.2 381 66.2 10.00<br>0.976 0.0976 0.975 0.000 0.976 0.076 0.074 1.0026<br>0.954 242.3 10.88 0.41 -1.04 C.964 0.975 0.995 0.0976 0.074 1.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 0.249 | 78.1   | 8.49   | -0.45   | -0.1   | 9 0.91         | 8 0°0    | 000 | 3.842  | c.000   | 0.919 | 0.000   | -0.021 | 0.999 |
| 0.249 78.1 8.49 -0.45 0.15 0.888 0.000 0.789 0.000 0.929 0.000 -0.021 0.999<br>0.250 78.8 8.49 -0.45 0.31 0.928 0.000 0.928 0.000 -0.021 0.999<br>0.250 78.1 8.49 -0.45 0.48 0.577 0.090 0.928 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 0.65 0.939 0.000 0.978 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.973 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.48 0.988 0.000 0.975 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.988 0.000 0.975 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.988 0.000 0.975 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.988 0.000 0.975 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.988 0.000 0.976 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.588 0.000 0.976 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.588 0.000 0.976 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.588 0.000 0.976 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.588 0.000 0.976 0.000 0.948 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.58 0.41 -0.500 0.976 0.000 0.948 0.000 0.976 0.000 1.000<br>0.954 242.3 10.88 0.41 -1.53 0.964 0.976 0.972 0.972 0.974 0.974 0.974 0.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 0-250 | 78.8   | 8.49   | -0.45   | -0.02  | 2 C.51         | 0°0<br>8 | 000 | 0.841  | 0.000   | 0.918 | 0.000   | -0.021 | 0.999 |
| 0.249 78.1 8.49 -0.45 0.31 C.928 0.000 0.861 0.000 0.929 0.000 -0.021 0.999<br>0.250 78.8 8.49 -0.45 0.48 C.577 0.000 0.980 0.000 0.928 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 0.65 0.939 0.000 0.973 0.000 0.973 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.945 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.988 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.945 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.975 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.975 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.975 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.975 0.000 0.988 0.000 0.937 1.000<br>0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 0.000 0.988 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 0.000 0.937 0.000 7.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 0.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 0.000 0.998 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 0.000 0.938 0.000 0.001 1.000<br>0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 0.000 0.938 0.000 0.001 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 0.249 | 78.1   | 8.49   | -0.45   | 0.14   | 5 0.88         | 8 0.0    | 000 | 0.789  | 0.00.0  | 0.890 | 0.000   | -0.021 | 0.999 |
| 0.250 78.8 8.49 -0.45 0.48 C.57 0.000 0.859 C.000 0.928 0.000 -0.071 0.999<br>0.249 78.1 8.49 -0.45 0.65 0.939 0.000 0.880 C.000 0.939 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.938 0.000 -0.008 1.000<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.938 0.000 -0.001 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.985 0.000 0.975 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.985 0.000 0.975 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.989 0.000 0.975 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.976 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.989 0.000 0.976 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.989 0.000 0.976 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.989 0.000 0.977 0.000 0.938 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 C.988 0.000 0.976 0.093 0.000 1.000<br>0.951 1.66 5 0.951 1.480 682 241.2 381 66.2 10.00<br>MACH 0 X/CB Y/CB Z/DB MF/W MA/M 07/0 0.46 0.976 0.976<br>0.954 242.3 10.88 0.41 -1.53 C.967 0.959 0.0976 0.037 1.026<br>0.954 2422.3 10.88 0.41 -1.04 C.964 0.949 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 0.249 | 78.1   | 8.49   | -0.45   | 0.31   | 1 C.92         | 8 0.0    | 000 | 0.861  | 0.000   | 0.929 | 0.000   | -0-021 | 9,999 |
| 0.249 78.1 8.49 -0.45 0.65 0.939 0.000 0.880 0.000 0.939 0.000 -0.017 0.999<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.938 0.000 -0.008 1.000<br>0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.988 0.000 -0.003 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.988 0.000 0.975 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.989 0.000 0.975 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.985 0.000 0.976 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.985 0.000 0.976 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.985 0.000 0.976 0.988 0.000 0.937 1.000<br>0.249 78.1 8.49 -0.45 1.480 682 241.2 381 66.2 10.00<br>MACH 0 X/UB Y/UB Z/DB MF/M 0F/0 0.966 0.976 0.976 0.037 1.026<br>0.951 241.2 10.88 0.41 -1.53 0.967 0.959 0.976 0.976 0.037 1.026<br>0.954 242.3 10.88 0.41 -1.04 0.964 0.971 0.959 0.976 0.976 0.037 1.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 0.250 | 78.8   | 8.49   | -0.45   | 0.48   | 5.52 B         | 7 0.0    | 000 | 0.859  | C.000   | 0.928 | 0.000   | -0.021 | 0.999 |
| 0.249 78.1 8.49 -C.45 C.98 C.973 0.000 C.945 C.000 0.973 0.000 -0.017 0.999<br>0.249 78.1 8.49 -C.45 1.18 0.988 0.000 0.975 0.000 0.988 0.000 -0.003 1.000<br>0.249 78.1 8.49 -C.45 1.48 C.985 0.000 0.975 0.000 0.988 0.000 -0.001 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.989 0.000 0.975 C.000 0.988 0.007 0.001 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.589 0.000 0.975 C.000 0.988 0.007 0.001 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.589 0.000 0.975 C.000 0.988 0.007 -0.003 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.589 0.000 0.975 C.000 0.988 0.007 -0.003 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.589 0.000 0.975 C.000 0.988 0.007 0.001 1.000<br>0.951 1 66 5 0.951 1.480 682 241.2 381 66.2 10.00<br>MACH 0 X/CB Y/CB Z/DB MF/W MA/M 0F/O 0A/Q VF/V VA/V CP 0.037 1.026<br>0.951 241.2 1C.88 0.41 -2.04 0.971 0.966 0.976 0.976<br>0.954 242.3 1C.88 0.41 -1.53 C.967 0.959 0.976 0.037 1.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 0.249 | 78.1   | 8.49   | -0.45   | 0.65   | 5 0.93         | 0.0 2    | 100 | 0.880  | 0.00.0  | 0.939 | 0.000   | -0.012 | 0.599 |
| 0.249 78.1 8.49 -0.45 1.18 0.988 0.000 0.975 0.000 0.988 0.000 -0.008 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.985 0.000 0.970 0.000 0.985 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.48 0.985 0.000 0.975 0.000 0.988 0.000 1.000<br>0.249 78.1 8.49 -0.45 1.98 0.589 0.000 0.975 0.000 0.988 0.000 1.000<br>757 F Th CCNF MACH Ph/L PT G P TT ALPHA<br>571 1 66 5 0.951 1.480 682 241.2 381 66.2 10.00<br>MACH Q X/DB Y/DB MF/M MA/M 0F/0 0A/Q VF/V VA/V CP PF/P<br>0.951 241.2 10.88 0.41 -2.04 0.971 0.966 0.976 0.976<br>0.954 242.3 10.88 0.41 -1.53 0.967 0.959 0.972 0.972 0.0141 1.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 0.249 | 78.1   | 8.49   | -0.45   | 36 0   | 8 C.97         | 0.0      | 000 | 0.945  | 0.000   | 0.973 | 0.000   | -0.017 | 0.999 |
| 0.249 78.1 8.49 -C.45 1.48 C.985 0.000 0.970 0.000 0.935 0.000 -0.003 1.000<br>0.249 78.1 8.49 -C.45 1.98 C.588 0.000 0.975 C.000 0.988 0.000 1.000<br>1.000<br>TST F Th CCNF MACH Ph/L PT C P TT ALPHA<br>571 1 66 5 C.951 1.480 682 241.2 381 66.2 10.00<br>MACH 0 X/CB Y/CB Z/DB MF/W MA/M 0F/0 0A/Q VF/V VA/V CP PF/P<br>0.951 241.2 1C.88 0.41 -2.04 0.971 0.966 0.976 0.976 0.037 1.026<br>0.954 242.3 1C.88 0.41 -1.53 C.967 0.959 0.972 0.037 1.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 0.249 | 78.1   | 8.49   | -0-45   | 1.18   | 3 0.98         | 0.0 8    | 000 | 0.975  | 0.000   | 0.988 | 0.000   | -0-008 | 1.000 |
| 0.249 78.1 8.49 -0.45 1.58 C.589 0.000 0.975 C.000 0.988 0.000 1.000<br>TST P Th CCNF MACH Ph/L PT C P TT ALPHA<br>571 1 66 5 0.951 1.480 682 241.2 381 66.2 10.00<br>MACH Q X/CB Y/C9 2.708 MF/W MA/M 0F/0 0A/Q VF/V VA/V CP PF/P<br>0.951 241.2 1C.88 0.41 -2.04 0.971 0.966 0.976 0.976 0.037 1.026<br>0.954 242.3 1C.88 0.41 -1.53 C.967 0.959 0.972 0.037 1.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 0.249 | 78.1   | 8.49   | -0.45   | 1.48   | 8 C.98         | 5 0.0    | 000 | 0.970  | 0.000   | 0.935 | 0.000   | -0.003 | 1.000 |
| TST F Th CCNF MACH Ph/L PT C P TT ALPHA<br>571 1 66 5 0.951 1.480 682 241.2 381 66.2 10.00<br>MACH Q X/DB Y/DB Z/DB MF/W MA/M 0F/O 0A/Q VF/V VA/V CP PF/P<br>0.951 241.2 1C.88 0.41 -2.04 0.971 0.966 0.976 0.976 0.037 1.026<br>0.954 242.3 1C.88 0.41 -1.53 C.967 0.959 0.972 0.072 0.034 1.021<br>0.954 242.3 1C.88 0.41 -1.04 C.964 0.949 0.969 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 0.249 | 78.1   | 8.49   | -0.45   | 1•9(   | 8 <b>C.</b> 58 | 8 0°C    | 300 | 0.975  | c. 000  | 0.988 | 0.000   | 0.001  | 1.000 |
| TST F Th CCNF MACH Ph/L PT G FT ALPHA   571 1 66 5 0.951 1.480 682 241.2 381 66.2 10.00   MACH 0 X/CB Y/CB Z/DB MF/W 0A/M 0F/O 0A/Q VF/V VA/V CP PF/P   MACH 0 X/CB Y/CB Z/DB MF/W 0A/M 0F/O 0A/Q VF/V CP PF/P   0.951 241.2 1C.88 0.41 -2.04 0.971 0.966 0.976 0.071 0264   0.954 242.3 1C.88 0.41 -1.53 C.967 0.959 0.972 0.041 1.026   0.954 242.3 1C.88 0.41 -1.04 C.964 0.949 0.969 0.0344 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |       |        |        |         |        |                |          |     |        |         |       |         |        |       |
| 571 I 66 5 0.951 I.480 682 241.2 381 66.2 10.00<br>MACH Q X/CB Y/CB Z/DB MF/N MA/M QF/O 0A/Q VF/V VA/V CP PF/P<br>0.951 241.2 IC.88 0.41 -2.04 0.971 0.966 0.976 0.976 0.037 I.C24<br>0.954 242.3 IC.88 C.41 -1.53 C.967 0.959 0.972 0.041 I.026<br>0.954 242.3 IC.88 0.41 -1.04 C.964 0.949 0.969 0.0372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | TST P | TN CCN | VE NA  | CH PN   | L P    | 0              |          | a.  | 11     | ALPHA   | _     |         |        |       |
| MACH   Q   X/CB   Y/CB   Z/DB   MF/W   MA/M   QF/O   QA/Q   VF/V   VA/V   CP   PF/P     0.951   241.2   1C.88   0.41   -2.04   0.971   0.956   0.976   0.037   1.024     0.954   242.3   1C.88   0.41   -1.53   C.967   0.959   0.972   0.041   1.026     0.954   242.3   1C.88   0.41   -1.53   C.967   0.959   0.972   0.041   1.026     0.954   242.3   1C.88   0.41   -1.04   C.964   0.949   0.959   0.0349   0.0134   1.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 571 1 | 66     | 5 0.95 | 51 1.48 | 30 68  | 82 241         | •~ 3     | 181 | 66.2   | 10.00   | _     |         |        |       |
| 0.951 241.2 1C.88 0.41 -2.04 0.971 0.966 0.976 0.037 1.C24<br>0.954 242.3 1C.88 C.41 -1.53 C.967 0.959 0.972 0.972 0.041 1.026<br>0.954 242.3 1C.88 0.41 -1.04 C.964 0.949 0.969 0.969 0.034 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | MACH  | o      | X/DB   | Y/09    | Z / DE | 3 MF/          | N NA     | W/  | 0F/0   | 0 A / O | VF/V  | V 4 / V | د<br>ن | br/b  |
| 0.954 242.3 1C.88 C.41 -1.53 C.967 0.959 0.972 0.041 1.026<br>0.954 242.3 1C.88 0.41 -1.04 C.964 0.949 0.969 0.034 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 0.951 | 241.2  | 10.88  | 0.41    | -2.04  | 4 0.97         | 1        | ~   | 0.966  |         | 0.976 |         | 0.037  | 1.024 |
| 0.954 242.3 1C.88 0.41 -1.04 C.964 0.949 0.969 0.969 0.034 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 0.954 | 242.3  | 1C.83  | 0.41    | -1.55  | 3 C.96         | 7        |     | 0.959  |         | 0.972 |         | 0.041  | 1.026 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 0.954 | 242.3  | 1C.88  | 0-41    | -1.02  | 4 C.96         | 4        | -   | 0.949  |         | 0.969 |         | 0-034  | 1-021 |

.

|       |            | pr/p    | 7 1.024 | 1.026  | 1.021  | 3 1.015 | 1.015  | 1.009     | 1.007  | 1.006  | 7 1.005       | 5 1.003 | 665.0 5 | 100.1 | 5 1.003   | 3 1.005 | 5 1.016 | 3 1. C31 |
|-------|------------|---------|---------|--------|--------|---------|--------|-----------|--------|--------|---------------|---------|---------|-------|-----------|---------|---------|----------|
|       |            | د<br>م  | 0-03    | 0.041  | 0.034  | 0.023   | 0.024  | 0.014     | 0.011  | 0.010  | 0.00          | 00.00   | -0.002  | 0.001 | 0.005     | 00.0    | 0.025   | 0.048    |
|       |            | V 4 / V |         |        |        |         |        |           |        |        |               |         |         |       |           |         |         |          |
|       |            | VF/V    | 0.976   | 0.972  | 0.969  | 0.930   | 0.938  | 0.938     | 0.929  | 0.921  | 0.909         | 0.892   | 0.902   | 0.883 | 0.400     | 0.931   | 0.960   | 0.972    |
| ALPHA | 10.00      | 0A/0    |         |        |        |         |        |           |        |        |               |         |         |       |           |         |         |          |
| 1 L   | 66.2       | 0F/0    | 0.966   | 0.959  | 0.949  | 0.856   | 0.873  | 0.868     | 0.849  | 0.831  | 0.805         | 0.769   | 0.785   | 0.751 | 0.786     | 0.851   | C.923   | 0.964    |
| ۵.    | 381        | M / M   |         |        |        |         |        |           |        |        |               |         |         |       |           |         |         |          |
| 0     | 241.2      | MF /N   | 176.0   | C.967  | C.964  | 516.0   | C.927  | C.928     | 0.918  | C.905  | <b>C.</b> 895 | C.876   | C.887   | 0.866 | C • 8 8 5 | 0.920   | 0.953   | C.967    |
| Ld    | 682        | Z/08    | 2.04    | 1.53   | 1.04   | 0.70    | 0.54   | 16.0      | 0.20   | 0.04   | 0.13          | 0.25    | 0.46    | 0.63  | 0.96      | 1.17    | 1.47    | 1.96     |
| D/Nd  | 1.480      | K/DB    | 0.41 -  | 0.41 - | - 14.0 | 0.41 -  | - 14-0 | 0.41 -    | C.41 - | 0.41 - | 0.41          | 14.0    | 0.41    | 0.41  | 0.41      | 0.41    | 0.41    | 14.0     |
| MACH  | 0.951      | (/ CB   | . 88    | . 83   | .88    | . 88    |        | . 83      | .88    | .88    | . 88          | .88     | . 88    | . 88  | . 88      | . 88    | . 88    | . 88     |
| CONF  | <b>u</b> n | ×       | 2 10    | 10     | 3 10   | В 10    | 8 10   | 3 10      | 10     | 3 10   | 3 10          | 3 10    | 8 IC    | 8 1C  | .8 1C     | 8 1C    | .8 IC   | 2 10     |
| D TV  | 1 66       | C       | 241.    | 242.   | 242.   | 242.    | 242.   | 242.      | 242.   | 242.   | 242.          | 242.    | 241.    | 241.  | 241.      | 241.    | 241.    | 241.     |
| TST   | 571        | MACH    | 0.951   | 0.954  | 0.954  | 0.956   | 0.956  | 0.955     | 0.955  | 0.955  | 0.955         | 0.955   | 0.953   | 0.953 | 0.953     | 0.953   | 0.953   | 0.951    |
| 5     | 56         | С<br>Ш  | 2       | m      | 4      | ŝ       | φ      | <b>~~</b> | ω      | σ      | 10            | 11      | 12      | 13    | 14        | 5       | 16      | 17       |

|        |                  | DF/D             | 1.027 | 1.024 | 020.1  | 210-1  | 1.009 | 1-006 | 1.003 | 1.003 | 1.002 | 1.000  | 0.999  | 1.003 | 1.010    | 1.019        | 1.029   |        |        | pF/p   | 1.024 | 1.020 | 1.014 | 1.010      | 1.007 | 1.005         | 1.003 | 1.00.1 | 1.000   | 792.0  | 666.0  | 1.001    | 1.001 | 1.006    | 1.020 | 1.035  |
|--------|------------------|------------------|-------|-------|--------|--------|-------|-------|-------|-------|-------|--------|--------|-------|----------|--------------|---------|--------|--------|--------|-------|-------|-------|------------|-------|---------------|-------|--------|---------|--------|--------|----------|-------|----------|-------|--------|
|        |                  | <u>د</u>         | 0.042 | 150.0 |        | 0.017  | 0-014 | 0.009 | 0.004 | 0.004 | 0.003 | -0.000 | -0.002 | 0.005 | 0.016    | 0-030        | 0.047   |        |        | d C    | 0.037 | 0.031 | 0.022 | 0.016      | 0.012 | 0.008         | 0.005 | 0.002  | 100.0-  | -0.005 | -0.002 | 0.002    | 0.002 | 0.010    | 0.031 | 0.055  |
|        |                  | V A /V           |       |       |        |        |       |       |       |       |       |        |        |       |          |              |         |        |        | V A /V |       |       |       |            |       |               |       |        |         |        |        |          |       |          |       |        |
| HA     | 00               | Q VF/V           | 0.904 | 0.936 | 076-0  | 016-03 | 0.885 | 0.884 | 0.876 | 0.871 | 0.360 | 0.874  | 0.857  | 0.880 | 0.903    | 0.939        | 0.974   | НА     | 00     | Q VF/V | 0.969 | 0.974 | 0.969 | 0.939      | 0.918 | 0.903         | 0.901 | 0.891  | 0.893   | 0.388  | 0.878  | 0.885    | 0.900 | 0.923    | 0.949 | 0.961  |
| ALP    | 10.              | OA/              |       |       |        |        |       |       |       |       |       |        |        |       |          |              |         | ٩LP    | 10.    | 0A/    |       |       |       |            |       |               |       |        |         |        |        |          |       |          |       |        |
| TT     | 61.3             | QF/Q             | 0.815 | 0.857 | ACA 0  | 0_798  | 0.760 | 0.756 | 0.739 | 0.729 | 0.709 | 0.732  | C.701  | 0.746 | 0.798    | 0.880        | 0.967   | TT     | 68.0   | 0F70   | 0.950 | 0.959 | 0.941 | 0.872      | 0.826 | 0.794         | 0.738 | 0.766  | 0.769   | 0.756  | 0.739  | 0.755    | 0.784 | 0.834    | 0.902 | 0.942  |
| 0      | 382              | M A / M          |       |       |        |        |       |       |       |       |       |        |        |       |          |              |         | ۵      | 383    | N/VH   |       |       |       |            |       |               |       |        |         |        |        |          |       |          |       |        |
| د      | 242.5            | N / J N          | 0,036 | C.017 | C.00.7 | 0.889  | C.868 | C.867 | 0.858 | C.852 | 0.841 | 0.856  | C.838  | 0.363 | 0.885    | 0.929        | 0.969   | ى      | 242.4  | MF /N  | C.963 | C.970 | C.964 | 0.925      | 0.906 | <b>C.</b> 389 | 0.887 | 0.875  | 0.877   | 0.871  | 0.860  | 0.868    | 0.885 | 0.910    | C.941 | 0.954  |
| L PT   | 5 686            | 2012             |       | 1.04  | 02.0-  | -0.54  | -0-38 | -0.20 | -0-04 | 0.13  | 0.30  | 0.46   | 0.63   | 0.96  | I.16     | <b>1.</b> 46 | 1.96    | L pT   | 0 685  | 2/08   | -2.04 | -1.54 | -1.04 | -0.71      | -0-54 | -0.37         | -0.21 | -0.03  | 0.12    | 0.30   | 0.46   | 0.63     | 0.97  | 1.17     | 1.46  | 1.97   |
| H PN   | 2 <b>1 - 4</b> 8 |                  |       |       |        | -0-03  | -0-03 | £0.0- | -0.03 | -0-03 | -0.03 | -0-03  | -0.03  | -0.03 | -0.03    | -0-03        | -0-03   | H RNJ  | 1 1.48 | Y/DB   | -0-38 | -0.38 | -0.38 | -0.38      | -0-38 | -0.38         | -0.38 | -0-38  | -0.38   | -0-38  | -C.38  | -C.38    | -0.38 | -0-38    | -0.38 | -C•38  |
| AF VAC | 5 <b>6 4 9</b> 5 | N 00             |       |       | 10.88  | 10.88  | 10.88 | 10.88 | 10.88 | 10.88 | 10.88 | 1C.88  | 1 C.88 | 10.88 | 1 C • 88 | 10.88        | I C. 88 | F NAC  | 56.03  | X/CR   | 1C.88 | 10.88 | 1C.88 | 1 C • 88 · | 1C.88 | 10.88         | 1C.88 | 10.89  | 10.88   | 10.88  | 10.83  | 1 C . 88 | 10.88 | 1 C • 88 | 1C.88 | 1C.88  |
| TN CC  | 0<br>0<br>0      |                  | 242.5 | 242.4 | 242.4  | 242.4  | 241.5 | 241.9 | 241.5 | 241.5 | 241.9 | 241.9  | 241.5  | 241.5 | 241.5    | 241.1        | 241.1   | TN CCN | 66     | C      | 242.4 | 242.4 | 242.4 | 242.4      | 242.4 | 242.4         | 242.4 | 242.4  | 242.4   | 242.4  | 242.4  | 242.4    | 242.4 | 241.9    | 241.4 | 241.C  |
| TST P  |                  |                  | 0.051 | 156-0 | 126-0  | 0.951  | 0.950 | 0.950 | 0-950 | 0.950 | 0.950 | 0.950  | 0.948  | 0.948 | 0.948    | 0.946        | 0.946   | TST P  | 571 1  | MACH   | 0.951 | 0.951 | 0.951 | 0.951      | 0.951 | 0.951         | 0.951 | 0.951  | 2 156.0 | 0.951  | 0.951  | 0.951    | 0.951 | 0.950    | 0.949 | . 1947 |
| RUN    |                  | 39 =<br>L:<br>/> | - 0   | 1 60  | 4      | ŝ      | ç     | 7     | ω     | თ     | 10    | 11     | 12     | -     | 14       | 15           | 16      | RUN    | 261    | C L S  | H     | 2     | m     | 4          | ŝ     | Ş             | 2     | æ      | 6       | 10     | 11     | 12       | 1     | 14       | 15    | 16     |

|                                               | A/V CP PF/P         | 0.036 1.023             | 0.035 1.022             | 0.025 1.016             | 0.019 1.012             | 0.015 1.010             | 0.008 1.005             | 0.004 1.003             | 0.000 1.000             | -0.002 0.599           | -0.003 0.998           | 0.005 1.003            | 0.007 1.004            | 0.012 1.008            | 0.017 1.011            | 0.028 1.018            | 0.050 1.032            |                   |                         | A/V CP PF/P         | 0.032 1.020           | 0.030 1.019           | 0.023 1.015           | 0.015 1.012           | 0.008 1.005           | 0.011 1.007           | 0.007 1.005           | 0.002 1.001           | -0.003 0.598         | -0.010 0.993         | -0.012 0.992         | -0.021 0.987         | -0.020 0.587         | -0.006 0.596         | 0.012 1.007          | 0.044 1.627          |
|-----------------------------------------------|---------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------|-------------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| AL PHA<br>10-00                               | QA/Q VE/V V         | 0.973                   | 0.974                   | 0.969                   | 0.927                   | 0.922                   | 0.923                   | 0.918                   | 0.906                   | 0.905                  | 0.883                  | 0.881                  | 0.880                  | 0.902                  | 0.922                  | 0.957                  | 0.971                  | ALPHA             | 10.00                   | QA/Q VE/V V         | 176.0                 | 0.977                 | 0.971                 | 0.924                 | 0.938                 | 0.936                 | 0.925                 | 0.910                 | 0.836                | 0.874                | 0.870                | 0.878                | 0.926                | 0.959                | 0.973                | 0.974                |
| 71 C<br>383 68-6                              | MA/N CF/Q           | 0-960                   | 0.960                   | C.944                   | 0.848                   | 0.837                   | 0.334                   | 0.822                   | 0.795                   | 0.792                  | 0.749                  | 0.748                  | 0.747                  | 0.794                  | 0.836                  | 0.918                  | 0.962                  | LL d              | 382 69.4                | MA/N OF/O           | 0.967                 | 0.964                 | 0*646                 | 0.841                 | 0.866                 | 0.863                 | 0.838                 | 0-803                 | 0.754                | 0.729                | - C.720              | 0.730                | 0.826                | 0.902                | 0.944                | 0.965                |
| CNF MACH PN/L PT C<br>5 0.951 1.478 685 242.4 | X/08 Y/08 Z/08 MF/W | 10.88 -0.48 -2.04 0.969 | 10.88 -C.48 -1.55 C.969 | 1C.88 -C.48 -1.04 C.964 | IC.88 -C.48 -0.71 0.915 | IC.88 -C.48 -0.54 C.9IC | I0.88 -C.48 -0.37 C.911 | 1C.88 -C.48 -O.21 C.9C5 | 10.88 -C.48 -0.04 0.852 | 1C.88 -C.48 0.13 C.890 | IC+88 -C+48 0+29 0+866 | 1C.88 -0.48 0.47 0.864 | 1C.88 -C.48 0.64 0.862 | 10-88 -C.48 0.56 C.888 | IC.88 -0.48 I.17 0.909 | IC.88 -C.48 1.46 C.950 | 10.88 -0.48 1.97 C.966 | NF WACH RN/L PT G | 5 0.952 1.474 684 242.3 | X/CB Y/CP Z/DB WF/W | E.49 0.43 -2.03 C.973 | E.49 C.43 -1.52 C.972 | E.49 0.43 -1.03 C.966 | E.49 0.43 -0.68 C.912 | 8.49 0.43 -0.52 0.928 | 8.49 0.43 -0.35 0.926 | 8.49 C.43 -0.15 C.913 | 8.49 0.43 -0.03 0.896 | 8.49 C.43 O.14 O.869 | 8.49 C.43 O.31 C.856 | 8.49 0.43 0.48 C.852 | 8.49 0.43 0.64 C.86C | 8.49 0.43 0.98 C.914 | 8.49 C.43 1.17 C.952 | 8.49 C.43 1.47 C.968 | 8.49 0.43 1.95 0.969 |
| RUN TST P TN CC<br>262 571 1 66               | SEG MACH O          | 1 0.951 242.4           | 2 0.953 242.5           | 3 0.952 242.3           | 4 0.954 242.5           | 5 0.953 242.3           | 6 0.953 242.3           | 7 0.953 242.3           | 8 0.955 242.8           | 9 0.955 242.8          | 10 0.955 242.8         | 11 0.953 242.3         | 12 0.955 243.4         | 13 0.953 242.9         | 14 0.951 242.4         | 15 0.950 242.4         | 16 0.949 242.C         | RUN TST P TN CC   | 263 571 1 66            | SEC MACH C          | 1 0.952 242.3         | 2 0.952 242.3         | 3 0.952 242.3         | 4 0.952 242.3         | 5 0.951 241.8         | 6 0.951 241.E         | 7 0.950 241.8         | 8 0.949 241.4         | 9 0.950 241.9        | 10 0.948 241.5       | 11 0.949 242.C       | 12 0.948 242.0       | 13 0.947 241.6       | 14 0.946 241.1       | 15 0.946 241.1       | 16 0.946 241.1       |

|                   |                       | CP DE/P             | 0.025 1.016                | 0-025 1-016            | 0.016 1.010            | 0.006 1.004            | -0-01 1-000            | 465 U 600 U-           | -0-015 0.990           | -0-016 0-590           | -0-019 0.988          | -0-030 0-981          | -0.022 0.586          | -0-019 0.588          | -0.008 0.995          | 0.008 1.005           | 0-024 1-015                  | 0.050 1.031           |                   |                       |              | CD DE/D         | 0.025 1.016     | 0.026 1.017   | 0.014 1.009   | 0.005 1.003            | -0-000 1.000  | -0-004 0-997  | -0.004 0.597    | -0.018 0.989  | -0.021 0.987     | 0.014 0.991    | -0-019 0-988         | 0.016 0.990          | 466 0 010 0.994 | 0.005 1.003          | 0.025 1.016                   | 0.045 1.028          |
|-------------------|-----------------------|---------------------|----------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|-----------------------|-------------------|-----------------------|--------------|-----------------|-----------------|---------------|---------------|------------------------|---------------|---------------|-----------------|---------------|------------------|----------------|----------------------|----------------------|-----------------|----------------------|-------------------------------|----------------------|
| РНА               | • 00                  | 19 VE/V VA/V        | 0.907                      | 0.938                  | 0.934                  | 0.925                  | - 606-0                | 0.893                  | 0.870                  | 0.854                  | 0.857                 | 0.050                 | 0.820                 | 0.847                 | 0.487                 | 0.923                 | 0.965                        | 0.972                 |                   |                       | 00           | U VE/V VA/V     | 0.972           | 0.978         | 0.977         | 0.948                  | 0.925         | - 106.0       | - 068.0         | 0.877 -       | 0.857 -          | 0.840 -        | 0.848                | 0.863                | - 606-0         | 0.945                | 0.969                         | 0.976                |
| D IT AL           | 385 69.6 10           | MA/W QF/0 QA        | 0.810                      | 0.874                  | 0.861                  | C. 338                 | 0.800                  | 0.766                  | 0.718                  | 0.683                  | 0.691                 | 0.676                 | 0.625                 | 0.674                 | 0.754                 | 0.834                 | 0.935                        | 0.954                 | D TT AL           |                       |              | 14/ 41/9 0A     | 166.0           | 0.964         | C•956         | 0.886                  | 0.834         | 0.782         | 0.761           | 0.130         | 0.692            | 0.663          | 0.676                | 0.705                | 0.796           | 0.878                | 0.943                         | 0.972                |
| WACH RN/L PT C    | U+951 1+482 538 243.5 | K/UB Y/UB Z/UB MF/W | 8.49 - C. CI - 2.02 C. 893 | 8+49 -0.01 -1.54 C.927 | 3.49 -0.01 -1.02 0.923 | 3.49 -0.01 -0.65 C.914 | 3-49 -0.01 -0.52 0.895 | 3.49 -C.C1 -O.36 C.877 | 3.49 -0.01 -0.19 C.851 | 3.49 -0.CI -0.Cl 0.833 | 3.49 -C.CI 0.14 C.837 | 3.49 -0.01 0.31 C.830 | 3.49 -0.01 0.47 0.756 | 3.49 -0.01 0.65 C.826 | 9.49 -C.01 0.58 C.87C | 3.49 -C.Cl 1.18 C.911 | <b>:.49 -0.01 1.48 0.959</b> | 3.49 -0.01 1.98 C.967 | WACH RN/L PT C    | 0-951 1 480 488 242 E |              |                 |                 |               |               | 443 TU-35 -0.454 (-940 |               |               |                 |               |                  |                | -49 -U-30 U-48 U-827 | •49 -U.56 U.65 U.844 |                 | •49 -0.36 I.I8 0.936 | • 49 - 10 - 50 I - 48 U - 963 | •43 -C.36 I.48 C.972 |
| RUN TST P TN CCNF |                       |                     | 1 0.951 243.5              | 2 0.951 243.5 8        | 3 0.951 243.5 8        | 4 0.952 244.C E        | 5 0.952 244.C 8        | 6 0.952 244.C 8        | 7 0.952 244.0 8        | 8 0.952 244.C 8        | 9 0.951 243.5 8       | 10 0.951 243.5 8      | 11 0.952 244.0 8      | 12 0.952 244.C 8      | 13 0.952 244.C 8      | 14 0.952 244.0 8      | 15 0.949 243.C 8             | 16 0.948 242.6 E      | RUN TST P IN CONF | 265 571 1 66 5        | SEQ MACH Q X | 1 0.951 243.5 8 | 2 0.952 243.5 8 | 3 0.957 243.5 | 4 0-954 244-C | 5 0.954 244. C         | 6 0.954 244 C | 7 0-954 244 C | 8 0.952 243 5 P | 9 0.952 243.5 | 10 0.952 243.5 8 | 11 0.952 243.5 |                      |                      |                 | 15 0-950 243+0 84    |                               |                      |
|       |       | ۵      | -     | + α   | ) <b>(</b> |         | > <del>-</del> | + α     | •        | ~ C    | α     | ົທ     | <u>م</u> ، |         | ~ <b>r</b> r        | σ        | . 4   | 0        |             |        | a      | _     | • •        | 4        | 0     | 0        | ~            | 4     | <b>N</b> | .+    | *        | •             | ~     | Ċ,       | ŝ        | -        | ~     |
|-------|-------|--------|-------|-------|------------|---------|----------------|---------|----------|--------|-------|--------|------------|---------|---------------------|----------|-------|----------|-------------|--------|--------|-------|------------|----------|-------|----------|--------------|-------|----------|-------|----------|---------------|-------|----------|----------|----------|-------|
|       |       | / Jd   | 1-02  | 10.1  | 10.1       | 00-1    | 00.4           |         | 00,00    | 00.00  | 0, 58 | 0.98   | 0.080      | 0.080   | 0.99                | 0.59     | 10.1  | 1.03     |             |        | DF/    | 1.03  | 1.02       | 1.02     | 1.02( | 1.01(    | 1.00         | 1.00  | 1.002    | 1.00  | 1.00     | 1.002         | 1.00  | 1.00     | 1.01     | 1.02     | 1.02  |
|       |       | цЪ     | 0-033 | 0.078 | 0.020      | 0.010   |                | -0-004  | 100-00-  | -0-015 |       | -0.074 | 400-01     | -0.071  | -0-011              | 100-0-   | 0.073 | 0.047    |             |        | C D    | 0-054 | 0.048      | 0.042    | 0.035 | 0.018    | 0.005        | 0.008 | 0.003    | 0.007 | 0.007    | 0.004         | 0.012 | 0.016    | 0.026    | 0.038    | 0.041 |
|       |       | VAVV   |       |       |            |         |                |         |          |        |       |        |            |         |                     |          |       |          |             |        | V A /V |       |            |          |       |          |              |       |          |       |          |               |       |          |          |          |       |
| A     | 0     | VF/V   | 0.976 | 0.978 | 0.976      | 0.942   | 0.918          | 0.919   | 106-0    | 0.889  | 0.875 | 0.861  | 0.863      | 0-864   | 0.919               | 0.954    | 0.971 | 0.975    | 4           |        | VEIV   | 0.929 | 0.932      | 0.923    | 0.898 | 0.898    | 0.889        | 0.877 | 0.878    | 0.865 | 0.872    | 0.872         | 0.877 | 0.899    | 0.917    | 0.957    | 0.973 |
| ALPH  | 10.0  | Q A Q  |       |       |            |         |                |         |          |        |       |        |            |         |                     |          |       |          | ALPH        | 10.00  | 04/0   |       |            |          |       |          |              |       |          |       |          |               |       |          |          |          |       |
| 11    | 70.1  | QF /Q  | 0.965 | 0.965 | 0.956      | 0.875   | 0.821          | 0.819   | 0.782    | 0.754  | 0.725 | 0.697  | 0.699      | 0.705   | 0.816               | 0.895    | 0.947 | 179.0    | 11          | 70.3   | QF/0   | 0.871 | 0.873      | 0.853    | 0.798 | 0.790    | 0.766        | 0.744 | 0.744    | 0.723 | 0.735    | 0.733         | 0.746 | 161.0    | 0.832    | 0.924    | 0.959 |
| ۵     | 385   | N/VW   |       |       |            |         |                |         |          |        |       |        |            |         |                     |          |       |          | ٩           | 415    | M / M  |       |            |          |       |          |              |       |          |       |          |               |       |          |          |          |       |
| U     | 243.0 | NE / N | 0.972 | C.974 | 0.972      | 0.932   | 0.906          | 0.906   | 0.886    | 0.872  | C.857 | 0.841  | 0.843      | 0.845   | 0.906               | 0.946    | 0.966 | 179.0    | G           | 235.5  | MF / N | 0.919 | C-922      | 0.913    | 0.885 | 3.884    | 0.874        | 0.861 | 2.862    | C.848 | 3.856    | <b>3.85</b> 5 | C.861 | 0.885    | 0.906    | .951     | 3668  |
| ۲d    | 688   | /08    | • 03  | - 52  | E0.        | .69     | .52            | •35     | .19      | .02    | .14   | •31    | • 48       | • •     | <b>9</b> 6 <b>.</b> | •18      | 47    | 76.      | рŢ          | 703    | /08    | • 04  | • 52       | • 04     | .71 ( | • 54 (   | •<br>30<br>• | .21   | • 04     | .13   | • 29 (   | .46 (         | .63   | .96      | .17      | •46 (    | .97 ( |
| SN/L  | 479   | 2 80   | +5 -2 | 1- 55 | 1- 51      | 15 -0   | 15 -0          | 15 -0   | 15 -0    | 15 -0  | 12    | 0      | 5          | 5       | 5                   | 15       | 1 51  | 5        | J/N         | 482    | 8 2    | 3 -2  | 1- 6       | 1- 6     | 01    | 0<br>m   | 01           | 9     | 0        | 0     | 0        | 0             | 0     | 0        | <b>~</b> |          | -     |
| 5     | 49 I. | 1/2    | -0-   | -0-1  | 0-0-       | 0       | 0-0-           | -0-     | 0-0-1    | -0-    | -0-   | -0-    | 0-         | -0-1    | -0-                 | -0-      | -0-1  | -0-      | H<br>H<br>U | 01 1.  | 7/1    | 0.01  | 0•0-       | 0•0-     | 0.0-  | 0.01     | 0.0          | 0.0   | 0-0-     | 0.01  | 0-0-     | -0<br>-0<br>- | 0.0-  | 0.0      | 0.0      | 0.0-     | 0.0   |
| F VA  | 5 0.9 | X/CB   | 8.49  | 8.49  | 8.49       | 8.49    | 8.49           | 8.49    | 8.49     | 8.49   | 8.49  | 8.49   | 8.49       | 8.49    | 8.49                | 8.49     | 8.49  | 8.49     | F NA(       | 5 0.9( | X/LB   | 10.88 | 1 C. 88    | l C • 88 | 10.87 | I C - 88 | 1C.88        | 10.83 | l C. 88  | 10.88 | l C - 88 | 1 C • 8 8     | 10.88 | LC. 88   | 10.88    | l C • 88 | lC.88 |
| N CCN | S     | •      | 3•C   | 3.0   | ۲.<br>۳.   | un<br>• | ۲.<br>۳.       | ມ<br>ອີ | ۹.<br>۳. | 0.     | ••0   |        | 0.         | u،<br>• | م                   | u \<br>• | 0.5   | <b>.</b> | CCN         |        |        | 6.0   | <b>K</b> n | • •      | •     | 2        | <b>Q</b>     | 0     | 4N<br>•  | 5     | U.       | 5             | 4     | 4        | 0        | 5        | •     |
| 1     | 1 6   | -      | 3 24  | 24    | 24         | 24      | 24             | 24      | 24       | 247    | 241   | 241    | 24         | 24      | 24                  | 24       | 243   | 243      | P T         | 1 66   | Ç      | 235   | 235        | 234      | 234   | 23       | 235          | 236   | 235      | 235   | 235      | 235           | 236   | 236      | 236      | 236      | 236   |
| TST   | 571   | MACF   | 0.945 | 0.94  | 0.951      | 0.951   | 0.951          | 0.951   | 0.951    | 0.952  | 0.952 | 0.952  | 0.952      | 0.951   | 0.951               | 0.951    | 0.950 | 0.950    | TST         | 571    | MACH   | 0.901 | 0.900      | 0.897    | 0.857 | 0.898    | 0.899        | 006.0 | 006.0    | 106.0 | 0.901    | 106.0         | 206.0 | 206.0    | 0.900    | 0.900    | 0.900 |
| RUN   | 266   | SEQ    | -     | ~     | <b>m</b> i | 4       | ŝ              | ų.      | ~        | œ      | 6     | 10     | 11         | 12      | 13                  | 14       | 5<br> | 16       | NDa         | 267    | SEC    | -     | 2          | m        | 4     | in i     | 01           | -     | ω i      | 6     |          |               | 12    | <u> </u> | 14       | 4 T      | 16    |

|                       | pr/p                                    | 1.032     | 1.033 | 1.021 | 1.020         | 1.012      | 1.008 | 1.C04 | 0.994  | 0.996  | 0.595  | 0.998  | 799.0  | 0.999      | 1.006 | 1.015         | 1.022 |   |        |        | DE/D        | 1.024 | 1.020 | 1.015        | 1.012 | 1.013 | 1.C09 | 1.007 | 1.006 | 1.005   | 1.004 | 1.006 | 1.008  | 1.010 | 1.010 |   |
|-----------------------|-----------------------------------------|-----------|-------|-------|---------------|------------|-------|-------|--------|--------|--------|--------|--------|------------|-------|---------------|-------|---|--------|--------|-------------|-------|-------|--------------|-------|-------|-------|-------|-------|---------|-------|-------|--------|-------|-------|---|
|                       | a<br>C                                  | 0.057     | 0.058 | 0.038 | 0.036         | 0.021      | 0.014 | 0.007 | -0.011 | -0.007 | -0.008 | -0.004 | -0.005 | -0.001     | 0.011 | 0.025         | 0.038 |   |        |        | d<br>C<br>D | 0.048 | 0*0*0 | 0.030        | 0.024 | 0.025 | 0.017 | 0.014 | 0.012 | 0.010   | 0.008 | 0.012 | 0.015  | 0.021 | 0.019 |   |
|                       | V A / V                                 | •         |       |       |               |            |       |       |        |        |        |        |        |            |       |               |       |   |        |        | V A / V     |       |       |              |       |       |       |       |       |         |       |       |        |       |       |   |
| ALPHA                 | 04/0 VF/V                               | 0.917     | 0.922 | 0.932 | 0.900         | 0.883      | 0.870 | 0.855 | 0.850  | 0.836  | 0.816  | 0.637  | 0.845  | <b>916</b> | 0.932 | 0.969         | 0.975 |   | ALPHA  | 10.00  | 0A/Q VF/V   | 0.914 | 0.928 | 0.925        | 0.903 | 0.885 | 0.878 | 0.871 | 0.365 | 0 - 868 | 0.872 | 0.859 | 0.370  | 0.912 | 0.941 |   |
| 11                    | 0F/0                                    | 0.847     | C.858 | 0.869 | 0.802         | 0.763      | 0.734 | 0.704 | 0.687  | 0.664  | 0.628  | 0.667  | 0.681  | 0.813      | 0.857 | 0.943         | 0.963 | ł | 11     | 70.0   | 0F/0        | 0.835 | 0.861 | 0.851        | 0.803 | 0.769 | 0.753 | 0.739 | 0.726 | 0.732   | 0.738 | 0.716 | 0.737  | 0.821 | 0.880 | 1 |
| a                     | × 1 4 1 4                               | •         |       |       |               |            |       |       |        |        |        |        |        |            |       |               |       | ( | 0      | 452    | N V N       |       |       |              |       |       |       |       |       |         |       |       |        |       |       |   |
| 0<br>0<br>0<br>0<br>0 | N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | C. 9C6    | 116.0 | 0.923 | <b>C.</b> 886 | 0.868      | C.854 | 0.838 | C.832  | C.816  | 0.795  | C.818  | 0.827  | 0.902      | 0.923 | <b>C.</b> 964 | C.971 |   | U      | 230.1  | NF / N      | C.9C3 | C.918 | <b>C.916</b> | 168.0 | C.872 | C.864 | C.856 | C.85C | C.853   | 0.858 | C.844 | C. 855 | C.9C1 | C-934 |   |
| L pT                  | 2/DB                                    | -2.03     | -1.53 | -1.02 | -0.69         | -0.52      | -0.36 | -0.19 | -0.02  | 0.15   | 0.31   | 0.48   | 0.64   | 85.0       | 1.18  | L.48          | 1.98  |   | Lol    | 9 727  | Z/08        | -2.04 | -1.55 | -1.04        | -0.71 | -0-53 | -0-38 | -0.20 | -0.03 | 0.13    | 0.29  | 0.46  | 0.63   | 95*0  | 1-16  | - |
| H RN/                 | 2 I.48<br>7/DP                          | -0.01     | -0-01 | -0.01 | -0.01         | -0.01      | -0.01 | 10.0- | -0.01  | -0-01  | -0.01  | -0.01  | 10.2-  | -0.01      | -0.01 | -0.01         | -0.01 |   | NA H   | 3 1.49 | Y/DB        | -0.03 | -0.03 | -0.03        | -0-03 | -0.03 | -0.03 | -0.03 | -0.03 | -0-03   | -0.03 | -0.03 | -0-03  | -0.03 | -0-03 | ) |
| F NAC                 | 0.60 c<br>X/CB                          | 8.49      | 8.49  | 8.49  | 8.49          | 8.49       | 8.49  | 8.49  | £• 49  | 8.49   | 8.49   | 8.49   | 8.49   | 8.49       | 8.49  | 8.49          | 8.49  |   | E VAC  | 5 0.85 | X/CR        | 10.88 | 10.88 | 10.88        | 1C.88 | 10.88 | 10.83 | 10.88 | 10.88 | 10.88   | 10.88 | 1C.88 | 1C.88  | 10.88 | 10.88 |   |
| TN CON                | 000                                     | 235.8     | 235.0 | 234.6 | 234.7         | 234.7      | 234.7 | 234.8 | 235.2  | 236.1  | 236.1  | 235.6  | 236.0  | 235.9      | 235.5 | 235.C         | 235.0 |   | TN CCN | 66     | c           | 230.1 | 229.8 | 229.8        | 229.4 | 229.4 | 229.1 | 229.1 | 229.1 | 229.1   | 229.1 | 229.1 | 229.1  | 228.6 | 228.6 |   |
| TST P                 | MACH                                    | 0.902     | 0.899 | 0.897 | 0.897         | 0.897      | 0.897 | 0.896 | 0.898  | 006-0  | 006.0  | 0.899  | 0.900  | 0.901      | 006.0 | 0.899         | 0.899 |   | TST P  | 571 1  | MACH        | 0.853 | 0.852 | 0.852        | 0.850 | 0.850 | 0.849 | 0.845 | 0.849 | 0.849   | 0.845 | 0.849 | 0.849  | 0.848 | 0.845 |   |
| RUN                   | SFO                                     | , <b></b> | 2     | m     | 4             | <b>U</b> I | 9     | 7     | œ      | ς,     | 10     | 11     | 12     | 13         | 14    | 15            | 16    |   | NDA    | 269    | SEQ         |       | 2     | <b>m</b>     | 4     | ŝ     | 9     | ٢     | œ     | 6       | 10    | 11    | 12     | 5     | 14    | • |

1.015 1.018 1.018 1.007 965.0 1.004 166.0 0.994 0.998 0.998 1.006 1.009 1.015 F/D 1.017 pr/p -0-008 0.035 0.037 0.036 0.020 0.014 0.008 0.012 0.018 0.029 0.034 0.028 -0.005 -0-011 -0.004 0.038 3 9 V A /V V A /V 0.918 0.924 0.922 0.893 0.874 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.972 0.972 0.972 0.979 VF/V VF/V 10.00 ALPHA 10.00 ALPHA 0 A / 0 QA/U 70.0 0F/0 0.851 0.847 0.788 0.747 0.747 0.747 0.721 0.701 0.704 C.657 C.657 C.6580 C.717 C.6580 C.6580 C.6580 C.6580 C.6571 C.657 0.836 69.7 0130 0.969 MA / M 495 M / M 451 2 C 230.5 MF/N 223.5 NF / N C.912 C.88C C.88C C.866 C.846 C.876 C.876 C.815 0.9C8 0.914 C.813 0.826 0.950 C.968 0.977 613 ω C.848 ē 2/08 -2.02 -1.03 -0.19 0.14 0.32 0.48 0.98 -0.53 0.64 1.17 1.48 1.58 -0.02 h VACH PN/L C.854 1.500 X/DB Y/DP Z 1/Nd 0.803 1.519 -0.01 Y/DB 0.41 -0-01 -0-01 -C.C1 -0.01 -0-01 -0.01 -0.01 10.01 10.01 -0.01 -0.01 -0.01 0.0-NACE X/FB 8.49 8.49 8.49 8.49 8.49 .49 • 49 49. 8.49 • 49 • 49 •49 •49 •49 • 49 ω αu æ  $\infty$   $\infty$ ထေ ω œ L. CONF w 229.8 229.8 229.8 Mage
 <l 0.852 0.803 852 0.852 0 NE469FB60HNB RUN 270 SEC 12 9

1.009 1.010 1.012 .003 1.005 1.014 .003 .002 • 004 .003 001 .011 .010 10. ٠ 0.023 0.025 0.025 0.020 0.006 0.010 0.009 0.003 0.006 0.023 0.016 0.030 0.004 0.023 0.927 0.930 0.931 0.926 0.926 0.983 0.908 0.895 0.913 0.907 0.940 179.0 0.955 0.976 .980 0.975 0.854 0.857 0.857 0.853 0.853 0.853 0.853 0.853 0.853 0.810 0.818 0.818 0.959 0.876 0.957 0.912 0.976 0.980 0.974 C.923 C.919 C.922 C.918 0.858 0.884 c.9c3 c.896 0.933 0.896 0.950 579.0 16 19 757 2 Z/DP 5 1 -1.54 ( 1 -1.54 ( : -0.72 0.13 -0.04 • 63 .47 -0.21 0.47 .97 .16 -0.37 σ ٠, 0 0.41 C.41 0.41 0.41 C.41 0.41 .41 0.41 C.41 C.41 0.41 0.4 0.4] 0.4] X (1)
< The Find Content of the Content of t 223 5 223 5 222.5 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.802 300 0.802 0.802 0.800 ..... 01204 271 SEC 2 m + 10 0 m 00 0 NNa 10

|                | 0                  | 4          |       | 9     | 96    | 2     | ç      | 6       | 1      | 10    | )4    | 14    | 5      | ÷      | 5     | 0     | 5     |       |         | 0       | 6     | 0     | 38      |          | )6    | 54    | "     | 1     | 10    | 1     | )3      | 5     | 6     | 38    | 0     |
|----------------|--------------------|------------|-------|-------|-------|-------|--------|---------|--------|-------|-------|-------|--------|--------|-------|-------|-------|-------|---------|---------|-------|-------|---------|----------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
|                | DE /               | 1.01       | 1.01  | 1.00  | 1.00  | 1.00  | 1.00   | 0.95    | 1.00   | 1.00  | 1.00  | 1.00  | 1.00   | 1.00   | 1.00  | 1.01  | 1.01  |       |         | 010     | 1.00  | 1.01  | 1.00    | 1.01     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00    | 1.00  | 1.0(  | 1.00  | 5     |
|                |                    | 0.031      | 0.025 | 0.013 | 0.013 | 0.006 | -0.001 | -0.003  | 0.003  | 0.003 | 0.009 | 0.010 | 0.010  | 0.014  | 0.012 | 0.023 | 0.032 |       |         | ن<br>د  | 0.021 | 0.022 | 0.017   | 0.025    | 0.014 | 0.009 | 0.006 | 0.001 | 0.003 | £00°0 | 0.016   | 0.010 | 0.020 | 0.018 | C C C |
|                | VA/V               |            |       |       |       |       |        |         |        |       |       |       |        |        |       |       |       |       |         | V / V V |       |       |         |          |       |       |       |       |       |       |         |       |       |       |       |
| PHA            | .00<br>/0 VF/V     | 0.908      | 0.922 | 0.929 | 0.911 | 0.902 | 0.386  | 0.883   | 0.865  | 0.874 | 0.879 | 0.878 | 0.876  | 0.919  | 0.945 | 0.909 | 0.981 | VIQ   | 00      | VE/V    | 0.987 | 0.983 | 0.973   | 0.920    | 0.6.0 | 0.892 | 0.892 | 0.839 | 0.871 | 0.386 | 0.888   | 0.399 | 0.923 | 0.949 |       |
| TT AL          | 54.6 IU<br>2F/0 0A | 818        | .842  | .853  | .817  | 797.  | . 763  | .757.   | .725   | . 742 | .753  | .752  | .749   | .834   | . 385 | .942  | 179.  | 11 11 | 69.3 10 | CF/O OA | .980  | 179.  | .948    | .840     | 795   | .778  | .778  | .771  | .736  | . 765 | .770    | -792  | .855  | .897  |       |
| n (            | 154<br>N/Vñ        | 0          | ō     | õ     | 0     | ō     | o      | c       | c      | 0     | 0     | 0     | 0      | 0      | 0     | 0     | C     | 0     | 498     | WA/W    | Û     | 0     | 0       | Ű        | 0     | 0     | 0     | 0     | 0     | 0     | C       | C     | 0     | 0     | •     |
| ں<br>ب رب<br>ر | 1 • 2 2 Z U        | 0.858      | 0.913 | C.921 | 0.901 | C.891 | C.874  | 0.871   | 0.851  | C.861 | 0.866 | C.865 | 0.863  | 016.0  | 0.935 | c.966 | 0.578 | c     | 222.0   | NF / N  | 0.985 | 0.980 | C.970   | 116.0    | 0.889 | 0.880 | 0.881 | C.878 | 0.957 | C.874 | 0.876   | 0.888 | C.920 | 0.943 |       |
| L PT           | 101 01             | -2.04      | -1.54 | -1.04 | -0.71 | -0-55 | -0.37  | -0.20   | -0.04  | 0.14  | 0.29  | 0.46  | 0.63   | 0.96   | 1.17  | 1.47  | 1.97  | 10 11 | 16 757  | 2/08    | -2.04 | -1.54 | -1.04   | -0.71    | -0.54 | -0.37 | -0.21 | -0-04 | 0.13  | 0.29  | 0.47    | 0.63  | 16.0  | 1.16  | 1     |
| NA HU          | 8477<br>8477       | -0.03      | -0-03 | -0.03 | -0.03 | -0-03 | 10.03  | -0.03   | -0.03  | -0.03 | -0-03 | -0.03 | -0-03  | -0-03  | -0.03 | -0.03 | -0-03 | n a   | 98 1.5  | Y/DB    | -0.38 | -0-38 | -0.38   | -0.38    | -0.38 | -0.38 | -C.38 | -0-38 | -0.38 | -0-38 | -0-38   | -0.38 | -0-38 | -0-38 |       |
| NF VA          | 8.0 C              | IC.88      | 10.88 | 1C.88 | 1C.88 | 10.88 | IC.88  | 1 C. 88 | 1C.88  | 1C.88 | 1C.88 | 10.88 | 1 C.88 | 1C•88  | 1C-33 | 10.88 | 1C.88 | NE    | 5 0.7   | X/08    | 10.88 | 10.88 | 10.88   | I C - 83 | 1C.88 | 1C.88 | 1C.88 | 1C.88 | 1C.88 | 10.88 | 1 C. 88 | 1C.88 | 1C.88 | 1C•88 | 000   |
| DU VI d        | 1 66<br>0          | 222.5      | 222.6 | 222.5 | 222.5 | 222.5 | 223.0  | 223.C   | 223. C | 223.C | 223.0 | 223.0 | 222.5  | 222.5  | 222.5 | 223.C | 222.4 |       | 1 66    | C       | 222.0 | 222 C | 222 • C | 222.5    | 222.5 | 222.5 | 222.5 | 222.5 | 222.5 | 223.0 | 223.0   | 223.0 | 223.0 | 222.5 |       |
| TST            | MACH               | 0.800      | 0.799 | 0.800 | 0.800 | 0.800 | 0.801  | 0.801   | 0.801  | 0.801 | 0.802 | 0.802 | 0.800  | C. 800 | 0.800 | 0.802 | 0.801 | TCT   | 571     | MACH    | 0.758 | 0.759 | 0.799   | 0.800    | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.801 | 0.801   | 0.801 | 0.801 | C.8C0 |       |
| NUN<br>NUN     | 212                | , <b>"</b> | 2     | m     | 4     | ŝ     | 9      | 2       | æ      | σ     | 10    | 11    | 12     | 13     | 14    | 15    | 16    | NIId  | 273     | SEQ     | -     | 2     | m       | 4        | ۲U    | 9     | -     | œ     |       | 10    | 11      | 12    | 13    | 14    |       |

ļ.

75

ł

1.014 1.012 .009 1.005 1.005 1.005 1.001 1.005 .001 1.003 1.002 1.003 •000 1.002 • 004 1.010 • 00 5 1.005 1.009 1.C09 PF/P .004 1.000 1.007 1.003 1-004 1.004 1.010 1.012 1.014 1.009 0.999 1.01/ 0.010 0.006 110.0 0.006 0.010 0.011 0.004 600\*0 0.015 0.032 0.028 0.020 0.020 0-020 0.023 0.023 0.026 0.020 0.016 0.001 600.0 0.012 0.004 0.020 0.011 -0.003 0.008 0.031 ۵ ن ĉ V A /V V A /V 0.967 0.903 0.397 0.836 VF/V 0.894 0.889 VF/V 0.975 0.933 0.876 0.842 0.386 0.939 0.954 0.954 0.941 0.983 0.925 0.908 0.936 **0.982** 0.930 0.913 0.892 0.979 0.982 0.894 0.956 981 0.987 0.927 0.901 0.936 10.00 0A/0 10.00 QA/Q **NLPHA ALPHA** 0F/0 0.974 0.844 0.810 0.799 0.786 0.859 0.913 0.958 0.854 0.854 0.856 0.848 0.815 0.815 0.815 0.759 0.751 0.759 0.759 0.903 **1.**69 0.773 0.766 0.782 0.796 0.972 C.936 C.781 0.956 579.0 0.980 C.980 0F/0 69.I 0.924 0.963 р 498 МД/М 154 M / M ۵ 19 758 222.6 2/08 wr 5 0.800 1.518 757 222.5 X/CB Y/CP 2/CB MF/W 0.979 C. 981 C.898 0.892 0.963 C.886 C.883 C.883 C.877 0.874 0.883 c.890 C.92E 0.972 C.986 C.985 0.980 C.922 0.925 0.919 C.903 C.870 C.874 C.917 0.859 C.957 0.976 516.0 0.880 C.864 0.948 0.979 0.29 1.17 -0.54 -0.38 -0.21 0.13 0.63 0.96 C-88 -C-48 -2-04 -0.48 -1.54 . 47 1.97 -1-04 -0.71 -0-04 0.43 -2.03 -1.52 -1.03 -0-10 -0.52 -0.19 0.14 0.48 F 0.64 0.98 1.47 1.58 -0-35 0.31 U١ -0.01 1.1 F WACH RN/L 5 0.799 1.519 TST P TN CCNF MACH RN/L 0.43 0.43 C.43 0.43 -0-48 Y/JB -0.48 -0.48 -C.48 -C.48 -0-48 -C.48 0.43 -C.4P -0.48 -C.48 -C.48 α 0.43 0.43 C.43 C.43 -0-45 -0-48 -0.48 444 0.4 X/CB 1 C. 88 1 C. 88 10.88 1C.88 1C.88 1C.88 1C.88 1C.88 1C.88 1C.88 IC.88 L C • 88 **C.** 88 8 49 8 49 8 49 8 49 1C.88 C.83 8.49 8.49 8.49 8.49 8.49 8.49 £.49 8.49 8.49 8.49 8.49 E.49 E TN CCNF C 222.6 222.6 222.5 222.5 222.5 222.5 222.5 223.0 223.0 223•0 223•0 223•0 223. C 223.0 223.5 223.0 223. Ċ 571 1 66 LL. 571 1 MACH 667.0 0.800 0.798 0•799 0•800 0.801 0.801 0.800 0.800 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.758 MACH C.8CO 0.801 0.801 0.801 0.801 0.802 0.801 0.800 0•799 0•799 0.801 0.801 0.801 0.801 661 • 8 UN 2 7 4 5 F C 2 m 2 50 ω Ø 212 275 SEC C 4 m 2 R UN NMANO ~ ω δ 2 1313 5 4 2

|                                             | CP PF/P<br>0.029 1.013                          | 0.028 1.013            | 0.024 1.011            | 0.015 1.007            | 0.006 1.003            | 0.004 1.002            | 0.009 1.004            | 0.003 1.001            | 265 0 200 0           | 0.006 0.597           | 0.003 0.999           | 0.001 1.001           | 0.012 1.005           | 0.016 1.007           | 0.025 1.011           | 0.034 1.015           |                   |                         | Co belo             | 0.029 1.013            | 0.030 1.013          | 0.013 1.006            | 0.008 1.003            | 0.000 1.000            | 0.006 1.003            | 0.006 0.597            | 0.006 0.997            | 0.005 0.998           | 0.009 0.996           | 0.004 1.002           | 0.009 1.004           | 0-013 1-006           | シンシャイ トインマン |
|---------------------------------------------|-------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------------|---------------------|------------------------|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|
| ALPHA<br>10.00                              | 0A/Q VF/V VA/V<br>0.900                         | 0.915                  | 0.924                  | 0 03                   | 0.877                  | 0.864                  | 0.847                  | 0.839                  | 0.853                 | 0.847                 | 0.854 -1              | 0.863                 | 0.924                 | 0.953                 | 0.979                 | 0.981                 | ALPHA             | 10-00                   | DA/D VF/V VA/V      | 0.982                  | 0.979                | 0.976                  | 0.926                  | 0.897 -                | 0.872                  | 0.858                  | 0.861                  | 0.867                 | 0.852 -               | 0.861                 | 0.885                 | 0.942                 |             |
| 453 69.2                                    | A/M 0F/0                                        | 0.830                  | 0.848                  | C.803                  | 0.748                  | 0.724                  | 0.696                  | 0.679                  | 0.700                 | 0.691                 | 0.704                 | 0.722                 | 0.842                 | 0.904                 | 0.963                 | 0.972                 | 11                | 494 69.1                | A/N CF/O            | 126-0                  | 0.965                | 0.952                  | 0.846                  | 0.785                  | 0.739                  | 0.710                  | 0.716                  | 0.727                 | 0.698                 | 0.718                 | 0.764                 | 0.879                 |             |
| F WACH RN/L PT C<br>5 0.802 1.513 754 222.3 | X/DB Y/DB Z/DP MF/W 1<br>8.49 -0.01 -2.02 C.850 | 8.49 -0.01 -1.52 C.9C6 | 8.49 -0.01 -1.03 0.916 | 8.49 -0.01 -0.69 C.853 | E.49 -C.01 -O.53 C.864 | E-49 -C.C1 -0.36 C.850 | 8.49 -0.01 -0.19 0.833 | 8.49 -C.CI -O.O2 C.824 | 8.49 -0.01 0.14 0.838 | E.49 -0.01 0.31 C.832 | E.49 -C.C1 0.47 C.835 | 8.49 -0.01 0.65 C.849 | 8.49 -0.01 0.97 0.915 | 8.49 -0.01 1.18 C.947 | E.49 -C.01 I.4E C.976 | E.49 -C.Cl 1.98 0.978 | VF WACH RN/L PT Q | 5 0.801 1.512 754 221.8 | X/08 Y/08 Z/08 VE/V | 8.49 -0.36 -2.02 0.979 | 8.490.36 -1.52 C.976 | 8.49 -C.36 -I.C2 C.973 | E.49 -0.36 -0.69 0.918 | E.49 -C.36 -0.51 0.885 | 8-49 -0.36 -0.36 0.855 | 8.49 -C.36 -O.18 C.844 | 8.49 -C.36 -O.C3 C.847 | 8.49 -0.36 0.14 0.854 | 8.49 -C.36 0.32 C.837 | 8.49 -0.36 0.48 0.847 | E.49 -C.26 0.64 0.873 | E.49 -C.36 0.95 C.935 |             |
| N TST P TN CCN<br>6 571 1 66                | C MACH Q<br>1 0-8C2 222-3                       | 2 0.801 221.8          | 3 0.801 221.E          | 4 0.801 221.8          | 5 0.801 221.8          | 6 0.801 221.8          | 7 C.8C1 221.E          | 8 0.860 221.2          | 9 0.800 221.2         | 0 C.800 221.2         | .1 0.800 221.2        | .2 C.8C0 221.2        | 3 0.800 221.2         | 4 0.800 221.2         | 5 0.800 221.2         | 6 0.800 221.2         | UN TST P TN CCN   | 17 571 1 66             | C HACH D            | 1 0.801 221.8          | 2 0.801 221.6        | 3 0.801 221.6          | 4 0.802 222.3          | 5 0.802 222.3          | 6 0.804 222.8          | 7 0.301 221.8          | 8 0.8015,221.8         | 9 0.804 222.8         | 10 0.804 222.8        | .1 0.804 222.8        | .2 0.802 222.3        | 3 0.802 222.3         |             |

ORIGINAL PAGE IS OF POOR QUALITY

;

|                            |         | CP DF/P  | 0-034 1-015 | 0.025 1.011 | 0.020 1.009 | 0.013 1.006 | 0.006 1.003 | 0.001 1.001 | -0-000 1-000 | -0-002 0-566<br>-0-002 0-566 | -0-006 0-997 | -0-006 0.997 | 0.006 1.003 | 0-005 1-002 | 0-016 1-007 | 0.019 1.009 | 0-026 1-012    | 0.031 1.014 |         |        |          | 0 033 1 000 |              | 0.028 1 0.07 | 0.015 1.004 | 0-010 1-003    | 0.009 1.002    | 0.010 1.003 | 0.008 1.002 | 0.012 1.003 | 0.008 1.002        | 0.016 1.004                    | 0.006 1.001 | 0.017 1.004                              | 0.028 1.007                             | 0.019 1.005  | 0.029 1.007 |
|----------------------------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|------------------------------|--------------|--------------|-------------|-------------|-------------|-------------|----------------|-------------|---------|--------|----------|-------------|--------------|--------------|-------------|----------------|----------------|-------------|-------------|-------------|--------------------|--------------------------------|-------------|------------------------------------------|-----------------------------------------|--------------|-------------|
|                            |         | F/V V1/V | 940         | 985         | 116         | 92 <i>5</i> | 900         | 894         | 878          | 862 -                        | 368          | 870          | 834         | 392         | 950         | 967         | 981            | 981         |         |        | E/V VA/V |             | 000<br>0 H D | 96.7         | 93.7        | 934            | 923            | 1.66        | 116         | 900         | 913                | 905                            | 918         | 934                                      | 950                                     | 186          | 616         |
| ALPHA                      | 10.00   | DA/Q V   | •0          | •0          | •0          | •           | •0          | •0          | •0           | •0                           | 0            | .0           | •0          | 0           | •0          | •0          | •              | •0          | AH PHA  | 10.00  | 04/0     |             |              |              |             |                | 0              | 0           | •0          | 0.          | 0                  | 0                              | •0          | 0                                        | 0                                       | 0            | 0           |
| T T                        | 69.1    | 0r /0    | 0.969       | 779.0       | 0.957       | 0.844       | 0.793       | 0.781       | 0.748        | 0.719                        | 0.729        | 0.732        | 0.761       | 0.778       | 0.897       | 0.935       | 0.968          | 0.972       | 11      | 67.8   | 0F/0     | 0.965       | 049.0        | 0.937        | 0.874       | 0.867          | 0.846          | 0.861       | 0.822       | 0.801       | 0.825              | 0.812                          | C•834       | 0.868                                    | 206.0                                   | 0.963        | C.964       |
| ٩                          | 464     | N V N    |             |             |             |             |             |             |              |                              |              |              |             |             |             |             |                |             | 0       | 703    | M / M    |             |              |              |             |                |                |             |             |             |                    |                                |             |                                          |                                         |              |             |
| U                          | 3 221.3 | MF / N   | 179.0       | C.983       | 0.974       | C.916       | 0.889       | C.883       | 0.865        | 0.949                        | 0.855        | 0.857        | 0.871       | 0.881       | C.944       | C.963       | 0.978          | 0.979       | ى       | 176.0  | NL /N    | C.978       | 0.981        | 0.965        | C.933       | 0.930          | 516.0          | C.927       | 0.906       | C.854       | 0.908              | <b>C</b> • 899                 | 0.913       | 0.930                                    | 0.946                                   | 0.979        | 0.578       |
| Lbl                        | 0 753   | 27.08    | -2.03       | -1.52       | -1.03       | -0.69       | -0.52       | -0-35       | -0.18        | -0.07                        | 0.14         | 0.30         | 0.48        | 0.65        | 0.98        | 1.18        | 1.44           | 1.99        | L PT    | 8 896  | Z/CB     | -2.04       | -1.54        | -1.04        | -0.71       | -0.54          | -0.38          | -0.20       | -0.04       | 0.13        | 0.29               | 0.46                           | 0.63        | 0.96                                     | 1.17                                    | 1.46         | 1.97        |
| Ч<br>И<br>И<br>И<br>И<br>И | 0 1.51  | Y/5B     | -0.45       | -0.45       | -0-45       | -0.45       | -0-45       | -0.45       | -0.45        | -0-45                        | -0.45        | -C.45        | -0.45       | -0.45       | -0.45       | -0.45       | -0-45          | -0.45       | H PN    | 8 1.5C | Y/CB     | 0.41        | 0.41         | 0.41         | C.41        | 0.41           | 0.41           | 0.41        | 0.41        | 0.41        | 0.41               | 14.0                           | 14.0        | 0.41                                     | C.41                                    | 0.41         | 0.41        |
|                            | 5 0.80  | X/CB     | 8.49        | 8.49        | 8.49        | 8.49        | 64.9        | 8.49 -      | - 64° -      | 64.9                         | E. 49 .      | - 64.3       | E.49 -      | E.49 -      | 8.49        | E.49 -      | - 64.3         | 6 49 -      | F NACI  | 5 0.59 | X/ER     | 1 C. 88     | 10.88        | 1C.88        | 1C.88       | 1 <b>C.</b> 88 | 1 <b>C.</b> 88 | 10.88       | 10.88       | 10.83       | I C. 88            | 10.88                          | 1C.38       | 1C.88                                    | 10.88                                   | 10.88        | I C • 88    |
|                            | . 66    | C        | 221.3       | 221.3       | 221.3       | 221.8       | 221.5       | 221.6       | 222.3        | 222.3                        | 222.3        | 222.3        | 222.3       | 222.3       | 222.3       | 222.8       | 222.3          | 222.3       | The CEN | 66     | ۍ<br>ا   | 176.C       | 176.0        | 176.C        | 176.0       | 176.C          | 176.€          | 176.C       | 176.C       | 176.6       | 1/6.5              | 1/6.6                          | 1/6.0       | 1/0.5                                    | 1/0.5                                   |              | 111.2       |
| 151                        | 271 ]   | MACH     | C. 800      | 0.800       | 0.800       | 0.801       | 0.801       | 0.801       | 0.803        | 0.303                        | 0.803        | 0.803        | 0.803       | 0.803       | 0.303       | 0.804       | 0.802          | 0.802       | 1 IST   | 571 1  | MACH     | 0.558       | 0.598        | 0.558        | 0.598       | 0.598          | 0.559          | 0.598       | 0.558       | 0.559       | 0. 7 44<br>7 7 7 0 | 2.5.2.2.<br>2.2.2.0<br>2.2.2.0 |             | 0. 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |              | 010.0       |
| RUN                        | 278     |          |             | <b>n</b> :  | ς ·         | 4 1         | ŝ           | Q           | 2            | œ                            | 5            | 10           | 11          | 12          | 13          | 14          | ۲ <sup>۰</sup> | 16          | PUN     | 579    | SFR      |             | 2            | <b>6</b> 1   | 4           | in '           | 91             | - (         | ω (         | ר ה<br>ה    | 2.                 |                                |             | C 1                                      | t u<br>                                 | 0 <b>7 1</b> | с<br>Т      |

|                                               | Co pE/b                 | 0.009 1.007             | 0.008 1.002             | 0.019 1.005             | 0.000 1.000             | 0.016 1.004             | 0.015 1.004   | 0.017 1.004   | 0.008 1.002            | 0.004 1.001            | 0.015 1.004    | 0.011 1.003    | 0.019 1.005    | 0.019 1.005    | 0.020 1.005    | 0.036 1.009            |                   |                         | 1                   | CP Pr/p                 | 0.028 1.007             | 0.014 1.004     | 0.024 1.006             | 0.012 1.003   | 0.008 1.002     | 0.015 1.004     | 0.008 1.002     | 0.026 1.007     | 0.012 1.003      | 0.027 1.007      | 0.007 1.002      | 0.008 1.002      | 0.007 1.002      | 0.004 1.001      | 0.029 1.007      | 0.032 1.008             |
|-----------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------|---------------|------------------------|------------------------|----------------|----------------|----------------|----------------|----------------|------------------------|-------------------|-------------------------|---------------------|-------------------------|-------------------------|-----------------|-------------------------|---------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------------|
| АЦРНА<br>10-00                                | 04/0 VF/V VA/V<br>0.919 | 0.935                   | 0.934                   | 206 *0                  | 0.907                   | 0.882                   | 0.876         | 0.880         | 0.889                  | 0.899                  | 0.887          | 0.897          | 0.917          | 0.950          | 0.970          | 0.974                  |                   |                         |                     | VA/U VE/V VA/V          | 0.931                   | 0.985           | 0.945                   | 0.919         | 0.910           | 0.885           | 0.893           | 0.871           | 0.892            | 0.888            | 0.396            | 0.903            | 0.938            | 0.952            | 0.975            | 0.931                   |
| P TT<br>703 67.2                              | MA/N 0F/0<br>C.840      | 0.868                   | 0.866                   | 0.816                   | 0.812                   | U. 758                  | 807 °D        | 0. 705        | 081.0                  | 861.0                  | 111.0          | 0.196          | 0.836          | 0.00.0         | 0.941          | 0.954                  | P 11              | 702 44 9                |                     |                         |                         | 1/6.0           | 168-0                   | 0.858         | 0.819           | 0.13            | 181.0           |                 | 0.186            | 287.0            | 261.0            | U•815            | 0+873            | 106.0            | 0.954            | 0.967                   |
| JE WACH RN/L PT C<br>5 C+600 1-516 896 177-2  | 10.88 -0.03 -2.04 C.913 | IC-88 -0.03 -1.55 C.930 | 10.88 -0.03 -0.71 0 001 | 1C-88 -C.C3 -0.54 C.901 | 10.88 -0.03 -0.37 0.876 | 1C-88 -C-03 -0.21 C-840 |               |               | 1C-88 -C-C3 0.30 0.803 | 1C-88 -0.03 0.46 r por |                |                |                |                |                | 10+00 -0+07 I+36 C+315 | F WACH RN/L PT C  | 5 0.599 1.514 896 176.6 | X/CB Y/D8 Z/CB MF/N | LC.88 -0.38 -2.04 0.979 | LC-88 -C-38 -1-54 C.564 |                 | 10-88 -0.38 -0.71 C 012 |               |                 |                 |                 |                 |                  |                  |                  |                  |                  |                  |                  | KIK IN DE T ON IN ON ON |
| PUN TST PTN CCA<br>280 571 1 66<br>SFC MACH O | 1 0.600 177.2           | 3 0.599 176.6           | 4 0.602 177.8           | 5 0.6C2 177.8           | 6 0.6C3 178.4           | 7 0.602 177.8           | 8 0.602 177.8 | 9 0.602 177.8 | 10 0.602 177.8         | 11 0.602 177.8         | 12 0.602 177.8 | 13 0.603 178.4 | 14 0.602 177.8 | 15 0.603 178.4 | 16 0-603 178.4 |                        | KUN TST P TN CCNI | 281 571 1 66            | SEC MACH Q          | 1 0-559 176.6 1         | 2 0.602 177.8 1         | 3 0.602 177.8 1 | 4 0.6C1 177.2 1         | 5 0.602 177.8 | 6 0-6C1 177-2 1 | 7 0.602 177.8 1 | 8 0.602 177.8 1 | 9 0.603 178.4 1 | 10 0.503 178.4 1 | 11 0.603 178.4 1 | 12 0.602 177.8 1 | 13 0.601 177.2 1 | 14 0.601 177.2 1 | 15 0.602 177.8 1 | 16 0.602 177.8 1 |                         |

ORIGINAL PAGE IS OF POOR QUALITY

-----

-----

----

\_\_\_\_\_

|             |          | / CP PF/P      | 0.051 1.013   | 0.035 1.009 | 0.026 1.007 | 0.022 1.005 | 0.013 1.003 | 0.009 1.002 | 0.010 1.003 | 0.007 1.002 | 0.007 1.002 | 0.007 1.002 | 0.005 1.001 | 0.004 1.001 | 0.022 1.005 | 0.023 1.006 | 0.033 1.008 | 0.016 1.004      |             |          | / Co bt/b      | 0.019 1.005 | 0.022 1.005 | 0.009 1.002 | 0.011 1.003 | 0.004 1.001 | 0.002 1.001 | 0.006 1.001 | -0.004 0.999 | -0.015 0.996 | 865.0 600.0- | 0.003 1.001 | -0.004 0.999 | -0.004 9.599 | 0.009 1.002 | 0.019 1.005 | 0.021 1.005 |
|-------------|----------|----------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|----------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|-------------|-------------|
| ALPHA       | 10.00    | DA/Q VF/V VA/V | 0.970         | 0.976       | 0.962       | 0.914       | 0.906       | 0.904       | 0.901       | 0.888       | 0.905       | 0.894       | 106-0       | 0.914       | 0.930       | 0.949       | 0•969       | 0.988            | ALPHA       | 10.00    | DA/D VF/V VA/V | 0.936       | 0.984       | 0.977       | 0.929       | 0.928       | 0.919       | 0.909       | 0.910        | 0.906        | 0.899        | 0.897       | 0.910        | 0.960        | 0.977       | 0.980       | 0.982       |
| P 11        | 696 66.1 | MA/M QF/Q      | 0.949         | C.957       | 0.927       | 0.831       | 0.812       | 0.808       | 0.804       | 617.0       | 0.810       | 0.790       | 0.803       | 0.826       | 0.861       | 006 0       | 0.942       | 0.979            | b II        | 703 68.1 | WA/N GE/O      | 0.975       | 179.0       | 0.953       | 0.858       | 0.854       | 0.835       | 0.816       | 0.816        | 0.808        | 0.795        | 0.793       | 0.816        | 0.916        | 0.953       | 0.963       | 0.967       |
| U           | 1 177.7  | NF / N         | <b>C.</b> 968 | C.974       | C.96C       | 506.0       | 006.0       | 0.858       | 0.895       | 0.882       | 0.855       | 0.888       | 0.895<br>0  | 0.908       | C.925       | 0.946       | 0.967       | C.987            | Q           | 6 176.6  | MF / N         | C.985       | 0.983       | C.975       | 0.925       | C.924       | C.914       | 0.903       | 0.904        | 006-0        | C.893        | 0.890       | 0.904        | C.957        | 616.0       | 0.979       | C.981       |
| PN/L PT     | 1.517 89 | /CB Z/DB       | .48 -2.04     | .48 -1.54   | •48 -I.04   | .48 -0.70   | .48 -0.53   | .48 -0.37   | .48 -0.20   | .48 -0.05   | .48 0.12    | .48 0.29    | .48 0.47    | .48 0.63    | .48 0.96    | .48 1.17    | .48 1.48    | •48 <b>1.</b> 96 | RN/L PT     | 1.509 89 | /D9 Z/CB       | .43 -2.03   | •43 -1•53   | .43 -1.03   | .43 -0.69   | .43 -0.53   | .43 -0.35   | .43 -0.19   | .43 -0.02    | .43 0.14     | .43 0.31     | .43 0.48    | .43 0.65     | .43 0.98     | .43 1.18    | .43 I.48    | .43 1.95    |
| NF NACH     | 5 0.604  | X/08 Y         | 1C.87 -C      | 1C.87 -0    | 1C-88 -0    | 1C.88 -C    | 10.83 -0    | 10.88 -C    | 10.88 -0    | IC.88 -C    | 1C.88 -C    | 1C.88 -C    | 1C-88 -C    | 1C.88 -0    | 1C.88 -C    | 1C-88-C     | 1C.88 -C    | IC.88 -C         | NF NACH     | 5 0.599  | X/CB Y         | 8.49 0      | 8.49 0      | 8.49 0      | 8.49 0      | 8.49 C      | 8.49 0      | 8.49 0      | 8.49 C       | 8.49 0       | 8.49 C       | 8.49 0      | 8.49 0       | 8.49 0       | 8.49 0      | 8.49 C      | 8.49 0      |
| TST P TN CC | 571 1 66 | MACH G         | 0.604 177.7   | 0.601 176.5 | 0.600 175.9 | 0.600 175.9 | 0.598 175.3 | C.558 175.3 | 0.558 175.3 | 0.558 175.3 | 0.600 175.9 | 0.600 175.9 | 0.600 175.9 | 0.600 175.9 | 0.600 175.9 | 0.600 175.9 | 0.600 175.5 | 0.602 177.1      | TST P TN CO | 571 1 66 | MACH 9         | 0.559 176.6 | 0.600 177.2 | 0.600 177.2 | 0.602 177.8 | 0.602 177.8 | 0.603 178.4 | 0.602 177.8 | 0.602 177.8  | 0.602 177.8  | 0.602 177.8  | 0.602 177.8 | 0.602 177.8  | 0.601 177.2  | 0.602 177.8 | 0.602 177.8 | 0.603 178.4 |
| RUN         | 282      | SFO            | 2             | <b>r</b> 1  | 4           | <b>U</b> D  | 9           | 2           | œ           | 6           | 10          | 11          | 12          | <b>6</b> 1  | 14          | 15          | 16          | 17               | NUA         | 283      | SFQ            | H           | 2           | <b>m</b>    | 4           | ŝ           | 9           | ٢           | 8            |              | 01           | 11          | 12           | 13           | 14          | 15          | 16          |

·----

- .....

ORIGINAL PAGE IS OF POOR QUALITY

i

|                  | 0670                                    | 1.008  | 1.004   | 1.003         | 1.000  | 766.0    | 0.599  | 666.0     | 0.598          | 665.0  | 1.000  | 1.001  | 0.598         | 0.598  | 1.002  | 1.005  | 1.006  |         |          | pF/p | 1.007  | 1.006  | 1.002   | 1.003   | 1.001  | 666*0  | 0.999  | 0.998    | 0.998  | 0.599             | 0.998  | 1.000  | 1.000  | 1.001    | 1.004  | 1.005  |
|------------------|-----------------------------------------|--------|---------|---------------|--------|----------|--------|-----------|----------------|--------|--------|--------|---------------|--------|--------|--------|--------|---------|----------|------|--------|--------|---------|---------|--------|--------|--------|----------|--------|-------------------|--------|--------|--------|----------|--------|--------|
|                  | مر                                      | 0.031  | 0.015   | 0.014         | 0.002  | 110.0-   | -0.004 | -0.002    | -0.007         | -0.004 | -0.001 | 0.005  | -0.006        | -0.008 | 0.007  | 0.018  | 0.023  |         |          | CD   | 0.026  | 0.025  | 0.007   | 0.011   | 0.004  | -0.002 | -0.005 | 600.0-   | -0.007 | -0.003            | -0.009 | -0.001 | -0.001 | 0.004    | 0.014  | 0.019  |
|                  | ~ ~ ~                                   |        |         |               |        |          |        |           |                |        |        |        |               |        |        |        |        |         |          | VA/V |        |        |         |         |        |        |        |          |        |                   |        |        |        |          |        |        |
|                  | )<br>VF/V                               | 0.907  | 0.925   | 0.926         | 0.901  | 0.882    | 0.864  | 0.867     | 0.858          | 0.858  | 0.861  | 0.870  | 0.886         | 0.942  | 0.959  | 0.979  | 0.981  |         | _        | VF/V | 0.981  | 0.982  | 176.0   | 0.919   | 0.891  | 0.884  | 0.866  | 0.871    | 0.874  | 0.864             | 0.886  | 0.901  | 0.935  | 0.962    | 0.984  | 0.985  |
| ALPHA            | 10.00                                   |        |         |               |        |          |        |           |                |        |        |        |               |        |        |        |        | ALPHA   | 10.00    | 0A/Q |        |        |         |         |        |        |        |          |        |                   |        |        |        |          |        |        |
| 11               | 68.8<br>0F/0                            | 0.819  | C.850   | 0.852         | 0.801  | 0.764    | 0.733  | 0.738     | 0.721          | 0.721  | 0.727  | 0.746  | 0.771         | 0.879  | 0.916  | 0.959  | 0.966  | 11      | 69.1     | 0F/0 | 0.966  | 0.967  | 0.952   | C.837   | 0.784  | 0.768  | 0.735  | 0.743    | 0.750  | 0.733             | 0.772  | 0.802  | 0.867  | 0.922    | 0.969  | 0.973  |
| с ;              | 10/<br>W/WW                             |        |         |               |        |          |        |           |                |        |        |        |               |        |        |        |        | ۵       | 101      | WV/W |        |        |         |         |        |        |        |          |        |                   |        |        |        |          |        |        |
| 0<br>0<br>1<br>1 | 1 / /•8<br>MF /N                        | 106.0  | 0.920   | <b>c.</b> 922 | 0.895  | 3.875    | 0.857  | C.855     | 0-850          | 0.850  | 0.853  | 0.863  | 0.879         | 656*3  | 0.956  | 116.0  | 086.0  | ى<br>ئ  | 177.8    | MF/W | 086.0  | 386.3  | 0.975   | .914    | .885   | 0.877  | .858   | .863     | .867   | .856              | 3.875  | 3-895  | 1:6*   | 0.960    | .983   | .984   |
| PT<br>200        | 7 / DB                                  | 2.03   | 1.53 (  | .1.02 (       | -0-69  | 0.53 (   | 0.36 ( | 0.19      | 0.02 (         | 0.15 ( | 0.31 ( | 0.48 ( | 0.64 (        | 66*0   | 1.18   | 1.48 ( | 1.98 ( | PT .    | 896      | Z/DB | .2.02  | 1.52 ( | ·1.03 ( | ) 59*0. | 0.52 ( | 0.36 ( | 0.19 ( | 0.02     | 0.15 ( | 0.32 (            | 0.48   | 0.65 ( | 0.97 ( | 1.18 (   | 1.48 ( | 1.98 ( |
| RN/L             | . 1•512<br>Y/DB                         | 0.01 - | - 10-0. | - 10-0        | - 10-0 | - 10 · J | - 10-0 | - C. C. L | - 10-0         | 0.01   | ·0. C1 | 10-0.  | 0.01          | 10.0   | .0.01  | 10-0-  | 0.01   | RN/L    | 1.510    | Y/CB | 0.36 - | C.36 - | 0.36 -  | C+36 +  | 0.36 - | 0.36 - | 0.36 - | 0.36 -   | 0.36   | 0.36              | 0.36   | 0.36   | 0.36   | 0.35     | 0.36   | 0.36   |
| VACT.            | . U•6U2<br>X/E8                         | 8.49 - | - 64.3  | 8.49 -        | £•49 - | - 64.3   | - 64*3 | E.49 -    | <b>- 64.</b> 3 | 8.49 - | E.49 - | 8.49 - | <b>-</b> 64•3 | 8.49 - | - 65*3 | E.49 - | E 49 - | N A C H | 0.602    | X/5B | 8.49 - | 8.49 - | 8.49 -  | 8.49 -  | 8.49 - | - 64.8 | 8.49 - | 6 • 49 - | - 64.8 | <del>-</del> 64•3 | - 64•3 | - 65-8 | 8.49 - | 6 • 49 - | 8.49 - | 8.49 - |
| N CONF           | n<br>o G                                | 7.6    | 7.2     | 7.2           | 7.2    | 7.2      | 7.8    | 7.8       | 7.2            | 7.8    | 7.8    | 7.8    | 7.2           | 7.2    | 7.2    | 7.8    | 7.8    | N CONF  | 41<br>50 | Cł   | 7.8    | 7.8    | 7.8     | 7.8     | 1.8    | 7.2    | 7.2    | 7.2      | 7.2    | 7.2               | 5.6    | 7.2    | 1.2    | 7.2      | 7.8    | 7.8    |
|                  | 0<br>- H                                | 02 17  | 11 10   | 01 17         | 01 17  | 11 10    | 02 17  | C2 17     | .21 10         | 02 17  | 02 17  | 02 17  | 01 17         | 11 10  | CI 12  | 02 17  | C2 17  | T P T   | 1 1 6    | E    | 02 17  | 02 17  | 02 17   | 02 17   | 02 17  | CO 17  | 00 17  | CO 17    | 11 00  | C0 17             | 66 17( | 00 17  | CI 17  | .21 10   | 02 17  | 02 17  |
| ST ST            | 4 U U U U U U U U U U U U U U U U U U U | 1 0.6  | 2 0.6   | 3 0.6         | 4 0.6  | 5 0.6    | 6 0.6  | 7 0.6     | 8 0.6          | 9 0 6  | 0 0.6  | 1 0.6  | 2 0.6         | 3 0.6  | 4 0.6  | 5 0.6  | 6 0.6  | IN TS   | 15 57    | AM Q | 1 0.6  | 2 0.6  | 3 0.6   | 4 0.6   | 5 0.6  | 6 C.6  | 7 0.6  | 8 0.6    | 9.0.6  | 0 0.6             | 1 0.5  | 2 0.6  | 3 0.6  | 4 0.6    | 5 0.6  | 6 0.6  |
| a<br>a           | N V                                     | >      |         |               |        |          |        |           |                |        | -      |        | _             |        | -      |        |        | J<br>L  | 28       | 5    |        |        |         |         |        |        |        |          |        |                   | -      |        |        | ••••     | 1      |        |

ORIGINAL PAGE IS OF POOR QUALITY

0.999 1.006 1.003 0.999 0.999 0.998 1.000 1.005 0.999 0.598 0.999 666 1.007 1.002 1.000 666.0 666 005 0.999 666.0 665.0 665.0 0.999 0.999 1.001 0.999 0.999 0.999 666.0 pr/p 0.997 0.998 1.002 . . -0.005 0.003 0.002 0.007 0.023 0.014 0.019 0.027 -0.009 -0.013 -0.015 -0-039 -0.030 -0.019 -0.030 -0.030 -0.030 -0.028 -0.022 0.010 -0.003 -0.007 -0.024 -0.021 100.0--0.021 -0.011 -0.021 -0.021 -0.02 8 0.000 0.000 0.000 0.000 000 0.000 000 A/V 0.000 0.000 0.000 0.000 0.000 0.000 V A /V . 0.951 0.830 0.879 0.871 0.871 0.882 0.885 0.885 0.895 0.952 0.952 0.928 0.983 0.985 0.979 972 975 266 0.975 U.922 0.903 0.891 0.994 0.954 0.907 0.927 0.928 0.935 0.983 0.984 0.934 0.941 VF/V VF/V 0.980 ం . 0 10.00 0A/0 AL PHA 10.00 ALPHA 0.000 c.000 0.000 c. 000 c.000 0.00.00 c. 000 c. 000 000.0 0.000 0.000 QA/Q 000-000 000-0 000.0 C.000 100.00 0.903 0.816 0.901 0.935 68.4 0F/0 C.9888 0.967 0.957 C.820 O.856 O.858 0.853 69.4 GF/0 0.972 C.843 0.804 C.780 0.761 0.759 0.743 0.766 0.789 0.969 0.974 0.872 0.950 **C.**882 0.859 0.965 0.943 C.950 0.993 0.965 0.000 0.000 0.000 000 000 0.000 0.000 0.000 0.000 0000.0 0.000 702 M / M 80.2 1811 WF/N MA/N 0.000 0000.0 0.00.0 C. . 177.2 MF/W C.979 0.954 C.984 0.953 0.940 C.9C6 C.926 C.927 0.951 C.924 0.935 0.875 0.889 0.927 0.583 0.983 0.973 0.897 0.864 0.872 0.863 0.982 C.9E4 C.979 0.971 0.903 0.949 0.873 0.966 C.917 5-5-7 . 56° 896 0.251 1.517 1893 (/CB Y/DB Z/DB -0.20 -0.02 0.15 0.31 0.48 -0.70 -0.36 -0.20 0.12 0.29 0.46 0.63 -0-35 0.58 l.48 X/08 Y/09 Z/08 8.49 -0.45 -2.03 -1.53 0.65 -2.05 • 63 .17 -0-65 -0.53 ω F. -1.03 F d -1.54 -1.04 - 40 6. ç . **RN/L** F WACH RN/L 5 0.600 1.507 -0.45 -0.45 -0.45 0.41 0.41 0.41 0.41 -0.45 -0.45 -0.45 -0.45 C.41 C.41 0.41 0.41 0.41 SC) ŝ ŝ S 0.41 C.41 -0.45 -0-45 .41 -0.45 -0.45 -0-45 C • 4 ] 0.41 4 MACH 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 X/08 TN CONF S CONF 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 177-2 5.61 78.8 78.8 78.8 78.8 75.5 79.5 . ω 2 66 C 571 1 672 0 6750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 7500 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 0 750 000000 571 1 MACH ٥ 0.600 0.600 0.600 0.600 0.600 0.600 0.601 0.601 250 249 249 249 0.250 0.6C1 0.6C1 0.601 . 602 .602 **TST** 49 50 0.601 0.601 TST 0.2 ~ 0  $\odot$ 0 4  $\underline{\nabla}$ 287 SEG PUN 286 SEQ **u**h 450000  $\mathbf{O}$  $\mathbf{n}$ (m 4 ŝ m + m o r o σ  $\Sigma$ RUN Ξ **N** 

|        |        | pr/p   | 0.999  | 0.999  | 665°0  | 665 0  | 0.599         | 665 0  | 0.999  | 666.0  | 665°0  | 0.999  | 0.598  | 665*0  | 0.599  | 665*0  | <b>0.</b> 999 | 665*0  |        |         | DF/D   | 665.0        | 665°U         | 0.9999 | 0.999   |   |
|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|---------|--------|--------------|---------------|--------|---------|---|
|        |        | с<br>С | -0.022 | -0.022 | -0.922 | -0.030 | -0-030        | -0-030 | -0.030 | -0.030 | -0.030 | -0.030 | -0-039 | -0.014 | -0.021 | -0.025 | -0.026        | -0.017 |        |         | Ċ      | -0.017       | 610.0-        | -0.030 | -0.030  |   |
|        |        | V A /V | 0.000  | 0.000  | 0.000  | 0.000  | <b>U.</b> 0CO | 0.000  | 0.000  | 0.000  | 0.000  | 0-000  | 0.000  | 6.000  | 0.000  | 0.000  | 0.000         | 0.000  |        |         | V A /V | 0.000        | 0.000         | 0.000  | 0.000   |   |
| ~~~    | ~      | VF/V   | 0.941  | 0.946  | 0.941  | 0.916  | 0.914         | 0.902  | 0.893  | 0.891  | 0.903  | 0.899  | 0.925  | 0.914  | 0.956  | 0.946  | 0.940         | 0.991  | _      | ~       | VF/V   | 0.992        | 0.986         | 0.975  | 0.921   |   |
| AL PHA | 10.00  | 0A/Q   | c.000  | 0.00.0 | c.00.  | c.000  | 000.0         | 0.00.0 | 000.0  | 0000.0 | C.000  | 000.0  | 0.000  | 000.0  | 0.000  | 0.000  | 000-0         | 000.0  | AL PHA | 10.0C   | 0A/G   | 0.000        | 0.000         | 0.000  | c.000   |   |
| 11     | 68.1   | QF /0  | 0.884  | 0.893  | C.884  | 0.836  | 0.832         | 0.811  | 0.794  | 0.790  | 0.813  | 0.806  | 0.853  | 0.834  | 0.913  | C.892  | 612.0         | 0.981  | ŢŢ     | 68.0    | 0F/0   | <b>C.982</b> | 0.972         | 0.948  | 0.846   |   |
| ۵.     | 5 1811 | M / M  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000         | 0000*0 | c      | 1181    | NVN    | 0.000        | 0000.0        | 0.000  | 000.000 |   |
| G      | 19.    | MF /N  | 0.941  | C. 945 | C.941  | C.915  | C-913         | 105.0  | C.892  | C.89C  | C.902  | C.858  | C.925  | C12.0  | C.556  | C.945  | 055 * 0       | 156.3  | U      | - 52    | NF/N   | C.952        | <b>c.</b> 586 | C.974  | C.92C   | 1 |
| L PT   | 1 1892 | Z / DB | -2.04  | -1.55  | -1.04  | -0.71  | -0.54         | -0.38  | -0.20  | -0.03  | 0.13   | 0.29   | 0.46   | 0.63   | 10.97  | 1.16   | 1.47          | 1.56   | L pT   | 2 1892  | 2/08   | -2.04        | -1-54         | -1.05  | -0.71   | 1 |
| CH RN/ | 0 1.51 | Y/D8   | -0.03  | -0.03  | -0.03  | -0.03  | -0.03         | -0.03  | -0.03  | -0.03  | -0-03  | -0.03  | -0-03  | -0+03  | -0.03  | -C.03  | -0.03         | -C.03  | INA H  | 10 1.51 | Y/DB   | -0-38        | -0-38         | -0.38  | -0.38   | 1 |
| F VAC  | 5 C•25 | X/CB   | 1C.88  | 1C.88  | 10.88  | 1C-88  | 10.88         | 10.88  | 10.88  | 10.88  | 10.88  | 10.88  | 10.88  | 10.88  | 1C.88  | 10.88  | 10.88         | 10.88  | F VAC  | 5 0.25  | X/CB   | 10.88        | 10.88         | 10.88  | 10.88   | • |
| TN CCN | 66     | U      | 79.5   | 2.91   | 79.5   | 2*6L   | 79.5          | 19.5   | 78.8   | 78.8   | 78.8   | 78.8   | 18.8   | 79.5   | 78.8   | 78.1   | 78.1          | 78.8   | TN CCN | 66      | c      | 2.91         | 79.5          | 2*61   | 79.5    | 1 |
| TST P  | 571 1  | MACH   | 0.250  | 0.250  | 0.250  | 0.250  | 0.250         | 0.250  | 0.749  | 0.249  | 0.249  | 0.749  | 0.249  | 0.250  | 0.249  | 0.248  | 0.248         | 0.249  | TST P  | 571 1   | MACH   | 0.250        | 0.250         | 0.250  | 0.250   |   |

**AL PHA** 

| ORI<br>OE | GII<br>PO | VA<br>OR | L  | ₽4<br>QU | AG<br>AI | e<br>Lij | IS<br>V |    |    |   |
|-----------|-----------|----------|----|----------|----------|----------|---------|----|----|---|
|           | 4         | 66       | 66 | 66       | 66       | 66       | 99      | 66 | 66 | ( |

| TST F | > TN CC | NF VA    | CH RN  | /r p1  | U<br>L  | c       | TT    | <b>AL PHA</b> |        |           |        |        |
|-------|---------|----------|--------|--------|---------|---------|-------|---------------|--------|-----------|--------|--------|
| 571   | 1 66    | 5 0.2    | 50 1.5 | 12 189 | 32 79.  | 5 1811  | 68.0  | 10.0C         |        |           |        |        |
| MACH  | c       | X / CB   | Y/DB   | Z/D8   | N/JN i  | NVN     | QF/0  | 0A/G          | VF/V   | V / V / V | Ċ,     | DF/D   |
| 0.250 | 79.5    | 10.88    | -0-38  | -2.04  | C.952   | 0.000   | C.982 | 0.000         | 0.992  | 0.000     | -0.017 | 0.599  |
| 0.250 | 19.5    | 1C-88    | -0.38  | -1-54  | • C.586 | 00000   | 0.972 | 0.000         | 0.986  | 0.000     | 610.0- | 665°U  |
| 0.250 | 79.5    | 10.88    | -0.38  | -1.05  | 5 C.974 | 0.000   | 0.948 | 0.000         | 0.975  | 0.000     | -0.030 | 0.9999 |
| 0.250 | 79.5    | 10.88    | -0.38  | -0.71  | . C.92C | 0.000   | 0.846 | C.000         | 0.921  | 0.000     | -0.030 | 0.999  |
| 0.250 | 2.91    | 1C.88    | -0.38  | -0-54  | · C.912 | 0.000   | 0.830 | 0.000         | 0.913  | 0.000     | -0.030 | 0.999  |
| 0.250 | 79.5    | 10.88    | -0.38  | -0-38  | 128.0   | 0.000   | 0.804 | c. 000        | 0.898  | 0.000     | -0.021 | 665.0  |
| 0.250 | 79.5    | 10.88    | -0-38  | -0.21  | 0.916   | 0.000   | 0.839 | 0.000         | 1.16.0 | 0.000     | -0.021 | 0.599  |
| 0.250 | 79.5    | 1C.88    | -0.38  | -0.04  | + C.914 | 0.000   | 0.834 | 0.000         | 0.915  | 0.000     | -0.021 | 0.9999 |
| 0.250 | 79.5    | 10.88    | -0-38  | 0.13   | 116.0   | 0.000   | C.839 | c. UOO        | 0.917  | 0.000     | -0.030 | 0.999  |
| 0.250 | 79.5    | 1 C. 88  | -0.38  | 0.30   | 0.888   | 000.0   | 0.787 | 0.000         | 0.889  | 0.000     | -0.030 | 0.999  |
| 0.250 | 79.5    | 10.88    | -0-38  | 0.46   | 005°0 S | 0.000   | C.810 | C• 000        | 106.0  | 0.000     | -0.030 | 665.0  |
| 0.250 | 79.5    | 10.88    | -0.38  | 0.64   | 0.921   | 0.000   | 0.848 | 000.0         | 0.922  | 0.000     | -0.030 | 665.0  |
| 0.250 | 79.5    | 10.88    | -0.38  | 0.96   | C.950   | 0.000.0 | 0.901 | 0.000         | 0.951  | 0.000     | -0.030 | 0.9999 |
| 0.250 | 79.5    | 1C.88    | -0.38  | 1.16   | 0.966   | 0.000   | 0.932 | C. UUU        | 0.966  | 0.000     | -0.022 | 0.999  |
| 0.250 | 2.21    | 1 C • 88 | -0-38  | 1.46   | 0.983   | 0.000   | 0.965 | 0.000         | 0.983  | 0.000     | -0.019 | 0.5999 |
| 0.250 | 2.97    | 10.88    | 95.0-  | 15°1   | 0.988   | 0.000   | 0.976 | 0.000         | 0.938  | 0.000     | -0.006 | 1.000  |

1.000 0.999 665\*0 665\*0 0.599 0.9999 666.0 665 0.9999 666 666 0.999 0.999 665.0 665.0 665 1 0 ě 0 -0.023 -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.021 -0.030 -0.024 -0.017 C -0.021 -0.02 -0.00 -0-01 0.000 VA/V 0.0000 0.000 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 000 0.000 0.909 968 979 0.989 967 0.958 VF/V 934 924 0.917 0.926 0.906 0.918 990 0.994 0.931 0.903 . . • • 0 0 . 10.00 ALPHA 0.000 0.000 0.000 000.0 c.000 000.0 0 A / Q 0.00.0 0.000 0.000 c.000 c.000 000.0 0.000 0.000 .000 .988 0.852 0.838 0.855 67.9 CF/Q 0.934 0.87I C.841 C.841 .934 616 0.824 0.818 0.865 0.915 • Ó  $\mathbf{O}$ 0 000.0 000 • 0 0.000 MA/W 0.0000 0.0000 0.000 0\*000 0.000 000.000 1811 000.0 0.000 0.000 0000.0 78.8 MF /N 0.989 0.954 0.957 0.934 C.923 C.916 C.925 C.925 C.928 C.905 L16\*0 0.967 056°) 525°) C.902 C.957 5 0.249 1.506 1891 -0.21 -0.03 0.12 0.25 0.48 -1.54 -1-05 -0.71 -0.54 -2.04 0.63 2/08 PT 0 PNJL -C.48 -C.48 -0.48 X/DB -0.48 -0.48 -0.48 α ω ω ω ω ω ω ω 8 Ω -0-48 -0-45 -0-48 -0-48 -0-48 -0.41 -0-48 -0-41 4 4 . 00 MACH CONF 79.5 20.01 20.01 20.01 20.01 17 66 571 1 a. 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.250 0.250 0.250 0.250 MACH 0.249 0.250 0.250 0.250 S RUN 290 SEG 2 N m + 1 0 ~  $\boldsymbol{\infty}$ σ  $\mathbf{N}$ 3 4 S

0.999 666.0 0.999 999 666\*0 665 DF/D 665 999 0.999 0.999 665 °0 665.0 0.999 0.999 666.0 0.999 č 0 -0.021 -0.030 -0.030 -0.030 -0.030 -0.015 -0.019 -0.017 -0.017 -0.024 -0.021 -0.021 -0.014 -0.021 -0-05 3 0.0000 0.000 0.000 000 000 0.000 0000 <u>v / v</u> 0.000 • . . > 0.929 0.918 0.940 968 965 0.993 0.913 0.901 0.990 934 902 933 166 VF/V **0.**984 0.913 0.994 • • 0 0 0. 0 10.00 0A/0 ALPHA 0.000 0.000 0.000 000.0 0.000 0.000 C-000 c. 000 c. 000 0.000 0.000 C.000 0.000 0.000 0.000 0.979 0.986 0.967 .929 67.8 QF/0 0.841 0.870 0.831 0.811 C.810 0.868 .936 .981 0.830 0.830 0.860 986  $\circ$ 0 • 000 0 • 000 0.000 0000-0 0.000 0.00.00 N/VN 0.000 000.0 0.000 0.000 1811 0.00.0 0.000 0000.0 79.5 NF / N C.993 0.984 0.918 0.933 0.535 0.912 C.900 C.912 C.928 265°0 166°0 796°0 066-0 C.932 C.968 -1.53 5 0.250 1.512 1892 X/CB Y/CB Z/DB -0.52 -0.35 -0.15 -0.02 0.45 0.45 0.14 0.65 0.98 F d -2.03 ¢  $\boldsymbol{\omega}$ ω 3**5**•1 1.1 PN/L 0.43 0.43 0.43 C•43 O•43 O•43 0.43 m (7) **C**1 **6**73 (m) m ក្រា 0.4 0.4 0.4 4.4 0-4 4 0.4 N A CH TN CONF -62 .61 571 1 MACH Ω. 0.250 0.249 0.250 250 250 250 250 TST 0 • 5 0 291 SFQ PUN 4 10 V M 00 σ O  $\mathbf{n}$ m 4 5 0

|           | ۵                  | . 0          | σ      | 6       | 6      | σ       | σ             | σ       | ç             | σ      | 6      | σ      | ō      | 5      | ç      | 6      | ō        |           |         | ٩      | σ        | φ       | σ         | σ       | 6       | 6       | δ        | 6       | 6       | <u>ь</u> | σ            | 6      | 6       | 6      | c      |
|-----------|--------------------|--------------|--------|---------|--------|---------|---------------|---------|---------------|--------|--------|--------|--------|--------|--------|--------|----------|-----------|---------|--------|----------|---------|-----------|---------|---------|---------|----------|---------|---------|----------|--------------|--------|---------|--------|--------|
|           | DF /               | 0.99         | 0.59   | 65*0    | 0.99   | 0.99    | 0.99          | 0.99    | 0.99          | 0.99   | 0.99   | 0.59   | 55°0   | 0.99   | 0.99   | 0° 33  | 0.99     |           |         | DF/    | 0.59     | 0.59    | 0.99      | 0.99    | 65.0    | 0.59    | 65 • 0   | 0.99    | 0.99    | 0.99     | 0.59         | 0.99   | 0.99    | 0.99   |        |
|           | a J                | -0.017       | -0.021 | -0.022  | -0.030 | -0.030  | -0.030        | -0.030  | -0.030        | -0.030 | -0.030 | -0.030 | -0.030 | -0-024 | -0.028 | -0.028 | 610.0-   |           |         | a<br>C | -0.026   | -0.017  | -0.024    | -0.026  | -0.030  | -0.030  | -0.032   | 120.0-  | -0.021  | -0.021   | -0.021       | -0.021 | -0.021  | -0.019 |        |
|           | ~ ~ ~              | 0000.0       | 0.000  | 0.000   | 0.000  | 0• 000  | 0-000         | 0.000   | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0-000    |           |         | VAIV   | 0.000    | 0.000   | 0.000     | 0.000   | 0.000   | 0-000   | 0.000    | 0.000   | 0.000   | 0.000    | 0.000        | 0.000  | 0.000   | 0.000  |        |
| ~~ ~      | ,<br>VE/V          | 0.927        | 0.945  | 0.937   | 0.889  | 0.883   | 0.863         | 0.874   | 0.386         | 0.873  | 0.866  | 0.899  | 0.912  | 0.944  | 0.980  | 0.987  | 0.997    |           |         | VEZV   | 0.994    | 0.980   | 0.971     | 0.938   | 0.905   | 0.899   | 0.901    | 0.883   | 0.879   | 0.879    | 0.302        | 0.917  | 0.960   | 0.984  | 200 0  |
| ALPHI     |                    | 0.000        | 0.000  | 0.000   | 0.000  | 0.000   | 0.000         | 0.000   | 0.00.0        | c.000  | 0.000  | 0.000  | 0.000  | 0.000  | c. 000 | 0.000  | 000 •0   |           | 10.00   | 04/0   | 0.000    | 0.000   | 000-0     | 0.000   | 0.000   | 0.00.0  | 0.00.0   | 0.00.0  | C-000   | 0.000    | C• 000       | 0.00.0 | 0.000   | C•000  |        |
| TT,       | 0 - 1 0<br>0 - 1 0 | 0-856        | 0.891  | 0.875   | 0.787  | 0.777   | 0.742         | 0.761   | 0.782         | 0.759  | 0.747  | 0.806  | C.829  | 0.888  | 0.958  | 0.974  | 0.993    | Ĩ         | 67.7    | 0F/0   | 0.987    | 0.960   | 0.941     | 0.878   | 0.817   | C.8C6   | 0.810    | 0.776   | 0.769   | 0.770    | 0.811        | 0.839  | 0.920   | 0.967  |        |
| d         | 1181<br>MV/W       | 0000-0       | 0.000  | 0.000   | 0.000  | 000.0   | 0.000         | 0000.0  | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.00.0 | 000.000  | ۵         | 1811    | NA/W   | 0.000    | 0.000   | 0000-0    | 0.000   | 000.000 | 0.000   | 0000.0   | 0.00.00 | 0.00.0  | 0.000    | 000 * 0      | 0.000  | 000.000 | 0000.0 |        |
| U (       | 1 • 7 · 1 N        | C-926        | C.944  | 0.936   | 0.888  | C.882   | <b>C.</b> 862 | C.873   | 0.885         | C.872  | C. 865 | 0.858  | 116.0  | C.943  | 0.979  | 0.987  | L 56 ° 0 | C         | 78.8    | NF / N | 0.954    | C.980   | 172.0     | C.937   | C.904   | C.858   | C• 500   | C.881   | 0.878   | C.878    | 105*0        | c.916  | 095-0   | C.984  |        |
| L PT      | 3 1892<br>7 / N B  | - 2,00       |        | -1.03   | -0.69  | -0.53   | -0.36         | -0.19   | -0.01         | 0.14   | 0.32   | 0.47   | 0.65   | 0.98   | 1.17   | 1.48   | 1.98     | Id        | 1991 4  | Z/08   | -2.03    | -1.52   | -1.02     | -0.10   | -0.52   | -0.36   | -0.15    | -0-03   | 0.15    | 16.0     | 0.48         | 0.64   | 9.580   | 1.18   | •      |
|           |                    | - 10-0-      | -0-01  | -0-01 - | - 0.01 | - 10-0- | -0.C1         | - 10-0- | -0-01         | -0-01  | -0-01  | -0-01  | -0-01  | -0.01  | 10.0-  | -0.01  | -0.01    | Nd        | 1.50    | Y/DB   | -0-36 -  | -0-36 - | -0-36 -   | -0-36 - | -C.36 - | -0-36 - | - 0-36 - | - 92.0- | -0.36   | -0-36    | -0-36        | -0-36  | -0-36   | -0-36  |        |
| LACI      |                    | 01/4<br>8/40 | 8.49   | E 49 .  | - 64•3 | 8.49 -  | 8.49 -        | 6.49    | . 49          | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49   | 8.49     | M D C I   | 0-24    | ×/08   | . 64. 6. | 8.49 -  | £ • 4 9 - | 8.49 -  | 8.49 -  | 8.49 -  | 8.49 -   | 8.49 -  | 64.49   | - 64•3   | 64.6         | 8.49   | - 64.8  | 6.49   | (      |
| IN CONF   | φ<br>c             | ∋ č<br>"     | 5.0    | 2.6     | 3*61   | 19.5    | 3.61          | 19.5    | 79 <b>.</b> 5 | 8.8    | 78.8   | 78.8   | 78.8   | 79.8   | 78.8   | 78.8   | 78.8     |           | 9       | e e    | 8.8      | 9.5.5   | 10. E     | 8.8     | 8.8     | 8.8     | 8.8      | 8.8     | 8.8     | 5*6      | 9 <b>.</b> 5 | 5°5    | ·9.5    | 5.5    | •      |
| I d I S I |                    |              | 250 7  | .250    | .250   | .250    | .250          | .250 1  | .250          | .249   | . 249  | .249   | .249   | .249   | - 249  | .249   | .249     | 1 0 1 2 1 | 571 1 6 | ACH    | .249 7   | .250 7  | .250 7    | .249 7  | .249 7  | .249 7  | ,249 7   | .249 7  | 249 7   | .250 7   | ,250 7       | .250 7 | ,250 7  | .250 7 |        |
| RUN       | 292                | 5 C<br>3 F   | 10     | 30      | 4 0,   | 5<br>0  | 6<br>0        | -0<br>- | ບ<br>8        | °0 6   | 10 0.  | 11 0.  | 12 0.  | 13 0.  | 14 0.  | 15 0.  | 16 0.    | L NIId    | 292     | SEC.   | 10       | 2 0,    | 30.       | ۰<br>۲  | 2<br>0  | 6 0.    | 7 0.     | 8       | •0<br>6 | 10 0.    | 11 0.        | 12 0.  | 13 0.   | 14 0.  | (<br>( |

i.

## ORIGINAL PAGE IS DE POOF QUALITY

- -----

666 • 0 0.999 0.999 666.0 0.599 000 665 • 0 6665.0 665 °0 0.999 666.0 0.599 0.999 666.0 0.599 666.0 PF/I -0.024 -0.019 -0.022 -0.019 -0.014ŝ -0.015 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0-021 -0-02 00.0å V ∆ /V 0.0C0 0.000 0.000 0.000 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 U. 0C0 0.000 0.000 0.988 0.922 0.902 0.880 893 987 0.993 0.980 VF/V 0.990 0.889 0.908 0.933 0.961 0.992 0.892 0.887 . • 10.00 ALPHA 0A/Q 0.00.0 0.000 0.00.0 000.0 0.000 0.00.0 0.00.0 0.000 000-0 0.000 0.000 0.000 0.000 C.000 0.00.0 0.000 1.982 0.868 0.960 0.979 C.848 0.811 0.792 0.772 0.794 67.6 0F/0 C.974 0.784 0.923 0.787 0.821 0.986 .974 Ó 000.000 0000 0.000 0.000 0.000 0.000 .000 0.00.00 0.000 0.000 1812 M / M 0.000 0.000 ۵. C 78.8 MF/N 69930 C•990 C•987 C•921 C•921 C•921 0.875 0.886 0.907 0.961 0.892 C.888 c.932 C.980 C-987 U C.249 1.507 1892 X/CB Y/CP Z/DB 8.49 -C.45 -2.03 ( 0.65 0.98 1.18 -1.53 -0.52 -0.35 0.14 ω -0.18 -0.02 16.0 La La 0.48 • 4 5. PN/L - C • 45 -0-45 -0-45 -0.45 34.0--0-45 -0.45 -0.45 -0-45 -0.45 -0.45 -0-45 S ŝ -0-45 4. NACH VACH 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 ŝ LUN F 80.2 80.2 80.2 79.5 80.2 80.2 80.2 779.5 779.5 80.2 80.2 4n N 6 80. 2 ۵. 571 1 MACH 0.249 5 15 010m4 8 UN 294 SF0 RUN NW400000

.027 1.000 1.009 1.025 1.034 1.031 1.010 1.000 .013 .006 .017 1.005 1.002 762.0 0.596 0.016 0.039 0.054 0.043 0.038 0000.0 0.049 -0.006 -0.006 0.007 0.003 0.00.0 0.015 0.027 0.021 ð V V V 0.971 0.962 0.916 0.916 0.918 0.877 0.877 0.933 0.973 0.973 0.973 0.971 VF/V 971 . ALPHA -10.00 QA/Q 68.1 QF/0 0.959 0.935 0.935 0.836 0.823 0.823 0.823 0.823 0.823 0.823 0.761 0.751 0.759 0.799 0.897 0.954 0.969 0.965 0.961 382 M / MN ۵ 243.4 MF/N 0.965 0.966 0.955 0.958 0.903 C.882 0.871 0.874 0.859 0.877 106.0 C.394 0.942 C.969 16.0 96 1 686 2 2/08 -0.54 -0.21 0.13 0.29 0.47 0.63 -1.53 -1.05 -0.70 -0.38 -0.03 76.0 1.17 ω 1.97 1.48 RNJ 0.954 1.483 Y/DB C.41 0.41 C.41 0.41 0.41 C.41 .41 0.41 0.41 0.41 .41 .41 4. 4. 4. 4. ò లి  $\mathbf{O}$  $\mathbf{C}$ VACH X/TB C 888 C 8888 C 888 C 888 C 888 C 8888 C 888 C 888 C 888 C 888 C 888 C 888 C • 88 C • 88 C • 88 88 **u**n **HNUU** 241.9 241.9 241.9 241.9 241.9 241.9 241.5 241.9 241.9 241. Z 1 66 ۵. 571 ] MACH 0.954 0.952 0.952 0.950 0.950 0.950 0.950 0.950 0.954 0.950 676 0.950 0.950 0.950 TST . 295 SEQ 2 3 450000 2 <u>-2</u> 4527

|            |        | bF/p      | 1.023   | 1.023   | 1.013    | 1.008   | 1.006   | 1.003   | 1.003   | 666.0     | 966.0  | 0.999    | 1.002  | 1.008         | 1.015    | 1.018  | 1.024   | 1.030    |   |             |             |         | pc/p      | 1.025   | 1.021   | 1.014       | 1.006    | 1.001  | 0.9999 | 199.0     | 0.992   | 0.992  | 9994   | 0.598  | 1.004   | 1.013          | 1.018  | 1.028  | i 1.035 |
|------------|--------|-----------|---------|---------|----------|---------|---------|---------|---------|-----------|--------|----------|--------|---------------|----------|--------|---------|----------|---|-------------|-------------|---------|-----------|---------|---------|-------------|----------|--------|--------|-----------|---------|--------|--------|--------|---------|----------------|--------|--------|---------|
|            |        | C D       | 0.036   | 0.036   | 0.021    | 0.013   | 0.010   | 0.005   | 0.005   | -0.002    | -0.009 | -0.001   | 0.003  | 0.012         | 0.024    | 0.028  | 0.038   | 0.048    |   |             |             |         | e<br>C    | 0.039   | 0.033   | 0.022       | 0.010    | 0.001  | -0.001 | -0.004    | -0.012  | -0.013 | -0.010 | -0.003 | 0.006   | 0-020          | 0.028  | 0.045  | 0.055   |
|            |        | V A /V    |         |         |          |         |         |         |         |           |        |          |        |               |          |        |         |          |   |             |             |         | V N / V   |         |         |             |          |        |        |           |         |        |        |        |         |                |        |        |         |
| ALPHA      | -10.00 | 0A/Q VF/V | 0.907   | 0.937   | 0.934    | 0.895   | 0.876   | 0.858   | 0.346   | 0.847     | 0.851  | 0.856    | 0.864  | 0.877         | 0.927    | 0.954  | 0.978   | 0.975    |   |             | ALPHA       | -10.00  | QA/Q VF/V | 0.966   | 0.972   | 0.965       | 0.918    | 0.891  | 0.872  | 0.364     | 0.857   | 0.863  | 0.361  | 0.874  | 0.894   | 0.940          | 0.967  | 0.969  | 0.973   |
| 11         | 69.6   | 0140      | 0.815   | 0.878   | 0.863    | 0.780   | 0.741   | 0.705   | 0.684   | 0.681     | 0.686  | 0.698    | 0.715  | 0.745         | 0.850    | 0.912  | 179.0   | 116.0    |   | ļ           |             | 70.7    | 0F/0      | 0.944   | 0.956   | 0.933       | 0.824    | 0.765  | 0.727  | 0.712     | 0.695   | 0.705  | 0.703  | 1.732  | 0.774   | 0.877          | 0.941  | 0.955  | 016-0   |
| ۵          | 382    | NA/N      |         |         |          |         |         |         |         |           |        |          |        |               |          |        |         |          |   | (           | ם           | 381     | MV/W      |         |         |             |          |        |        |           |         |        |        |        |         |                |        |        |         |
| U          | 242.9  | NF/N      | 0.852   | C.927   | c.923    | 0.875   | 0.858   | 0.838   | 0.826   | 0.826     | 0.831  | 0.836    | C.845  | <b>C.</b> 860 | C.915    | C.947  | C.974   | 179.0    |   | Ċ           | 2           | 243.4   | NF /N     | C.96C   | 196.0   | C•959       | 0.905    | C.874  | 0.853  | C•845     | 0.837   | 0.843  | 0.841  | 0.356  | 0.878   | 0.931          | 296.0  | C.964  | 0.968   |
| Ld .       | 5 685  | 2/08      | -2.04   | -1-55   | -1.04    | 11.0.   | -0.54   | -0.37   | -0.20   | -0.04     | 0.13   | 0.30     | 0.46   | 0.63          | 0.96     | 1.16   | 1.46    | 1.96     |   | ł           | n.          | 685     | Z / 0.8   | -2.04   | -1.54   | -1.04       | 12-0-    | -0.53  | -0.38  | 0.20      | -0-04   | 0.13   | 0.30   | 0.47   | 0.63    | 0.96           | 1.16   | 1.47   | 1.96    |
| RNA        | 1.476  | Y/08      | - 60.0- | -0.03 - | - 0.03   | - 60.0- | -0.03 - | - 60-0- | -0-03 - | - 0- 03 - | -0*03  | E0 • 0 • | -0-03  | -0-03         | -0-03    | -0-03  | -0-03   | £0•0-    | * |             |             | 5 1.473 | Y/DB      | -0.38 - | -0-38 - | -0-38-0-    | - 0.38 - | 0.38   | 0.38   | - C* 38 - | -0-38 - | -0.38  | ·C. 38 | -0.38  | ·C•38   | • <b>0</b> •38 | •0•38  | •0•38  | •0•38   |
| WACH       | 0.953  | X/DB      | C. 88 - | C. 88 - | C.88 -   | C.88 -  | 0. 88 - | 0.88 -  | C. 88 - | C . 88 -  | 0.88 - | C. 88 -  | C 88 - | C 88 -        | 0.88 -   | 0.88 - | C. 87 - | C . 88 - |   | 2           | NACH        | 0.955   | X/DB      | 0.87 -  | 0.87 -  | C.87 -      | C.87 -   | C.87 - | C.87 - | C.87 -    | C.87 -  | C-87 - | 0.87 - | C.87 - | C. 87 - | 0.87 -         | C.87 - | 0.87 - | 0.87 -  |
| CONF       | ŝ      |           | 1 6.    | - 6     | .4 1     | .4      | 1 5.    | 1 5.    |         | • 0       |        | -<br>C   | •0     | -0            | • 1      | • 6    | • ć 1   |          |   |             | CONF        | ŝ       |           | • 4 1   | • 4 1   | - 2         | 1 1.     |        |        | • 1 1     | - 7 - 1 | -7 1   | •6 1   | • 1 1  |         | • 7 I          | - 1    | •6     | • •     |
| P TN       | 1 66   | C<br>-    | 242     | 242     | 242      | 242     | 241     | 241     | 241     | 242       | 242    | 242      | 242    | 242           | 241      | 241    | 241     | 241      |   | i<br>F      | 2           | 1 66    | 0         | 243     | 243     | 244         | 244      | 244    | 244    | 244       | 244     | 244    | 244    | 244    | 244     | 243            | 243    | 244    | 244     |
| <b>TST</b> | 115    | MACH      | 0.953   | 0.953   | 0.951    | 0.951   | 0.950   | 0.950   | 346-0   | 0.945     | 0.945  | 0.945    | 0.945  | 576-0         | 0.946    | 0.947  | 0.947   | 0.948    |   | ۴<br>د<br>۴ | 121         | 571     | MACH      | 0.955   | 0.955   | 576*0       | 056-0    | 0.950  | 0-950  | 0.950     | 0-950   | 0.950  | 0.951  | 0-950  | 0.950   | 576-0          | 0.945  | 0.951  | 0-951   |
| NUN        | 296    | SEQ       | T       | 2       | <b>m</b> | 4       | ĥ       | 9       | -       | ω         | σ      | 10       | 11     | 12            | <b>7</b> | 14     | 15      | 16       |   |             | 2<br>D<br>¥ | 297     | SEQ       | -1      | 2       | <b>6</b> 1) | 4        | ŝ      | 9      | ~         | œ       | σ      | 10     | 11     | 12      | 6              | 14     | 15     | 16      |

|                                               | CP PF/P             | 0.036 1.023             | 0.031 1.019             | 0.019 1.012             | 0.007 1.005             | 0.010 1.006             | 0.002 1.001             | -0.004 0.998              | -0.004 0.598            | -0.002 0.999           | 0.032 1.001            | 0.005 1.003            | 0.006 1.004            | 0.016 1.010             | 0.033 1.021            | 0.045 1.028            | 0.053 1.034            |                    |                         | CD DE/D             | 0.028 1.018           | 0.027 1.017           | 0.020 1.013           | 0.007 1.004           | -0.001 0.599          | -0.007 0.996          | -0.010 0.994          | -0,010 0,993          | -0.013 0.992         | -0.011 0.593         | -0.010 0.994         | -0.003 0.598         | 0.009 1.006          | 0.019 1.012          | 0.033 1.021          | 0.047 1.029          |
|-----------------------------------------------|---------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|------------------------|--------------------|-------------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| ALPHA                                         | 04/0 VF/V VA/V      | 0.975                   | 0.977                   | 0.965                   | 0.917                   | 0.901                   | 0.891                   | 0 • 885                   | 0.875                   | 0.876                  | 0.878                  | 0.386                  | 0.911                  | 0.954                   | 0.961                  | 0.969                  | 0.973                  | АЦРНА              | -10.00                  | DA/Q VF/V VA/V      | 0.980                 | 0.979                 | 0.975                 | 0.926                 | 0.926                 | 0.909                 | 0.897                 | 0.884                 | 0.870                | 0.874                | 0 • 384              | 216.0                | 0.964                | 0•930                | 0.980                | 0.976                |
| 71 q<br>71 485                                | MA/M QF/Q           | 0.963                   | 0.966                   | 166.0                   | 0.820                   | 0.790                   | 0.766                   | 0.751                     | 0.733                   | 0.736                  | 0.741                  | 0.757                  | 0.809                  | 0.904                   | 0.930                  | C.956                  | 0.969                  | 11 d               | 385 72.4                | MA/M CF/0           | 179.0                 | 0.967                 | 0.955                 | C•840                 | 0.835                 | 0.798                 | 0.773                 | 0.746                 | 0.719                | 0.728                | 0.746                | 0.806                | 0.923                | 0.965                | 0.974                | 179.0                |
| CNF MACH RN/L PT C<br>5 0.962 1.483 692 245.1 | X/CB Y/CE Z/CB MF/N | 1C.87 -C.48 -2.C4 C.970 | 10.87 -0.48 -1.54 0.973 | IC.87 -0.48 -1.04 0.959 | 10.87 -0.48 -0.71 0.904 | 10.87 -0.48 -0.54 0.886 | 1C.87 -C.48 -0.38 0.875 | 10.87 - 0.48 - 0.20 0.868 | IC-87 -0.48 -0.04 0.857 | IC.87 -C.48 O.12 C.855 | 1C.87 -0.48 0.28 C.86C | 10.87 -0.48 0.46 C.869 | IC.87 -C.48 0.63 0.857 | IC.87 - C.48 0.96 0.946 | 10.87 -0.48 1.16 C.954 | 10.87 -0.48 1.46 C.964 | 1C.87 -C.48 1.97 C.968 | CNF MACH RN/L PT C | 5 0.954 1.481 692 245.7 | X/D9 Y/D8 Z/D8 MF/M | 8.48 C.43 -2.C3 C.977 | 8.49 0.43 -1.52 C.975 | 8.48 C.43 -1.C3 C.971 | 8.48 0.43 -0.65 C.915 | 8.48 0.43 -0.52 C.914 | 8.48 C.43 -0.34 C.855 | 8.48 0.43 -0.19 0.882 | 8.48 C.43 -0.02 0.867 | 8.48 0.43 0.14 C.852 | 8.48 0.43 0.31 0.856 | 8.48 0.43 0.48 C.867 | 8.48 0.43 0.66 0.899 | 8.48 C.43 C.97 C.958 | 8.48 0.43 1.18 C.977 | 8.48 0.43 1.48 C.976 | 8.48 C.43 1.58 C.971 |
| RUN TST P TN CC<br>298 571 1 66               | SFG MACH Q          | 1 0.952 245.1           | 2 0.952 245.1           | 3 0.954 245.7           | 4 0.954 245.7           | 5 0.954 245.7           | 6 0.954 245.7           | 7 0.954 245.7             | 8 0.954 245.7           | 9 0.954 245.7          | 10 0.954 245.7         | 11 0.954 245.7         | 12 0.952 245.1         | 13 0.954 245.7          | 14 0.952 245.1         | 15 0.951 244.6         | 16 0.949 244.2         | PUN TST P TN CC    | 299 571 1 66            | SEG MACH Q          | 1 0.954 245.7         | 2 0.954 245.7         | 3 0.956 246.2         | 4 0.956 246.2         | 5 0.954 245.7         | 6 0.953 245.1         | 7 0.953 245.1         | 8 0.953 245.1         | 9 0.952 245.1        | 10 0.954 245.7       | 11 0.952 245.2       | 12 0.952 245.2       | 13 0.952 245.2       | 14 0.949 244.2       | 15 0.949 244.2       | 16 0.950 244.7       |

-----

1.020 0.993 0.986 1.006 1.017 1.025 1.028 1.020 1.007 1.004 1.007 1.010 799. 797 0.990 DF/D 1.001 1.024 .013 1.001 .008 1.022 1.021 0.988 0.588 pr/p . 027 066.0 0.998 1.003 1.004 1.005 1.017 1.020 .02( -0.005 0.033 0.002 0.007 0.013 0.009 -0.015-0.018 -0.018 -0.015 -0.003 0.026 0.039 0.036 0.008 0.030 0.016 -0.021 0.045 0.036 0.038 0.031 0.002 0.043 0.023 0.005 0.013 0.007 0.047 0.046 ð ٥ V A /V V A / V 0.975 0.897 0.877 0.862 0.879 0.901 766.0 0.873 VF/V 0.923 0.932 0.854 0.886 0.974 0.978 0.864 0.846 0.345 0.973 0.975 VF/V 0.938 0.945 0.898 0.870 0.860 0.851 0.845 0.857 0.927 0.953 0.968 779.0 974 ALPHA -10.00 -10.00ALPHA 0A/Q 0 A / Q 0F/0 0/ 40 0.885 0.740 73.6 0.831 0.733 0.707 0.671 0.907 73.8 0.862 0.785 0.744 0.694 0.685 0.708 0.703 0.857 0.914 0.953 0.969 0.672 0.701 0.895 964 0.953 0.961 0.774 0.735 0.783 0.954 0.965 0.974 0.771 387 419 W/ VN MV/W ¢ 0 246.3 MF/X 0.975 0.965 c.936 c.922 C.836 C.857 176.0 C.950 0.970 C•973 0.839 C.911 1.862 C.842 0.946 C.964 C.97C 0.881 0.859 0.845 0.825 0.824 0.842 0.886 C.929 0.885 0.833 C.826 0.871 970 0.860 C.916 O 695 -0.45 -1.52 -0.45 -1.03 0.13 0.48 0.64 -0.20 0.13 Y/CB Z/CB -0.45 -2.03 -0.45 -0.68 ω •18 •49 -C.03 -2.04 -1.55 -1.04 -0.54 10.97 -0.36 -0.18 0.30 •46 0.62 .16 -0.03 0.31 •46 F -0.71 **6**•0 ŏ. <u></u>6. RN/L 5 C.9CC 1.482 5 0.953 1.482 RN/L -0-45 -0-45 -0.45 -0-45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.03 -0.03 -0.03 -0-45 -0.45 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0-03 -0.03 -0.03 -0.03 HUV2 HUVN X/CB E.48 -8.48 8.43 8.48 8.48 8.48 10.87 C.87 C.87 C 87 C 87 C 87 C 87 C 87 C 87 C. 87 C. 87 8.48 8.48 8•48 8.48 C.87 8.48 8.48 8.48 8.48 8.48 C-87 C-87 C-87 C.87 œ 88 8.4 ి P TN CCNF D TN CCNF 237.8 237.8 237.8 238.7 237.3 m 246.8 246.8 246.8 246.3 245.8 245.8 ω 238.2 236.9 4 **6**1 238.7 238.7 239.2 238.2 2 ų U I 246. 245. 238. 238. 236. 236. \$ ٩ 571 1 66 C ٩ 571 1 MACH 0.953 0.954 0.954 0.954 0.954 0.953 0.953 0.952 0.953 0.953 0.900 0.900 0.952 C.950 0.950 MACH 0.901 0.902 0.902 C. 902 949 TST 0.900 0.901 0.901 896 0.953 0.950 0.899 0.858 0.901 0.901 0.896 89 TST . ċ . RUN 302 SEQ 20 303 S S S S \* ¢ σ 2 4 5 2 213 14 5 t NNA 4 JU. ŝ

|            |         | 0/30      | 1.017    | 1.017    | 1.013         | 1.005    | 1.003    | 1.C05    | 1.004    | 1.003    | 1.002           | 100.1    | I.005    | 1.013    | 1.017    | 1.020    | 1.021    | 1.017    |           |         | p⊧/p      | 1.009    | 1.009     | 1.005         | 1.001    | 0.996    | 1.000    | 0.996   | 0.596   | C. 598    | 0.996    | 1.000     | 1.003   | I. CO8   | 1.013         | 1.020    | 1.021   |
|------------|---------|-----------|----------|----------|---------------|----------|----------|----------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|-----------|---------|-----------|----------|-----------|---------------|----------|----------|----------|---------|---------|-----------|----------|-----------|---------|----------|---------------|----------|---------|
|            |         | e)        | 0.030    | 0.030    | 0.023         | 0.009    | 0.005    | 600°0    | 0.096    | 0.006    | 0.003           | 100.0    | 500°0    | 0.023    | 0.030    | 0.036    | 0.037    | 160.0    |           |         | СÞ        | 0.018    | 0.019     | 0.010         | 0.002    | -0-007   | -0.001   | -0.007  | -0.009  | -0.004    | -0.007   | -0.001    | 0.005   | 0.015    | 0.025         | 0.039    | 0.042   |
|            |         | V A / V   |          |          |               |          |          |          |          |          |                 |          |          |          |          |          |          |          |           |         | V A /V    |          |           |               |          | •        | •        | •       | •       | •         | ·        | •         |         |          |               |          |         |
| ALPHA      | -10.00  | DA/Q VF/V | 0.939    | 0.941    | 0.933         | 0.893    | 0.864    | 0.835    | 0.820    | 0.834    | 0.813           | 0.320    | 0.344    | 0.873    | 0.933    | 0.962    | 0.976    | 0.980    | ALPHA     | -10.00  | CA/G VE/V | 0.926    | 0.937     | 0.931         | 0.895    | 0.865    | 0 • 843  | 0.830   | 0.831   | 0.437     | 0.852    | 0. 359    | 0.887   | 0.942    | 0.967         | 0.975    | 0.979   |
| 1 i        | 74.0    | QF / 0    | 0.879    | 0.885    | 0.864         | 0.775    | 0.720    | 0.668    | 0.640    | 0.665    | 0.637           | 0.640    | 0.634    | 0.743    | 0.866    | 0.933    | 0.965    | 179.0    | TT        | 73.8    | CF/0      | 0.348    | 0.870     | 0.355         | 0.779    | 0.720    | 0.682    | 0.657   | 0.659   | 0.670     | 0.696    | 0.710     | 0.766   | 0.879    | 0.937         | 0.964    | 0.972   |
| ۵          | 417     | MA/W      |          |          |               |          |          |          |          |          |                 |          |          |          |          |          |          |          | ٩         | 459     | NV VN     |          |           |               |          |          |          |         |         |           |          |           |         |          |               |          |         |
| 0          | 238.5   | NF /N     | 0:030    | 0.933    | <b>C.9</b> 24 | 0.878    | 0.847    | C.816    | C.799    | C.814    | 197.0           | 0.800    | 0.825    | 0.856    | 0.923    | 0.956    | C.972    | 172.0    | G         | 231.1   | MF / N    | 0.917    | C.929     | <b>C.</b> 922 | C.882    | 0.850    | 0.826    | C.812   | C.814   | C.919     | C.836    | C•843     | C.874   | 0.934    | <b>C</b> •962 | 0.972    | 0.976   |
| LPT        | 2 709   | Z/08      | -2.03    | -1.52    | 10.1-         | -0.69    | -0.53    | -0.35    | -0.19    | -0.01    | 0.15            | 0.32     | 0.47     | 0.65     | 0.58     | 1.18     | 1.48     | 1.98     | L b1      | 8 735   | 2/08      | -2.03    | -1.52     | -1.02         | -0-69    | -0.52    | -0-37    | -0-18   | -0.02   | 0.14      | 0.31     | 0.47      | 0.65    | 0.98     | 1.18          | L.48     | 1.98    |
| Na H       | 4 1.48  | Y/DB      | -0.01    | -0.01    | -0-0-         | -0-01    | -0-01    | -0-01    | -0-01    | -0-01    | 10.0-           | -0.01    | 10.0-    | -0-01    | -0-01    | 10-0-    | -0.01    | 10.0-    | F RN/     | 8 1.45  | Y/L8      | - 10-0-  | - 0.0.1 - | -0.01         | - 0.01   | - 0-01 - | -0-01    | - 10-0- | -0-01   | -0-01     | -0-01    | 10-0-     | -0.01   | -0-01    | -0-01         | -0.01    | -0-01   |
| E WAC      | 0.00    | X / DB    | 8.49     | 8.49     | - 67 · 8      | 8.49     | 8.49     | 8.49     | 8.49     | E. 49 -  | 8.49            | 8.49 -   | 8.49     | 8.49     | 8.49     | 8.49     | £ • 49 · | 8.49     |           | 5 0.841 | X/CB      | 8.49 -   | - 61.3    | 8.49 -        | E.49 -   | E.49 -   | - 64.3   | 8.49 -  | 8.49    | 8.49 -    | 8.49 -   | E • 49    | - 64.8  | 8.49     | E. 49 .       | E. 49 -  | 5 49 ·  |
| T P TN CON | 1 1 66  | 0 н;      | 04 238.5 | 34 238.5 | 14 239.0      | 34 235.0 | 33 238.6 | 33 238.6 | 01 238.2 | 30 237.8 | <b>JO 237.E</b> | 30 237.8 | 99 237.4 | 39 237.4 | 37 237.0 | 57 237.C | 36 236.5 | 38 237.4 | P TN CCNF | 1 66    | c,        | 18 231.1 | 9 231.5   | 1 232.4       | 11 232.3 | 12 232.2 | :2 232.2 | 1 231.7 | 1 231.7 | 1.2.232.1 | 12 232.1 | 1.2 232.1 | 3 232.5 | 13 232.5 | 3 232.5       | 11 231.6 | 0 231.3 |
| RUN TST    | 304 571 | SEQ MAC   | 1 0.90   | 2 0.90   | 3 0.90        | 4 0.90   | 5 0.90   | 6 0.90   | 16.0 7   | 8 0.90   | 36°0 6          | 10 0.90  | 11 0.85  | 12 0.85  | 13 0.85  | 14 0.85  | 15 0.85  | 16 0.85  | RUN TST   | 305 571 | SEC MAC   | 1 0.84   | 2 0.84    | 3 0.85        | 4 0.85   | 5 0.85   | 6 0.85   | 7 0.85  | 8 0.85  | 9 0.85    | 10 0.85  | 11 0.85   | 12 0.85 | 13 0.85  | 14 0.85       | 15 0.85  | 16 0.85 |
| -          |         |           |          |          |               |          |          |          |          |          |                 |          |          |          |          |          |          |          |           |         | - '       |          |           |               |          |          |          |         |         |           |          |           |         |          |               |          |         |

ORIGINAL PAGE IS OF POOR QUALITY

|       |        | 4           | 14     | 14     | 5      | 07       | 05     | 10      | 00     | 02      | 03     | 90     | 05     | 05     | 08      | 60     | 14     | 18      |       |        | d/      | 0.8    | 101    | 90     | 03     | 05           | 00           | 66           | 10      | 10         | 101           | 10          | lC          | 06    | 101   | 12    |             |
|-------|--------|-------------|--------|--------|--------|----------|--------|---------|--------|---------|--------|--------|--------|--------|---------|--------|--------|---------|-------|--------|---------|--------|--------|--------|--------|--------------|--------------|--------------|---------|------------|---------------|-------------|-------------|-------|-------|-------|-------------|
|       |        | u<br>a      | 1.0    | 1.0    | 1.0    | 1.0      | 1.0    | 1.0     | 1.0    | 1.0     | 1.0    | 0.1    |        | 1.0    | 1.0     | 1.0    | 1.0    | 1.0     |       |        | ц<br>С  | 1.0    | 1.0    | 1.0    | 1.0    | 1.0          | 1.0          | <b>6</b> •0  | 1.0     | 1.0        | 1.0           |             | 1•0         |       | 1.0   | 1.0   | 1.0         |
|       |        | C P         | 0.027  | 0.029  | 0.026  | 0.015    | 0.009  | 0.002   | 0.000  | 0.005   | 0.006  | 0.012  | 0.009  | 0.011  | 0.016   | 0.019  | 0.027  | 0.036   |       |        | a       | 0.018  | 0.015  | 0.013  | 0.008  | 0.004        | 0.001        | -0.003       | 0.001   | 0.002      | 0.003         | 0.003       | 0.003       | 0.013 | 0.016 | 0.027 | 0.024       |
|       |        | V A /V      |        |        |        |          |        |         |        |         |        |        |        |        |         |        |        |         |       |        | V A / V |        |        |        |        |              |              |              |         |            |               |             |             |       |       |       |             |
|       |        | VF/V        | 0.930  | 0.935  | 0.920  | 0.890    | 0.879  | 0.868   | 0.868  | 0.864   | 0.883  | 0.871  | 0.889  | 0.898  | 0.945   | 0.966  | 176.0  | 0.981   |       |        | V F/V   | 0.990  | 166.0  | 0.977  | 0.933  | 0.921        | 0.925        | <b>0.914</b> | 0.906   | 0.911      | 0.909         | 0.918       | 0.931       | 0.960 | 0.976 | 0.983 | 0.986       |
| ALPHA | -10.00 | QA/Q        |        |        |        |          |        |         |        |         |        |        |        |        |         |        |        |         | ALPHA | -10.00 | Q/AQ    |        |        |        |        |              |              |              |         |            |               |             |             |       |       |       |             |
| TT    | 74.0   | QF /Q       | 0.860  | C.870  | 0.839  | 0.775    | 0.752  | 0.728   | 0.728  | 0.722   | 0.758  | 7.57.0 | 177.0  | 0.788  | 0.886   | 0.933  | 0.961  | 0.974   | 11    | 73.8   | QF/0    | 0.986  | 0.986  | 0.955  | 0.859  | 0.834        | 0.840        | 0.816        | 0.803   | 0.812      | 0.810         | 0.826       | 0.852       | 0.919 | 0.953 | 679.0 | 0.980       |
| ۵     | 457    | MVV.        |        |        |        |          |        |         |        |         |        |        |        |        |         |        |        |         | C.    | 503    | M / M   |        |        |        |        |              |              |              |         |            |               |             |             |       |       |       |             |
| ۍ     | 231.7  | MF/N        | C.921  | C.926  | c.910  | C.877    | 0.865  | 0.853   | 0.853  | 0.848   | 0.865  | 0.856  | 0.876  | C.886  | C.937   | C.962  | 0.974  | C.978   | Ç     | 223.4  | NF/N    | C.985  | 056.0  | 0.974  | 0.925  | 0.912        | <b>C.916</b> | 0.904        | 0.356   | 106.0      | <b>C.</b> 899 | 0.908       | 0.923       | C.956 | C-973 | 0.980 | 0.985       |
| 10    | 734    | Z/58        | -2.04  | 1.54   | -1.04  | 11.0.    | 0.54 ( | 0.38    | 0.21   | 0.04 (  | 0.13   | 0.29   | 0.47   | 0.63   | 10.97   | 1.17   | 1.47   | 1.97    | μ     | 764    | Z/CR    | -2.04  | -1-54  | ·1.05  | 01.0.  | 0.55         | 0.38         | 0.20         | -0-C4 - | 0.13       | 0.29          | 0.47        | 0.63        | 0.58  | 1.16  | 1.46  | 1.97        |
| RN/L  | 1.457  | <b>Y/DB</b> | C.03 - | C.03 - | c.03 - | 0.03 -   | 0.03 - | C. C3 - | C.03 - | C. C3 - | c.03   | 0.03   | c.c3   | 0.03   | 0.03    | 0.03   | 0.03   | C•03    | RN/L  | 1.512  | Y/08    | 0.41 - | 0.41 - | C.41 - | 0.41 - | C-41 -       | C.41 -       | 0.41 -       | C.41 -  | 0.41       | 0.41          | C.41        | 0.41        | C.41  | 0.41  | C.41  | C.41        |
| MACH  | 0.851  | X/C8        | C.E7 - | 0.87 - | C.87 - | 0.87 -   | 0.87 - | C.87 -  | 0.87 - | c. 87 - | 0.87 - | C.87 - | 0.87 - | 0.87 - | C. 87 - | 0.87 - | C.87 - | C. 87 - | NACH  | 0.796  | X/DB    | C.87   | C.87   | C. 87  | c.87   | <b>C.</b> 87 | <b>C.</b> 87 | <b>C.87</b>  | C.87    | C.87       | C. 87         | C.87        | <b>C.87</b> | C. 87 | C.87  | C. 87 | C.87        |
| CONF  | K V    | • ,         | 1 -    |        | -      | <b>–</b> | i o    | -       | 5      | Ē       | Ĩ      | i<br>D | ີ<br>ບ | 0      | 4       | 4 1    | 1      | -       | CONF  | ŝ      |         | 4      | -1-5   | 4      | 4 I    | 4            | 4 1          | 9            | 5       | -<br>-<br> | с<br>5        | -<br>-<br>- | 4 1         | Ĩ 5   | 4     | 4     | -<br>-<br>- |
| 11    | 1 66   | 0           | 231.   | 231.   | 230.   | 230.     | 231.   | 231.0   | 231.   | 231.    | 231.   | 231.   | 231.   | 231.   | 231.    | 231.   | 231.   | 231.    | D TN  | 1 66   | o       | 223 .  | 223.   | 224.   | 224 .  | 224.         | 224.         | 224.         | 224.    | 224.       | 224.          | 224.        | 225.        | 225.  | 225.  | 225.  | 224.        |
| TST   | 571    | MACH        | 0.851  | 0.850  | 0.848  | 0.847    | 0.848  | 0.848   | 0.849  | 0.849   | 0.849  | 0.848  | 0.848  | 0.848  | 0.849   | 0.849  | 0.851  | 0.850   | TST   | 571    | MACH    | 0.796  | 0.798  | 0.799  | 0.799  | 661.0        | 0.799        | 0.801        | 0.801   | 0.801      | 0.801         | 0.801       | 0.802       | 0.803 | 0.802 | C•802 | 0.801       |
| RUN   | 306    | SEC         | -      | 2      | m      | 4        | ŝ      | Ŷ       | ~      | ω       | 6      | 10     | 11     | 12     | 13      | 14     | 15     | 16      | RUN   | 307    | SEQ     |        | 2      | m      | 4      | Ś            | \$           | 2            | 80      | σ          | 10            | 11          | 12          | 13    | 14    | 5     | 16          |

\_\_\_\_\_

93

•

..004 ..009 • 000 0 • 598 0 • 598 665\*0 • 00 • 0.999 .008 .017 .011 • C04 **797** ..005 .007 .006 .014 .012 .000 •004 PF/D ...001 ..001 .001 .001 1.009 F/p .011 .013 012 -0.004 0.008 0.002 0.002 0.021 0.001 0.000 0.002 010-0 0.018 0.025 010.0 -0.007 0.016 0.021 -0.003 .028 0.008 0.009 0.024 0.030 0.002 -0.003 0.026 0.011 0.014 0.031 0.038 C V A /V V A / V VF/V 0.981 0.899 0.938 0.975 0.926 0.9256 0.899 0.893 0.893 0.893 0.893 0.892 0.888 0.916 0.916 0.963 0.969 0.897 0.893 0.887 0.895 0.892 VF/V 0.984 0.986 **U.** 983 0.896 0.966 .979 0.985 0.951 0.981 0.981 -10.00 ALPHA ALPHA -10.00 0A/Q OA/Q 0.974 0.935 0.819 0.982 GF/0 0.784 0.777 0.767 0.783 0.783 0.778 0.792 0.897 0.968 0.975 0.955 0.846 C.840 C.795 0.778 0.777 0.774 0.767 0.794 0.826 0.926 7.97 0.936 76.8 QF /0 779.0 176.0 0.822 010.070 0.963 0.979 SC5 MA/W 504 N/Vn ۵ C 769 226.1 /DB WF/W 225.7 MF/N 0.885 C.982 C.982 C.918 C.918 C.916 C.888 0.882 C.882 C.881 0.975 C-981 C-965 0.882 0.875 C. 888 536\*0 0.904 0.886 0.884 C.880 C-9C3 0.945 0.962 0.979 0.876 C.893 0.907 C.97 C.978 C•984 0.98 C.755 1.513 769 X/CR Y/DP Z/CR C.87 -C.48 -2.C4 ( -2.03 -0.53 -1-53 -1.04 -0.71 -0-53 -0.38 0.29 0.46 -0.02 0.13 0.63 16.0 1.17 1.47 1.96 F d -1.03 0.31 0.48 0.65 85.0 Fo 69.0œ ch ω -0.04 Z / DB . 4 0.801 1.513 F WACH PN/L CCNF MACH PN/L 0.4 0.4 0.4 0.0 -0.48 -0.48 Y / D B -0-48 0.43 0.43 0.43 -0.48 -0.48 -0.48 -0.48 C+43 -0.48 -0.48 C.43 0.43 0.43 C+43 -0.48 -0.48 œ ω **6**00 -C.48 œ m -C.45 -0.48 -C.4 0.4 5-5 0.4 C • 4 0.4 X (7) X C 87 C.87 C.87 C.87 C 88 C 88 C 83 C.87 8•48 8•48 8 • 4 8 8 • 4 8 8 • 4 9 •49 • 49 • 49 C. 87 • 49 αÛ a. ഗ JNLU UNK 226.6 227.2 226.1 227.2 227.2 227.2 226.7 227.3 225.8 225.8 2255.7 2255.7 2255.7 226.1 226**.**1 225**.**6 226.7 226.7 227.2 226.6 226.6 227.2 227.2 226.8 226.8 226.8 226.8 m 226.8 226.1 226.2 1.2 226. -C **T**N 66 571 1 66 25 ۵. 571 1 ۵ MACH 551.0 0.49 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0 0.803 0.803 0.803 0.803 0.800 0.800 0.800 0.800 0.800 0.499 0.499 0.798 0.800 MACH 0.801 0.801 0.799 0.801 TST 800 801 TST ð . S F C 500 12 2 14 ഹ 21 14 310 SFQ 4 α 0 ŝ N 4 Ś ω G  $\subseteq$ ŝ N 3  $\mathbf{\sigma}$ Ś

|       |            | pr/p            | 1.008      | 1.007   | 1.005      | 1.000   | 166.0  | 0.596  | 1.000  | 0.598  | 1.000      | 1.001  | 0.999  | 1.000         | 1.000    | 666.0   | 1.003  | 1.012   |   |      |        | p∈/p  | 1.012    | 1.009         | 1.008       | 1.003  | 0.598      | 166.0   | 0.998  | <b>765.</b> 0   | 166.0  | 0.999         | 0.996  | 1.002  | 1.008  | 1.010  | 1.010   | 1.010  |
|-------|------------|-----------------|------------|---------|------------|---------|--------|--------|--------|--------|------------|--------|--------|---------------|----------|---------|--------|---------|---|------|--------|-------|----------|---------------|-------------|--------|------------|---------|--------|-----------------|--------|---------------|--------|--------|--------|--------|---------|--------|
|       |            | d D             | 0.019      | 0.015   | 0.010      | 000000  | -0.007 | 600.0- | 0000.0 | -0.004 | -0.001     | 0.002  | -0.002 | -0.01         | 100.0    | -0-001  | 0.007  | 0.027   |   |      |        | C D   | 0.027    | 0.021         | 0.013       | 0.006  | -0.003     | -0.007  | -0.005 | -0.013          | -0.007 | -0.003        | -0.010 | 0.005  | 0.018  | 0.021  | 0.021   | 0.023  |
|       |            | V / V /         |            |         |            |         | ·      |        |        | ŗ      | ·          |        | ·      |               |          |         |        |         |   |      |        | VA/V  |          |               |             |        |            |         |        | -               |        |               | ·      |        |        |        |         |        |
| ٩     | 0          | VF/V            | 0.906      | 0.922   | 0.918      | 0.389   | 0.873  | 0.854  | 0.829  | 0.842  | 0.849      | 0.835  | 0.869  | 0.891         | 0.949    | 0.983   | 0.988  | 0.934   |   | A    | о<br>О | VF/V  | 0.983    | 0.944         | 0.964       | 0.916  | 0.879      | 0.370   | 0.844  | 0.348           | 0.857  | 0.867         | 0.890  | 0.906  | 746.0  | 0.977  | 0.987   | 0.987  |
| ALPH  | -10.0      | 0 A V O         |            |         |            |         |        |        |        |        |            |        |        |               |          |         |        |         |   | ALPH | -10.0  | 0A/G  |          |               |             |        |            |         |        |                 |        |               |        |        |        |        |         |        |
| 11    | 77.2       | 0F/0            | 0.810      | 0.839   | 0.830      | 0.769   | 7.57.0 | 0.702  | 0.661  | 0.683  | 0-696      | 0.673  | 0.732  | 0.773         | 0.889    | 0.961   | 0.975  | 0.976   | ! | 1 1  | 77.4   | QF/0  | 974.0    | C.974         | 0.929       | 0.824  | 0.749      | 0.732   | 0.686  | 069.0           | 0.709  | 0.727         | 0.767  | 0.804  | 619.0  | 0.958  | 0.979   | 0.980  |
| ۵.    | 507        | WV/VN           |            |         |            |         |        |        |        |        |            |        |        |               |          |         |        |         |   | ۵.   | 506    | N/VN  |          |               |             |        |            |         |        |                 |        |               |        |        |        |        |         |        |
| J     | 22.7.4     | NF / N          | 3.896      | 51913   | 0.909      | 0.877   | 0.860  | 0.839  | 0.813  | 0.827  | 0.834      | 0.820  | 0.856  | <b>c.</b> 875 | 0.943    | 0.981   | 3.986  | 3.982   |   | ں    | 227.3  | VF /N | 186.0    | 3.982         | 096.0       | 106.0  | 3.866      | 0.857   | 3.829  | 0.833           | 0.843  | <b>3.</b> 853 | 3.878  | 3-855  | 0.952  | .974   | 3.985   | 3.985  |
| ١d    | 774        | Z / DB          | 2.02       | 1.53    | 1.02 (     | 0.69 (  | 0.53 ( | 0.36 ( | 0.19   | 0.02 ( | 0.14 (     | 0.32 ( | 0.48 ( | 0.65 (        | 0.98 (   | 1.17 (  | 1.48   | 1.98 (  | 1 | L d  | 772    | 2/08  | 2.02     | 1.52          | 1.03        | 0.65 ( | 0.52 (     | 0.36    | 0.19 ( | 0.03 (          | 0.14 ( | 3.31 (        | 0.48 ( | 3.64 ( | 0.98 ( | 1.17   | 1.48 (  | 1.58 ( |
| PNL   | 1.521      | /0 <sup>B</sup> | - 10-      | - 10.   | - 10-      | - 10-   | - 10-  | •01 -( | - 10-  | - 10 - | -01        | •01    | •01    | • 01          | -01      | 10.     | •01    | •01     |   | FN/L | 1.518  | / D.B | - 36 -   | +<br>900<br>• | - 36 -      | - 36 - | - 36 -     | • 36 -( | •36 -( | • 36 <u>-</u> [ | • 36   | • 36          | • 36   | •36    | •36 (  | - 36   | • 36    | 96.    |
| MACH  | C.8CO      | /08 \           | - 64.      | - 49 -0 | .49 -0     | - 49 -0 | .49 -0 | .48 -0 | .48 -0 | - 65.  | .48 -0     | .48 -0 | .49 -0 | .49 -0        | .48 -0   | .48 -0  | •48 -0 | • 48 -0 |   | NACH | 0.801  | /CB Y | .48 -0   | .48 -0        | -48 -0      | .48 -0 | •48 -0     | .48 -0  | •48 -0 | .48 -0          | .48 -0 | .48 -0        | .49 -0 | •48 -0 | •48 -0 | •48 -0 | • 48 -0 | .48 -0 |
| CONF  | <b>u</b> n | ×               | <b>4</b> 8 | 4 8     | <b>4</b> 8 | 4 8     | 4 8    | 4 8    | 4      | 4 8    | <b>4</b> 8 | 9 8    | 4 8    | 8             | <b>5</b> | ς,<br>Ω | 8<br>8 | 7 8     |   | CONF | ሆነ     | ×     | en<br>en | 8             | 8<br>8      | e<br>B | <b>6</b> 0 | 3       | 3      | 3               | 8<br>8 | 8             | е<br>В | 8      | 8 3    | 4 8    | 4 8     | 8<br>8 |
| N H d | 1 66       | C<br>T          | 227.       | 1 227.  | 227.       | 227.    | 227.   | 1 227. | 227.   | 227.   | 1 227.     | 226.   | 226.   | 226.          | 1 226.   | 228.    | 5 228. | 227.    | - |      | 1 66   | 0     | . 227.   | 226.          | 1 226.      | 227.   | 227.       | 227.    | 227.   | . 227.          | 226.   | 226.          | 1 226. | 226.   | . 226. | 1 227. | 226.    | 225.   |
| IST   | 571        | MACH            | 0.800      | 0.800   | 0.800      | 0.800   | 0.800  | C. 800 | 0.800  | 0.800  | 0.800      | 0.795  | 151.0  | 0.795         | 552.0    | 0.804   | 0.805  | 0-804   |   | TST  | 571    | MACH  | 0.801    | 0.800         | 0.800       | 0.801  | 9-801      | 0.801   | 0.801  | 0.801           | 0.800  | 0-800         | 0.800  | 0.801  | 0.801  | 0.800  | 861.0   | 151.0  |
| RUN   | 312        | SFC             | <b></b>    | 2       | <b>m</b>   | 4       | ŝ      | 9      | 2      | α      | σ          | 10     | 11     | 12            | 13       | 14      | 12     | 16      |   | NUN  | 313    | SEC   | 1        | 2             | <b>(</b> 7) | 4      | ŝ          | 9       |        | ຒ               | 6      | 10            | 11     | 12     | 13     | 14     | 12      | 16     |

|                                       | 0F/D    | 1.015  | 1.013   | 1.006  | 1.006  | 0.999  | 1.997  | 0.996  | 0.993  | 1997   | 0.595  | 666.0  | 1.000  | 1.003  | 1.007  | 1.012  | 1.014  |        |        | pF/p    | 1-004  | 1. CO4 | 1.005  | 1.004    | 1.000  | 1.001  | 1.002   | 666*0  | 1.001   | 1.003  | 1.001  | 1.003  | 1.003  | 1.004   | 1.005  | 1.004    |
|---------------------------------------|---------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|----------|--------|--------|---------|--------|---------|--------|--------|--------|--------|---------|--------|----------|
|                                       | CP      | 0.035  | 0.030   | 0.013  | 0.013  | -0.002 | -0.07  | -0.009 | -0.015 | -0.097 | -0.011 | -0.002 | -0-001 | 0.007  | 0.015  | 0.026  | 0.030  |        |        | ď       | 0.018  | 0.018  | 0.013  | 0.015    | 0.002  | 0.006  | 0.007   | -0.003 | 0.004   | 0.014  | 0.003  | 0.014  | 0.013  | 0.018   | 0.019  | 0.016    |
|                                       | V A / V |        |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | V A / V |        |        |        |          |        |        |         |        |         |        |        |        |        |         |        |          |
| ٩c                                    | VF/V    | 0.981  | 0.982   | 0.971  | 0.915  | 0.332  | 0.865  | 0.365  | 0.867  | 0.365  | 0.869  | 0.895  | 0.911  | 0.961  | 0.978  | 0.985  | 0.981  | ٨      | 0      | VF/V    | 0.989  | 0.985  | 0.966  | 0.920    | 0.925  | 0.921  | 0.912   | 0.914  | 0.907   | 0.906  | 0.920  | 0.926  | 0.955  | 0.972   | 0.985  | 0.991    |
| ALPH<br>-10-0                         | 0 A / Q |        |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        | Ηdη    | -10.0  | 0 A / Q |        |        |        |          |        |        |         |        |         |        |        |        |        |         |        |          |
| 77.6                                  | 0140    | 0.973  | 0.973   | 0.941  | 0.824  | 0.755  | 0.722  | 0.721  | 0.724  | 0.723  | 0.729  | 0.781  | 0.811  | 0.917  | 0.958  | 0.977  | 179.0  | 11     | 76.5   | CF/0    | 0.980  | 0.972  | 0.934  | 0.840    | 0.845  | 0.841  | 0.824   | 0.825  | 0.814   | 0.814  | 0.837  | 0.852  | 0.909  | 0.945   | 0.974  | 0.984    |
| р<br>507                              | M / M   |        |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        | ۵.     | 118    | M A / W |        |        |        |          |        |        |         |        |         |        |        |        |        |         |        |          |
| C 226.0                               | N L L N | 516.0  | 0.980   | 0.967  | 206.0  | C.870  | 0.851  | 0.851  | 0.854  | 0.852  | 0.856  | 0.884  | 106.0  | C.956  | C.976  | 0.983  | 516.0  | C      | 182.4  | NF / N  | 0.988  | 0.984  | 0.964  | 0.915    | C.920  | 0.916  | C.907   | 0.908  | 0.902   | 0.901  | 0.914  | 0.922  | C.952  | 010.0   | C. 984 | 066.0    |
| L PT                                  | 2/08    | -2.03  | -1.46   | -1.03  | -0.69  | -0.52  | -0-35  | -0.19  | -0.02  | 0.14   | 0.31   | 0.48   | 0.65   | 0.98   | 1.17   | 1.48   | 1.98   | LpT    | 1 918  | Z/08    | -2.05  | -1.54  | -1.04  | -0.70    | -0.54  | -0-37  | -0.21   | -0.04  | 0.13    | 0.29   | 0.46   | 0.64   | 0.96   | 1.16    | 1.46   | 1.97     |
| H PN/<br>9 1.51                       | Y/DB    | -0.45  | -0-45   | -0.45  | -0.45  | -0-45  | -0-45  | -0.45  | -0.45  | -0-45  | -0-45  | -0.45  | -0.45  | -0-45  | -0.45  | -0.45  | -0.45  | H RN/  | 2 1.52 | Y/08    | 0.41   | 0.41   | 0.41   | C.41     | 0.41   | 0.41   | 0.41    | 0.41   | 0.41    | C.41   | 0.41   | 0.41   | 0.41   | 0.41    | 0.41   | 0.41     |
| F NAC<br>5 0.79                       | X/LB    | 8•48   | 8*48    | 8•48   | 8•48   | 8•48   | 8 • 48 | 8+48   | 8 • 48 | 8,48   | E.48   | 8.48   | 8.48   | 8•48   | 8.48   | £•48   | 8•48   | F VAC  | 5 0.60 | X / DB  | 10.87  | 10.87  | 10.87  | 1 C . 87 | 10.87  | 1C.87  | 10.87   | 10.87  | 10.87   | 10.87  | 10.87  | 10.87  | 10.87  | 1C•87   | 10.87  | 1 C • 87 |
| TN CON                                | 0       | 26.9   | 26.9    | 26.9   | 26.5   | 26.4   | 26.8   | 26.8   | 26.8   | 27.3   | 27.3   | 27.8   | 27.8   | 27.8   | 27.8   | 27.3   | 27.3   | TN CON | 66     | C       | 82.4   | 82.4   | 82.4   | 81.8     | 81.2   | 81.2   | 81.2    | 81.2   | 81.2    | 81.2   | 81.2   | 81.2   | 81.2   | 81.2    | 81.8   | 81.8     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MACH    | .799 2 | • 799 2 | 5 661. | .799 2 | .758 2 | .800 2 | .800 2 | .800 2 | .801 2 | .801 2 | .803 2 | .803 2 | .803 2 | .803 2 | .802 2 | .802 2 | TST P  | 571 1  | MACH    | .602 1 | .602 1 | .602 1 | .601 1   | •600 1 | •600 1 | • 600 1 | .600 1 | • 600 1 | •600 1 | •600 1 | .600 1 | •600 L | • 600 1 | .601 1 | •601 1   |
| AUN<br>314                            | SEQ     | 1 0    | 2 0     | 30     | 4      | 50     | 60     | 2 0    | 8      | 06     | 10 0   | 11 0   | 12 0   | 13 0   | 14 0   | 15 0   | 16 0   | RUN    | 315    | SEQ     | 1 0    | 2 0    | 9      | 4        | C<br>S | 60     | 7 0     | 8      | 06      | 10 0   | 11 0   | 12 0   | 13 0   | 14 0    | 150    | 16 0     |

 $C - \rightarrow$ 

----

··· –

96

------

|          |          |            |               |       |        |       |       |               |        |              |       |        |       |          |       |             |         |              |        | -         |       |       |            | _     |            | -      | _     | _        |        |       |       | _            | _     |       |               | ć      |
|----------|----------|------------|---------------|-------|--------|-------|-------|---------------|--------|--------------|-------|--------|-------|----------|-------|-------------|---------|--------------|--------|-----------|-------|-------|------------|-------|------------|--------|-------|----------|--------|-------|-------|--------------|-------|-------|---------------|--------|
|          |          | 1.005      | 1.003         | 1.002 | 1.001  | 1.002 | 1.002 | 1.001         | 0.999  | 1.001        | 1.002 | 666.0  | 1.001 | 1.002    | 1.002 | 1.004       | 1.005   |              |        | bF/p      | 1.008 | 1.005 | 1.003      | 1.002 | 1.001      | 0.9999 | 1.002 | 1.000    | 0.598  | 1.001 | 1.001 | 1.000        | 1.002 | 1.003 | 1.C04         | 700-1  |
|          | c<br>(   | 0.018      | 0.014         | 0.008 | 0.003  | 0.006 | 0.010 | 0.003         | -0-003 | 0.002        | 0.008 | -0.003 | 0.004 | 0.010    | 0.006 | 0.015       | 0.022   |              |        | C b       | 0.032 | 0.022 | 0.014      | 0.006 | 0.005      | -0.003 | 0-006 | -0.002   | -0.007 | 0.002 | 0.004 | -0.002       | 0.006 | 0.013 | 0.018         | 0.076  |
|          |          | A 1 4 A    |               |       |        |       |       |               |        |              |       |        |       |          |       |             |         |              |        | V A /V    |       |       |            |       |            |        |       |          |        |       |       |              |       |       |               |        |
| ALPHA    | -10.00   | U.926      | 0.937         | 0.926 | 0.899  | 0.894 | 0.884 | 0.888         | 0.894  | 0.384        | 0.905 | 0.907  | 0.921 | 0.953    | 0.960 | 0.985       | 066 • 0 | ALPHA        | -10.00 | 0A/Q VF/V | 0.982 | 0.985 | 0.960      | 0.921 | 0.903      | 0.903  | 0.892 | 0.901    | 0.893  | 0.902 | 0.915 | 0.920        | 0.955 | 0.974 | 0.983         | 0.986  |
| 11       | 76.1     | 0.853      | C.872         | c.850 | 797.0  | 0.788 | 0.771 | 0.778         | 0.787  | 0.770        | C.810 | 0.812  | 0.839 | 0.904    | 0.919 | 0.972       | 0.983   | ŢŢ           | 76.1 - | 0F/0      | 176.0 | 0.974 | 0.920      | 0.841 | 0.805      | 0.804  | 0.786 | 0.800    | 0.784  | 0.804 | 0.831 | 0.836        | 106.0 | 0.947 | 0.968         | 0.976  |
| ٩        | 617<br>1 |            |               |       |        |       |       |               |        |              |       |        |       |          |       |             |         | a            | 719    | W/VW      |       |       |            |       |            |        |       |          |        |       |       |              |       |       |               |        |
| 3        | 181.8    | 0.921      | <b>C.9</b> 32 | C.921 | C.892  | 0.887 | 0.877 | <b>C.</b> 882 | C.888  | C.877        | C.899 | 0.902  | C.916 | 0.945    | 0.958 | C.984       | 0.989   | <del>ن</del> | 182.4  | NL/N      | C.981 | C.984 | 0.958      | c.916 | 0.897      | 1.857  | 0.886 | 0.894    | C.886  | 0.896 | 0.911 | <b>C.915</b> | 0.952 | 0.972 | <b>C.</b> 982 | 0.985  |
| L PT     | 0 518    | -2.04      | -1.54         | -1.05 | -0.71  | -0-54 | -0.38 | -0.20         | -0.03  | 0.14         | 0:30  | 0.47   | 0.63  | 0.98     | 1.16  | 1.46        | 1.96    | L pT         | 3 518  | 2708      | -2.04 | -1.54 | -1.05      | -0.71 | -0-54      | -0.38  | -0.20 | -0.04    | 0.13   | 0.30  | 0.46  | 0.63         | 0.96  | 1.17  | 1.47          | 1.96   |
| H RN/    | 1 1.52   | -0.03      | -C.03         | -0-03 | -0.03  | -0.03 | -0.03 | -0-03         | -0.03  | -0.03        | -0.03 | -0-03  | -0.03 | -0.03    | -0-03 | -0.03       | -0.03   | H RN/        | 2 1.52 | Y/CB      | -0.38 | -0-38 | -0.38      | -0.38 | -0-38      | -0.38  | -0-38 | -0.38    | -0.38  | -0-38 | -0.38 | -0-38        | -0.38 | 80.01 | -0-38         | 96-0-  |
|          | 5 U.6U   | 10.87      | 10.87         | 10.87 | 1C. 87 | 10.87 | 10.87 | 10.67         | 10.87  | 10.87        | 10.87 | 1C.87  | 10.87 | 1 C • 87 | 10.87 | 1C.87       | 10.87   |              | 5 0.60 | X/CP      | 10.87 | 10.87 | 1 C. 87    | 10.87 | 1 C • 87   | 10.87  | 10.87 | 1 C • 87 | 10.87  | 10.87 | 10.87 | 10.87        | 10.87 | 1C.87 | 1C.87         | 1C_ P7 |
| TN CCP   |          | 181.8      | 181.8         | 181.8 | 181.8  | 181.8 | 181.8 | 181.8         | 181.8  | 181.8        | 181.8 | 181.8  | 181.8 | 181.8    | 181.8 | 181.8       | 181.8   | TN CCM       | 66     | G         | 182.4 | 181.8 | 181.8      | 181.8 | 181.8      | 181.8  | 181.8 | 181.8    | 181.8  | 181.8 | 181.6 | 181.8        | 181.8 | 181.8 | 181.8         | 181.8  |
| TST P    |          | 0.601      | 0.601         | 0.601 | 0.601  | 0.601 | 0.601 | C.6C1         | 0.601  | 0.601        | 0.601 | 0.601  | 0.601 | 0.601    | 0.601 | 0.601       | 0.601   | TST P        | 571 1  | MACH      | 0.602 | 0.601 | 0.601      | 0.601 | 0.601      | 0.601  | 0.601 | 0.601    | 0.601  | 0.601 | 0.601 | 0.601        | 0.601 | 0.601 | 0.601         | 0.601  |
| NUA<br>V |          | 8 <b>—</b> | 2             | n     | 4      | In.   | Ŷ     | ٢             | တ      | <del>о</del> | 10    | 11     | 12    | 13       | 14    | <u>لار،</u> | 16      | КUN          | 317    | SEQ       |       | 2     | <b>ה</b> ש | 4     | <b>u</b> n | 9      | •     | ထ        | 9      | 10    | 11    | 12           | 61    | 4     | 1<br>1        | 16     |

-----

1.005 1.006 1.002 1.000 1.002 pF/p 1.006 1.004 1.005 1.002 1.002 1.004 1.003 1.001 . 002 666.0 1.001 I. C03 1.001 1.000 1.002 1.006 1.000 1.002 1.004 1.005 1.004 OF/D 1.001 0.999 1.003 1.004 1.001 L. C04 0.019 0.008 0.010 0.013 0.025 0.023 0.010 0.003 0.020 0.018 0.007 0.006 0.019 -0.002 100.0-0.005 0.002 0.018 -0.004 0.010 0.015 0.016 110.0 0.016 -0.001 0.004 0.007 e. V A /V V A /V 0.914 0.899 0.903 0.962 VF/V 0.990 0.982 0.956 0.990 0.922 0.920 0.903 0.915 0.903 0.908 0.912 0.919 VF/V 0.978 0.980 0.901 0.965 186.0 166.0 0.985 0.931 0.901 0.906 0.883 0.903 0.928 0.958 0.992 -10.00 ALPHA ALPHA -10.00 0 A V O 0 A / O 75.8 QF/0 0.968 75.4 0F/0 0.914 0.807 0.985 0.829 0.808 0.804 0.817 0.824 0.920 0:630 0.965 0.956 0.810 0.984 0.860 0.770 0.804 0.827 C.798 0.802 0.835 0.854 0.913 0.961 0.985 0.986 0.974 0.843 0.339 0.982 0.801 611 716 MA/W W / M ۵. ۵ 912 179.3 /DB MF/W 918 181.8 MF/N C.981 C.9C8 0.857 0.913 C-984 C-584 C-577 0.989 C.953 0.853 C-897 558-0 0.903 906-0 C.980 C.927 C.915 0.895 0.877 0.897 0.955 C.917 C.924 0.962 0.989 006-0 0.897 506\*0 C.9555 9.978 156.0 C.99] -0.53 -1.55 0.25 0.43 -2.03 -1.03 X/CB Y/DP Z/CB -0.48 -2.04 -0.48 -1.55 0.12 0.47 .47 0.14 0.48 **C.** 58 -0.38 0.63 0.96 .17 Z/08 10 -0.54 -0.04 0.65 -0.71 -0.21 -1.52 -0.35 -0.18 -0.02 0.31 6. 1.99 1.18 • 4 5 0.601 1.521 5 0.598 1.508 RN/L NACH PN/L -0.48 -0.48 -0.48 -C.48 0.43 0.43 -0.48 -0.48 Y/DP 0.43 0.43 -0.48 -0.48 -0.48 -C.48 -0.48 -C.48 -0.48 -C.48 64.0 C.43 0.43 0.43 0.43 C - 43 C • 43 .43 0.4 VACH IC.87 10.87 C.87 C.87 C . E7 C . B7 C . 88 X/DR 1 C . 87 1 C. 88 **C •** 88 **C.** 88 C. 87 10.87 C. 87 C. 88 8.49 8.49 8.49 8•49 8•49 C.87 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 **JUDU** TA CONF 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 179.5 181.8 181.8 5.971 2.99.5 179.5 179.3 179.5 79.5 5.971 179.9 179.5 179.9 179.3 131.8 79.5 79.3 σ 179. N L C 571 1 66 66 C ٥ TST P 571 1 MACH 0.6C1 0.6C1 MACH 0.601 0.555 0.558 0.558 0.558 0.559 0.559 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.558 0.599 0.599 0.601 0.601 0.595 599 0.601 0.601 0.601 0.599 0.559 599 599 TST 53 0 . . • RUN 318 SFC  $\sim$ n) 4 **u**n 9 ~ œ 0 11 21 2 σ 4 **u**n RUN 319 SEC J ഹ 0 9 ω σ 12 13 14 51 9

|       |        | pF∕p      | • 004    | .003       | • 002          | .002     | 666.          | 665.     | . 998         | . 598    | • 000         | .998        | 665 •    | • 000    | .001     | .002     | • 004    | .003    |   |             |            | bE/D      | - 003    | -004     | .001     | 100.     | .002    | .001     | . 598   | . 598    | 866.     | • 002   | . 999    | .000     | • CO3   | •006    | .006    | • 005    |
|-------|--------|-----------|----------|------------|----------------|----------|---------------|----------|---------------|----------|---------------|-------------|----------|----------|----------|----------|----------|---------|---|-------------|------------|-----------|----------|----------|----------|----------|---------|----------|---------|----------|----------|---------|----------|----------|---------|---------|---------|----------|
|       |        | СЪ        | 0.018 1  | 0.012 1    | 0.010          | 0.006 1  | -0.002 0      | -0.004 0 | 0 600.0-      | 0 600-0- | 1 100.0-      | 0 600.0-    | -0.004 0 | 0.000 1  | 0.003 1  | 1 010.0  | 0.015 1  | 0.013 1 |   |             |            | ۍ<br>C    | 1 510.0  | 0.017 1  | 0.006 1  | 0.004 1  | 0.010 1 | 0.005 1  | 0.008 0 | -0.006 0 | -0.008 0 | 0.009   | -0.004 0 | 0.001 1  | 0.014 1 | 0.023 1 | 0.022 1 | 1 610.0  |
|       |        | V A /V    |          |            |                |          |               | •        |               |          |               |             |          |          |          |          |          |         |   |             |            | VA/V      |          |          |          |          |         |          |         |          |          |         |          |          |         |         |         |          |
| VLPHA | 10.00  | 0A/Q VF/V | 0.921    | 0.933      | 0.933          | 0.893    | 0.879         | 0.801    | 0.860         | 0.858    | <b>U</b> •366 | 0.874       | 0.835    | 0.902    | 0.946    | 0.981    | 0.986    | 0.990   |   | ALPHA       | 10.00      | CA/U VF/V | 0.988    | 0.986    | 0.909    | 0.916    | 0.890   | 0.871    | 0.873   | 0.868    | 0.809    | 0.873   | 006*0    | 0.913    | 0.963   | 0.975   | J. 985  | 0.438    |
| 11    | 75.4 - | QF /0     | 0.842    | 0.865      | 0.864          | 0.787    | <b>C.7</b> 59 | 0.727    | 0.724         | 0.722    | 0.737         | C.750       | 0.771    | 0.803    | 0.889    | 0.962    | 0.974    | 0.983   |   | 11          | 75.4 -     | 0F/0      | 0.978    | C.975    | 0.936    | 0.830    | 0.783   | 0.747    | 0.749   | 0.738    | 0.741    | 0.752   | 0.798    | 0.824    | 0.925   | C.953   | 0.973   | 0.980    |
| ۵     | 716    | MA/W      |          |            |                |          |               |          |               |          |               |             |          |          |          |          |          |         |   | <b>D</b> .  | 716        | MA/M      |          |          |          |          |         |          |         |          |          |         |          |          |         |         |         |          |
| y     | E-971  | NL /N     | 0.916    | 3.928      | 3 <b>.</b> 92£ | 3.887    | 2.871         | 3.853    | <b>c.</b> 852 | C.85C    | 0.858         | 0.867       | c.879    | 3.856    | 0.942    | 0.980    | 3.985    | 056.0   |   | ى<br>ع      | 179.9      | NF/N      | C.987    | C.985    | 0.967    | 010.0    | 3.884   | C. 864   | 0.866   | c.860    | 0.862    | 3.866   | 0.854    | C.9C7    | 0.960   | 0.973   | 3.984   | C.987    |
| μ     | 216    | Z/DB      | 2.02     | 1.53       | 1.02           | 0.70     | 0.52 (        | 0.36     | 0.19          | 0.02 (   | 0.14 (        | 0.31 (      | 0.48     | 0.64     | 86.0     | 1.17     | 1.48     | 1.98    |   | b           | 515        | 2/DB      | 2.03     | 1.53     | 1.03     | 59.0     | 0.53    | 0.35     | 0.19    | 0.03     | 0.14     | 0.32    | 0.48     | 0.65     | 0•58    | 1.15    | 1.48 (  | 1.98     |
| RN/L  | 1.508  | UCB       | .01 -    | - 10.0     | - 10-0         | - 10.0   | - 10.0        | - 10-0   | 0.01 -        | - 10.0   | 0.01          | 0.01        | 10.0     | 10.0     | 10.0     | 0.01     | 0.01     | 10.01   |   | RN/L        | 1.511      | 1/EB      | 0.36 -   | 0.36 -   | 0.36 -   | 3+36 -   | 0.36 -  | 0.36 -   | 0.36 -  | 0-36 -   | 0.36     | 0.36    | 3.36     | 0.36     | 36      | 0.36    | 36      | 9.90     |
| NACH  | 0.558  | (/CB )    | - 65.    | - 65 -(    | - 49 -(        | )- 65*   | - 65-         | • 49 -(  | - 65 -(       | - 65 - ( | - 49 -(       | - 65.       | - 65 - ( | - 64 -(  | - 65 -(  | • 49 -(  | - 65 - ( | - 65-1  |   | X A C H     | 0.559      | (/CB      | - 65 - 6 | - 65 - 6 | 9-49-(   | - 65 - ( | - 64•   | - 65 - ( | • 49 -( | .48 -(   | - 48 -(  | • 48 -( | .48 -(   | .48 -(   | .48 -(  | •48 -(  | - 65.   | • 49 - ( |
| CONF  | ŝ      | ×         | <b>6</b> | <b>m</b>   | 60<br>61       | <b>m</b> | с.<br>Ф       | e<br>G   | <b>6</b> )    | 3        | сл<br>Ф       | 5<br>2<br>2 | e<br>B   | <b>m</b> | <b>m</b> | <b>6</b> | <b>6</b> | 8       |   |             | <b>u</b> n | •         | в<br>6-  | ŝ        | 8<br>5   | ŝ        | ۳<br>۳  | ω.<br>   | 6<br>6  | ω<br>σ   | <b>m</b> | ω<br>S  | с<br>С   | <b>5</b> | ۍ<br>۵  | S<br>S  | ພ       | ŝ        |
| P TN  | l 66   | С<br>Н    | E 179.   | 8 179.     | 8 179.         | 8 179.   | 8 179.        | 8 179.   | 8 179.        | 8 179.   | 8 179.        | 8 179.      | 8 179.   | 8 179.   | 8 179.   | 8 179.   | 8 179.   | 6 179.  | i | d T         | 1 66       | с<br>Ч    | 5 179.   | 0 180    | 641 5    | 0 180.   | 0 180.  | C 180.   | 6116    | 6 179.   | 8 179    | 6 1 1 9 | 5 I79.   | 6 179    | C 18C.  | 6116    | 0 180.  | 0 180.   |
| 151   | 571    | MAC       | 0.59     | 0.55       | 0.59           | 0.55     | 0.59          | 0.55     | 0.59          | 0.59     | 0.55          | 0.59        | 0.59     | 0.59     | 0.59     | 0.55     | 0.59     | 0-55    |   | ISI         | 571        | MAC       | 0.55     | 0.60     | 0.55     | 0.60     | 0•60    | 0.60     | C• 59   | 0.55     | 0.59     | 0.55    | 0.59     | 0.59     | 0• 60   | 0.59    | 0.60    | 0.60     |
| RUN   | 320    | SFC       | -        | <b>r</b> : | ŝ              | 4        | ŝ             | 9        | -             | œ        | 6             | 10          | 11       | 12       | 13       | 14       | 15       | 16      |   | R<br>C<br>N | 321        | SEQ       |          | 2        | <b>m</b> | 4        | LC.     | \$       |         | œ        | 5        | 10      |          | 12       |         | 41      |         | 16       |

1.003 1.002 • 006 666\*0 r /p 1.001 799.0 .006 .005 • 003 .000 .002 DF/D 0.999 0.999 .001 .001 .005 666 0.598 0.998 1.000 665.0 665.0 665.0 665.0 665.0 666.0 666.0 0.599 665.0 666.0 0.999 0.999 -0.006 -0.024 -0.024 -0.024 0.007 0.001 0.022 0.025 0.014 0.004 -0.008 -0.002 700.0 0.022 0.022 -0-014 -0.014-0.024 -0.024 -0.024 -0.024 -0.024 -0.015 -0.015 -0.019-0-019 -0.019 -0-019 0.012 0. 0C0 0. 0C0 0.000 0. 0CC 0. 0CC 000 0.000 V A /V 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000.000 V A / V 0.998 0.956 993 0.919 0.882 0.880 0.900 0.903 0.929 0.389 0.985 0.939 0.930 0.914 0.924 0.938 0.967 0.984 0.891 0.989 0.987 VF/V 0.995 0.942 0.983 VF/V **3.**984 0.988 0.969 0.885 0.926 964 0.969 0.995 -10.00 -10.00 ALPHA ALPHA 0.000 0 A / O c. 000 0.00.0 04/0 000.000 000.0 000.0 0.000 c. 000 0.000 0.00.0 C-000 0.000 000.0 0.000 c.000 0.996 0.968 C.886 0.879 0.912 C.972 0.980 0.938 0.835 0.780 0.767 0.798 0.805 0.926 CF/O 0.834 75.4 0.761 0.779 72.8 0.861 0.989 994 0F70 176.0 0.989 0.863 0.877 0.934 0.967 0.965 0.848 0.851 0.772 0.979 16 0000.0 0.000 0000.0 0.000 00000 0.000 000 716 000.000 0.00.0 0.000 0.000 WA/N 79.5 1829 NV VW 0.000 0.000 0.000 0.000 ۵ 0 913 186.5 C.985 0.983 C.938 0.955 C.937 0.967 0.875 0.873 0.894 0.878 **256**.0 C.925 956 NF / N £86.0 199.0 0.882 0.921 とくよう 356.0 0.942 C.930 C10.0 C.923 C.967 C. 955 C.913 0.584 C.884 0.897 C.967 0.988 C.961 5.98 L 0.249 1.502 1910 -0.69 0.14 0.48 1.98 -0.54 0.29 0.65 0.98 •48 0.12 0.46 X/UB Y/UE Z/UE 8.49 -0.45 -2.03 -0.19 0.30 1.18 -1.53 -0.71 0.63 0.96 l.46 -1.52 -1.03 -0.02 -2.05 -0.20 •17 **79.** L d -0.36 Y/NB Z/DB -1.04 -0.04 F a PN/L RN/L 0.600 1.514 -0.45 -0-45 -0-45 -0+45 0.41 -0-45 -0-45 .41 0.41 -0-45 -0.45 -0-45 -C.45 -0-45 -0-45 -0.45 .41 14. .41 .41 14. .41 .41 .41 .41 .41 -0-45 .4] -0-4 • 4  $\mathbf{C}$ MACH NUCH 8.49 8.49 • 49 .49 •49 •49 8.49 8.49 8.49 •49 8.49 • 49 C 87 C 88 C 87 C 87 C 87 C. 88 C. 88 8.49 8.49 • 49 C . 87 C.87 X/08 0.87 C.87 0.87 C.87 C. 88 C•88 C•88 0.88 œ œ œ a  $\alpha$ ഹ ŝ TN CONF P TN CONF 180.5 179.9 179.3 80.5 179.9 179.9 179.9 181.1 181.1 80.5 180.5 79.5 2°62 79.5 181.1 180.5 79.5 79.5 2.61 2.91 79.5 79.5 79.5 79.5 80.5 79.5 С 66 C 571 1 66 STP 571 1 0.600 0.598 C.6CC 0.599 MACH 0.599 0.599 MACH 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.599 0.599 0.601 0.600 0.600 0.249 0.599 0.600 0.600 0.249 0.249 0.249 49 0.601 0.601 0.249 TST . 12 2 323 SEQ RUN 322 SFQ 450 10 2 15 3 œ σ NUN SON 00 <u>o</u> N m st <u>\_</u> 4 2 9

## ORIGINAL PAGE IS OF POOR QUALITY

į.

| NUA          | TST p |             | L L     | N A CH | RN/   | L PT   | U                     | ۵.      | 11    | VLPH/         |            |         |        |        |
|--------------|-------|-------------|---------|--------|-------|--------|-----------------------|---------|-------|---------------|------------|---------|--------|--------|
| 324          | 571 1 | 66          | о<br>N  | •249   | 1.50  | 3 191  | . 61 0                | 5 1829  | 72.5  | -10.00        | ~          |         |        |        |
| SEQ          | MACH  | Ç           | ×       | 5.0    | 118   | Z / DB | NL / N                | W/ AN   | 0F/0  | 0 A / O       | VF/V       | V A / V | d<br>C | bF∕p   |
|              | 0.249 | 2°51        | 1 C • 1 | 87 -(  | 0.03  | -2.04  | 0.949                 | 000 * 0 | 0.899 | c.000         | 0.949      | 0.000   | -0.019 | 0.999  |
| 2            | 0.250 | 80.2        | 10.     | 87 - ( | 0.03  | -1-54  | C.951                 | 0.000   | 0.904 | 0.000         | 0.952      | 0.000   | -0.015 | 666.0  |
| m            | 0.249 | 79.5        | 10.     | 87 -(  | •03   | -1.04  | C-933                 | 0.000   | C.870 | c.000         | 0.934      | 0.000   | -0.024 | 0.999  |
| 4            | 0.249 | 5*52        | 10.     | 87 -(  | 0.03  | -0.71  | 506*0                 | 0.000   | 0.825 | 000.0         | 016.0      | 0.000   | -0.024 | 666*0  |
| Ś            | 0.249 | 79.5        | 10.1    | 87 -0  | 0.03  | -0-54  | C.892                 | 0.000   | 0.796 | 0.000         | 0.893      | 0.000   | -0.024 | 666.0  |
| \$           | 0.249 | 2.97        | - C -   | 87 -(  | 0.03  | -0.38  | C.893                 | 000.0   | 797.0 | 0.000         | 0.894      | 0.000   | -0.024 | 665*0  |
| -            | 0.249 | 79.5        | 10.     | 87 -(  |       | -0.21  | C.889                 | 0.000   | 0.790 | c.000         | 0.891      | 0.000   | -0.024 | 666.0  |
| ω            | 0.249 | 79.5        | 10.     | 87 -C  | .03   | -0.03  | 0.904                 | 000000  | 0.816 | 0.000         | 0.905      | 0.000   | -0.024 | 0.999  |
| ¢            | 0.249 | 79.5        | 10.     | 87 - ( | 03    | 0.13   | 0.905                 | 000000  | 0.818 | 000.0         | 0.906      | 000.0   | -0-024 | 666.0  |
| 01           | 0.250 | 80.2        | 10.     | 87 -0  | 50°C  | 0.29   | C.9C8                 | 0.000   | 0.825 | c.000         | 0.909      | 0.000   | -0-015 | 0.999  |
| 11           | 0.250 | 80.2        | 10.     | 87 -(  | - C3  | 0.46   | C.906                 | 0.000   | 0.820 | 0.00.0        | 0.907      | 0.000   | -0.010 | 1.000  |
| 12           | 0.250 | 80.2        | 10.     | 87 -(  | 0.C3  | 0.63   | C.937                 | 0.000.0 | 0.978 | 0.00.0        | 0.938      | 0.000   | -0.024 | 0.999  |
| 13           | 0.250 | 80.2        | -01     | 87 –C  | 0.03  | 0.96   | 0.546                 | 000.0   | 0.893 | 0.000         | 0.946      | 0.000   | -0.024 | 665 •0 |
| 14           | 0.250 | 80.2        | 10.     | 87 -(  | 0.03  | 1.16   | 0.973                 | 0.000   | 0.946 | C. 000        | 0.974      | 0.000   | -0.021 | 666.0  |
| 15           | 0.250 | 80.2        | 10.     | 87 -0  | 0.03  | 1-46   | 0.988                 | 0.000   | 0.976 | 0.00.0        | 0.988      | 0.000   | -0.019 | 666.0  |
| 16           | 0.249 | 79.5        | 10.     | 87 -(  | 0.03  | 1.57   | 1.004                 | 000.0   | 1.006 | 0.000         | 1.004      | 0.000   | -0.019 | 0.999  |
| ,            |       |             |         |        |       |        |                       |         |       |               |            |         |        |        |
| RUN          | TST p | TN CC       | L N F   | NACH   | RN/   | L b L  | ى                     | D       | 11    | ALPHI         | 4          |         |        |        |
| 325          | 571 1 | 66          | 0<br>40 | •245   | 1.50  | 161 4  | 1 79.                 | 5 1830  | 72.1  | -10.00        |            |         |        |        |
| 0<br>Li<br>S | MACH  | C           | / ×     | CR     | 109   | Z/CB   | NF / N                | n/Vn    | 0F70  | 0A/C          | VF/V       | V A /V  | ٥      | pr/p   |
| ga-4         | 0.249 | 79.5        | 10.     | 87 -(  | 0.38  | -2.05  | 455 ° J               | 0.000   | 0.987 | C. 000        | <b>964</b> | 0.000   | -0.014 | 666.0  |
| ~            | 0.248 | 78.8        | 10.     | 87 -(  | 3.38  | -1.54  | 856*0                 | 0.000   | 0.996 | 0.000         | 0.998      | 0.000   | -0.017 | 0.599  |
| 61           | 0.248 | 78.8        | 10.     | 87 -(  | 0.38  | -1.04  | C.948                 | 00000   | 0.898 | 0.000         | 0.949      | 0.000   | -0.024 | 665.0  |
| 4            | 0.249 | 2.9T        | 10.     | 87 -(  | C• 38 | -0.71  | C.922                 | 0.000   | 0.849 | C. UOD        | 0.923      | 0.000   | -0.024 | 666*0  |
| n            | 0.249 | 2*62        | 10.     | 87 -(  | 3.38  | -0-54  | 0.895                 | 0.000   | 0.808 | 0.000         | 0.900      | 0000.0  | -0.024 | 0.999  |
| 9            | 0.248 | 78.8        | 10.     | 87 -(  | 3•38  | -0.37  | C• 891                | 0.000   | 0.794 | <b>c.</b> 000 | 0.892      | 0.000   | -0.024 | 666.0  |
| -            | 0.249 | 79.5        | 10.     | 87 -(  | 3•38  | -0-20  | C.905                 | 0.000   | 0.818 | c. 000        | 0.906      | 0.000   | -0.024 | 0.999  |
| æ            | 0.245 | 19.5        | 10.     | 87 -(  |       | -0.04  | C.91C                 | 0.000   | 0.827 | 0.000         | 0.911      | 0.000   | -0.024 | 666.0  |
| 6            | 0.248 | 78.8        | -01     | 87 -(  |       | 0.13   | 0.915                 | 0.000   | 0.836 | c.000         | 0.916      | 0.000   | -0-024 | 666 0  |
| 10           | 0.248 | 78.8        | 10.     | 87 -(  | 3.38  | 0.29   | 0.915                 | 0.00    | 0.836 | 0.00.0        | 0.916      | 00000   | -0.024 | 0. 599 |
| 11           | 0.249 | 79.5        | 10.     | 87 -(  |       | 0.47   | C.919                 | 0.000   | 0.844 | c.000         | 0.920      | 0.000   | -0.024 | 0.999  |
| 12           | 0.249 | <b>19.5</b> | 10.     | 87 -(  | 9.38  | 0.63   | 0.931                 | 0.000   | 0.867 | 000.0         | 0.932      | 0.000   | -0.015 | 0.999  |
| 2            | 0.248 | 78.8        | 10.     | 87 -(  | 3•38  | 0.96   | <b>C.</b> 96 <b>C</b> | 0.000   | 0.921 | 0.000         | 0.961      | 0.000   | -0.033 | 0.9999 |
| 14           | 0.249 | 79.5        | 10.     | 87 -(  | 3.38  | 1.17   | C 8 5 8 3             | 0.000   | 0.965 | C. UOO        | 0.983      | 0.000   | -0.010 | 1-000  |
| 15           | 0.249 | 5-51        | 10.     | 87 -(  | 3.38  | 1.47   | 0.587                 | 0.000   | 0.974 | 0.000         | 0.987      | 0.000   | -0.010 | 1.000  |
| 16           | 0.249 | 19.5        | 10.     | 87 –(  | 3.38  | 1.56   | 255*0                 | 0.000   | 0.984 | 0.00.0        | 0.992      | 0.000   | -0.014 | 665.0  |

• 000 0.9999 0.9999 665 .000 666. 666 665 .999 665 .999 665 665 665.0 0.999 . 5 . . 6 . • 0 0  $\mathbf{o}$ 00 C -0.026 -0.015 -0.021 -0.014 -0.024 -0.001 -0.015-0-015 -0-015 -0.008 -0.024 -0.024 -0.015-0.024 6 A / V 0 0 0 0 000 0000 0000 000 000 000 0000 0 ं 00000 • 0 000 0 0 • > 0.988 0.979 0.979 0.926 0.921 0.921 0.921 0.927 0.945 0.959 988 979 0.982 VF/V 779 994 1.001 • • 4 -10.00 c. 000 c. 000 c. 000 AL PH 0.975 0.957 0.957 0.844 0.844 0.851 0.851 0.838 0.838 0.838 0.857 0.953 0.953 1.001 0.987 72.0 0F/0 840 918 00 р 1829 МД/ч 0000-0 0.000 80.2 WF/W 0.988 C.978 C-977 C-982 C-954 C-954 ç 5 0•959 045 MACH PN/L PT 0.250 1.512 1911 X/DB Y/DB Z/DB 7 0.87 -0.48 -2.04 0 0.87 -0.48 -1.54 0 -1.54 -1.04 -0.71 -0.54 -0.37 -0.04 0.12 0.25 0.47 0.47 0.47 0.63 0.63 0.63 1.17 1.17 Š, œ -0.48 œ ω ωωω Ø ω  $\infty \infty$ ဆဆ -0-45 -0-48 -0-48 -C.48 -0.48 -0-48 -0.48 -C-41 4 . 0 X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X< ŝ LON F õ RUN 326 SFQ 10 12212

.999 0.999 665.0 0.9999 0.999 665 666°0 0.9999 0.9999 • 000 •665 • 665 665.0 666.0 0.999 55 0 0 O O -0.015 -0.024 -0.008 -0.015 **.** -0-015 -0-015 -0.015 -0.019 -0.022 st. -0.01 -0-01 -0.02 6. Ω. 9 0000 000 0000 000 000 000 0000 000 **√ /** ∧ 00 Ö 00 5 . • . . • 000 0 5 . • . • 969 941 914 0.898 0.898 0.912 932 912 0.996 0.994 924 932 989 994 0.974 66 00000 ਼ੋ . 0 0 . ALPHA -10.00 0•000 0•000 0/VO c. 000 c. 000 c.000 0.000 71.8 0.71.8 0.9971 0.9937 0.8884 0.88344 0.8837 0.8804 0.8804 0.8804 0.8830 0.8830 0.8671 0.8671 948 987 277 987 00 . 0000-0 0.000 0.000 р 1329 44/м 0.000 0.000 0.000 0.000 0.000 79.5 0.9994 0.994 0.565 0.941 0.913 0.913 0.913 0.897 0.897 0.897 0.911 C.923 MF /N 931 0.974 989 954 55 ్రీ Ĵ 5 0.249 1.506 1910 X/FB Y/EP Z/EB 8.49 0.43 -2.03 8.49 0.43 -1.52 8.49 0.43 -1.02 8.49 0.43 -1.02 C F. SC O a 4. S • D/Na 0.43 0.43 0.43 0.43 0.43 C.43 0 • 4 9 0 • 4 9 0 • 4 9 m m 0.4 4 4 C Ö NCH •49 • 49 •49 σ 4 ഹ a u u n u LL. E L U in in -61 2 RUN 327 SFQ 00100100 1210 512 \$

ORIGINAL PAGE IS OF POOR QUALITY

| D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۵. ·           | TN CCN      | AN C T         | ۲.<br>HD |            | Fq.  | ני ני<br>ד<br>ר |         | II,    | VLPH/  | ~          |        |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|----------------|----------|------------|------|-----------------|---------|--------|--------|------------|--------|--------|--------|
| X VCP         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V         V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56<br>0        |             | 2.0.2          | 49 L•    |            | 1910 |                 | 0 1829  | +•1)   | -10.0( | -          |        | t<br>Q |        |
| 8.49       -0.01       -0.317       0.000       0.931       0.000       -0.948       0.000       -0.012         8.49       -0.01       -1.53       0.344       0.000       0.344       0.000       -0.012         8.49       -0.01       -1.53       0.344       0.000       0.345       0.000       0.345       0.000       -0.012         8.49       -0.01       -0.53       0.317       0.000       0.756       0.000       0.345       0.000       -0.024         8.49       -0.01       0.387       0.000       0.756       0.000       0.387       0.000       -0.024         8.49       -0.01       0.387       0.000       0.756       0.000       0.384       0.000       -0.012         8.49       -0.01       0.35       0.377       0.000       0.756       0.000       0.397       0.000       -0.012         8.49       -0.01       0.376       0.000       0.376       0.000       0.376       0.000       -0.012         8.49       -0.01       0.377       0.000       0.394       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ø              |             | X/CB           | 1/0      | <u>a</u> n | Z/08 | N L N           | M / M   | CF/Q   | OA/O   | VF/V       | V A /V | d C    | DF/D   |
| E 49 -0.01       -1.53       0.914       0.000       0.948       0.000       0.948       0.000       0.948       0.000       0.914       0.000       -0.024         E 49 -0.01       -0.187       0.000       0.877       0.000       0.877       0.000       -0.024         E 49 -0.01       -0.187       0.000       0.756       0.000       0.877       0.000       -0.024         E 49 -0.01       0.877       0.000       0.756       0.000       0.877       0.000       -0.024         E 49 -0.01       0.877       0.000       0.756       0.000       0.877       0.000       -0.024         E 49 -0.01       0.877       0.000       0.756       0.000       0.877       0.000       -0.024         E 49 -0.01       0.33       0.877       0.000       0.756       0.000       0.877       0.000       -0.024         E 49 -0.01       0.33       0.877       0.000       0.975       0.000       0.000       -0.024         E 49 -0.01       0.756       0.000       0.756       0.000       0.976       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.F           |             | 8.49           | 0.0-     | וֹ<br>     | 2.02 | 155.0           | 9.000   | 0.877  | 0.000  | 0.937      | 0.000  | -0.010 | 1.000  |
| <pre>E 6.49 -0.01 -1.03 C.914 0.000 0.834 0.000 0.914 0.000 -0.024<br/>E 4.9 -0.01 -0.53 C.817 0.000 0.756 0.000 0.868 0.000 -0.012<br/>E 4.9 -0.01 -0.53 C.817 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.756 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 0.877 0.000 0.775 0.000 0.871 0.000 -0.012<br/>E 4.9 -0.01 1.48 0.998 0.000 0.975 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.01 1.48 0.998 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.01 1.48 0.998 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.01 1.48 0.998 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.01 1.48 0.998 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.01 1.58 0.572 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.01 1.58 0.572 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.36 -1.53 0.591 0.000 0.992 0.000 0.992 0.000 -0.012<br/>E 4.9 -0.36 -1.53 0.591 0.000 0.992 0.000 0.991 0.000 -0.012<br/>E 4.9 -0.36 -1.53 0.591 0.000 0.983 0.000 0.991 0.000 -0.012<br/>E 4.9 -0.36 -0.130 0.991 0.000 0.912 0.000 0.991 0.000 -0.012<br/>E 4.9 -0.36 -0.130 0.991 0.000 0.912 0.000 0.991 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.000 0.913 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.000 0.913 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.931 0.000 0.922 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.773 0.000 0.924 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.993 0.000 0.912 0.000 0.924 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.913 0.000 0.924 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.910 0.912 0.000 0.924 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.910 0.912 0.000 0.924 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.912 0.000 0.924 0.000 0.914 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.910 0.912 0.000 0.924 0.000 0.914 0.000 -0.012<br/>E 4.9 -0.36 0.147 0.910 0.917 0.910 0.912 0.000 0.914 0.000 0.914 0.000 0.010<br/>E 4.9 -0.</pre> | -62            |             | 8.49           | 0.01     |            | 1.53 | 0.947           | 0.000   | 0.896  | 0.000  | 0.948      | 0.000  | -0.019 | 0.999  |
| E .49 -C.C1       -C.C5 C .000 0.895 0.000 0.817 0.000 -0.024         E .49 -C.C1       -C.10 -0.55 C .876 0.000 0.817 0.000 -0.024         E .49 -C.C1       -C.11 -0.56 C .877 0.000 0.817 0.000 -0.024         E .49 -C.C1       0.15 C .817 0.000 0.756 C.000 0.817 0.000 -0.024         E .49 -C.C1       0.15 C .817 0.000 0.756 C.000 0.817 0.000 -0.024         E .49 -C.C1       0.15 C .817 0.000 0.756 C.000 0.817 0.000 -0.021         E .49 -C.C1       0.17 C .877 0.000 0.756 C.000 0.817 0.000 -0.011         E .49 -C.C1       0.17 C .877 0.000 0.917 0.000 0.817 0.000 -0.012         E .49 -C.C1       0.17 C .975 0.000 0.917 0.000 0.918 0.000 -0.012         E .49 -C.C1       0.17 C .975 0.000 0.918 0.000 0.918 0.000 0.918 0.000 -0.012         E .49 -C.C1       0.17 C .975 0.000 0.991 0.000 0.918 0.000 0.918 0.000 0.000         E .49 -C.C1       0.14 C .975 0.000 0.991 0.000 0.992 0.000 -0.012         E .49 -C.01       1.48 0.976 0.000 0.991 0.000 0.992 0.000 -0.012         E .49 -C.21       0.51 0.970 0.991 0.000 0.991 0.000 0.914 0.000 0.024         E .49 -C.25       0.900 0.983 0.000 0.983 0.000 0.991 0.000 0.024         E .49 -C.25       0.900 0.991 0.900 0.991 0.000 0.991 0.000 0.914 0.000 0.991 0.000         E .49 -C.26       0.900 0.991 0.900 0.991 0.000 0.991 0.000 0.914 0.000 0.991 0.000         E .49 -C.26       0.900 0.991 0.900 0.991 0.0000 0.914 0.000 0.991 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -61            | <b>B</b> CA | 8.49           | -0-0     |            | 1.03 | 0.914           | 0.00.0  | 0.834  | 0.000  | 0.914      | 0000-0 | -0.024 | 665.0  |
| <pre>8.49 -0.01 -0.53 C.875 0.000 0.766 0.000 0.877 0.000 -0.024<br/>8.49 -0.01 0.877 0.000 0.756 0.000 0.878 0.000 -0.024<br/>8.49 -0.01 0.877 0.000 0.756 0.000 0.878 0.000 -0.024<br/>8.49 -0.01 0.33 0.877 0.000 0.756 0.000 0.874 0.000 -0.015<br/>8.49 -0.01 0.33 0.877 0.000 0.756 0.000 0.894 0.000 -0.015<br/>8.49 -0.01 0.33 0.877 0.000 0.776 0.000 0.894 0.000 -0.015<br/>8.49 -0.01 1.48 0.978 0.000 0.776 0.000 0.894 0.000 -0.015<br/>8.49 -0.01 1.48 0.978 0.000 0.776 0.000 0.992 0.000 -0.015<br/>8.49 -0.01 1.48 0.988 0.000 0.977 0.000 0.992 0.000 -0.015<br/>8.49 -0.01 1.48 0.988 0.000 0.977 0.000 0.992 0.000 -0.015<br/>8.49 -0.01 1.48 0.988 0.000 0.977 0.000 0.992 0.000 -0.015<br/>8.49 -0.01 1.48 0.988 0.000 0.992 0.000 0.992 0.000 0.002<br/>8.49 -0.01 1.48 0.989 0.000 0.992 0.000 0.992 0.000 -0.025<br/>8.49 -0.36 -1.53 0.991 0.000 0.992 0.000 0.992 0.000 -0.015<br/>8.49 -0.36 -1.63 0.910 0.992 0.000 0.992 0.000 -0.025<br/>8.49 -0.36 -0.69 0.914 0.000 0.992 0.000 0.992 0.000 -0.015<br/>8.49 -0.36 -0.69 0.914 0.000 0.992 0.000 0.991 0.000 -0.012<br/>8.49 -0.36 -0.69 0.910 0.993 0.000 0.992 0.000 0.000 0.902 0.000<br/>8.49 -0.36 -0.03 0.983 0.000 0.983 0.000 0.991 0.000 -0.012<br/>8.49 -0.36 -0.19 0.000 0.983 0.000 0.994 0.000 -0.012<br/>8.49 -0.36 0.149 0.000 0.983 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.49 -0.36 0.140 0.990 0.766 0.773 0.000 0.944 0.000 -0.012<br/>8.49 -0.36 0.190 0.918 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.49 -0.36 0.190 0.916 0.773 0.000 0.924 0.000 -0.012<br/>8.49 -0.36 0.140 0.900 0.765 0.791 0.000 0.914 0.000 -0.012<br/>8.48 -0.36 0.140 0.900 0.765 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.48 -0.36 0.140 0.900 0.765 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.48 -0.36 0.140 0.000 0.765 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.48 -0.36 0.140 0.900 0.765 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.48 -0.36 0.140 0.970 0.918 0.000 0.914 0.000 0.914 0.000 -0.012<br/>8.48 -0.36 0.914 0.000 0.916 0.797 0.000 0.914 0.000 0.012 -0.012<br/>8.48 -0.36 0.914 0.000 0.755 0.000 0.914 0.000 0.914 0.000 0.012 -0.012<br/>8.48 -0.36 0.914 0.900 0.755 0.000 0.994 0.000 0.000 0.012 -0.012<br/>8.48 -0.36 0.914 0.900 0.755 0.000 0.</pre> | -61            | u۱          | 8.49           | 0.0-     | T          | 0.69 | 0.894           | 000.0   | 0.799  | c• 000 | 0.895      | 0.000  | -0.024 | 666.0  |
| 8.49 -C.CI -0.36 C.867 0.0759 C.750 C.000 0.868 0.000 -0.024<br>8.49 -C.CI -0.19 0.877 0.000 0.768 0.000 0.878 0.000 -0.017<br>8.49 -C.CI 0.15 C.877 0.000 0.756 0.000 0.871 0.000 -0.017<br>8.49 -C.CI 0.47 C.895 0.000 0.756 0.000 0.897 0.000 -0.017<br>8.49 -C.CI 0.47 C.895 0.000 0.992 0.000 -0.017<br>8.49 -C.CI 1.17 C.976 0.000 0.992 0.000 -0.015<br>8.49 -0.01 1.48 0.988 0.000 0.992 0.000 -0.012<br>8.49 -0.01 1.51 C.976 0.000 0.992 0.000 -0.012<br>8.49 -0.01 1.51 C.976 0.000 0.992 0.000 -0.012<br>8.49 -0.01 1.51 C.976 0.000 0.992 0.000 0.992 0.000<br>8.49 -0.01 1.51 C.976 0.000 0.992 0.000 0.992 0.000<br>8.49 -0.01 1.51 C.914 0.000 0.992 0.000 0.992 0.000<br>8.49 -0.35 0.911 0.000 0.992 0.000 0.992 0.000<br>8.49 -0.36 0.52 C.500 0.912 0.000 0.992 0.000 -0.012<br>8.49 -0.36 0.52 C.500 0.912 0.000 0.992 0.000 0.914 0.000<br>8.49 -0.36 0.152 C.555 0.000 0.983 0.000 0.992 0.000<br>8.49 -0.36 0.013 0.883 0.000 0.983 0.000 0.914 0.000 -0.012<br>8.49 -0.36 0.914 0.000 0.912 0.000 0.924 0.000 -0.012<br>8.49 -0.36 0.914 0.000 0.938 0.000 0.914 0.000 -0.012<br>8.49 -0.36 0.914 0.000 0.918 0.000 0.914 0.000 -0.012<br>8.49 -0.36 0.120 0.883 0.000 0.938 0.000 0.924 0.000 -0.012<br>8.49 -0.36 0.140 0.930 0.000 0.914 0.000 -0.012<br>8.49 -0.36 0.140 0.930 0.000 0.914 0.000 -0.012<br>8.49 -0.36 0.140 0.900 0.918 0.000 0.924 0.000 -0.012<br>8.49 -0.36 0.140 0.930 0.000 0.914 0.000 -0.012<br>8.49 -0.36 0.140 0.930 0.000 0.914 0.000 -0.012<br>8.48 -0.36 0.140 0.000 0.918 0.000 0.914 0.000 -0.012<br>8.48 -0.36 0.140 0.000 0.918 0.000 0.914 0.000 -0.012<br>8.48 -0.36 0.140 0.900 0.918 0.000 0.914 0.000 -0.012<br>8.48 -0.36 0.914 0.000 0.918 0.000 0.924 0.000 0.012<br>8.48 -0.36 0.914 0.000 0.918 0.000 0.924 0.000 0.000 0.012<br>8.48 -0.36 0.914 0.9000 0.918 0.0000 0.924 0.000 0                            | 79.            | <b>K</b> A  | 8.49           | 0.0-     | ĭ<br>-     | 0.53 | 0.876           | 000.0   | 0.766  | 0.00.0 | 0.877      | 0.000  | -0.024 | 0.599  |
| 5       8.49       -0.011       0.877       0.000       0.756       0.000       0.871       0.000       -0.012         2       6.49       -0.01       0.877       0.000       0.756       0.000       0.871       0.000       -0.011         2       6.49       -0.01       0.877       0.000       0.756       0.000       0.871       0.000       -0.011         2       8.49       -0.01       0.877       0.000       0.975       0.001       0.976       -0.011         2       8.49       -0.01       0.877       0.000       0.975       0.000       -0.972       0.001       -0.011         2       8.49       -0.01       1.7       0.975       0.000       0.975       0.001       0.976       -0.011         2       8.49       -0.01       1.7       0.976       0.000       0.975       0.001       0.075       -0.012         2       8.49       -0.01       1.7       0.976       0.000       0.975       0.001       0.075       -0.012         2       8.49       -0.01       1.48       0.988       0.000       0.976       0.075       -0.012         8.49       -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.            | ŝ           | 8.49           | 0-0-     | T<br>T     | 0.36 | C.867           | 0.000   | 0.750  | C•000  | 0.868      | 0.000  | -0-054 | 665.0  |
| 2       6.49       -C.C1       -0.01       C.877       0.000       0.756       C.000       0.878       0.000       -0.017         2       E.49       -C.C1       0.47       C.897       0.000       0.576       C.000       0.877       0.000       -0.017         2       E.49       -C.C1       0.47       C.897       0.000       0.575       C.000       0.871       0.000       -0.011         2       E.49       -C.C1       0.47       C.897       0.000       0.597       0.000       -0.015         2       E.49       -C.C1       0.47       C.897       0.000       0.975       0.000       0.975       0.000       -0.015         2       E.49       -0.01       1.41       C.976       0.000       0.975       0.000       0.975       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.            | <b>k</b> n  | 8.49           | 0.0-     | Ť<br>H     | 0.19 | 0.877           | 0.000   | 0.768  | 0.000  | 0.873      | 0.000  | -0.024 | 0.599  |
| 2       8.49       -C.C1       0.15       C.877       0.000       0.876       0.000       0.876       0.001         2       8.49       -0.01       0.33       0.877       0.000       0.897       0.000       -0.015         2       8.49       -0.01       0.47       C.873       0.000       0.897       0.000       -0.011         2       8.49       -0.01       0.47       C.873       0.000       0.995       0.000       -0.011         2       8.49       -0.01       1.48       0.988       0.000       0.995       0.000       -0.012         2       8.49       -0.01       1.48       0.988       0.000       0.995       0.000       -0.012         2       8.49       -0.01       1.48       0.988       0.000       0.995       0.000       -0.012         2       8.49       -0.01       1.48       0.900       0.992       0.000       -0.012         2       8.49       -0.01       1.514       191       80.7       0.000       -0.992       0.000         2       8.49       -0.01       1.514       9.000       0.992       0.000       0.902         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.            | 2           | E • 49         | 0.0      | -<br>-     | 0.01 | 0.870           | 0000.0  | 0.756  | 0.000  | 0.871      | 0.000  | -0.024 | 0.599  |
| 2       E.49       -0.01       0.33       0.877       0.000       0.897       0.000       -0.017         2       E.49       -0.01       0.47       C.895       0.000       0.992       0.000       -0.017         2       E.49       -0.01       1.17       C.975       0.000       0.955       0.000       0.955       0.000       0.955       0.000       0.976       0.010         2       E.49       -0.01       1.48       0.988       0.000       0.975       0.000       0.975       0.000       0.910       0.010       0.020         2       E.49       -0.01       1.48       0.988       0.000       0.995       0.000       0.995       0.000       0.910       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.020       0.010       0.010       0.010       0.010       0.010       0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.            | 2           | 8.49           | -0.0     | -          | 0.15 | C.877           | 0.000   | 0.768  | c. 000 | 0.878      | 0.000  | -0.017 | 666.0  |
| 2       8.49       -C.C1       0.47       C.895       0.000       0.897       0.000       0.894       0.000       -0.015         2       8.49       -C.C1       0.47       C.875       0.000       0.975       0.000       0.975       0.000       0.976       0.000       -0.015         2       8.49       -C.C1       0.47       C.975       0.000       0.975       0.000       0.976       0.000       -0.010         2       8.49       -C.C1       1.41       C.975       0.000       0.975       0.000       0.976       0.000       -0.010         2       8.49       -C.01       1.417       C.975       0.000       0.975       0.000       0.946       0.000       -0.012         2       8.49       -0.01       1.417       C.975       0.000       0.946       0.000       -0.012         5       0.514       191       8C       47       0.000       0.946       0.000       -0.012         5       0.514       191       8C       7       10.000       0.949       0.000       -0.012         5       0.514       191       8C       829       711       10.000       0.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.            | 2           | E.49           | 0.0-     | -          | 0.33 | 0.870           | 0.000   | 0.756  | 000.0  | 0.871      | 0.000  | -0.015 | 0.999  |
| <ul> <li>2 8.49 -0.01 0.64 0.853 0.000 0.952 0.000 0.952 0.000 -0.015</li> <li>2 8.49 -0.01 1.48 0.988 0.000 0.955 0.000 0.998 0.000 -0.028</li> <li>2 8.49 -0.01 1.48 0.988 0.000 0.994 0.000 0.992 0.000 -0.028</li> <li>2 8.49 -0.01 1.58 0.552 0.000 0.984 0.000 0.992 0.000 -0.028</li> <li>2 8.49 -0.01 1.58 0.552 0.000 0.984 0.000 0.992 0.000 -0.028</li> <li>2 0.250 1.514 191 80.2 1829 71.1 -10.00</li> <li>3 0.250 1.514 191 80.2 1829 71.1 -10.00</li> <li>5 0.250 1.514 191 80.2 1829 71.1 -10.00</li> <li>2 8.49 -0.36 -1.53 0.951 0.000 0.992 0.000 0.992 0.000</li> <li>2 8.49 -0.36 -1.53 0.951 0.000 0.992 0.000 0.904 0.000</li> <li>2 8.49 -0.36 -0.69 0.914 0.000 0.992 0.000 0.901 0.022</li> <li>3 49 -0.36 -0.69 0.914 0.000 0.982 0.000 0.991 0.000 -0.015</li> <li>8 49 -0.36 -0.63 0.991 0.000 0.992 0.000 0.901 0.001</li> <li>2 8 49 -0.36 -0.63 0.900 0.913 0.000 0.991 0.000 0.914</li> <li>3 49 -0.36 -0.63 0.000 0.913 0.000 0.924 0.000 0.024</li> <li>3 49 -0.36 0.014 0.893 0.000 0.938 0.000 0.920 0.000</li> <li>4 9 -0.36 0.037 0.893 0.000 0.924 0.000 0.901 0.0015</li> <li>8 49 -0.36 0.047 0.900 0.938 0.000 0.924 0.000 0.915</li> <li>8 49 -0.36 0.937 0.000 0.944 0.000 0.924 0.000</li> <li>2 8 48 -0.36 0.936 0.000 0.948 0.000 0.900 0.0015</li> <li>3 48 -0.36 0.447 0.000 0.944 0.000 0.901 0.0015</li> <li>4 49 -0.36 0.447 0.900 0.900 0.900 0.901 0.0015</li> <li>4 49 -0.36 0.447 0.900 0.900 0.900 0.900 0.000 0.924 0.000</li> <li>5 8 48 -0.36 0.457 0.000 0.946 0.000 0.901 0.0015</li> <li>5 8 48 -0.36 0.456 0.000 0.991 0.000 0.901 0.0015</li> <li>5 8 48 -0.36 0.457 0.000 0.991 0.000 0.901 0.0015</li> <li>5 8 48 -0.36 0.935 0.000 0.991 0.000 0.901 0.0015</li> <li>5 8 48 -0.36 0.944 0.000 0.904 0.000 0.901 0.0015</li> <li>5 8 48 -0.36 0.964 0.000 0.994 0.000 0.901 0.0015</li> <li>5 8 48 -0.36 0.900 0.900 0.994 0.000 0.901</li> <li>5 8 48 -0.36 0.900 0.900 0.994 0.000 0.901</li> <li>5 8 48 -0.36 0.900 0.991 0.000 0.994 0.000 0.0015</li> <li>5 8 48 -0.36 0.900 0.991 0.000 0.994 0.000 0.0015</li> </ul>                                                                                                                                                                          | 80.            | 2           | 8.49           | 0°0-     | -          | 0.47 | C.896           | 0.000   | 0.802  | C• 000 | 0.897      | 0.000  | -0-017 | 0.999  |
| 2       8.49       -0.011       0.977       0.972       0.000       0.992       0.000       -0.010         2       8.49       -0.011       1.48       0.988       0.000       0.992       0.000       -0.012         2       8.49       -0.01       1.48       0.988       0.000       0.945       0.000       0.946       0.000       -0.012         2       8.49       -0.01       1.58       C.572       0.000       0.948       0.000       -948       0.000       -0.922       0.000         5       0.250       1.514       191       86.2       1829       71.1       -10.00       -0.923       0.000       -949       -0.001       -0.923       0.000       -0.923       0.000       -0.923       0.000       -0.923       0.000       -0.012       849       -0.023       -1.53       0.971       0.000       0.943       0.000       -0.943       0.000       -0.923       0.000       -0.012       849       -0.023       -1.023       0.925       0.000       0.943       0.000       -0.943       0.000       -0.012       849       -0.023       -1.023       0.923       0.000       0.946       0.000       -0.023       849       -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80             | ~.          | 8.49           | 0.01     | -          | 0.64 | C*853           | 0.00.0  | 0.797  | 0.000  | 0.894      | 0.000  | -0.015 | 0.5999 |
| <ul> <li>E 6.49 -C.GI 1.17 C.976 0.000 C.952 C.000 0.996 0.007 -0.010</li> <li>E 8.49 -0.01 1.48 0.988 0.007 0.975 0.000 0.996 0.007 -0.003</li> <li>CCNF WACH PN/L PT C P TT ALPHA</li> <li>CCNF WACH PN/L PT C P TT ALPHA</li> <li>F 0.256 1.514 1911 80.2 1829 71.1 -10.00</li> <li>S 0.256 1.514 1911 80.2 1829 71.1 -10.00</li> <li>E 4.9 -0.36 -2.03 0.951 0.000 0.982 0.000 0.992 0.007 -0.023</li> <li>E 4.9 -0.36 -2.03 0.597 0.000 0.982 0.000 0.992 0.007 -0.024</li> <li>E 4.9 -0.36 -1.53 0.951 0.000 0.982 0.000 0.994 0.007 -0.024</li> <li>E 4.9 -0.36 -0.19 0.887 0.000 0.983 0.000 0.994 0.000 -0.024</li> <li>E 4.9 -0.36 0.14 0.895 0.000 0.988 0.000 0.994 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.895 0.000 0.912 0.000 0.991 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.895 0.000 0.908 0.000 0.914 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.897 0.000 0.918 0.000 0.914 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.897 0.000 0.918 0.000 0.914 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.897 0.000 0.918 0.000 0.914 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.900 0.778 0.000 0.924 0.000 -0.024</li> <li>E 4.9 -0.36 0.47 0.000 0.938 0.000 0.924 0.000 -0.024</li> <li>E 4.49 -0.36 0.47 0.000 0.936 0.000 0.914 0.000 -0.024</li> <li>E 4.49 -0.36 0.47 0.000 0.938 0.000 0.924 0.000 -0.024</li> <li>E 4.49 -0.36 0.47 0.000 0.936 0.000 0.924 0.000 -0.024</li> <li>E 4.48 -0.36 0.47 0.000 0.937 0.000 0.924 0.000 -0.012</li> <li>E 4.48 -0.36 0.47 0.000 0.947 0.000 0.914 0.000 -0.012</li> <li>E 4.48 -0.36 0.47 0.000 0.947 0.000 0.914 0.000 -0.012</li> <li>E 4.48 -0.36 0.497 0.000 0.947 0.000 0.904 0.000 -0.012</li> <li>E 4.48 -0.36 0.497 0.000 0.947 0.000 0.904 0.000 -0.012</li> <li>E 4.48 -0.36 0.497 0.000 0.947 0.000 0.904 0.000 -0.012</li> <li>E 4.48 -0.36 0.497 0.000 0.947 0.000 0.994 0.000 -0.012</li> <li>E 4.48 -0.36 0.497 0.000 0.947 0.000 0.994 0.000 -0.012</li> <li>E 4.48 -0.36 0.497 0.000 0.9487 0.000 0.994 0.000 -0.012</li> <li>E 4.48 -0.36 0.000 0.994 0.000 0.994 0.000 -0.012</li> </ul>                                                                                                                                                                                                         | 80             | • 2         | 8.49           | -0-0     | -          | 15.0 | C.952           | 000.0   | 0.905  | 0.000  | 0.952      | 0.000  | -0.015 | 0.599  |
| <ul> <li>E 8.49 -0.01 1.48 0.988 0.000 0.984 0.000 0.992 0.000 -0.0028</li> <li>E 8.49 -0.01 1.58 0.572 0.000 0.984 0.000 0.992 0.000 -0.0028</li> <li>CCNF wACF PN/L PT C P T ALPHA</li> <li>5 0.250 1.514 1911 80.2 1829 TT ALPHA</li> <li>5 0.250 1.514 1911 80.2 1829 TT 1.1 -10.00</li> <li>V/DB Z/DB WF/W WA/M GF/O 0.493 0.000 -0.992 0.000</li> <li>2 8.49 -0.36 -1.53 0.991 0.000 0.982 0.000 0.992 0.000 -0.015</li> <li>2 8.49 -0.36 -1.02 0.589 0.000 0.982 0.000 0.992 0.000 -0.015</li> <li>2 8.49 -0.36 -1.02 0.589 0.000 0.982 0.000 0.9914 0.000 -0.015</li> <li>2 8.49 -0.36 -0.52 0.595 0.000 0.982 0.000 0.9914 0.000 -0.015</li> <li>2 8.49 -0.36 -0.19 0.867 0.000 0.982 0.000 0.9914 0.000 -0.015</li> <li>2 8.49 -0.36 -0.19 0.867 0.000 0.980 0.000 0.9914 0.000 -0.015</li> <li>2 8.49 -0.36 0.19 0.867 0.000 0.980 0.000 0.9914 0.000 -0.015</li> <li>2 8.49 -0.36 0.19 0.867 0.000 0.9814 0.000 0.901 0.024</li> <li>2 8.49 -0.36 0.19 0.867 0.000 0.992 0.000 0.914 0.000 -0.015</li> <li>2 8.49 -0.35 0.114 0.867 0.000 0.9308 0.000 0.924 0.000 -0.015</li> <li>2 8.49 -0.35 0.119 0.867 0.000 0.920 0.900 0.914 0.000 -0.015</li> <li>2 8.49 -0.35 0.19 0.867 0.000 0.926 0.000 0.924 0.000 -0.015</li> <li>2 8.49 -0.35 0.14 0.900 0.900 0.900 0.914 0.000 -0.015</li> <li>2 8.49 -0.35 0.14 0.900 0.900 0.900 0.914 0.000 -0.015</li> <li>2 8.49 -0.35 0.14 0.900 0.900 0.916 0.000 0.924 0.000 -0.015</li> <li>2 8.48 -0.35 0.14 0.900 0.994 0.000 -0.916 0.001</li> <li>3 4.48 -0.35 1.19 0.974 0.000 0.994 0.000 -0.015</li> <li>3 4.48 -0.35 1.998 0.000 0.994 0.000 -0.015</li> <li>3 4.48 -0.35 1.998 0.000 0.994 0.000 -0.015</li> <li>3 4.48 -0.35 1.998 0.000 0.994 0.000 -0.015</li> <li>4 4.8 -0.35 1.998 0.000 0.994 0.000 -0.015</li> <li>4 4.8 -0.35 1.998 0.000 0.994 0.000 -0.011</li> <li>5 4.48 -0.35 1.998 0.000 0.994 0.000 -0.011</li> <li>5 4.48 -0.35 1.998 0.0000 0.994 0.000 0.994 0.000 -0.011</li> </ul>                                                                                                                                                                                                                                                                                                    | 80             | 2.          | 6 <b>4 •</b> 3 | 0.0-     |            | 1.17 | 0.976           | 0.000   | 0.952  | 0.000  | 0.976      | 0.000  | -0.010 | 1.000  |
| <ul> <li>2 8.49 -0.01 1.58 C.552 0.000 0.984 0.000 0.992 0.000 -0.003</li> <li>CCNF WACH PN/L PT C P TT ALPHA</li> <li>5 0.250 1.514 1911 80.2 1829 71.1 -10.00</li> <li>5 0.250 1.514 1911 80.2 1829 71.1 -10.00</li> <li>7 N/DB Z/DB MF/W MA/M QF/C 0.000 0.992 0.000 -0.015</li> <li>8 49 -0.36 -1.02 0.991 0.000 0.982 0.000 0.992 0.000 -0.012</li> <li>8 49 -0.36 -1.02 0.555 0.091 0.991 0.000 0.992 0.000 -0.012</li> <li>8 49 -0.36 -1.02 0.555 0.090 0.981 0.000 0.994 0.000 -0.012</li> <li>8 49 -0.36 -0.15 0.991 0.000 0.982 0.000 0.992 0.000 -0.012</li> <li>8 49 -0.36 -0.19 0.867 0.000 0.981 0.000 0.944 0.000 -0.024</li> <li>2 8 49 -0.36 0.14 0.000 0.980 0.000 0.944 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.000 0.980 0.000 0.944 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.893 0.000 0.917 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.893 0.000 0.918 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.893 0.000 0.918 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.893 0.000 0.918 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.900 0.900 0.914 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.900 0.900 0.918 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.900 0.914 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.900 0.914 0.000 0.914 0.000 -0.012</li> <li>8 49 -0.36 0.14 0.900 0.914 0.000 0.917 0.000 0.917 0.001</li> <li>8 48 -0.36 0.14 0.900 0.952 0.000 0.914 0.000 -0.015</li> <li>8 48 -0.36 1.19 0.914 0.000 0.952 0.000 0.914 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.952 0.000 0.914 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.952 0.000 0.914 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.952 0.000 0.914 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.994 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.994 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.994 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.950 0.900 0.994 0.000 -0.015</li> <li>8 48 -0.36 1.99 0.000 0.994 0.000 0.900 0.000</li> </ul>                                                                                                                                                                                                                                                                 | 79             | 41<br>•     | 8.49           | 0.0-     |            | 1.48 | 0.988           | 0.000   | 0.975  | 0.000  | 0.988      | 0.000  | -0.028 | 0.999  |
| CCNF       WACH       PN/L       PT       ALPHA         5       0.250       1.514       1911       80.2       1829       71.1       -10.00         5       0.256       1.514       1911       80.2       1829       71.1       -10.00         2       8.49       -0.36       -7.03       0.589       0.700       0.949       U.000       -0.949         2       8.49       -0.36       -1.53       0.951       0.000       0.982       0.000       0.949       U.000       -0.025         5       8.49       -0.36       -1.02       C.555       0.000       0.942       0.000       -9949       U.000       -0.024         5       8.49       -0.36       -1.02       C.555       0.000       0.933       0.000       0.934       0.000       -0.024         6       8.49       -0.36       0.102       0.833       0.000       0.914       0.007       -0.024         7       8.49       -0.36       0.14       0.800       0.778       0.000       0.924       0.007       -0.024         8       49       -0.36       0.14       0.800       0.778       0.000       -0.024 <t< td=""><td>80</td><td>~</td><td>8.49</td><td>0.0-</td><td></td><td>1.58</td><td>255 ° 0</td><td>0.000</td><td>0.984</td><td>0.000</td><td>0.992</td><td>0.000</td><td>200.0-</td><td>1.000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80             | ~           | 8.49           | 0.0-     |            | 1.58 | 255 ° 0         | 0.000   | 0.984  | 0.000  | 0.992      | 0.000  | 200.0- | 1.000  |
| 5       0.250       1.514       191       80.2       1829       71.1       -10.00       VF/V       VA/V       CP         0.2       8.49       -0.36       -7.03       0.589       0.000       0.992       0.000       -0.992       0.000       -0.015         0.2       8.49       -0.36       -1.53       0.589       0.000       0.992       0.000       -0.992       0.000       -0.992       0.000       -0.015         0.2       8.49       -0.36       -1.02       0.5955       0.000       0.992       0.000       -0.992       0.000       -0.023         0.2       8.49       -0.36       -0.52       0.5900       0.000       0.9914       0.000       0.9914       0.000       0.9914       0.000       0.9914       0.000       0.9914       0.000       0.9914       0.000       0.9914       0.000       0.991       0.000       0.991       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -              |             | ž              | a<br>ر   |            | 10   | ر               | 0       | 11     |        | <          |        |        |        |
| x / DB       Y / DB       Z / DB       MF / M       QF / D       QF / D       QF / V       V / V / V       V / V / V       V / V / V / V       V / V / V / V / V / V / V / V / V / V /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | ;<br>;<br>; | ייין<br>כ<br>ע | -        |            |      |                 |         | <br>   |        | <b>T</b> ( |        |        |        |
| 2.2 $8.49$ $-0.36$ $-2.03$ $0.589$ $0.000$ $0.982$ $0.000$ $0.932$ $0.000$ $-0.020$ $3.5$ $8.49$ $-0.26$ $-1.53$ $0.991$ $0.000$ $0.982$ $0.000$ $-0.922$ $0.000$ $-0.020$ $3.5$ $8.49$ $-0.26$ $-1.53$ $0.991$ $0.000$ $0.912$ $0.000$ $-0.922$ $0.000$ $-0.023$ $3.5$ $8.49$ $-0.26$ $-1.62$ $C.955$ $0.000$ $0.912$ $0.000$ $0.914$ $0.000$ $-0.023$ $3.6$ $-0.52$ $C.900$ $0.000$ $0.912$ $0.000$ $0.914$ $0.000$ $-0.023$ $3.49$ $-0.26$ $-0.52$ $C.900$ $0.000$ $0.914$ $0.000$ $-0.023$ $3.49$ $-0.26$ $-0.36$ $C.882$ $0.000$ $0.783$ $C.000$ $0.914$ $0.000$ $3.49$ $-0.26$ $-0.14$ $0.887$ $0.000$ $0.914$ $0.000$ $0.024$ $3.49$ $-0.26$ $0.14$ $0.887$ $0.000$ $0.817$ $0.000$ $0.027$ $3.49$ $-0.26$ $0.14$ $0.887$ $0.000$ $0.926$ $-0.022$ $3.49$ $-0.26$ $0.14$ $0.887$ $0.000$ $0.926$ $-0.022$ $3.49$ $-0.26$ $0.326$ $0.000$ $0.766$ $0.000$ $0.926$ $-0.022$ $3.49$ $-0.26$ $0.926$ $0.000$ $0.766$ $0.000$ $0.924$ $0.000$ $3.49$ $-0.26$ $0.926$ $0.926$ $0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |                | • T      |            | 171  |                 | 4701 7  |        |        |            |        | Ċ      |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , <del>0</del> | .2          | 8.49           | 0        | ا<br>مورو  | 2.03 | 0.589           | 000-000 | 0.977  | 0.000  | 0.989      |        | -0.003 |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80             | 2           | 8.49           | 0.01     | 9          | 1.53 | 0.991           | 0.000   | 0.982  | 0.000  | 0.992      | 0.000  | -0.015 |        |
| <ul> <li>E 8.49 -0.36 -0.69 C.914 0.000 0.834 0.000 0.914 0.000 -0.024</li> <li>E 8.49 -C.36 -0.52 C.900 0.000 C.809 C.000 0.901 0.000 -0.015</li> <li>E 8.49 -C.36 -0.36 C.883 0.000 0.778 C.000 0.944 0.000 -0.015</li> <li>E 8.49 -C.36 -0.19 0.867 0.000 0.778 C.000 0.887 0.000 -0.015</li> <li>E 8.49 -C.36 -0.19 0.867 0.000 0.778 C.000 0.887 0.000 -0.024</li> <li>E 8.49 -C.36 -0.19 0.867 0.000 0.766 C.000 0.887 0.000 -0.015</li> <li>E 8.49 -0.36 0.14 C.893 0.000 0.766 C.000 0.887 0.000 -0.075</li> <li>E 8.49 -0.36 0.47 C.893 0.000 0.766 C.000 0.877 0.000 -0.075</li> <li>E 8.48 -0.36 0.47 C.893 0.000 0.852 0.000 0.924 0.000 -0.075</li> <li>E 8.48 -0.36 1.19 C.974 0.000 0.852 0.000 0.976 0.000 0.976 0.001</li> <li>E 8.48 -0.36 1.19 C.974 0.000 0.957 C.000 0.976 0.000 0.976 0.001</li> <li>E 8.48 -0.36 1.19 C.974 0.000 0.957 C.000 0.976 0.000 0.976 0.001</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79             | นา<br>•     | 8.49           | -0-      | 9          | 1.02 | 5 ° 2 2 2       | 0.000   | 0.912  | 0.000  | 0.956      | 0.000  | -0-022 | 0.999  |
| <ul> <li>2 8.49 -C. 36 -0.52 C. 90C 0.000 C. 809 C.000 U. 9UI U. 000 -0.024</li> <li>2 8.49 -0.36 -0.36 C. 883 0.000 0.778 C. 000 U. 834 0.000 -0.015</li> <li>2 8.49 -C. 36 -0.19 C. 867 0.000 0.751 0.000 0.868 0.000 -0.024</li> <li>2 8.49 -C. 36 -0.19 C. 867 0.000 0.783 C. 000 0.887 0.000 -0.024</li> <li>2 8.49 -C. 36 0.14 C. 899 0.000 0.766 C. 000 0.887 0.000 -0.024</li> <li>2 8.49 -C. 36 0.14 C. 893 0.000 0.766 C. 000 0.877 0.000 -0.024</li> <li>2 8.49 -C. 36 0.47 C. 893 0.000 0.766 C. 000 0.877 0.000 -0.024</li> <li>2 8.49 -C. 36 0.47 C. 893 0.000 0.766 C. 000 0.924 0.000 -0.024</li> <li>2 8.48 -C. 36 0.64 C.973 0.000 0.952 0.000 0.924 0.000 -0.015</li> <li>2 8.48 -C. 36 1.19 C.974 0.000 0.952 0.000 0.974 0.000 -0.015</li> <li>2 8.48 -C. 36 1.98 C.974 0.000 0.948 0.000 0.974 0.000 -0.015</li> <li>2 8.48 -C. 36 1.98 C.974 0.000 0.948 0.000 0.974 0.000 -0.015</li> <li>3 8.48 -C. 36 1.98 C.974 0.000 0.948 0.000 0.976 0.000 0.976 0.000 -0.015</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79             | ឋ <u>ា</u>  | 8.49           | -0-3     | ī<br>9     | 0.69 | 0.914           | 0.000   | 0.834  | 0.000  | 0.914      | 0.000  | -0.024 | 0.999  |
| 1.2       8.49       -0.36      883       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.864       0.000       0.887       0.000       0.000       0.887       0.000       0.002         2       8.49       -0.36       0.14       0.865       0.000       0.887       0.000       0.887       0.000       0.024         2       8.49       -0.36       0.14       0.895       0.000       0.887       0.000       0.877       0.000       0.024       0.024       0.024       0.024       0.0224       0.002       0.002       0.024       0.002       0.002       0.002       0.002       0.002       0.002       0.000       0.877       0.000       0.000       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80             | ~ 5         | 8 49           | -0-3     | ī<br>9     | 0.52 | C. 90C          | 0.000   | C.809  | 0.000  | 0.901      | 0.000  | -0.024 | 0.999  |
| 8.49       -C.36       -0.19       0.867       0.000       0.751       0.000       0.868       0.000       -0.024         8.49       -C.36       0.14       C.885       C.000       0.887       0.000       -0.024         8.49       -C.36       0.14       C.885       C.000       0.887       0.000       -0.024         8.49       -C.36       0.14       C.885       C.000       0.887       0.000       -0.024         8.49       -0.36       0.14       C.889       0.000       0.783       C.000       0.887       0.000       -0.024         8.49       -0.36       0.14       C.899       0.000       0.766       C.000       0.877       0.000       -0.024         8.49       -0.36       0.47       C.893       0.000       0.766       C.000       0.877       0.000       -0.024         8.48       -0.36       0.47       C.976       0.000       0.976       0.000       -0.015         8.48       -0.36       1.19       C.974       0.000       0.948       0.000       -0.017         8.48       -0.36       1.49       C.985       0.000       0.948       0.000       -0.017      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30             | •2          | 8.49           | -0-      | T<br>9     | 0.36 | C•883           | 0.000   | 0.778  | C. J00 | 0.834      | 0.000  | -0-015 | 0.999  |
| 1-2       8-49       -C-36       -0-C3       C-885       0-000       0-783       C.000       0.887       0.000       -0.024         1-2       8-49       -0.35       0-14       C-899       0.000       0-808       0.000       0-900       0-074         1-2       8-49       -0.35       0-14       C-899       0.000       0-808       0.000       0-764       0-900       0-764       -0-024         1-2       8-49       -0.36       0-47       C-893       0-000       0-766       C-000       0-874       0-002       -0-024         1-2       8-49       -0.36       0-47       C-893       0-000       C-797       C-000       0-874       0-001       024       -0-024         1-2       8-48       -0-36       0-64       C-923       0-000       0-852       0-001       0-24       0-024       0-024         1-2       8-48       -0-36       0-94       0-057       0-001       0-924       0-0024       0-024         1-2       8-48       -0-36       1-19       C-973       0-000       0-924       0-002       0-024       0-0024         1-2       8-48       -0-36       1-19       C-985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80             | 2.          | 8.49           | - C • 3  | Ĩ<br>9     | 0.19 | 0.867           | 0.000   | 0.751  | 0.00.0 | 0.868      | 0.000  | -0.024 | 665 0  |
| 1-2       8-49       -0.36       0.14       0.899       0.000       0.808       0.000       0.877       0.900       -0.24         1-2       8-49       -0.36       0.32       0.875       0.000       0.766       0.000       0.877       0.900       -0.024         1-2       8-49       -0.36       0.47       0.893       0.000       0.766       0.000       0.877       0.900       -0.024         1-2       8-49       -0.36       0.47       0.893       0.000       0.852       0.000       0.894       0.000       -0.024         1-2       8-48       -0.36       0.64       0.973       0.000       0.852       0.000       0.924       0.000       -0.024         1-2       8-48       -0.36       0.974       0.900       0.948       0.000       -0.024         1-2       8-48       -0.36       1.19       0.974       0.900       0.976       -0.027         1-2       8-48       -0.36       1.49       0.900       0.948       0.000       0.976       -0.017         1-2       8-48       -0.36       1.49       0.900       0.976       0.001       0.926       0.001       0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30             | - 2         | 8•49           | -0.1     | ٦<br>بو    | 0.03 | 0.385           | 0.000   | 0.783  | C.000  | 0.887      | 0.000  | -0.015 | 666.0  |
| <ul> <li>2 8.49 -0.36 0.32 C.876 0.000 0.766 C.000 0.877 0.000 -0.024</li> <li>2 8.49 -0.36 0.47 C.893 0.000 C.797 C.000 0.894 0.000 -0.024</li> <li>2 8.48 -0.36 0.64 C.923 0.000 0.852 0.000 0.924 0.000 -0.015</li> <li>2 8.48 -0.36 0.98 C.976 0.000 0.852 0.000 0.976 0.000 -0.014</li> <li>2 8.48 -0.36 1.19 C.974 0.000 0.948 0.000 0.974 0.000 -0.013</li> <li>2 8.48 -0.36 1.49 C.985 0.000 0.948 0.000 0.974 0.000 -0.013</li> <li>2 8.48 -0.36 1.49 C.974 0.000 0.948 0.000 0.976 0.000 -0.013</li> <li>2 8.48 -0.36 1.49 C.974 0.000 0.948 0.000 0.976 0.000 -0.013</li> <li>2 8.48 -0.36 1.49 C.985 0.000 0.948 0.000 0.976 0.000 -0.013</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80             | • 2         | 8.49           | -0-3     | \$         | 0.14 | 0.899           | 0000.0  | 0.808  | 0.000  | 0.6.00     | 0.000  | -0.024 | 665*0  |
| <ul> <li>2 8.49 -0.36 0.47 0.893 0.000 0.797 0.000 0.894 0.000 -0.024</li> <li>2 8.48 -0.36 0.64 0.923 0.000 0.852 0.000 0.924 0.000 -0.015</li> <li>2 8.48 -0.36 0.98 0.976 0.000 0.948 0.000 0.976 0.000 -0.017</li> <li>2 8.48 -0.36 1.19 0.974 0.000 0.948 0.000 0.974 0.000 -0.017</li> <li>2 8.48 -0.36 1.49 0.974 0.000 0.948 0.000 0.974 0.000 -0.017</li> <li>3 8.48 -0.36 1.49 0.974 0.000 0.948 0.000 0.946 0.000 -0.012</li> <li>5 8.48 -0.36 1.98 0.954 0.000 0.947 0.000 0.946 0.000 0.976 0.000 -0.012</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80             | • 2         | 8 • 49         | 2-0-     | 9          | 0.32 | 0.876           | 0.000   | 0.766  | C. UUO | 0.877      | 0.000  | -0-024 | 0.599  |
| 1.2       8.48       -0.36       0.64       0.923       0.000       0.852       0.000       0.924       0.000       -0.015         .2       8.48       -0.36       0.98       0.976       0.070       -0.024         .2       8.48       -0.36       0.98       0.976       0.000       -0.074         .2       8.48       -0.36       1.19       0.974       0.000       0.948       0.000         .2       8.48       -0.36       1.19       0.974       0.000       0.948       0.000       0.974       0.001         .2       8.48       -0.36       1.45       0.985       0.000       0.978       0.000       -0.011         .2       8.48       -0.36       1.45       C.985       0.000       0.948       0.000       -0.011         .2       8.48       -0.36       1.49       C.985       0.000       0.946       0.000       -0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80             | •2          | 8.49           | -0-      | 9          | 0.47 | 0.893           | 0.000   | 197.0  | C• U00 | 0.894      | 0.000  | -0.024 | 665 0  |
| <ul> <li>2 8.48 -0.36 0.98 C.976 0.000 C.952 0.000 0.976 0.000 -0.024</li> <li>2 8.48 -0.36 1.19 C.974 0.000 0.948 0.000 0.974 0.000 -0.017</li> <li>2 8.48 -C.36 1.49 C.985 0.000 0.970 C.000 0.946 0.000 -0.012</li> <li>5 8.48 -0.36 1.98 C.954 0.000 0.987 0.000 0.994 0.000 -0.012</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80             | • 2         | 8•48           | E 0-     | 50         | 0.64 | C.923           | 0.000   | 0.852  | 0.000  | 0.924      | 0.000  | -0.015 | 665.0  |
| <ul> <li>2 8.48 -0.36 1.19 0.974 0.000 0.948 0.000 0.974 0.000 -0.017</li> <li>2 8.48 -0.36 1.45 0.985 0.000 0.970 0.000 0.946 0.000 -0.013</li> <li>5 8.48 -0.36 1.98 0.954 0.000 0.987 0.000 0.994 0.000 -0.012</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80             | 2.          | 8.48           | 0-0-     | 9          | 96.0 | C.976           | 000°u   | C. 952 | 0.00.0 | 0.976      | 0.000  | -0.024 | 0.999  |
| •2 8•48 -C.36 1•45 C•985 0•070 0•970 C•000 0•936 0•060 -0•013<br>•5 8•48 -0•36 1•98 C•954 0•C0C C•987 0•000 0•994 0•0C0 -0•012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80             | •2          | 8*48           | -0-3     | 9          | 1.19 | 0.974           | 0.000   | 0.948  | 0.000  | 0.974      | 0.000  | -0.017 | 0.999  |
| •5 8.48 -0.36 1.98 C.954 0.606 0.987 0.000 0.994 0.060 -0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80             | •2          | 8.48           |          | 9          | 1.45 | <b>C.</b> 985   | 0.0.0   | 0.970  | C. 000 | 0.936      | 0.000  | -0.013 | 0.999  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79             | un.         | 8•48           | -0-3     | Ŷ          | 1.98 | C.954           | 0.000   | 0.987  | 0.000  | 0.994      | 0-000  | -0.012 | 565.0  |

0.9999 665 •0 665°0 665°0 6665°0 6666°0 666°0 E/0 .000 665.0 665 0.999 666 65 . ē • -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.012 -0.022 -0.019 .017 -0.003 Ŷ 000 8 C • • VF/V 0.989 0.985 0.965 0.904 0.892 0.894 0.908 0.883 0.888 0.891 0.916 0.938 906 916 998 998 00 . 0 ALPHA -10.00 0A/Q 0.000 c.000 c.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 71.2 0F70 0.977 0.977 0.970 0.979 0.929 0.797 0.822 0.775 0.797 0.837 0.837 0.932 0.951 0.994 0.996 0.000 .000 C 855 855 . . U F MACH RN/L PT 5 0.250 1.514 1911 8.49 -0.45 -2.03 0 8.49 -0.45 -1.52 0 8.49 -0.45 -1.52 0 8.49 -0.45 -1.52 0 8.49 -0.45 -0.55 0 8.49 -0.45 0.35 0 8.49 -0.45 0.19 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0.98 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.49 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 -0.45 0 8.40 0 8.40 -0.45 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 8.40 0 Ś CONF Ľ١ ណ 5 ហ -62 -61 -61 2 D 571 1 249 249 σ 4 Ś N . 0 . RUN 330 SFQ 65543210983655432

## TABLE 2(b)

Configuration 6 – Ballast-profile model as supported in Configuration 5.

1.241 1.225 1.071 1.134 1.023 1.029 1.026 1.049 1.054 pF/p 1.078 1.096 1.174 1.202 1.213 1.222 1.226 1.234 1.067 0.282 0.263 0.083 0.083 0.083 0.083 0.083 0.083 0.024 0.024 0.058 0.064 0.079 0.092 0.113 0.205 0.233 0.237 0.237 0.260 0.266 0.275 9 V A /V 0.856 0.866 0.955 0.917 0.972 0.984 0.980 0.976 0.976 0.958 0.951 0.965 VF/V 0.360 0.831 0.941 0.895 805 0.879 0.873 0.367 . ALPHA 0.00 0.01 0.865 0.852 0.956 0.919 0.971 0.983 0.979 0.975 0.967 74.4 QF/O 0.966 096.0 0.944 0.898 0.879 863 0.954 0.882 0.874 0.367 0.857 320 WA/M 272.5 WF/W 0.825 C-840 C-945 C-945 C.966 C.966 C.970 C.949 0.858 C.855 0.958 0.875 C.834 C.834 0.976 C.960 0.928 C-845 C.842 C-941 2/CB 2/CB 1.95 ( 1.95 1.95 1.96 1.96 **1**6. 1.96 1.96 1.96 •96 .96 -97 •96 - 97 .97 -97 - 51 72**.** NF WACH RN/L 6 1.104 1.513 X/CB Y/DE Z 7.18 -0.02 1 -0.01 -0.01 -0.01 -0.01 00°00 0°00 0°00 -0-00 -0.00 C-01 C-01 C-01 0.01 00 6.93 6.76 6.60 6.44 6.27 6.09 5.94 5.26 5.09 4.53 4.76 4.59 5.76 5.60 5.44 4.42 4.10 P IN CONF 66 C 272.9 272.5 272.2 271.9 272.2 271.5 271.8 271.8 271.7 272.2 271.8 272.1 272.3 272.3 272.3 272.1 272.1 272. 571 1 MACH 1.105 1.058 1.059 1.101 1.104 1.099 1.104 1.104 1.101 1.100 TST 1.101 650.1 1.100 1.102 1.100 1.102 1.104 1.102 RUN 331 SEQ n m 4 50000 10 12 14 15 16 17 18 19 2023

1.031 1.069 1.066 • 0.65 .068 1.062 DE/I 0.037 0.080 0.080 0.078 0.076 0.076 0.076 đ V A /V 0.921 0.896 0.748 0.705 0.677 0.706 0.765 VF/V 0.00 04/0 **ALPHA** 0570 0.843 0.843 0.818 0.539 0.473 0.473 0.473 75.7 0.565 0.885 319 M / M ۵ 6 1.1C5 1.507 686 272.7 M X/CB Y/DE Z/DE MF/M M 5.49 0.000 -1.04 0.9024 5.49 0.00 -0.03 0.710 5.49 0.00 0.12 0.6666 5.49 0.00 0.12 0.6666 5.49 0.00 0.29 0.636 5.49 0.00 0.46 0.636 PN/L WACH TST P IN CONF 272.7 272.7 273.1 273.1 272.9 272.6 270.8 270.8 271.7 571 1 66 MACH Q 1.105 1.105 1.105 1.102 1.105 1.098 1.053 1.093 332 SEQ - nin + u o r o RUN

|                | DE/D            | 1.027    | 1.016    | 0.998    | 166.0    | 0.598    | 666.0    | 1.005    | 1.022    |             |       | DF/D      | 1.003     | 1.007     | 0.996     | 995.0     | 1.000     | 666.0     | 1.000     | 1.008     |  |
|----------------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|                | <u>د</u> ه<br>۲ | 0.043    | 0.025    | -0.00    | -0.004   | +00.0-   | -0.002   | 0.007    | 0.035    |             |       | 60        | 0.008     | 0.015     | 600.0-    | 010-0-    | -0-001    | -0.002    | 100.0-    | 0.018     |  |
|                | V A / V         |          |          |          |          |          |          |          |          |             |       | V A /V    |           |           |           |           |           |           |           |           |  |
| AL PHA<br>0.00 | PA/U VF/V       | 0.911    | 0.873    | 0.712    | 0.685    | 0.678    | 0.712    | 0.768    | 0.924    | ALPHA       | 0.00  | 0A/4 VF/V | 0.918     | 0.853     | 0.744     | 0.742     | 0.749     | 0.793     | 0.344     | 0.948     |  |
| 11<br>75.8     | CF/0            | 0.828    | 0.752    | 0.465    | 0.428    | 0.419    | 0.465    | 0.553    | C.851    | 11          | 75.4  | QF /0     | 0.830     | 0.708     | 0.521     | 0.518     | 0.531     | 0.600     | 0.685     | 0.895     |  |
| 9 C D K        | N / VN          |          |          |          |          |          |          |          |          | ۵           | 505   | W V V     |           |           |           |           |           |           |           |           |  |
| 247-0          | NF/N            | C.858    | 0.860    | 0.683    | C.655    | 0.648    | 0.683    | 0.742    | C.913    | C.          | 226.2 | N L J N   | 0.909     | 0.838     | 0.723     | 0.722     | 0.729     | 0.775     | 0.829     | 0.942     |  |
| 14             | Z/CB            | 1.04     | 0.55     | 0.04     | 0.14     | 0.29     | 0.46     | 0.63     | 0.56     | Τd          | 169   | 7/08      | -1 - 04   | -0-54     | -0-04     | 0.12      | 0.29      | 0.46      | 0.63      | 0.96      |  |
| 1/14<br>1/14   | 108             | 0.00 -   | - 00-0   | 0.00     | 00.00    | 00.00    | 0.00     | 00-00    | 00.00    | 17 N R      | 1.510 | Y / D.P.  | - 00-0    | - 00 - 0  | - 00 - 0  | 00-00     | 0.00      | 0.00      | 0.00      | 00.0      |  |
| NACH<br>0.040  | X/08            | 5.49     | 5.49 (   | 5.49     | 5.49     | 5.49     | 5.49     | 5.48     | 5.49     |             | 008 0 | X/FB      | 67 s      | 5.48      | 5.49      | 67 - 3    | 5.49      | 5.49      | 5.49      | 5.49      |  |
| T P TN CCNF    |                 | 49 247.0 | 48 246.6 | 46 246.2 | 47 246.1 | 45 245.7 | 45 245.7 | 46 246.2 | 45 245.8 | SNUT AT 0 T |       |           | 100 276.7 | 101 226.1 | 100 224-2 | 100 226.2 | 102 226.7 | 102 226.7 | 202 226.7 | 301 226.1 |  |
| RUN TS         | VW CAS          | 1 0.9    | 2 0.9    | 0.0      | 4 0.9    | 5 0.9    | 6 0 9    | 6-0 2    | 8 0.9    |             |       |           |           |           |           |           |           |           |           | 0°0       |  |

1.000 0.598 0.998 0.598 0.998 0.9999 665 0 1.000 DE/0 -0.036 -0.029 -0.026 -0.010 -0.045 -0.043 -0.036 -0.010 3 0.909 0.889 0.819 0.814 0.814 0.854 0.856 VF/V 0.892 0.944 ALPHA 0.00 04/0 C.000 0.000 0.000 **c.**000 0.000 000-0 0.787 0.667 0.659 0.726 0.729 0.792 C.889 71.1 CF/7 0.825 F 0°000 0°0000 0.000 0.000 0.000 0.000 1828 NA/N 0.000 С. 80.9 MF /N C.9C8 C.888 C.817 O.813 C.853 O.854 C.891 0.943 C 1151 Z/CB L d F WACH RN/L X/FB Y/DB Z 5.49 C.C0 -0 5.49 C.C0 -0 5.49 C.C0 -0 5.49 0.00 0 5.49 0.00 0 5.49 0.00 0 5.49 0.00 0 CONF Ś TA C( 66 66 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 **ド う S** し 3 E と S G = O M 4 E S C 8

## ORIGINAL PAGE IS OF POOR QUALITY
Table 2(c)

Configuration 5 – Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section: forward-facing pitot-static probe.

-----

|               |            | PF/P      | 1.010       | 1.047       | 1.067       | 1.071         | 1.065       | 1.062       | 1.063       | 1.065       | 1.070       | 1.079       |               |            | pt/p      | 1.065       | 1.066       | 1.066       | 1.061       | 1.067        | 1.069       | 1.069       | 1.081       |               |            | a/id      | 1.036       | 1.074       | 1.073       | 1.078       | 1.076       | 1.067       | 1.065       | 1.066       | 1.070       | 1.085       |
|---------------|------------|-----------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|------------|-----------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|---------------|------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|               |            | d<br>C    | 0.012       | 0.055       | 0.079       | 0.083         | 0.077       | 0.074       | 0.074       | 770.0       | 0.083       | 0.094       |               |            | CD        | 0.076       | 0.079       | 0.078       | 0.072       | 0.079        | 0.082       | 0.083       | 0.096       |               |            | <u>6</u>  | 0.042       | 0.087       | 0.085       | 160.0       | 0.088       | 0.078       | 0.076       | 0.079       | 0.084       | 0.101       |
|               |            | V A /V    |             |             |             |               |             |             |             |             |             |             |               |            | V A /V    |             |             |             |             |              |             |             |             |               |            | V A /V    |             |             |             |             |             |             |             |             |             |             |
| ALPHA         | 0.00       | 0A/Q VF/V | 0.985       | 0.907       | 0.929       | 0.901         | 0.861       | 0.816       | 161.0       | 0.813       | 0.851       | 0.934       | ALPHA         | 0.00       | QA/Q VF/V | 0.902       | 0.895       | 0•746       | 0.707       | 0•663        | 0.684       | 0.757       | 0.914       | ALPHA         | 0.00       | CA/Q VF/V | 0.967       | 0.933       | 0.879       | 0.879       | 0.842       | 0.800       | 0.779       | 0.807       | 0.864       | 0.934       |
| 11            | 70.6       | QF/Q      | 0.973       | 0.826       | 0.891       | 0.832         | 0.743       | 0.654       | C.610       | 0.651       | C.727       | 0.913       | 11            | 72.0       | 0F 10     | 0.928       | 0.816       | 0.536       | 0.473       | C.412        | 0.444       | 0.5555      | 0.868       | 11            | 72.8       | GF / Q    | C.954       | 0.906       | 0.785       | 0.190       | 0.712       | 0.627       | 0.591       | C.640       | 0.754       | 0.918       |
| ٩             | 317        | W V V     |             |             |             |               |             |             |             |             |             |             | ۵.            | 319        | MV VN     |             |             |             |             |              |             |             |             | <b>C</b> .    | 319        | N V V N   |             |             |             |             |             |             |             |             |             |             |
| G             | 269.3      | ME/N      | C•982       | 0.988       | C.914       | <b>C.</b> 882 | 0.835       | C.785       | 0.757       | 0.782       | 0.824       | 0-920       | U             | 270.7      | NE / N    | 0.882       | C.875       | 0.705       | C.668       | <b>C.622</b> | 0.644       | c.721       | 0.896       | C             | 271.0      | NF / N    | 0.960       | 616.0       | 0.855       | 0.856       | 0.814       | 0.767       | 0.745       | 0.775       | 0.839       | C.92C       |
| D L           | 8 678      | 2/CB      | -1.05       | -070        | -0-54       | -0.21         | -0-04       | 0.12        | 0.29        | 0.46        | 0.63        | 0•96        | Fq .          | 2 682      | Z/08      | -1.04       | -0.54       | -0-04       | 0.13        | 0:00         | 0.47        | 0.62        | 0.96        | 1 d           | 9 682      | 2/0B      | -1.04       | -0.71       | -0.54       | -0.21       | -0.04       | 0.13        | 0.29        | 0.46        | 0.63        | 0.96        |
| LNN H         | 1.50       | X/08      | C.44 -      | - 44 -0     | C.44 -      | 0.44 -        | 0.44        | C.44        | 0.44        | C.44        | 0.44        | 0.44        | RN/I          | 1.512      | Y/DB      | 00.00       | - 00 - 0    | 00.00       | 0.00        | 00.0         | 00-00       | 0.00        | 00-00       | INA .         | 1.50°      | ۲/09      | - 6 - 4 4 - | - 644 -0-   | - 644 -     | - 44 - 0    | - 644 -     | -0.44       | -0-44       | -C.44       | -0-44       | -0.44       |
| MACH          | 1.10       | X/08      | 5.49        | 5.49        | 5.49        | 5.49          | 5.49        | 64.5        | 5.49        | 5.49        | 5.49        | 5.49        | NACH          | 1.100      | X/CB      | 5.49        | 5.49        | 5.49        | 5.49        | 5.49         | 5.49        | 5.49        | 5.49        | NACH          | 1.102      | X/C9      | 5.49 -      | 5.49 -      | 5.49 -      | 5.49 -      | - 64•5      | 5.49 -      | 5.49 -      | 5.49 -      | 5.49        | 5.49 -      |
| TST P IN CONF | 571 1 66 5 | MACH 0    | 1.102 269.3 | 1.106 269.9 | 1.101 269.1 | 1.101 269.1   | 1.101 269.1 | 1.098 268.4 | 1.058 268.4 | 1.056 268.1 | 1.096 268.1 | 1.054 268.C | TST P TN CCNF | 571 1 66 5 | MACH C    | 1.100 270.7 | 1.058 270.6 | 1.098 270.6 | 1.098 270.6 | 1.099 270.4  | 1.097 270.2 | 1.094 269.6 | 1.059 270.4 | TST P IN CONF | 571 1 66 5 | MACH Q    | 1.102 271.0 | 1.102 271.C | 1.105 271.6 | 1.108 272.2 | 1.110 272.4 | 1.102 271.0 | 1.100 270.7 | 1.097 270.2 | 1.095 269.9 | 1.058 270.C |
| RUN           | 336        | SEQ       | ~           | r           | 4           | S             | 9           | -           | ထ           | σ           | 10          | 11          | RUN           | 155        | SEC       | -           | <i>د</i>    | <b>f</b> r  | 4           | ŝ            | 9           | ~           | 80          | RUN           | 338        | SEQ       | 7           | 2           | m           | 4           | <b>u</b> n  | Q           | ~           | ω           | σ           | 10          |

|               |                 | CP PF/P   | 0.185 1.158 | 0.177 1.150 | 0.156 1.132 | 0.153 1.129 | 0.159 1.135  | 0.159 1.135  | 0.155 1.131 | 0.220 1.185 |                                                                                             |               |            | CP PF/P     | 0.054 1.034 | 0.053 1.034 | 0.041 1.026 | 0.043 1.027 | 0.038 1.024 | 0.029 1.018 | 0.023 1.014 | 0.055 1.034 |             |               |          | Cp pF/p   | 0.046 1.029   | 0.038 1.024 | 0.028 1.018 | 0.016 1.010 | 0.006 1.004 | -0.005 0.997 | -0-001 0-999 | 0.001 1.001 | 0.005 1.003 | 0.028 1.018 |
|---------------|-----------------|-----------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|---------------------------------------------------------------------------------------------|---------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|----------|-----------|---------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|
|               |                 | VA/V      |             |             |             |             |              |              |             |             |                                                                                             |               |            | V A / V     |             |             |             |             |             |             |             |             |             |               |          | V A /V    |               |             |             |             |             | •            | •            |             |             |             |
| ALPHA         | 0.00            | 0A/Q VF/V | 0.888       | 0.836       | 0.282       | 0.150       | 0.134        | 0.358        | 0.650       | 0.382       |                                                                                             | ALPHA         | 0.00       | CA/Q VE/V   | 0*646       | 0.848       | 0.117       |             |             | 0.243       | 0.566       | 0.947       |             | ALPHA         | 0.00     | QA/Q VF/V | 0.963         | 0.892       | 0.936       | 0.875       | 0.838       | 0.802        | 0.783        | 0.806       | 0.852       | 0.955       |
| 11            | 73.9            | 0F/0      | 0.868       | 0.749       | 0.074       | 0.021       | 0.016        | 0.120        | 0.420       | 0.874       |                                                                                             | 11            | 73.8       | CF/O        | 0.915       | 0.708       | 0.012       |             |             | 0.051       | 0.290       | 0.911       |             | 11            | 74.1     | GF/0      | 0.941         | 0.786       | 0.873       | 0.743       | 0.668       | 0.602        | 0.573        | 0.612       | C.694       | 0.914       |
| <u>م</u>      | 320             | M / M     |             |             |             |             |              |              |             |             |                                                                                             | ۵.            | 388        | M / M       |             |             |             |             |             |             |             |             |             | ۵             | 387      | n/vn      |               |             |             |             |             |              |              |             |             |             |
| ى             | 272.5           | NL / N    | C.866       | C.8C7       | C.256       | C.135       | c.121        | C.325        | 0.605       | 0.859       |                                                                                             | U             | 245+7      | NF / N      | C.941       | C.827       | 0.108       |             |             | C.224       | C.534       | 526.0       |             | ى             | 246.3    | NF/N      | <b>C.</b> 956 | C.876       | C.926       | C.857       | 0.816       | C.777        | 0.757        | 0.782       | 0.832       | 0.948       |
| Ld -          | 686             | 2/08      | -1.03       | -0.53       | -0-02       | 0.14        | 0.31         | 0.47         | 0.64        | 9.98        |                                                                                             | 1d            | 0 695      | 2/08        | -1.03       | -0.53       | -0.03       | 0.14        | 0.31        | 0.47        | 0.64        | 35*0        | )<br> <br>  | L PT          | 0 695    | 2/DB      | -1.04         | -0.70       | -0.54       | -0.21       | -0.04       | 0.12         | 0.29         | 0.46        | 0.63        | 0.96        |
| I/Vd          | 1.51            | ×/08      | c. C2 -     | C.C2 -      | C.02 -      | c.c2        | <b>C°</b> C2 | <b>C-</b> C2 | C - C 2     | 0-02        |                                                                                             | L/NA          | 1.480      | ۲/PB        | 0.02 -      | c. C2       | C.C2 -      | C. C2       | C. C.2      | 0.02        | C. C2       | C• C2       | ,<br>,<br>, | INA I         | 1.48     | Y/DR      | 0.44 -        | 0.44 -      | 0.44 -      | 0.44 -      | 0.44        | C.44         | 0.44         | 0.44        | 0.44        | 0.44        |
| N N C H       | 5 <b>1.1</b> 03 | X/CB      | 3.52        | 3.52        | 3.52        | 3.52        | 3.52         | 2.52         | 3.57        | 3.57        |                                                                                             | - NACH        | 0.951      | X/CB        | 3.52        | 5.52        | 3.52        | 3.52        | 3.52        | 5.57        | 1 2 2       | C 1         | 1           | E NACH        | 5 0 .953 | X / 0.B   | 5.49          | 5.49        | 5.49        | 5.49        | 5.49        | 5.49         | 5.49         | 5.49        | 5.49        | 5.49        |
| TST P IN CONF | 571 1 66 5      | MACH C    | .103 272.5  | .101 272.2  | .058 271.7  | .099 272.1  | 100 272 3    | 100 272 3    | 7.17C 800   | 064 271.4   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | TST P IN CONF | 571 1 66 5 | MACH C      | 951 245.7   | 951 245-7   | 1.950 745.8 | 949 245 4   | 949 245 4   | 0-245 745   | 1.947 245.0 | 947 245 0   |             | TST P TN CCNF | 571 1 66 | MACH Q    | 1.953 246.3   | .954 246.8  | 0.952 246.3 | 0.951 245.7 | .951 245.7  | 0.951 245.7  | 1.951 245.7  | 1.949 245.3 | .949 245.3  | 0.949 245.3 |
| RUN           | 6               | C E C     |             | 2 1         |             | 4           | י ר<br>י גי  | · -          |             | - a         | >                                                                                           | RUN           | 340        | U<br>L<br>V |             | 10          | 2 F         | 1           | , c<br>     |             |             | - α         | 2           | RUN           | 341      | S E C     |               | 2           | ŝ           | 4           | u           | 9            | -            | 8           | 5           | 10 (        |

| OR | IGINAL | PAGE   | IS           |
|----|--------|--------|--------------|
| OF | POOR   | QUALI' | Γ <b>Y</b> ; |

| CP °F/P<br>0.036 1.023<br>0.022 1.014<br>0.002 1.011<br>-0.010 0.594<br>-0.007 0.995<br>-0.004 0.598<br>-0.004 0.598<br>0.030 1.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CP PF/P<br>0.046 1.029<br>0.032 1.029<br>0.005 1.029<br>0.001 1.001<br>0.001 1.001<br>0.001 1.001<br>0.001 1.001<br>0.003 1.006<br>0.031 1.020                                                                                                                     | CP PF/P<br>0.016 1.010<br>0.008 1.005<br>-0.016 0.993<br>-0.016 0.993<br>-0.015 0.991<br>-0.006 0.995<br>0.009 1.006<br>0.014 1.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V A / V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V A / V                                                                                                                                                                                                                                                            | N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ALPHA<br>0.00<br>0.400<br>0.910<br>0.879<br>0.879<br>0.879<br>0.879<br>0.661<br>0.661<br>0.661<br>0.661<br>0.705<br>0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALPHA<br>0.00<br>0.4/0 VF/V<br>0.955<br>0.834<br>0.837<br>0.837<br>0.837<br>0.837<br>0.855<br>0.855<br>0.855<br>0.855                                                                                                                                              | ALPHA<br>0.00<br>0.400<br>0.830<br>0.830<br>0.830<br>0.779<br>0.767<br>0.767<br>0.762<br>0.763<br>0.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 74.4<br>0.822<br>0.457<br>0.457<br>0.457<br>0.457<br>0.457<br>0.457<br>0.457<br>0.457<br>0.457<br>0.852<br>0.852<br>0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TT<br>74.5<br>74.5<br>74.5<br>0.870<br>0.870<br>0.870<br>0.870<br>0.870<br>0.595<br>0.595<br>0.595<br>0.529<br>0.529<br>0.503<br>0.909                                                                                                                             | 11<br>74-7<br>74-7<br>0-856<br>0-8563<br>0-5535<br>0-5335<br>0-5335<br>0-5335<br>0-5335<br>0-5335<br>0-825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 388<br>7 4 7 4                                                                                                                                                                                                                                                     | 2 0 0<br>7 0 0<br>7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| CCNF MACH RN/L PT C<br>5 0.952 1.480 695 246.3<br>X/DB Y/DB Z/DB WF/N<br>X/DB 7/DB 2/DB WF/N<br>5.49 0.00 -1.04 0.896<br>6 5.49 0.00 -0.54 0.861<br>8 5.49 0.00 0.13 0.636<br>8 5.49 0.00 0.13 0.636<br>8 5.49 0.00 0.13 0.636<br>8 5.49 0.00 0.13 0.637<br>3 5.49 0.00 0.29 0.631<br>8 5.49 0.00 0.13 0.637<br>8 5.49 0.00 0.13 0.631<br>8 5.49 0.00 0.52 0.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CFNF WACH RN/L PT C<br>5 0.952 1.480 695 246.3<br>X/FB Y/DB Z/DB WF/N<br>X/FB -0.44 -1.05 C.960<br>5 49 -0.44 -0.70 C.924<br>5 49 -0.44 -0.20 C.816<br>771<br>5 49 -0.44 0.25 C.777<br>8 5 49 -0.44 0.25 C.777<br>8 5 49 -0.44 0.96 0.944<br>5 49 -0.44 0.96 0.944 | CCNF MACH RN/L PT C<br>5 0.953 1.481 596 246.8<br>X/CB V/DB Z/DB MF/W<br>K/CB C 2002 -1.05 C.920<br>6.99 -0.02 -1.05 C.920<br>6.99 -0.02 0.12 0.753<br>6.99 -0.02 0.12 0.774<br>6.99 -0.02 0.44 C.735<br>6.98 -0.02 0.44 C.735<br>6.98 -0.02 0.44 C.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T P TN C<br>CH 245<br>52245<br>50245<br>50245<br>50245<br>50245<br>50245<br>50245<br>50245<br>50245<br>50245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ST P TN<br>71 1 66<br>952 246<br>952 246<br>952 246<br>952 245<br>950 245<br>949 245<br>949 245<br>950 245                                                                                                                                                         | ST P TN<br>71 1 66<br>953 246<br>954 246<br>954 246<br>953 246<br>953 246<br>953 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N 24 2<br>N 24 2 | и                                                                                                                                                                                                                                                                  | <b>Ν Ψ Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

ł

111

ļ

| PF/P<br>1.014<br>1.014<br>1.004<br>0.993<br>0.998<br>0.998<br>0.998<br>1.001<br>1.001<br>1.001<br>1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95770<br>1.0017<br>1.0017<br>1.0017<br>1.0003<br>1.0003<br>1.0005<br>1.0005<br>1.0005<br>1.0005                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CP<br>0.024<br>0.0064<br>-0.012<br>-0.003<br>-0.003<br>0.003<br>0.003<br>0.003<br>0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.038<br>0.038<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005                                                                                                                                                                                                 |
| ∧ ∧ ∨<br>∧ ∧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ∧ v v                                                                                                                                                                                                                                                                                  |
| ALPHA<br>0.00<br>0.00<br>0.932<br>0.370<br>0.794<br>0.765<br>0.765<br>0.779<br>0.837<br>0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL PHA<br>0.00<br>0.00<br>0.920<br>0.861<br>0.690<br>0.691<br>0.691<br>0.796<br>0.729<br>0.729                                                                                                                                                                                         |
| 7 1 1<br>7 4 5<br>0 6 7 7 0<br>0 6 7 3 1<br>0 6 5 7 9<br>0 6 5 7 9<br>0 8 4 8<br>0 8 4 8 | 741<br>741<br>00.8744<br>00.4244<br>00.4244<br>00.4441<br>00.4440<br>00.4441<br>00.884                                                                                                                                                                                                 |
| р<br>421<br>МА/М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 423<br>47.3                                                                                                                                                                                                                                                                            |
| <pre>MACH RN/L FT C MACH RN/L FT C 0.902 1.489 714 235.8 X/CB Y/DP Z/CP MF/W 6.99 -0.02 -1.05 C.922 6.99 -0.02 -0.05 C.854 6.98 -0.02 -0.04 C.771 6.98 -0.02 0.12 C.74C 6.98 -0.02 0.12 C.74C 6.98 -0.02 0.45 C.711 6.58 -0.02 0.63 C.817 6.58 -0.02 0.63 C.817 6.58 -0.02 0.63 C.817 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>*ACH RN/L PT G<br/>0.897 1.485 713 238.1<br/>X/CB Y/CE Z/DB MF/W<br/>5.49 C.00 -1.04 0.909<br/>5.49 C.00 -1.04 0.909<br/>5.49 C.00 -1.04 0.909<br/>5.49 C.00 0.13 0.663<br/>5.49 C.00 0.30 C.651<br/>5.49 C.00 0.30 C.651<br/>5.49 C.00 0.30 C.651<br/>5.49 C.00 0.30 C.651</pre> |
| RUN TST P TN CONF<br>345 571 1 66 5<br>560 MACH 0<br>1 0.902 239.8<br>2 0.904 240.2<br>4 0.904 240.2<br>5 0.904 239.6<br>6 0.903 239.2<br>7 0.905 240.0<br>8 0.905 240.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RUN TST P TN CCNF<br>346 571 1 66 5<br>510.897 238.1<br>2 0.896 237.6<br>3 0.898 238.0<br>4 0.898 238.6<br>6 0.900 238.4<br>7 0.900 238.4<br>8 0.901 238.4                                                                                                                             |

|       | 0 E / D                                       | 1-046                                                                                                       | 1-040                                                                                                                                                                   | 1.044                                                                                                                                                                                                                            | 1 - 0 - 1                                                                                                                                                                                                                                                                                         | 1-037                                                                                                                                                                                                                                                                                                       | 1.030                                                                                                                                                                                                                                                                                                                                                                                           | 1.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 . 042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | e                                             | 0-081                                                                                                       | 0.071                                                                                                                                                                   | 0.078                                                                                                                                                                                                                            | 620.0                                                                                                                                                                                                                                                                                             | 0.065                                                                                                                                                                                                                                                                                                       | 0-053                                                                                                                                                                                                                                                                                                                                                                                           | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | V A / V                                       | •                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | VF/V                                          | 0.939                                                                                                       | 0.776                                                                                                                                                                   | 0.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   | 0.115                                                                                                                                                                                                                                                                                                       | 0.341                                                                                                                                                                                                                                                                                                                                                                                           | 0.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00  | 0 A / O                                       | 1                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 74.7  | QF / Q                                        | 0.904                                                                                                       | 0.588                                                                                                                                                                   | 0000-0                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                   | 0.012                                                                                                                                                                                                                                                                                                       | 0.105                                                                                                                                                                                                                                                                                                                                                                                           | 0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 421   | MAJW                                          |                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 238.5 | NF / N                                        | C.930                                                                                                       | c.752                                                                                                                                                                   | C-00C                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   | c.107                                                                                                                                                                                                                                                                                                       | 0.319                                                                                                                                                                                                                                                                                                                                                                                           | C.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5 713 | Z / DB                                        | -1.03                                                                                                       | -0.53                                                                                                                                                                   | -0-03                                                                                                                                                                                                                            | 0.15                                                                                                                                                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                                                                        | 0.47                                                                                                                                                                                                                                                                                                                                                                                            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.480 | Y/DB                                          | 0.02 -                                                                                                      | c. C2 -                                                                                                                                                                 | 0.02 -                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                              | C• C 2                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                            | <b>C • C</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c.c2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 006*0 | X / 0B                                        | 3.52                                                                                                        | 3.52                                                                                                                                                                    | 3.52                                                                                                                                                                                                                             | 3.52                                                                                                                                                                                                                                                                                              | 3.52                                                                                                                                                                                                                                                                                                        | 3.52                                                                                                                                                                                                                                                                                                                                                                                            | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50    | C                                             | 38.9                                                                                                        | 38.9                                                                                                                                                                    | 38.5                                                                                                                                                                                                                             | 38.0                                                                                                                                                                                                                                                                                              | 18.0                                                                                                                                                                                                                                                                                                        | 18.0                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b> •8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 <b>9.</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7116  | IACH                                          | 900 23                                                                                                      | ,900 23                                                                                                                                                                 | 899 23                                                                                                                                                                                                                           | 898 21                                                                                                                                                                                                                                                                                            | .898 23                                                                                                                                                                                                                                                                                                     | 898 23                                                                                                                                                                                                                                                                                                                                                                                          | 900 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>901 2</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 71 1 66 5 0.900 1.486 713 238.9 421 74.7 0.00 | 71 1 66 5 0.900 1.486 713 238.9 421 74.7 0.00<br>ICH Q X/DB Y/DB Z/DB MF/M MA/M GF/Q QA/Q VF/V VA/V CP DF/D | 71 1 66 5 0.900 1.486 713 238.9 421 74.7 0.00<br>1CH Q X/DB Y/DB Z/DB MF/M MA/M QF/Q QA/Q VF/V VA/V CP DF/D<br>100 238.9 3.52 0.02 -1.03 0.930 0.9064 0.939 0.081 1.046 | 71 1 66 5 C.900 1.486 713 238.9 421 74.7 0.00<br>CH Q X/DB Y/DB Z/DB MF/M MA/M GF/Q QA/Q VF/V VA/V CP DF/D<br>100 238.9 3.52 0.02 -1.03 C.930 0.904 0.939 0.081 1.646<br>100 238.9 3.52 C.C2 -0.53 C.752 0.588 0.776 0.071 1.640 | 71 1 66 5 C.900 1.486 713 238.9 421 74.7 0.00<br>CH Q X/DB Y/DB Z/DB WF/W MA/M GF/Q QA/Q VF/V VA/V CP PF/P<br>100 238.9 3.52 0.02 -1.03 C.930 0.904 0.939 0.776 0.031 1.646<br>100 238.9 3.52 C.C2 -0.53 C.752 0.588 0.776 0.071 1.640<br>199 238.5 3.52 C.C2 -0.63 C.000 0.000 0.000 0.078 1.644 | 71 1 66 5 C.900 1.486 713 238.9 421 74.7 0.00<br>CH Q X/DB Y/DB Z/DB WF/M MA/M GF/Q QA/Q VF/V VA/V CP PF/P<br>100 238.9 3.52 0.02 -1.03 C.930 0.904 0.939 0.031 1.046<br>100 238.9 3.52 C.C2 -0.53 C.752 0.588 0.776 0.031 1.040<br>199 238.5 3.52 C.C2 -0.03 C.000 0.078 1.044<br>198 238.6 3.52 C.02 0.15 | 71 1 66 5 0.900 1.486 713 238.5 421 74.7 0.00<br>CH 0 X/DB Y/DB Z/DB MF/M MA/M QF/Q 0A/Q VF/V VA/V CP PF/P<br>100 238.9 3.52 0.02 -1.03 0.930 0.904 0.939 0.071 1.046<br>100 238.5 3.52 0.02 -1.03 0.930 0.9588 0.776 0.939 0.071 1.046<br>100 238.5 3.52 0.02 -0.03 0.772 0.588 0.776 0.073 1.044<br>198 238.0 3.52 0.02 0.15<br>198 238.0 3.52 0.02 0.15<br>100 0.012 0.012 0.015 0.073 1.041 | 1       66       5       0.900       1.486       713       238.5       4.21       74.7       0.000         1       0       X/DB       Y/DB       Z/DB       MF/M       QF/Q       0.40       VA/V       CP       PF/P         1       0       X/DB       Y/DB       Z/DB       MF/M       QF/Q       0.40       VA/V       CP       PF/P         100       238.9       3.52       0.02       -1.03       C.930       0.939       0.071       1.646         100       238.9       3.52       0.053       C.752       0.568       0.776       0.071       1.646         100       238.5       3.52       C.023       C.752       0.588       0.776       0.071       1.646         199       238.6       3.52       C.02       0.105       0.105       0.015       0.073       1.641         198       238.0       3.52       C.62       0.36       0.47       0.319       0.053       1.037         198       238.0       3.52       0.47       0.319       0.105       0.341       0.053       1.037 | 1       66       5       C.900       1.486       713       238.9       421       74.7       0.000         1       0       X/DB       Y/DB       Z/DB       WF/W       MA/W       GF/G       0.400         1       0       X/DB       Y/DB       Z/DB       WF/W       MA/W       GF/G       0.00         100       238.9       3.52       0.02       -1.03       C.930       0.939       0.071       1.646         100       238.9       3.52       0.053       C.752       0.588       0.776       0.071       1.646         100       238.5       3.52       C.022       -0.053       C.752       0.588       0.776       0.071       1.646         199       238.6       3.52       C.022       0.15       0.015       0.012       0.073       1.641         198       238.0       3.52       C.027       0.35       0.015       0.015       0.013       1.641         198       238.0       3.52       C.027       0.365       0.015       0.015       1.037         198       238.0       3.52       C.02       0.364       0.341       0.032       1.037         198< |

-----

.

Ľ

| 1.223357<br>1.22357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.223357<br>1.22357<br>1.22357<br>1.22357<br>1.22357<br>1.22557<br>1.22557<br>1.22557<br>1.22557<br>1.22557<br>1.22557<br>1.22557<br>1.22557<br>1.22557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25557<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.25577<br>1.255777<br>1.255777<br>1.255777<br>1.255777<br>1.255777<br>1.255777<br>1.255777<br>1.2557777<br>1.25577777777<br>1.25577777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CP<br>0.279<br>0.2843<br>0.2843<br>0.2845<br>0.2845<br>0.2845<br>0.2845<br>0.2845<br>0.2851<br>0.2770<br>0.2770<br>0.2770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CP<br>CP<br>0.033<br>0.008<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.015<br>0.015                                                                                 | CP<br>0.043<br>0.0055<br>0.001<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                      |
| V A / V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~~~~                                                                                                                                                                      | V A/V                                                                                                                                                                                                                                                                          |
| ALPHA<br>0.00 VF/V<br>0.459<br>0.859<br>0.859<br>0.857<br>0.856<br>0.858<br>0.858<br>0.864<br>0.864<br>0.864<br>0.864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALPHA<br>0.00<br>04/0 VF/V<br>0.914<br>0.851<br>0.784<br>0.782<br>0.782<br>0.800<br>0.846<br>0.846<br>0.846                                                               | ALPHA<br>0.00<br>0.00<br>0.910<br>0.846<br>0.846<br>0.846<br>0.846<br>0.846<br>0.693<br>0.693<br>0.693<br>0.693<br>0.693<br>0.693                                                                                                                                              |
| 11<br>75.8<br>0.857<br>0.857<br>0.855<br>0.855<br>0.855<br>0.855<br>0.855<br>0.855<br>0.856<br>0.871<br>0.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.7<br>74.7<br>74.7<br>74.7<br>0.939<br>0.939<br>0.939<br>0.939<br>0.585<br>0.580<br>0.580<br>0.610<br>0.886<br>0.886                                                    | 74.3<br>677,0<br>677,0<br>0.696<br>0.696<br>0.447<br>0.447<br>0.533<br>0.533<br>0.661<br>0.885                                                                                                                                                                                 |
| 0 C C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 457<br>44/M                                                                                                                                                               | 4 4 7<br>4 4 7<br>4 7<br>4 7<br>4 7<br>4 7<br>4 7<br>4 7<br>4 7                                                                                                                                                                                                                |
| <ul> <li>4</li> <li>4</li> <li>4</li> <li>4</li> <li>4</li> <li>5</li> <li>5</li> <li>6</li> <li>6</li> <li>7</li> <li>6</li> <li>7</li> <li>7</li> <li>8</li> <li>8</li> <li>8</li> <li>9</li> <li>8</li> <li>9</li> <li>8</li> <li>9</li> <li>8</li> <li>9</li> <li>8</li> <li>9</li> <li>9</li> <li>7</li> <li>9</li> <li>7</li> <li>9</li> <li>7</li> <li>7</li> <li>8</li> <li>9</li> <li>9</li> <li>7</li> <li>9</li> <li>9</li></ul> | 232.1<br>232.1<br>232.1<br>6.908<br>6.835<br>6.150<br>0.150<br>0.150<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250                              | 230.8<br>MF/V<br>230.8<br>0.855<br>0.652<br>0.658<br>0.658<br>0.658<br>0.658<br>0.528<br>0.528<br>0.528<br>0.528<br>0.528<br>0.528<br>0.528                                                                                                                                    |
| 0<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L PT<br>2 734<br>2 734<br>- 05<br>0 - 12<br>0 - 55<br>0 - 55<br>0 - 55<br>0 - 55<br>0 - 55<br>0 - 55                                                                      | L PT<br>2 733<br>2 733<br>2 733<br>2 733<br>2 733<br>- 1 04<br>- 0.56<br>0 - 56<br>0 - 13<br>0 - 29<br>0 - 62<br>0 - 62<br>0 - 62                                                                                                                                              |
| 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 8 4 1 1 8 4 1 1 1 1                                                           | H<br>2<br>2<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                     | H 6<br>H 6<br>H 6<br>H 6<br>H 6<br>H 6<br>H 6<br>H 6                                                                                                                                                                                                                           |
| 王                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н п<br>Х Х Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф                                                                                                                            | <ul> <li>™ №</li> <li>× № № № № № № № №</li> <li>× № № № № № № № №</li> <li>× № № № № № № № № №</li> <li>× № № № № № № № №</li> <li>× № № № № № № № №</li> <li>× № № № № № № № № № №</li> <li>× № № № № № № № № № №</li> <li>× № № № № № № № № № № № № № № № № № № №</li></ul> |
| TST P TN CCNI<br>571 1 66<br>MACH 0<br>099 272-6<br>099 272-5<br>0099 272-5<br>0098 272-6<br>0058 272-6<br>0058 272-6<br>0058 272-6<br>0058 272-6<br>1007 273-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TST P TN CCN<br>571 1 66<br>MACH C<br>9.852 232.1<br>9.852 232.2<br>1.852 232.2<br>1.857 231.6<br>1.849 231.6<br>1.848 231.6<br>0.848 231.6<br>0.848 231.6<br>0.847 230.7 | TST P TN CCN<br>571 1 66<br>MACH 0<br>0.849 230.8<br>0.849 231.9<br>0.850 231.9<br>0.850 231.9<br>0.849 231.4<br>0.849 231.4<br>0.849 230.9                                                                                                                                    |
| ちちら しんちょう うち しんち しんち しんち しんち しんち しんち しんち しんち しんち しん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20000000000<br>20010546078<br>20010546078                                                                                                                                 | 2001-N345978<br>2001-N345978<br>2001-N345978                                                                                                                                                                                                                                   |

----

-----

-----

|               |          | CP PF/P   | 0.073 1.037   | 0.080 1.041 | 0.068 1.035 | 0.072 1.036  | 0.062 1.031 | 0.066 1.033 | 0.057 1.029 | 0.083 1.042 |               |          | CP PF/P   | 0.074 1.033   | 0.077 1.035 | 0.074 1.033 | 0.066 1.030 | 0.064 1.029 | 0.054 1.024 | 0.050 1.023  | 0.076 1.034 |               |          | Co bt/b               | 0.032 1.014 | 0.027 1.012 | 0.020 1.009 | 0.016 1.007 | -0.002 0.599 | 0.005 1.002 | 0.004 1.002 | 0.004 1.002 | 0.012 1.005 | 010 F FCC V |
|---------------|----------|-----------|---------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|---------------|----------|-----------|---------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|---------------|----------|-----------------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
|               |          | V A /V    |               |             |             |              |             |             |             |             |               |          | V A /V    |               |             |             |             |             |             |              |             |               |          | V A /V                |             |             |             |             | ,            |             |             |             |             |             |
| ALPHA         | 0.00     | QA/Q VF/V | 0.934         | 0.734       | 0.179       | 0.057        | 0.249       | 0.388       | 0.678       | 0.942       | ALPHA         | 0.00     | DA/Q VF/V | 0.915         | 0.140       | 0.261       | 0.232       | 0.318       | 0.511       | 0.717        | 0*6*0       | ALPHA         | 0.00     | DA/Q VF/V             | 0.980       | 0.898       | 0.921       | 0.851       | 0.838        | 0.819       | 0.834       | 0.862       | 0.907       | 0 0 U       |
| ŢŢ            | 74.2     | 0F/0      | 0.889         | 0.525       | 0.029       | 0.003        | 0.056       | 0.138       | 0.439       | 0.910       | 11            | 74.0     | 0 L 10    | 0.847         | 0.536       | 0.063       | 0.049       | 0.093       | 0.244       | 0.495        | 106*0       | 11            | 73.9     | QF / Q                | 0.970       | 0.796       | C.840       | 0.705       | 0.676        | 0.645       | 0.670       | 0.720       | 0.809       | 200 0       |
| ٩             | 457      | MA/M      |               |             |             |              |             |             |             |             | ۵.            | 500      | MA/M      |               |             |             |             |             |             |              |             | ٩             | 500      | MA/N                  |             |             |             |             |              |             |             |             |             |             |
| U             | 231.6    | ME/N      | <b>C.</b> 926 | c.711       | 0.168       | C.054        | 0.233       | C.366       | 0.653       | C•934       | (J            | 225.4    | MF / N    | <b>C.</b> 906 | C.720       | C•247       | 0.219       | C.3C1       | 0.488       | C.696        | C.934       | U             | 225.4    | NF/N                  | 0.978       | C.887       | 0.912       | 0.836       | 0.823        | 0.802       | 0.818       | C.848       | 0.897       | 130 0       |
| L PT          | 6 733    | Z/08      | -1.03         | -0.53       | -0.02       | 0.14         | 0.31        | 0.47        | 0.64        | 0.98        | L PT          | 6 764    | 2/08      | -1.03         | -0-53       | -0-03       | 0.14        | 0.31        | 0.47        | 0.64         | 10.97       | L PT          | 7 764    | Z/CP                  | -1.04       | -0.71       | -0.54       | -0.21       | -0.04        | 0.13        | 0.29        | 0.46        | 0.63        |             |
| - RN          | 1.1.49   | Y/08      | C. 02 -       | C. C2 -     | C•02        | <b>c.</b> c2 | C.02        | C• C2       | 0.02        | 0.02        | IN a F        | 2 1.51   | Y/DB      | C.02          | C• C2 ·     | C.02        | C.02        | C•C2        | 0.02        | <b>C•</b> C2 | 20.02       | I/Va +        | 1.51     | Y/08                  | C.44 -      | 0.44        | 0.44        | 0.44 -      | 0.44         | 0.44        | 0.44        | C.44        | 0.44        | 17 U        |
|               | 0.85     | X/CB      | 3.52          | 3.52        | 3.52        | 3.52         | 3.52        | 3.52        | 3.52        | 3.52        | IDVN :        | 5 0.801  | X/D8      | 3.52          | 3.52        | 3.52        | 3+52        | 3.52        | 3.52        | 3.52         | 3.52        | : NACH        | 0.802    | X/08                  | 5.49        | 5.49        | 5.49        | 5.49        | 5.49         | 5.49        | 5.49        | 5.49        | 5.49        | 27          |
| TST P TN CCNI | 571 1 66 | MACH Q    | 0.851 231.6   | 0.851 231.6 | 0.851 231.6 | 0.850 231.3  | 0.850 231.3 | 0.850 231.2 | 0.850 231.3 | 0.849 230.5 | TST P IN CONF | 571 1 66 | MACH C    | 0.802 225.4   | 0.801 224.9 | C.8C0 224.4 | 0.800 224.4 | 0.801 224.9 | 0.802 225.4 | 0.801 224.9  | 0.800 224.4 | TST P TN CONF | 571 1 66 | MACH Q                | C.802 225.4 | 0.802 225.4 | C.8C1 224.5 | C.8CI 224.9 | 0.799 224.4  | 0.799 224.4 | 0.758 223.9 | 0.758 223.5 | 0.798 223.5 | 0 700 777 0 |
| RUN           | 351      | ů<br>v    | <b>••••</b>   | ŝ           | (")         | 4            | Ψ)          | Q           |             | ω           | PUN           | 352      | SEC       |               | n i         | <b>m</b>    | 4           | <b>u</b> 7  | 9           | ~            | ω           | RUN           | 353      | S<br>E<br>C<br>E<br>C |             | r~i         | F4 /        | 4           | Ś            | 9           | ~           | æ           | σ           | -           |

| CP PF/P<br>C-020 1-009<br>0.005 1-007<br>0.013 0-994<br>-0.007 0-997<br>0.009 1-004<br>0.024 1-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CP PF/P<br>0.032 1.014<br>0.023 1.014<br>0.023 1.016<br>0.010 1.005<br>0.004 1.002<br>0.004 1.002<br>0.010 1.002<br>0.010 1.002<br>0.010 1.002<br>0.029 1.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CP FF/P<br>C-020 1-009<br>0-005 1-000<br>0-001 1-000<br>-0-001 0-999<br>-0-002 0-999<br>0-003 1-004<br>0-005 1-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VA/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 A / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LPHA<br>0.00<br>VF/V<br>0.903<br>0.720<br>0.720<br>0.720<br>0.768<br>0.768<br>0.832<br>0.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALPHA<br>0.00<br>0.00<br>0.978<br>0.938<br>0.868<br>0.810<br>0.868<br>0.810<br>0.779<br>0.779<br>0.843<br>0.843<br>0.901<br>0.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALPHA<br>0.00<br>0.00<br>0.360<br>0.360<br>0.360<br>0.300<br>0.307<br>0.307<br>0.307<br>0.319<br>0.319<br>0.319<br>0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TT A<br>73.7<br>0.67.0<br>0.696<br>0.696<br>0.6485<br>0.485<br>0.485<br>0.668<br>0.564<br>0.564<br>0.564<br>0.564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71<br>73-8<br>73-8<br>0-965<br>0-965<br>0-876<br>0-876<br>0-627<br>0-576<br>0-576<br>0-533<br>0-937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P TT<br>500 73.6<br>0.825<br>0.825<br>0.612<br>0.622<br>0.646<br>0.622<br>0.646<br>0.622<br>0.646<br>0.622<br>0.646<br>0.622<br>0.646<br>0.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MA 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>4<br>5<br>6<br>6<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 224.4<br>MF/W<br>C.8333<br>C.8333<br>C.8333<br>C.8333<br>C.8333<br>C.8333<br>C.8333<br>C.8355<br>C.8355<br>C.8355<br>C.8355<br>C.8355<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.8155<br>C.81555<br>C.8155<br>C.81555<br>C.81555<br>C.81555<br>C.81555<br>C.815 | T 0.93<br>0.96<br>0.96<br>0.92<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93 | PT<br>763<br>763<br>763<br>763<br>763<br>763<br>763<br>763<br>763<br>763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /L PT<br>15 765<br>2 766<br>19 76<br>10 554<br>0 0 554<br>0 0 554<br>0 0 629<br>0 0 629<br>0 0 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RN/L<br>515<br>02 -1<br>02 -0<br>02 -0<br>02 0<br>02 0<br>02 0<br>02 0<br>02 0<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VACH RACH<br>799 1 5<br>799 1 5<br>49 0 000<br>49 0 00<br>49 0 00<br>49 0 00<br>49 0 00<br>49 0 00<br>49 0 00<br>49 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | А П А С С С С С С С С С С С С С С С С С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X / C 8 0 2 1<br>X / C |
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TN CGNF<br>66<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>2224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>22224.9<br>222224.9<br>222224.9<br>22224.9<br>22224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>22224.9<br>22224.9<br>22224.9<br>222224.9<br>222224.9<br>22224.9<br>22224.9<br>22224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>222224.9<br>2222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P TN CCN<br>1 66<br>224.8<br>224.9<br>224.9<br>224.9<br>224.9<br>3 223.9<br>3 223.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TST F<br>571 1<br>MACH<br>0.801 2<br>0.801 2<br>0.801 2<br>0.802 2<br>0.802 2<br>0.800 2<br>0.800 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TST P<br>571 1<br>571 1<br>671 1<br>0.799<br>0.799<br>0.798<br>0.798<br>0.798<br>0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N TST<br>571<br>0.802<br>2 0.800<br>4 0.801<br>5 0.801<br>5 0.801<br>5 0.801<br>8 0.798<br>8 0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2401NM45078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 M B A B A B A B A B A B A B A B A B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 (1) (1)<br>(1) (1) (1)<br>(1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

N N N

115

### ORIGINAL PAGE IS OF POOR QUALITY

-----

| V CP PE/P                                                           | 0.019 1.005            | 0.006 1.002<br>-0.006 0 690                        | -0-008 0-998          | -0.001 1.000          | -0.009 0.598          | -0.010 0.998          | 0.013 1.003           |                   |                         | V CP PF/P           | 0.017 1.004           | 0.006 1.002           | 0.002 1.000           | -0.006 0.598          | -0.004 0.599          | 0.002 1.000          | 0.014 1.003          | 0.012 1.003          | 0.012 1.002          | 0.010 1.002          |                   |                         | V CP PF/P           | 0.013 1.003           | 0.013 1.003           | -0.006 0.598          | -0.007 0.598         | -0.006 0.598         | -0.004 0.599         | 0.007 1.002          | 0.008 1.002          |
|---------------------------------------------------------------------|------------------------|----------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|-------------------------|---------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| ALPHA<br>0.00<br>04/0 VF/V VA/                                      | 0.924                  | 0.866<br>0.817                                     | 0.817                 | 0.840                 | 0.851                 | 0.877                 | 0.932                 | ALPHA             | 0.00                    | CA/Q VE/V VA/       | 0.982                 | 0.909                 | 0.922                 | 0.869                 | 0.840                 | 0.843                | 0.838                | 0.866                | 0.689                | 0.968                | ALPHA             | 0.00                    | DA/Q VF/V VA/       | 0.925                 | 0.846                 | 0.758                 | 0.772                | 0.785                | 0.327                | 0.845                | 0.953                |
| P TT<br>700 64.6<br>MA/M 0F/0                                       | 0.850                  | 0.651                                              | 0.650                 | 0.690                 | C.708                 | 0.755                 | 0.863                 | LL d              | 697 65.0                | MA/N OF/Q           | 0.965                 | 0.817                 | 0.841                 | 0.741                 | 0.691                 | 169.0                | C• € 89              | 0.740                | 0.782                | 0.935                | 11 c              | 698 65.3                | MA/N QF/0           | 0.849                 | 0.703                 | 0.557                 | 0.578                | 0.558                | 0.668                | 0.702                | 0* 603               |
| NF MACH RN/L PT C<br>5 0.597 1.510 891 174.7<br>X/CB Y/CB Z/DB MF/M | 6.99 -0.02 -1.05 C.920 | 728-0 44.01 20-01 44.00<br>728-0 40-01 20-01 44.00 | 6.99 -0.02 0.12 0.807 | 6.99 -C.C2 0.29 C.831 | 6.99 -0.02 0.45 C.842 | 6.99 -0.02 0.61 C.870 | 6.99 -C.C2 0.96 C.928 | NF MACH RN/L PT C | 5 0.602 1.519 891 177.1 | X/CB Y/DB Z/CE MF/N | 5.49 C.44 -1.C4 C.98C | 5.49 0.44 -0.71 C.903 | 5.49 0.44 -0.54 C.917 | 5.49 C.44 -0.21 C.862 | 5.49 0.44 -0.04 C.831 | 5.49 C.44 O.12 C.835 | 5.49 0.44 0.29 C.829 | 5.49 0.44 0.47 C.859 | 5.49 C.44 0.63 C.883 | 5.49 0.44 0.97 C.966 | NF WACH RN/L PT Q | 5 0.601 1.515 891 176.5 | X/DB Y/DB Z/DB MF/M | 5-49 0.00 -1.04 0.920 | 5.49 C.CO -0.54 C.837 | 5.49 0.00 -0.04 0.747 | 5.49 0.00 0.13 0.761 | 5.49 C.CC 0.30 C.774 | 5.49 0.00 0.46 C.818 | 5.49 0.00 0.62 0.837 | 5.49 0.00 0.96 0.949 |
| RUN TST P TN COI<br>357 571 1 66<br>SEQ MACH 0                      | 2 0.557 174.7          | 4 0-557 174.7                                      | 5 0.598 175.3         | 6 0.601 176.5         | 7 0.600 175.9         | 8 C.6C0 175.5         | 9 0.600 175.9         | RUN TST P TN CCI  | 358 571 1 66            | SEC MACH C          | 1 0.602 177.1         | 2 0.602 177.1         | 3 0.601 176.5         | 4 0.603 177.1         | 5 0.603 177.1         | 6 0.601 176.5        | 7 0.600 175.9        | 8 0.557 174.7        | 9 0.598 175.3        | 10 0.598 175.3       | RUN TST P TN CCI  | 359 571 1 66            | SEC MACH Q          | 1 0.601 176.5         | 2 0.601 176.5         | 3 0.601 176.5         | 4 0.601 176.5        | 5 0.601 176.5        | 6 0.601 176.5        | 7 0.601 176.5        | 8 0.601 176.5        |

. . ......

|        |            | 0F / D                | 1 - 002 | 1.000      | 1.000         | 1.000      | 0.999   | 0.999  | 0.999    | 1.00.1   | 1.00.1  | 1.003  |  |         |
|--------|------------|-----------------------|---------|------------|---------------|------------|---------|--------|----------|----------|---------|--------|--|---------|
|        |            | đ                     | 0-008   | 0.002      | 0.002         | -0.001     | -0.003  | -0.002 | -0-004   | 0.003    | 0-003   | 0.013  |  |         |
|        |            | VAVV                  |         |            |               |            |         |        |          |          |         |        |  |         |
|        |            | VF/V                  | 0.983   | 0.935      | 0.873         | 0.820      | 0.806   | 0.811  | 0.835    | 0.864    | 0.892   | 0.958  |  |         |
| AL PHA | 0.00       | 0A/0                  | 1       |            |               |            | -       | -      |          | -        | -       |        |  |         |
| 11     | 65.6       | QF/Q                  | 0.965   | 0.867      | 0.750         | 0.657      | 0.633   | 0.642  | 0.681    | 0.733    | 0.785   | 0.915  |  | t<br>t  |
| ٩      | 698        | MA/M                  |         |            |               |            |         |        |          |          |         |        |  | c       |
| ى      | 176.5      | NF/N                  | 196.0   | :.931      | 3.866         | C.81C      | .796    | 0.801  | 3.826    | .856     | 3.886   | .955   |  | ¢       |
| Ld     | 891        | 2/CB                  | 1.04 (  | 0.71 (     | 0.54 (        | 0.20       | 0.04 (  | 0.13 ( | 0.29 (   | 0.47 (   | 0.63 (  | 0.97 ( |  | 10      |
| PN/L   | 1.514      | (/08                  | 0.44 -  | - 44 -     | - 44 -        | - 55*(     | )•44 -  | .44    | .44      |          | .44     | .44    |  | 0 1/ 1/ |
| NACH   | 0.601      | (/0B                  | - 65*   | - 65 -:    | - 65 -        | - 65 - 9   | - 65*:  | - 65*  | - 49 -(  | - 65 -   | - 49 -( | )- 65* |  | N N L   |
| CCNF   | <b>U</b> T | Ŷ                     | ي<br>در |            |               | <u>د</u> ، | ur<br>• | ŝ      | <u>ب</u> | un<br>un | 5       | 5      |  | U N U U |
| NL d . | 1 66       | о<br>Н                | 1 176   | 2 177      | 2 177         | 1 176      | 1 176   | 1 176  | 1 176    | 1 176.   | 0 175   | 0 175. |  | DTA     |
| TST    | 571        | MAC                   | 0.60    | 0.60       | 0.60          | 0.60       | 0.60    | 0.60   | 0.60     | 0.60     | 0.60    | C• 60  |  | TCT     |
| RUN    | 360        | S<br>E<br>C<br>E<br>C |         | <b>∼</b> ∶ | ( <b>7</b> 7) | 4          | Ľ       | Ŷ      | ~        | œ        | σ.      | 10     |  | A LA    |

| .00<br>/0 VF/V V         | 10 VF/V V        |
|--------------------------|------------------|
| 0.00<br>04/0 VF/<br>0-94 | 24/0 VF/<br>0-94 |
| 0 0 0 0.                 | 10 0A/           |
| 65.9<br>0F/0<br>1.901    | ηF/Ω<br>1.901    |
| 29 00<br>24<br>26        | 200              |
| 69<br>MA/                | N A /            |
| 177.1<br>MF/W            | N / U N          |
| 168                      | 00               |
| 5                        |                  |
| •                        |                  |
|                          | 0-60             |
|                          | K)               |
| -                        | 66               |
| ג<br>ה                   |                  |
| -                        | 571 I            |

|                  | d/∃u    | 1.000   | 1.000  | 1.000   | 0 <b>•</b> 999 | 1.000   | 1.000        | 1.000  | 1.000        |
|------------------|---------|---------|--------|---------|----------------|---------|--------------|--------|--------------|
|                  | d<br>C  | 0.001   | -0.010 | -0.001  | -0.012         | -0.010  | -0.008       | -0.010 | -0.001       |
|                  | V A /V  | 0•000   | 0.000  | 0.000   | 0-000          | 0.000   | 0.000        | 0.000  | 0.000        |
|                  | VF/V    | 0.960   | 0.806  | 0.538   | 0.616          | 0.670   | 0.754        | 0.824  | 0.970        |
| ALPHA<br>0.000   |         | 0.000   | 0.00.0 | 000.0   | c. 000         | 0.000   | c.000        | 0.000  | 000.0        |
| 11<br>64_8       | 0E/0    | 0.920   | 0.647  | 0.287   | 0.376          | 0.445   | 0.566        | 0.676  | 0.941        |
| 0<br>1794        | N V N   | 0.00.00 | 000.0  | 000.0   | 0.000          | 000.000 | 0000-0       | 000.0  | 000.00       |
| 74<br>74<br>7    | N L / N | C. 955  | 0.804  | C.536   | 0.614          | 9.668   | c. 752       | 0.823  | C. 97C       |
| 1975             | Z/CB    | 1.03    | 0.53   | 0.02    | 0.14           | 0.31 (  | 0.48         | 0.64   | 0.58         |
| RN/L             | Y708    | c.c2 -  | C.02 - | c. c2 - | <b>C</b> •02   | C• C2   | 0.02         | c. 02  | <b>c.</b> 02 |
| NACH<br>0-251    | x/58    | 3.52    | 3.52   | 3.52    | 3.52           | 3.52    | 3.52         | 3.52   | 2.52         |
| N CCNF           | 0       | 9.4     | 8•8    | 9.4     | 8•8            | 8•8     | 8.8          | 8.8    | 8°8          |
| ST P T<br>71 1 6 | IACH C  | 251 7   | 250 7  | 252 7   | 250 7          | 250 7   | 250 7        | 250 7  | 250 7        |
| RUN T<br>342 5   | SEQ M   | 1 0.    | 2 0.   | ວ<br>ຕ  | 4 C.           | о.<br>А | 6 0 <b>.</b> | 7 0.   | 8<br>0<br>8  |

1.000 666.0 665 °0 665 °0 865 °0 865 °0 865 °0 865 °0 865 °0 L -0.032 -0.025 -0.025 -0.010 -0.041 -0.034 -0.021 СÞ 0.976.0 0.915 0.864 0.834 0.837 0.804 0.389 0.920 0.946 VF/V ALPHA 0.00 0.000 C. 000 0A/Q 0.000 0.0000 0.0000 TT 64.6 0F/0 0.951 0.825 0.825 0.834 0.443 0.443 0.443 0.443 0.443 0.8592 0.8592 0.8592 0.8592 0.8593 0.853 р 1794 Мд/м 78.8 MF/8.8 MF/8.6 C.975 C.975 C.914 C.914 C 833 C 833 C 833 C 833 C 853 NF MACF PN/L PT 5 C-250 1.51C 1874 X/CB Y/CB 2/CB 5.49 C-44 -1.04 0 5.49 C-44 -0.70 0 5.49 C-44 -0.70 0 5.49 C-44 0.12 0 5.49 C-44 0.12 0 5.49 C-44 0.12 0 5.49 C-44 0.29 0 5.49 C-44 0.47 0 5.49 C-44 0.47 0 4 エンじじ  $\mathbf{x} = \mathbf{x} =$ 571 1 571 1 571 1 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 

665°0 6666°0 866°0 866°0 666°0 666°0 0.999 -0.028 -0.024 -0.032 -0.019 -0.024 СР -0.014 -0.040 0.928 0.849 0.799 0.800 0.800 0.808 0.833 0.833 0.833 VF/V 64.6 6770 0.850 0.718 0.634 0.636 0.6536 0.6536 0.731 0.731 4 75.4 1794 MF/N MA/W C.928 0.000 C.928 0.000 C.928 0.000 C.398 0.000 C.398 0.000 C.831 0.000 C.831 0.000 0.000 0.000 0, 757 C, 758 C, 758 C, 831 C, 831 C, 530 C, 530 NF WACH RN/L PT 5 0.252 1.517 1874 X/DB Y/DB 7/D8 7/D8 5.49 0.00 -0.54 0 5.49 0.00 0.13 0 5.49 0.00 0.13 0 5.49 0.00 0.29 0 5.49 0.00 0.29 0 5.49 0.00 0.29 0 TST P 571 1 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 8 U N 3 6 4 5 E Q -1 n n n n n n n n n

|         |        | 06 10   | 000      | 000    | 000    |        | 000     |          | 000                    | 000   |        |                                         | 665*0         |  |         |         | DF/D    | 999          | 665           | 998      | 598           | .598     | 665     | 666      | 666            |
|---------|--------|---------|----------|--------|--------|--------|---------|----------|------------------------|-------|--------|-----------------------------------------|---------------|--|---------|---------|---------|--------------|---------------|----------|---------------|----------|---------|----------|----------------|
|         |        | a       | -0-014 ( | -0-0-  |        |        |         |          |                        |       |        |                                         | -0-016        |  |         |         | съ<br>С | -0-014 0     | -0-034 0      | -0-039 0 | -0-043 0      | -0-046 0 | 0-034 0 | -0-032 0 | -0.028         |
|         |        | V / / V | 0.000    | 0.000  |        | 0.000  |         |          |                        |       |        |                                         | - CCC - O     |  |         |         | VAVV    | 0.000        | 0.000         | 0.000 -  | 0.000         | 0.000-0  | 0.000   | 0.000-0  | 0.000          |
|         |        | VF/V    | 0.967    | 0.917  | 0.44.8 | 0.821  | 0 - 841 |          | 1 1 0 - 0<br>0 - 3 4 0 | 0.851 | 320.0  |                                         | 0.908         |  |         |         | VE/V    | 0.930        | 0.856         | 0.331    | 0.830         | 0.374    | 0.867   | 0. 304   | 0.935          |
| AL PHA  | 0.00   | OA/O    | 0.000    | 0.000  | C-000  | 0.000  | 0.000   | 0.000    | 0.000                  | 0,000 | 00000  |                                         | 0.000         |  | ALPHA   | 0.00    | O/A/O   | c.000        | 0.000         | 0.000    | 000.0         | c. 000   | 0.00.0  | 0.000    | C.000          |
| Ŧ       | 64.5   | QF/Q    | 0.934    | C. 829 | 0.715  | 0.670  | 2-704   | 0.654    | 0.718                  | 0.721 | 0.878  |                                         | 0.935         |  | 1 T     | 64.4    | 0F70    | C.862        | 0.729         | 0.686    | <b>C.</b> 684 | 0.761    | 0.748   | 0.743    | C.871          |
| ۵       | 1794   | M V M   | 0.000    | 0.000  | 0.000  | 0.000  | 0.00.0  | 0.000    | 0000-0                 | 0.000 | 000000 |                                         | 0.000         |  | ۵.      | 1794    | M / M   | 0.000        | 0.00.0        | 0.000    | 0.000         | 000.0    | 0.000   | 0.000    | 0.000          |
| G       | 78.8   | MF/W    | C.967    | C.911  | 0.846  | 0.815  | 0.835   | 0.809    | 0.848                  | 0.850 | 0.528  |                                         | <b>7.</b> 568 |  | e       | 78.8    | NF / N  | C.929        | <b>C.85</b> 4 | C.825    | C.828         | C.873    | 0.866   | C.863    | C.934          |
| t pŢ    | 1 1874 | 2/28    | -1.05    | -0.71  | -0-54  | -0.20  | -0.04   | 0-12     | 0.29                   | 0.46  | 0.63   |                                         | 0•96          |  | L of    | 1 1874  | Z/08    | -1.05        | -0.56         | -0-05    | 0.12          | 0.29     | 0.45    | 0.61     | 0.95           |
| H RN/   | 0 1.51 | X/CB    | -0.44    | -0-44  | -0.44  | -0.44  | -0-44   | -0-44    | -0-44                  | -0.44 | -C.44  |                                         | -C - 4 4      |  | INd H   | 0 1.51  | Y/DB    | -0.02        | -0-02 -       | -0-02 -  | -0.02         | -0.02    | -0.02   | -0-02    | -0-92          |
| F NAC   | 5 0.25 | X/CB    | 5.48     | 5.48   | 5.49   | 64 • 5 | 5.49    | 1.<br>19 | 5.49                   | 5.49  | 5.49   |                                         | 84<br>87      |  | LAN -   | 5 0.25( | X / 5.8 | 6.98         | <b>6.98</b> - | - 85 - 9 | ۥ 58 -        | 6.98 -   | 6.98 -  | - 85 -3  | <b>6.</b> 98 - |
| TN CCNI | 56     | Q       | 78.8     | 78.8   | 78.8   | 78.8   | 79.4    | 78.8     | 19.4                   | 79.4  | 78.8   | 0 0                                     | 2.2           |  | IN CONF | 56      | o       | <b>18.</b> 8 | 18.1          | 1.8.1    | 18.1          | 8.8      | 8.8     | 8.8      | 8.8            |
| TST P   | 571 1  | MACH    | 1.250    | 1.250  | . 250  | .250   | 1.252   | . 250    | .252                   | .252  | 1.250  | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0524          |  | TST P   | 571 1 6 | MACH    | .250         | .249          | .249     | - 249         | .250     | .250    | .250     | .250 3         |
| RUN     | 365    | SEG     | 1        | 20     | 5      | 4      | 5       | 9        | 7 0                    | 8     | 6      |                                         |               |  | NUN     | 366     | SEC     | 1 0          | 2 0           | 0        | 4             | 5        | 6 0     | 7 0      | 8              |

Table 2(d)

 $\label{eq:configuration} \begin{array}{l} \text{Configuration 7}-\text{Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section} \\ & \text{aft-facing pitot-static probe.} \end{array}$ 

|         |       | pF/p    | 0-740                                                                                                                                                                                                                                                                                                                              |                                                                             | +TI •0 | 0.698      | 0.697   | 0-704  |          | 101.0  | 0.795   | 0.847  | 016          |            | 0.2.0  | 1.008       | 1.026  |        | 0 30 • 1 |
|---------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|------------|---------|--------|----------|--------|---------|--------|--------------|------------|--------|-------------|--------|--------|----------|
|         |       | c b     | -0-411                                                                                                                                                                                                                                                                                                                             |                                                                             | 164.0- | -0.477     | -0.479  | 944-0- |          | -0.424 | -0.325  | -0-242 |              | 20 T • 0 - | -0.40  | 0.012       | 170 0  |        | **0*0    |
|         |       | V A / V | rrc 0                                                                                                                                                                                                                                                                                                                              |                                                                             | 622.0  | 0.171      | 0.239   | 216    |          | 0.401  | 0.372   | 0.368  |              | 0.200      | 0.044  | 0.00.0      |        |        | 0.000    |
|         |       | VF/V    | L 76 0                                                                                                                                                                                                                                                                                                                             | -+7+0                                                                       | 0.334  | 0.340      | 0.381   | 292.0  | 0.400    | 114.0  | 0.460   | 0 408  |              | 662.0      | 0.000  |             |        | 0.000  | 0.00     |
| ALPHA   | 0.00  | O V O   |                                                                                                                                                                                                                                                                                                                                    | n+0 •0                                                                      | 0.031  | 0.017      | 0.034   |        | 100.0    | 0.105  | 0-095   |        | C+C2-2       | C.051      | 0.002  | 0000        |        |        | 000-0    |
| 11      | 66.2  | 06/0    |                                                                                                                                                                                                                                                                                                                                    | C. U34                                                                      | 0.069  | 0-069      | C 80 0  |        | 0.134    | 0.168  | 0-147   |        | C71.0        | c.050      | 0.000  |             |        | 0.000  | 0.000    |
| D       | 381   | 2 / 2   |                                                                                                                                                                                                                                                                                                                                    | 0.256                                                                       | 0.208  | 0-157      | 0 221   | 100.0  | +62.0    | 0.379  | 0.346   |        | 0.342        | 0.236      | 0.040  | VUC O       |        |        | 0.000    |
| ى       | 241.7 | NE / N  |                                                                                                                                                                                                                                                                                                                                    | 0.228                                                                       | 0.310  | 215        |         |        | 0.436    | 0.480  | 064 0   |        | C.381        | 0.234      | 0000-0 |             |        | 0000   | c• 000   |
| ١d      | 683   |         | 2772                                                                                                                                                                                                                                                                                                                               | 0.18                                                                        | 0.18 ( |            |         | 01-10  | 0.18 (   | 0.18 ( | ~ ~ ~ ~ |        | 0-11         | 0.17       | 0.17   |             | 0.17   | 0.16   | 0.16     |
| PN/L    | 1 480 |         | 202                                                                                                                                                                                                                                                                                                                                |                                                                             | 1010   |            |         | 00.0   | 00.00    | 0.01   |         |        | <b>c. c1</b> | 0.01       | 0-02   |             | 0.02   | 0.02   | 0.03     |
| N O C H | 051   |         | GB</td <td>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/></td> <td>Ca c</td> <td></td> <td>1.1.4</td> <td>1.40</td> <td>1.69 -</td> <td>1.98 -</td> <td></td> <td>07.07</td> <td>2.55 -</td> <td>2.85 -</td> <td>- 13 -</td> <td></td> <td>3.44 -</td> <td>3.72 -</td> <td>- 10.4</td> | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> | Ca c   |            | 1.1.4   | 1.40   | 1.69 -   | 1.98 - |         | 07.07  | 2.55 -       | 2.85 -     | - 13 - |             | 3.44 - | 3.72 - | - 10.4   |
| L L N F | -     | -       |                                                                                                                                                                                                                                                                                                                                    | ~                                                                           |        | . r        | - 1     | •      | <b>m</b> |        | •<br>•  | 7.     | ۲۷<br>•      | -2         |        | •           | •      | - 1    | • 2      |
| DIN     |       |         | с<br>н                                                                                                                                                                                                                                                                                                                             | 1 241                                                                       | 1 2 1  |            | 0.47 0  | 0 240  | 9 240    | 1 241  |         | 1 241  | 1 241        | 1 241      | 176 1  | 113 1       | 51 241 | 51 240 | 52 241   |
| TCT     |       | 1 6     | M A C                                                                                                                                                                                                                                                                                                                              | 0,05                                                                        |        |            | C • 4 2 | 36°0   | 0-94     | 000    |         | 0.45   | 0.95         | 50.0       |        | 1<br>1<br>2 | 0.9    | 0.95   | 0.95     |
| NIIG    |       | 367     | 500                                                                                                                                                                                                                                                                                                                                | 5                                                                           | 16     | <b>.</b> . | 4       | S      | 9        |        | -       | æ      | σ            |            | •      |             | 27     | 13     | 14       |

\_\_\_\_\_

|              |        | DF/D    | <b>727 0</b> |             | 0.708  | 0.692   | 202 0   | 0000    | 0.699    | 1272    |         | 0.184  | 0.849   |         | 225.0  | 176-0   |          | 1.03   | 1.024 | 1 022  | 7 7 7 7 7 7 |
|--------------|--------|---------|--------------|-------------|--------|---------|---------|---------|----------|---------|---------|--------|---------|---------|--------|---------|----------|--------|-------|--------|-------------|
|              |        | 2       |              | 1 1 + • 0 - | -0.462 | -0-488  |         | -0.440  | -0.476   | 124 0-  |         | -0.341 | 020 0-  |         | -0.124 | -0-045  |          | G00°0  | 0.038 | 320 0  |             |
|              |        |         |              |             | 0.256  | 0.178   |         |         | 0.250    | C C C C |         | 0.380  | 222     |         | 0.218  | 0.045   |          | 0.000  |       |        |             |
|              |        | V L J V |              | 117.0       | 0.362  | 308     |         | 0.362   | 0.395    | 077 0   | 104-0   | 0.434  | C0C 0   | 000-0   | 0.233  | 0.00.0  |          | 0.000  | 0.000 |        | 000-0       |
| ALPHA        | 0.00   | 0770    |              | 0.045       | 0.040  | 010     |         | 620.0   | c. 050   | F 00 0  | 1 20.0  | 0.098  |         | 010.0   | 0.037  | 000     | 2.00     | 0.000  |       |        |             |
| 11           | 61.6   |         |              | 0.048       | 0.080  |         | 0.0     | 0.078   | 0.095    |         | 0.140   | 0.129  |         | 0.108   | 0.043  |         |          | 0.000  | 000   |        | 000.0       |
| ٩            | 381    | MA AM   |              | 0.247       | 0.236  |         | -01-0   | 0.191   | 0.269    |         | 0.346   | 0.354  |         | 0.300   | 0.201  |         | 1+0-0    | 0.000  |       |        |             |
| e            | 240.7  |         | ~~~          | 0.257       | 2220   |         | 1.22.0  | 0.337   | 872.0    |         | C.439   | 2020   |         | 0.356   | 0.215  |         | 0.00.0   | 0000-0 |       | 2000-2 | 0000        |
| La           | 681    |         | 2113         | 0.25        | 0.05   |         | 67.0    | 0.25    | 70 74    | • •     | 0.24    | 76 0   |         | 0.24    | 0.74   |         | 0.23     | 0.23   |       | 07.0   | 0.23        |
| PN/L         | 1.473  |         | X / 13 H     | 0-01        |        |         | 00.00   | 00-00   |          | 00.0    | 0.01    |        | 1 · · · | 0.01    | 10.0   |         | 0.02     | 0.02   |       | 2.0 2  | 0.03        |
| NACH         | 0.950  |         | X/ 0B        | 0.53        |        | (• 0 C  | 1.11    | 1-40    | - 07 -   | 1.00.1  | 1.98 -  |        | - 12.2  | 2.55 -  | 1 22 0 | • •     | 3.14     | - 44 - |       | 1. 13  | 4.01 -      |
| CCNF<br>CCNF | -      | •       |              | 2           | - r    | •       |         | ~       | •<br>1 C | 2.      | ~ ~ ~   | 1 6    | 7•1     | -2      |        | •       | <b>1</b> | ~      |       | Z • ]  | 1.0         |
| TPTN         | 1 1 44 |         | HU           | 150 740     |        | 147 041 | 150 240 | 151 241 |          | 147 IG  | 151 241 |        | 147 ICF | 151 241 |        | 113 004 | 348 241  | 151 74 |       | 951 24 | 950 24(     |
| ALIN TS      | 720 57 | 10 000  | SFQ MA       |             |        | 2 0.4   | 3 0.9   |         |          | 5 U•9   | A 0,9   |        | 5 °C    | 8 0.9   |        | い し ひ   | 10 0.9   |        |       | 12 0.5 | 13 0.9      |

-----

0.774 0.774 0.845 0.907 0.553 0.688 0.694 0.722 C19 0.995 1.019 0.694 PF/P -0.029 0.029 -0.485 -0.437 -0.358 -0.246 -0.147 -0.008 -0.495 -0-407 -0.485 -0.441 9 0.000 0.187 0.322 0.319 0.252 0.141 0.000 0.000 0.159 0.000 V & /V 0.289 0.263 0.065 0.000 0.286 0.272 0.184 0.221 .000 VF/V 0.289 0.00 ALPHA 0.025 C.000 C.021 **C.**063 c.015 c.000 0.005 0.046 0.00.0 0.000 0.020 0.029 0.052 0.052 0.000 0.053 0.026 0.003 68.8 0F/0 0.051 0.044 000 0.000 0.173 0.299 0.236 385 MA/M 0.000 0.184 0.000 0.130 ษา • 0.267 C.265 0.251 0.165 0.204 0.268 0.060 0.243 0.177 • 000 MF/N 000 243 6 0,38 0,38 0,38 ω F d . . 0.3  $\mathbf{O}$ F NACH RN/L Y/DP -0.02 -C.C2 -6.62 0.82 1.11 1.41 1.69 1.69 2.56 2.85 2.27 X/CB C.53 CCNF 243.1 243.6 243.6 243.6 243.0 243.0 243.5 243.5 243.5 243.0 243.0 243.0 243.1 2 Q L Q L Q 571 1 MACH α 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.950 0.952 0.952 0.950 51 0 m 4 6 9 4 9 9 7 m 1 m 1 m 1 m R U N 3 6 9 5 E Q

0.748 0.845 0.505 0.956 0.993 1.012 1.014 0.689 0.698 0.727 0.784 DF/D 0.721 0.696 -01--0.246 0.019 0.022 -0.434 -0.070 -0+402 -0-444 -0.484 -0-495 -0.479 -0.342 -0.011 ð 0.200 0.200 0.119 0.045 V A /V 0.151 0.000 0.212 0.177 0.160 0.000 0.070 0.053 000 VF/V 0 ALPHA 0.00 0.025 0.027 0.010 Q A A 0.002 69.6 67/0 0.029 0.019 0+015 0+000 0+003 C.014 0.000 0.185 0.184 0.109 0.042 386 VA/V ---C.148 C.000 D.064 00000 NF/W 0.196 0.164 0.139 . 049 000-242 C 2 688 2 7 0 8 0 • 5 0 0 • 5 0 0 • 5 0 0.49 0.49 0.49 0.49 0.49 ω F C. 0.48 0.48 0.48 4 . Ö F MACH RN/L 7 0.948 1.480 Y/nB -0.01 -0.02 -0.02 -0.02 1.11 1.41 1.69 0.53 C.82 1.98 2.27 2.55 2.55 2.85 2.44 2.44 X / CB 3.73 CONF ... 242.1 242.1 242.1 242.7 243.1 243.1 243.5 243.6 243.6 243.6 243.6 243.0 242.5 242.9 242.7 242.1 D TN 9 C 9 571 1 MACH 0.948 0.947 0.947 0.947 0.948 0.948 0.949 0.950 0.959 0.959 056-0 c 949 ST 5 O 370 SF0 120 NNa

| 7 0.899 1.4<br>X/CB Y/DB<br>C.53 C.01<br>C.82 C.01<br>L.11 C.00 | 82 704<br>Z/DP<br>0.13<br>0.18<br>0.18<br>0.18 | 235.6<br>MF / M | 416    |       |       | ~      |         |        |       |
|-----------------------------------------------------------------|------------------------------------------------|-----------------|--------|-------|-------|--------|---------|--------|-------|
| X/CB Y/DB<br>C.53 C.01<br>C.82 C.01<br>L.11 C.00                | Z/DP<br>0.13<br>0.18<br>0.18<br>0.18           | <b>メ / エ</b> ズ  | +      | -     | ノントン  |        |         |        |       |
| C.53 C.01<br>C.82 C.C1<br>L.11 C.00                             | 0.18<br>0.18<br>0.18<br>0.18<br>0.18           |                 | MA / M | 0F/0  | QA/Q  | VF/V   | V 4 / V | CD     | 0/3d  |
| C.82 C.C1<br>1.11 C.00                                          | 0.18<br>0.18<br>0.18                           | 0.248           | 0.257  | 0.048 | 0.051 | 0.206  | 0.276   | -0.395 | 0.777 |
| 1.11 C.00                                                       | 0.18<br>0.18                                   | C.298           | 0.173  | 0.066 | 0.022 | 0.319  | 0.186   | -0.442 | 0.748 |
|                                                                 | 0.18                                           | 0.345           | 0.168  | 0.087 | C.021 | 0.368  | 0.181   | -C.460 | 0.736 |
| 1.41 0.00                                                       |                                                | 0.411           | 0.242  | 0.124 | 0.043 | 0.437  | 0.260   | -0.461 | 0.736 |
| 1.69 -0.00                                                      | 0.18                                           | 0.474           | 0.300  | 0.168 | 0.067 | 0.502  | 0.321   | -0-447 | 0.746 |
| 1.58 -0.01                                                      | 0.18                                           | C.484           | 0.386  | 0.181 | 0.115 | 0.512  | 0.411   | -0.398 | 0.774 |
| 2.27 -0.01                                                      | 0.17                                           | C.456           | 0.359  | 0.174 | 0.108 | 0.434  | 0.383   | 162.0- | 0.835 |
| 2.56 -0.01                                                      | 0.17                                           | 0.352           | 0.301  | 0.111 | C.081 | 0.375  | 0.322   | -0.182 | 0.897 |
| 2.85 - C. C1                                                    | 0.17                                           | C.207           | 0.201  | 0.041 | C.038 | 0.222  | 0.216   | -0.082 | 0.954 |
| 3.14 -0.02                                                      | 0.17                                           | 0.054           | 0.070  | 0.003 | 0.005 | 0.059  | 0.076   | -0.012 | 0.993 |
| 3.44 -0.02                                                      | 0.17                                           | c.000           |        | 00000 |       | 0.00.0 |         | 0.035  | 1.C20 |
| 3.73 -C.C2                                                      | 0.16                                           | 0000            |        | C.000 |       | 0.000  |         | 0.052  | 1.029 |
| 4.01 -0.03                                                      | 0.16                                           | 0000-0          |        | 000.0 |       | 0.000  |         | 0.057  | 1.033 |

| PF/D                                    | 0.789   | 0.743<br>0.743 | 0.731  | 0.736  | 0.766  | 0.820  | 0.873  | 0*6*0   | 0.982  | 1.019  | 1.035  | 1.039  |
|-----------------------------------------|---------|----------------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| ٥                                       | -0.370  | -0.417         | -0.475 | -0.468 | -0.414 | -0.320 | -0.224 | -0.106  | -0.032 | 0.034  | 0.062  | 0.068  |
| V A /V                                  | 0.240   | 0.258          | 0.265  | 0.335  | 0.351  | 0.3£2  | 0.328  | 0.135   | 0.050  |        |        |        |
| VF/V                                    | 0.256   | 0.389<br>0.400 | 0.430  | 0.430  | 0.469  | 6.455  | 0.331  | 0.136   | 0.025  |        |        | 0.000  |
| ALPHA<br>0.00<br>04/0                   | c. 039  | 0.059<br>0.032 | C.045  | 0.072  | 0.082  | C.U94  | 0.082  | 0.015   | 0.007  |        |        |        |
| TT<br>70.5<br>01/0                      | 0.045   | 0.101<br>0.104 | C.119  | 0.151  | 0.150  | 0.150  | 0.112  | 0.028   | 0.001  |        |        | 00000  |
| 4 1 4<br>4 1 4<br>7 4 1 4               | 0.224   | 0.279<br>0.208 | 0.247  | 0.313  | 0.328  | 0.339  | 0.306  | 0.126   | 0.033  |        |        |        |
| 235.8<br>87.8                           | C. 239  | 0.365          | 0.404  | 0.453  | C.442  | C.428  | 0.357  | 0.173   | C.023  |        |        | 0.000  |
| PT<br>2702<br>2708                      | 0.25    | 0.25           | 0.24   | 0.24   | 0.24   | 0.24   | 0.24   | 0.24    | 0.23   | 0.23   | 0.23   | 0.23   |
| PN/1<br>1.479<br>7.08                   | C+ C1   | 0.01<br>0.00   | 00-0   | 0.00   | 10*0   | 0.01   | 0.01   | 0.01    | 0.02   | C•C2   | 0.02   | c• 03  |
| WACH<br>0.902<br>X703                   | c - 53  | C•82<br>L•11   | 1.41   | 1.69 - | 1.58 - | 2.27 - | 2.56 + | 2.85 -  | 3.14 - | 3.44 - | 3.73 - | 4.01 - |
| CCNF<br>7                               | ω.<br>• | 4 U            | •      | • Ç    | •6     | • 0    | •6     | \$<br>• | 0      | 4.     | ω<br>• | ω      |
| P 11<br>1 66                            | 2 235   | 1 235<br>9 235 | 9 235  | 8 234  | 8 234  | 8 234  | 8 234  | 8 234   | 9 235  | 1 235  | 2 235  | 2 235  |
| TST<br>571<br>MACH                      | 0-90    | 0.890          | 0.89   | 0.85   | 0.891  | 0.89   | 0.89   | 0.89    | 0.89   | 06.0   | 0.90   | 06 0   |
| N C S S S S S S S S S S S S S S S S S S |         | ne pri         | 4      | S      | 9      | 2      | ധ      | 6       | 10     | 11     | 12     | 13     |

C.785 0.762 0.720 0.727 0.752 0.807 9.870 0.535 .986 0.736 1.019 m 0.785 DF/1 •03 1.031 o 0.058 0.033 -0.419 -0.466 -0-493 -0.436 -0.340 -0.229 -0.115 -0.025 -0.481-0.381 8 0.158 0.258 0.258 0.122 042 0.327 000 0.244 V V V . . o 0.314 0.206 0.299 0.295 0.233 0.200 0.193 6.318 VF/V 0.000 0.00.0 0.00 0.4/0 ALPHA 0.027 0.001 0.038 0.070 0.063 C.050 0.00.0 0.012 0.058 0.058 0.065 0.062 0.052 0.052 0.052 0.052 70.9 0F/0 0.061 000.000 000-0 0.039 0.278 MA/M 415 0.241 0.306 0.278 0.134 0.113 000.0 ٥ 235.0 MF/V C.276 C.297 0.293 C.179 C.192 00000 0.279 0.269 0.243 0000 702 Z/DB 0.40 0.40 0.40 F MACH RN/L 0.859 1.475 0.01 00.00 α C.01 -0.00 -0.02 115 X/DB • 69 . 58 2.56 2.85 .14 3.44 C.53 C.82 1.11 1.41 . 73 -01 5 **61** CONF ~ 235.4 235.4 235.4 234.5 234.9 234.9 2 Ē a 571 1 0•859 0•900 MACH 0.901 0.898 0.901 S T uvudvøvønvu Ling SEC SEC

0.753 0.872 OF/D 0.932 0.932 1.613 1.613 1.025 0.793 0.742 0.741 0.728 0.810 0.767 -0.433 -0.332 -0.224 -0.120 -0.029 0.023 0.043 -0.412 -0.367 -0.455 -0.458 -0.480 d C 0.217 0.226 V A /V 0.159 0.000 0.122 0.154 VF/V 0.155 0.295 0.191 0.083 0.140 0.000 ALPHA 0.00 0A/Q 0.016 0.039 C.033 C.U00 C.058 C.024 0.013 0.013 71.1 0.016 0.010 0.018 0.000 0.202 0.210 415 MA/M 0.147 0.00.00 n <u>ب</u> 234. MF/V C.082 C.130 0.144 C.275 0.113  $\infty$ m C C-143 0.178 20 5 7C1 Z/CB 0.50 0.50 0.50 0.49 0.49 C.49 0.49 0.50 54.0 0.48 0.48 0.48 P 4 Ö RN/L 7 0.858 1.473 -0.00 Y/CB 0.01 0.01 0.00 -C•C1 -0•01 -0.01 -0.02 -0-01 -0.02 -0-02 0.0-VACE X/CB C.53 C.82 L.11 • 69 • 99 -27 • 85 .14 • 44 .41 • 73 5 CCNF 235•1 235•5 235.5 235.5 235.5 235.5 235.5 235.1 235.8 235.1 236.3 234.5 236.7 66 4 C TST F 571 I 0.899 MACH 0.858 006 0-902 0.902 • RUN 374 SEQ HNM450PB5 110

|        |       | 0110     | 0.792     | 0.773        | 0.760  | 0.765  | 0.774  | 0.810  | 0.859  | 606*0       | 172.0         | 1.011  | 1.029  | 1.033  | 1.031         |
|--------|-------|----------|-----------|--------------|--------|--------|--------|--------|--------|-------------|---------------|--------|--------|--------|---------------|
|        |       | دە       | -0-411    | -0-447       | -0.471 | -0.462 | -0-445 | -0.375 | -0.280 | -0.180      | -0.058        | 0-022  | 0.058  | 0.066  | 0.063         |
|        |       | V 8 / V  | 0.193     | 0.202        | 0.215  | 0.257  | 0.358  | 0.419  | 0.379  | 0.254       | 0.155         | 0.000  | 0.000  |        |               |
|        |       | VF/V     | 0.254     | 0.316        | 0.443  | 0.466  | 0.538  | 0.544  | 0.481  | 0.364       | 661.0         | 0.000  | 0.00.0 | 0.000  | 0•000         |
| ALPHA  | 0.00  | 0A/0     | C. 026    | 0.028        | 0.031  | 0.045  | 0.088  | 0.127  | 0.110  | 0.069       | <b>C.</b> 020 | 0.00.0 | C•000  |        |               |
| 11     | 71.5  | 0/30     | 0.045     | 0.068        | 0.133  | 0.149  | 0.203  | C.218  | 0.179  | C.107       | 0.034         | 0.000  | c. coo | 0000.0 | <b>c</b> •000 |
| ۵.     | 455   | WVVW     | 0.181     | 0.189        | 0.202  | 0.242  | 0.337  | 0.396  | 0.357  | 0.276       | 0.145         | 0000.0 | 00000  |        |               |
| C      | 230.1 | NL / N   | 0.238     | 0.297        | C.415  | 0.441  | 0.512  | (.519  | 0.457  | C.343       | 0.186         | 000.0  | 000-0  | 0000.0 | 0000          |
| L b1   | 7 730 | 2/08     | 0.18      | 0.18         | 0.18   | 0.18   | 0.18   | 0.18   | 0.17   | 0.17        | 0.17          | 0.17   | 0.17   | 0.16   | 0.16          |
| INT H  | 1.49  | Y/08     | 0.01      | 0.01         | 0.00   | 00-00  | -0.00  | 10.0-  | 10.0   | .c.c1       | -0-01         | ·C•C2  | 0.02   | ·C•02  | -C• C3        |
| MACF   | 0.850 | X / DB   | 0.53      | <b>C.</b> 82 | 1.11   | 1.40   | 1.69 - | 1.98 - | 2.27 - | 2.56 -      | 2.85 -        | 3.14 - | 3.44 - | 3.73 - | 4.01 -        |
| N CONF | 5 7   | •        | 1.1       | ຍ<br>ເ       | 3.8    | 5•0    | 6°0    | 1.1    | 3.4    | 5.<br>• • • | 1.7           | 0.1    | 0.2    | 5.0    | 5 <b>°</b> 6  |
| Ē      | 1 6   | <b>.</b> | 23        | 23(          | 23(    | 23(    | 23(    | 23(    | 22     | 23          | 23(           | 23(    | 23(    | 22     | 22            |
| TST    | 571   | MACH     | 0.850     | 0.852        | 0.852  | 0.852  | C.852  | 0.850  | 0-847  | 0.845       | 0.850         | 0.850  | 0.849  | C.848  | 0.848         |
| ۸Na    | 375   | SEQ      | <b></b> 1 | 2            | m      | 4      | un.    | φ      | ~      | æ           | σ             | 10     | 11     | 12     | 13            |

|        |        | pF/p       | 0.802  | 0.781  | 0.761  | 0.754  | 0.759  | 0.785    | 0.834  | 0.894  | 0.964  | 1.006        | 1.024  | 1.033  | 1.030        |
|--------|--------|------------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------------|--------|--------|--------------|
|        |        | СÞ         | -0.394 | -0.433 | -0.472 | -0-483 | -0.476 | -0.424   | -0.327 | -0-207 | -0.070 | 0.012        | 0.048  | 0.065  | 0.059        |
|        |        | V A /V     | 0.271  | 0.264  | 0.181  | 0.271  | 0.341  | 0.359    | 0.373  | 0.302  | 0.131  | 0.043        |        |        |              |
|        | _      | VF/V       | 0.270  | 0.361  | 0.387  | 0.432  | 0.494  | 0.481    | 0.429  | 0.307  | 0.145  | 0.000        | 0.00.0 | 0.00.0 |              |
| ALPHA  | 0.00   | 0A/0       | 0.052  | 0.048  | 0.022  | 0.049  | C. U78 | 0.090    | 0.103  | 0.072  | 0.015  | <b>C.002</b> |        |        |              |
| TT     | 71.6   | 0F/0       | 0.052  | C• C90 | 0.101  | C.126  | 0.167  | 0.164    | 0.137  | 0.074  | 0.018  | c. coo       | 000.0  | 0.000  |              |
| G.     | 457    | MA/M       | 0.254  | 0.248  | 0.169  | 0.255  | 0.321  | 0.338    | 0.351  | 0.284  | 0.123  | 0-040        |        |        |              |
| G      | 229.9  | ME / N     | 0.254  | 0.340  | 0.365  | 0.408  | 0.465  | C.457    | C.4C6  | 0.288  | 0.135  | 0000         | 000.0  | 0000-0 |              |
| FT.    | 151    | Z/Ca       | 0.25   | 0.25   | 0.25   | 0.24   | 0.24   | 0.24     | 0.24   | 0.24   | 0.24   | 0.23         | 0.23   | 0.23   | 0.23         |
| RN/L   | 1.457  | Y/CB       | 0.01   | c. c1  | c.00   | c•00   | 0.00   | c.c1     | c.c1   | 0.01   | c. c1  | 0.02         | c. c2  | c.02   | 0.03         |
| NACH   | 0.848  | X / Г.В.   | C. 53  | 0.80   | 1.11   | 14.1   | 1.69 - | 1.98 -   | 2.27 - | 2.56 - | 2.85 - | 3.13 -       | 2.44 - | - 61.5 | 4.01 -       |
| V CONF | -      | <i>.</i> . | 5°C    | ۲.0    | ٥.6    | 5.0    | .6     | ۍ<br>• د | 5.0    | •      | 2•]    | 5            | 0.6    | 0      | ) <b>.</b> 6 |
| TPT    | . I 66 | U<br>H     | 18 229 | 50 230 | 1 230  | :2 230 | EL 230 | :2 23(   | 12 230 | 3 231  | 14 231 | 11 230       | 1 230  | 51 231 | 1 230        |
| 151    | 571    | MAC        | 0.84   | 0.35   | 0.85   | 0.85   | 0.85   | 0.85     | 0.85   | 0.85   | 0.85   | 0.85         | 0.85   | 0.85   | 0.85         |
| RUN    | 376    | SEC        |        | 2      | m      | 4      | ŝ      | Ś        | ~      | æ      | O.     | 10           |        | 12     | 13           |

125

ł

pE/P 0.810 0.749 0.756 0.783 0.836 0.836 0.766 0.956 1.003 1.023 1.023 1.029 0.788 -0.429 -0.324 -0.198 -0.498-0.482 0.045 0.058 0.058 -0-465 -0.088 0.006 -0.374 -0.418 0.000 0.000 0.000 0.155 0.322 0.330 0.258 V A /V 0.186 0.180 0.267 0.323 0.280 0.150 VF/V 0.237 0.233 0.283 0.340 0.039 0.00 ALPHA 04/0 C.025 c.000 c.016 c.072 c.072 c.072 c.053 0.000 0.034 C. 027 69.0 GF/0 0.039 0.053 0.078 C.051 C. C72 0.058 0.018 0.007 0.075 0.303 0.000 0.243 0.168 M 4 52 M 4 52 0.174 0.145 C.3C4 C.263 0.140 C.C84 L d F WACH RN/L 7 0.853 1.502 Y/DP -C.C2 -0.03 -C.02 -0.01 1.69 1.58 2.27 X/CB C.53 C.81 1.10 1.41 3.13 2.56 2.85 2.44 . 72 4.01 L N L TN CI 66 0 230-1 229-4 228.6 228.6 229.0 228.9 229.3 ωω 17 αU 229.8 229.8 229.8 229.8 229.8 229.8 229. 571 1 MACH 0.853 0.850 0.848 0.848 0.856 0.850 0.850 0.850 0.851 0.852 0.852 0.852 0.852 RUN 377 SFG NMJUON ωo 2 1213

0.758 0.789 0.841 0.995 1.020 1.023 0.792 0.767 0.745 0.554 0.814 0.040 0.045 0.039 -0.500 -0.185 -0.090 -0.368 -0.414 -0.413 -0.313 -0.461 -0.474 -0.011 a C 0.000 0.249 0.266 0.122 0.000 V 4 /V 0.122 0.174 0.133 0.240 0.216 0.212 VF/V 0.035 0.167 0.00 04/0 ALPHA 0.000 0.052 C.012 0.000 0.013 0.040 0.032 0.029 0.010 0.021 69.8 0F/0 0.021 c. cc1 453 MA/M 0.000 0.249 0.114 0.000 4 726 228.5 2/DB MF/W 0.50 0.124 0.50 0.225 0.50 0.223 0.50 0.223 0.50 0.223 0.49 0.124 0 0.49 0.163 0 0.156 0.033 0.49 0.49 0.49 ω F. œ 0.4 0.48 0.4 4. Ó F WACH PA/L -0.01 C.02 () () () -0.02 -0.02 -0.01 -0.01 0 X/CB C • 53 C • 53 C • 81 L • 11 L • 11 L • 11 L • 40 L • 69 L • 69 L • 69 Z • 55 Z • 555 2.85 3.14 3.44 3.73 4.01 TST F TN CCNF 571 1 66 7 MACH C X 0.849 228.5 C 228.5 228.5 229.1 230.5 230.5 229.7 230.C 229.7 229.8 Ç 230. C 230-0.848 851 851 53 œ ់ • Ó 570 570 ω Ø 2 I 218

| RUN      | <b>TST</b> | <b>D</b>  | TN O  | L<br>N<br>U  | VAC    | F RN/  | ة<br>ب | +            | U     | ۵       | 11     | AL PHI  | 4     |        |        |        |
|----------|------------|-----------|-------|--------------|--------|--------|--------|--------------|-------|---------|--------|---------|-------|--------|--------|--------|
| 379      | 571        | <b></b> 1 | 66    | -            | 0.75   | 9 1.52 | 0      | 62 2         | 23.3  | 500     | 70.5   | 0.0     |       |        |        |        |
| SEQ      | MACH       | r         | 0     |              | X/CB   | Y/DB   | 0/2    | 2            | F/N   | MA/M    | QF/0   | 0 A / 0 | VF/V  | V A /V | СÞ     | bF∕p   |
| <b>,</b> | 351.0      | 80        | 23.3  | -            | 0.53   | 0.01   | 0.1    | 8<br>0       | 237   | 0.185   | 0.046  | 0.030   | 0.251 | 0.201  | -0-389 | 0.827  |
| 2        | 0.795      | 6         | 23.8  | -            | C•82   | C.C1   | 0.1    | ່.<br>ວ<br>ອ | 371   | 0.203   | 0.110  | C. 033  | 0.390 | 0.215  | -0-442 | 0.802  |
| ŝ        | 0.798      | 80        | :23.3 |              | 1.11   | 0.00   | 0.1    | 80.0         | 444   | 0.252   | 0.155  | C.050   | 0.465 | 0.267  | -0.484 | C. 784 |
| 4        | 0.797      | 2         | 22.8  |              | 1.41   | 00.00  | 0.1    | ີ<br>ບ<br>ຍ  | 475   | 0.306   | 0.177  | 0.073   | 0.497 | 0.323  | -0.490 | 0.782  |
| ŝ        | 552 -0     | 6         | 23.2  |              | 1.69 · | -0.00  | 0.13   | 0.0          | 512 ( | 0.394   | 0.208  | 0.123   | 3,5.0 | 0.414  | -0-461 | 0.794  |
| 9        | 0.796      | -~-<br>∞  | 22.7  |              | . 58 . | -0-01  | 0.1    | ບ<br>ຍ       | 452   | 0.381   | 0.200  | 0.120   | 0.515 | 0.401  | -0.390 | 0.826  |
| 2        | 0.795      | 8         | 22.7  | • •          | 2.27   | -0.01  | 0.1    | -0 -         | 332   | 0.269   | C. C58 | C.Uo5   | 0.350 | 0.284  | -0.235 | 0.895  |
| æ        | 0.798      | 8         | 22.7  | , v          | 2.56   | -0.01  | 0.1    | 7 0.         | 257 ( | 0.244   | 0.963  | 0.056   | 0.272 | 0.258  | -0.127 | 645 0  |
| σ        | 351.0      | 5         | 22.7  | •~           | 2.85   | -0.01  | 0.1    | · 0 ~        | 000   | 000.000 | 0.000  | 0.00.0  | ú.000 | 0.000  | -0.008 | 0.996  |
| 10       | 351.0      | 8         | 22.7  | <b>1</b> • 1 | 3.13   | -0.02  | 0.1    | 1 0.         | 000   | 00000   | 0.000  | 0.00.00 | 0.000 | 0.003  | 0.036  | 1.016  |
| 11       | C•796      | 8         | 22.7  | •            | - 44 - | -0.02  | 0.1    | ~            |       |         |        |         |       |        | 0.067  | 1.030  |
| 17       | 367.0      | ດ.<br>ຄ   | 22.7  | • • 1        | 3.73   | -0.02  | 0.10   | ς.<br>Υ      | 000   |         | 0.000  |         | 0.000 |        | 0.053  | 1.024  |
| 13       | 0.797      | 2         | 22.7  | -            | 4. CI  | -0-03  | 0.16   | 5            |       |         |        |         |       |        | 0.050  | 1.022  |
|          |            |           |       |              |        |        |        |              |       |         |        |         |       |        |        |        |

|          |        | 0 ⊑ / D | 0.820   | 101.0 6. | 2 0.787 | 11 0.780 | 3 9.792    | 0 0.824 | 4 9.877 | 2 0.936 | 0.986   | 8 1.012 | 11.023 |  |
|----------|--------|---------|---------|----------|---------|----------|------------|---------|---------|---------|---------|---------|--------|--|
|          |        | 1 Co    | 4 -0-40 | 4 -0.44  | 3 -0.47 | 4 -0-49  | 1 -0.46    | 0 -0.39 | 3 -0.27 | 7 -0.14 | 9 -0.03 | 20°0 C  | 0.05   |  |
|          |        | VAV     | . 0.18  | 0.24     | 0.245   | 0.25     | 0.36       | 0.37    | + 0.37  | 5 0.24  | 0.08    | 0.00    |        |  |
| ۲I<br>اع | 0      | V L L V | 0.241   | : 0.395  | 0.397   | 0.481    | 0.467      | 0.444   | 0.384   | . 0.205 | 0.00    | 0.000   | 0-000  |  |
| ALPH     | 0.0    | OA/C    | 0.025   | C.042    | 0.043   | 0.060    | 0.093      | C.102   | 0.110   | C. 051  | 0.001   | 0.000   | -      |  |
| 1 I      | 70.8   | 0/ 10   | 0.042   | 0.114    | 0.112   | 0.164    | 0.157      | C.147   | 0.116   | 0.035   | 0.000   | 0.000   | C.00C  |  |
| ۵.       | 2 497  | VA/V    | 0.173   | 0.231    | 0.235   | 0.278    | 0.343      | 0.351   | 0.354   | 0.233   | 0.084   | 0.000   |        |  |
| C        | 224.   | NF / N  | 0.227   | C.378    | 0.377   | 0.459    | 7.445      | 6.423   | 0.364   | C.154   | C.000   | C- 30C  | C.00C  |  |
| L pT     | 0 760  | Z / DB  | 0.25    | 0.25     | 0.25    | 0.24     | 0.24       | 0.24    | 0.24    | 0.24    | 0.24    | 0.23    | 0.23   |  |
| INA H    | 2 1.52 | Y / D B | 0.01    | 0.01     | 0.00    | 0.00     | -0.00      | -0.01   | -0.01   | -0.01   | -0.01   | -0.02   | -0.02  |  |
| F MAC    | 7 0.80 | X / 08  | 0.53    | 0.82     | 1.11    | 14.1     | 1.69       | 1.99    | 2.27    | 2.55    | 2.85    | 3.14    | 3.44   |  |
| TN CON   | 66     | e       | 224.2   | 224.6    | 224.6   | 223.6    | 723.7      | 224.2   | 223.7   | 224.2   | 223.2   | 223.2   | 223.2  |  |
| TST P    | 571 1  | MACH    | 0.802   | 0.804    | 0.804   | 0.801    | 0.801      | 0.802   | 0.800   | 0.301   | 0.799   | 0.799   | 0.799  |  |
| RUN      | 380    | SEQ     | 1       | 2        | m       | 4        | <b>L</b> n | Ŷ       | 2       | œ       | σ       | 10      | 11     |  |

0.780 0.984 1.C12 1.C17 1.017 1.017 0.782 0.876 0.936 0.775 bF/p 0.824 0.811 0.028 0.037 0.039 CP -0.391 -0-493 -0.408 -0.276 -0.143 -0-036 -0.594 -0-488 -0.424 0.078 0.000 0.000 0.000 0.032 0.247 0.337 0.337 0.134 V A /V 0.000 VF/V 0.323 0.255 0.155 0.000 0.000 0.246 0.233 0.364 0.301 0.00.0 0.00 AL PHA QA/Q 0.004 0.000 0.001 0.042 0.015 080.080 c.059 0.000 0.060 0.044 0.063 0.047 0.019 0.000 71.1 QF/Q C. COO 0.000 0.233 498 MA/M 0.030 0.312 0.127 0.074 0.259 0.00.0 0 223.7 MF/N C.273 0.346 C.285 C.3C6 C.241 C.146 0.000 c. ccc ..000 0.232 .000 760 7/DB 0.40 0.40 0.39 0.39 0.39 0.39 0.38 0.38 0.38 0.38 0.38 P P F WACH RN/L 7 0-801 1-517 Y/DB C.C1 0.00 00.00 -0.01 -0.01 -C.CI -0-02 -0.02 10-0--0-07 -0-03 X/CB C-53 C-82 L-11 • 84 .14 3.44 . 72 .01 3 CONF 224•2 223•7 223•2 223•1 223•1 223•1 ۵. 571 1 MACH 0.8C1 0.799 0.799 0.799 0.799 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.799 0.801 0.800 ST N.WANOP@DOHNW RUN 381 SEQ

0.876 0.879 0.900 0.977 1.004 1.012 1.006 £05 • 0 0.937 000 pF/p 0.883 1.008 110.1 -0.486 -0.401 -0.252 -0.090 0.015 0.048 0.043 0.030 -0.382 -0.466 -0-496 0.023 -0-001 80 VA/V 0.252 0.371 0.381 0.381 0.381 0.385 0.000 0.165 0.308 0.422 0.515 0.549 0.547 0.384 0.00.0 0.000 VF/V 0.000 0.000 0.145 0.00 ALPHA C-120 0-137 0.126 c.109 0A/Q 0.054 0.114 0.025 0.000 0.000 0F/0 0.148 C.221 0.130 0.019 70.3 c. 000 0.253 c.220 000.0 0.000 00000 0.244 0.360 0.370 0.394 0.375 0.340 .000 705 MA/M 0.159 0.000 O 5 MF / W 0.298 c.5c2 c.536 0.373 0.410 00000 0-140 0.000 0.000 C.000 PT C 500 178. Z/DB 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.16 .16 ~ 0.1 0 MACH RN/L 0.601 1.513 -0.00 -0.02 -0.03 -0.01 -0.01 10.0--0.01 -0.02 X/FB C.53 C.82 L.10 L.41 1.69 1.99 2.56 2.85 2.85 3.13 3.72 3.43 2 CCNF 178.5 176.7 176.7 176.7 177.9 177.3 177.5 177.5 177.5 176.7 ທີ່ຫ 178.1 2 66 Q C) 571 1 0.557 0.557 0.557 0.557 0.557 0.557 0.559 0.559 MACH 0.601 0.559 0.600 0.600 0.601 0.601 E S RUN SEO SEO - NM + LA N 00 11 2 3

|               | pF/p              | 0.890   | 0.889   | 0.871   | 0.875   | 0.902    | 0.939    | 179.0   | 1.002   | 1.010          | 1.012   | 1.010   | 1.003   | 1.003   |
|---------------|-------------------|---------|---------|---------|---------|----------|----------|---------|---------|----------------|---------|---------|---------|---------|
|               | СЪ                | -0.435  | -0-474  | -0.510  | -0.494  | -0.388   | -0.245   | -0.115  | 0.008   | 0.038          | 0.047   | 0.041   | 0.011   | 0.011   |
|               | V A /V            | 0.197   | 0.244   | 0.304   | 0.373   | 0.323    | 0.341    | 0.308   | 0.000   | 0.000          |         |         |         |         |
|               | VF/V              | 0.280   | 0.372   | 0.503   | 0.506   | 0.459    | 0.334    | 0.170   | 0.000   | 0.000          | 0.000   | 0.000   | 0.000   |         |
| ALPHA<br>0.00 | 0 A / O           | 0.032   | C.049   | 0.075   | 0.115   | 0.088    | 0.103    | C.087   | 0.00.0  | 0.000          |         |         |         |         |
| 11<br>70.0    | 0F/0              | 0.066   | 0.115   | 0.209   | 0.213   | 0.180    | 0.098    | 0.026   | 000.0   | c.000          | 000.0   | 000.0   | 000.0   |         |
| 705           | N V V             | 0.191   | 0.236   | 0.294   | 0.362   | 0.313    | 0.331    | 0.299   | 0.000   | 0.000          |         |         |         |         |
| 5-171<br>3    | N / 1 N           | C.271   | 0.361   | 0.490   | 654.0   | 3.446    | C.324    | 0.165   | 0.000   | 0000           | C.000   | C.0CC   | 0000    |         |
| 14 J          | 2/08              | 0.25    | 0.25    | 0.25    | 0.24    | 0.24     | 0.24     | 0.24    | 0.24    | 0.24           | 0.23    | 0.23    | 0.23    | 0.23    |
| 1/121         | Y/DB              | C.01    | 0.01    | 0.00    | 00.0    | -0.00    | -0.01    | -0-01   | -0.01   | -0.01          | -0.02   | -c.c2   | -0.02   | -0-03   |
| 2 MACH        | X/CB              | C.53    | C.82    | 1.11    | 1.41    | 1.69 -   | - 85 • I | 2.27 -  | 2.56 -  | 2.85 -         | 3.13 -  | 3.44    | 3.73    | 4.C1 -  |
| TN CCNF       | 90                | 5-12    | 78.5    | 78.5    | 78.5    | 77.5     | 5-11     | 77.3    | 76.7    | 77.9           | 5-12    | 78.5    | 6.17    | 78.5    |
| TST P         | MACH              | 0.600 1 | 0.602 1 | 2.6C1 1 | 0.601 1 | 3.600 1  | 0.559 1  | 0.599 1 | 1.597 1 | <b>J.600 I</b> | 0.600 1 | 0.601 1 | 0.600 1 | 0.602 1 |
| 8 UN<br>2 8 4 | С. Ш.<br>С. Ш. С. | -       | 2       | n)      | 4       | י)<br>הי | 9        | 7 (     | 8       | 6              | 101     |         | 12 (    | 13 (    |

129

i T

1.005 0.999 1.007 0.897 0.880 0.864 .998 0.893 0.935 666.0 1.008 0.862 772.0 0 -0.256 0.029 -0.549 -0.542 0.021 -0.002 -0.006 -0.423 -0.004 -0.408 -0.476 d C VA/V 6.126 0.0000 0.120 0.335 0.335 0.319 0.319 000 • VF/V 0.245 0.371 0.327 0.377 0.236 0.134 0.000 0.000 0.000.0 0.000 0.000 0.00 0.4/0 0.013 ALPHA 0.00.0 0.012 0.042 0.094 c.089 0.004 c. 000 0000°0 0000°0 0000°0 0.115 0.047 0.016 0/30 0E/0 C. C87 0.051 00000 0.000 0.114 0.309 0.060 0.000 706 MA/M 0.000 0.219 0.325 0.116 0.122 ۵ 177.9 NF/N C.237 0.365 0.228 0.130 0.000 C.360 C.317 000-0 0.000 000.0 0.39 F C RN/L 0.600 1.51 -0.02 -0-02 10°01 -0°01 MU MN 3.72 2.13 3.43 ~ CONF CONF 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171.9 2.171. 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7712 2.7717 2 9 C TST P MACH MACH MACH C. 6000 C. 6000 C. 6000 C. 6000 C. 6000 C. 599 C. 5000 C. 500 0.599 0.600 .600 0.600 C こう よう そう きゅう こう 8 UN 3 8 5 5 F 0

0.899 .096 .002 .005 .006 0.867 .000 .967 0.867 0.895 0.935 0.887 00 b⊱/£ • C -0.528 0.023 0.010 0.019 0.026 •000 -0.395 -0-417 -0.257 -0.130 0.002 -0.447 d U 0 0.000 0.225 U.205 0.078 V A /V 0.036 0.000 0.000 0.000 0.000 0.221 VF/V 0.273 0.00.00 0.194 0.00 0A/0 ALPHA 0.037 c.006 0.000 0.042 0.000 0.000 0.000 0.000 69.5 QF/0 0.041 0.001 0.061 0.031 Ĩ р 706 Мд/м 075 000.000 0.218 0.198 . v 0.214 0.209 0.265 0.188 0.188 0.188 0.035 0.000 0.000 177.9 MF/N 0000 0.000 0.000 4 7 0.600 1.513 X/CR Y/CP 2/L .53 C.01 0.5 .82 C.01 0.5 11 0.00 0.50 10 0.00 0.50 9 -0.00 0.50 9 -0.00 0.50 4/08 0.50 0.50 0.50 0.50 0.45 0.45 54.0 0.49 ¢ 0.41 4 4. 0 0 -0.01 -0.01 -0.02 -0.01 -0-02 -0.02 0.0-X X 73 C 6 53 C 6 53 C 6 62 C 6 62 C 6 62 C 6 62 C 6 63 C 3.13 3.44 5 ~ P TN FINF 1 66 7 4 C X 177.5 177.5 177.5 177.9 177.9 177.9 177.9 177.9 177.9 177.9 177.9 78.5 -11-571 1 410H ISI 0.600 0.600 0.600 0.600 0.600 0.601 21  $\sim$ Q ----

2 8 C N 2 8 C N 2 8 C N

ORIGINAL PAGE IS OF POOR QUALITY

|             |               | or /p   | 0.578    | 0.575  | 0.976   | 0.978  | 0.586   | 199.0   | 1.000  | 1.001   | 1.000  | 1.000   | 0.998  | 0.598  | 865.0  |
|-------------|---------------|---------|----------|--------|---------|--------|---------|---------|--------|---------|--------|---------|--------|--------|--------|
|             |               | من      | -0-496   | -0.554 | -0.550  | -0.510 | -0-309  | -0.078  | 0.006  | 0.015   | 100.0- | 100.0   | -0.042 | -0.055 | -0-046 |
|             |               | V A / V | 0.352    | 0.407  | 0.370   | 0.458  | 0.383   | 0.137   | 0.000  | 0.000   | 0.003  | 0.000   | 0.000  | 0.000  | 0.000  |
|             |               | VF/V    | 0.402    | 0.469  | 0.527   | 0.531  | 0.347   | 0.000   | 0.000  | 0.000   | 0.000  | 0.000   | 0.00.0 | 0.00.0 | 0.00.0 |
| ALPHA       | 0.00          | 0 A / Q | 0.120    | 0.160  | 0.132   | C.203  | 0.143   | C.018   | c.J00  | c.000.0 | 0.00.0 | 0.00.00 | c.000  | c.000  | c.000  |
| 11          | 66.4          | CF/0    | 0.156    | 0.212  | 0.269   | 6.273  | 9.118   | 0.00.00 | 0.00.0 | 0.000   | 000.0  | 000.00  | 000.0  | 0.000  | c•000  |
| С.          | 1802          | NVV.    | 0.350    | 0.405  | 0.368   | 0.456  | 0.381   | 0.136   | 0000.0 | 0.000   | 0000-0 | 0.000   | 0.000  | 000.0  | 0.000  |
| ۲           | 8 <b>C</b> •9 | NE/N    | 552.0    | C.466  | 0.525   | 0.528  | C.346   | 0000-0  | 0.000  | 0.000   | 0.000  | 000 • 0 | 0000   | 0000-0 | 000-0  |
| L b L       | 7 1884        | 2/0P    | 0.18     | 0.18   | 0.18    | 0.18   | 0.18    | 0.18    | 0.17   | 0.17    | 0.17   | 0.17    | 0.17   | 0.16   | 0.16   |
| ENVI<br>FNV | 1.52          | Y/DB    | 10.0     | 10-0   | 00 • 00 | 00-00  | 0.00    | .0.01   | .0.01  | ·c• c1  | 0.01   | ·c. c2  | -0.02  | -0-02  | ·0•03  |
| NACH        | 0.253         | X / 5.B | 0.53     | 0.82   | 1.11    | 1•41   | I. 69 - | 1.98 -  | 2.27 - | 2+56 -  | 2.85 - | 3.13 -  | 3.43 - | 3.72 - | 4.00 - |
| TN CCNF     | 66 7          | c       | 80.8     | 30.1   | 80.1    | 3*61   | 79.5    | 79.5    | 80.1   | 80.1    | 80.1   | 80.1    | 79.5   | 79.5   | 5*62   |
| TST P       | 1112          | HUAM    | 0.253    | 0.252  | 0.252   | 0.251  | 0.251   | 0.251   | 0.252  | 0.252   | 0.252  | 0.252   | 0.251  | 0.251  | 0.251  |
| PUN<br>PUN  | 387           | SEC     | <b>,</b> | 2      | m       | 4      | S       | ¢       | 2      | ω       | σ      | 10      |        | 12     | 13     |

|        |        | 0/1d    | 0.579   | 0.975        | 0.975  | 0.578        | 0.985        | 0.596  | 0.999        | 0.999  | 665*0  | 1.000  | 0.598   | 199.0  | 265.0   |
|--------|--------|---------|---------|--------------|--------|--------------|--------------|--------|--------------|--------|--------|--------|---------|--------|---------|
|        |        | d D     | -0-474  | -0.561       | -0.573 | -0.503       | -0.329       | -0.093 | -0.023       | -0.012 | -0.019 | -0.010 | -0.043  | -0*060 | -0-060  |
|        |        | V A /V  | 0.336   | 0.265        | 0.251  | 0.343        | <b>0.356</b> | 0.145  | 0.121        | 0.000  | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   |
|        |        | VF/V    | 0.246   | 0.404        | 0.531  | 0.502        | 0.290        | 0.135  | 0.042        | 0.000  | 0.074  | 0.000  | 0.00.00 | 0.00.0 | 0.00.00 |
| ALPHA  | 00.00  | 0/A/Q   | C.109   | 0.067        | C.061  | 0.114        | 0.124        | 0.021  | 0.014        | c.000  | 000.0  | c.000  | c.000.0 | 0.00.0 | 0.00.0  |
| 1      | 65.8   | 01 - 0  | 0.059   | 0.157        | 0.272  | 0.245        | 0.082        | 0.018  | 0.002        | 0.000  | 0.005  | 000.0  | 005.0   | 0.000  | C.000   |
| đ      | 1872   | MV/M    | 0.334   | 0.263        | 0.249  | 0.342        | 0.354        | 0.144  | 0.120        | 0.000  | 0000.0 | 0.000  | 0.00.0  | 0.000  | 0.000   |
| U      | 19.5   | NL JN   | 0.245   | C.4C2        | C.528  | C.50C        | 0.289        | 0.134  | 0.042        | 0.000  | C.073  | 0.000  | 00000   | 0000-0 | 000.0   |
| LPT    | 6 1883 | 2.158   | 0.25    | 0.25         | 0.25   | 0.24         | 0.24         | 0.24   | 0.24         | 0.24   | 0.24   | 0.23   | 0.23    | 0.23   | 0.23    |
| I/Nd r | 1.1.51 | Y/08    | 0.01    | 0.01         | 00.00  | c. co        | -0-00        | -0.01  | -0.01        | 10-0-  | -0.01  | -0.02  | -0.02   | -0-02  | -0-03   |
| NACt   | 0.25   | X / 5.B | C. 53   | <b>C.</b> 82 | 1.11   | 1.41         | 1.69 -       | 1.58   | 2.26 -       | 2.55 - | 2.85 - | 3.13 - | 3.43 -  | 2.73 - | 4.01 -  |
| A CONF | 6 7    | C<br>C  | 9. E    | 0.1          | 0.1    | 8 <b>•</b> 8 | 9 <b>.</b> 5 | 8°8    | 9 <b>.</b> 5 | 9.5    | 8•8    | 8.8    | 8°8     | 9.5    | 9.5     |
| L<br>L | 1 6    |         | ~       | 8            | 8      | ~            | 2            | ~      | ~            | -      | ~      | ~      | ~       | ~      | ~       |
| TST    | 571    | HUVW    | 0.251   | 0.252        | 0.252  | 0.250        | 0.251        | 0.250  | C+251        | 0.251  | 0.250  | 0.250  | 0.250   | 0.251  | 0.251   |
| NNA    | 388    | SFO     | <b></b> | ~            | n      | 4            | ſ            | Ś      | 2            | 8      | σ      | 10     | 11      | 12     | 13      |

0.993 1.000 1.000 1.999 0.976 0.973 0.976 0.985 F/P 979 . ē. -0.555 -0.555 -0.5555 -0.155 -0.010 -0.010 CP •470 Ŷ VA/V 0.2221 0.0222 0.050 0.3333 0.3333 0.050 0.050 0.050 0.050 0.050 0.246 0.121 0.000 0.000 0.000 0.000 0.201 0.111 0.303 VF/V TT 65.4 67.4 0.012 0.012 0.012 0.012 0.014 0.014 0.000 0.000 0.000 0.219 0.000 0.133 0.396 0.3371 0.371 0.371 0.332 0.232 0.000 0.000 1802 MA/M ۵ 12010 C.11C C.31C C.35C 8 u ₹ NACH NACH C. 553 C. 555 C. 553 C. 555 C. 553 C. 555 CONF 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 0 -

| 95779<br>95779<br>9575<br>95977<br>9595<br>9599<br>9599<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.0<br>-0.5<br>-0.5<br>-0.5<br>-0.5<br>-0.5<br>-0.5<br>-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VF/V<br>0.261<br>0.261<br>0.271<br>0.271<br>0.275<br>0.275<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0.245<br>0 |
| ALPHA<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 655<br>657<br>657<br>657<br>657<br>650<br>650<br>650<br>650<br>650<br>650<br>650<br>650<br>650<br>600<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1800<br>1800<br>1800<br>1800<br>1800<br>1800<br>1800<br>1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7 1 51<br>7 1 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| А С С С С С С С С С С С С С С С С С С С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

ORIGINAL PAGE IS OF POOR QUALITY



MODEL DIAMETER = 6 in.

Figure 1.- Scale models tested in 6- by 6-ft transonic wind tunnel. (a) Ablated configuration. (b) Ballasted configuration.



ALL DIMENSIONS NORMALIZED TO MODEL DIAMETER MODEL DIAMETER = 6 in.





a) FAR-WAKE CONFIGURATION



b) NEAR-WAKE CONFIGURATION (CONFIGURATION "A" MODIFIED BY BENDING)

Figure 3.- Pitot-static probe.



Figure 4.- Test setup.



Figure 5.– Radial profiles of dynamic pressure.  $X/D_B = 5.5$ ,  $Y/D_B = 0$ , R = 0.75 million,  $\alpha = 0^\circ$ .



Figure 6.– Axial profile and spatial contours of dynamic pressure in wake of ablated Galileo probe.  $\alpha = 0.0^{\circ}$ ,  $R_D = 0.75$  Million.



Figure 6.- Concluded.



Figure 7.- Effect of angle of attack on dynamic-pressure profiles,  $X/D_B = 8.5$ , M = 0.80,  $R_D = 0.75$  million.



Figure 8.– Contours of constant reverse dynamic pressure in near wake of ablated model,  $\alpha = 0$ ,  $R_D = 0.75$  million,  $Y/D_B = 0$ .



Figure 8.- Continued.



Figure 8.- Concluded.

| NASSA<br>Natorial Aeronaulics and<br>Space Administration                                                                                                                                  | Report Docume                                                                                    | entation Page                                                                         |                                                                              |                                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| 1. Report No.                                                                                                                                                                              | 2. Government Accessio                                                                           | n No.                                                                                 | 3. Recipient's Catalo                                                        | og No.                                                                |  |  |  |
| NASA RP-1130                                                                                                                                                                               |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
| 4. Title and Subtitle                                                                                                                                                                      | L                                                                                                |                                                                                       | 5. Report Date                                                               | · · · · · · · · · · · · · · · · · · ·                                 |  |  |  |
| Galileo Probe Parachute Test Pr                                                                                                                                                            | ogram: Wake Propert                                                                              | ties of the                                                                           | April 1988                                                                   |                                                                       |  |  |  |
| Galileo Probe at Mach Numbers                                                                                                                                                              | From 0.25 to 0.95                                                                                |                                                                                       | 6. Performing Organization Code                                              |                                                                       |  |  |  |
| 7. Author(s)                                                                                                                                                                               |                                                                                                  | 8. Performing Organ                                                                   | ization Report No.                                                           |                                                                       |  |  |  |
| Thomas N. Canning (Portola Va                                                                                                                                                              |                                                                                                  | A-9643                                                                                |                                                                              |                                                                       |  |  |  |
| Thomas M. Edwards                                                                                                                                                                          |                                                                                                  | 10. Work Unit No.                                                                     |                                                                              |                                                                       |  |  |  |
|                                                                                                                                                                                            |                                                                                                  | 820                                                                                   |                                                                              |                                                                       |  |  |  |
| 9. Performing Organization Name and Addre                                                                                                                                                  | ess                                                                                              | • •                                                                                   | 029                                                                          |                                                                       |  |  |  |
| Ames Research Center                                                                                                                                                                       |                                                                                                  |                                                                                       | 11. Contract or Grant                                                        | t No.                                                                 |  |  |  |
| Moffett Field, CA 94035                                                                                                                                                                    |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
|                                                                                                                                                                                            |                                                                                                  |                                                                                       | 13. Type of Report and Period Covered                                        |                                                                       |  |  |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                                     |                                                                                                  | Reference Publication                                                                 |                                                                              |                                                                       |  |  |  |
| National Aeronautics and Space                                                                                                                                                             |                                                                                                  | 14. Sponsoring Agency Code                                                            |                                                                              |                                                                       |  |  |  |
| Washington, DC 20546-0001                                                                                                                                                                  |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
| 15 Supplementary Notes                                                                                                                                                                     |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
| Point of Contact: John Givens,<br>(415) 694-56                                                                                                                                             | Ames Research Cent<br>96 or FTS 464-5696                                                         | er, MS 244-14, M                                                                      | offett Field, CA 9                                                           | 94035                                                                 |  |  |  |
| 16. Abstract<br>The results of surveys of t<br>bers from 0.25 to 0.95. The tree<br>distance, angle of attack, and a<br>A rationale for selecting an ope<br>ber flight results is outlined. | the near and far wake<br>nds in the data result<br>small change in mode<br>trating volume suitab | of the Galileo Pro<br>ing from changes i<br>el shape are shown<br>le for parachute in | bbe are presented<br>n Mach number,<br>in crossplots bas<br>flation based on | for Mach num-<br>radial and axial<br>ed on the data.<br>low Mach num- |  |  |  |
| 17. Key Words (Suggested by Author(s))                                                                                                                                                     |                                                                                                  | 18. Distribution Statement<br>Unclassified – Unlimited                                |                                                                              |                                                                       |  |  |  |
| Blunt body aerodynamics                                                                                                                                                                    |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
| I ransonic wake characteristics<br>Parachute performance. Transon                                                                                                                          |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
| Wind tunnel tests                                                                                                                                                                          | Subjec                                                                                           | Subject Category – 34                                                                 |                                                                              |                                                                       |  |  |  |
| 19. Security Classif. (of this report)                                                                                                                                                     | 20. Security Classif. (of the security Classif.)                                                 | l<br>nis page)                                                                        | 21. No. of pages                                                             | 22. Price                                                             |  |  |  |
| Unclassified                                                                                                                                                                               |                                                                                                  | 144                                                                                   | A06                                                                          |                                                                       |  |  |  |
|                                                                                                                                                                                            |                                                                                                  |                                                                                       |                                                                              |                                                                       |  |  |  |
| NASA FORM 1626 OCT 86 For sale b                                                                                                                                                           | by the National Technical In                                                                     | formation Service, Sprin                                                              | gfield, Virginia 22161                                                       |                                                                       |  |  |  |

İ