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SUMMARY

This report presents a summary of the main results obtained during
the course of this research effort. The term "output feedback" is used to
denote a controller design approach which does not rely on an observer to
estimate the states of the system. Thus the order of the controller is
fixed, and can even be zero order, which amounts to constant gain output
feedback.

The emphasis of this research has been on gptimal output feedback.
That is, a fixed order controller is designed based on minimizing a
suitably chosen quadratic performance index. A number of problem areas
that arise in this context have been addressed. These include developing
suitable methods for selecting an index of performance, both time
domain and frequency domain methods for achieving robustness of the
closed loop system, developing canonical forms to achieve a minimal
parameterization for the controller, two time scale design formulations
for ill-conditioned systems, and the development of convergent
numerical algorithms for solving the output feedback problem.

Portions of this research were accomplished while the auther was
with Drexel University in the Department of Mechancal Engineering and
Mechanics.
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SECTION 1
INTRODUCTION

Constrained optimal output feedback, introduced in the early 70's, has
received limited attention, despite its intuitive appeal. On the positive
side, the designer can specify the complexity of the feedback structure by
specifying the order of the compensator. Also, because actuator states are
not estimated and fed back, the actuator dynamics are not sped up, which is a
common problem in Linear Quadratic Gaussian (LQG) methods. This issue is of
special concern in active control systems for vibration suppression. On the
negative side is: (1) lack of robustness characterization in the design
process, (2) over-parameterization in the compensator representation, and (3)
uncertainty in how to penalize the compensator states. The second problem is
a direct consequence of the fact that the compensator definition lacks a
predefined structure, which invariably results in difficulties with conver-

gence to an optimal solution.

Unlike the algebraic Riccati equation that arises in LQG design, the
necessary conditions that result from the obtima] output feedback problem are
not conducive to analysis in the frequency domain. They also require itera-
tive methods of solution. Thus the development of numerically convergent
algorithms is of paramount importance. Moreover, since the solution process
is more difficult, it is also more vulnerable to numerical ill-conditioning
that may be present due to widely separated modes in the dynamics. Thus we

have extended the results for two-time scale design of feedback control
systems to the case of output feedback, both for constant gain design and for
fixed-order dynamic compensation.

Section 2 of this report presents the formulation and summarizes the
results on two-time scale design for constant gain output feedback. 1In
addition, two convergent algorithms are presented for computing the optimal
feedback gains subject to a set of constraints on the feedback gain matrix.
Section 3 takes up the subject of fixed-order dynamic compensation. Section
4 addresses the issue of robustness, including both time domain and frequency
domain results based on 1loop transfer recovery. The conclusions of this



research effort are presented in Section 5. Throughout this report we have
intentionally neglected to reference other related research, since adequate
referencing is provided by the papers listed in the reference section.



SECTION 2
CONSTANT GAIN OUTPUT FEEDBACK

In this section, the optimal output feedback problem is formulated for a
class of problems which includes the standard LQ case. The issues related to
two-time scale design are presented and convergent sequential algorithms for
solving the necessary conditions are described.

2.1 Problem Formulation and Necessary Conditions

We consider systems of the form

X = Ax + Bu x(0) = Xy (2.1)
where xeR" and ueRm, with output

y = Cx (2.2)
where yeRP. The control has the form

u = -Gy (2.3)
The gain, G, is to be chosen to minimize

J = r xTQx + u'Ru dt + v(G) (2.4)

o

where Q = rTr, such that the pair (r,A) is detectable, and R > 0. Addition-
ally, in order to avoid singuiarity in the necessary conditions for the
optimization problem, we must have

p(C) = p (2.5)

In (2.4), v(G) is any scalar function having a continuous gradient in G, and
for which J is bounded below, for all G which render the closed-loop dynamics
(2.1-2.3) asymptotically stable.



It is well-known that the integral portion of J satisfies the relation

j xTQx + uTRu dt = tr{KxoxoT} (2.6)
0

where K > 0 is the unique solution of

$(G,K) = AIK + KA+ Q c'aTRGC = 0 (2.7)

AC = A - BGC (2.8)

and AC is asymptotically stable. It is customary to relieve (2.6) of its
dependence on Xo by assuming that it is a random variable, and modifying the

problem statement to that of minimizing EXO{J}. This amounts to replacing

T . _ T
XoXo 10 (2.6) by Xo’ where Xo = E{xoxo }

From (2.6-2.8) we have an equivalent static optimization problem, in
which the Lagrangian

L(G,K,L) = tr{KX } + v(6) + tr{S(G,K)L"} (2.9)

is minimized with respect to G, K, and L, where L is a matrix of Lagrange
multipliers. If the system (2.1-2.3) can be stabilized by output feedback,
the first order necessary conditions for optimality are:

3//36 = 0 3//8K = 0 3//3L =0 (2.10)
Defining the gradient of y(G)

2v(6)/36 = v4(6) (2.11)

the expansion of (2.10) is

T Ty o7

RGCLC' - B'KLC' + % vg(6) = 0 (2.12)

T =
AcL + LAC + Xo =0 (2.13)




S(G,K) =0 (2.14)
From (2.12), the optimal value of G will satisfy

6" = R 1Tkt - vg(®71 (ceeh™ (2.15)

where (CLCT)-1 exists because of (2.5) and the fact that L > 0 in (2.13), for
a suitably chosen Xo‘

2.2 Two-Time Scale Design

Consider the system

Xp = Apgxy + ApX, * Bau, x;(0) = xgq, X, & R"1 (2.16)

€Xy = AyXy + AyoXy + Byl X5(0) = X,0, X, € R2 (2.17)
where 0 < £ << 1, with output

y = Cixg + CoXy yeRP (2.18)
The feedback law is

u = -Gy ueR™ (2.19)

If A22 is invertible, a reduced order approximation of (2.16-2.18) can be
obtained by setting € = 0 in (2.17):

£ = A, * B,u £eR"1 (2.20)

<1
i

Cog + Dou (2.21)

where



R | I |
Ao = A1 = AppRoaRs By = By = A12R2285
(2.22)
U | IS
Co = Cp = CoAzhs Dy = ~CoAz58,

Substituting (2.19) in (2.16,2.17) and setting ¢ = 0, the reduced feedback
control is expressed as

e -G°c°g (2.23)

6° = (I+ GDO)-IG (2.24)

which necessitates the assumption
p(I + GDO) =m (2.25)

The inverse of (2.24) is

-1 (2.26)

6 =6°1I - DG%
)
References [1-5] contain the main results and applications for the above
formulation. In particular, it is shown that the output feedback problem
does not naturally decompose into separate slow and fast designs. Instead,
6% and G must stabilize the separate systems {AO-BOGOCO} and {AZZ—BZGCZ}
while satisfying the hard constraint in (2.24). Design methods based on
“gain spillover suppression" are described in [1-3], where [3] represents the
most complete set of results. In these papers, separate performance indices
are set up for the slow and fast problems. An alternative design approach
based on minimizing a single index of performance, which is more in the
spirit of singular perturbation design of optimal linear regulators, is given
in [4]. Here we show that the optimal state and control time histories can
be approximated to 0(e) uniformly over time, and the performance index is
optimized to 0(52). More complete details concerning these formulations and
results are contained in [6].



2.3 Numerical Algorithms

As described above, the necessary conditions for optimality consist of a
coupled set of algebraic equations. Two numerical algorithms were developed
for the solution of these equations. The algorithms and their associated
convergence proofs are given in [7,8]. In the first algorithm, constraints
on G are treated indirectly by introducing a penalty term in the performance
index as in (2.4). In the second, it is shown that when the constraints are
linear, a direct approach may be taken. In this approach, either the con-
straints are satisfied after a finite number of iterations, or a norm measure
of the constraint error can be made arbitrarily small as the number of
iterations increases. Linear constraints on G play an important role in
eigenvalue/eigenvector assignment and in modal insensitivity design of output
feedback controllers to be discussed in Section 4.1.



SECTION 3
FIXED-ORDER DYNAMIC COMPENSATION

The extension of constant gain output feedback to the case of fixed-
order dynamic compensation is conceptually straightforward. The compensator

dynamics are defined in the form:

-Pz - Ny zeR"C (3.1)

Ne
"

-Hz - Gy (3.2)

<
1]

and adjoined to the plant dynamics. The problem is then reformulated as a
constant gain output feedback problem. The structure of the new output feed-
back gain matrix is

- G H
G = [ } (3.3)
N P

Solution of this new problem yields the matrices needed to define the compen-
sator dynamics. The main difficulty inherent in this approach is that the
compensator is overparametized, which invariably leads to convergence prob-
lems. In addition, the compensator structure permits direct feedback of the
output to the input, which is not desirable from the points of view of sensor
noise reduction and robustness. We could invoke the constraint that G = 0,
but it would be more desirable to avoid this constraint in the beginning by a
proper choice of problem formulation. Finally, it is not clear how the com-
pensator states should be penalized in the performance index. If the compen-
sator states are not penalized properly, this normally leads to solutions
where the compensator is not coupled to the plant dynamics (either H = 0 or N
= 0).

In [9], it is shown that for a multivariable system described by:

. _ n
Xg = Asxs + Bsu xSeR (3.4)



y = Cx, yeRP (3.5)

a fixed-order compensator without direct feedthrough of the output can be
formulated in observer canonical form as:

u=-Hz ueR™ (3.6)
Z = Poz + u. zeR"C (3.7)
u, = qu - Ny ucsRnc (3.8)
where
H =block diag{[0...0 11y, 1=1,...,m} (3.9)
1
P =block diag [p;,...,p;] (3.10)
0 0 0 o0
HER o
0 0 1o,
iX V3

In (3.8), N and PZ are free parameter matrices with dimensions (nC X p) and
(nC x m), respectively. The dimensions of H and P are defined by the
observability indices of the compensator, which are chosen to satisfy:

m
i) Z vy =N, ii) Vi S Vi
i=1

The augmented system matrices:

A= S 3 B=1 (3.12)




C 0
C = [ s o} G=[N P]J (3.13)
0 H

define an optimal output feedback problem, with the quadratic performance

index:
J=E {Jw[xth + utRu_ 7] dt} (3.14)
Xo o C C

where the augmented state vector is
xt =[xl 2% (3.15)

The control u. in (3.7) is defined as

u, = -G C x (3.16)
and is used only in designing the compensator parameters, which are packed in
the columns of G. The main advantage to this formulation lies in the fact
that the problem has been converted to one of constant gain output feedback,
and the number of free parameters is the minimum needed to represent a
strictly proper (but otherwise arbitrary) transfer function matrix. The
necessary conditions for optimality are those given in (2.12-2.14).

This approach can also be easily extended to include frequency shaped
cost functionals. In particular, it is shown in [10] that, because of fhe
output feedback formulation, it is not necessary to realize the frequency
shaping dynamics as a part of the compensator. The realization is only
needed in the problem formulation, and leads to a unique method of selecting
the weighting matrix (Q) in (3.14) for penalizing plant and compensator
states. The extension of this work to the design of fixed-order dynamic
compensators for two-time scale systems is given in [11]. Again, the slow
and fast subsystem design problems are coupled. However, the use of canon-
ical forms for defining the compensator dynamics leads to a unique matrix
fraction description for the corresponding transfer functions. This leads

- 10 -



to a simple procedure for constraining the solution so that the designs de-
couple, similar to the concept of gain spillover suppression that was used in
the constant gain output feedback formulation. The resulting compensators
can also be digitally implemented using sample rates appropriate for the
dynamics involved in each time scale. These results are shown to be useful
in rapid pointing of flexible structures, and in designing tight attitude
control systems for aircraft flight control where structural modes (or rotor
modes in the case of a helicopter) limit controller bandwidth. More detailed
results on the controller and observer canonical compensator formulations can
be found in [12].

-11_



SECTION 4
ROBUSTNESS IN OUTPUT FEEDBACK DESIGN

Perhaps the greatest criticism of optimal output feedback design methods
is their lack of robustness characterization. Two approaches to robust
design were examined in this research effort. The first is based on the
concept of modal insensitivity design, and can be considered as a time domain
approach. The second attempts to recover the loop transmission properties of
full state -feedback, and can be considered a frequency domain approach.
However, the entire formulation is cast in the time domain, similar to the
Toop transfer recovery approach now popular in Linear Quadratic Gaussian
(LQG) design.

4.1 Modal Insensitivity Design

One approach to expressing system sensitivity is in terms of eigenvalue
sensitivity to plant parameter variations. This concept is particularly
useful in the case of flight control problems where control system require-
ments are often stated in terms of closed loop eigenvalues. The robust
design objective is to synthesize a feedback controller so the specifications
are met for the nominal system, and sensitivity of the important closed Toop
eigenvalues is in some sense minimized. However, it is well-known that the
response of a linear system depends on both the eigenvalues and eigenvectors
(mode shapes), and this has led to the notion of modal insensitivity. Modatl
insensitivity implies that the eigenvalues are insensitive, while the associ-
ated eigenvectors have variations only in magnitude and not in direction.
The design objective then is to assign selected closed loop eigenvalues and
achieve modal insensitivity of these selected modes.

In [13,14], it is shown that the requirement for modal insensitivity can
be written in the form of a linear constraint on the output feedback gain
matrix. Since in most circumstances, the constraint does not completely
determine the gain matrix, this allows an optimal output feedback formulation
in which selected eigenvalues and eigenvectors are assigned, and in the finail
design the selected modes are insensitive to a class of variations in the

- 12 -



plant parameters. This concept is easily extended to the case of fixed-order
dynamic compensation. The use of a dynamic compensator does not increase the
dimension of the modal insensitivity subspace; however, it does give greater
flexibility in the design (increases the dimension of the free parameter
subspace).

In most situations, it is not required that the orientation of the
entire eigenvector be insensitive to plant parameter variations. Normally,
only certain elements are required to be zero in order to achieve modal
decoupling. Thus, a less stringent requirement is that modal decoupling is
preserved in the presence of plant parameter variations. Reference [15]
extends the concept of modal insensitivity to that of modal decoupling
insensitivity. It is shown that the subspace for modal decoupling insensitiv-
ity is greater than that for modal insensitivity. Once again, the require-
ment for modal decoupling insensitivity can be written in terms of a linear
constraint on the output feedback gain matrix. More complete details on
these problem formulations can be found in [16].

4.2 Approximate Loop Transfer Recovery

Linear Quadratic Regulator (LQR) synthesis methods have guaranteed
stability margins. Unfortunately, this requires full-state feedback. It has
been shown that the loop transfer properties of an LQR design for nonminimum
phase plants can be recovered via an asymptotic design method. This method
relies on a cheap control formulation with a subset of the compensator
dynamics becoming infinitely fast. It is often stated that the order of the
compensator can later be reduced by discarding the fast modes; however, it is
not clear how this can be accomplished without introducing direct feedthrough
of the measured variables. It is generally good practice to avoid having
direct feedthrough of sensor outputs to improve robustness and reduce the
effect of sensor noise at high frequency. Aside from robustness issues, the
order of the resulting compensator when designed for large order systems may
prove unwarranted.

- 13 -




A major objection to optimal output feedback design is that there are no
guarantees on stability margins, and there are few guidelines for penalizing
plant states and compensator states to improve either performance or robust-
ness. One major contribution in this research is to present a formulation in
which the objective of the fixed-order compensator design is to approximate
the Toop characteristics of a full-state design. Thus, much like the full-
order compensator design case, a two-step design is implied -- full-state
feedback followed by approximate loop transfer recovery.

Full-state feedback design is often used as a first step in designing an
output feedback controller for multivariable systems. A variety of methods
exist such as LQR theory, pole placement, eigenvalue/eigenvector assignment,
model following control, decoupling control design, etc. The most popular
method is LQR design. It is well-known that this approach also yields
guaranteed gain and phase margins when measured at the plant input.

The objective in observer-based controller design is to estimate the
plant states, and to use the estimated states in place of the actual states.
this results in a higher order system where closed-loop eigenvalues and
eigenvectors of the full-state design are preserved, and the compensator
merely adds its own dynamics to the response. When the compensator is
designed, based on loop transfer recovery, it is also possible to recover the
robustness properties of the full-state design. This amounts to suitably
choosing the weighting matrices in a dual LQR formulation for the observer

design. Both full-state and observer designs are decoupled.

In fixed-order compensator design, the notion of state estimation is not
present. However, it should be recognized that, so long as the loop transfer
properties of a full-state design can be recovered to a sufficient degree of
accuracy, then the closed-loop eigenvalues should contain a set of eigenval-
ues and eigenvectors that approximate those of the full-state design. More
importantly, the multivariable gain and phase margin properties should also
be approximated. With this in mind, let the return signal in the case of
full-state design be

- 14 -



u = =K x (4.1)

*
where K is the gain corresponding a LQR design. Referring to (3.6), the
return signal in the case of fixed-order compensator design is -Hz. Thus,
the objective in designing the compensator should be to minimize

- k" KO 4.2
yq = K xg ~ H'z (4.2)

for a suitably chosen input and for zero initial conditions. Here we select
the input waveforms as impulses with magnitudes uniformly distributed on the
unit sphere. This naturally leads to selecting the following index of per-
formance:

_ t t
J = Ep {j:[yl yp t+ ey, uCJ dt} (4.3)

Substituting for ¥q from (4.2), and rewriting (4.3) in the form of (3.14),
Teads to the following expressions for the weighting matrices:

* * *
K BT -k THO

*
-HOtK HotHo

o
'

R = p]m (4.4)

Note that, for zero initial conditions, the effect of the impulses at the
system input is to create an initial condition, whose variance matrix is
given by

X =] SS (4.5)

This is used in the necessary condition (2.13) for the distribution on ini-
tial conditions. Thus, in this design approach, in addition to approximating
loop transfer properties of a full-state design, the state and compensator
weighting, and the initial state distribution matrix are all well-defined.
Note that, unlike the design of a full-order observer, the design of a

- 15 -




fixed-order controller depends on the gain matrix from the full-state design
step. Moreover, this gain matrix is not implemented as a part of the final
controller. Reference [17] presents the details on this design approach to
robustness, and includes several interesting applications.

- 16 -




SECTION 5
CONCLUSIONS

This research has addressed a variety of issues related to the optimal
output feedback design problem. Two minimal compensator parameter representa-
tions have been derived, and efficient algorithms for solving the optimal
output feedback problem were obtained and proven to be convergent. This work
has also extended the known results for two-time scale (singular perturba-
tion) analysis and design of full-state and observer based controllers to the
case of output feedback. Both the constant gain output feedback problem and
the fixed-order compensator design problem have-been addressed in this con-
text. Finally, both time domain and frequency domain robustness formulations
have been developed.

The main conclusion of this work is that most, if not all, of the objec-
tions to design by optimal output feedback have been addressed and resolved.
Perhaps the most useful approach is that described for approximate loop
transfer recovery. This work combines most of the desirable results of this
research: robustness in the design process, canonical compehsator representa-
tion, unique definition for the state and compensator weightings, and choice
for the distribution on initial states.

Several problems still remain that should be addressed in future
research. These include further 1improvements in numerical methods for
solving the optimal output feedback problem, analysis of the limitations of
the approximate loop transfer recovery process, and extensions of these ideas
to the H, problem.
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