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Abstract
The minimum weight design of a helicopter A box beam cross sectional area
rotor blade subject to constraints on coupled A.I. autorotational inertia
flap~-lag natural frequencies has been studied E Young’s modulus
in this paper. A constraint has alsc been F objective function
imposed on the minimum value of the GJ torsional stiffness
autorotational inertia of the blade in order Ip ¢ Iy principal area moments of inertia of
to ensure that the blade has sufficient X Y
inertia to autorotate in case of an engine box beam about reference axes
failure. The program CAMRAD has been used for I, » I, principal area moments of inertia of
the blade modal analysis and the program x Y ’
CONMIN has been used for the optimization. 1In nonstructural mass about reference
addition, a linear approximation analysis axes .
involving Taylor series expansion has been Igr Iy total principal area moments of
used to reduce the analysis effort. The inertia about reference axes
procedure contains a sensitivity analysis I mass polar moment of inertia
which consists of analytical derivatives of 0
the objective function and the autorotational L. length of jth segment
inertia constraint and central finite ] X X
difference derivatives of the frequency be' Mby mass moments of inertia of box beam
constraints. Opt imum designs have been
obtained for both rectangular and tapered M M about refe:encg §xestia £ t .
blades. Design variables include taper ratio, ox' oy mass moments OL iner ot nonstruc
segment weights, and box beam dlmgnsxong. The tural weight about the reference
paper shows that iven wgen starting WIEh an axes
acceptable baseline esign, a significant : :
amouﬁt of weight reduction is possible while MX' My total mass moments of inertia about
satisfying all the constraints for both the reference axes
rectangular and tapered blades. N total number of blade segments
NDV number ‘of design variables
R blade radius
Nomenclature W total blade weight
W) blade weight as a function of design
variable ¢
b box beam width Wy box beam weight
¢ chord st W, total weight of nonstructural blade
£, frequency of 1 lead-lag dominated weight and lumped/tuning weights
mode o prescribed autorotational inertia
£, frequency of 15t flapping dominated ﬁ: Szgignrzii;a?iezlggi:ﬁg?gn
mode th
g constraint function oy i design variable
h box beam height . th
h(z) box beam height variation along Py mass density of the j~ segment
blade span
n number of blades Subscripts and Superscripts

distance from the root to the center

r root value
of the jth segment t tip value
tl,tz,t3 box beam wall thicknesses L lower bound
XY, 2Z reference axes U upper bound
X box beam center of mass location ~ approximate value
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A Aerospace Engineer, Member AIAA, AHS



.oprimization

Introduction

Computer-based mathematical programming
methods for optimum design of structures have
been under rapid development during the last
two decades. Using mathematical processes,
engineering design synthesis problems can be
posed as sequences of analysis problems
combining engineering models with minimization
techniques. An extensive amount of work has
been done in developing such design
procedures over the past few
years to bring the state of the art to a high

levell-s These methods can now be applied to
optimum design of practical structures such as

aircraftl’z'5 and helicopters3_5. The present
paper focuses on helicopter rotor blade

design.

The helicopter rotor blade design process
requires a merging of several disciplines,
including dynamics, aerodynamics, structures,
and acoustics. Two of the major criteria in
rotor blade design have been low weight and
low wvibration. For a helicopter in forward
flight, the nonuniform flow passing through
the rotor causes oscillating airloads on the

rotor blades. These loads in turn are
translated into vibratory shear forces and
vending moments at the hub. One important
design technique 1s to separate the natural

frequencies of the blade from the harmonics of
the airloads to avoid resonance. Failure to
consider frequency placement in the predesign
stage of the design process could cause a
significant increase in the final blade weight
since it generally involves postdesign
addition of nonstructural masses. In order to
avoid such weight penalties it is desirable to
design and fabricate a helicopter blade and
appropriately place the natural frequencies at
an early stage in the design process. This
can be done by a proper tailoring of the blade
mass and/or stiffness distribution. This
tailoring 1is not an easy task because of the
complicated modes of the blade due to the

presence of several coupling effects6. One

such coupling is due to coupling of flap, lag,
and torsional motions through the pitch angle
blade twist and off-set between the elastic
and inertia axes. The inclusion of these
coupling effects makes the optimum design
process highly complex. In the past, the
conventional design process was controlled
mainly by the designer’s experience and the
use of trial and error methods. Today, one of
the more promising approaches to the
helicopter rotor design process is the
application of optimization techniques.

Due to the importance of the problem, a
considerable amount of work has been aimed at
various aspects of rotor blade vibration

reduction® 2. A significant amount of this
work has been devoted to reducing vibration by
controlling the vertical hub shears and

moments® 13, In Ref. 9 Taylor described the
use of modal shaping. The objective of his
work is to reduce vibration levels by

modifying the mass and stiffness distributions
to modify “"modal shaping parameters" which are
functions of blade mass distributions and mode
shapes. These modal shaping parameters have

been sometimes interpreted as "ad hoc"

optimality criteriall'13. In Ref. 10 Bennett
described a method for reducing the vertical
shear transferred from the rotor blade to the

mast by combining conventional helicopter
engineering analysis with a nonlinear
programming algorithm. Friedmannil considered

the problem of minimizing hub shears or hub

vibratory rolling moments subject to
aeroelastic and frequency constraiats. An
early attempt at optimum blade design for

proper placement of natural frequencies with a
constraint on autorotational inertia was due
12

to Peters where he started with a baseline
blade design and attempted to refine the
design by trying to find a mass and stiffness

distribution to give the desired frequencies.
Reference 13 addressed the problem of optimum
design for a typical soft-in-plane hingeless
rotor configuration for minimum weight using
optimality criteria approach. The results in
Ref. 13 indicate that application of
optimization techniques lead to benefits in
rotor blade design not only through
substantial weight reduction but also a
considerable amount of reduction in the
vibratory hub shears and moments at the blade
root. In Ref. 14, Peters addressed a problem
of the optimum design of a rectangular blade
for proper placement of frequencies. However,
he did not wuse the blade weight as the
objective function due to a difficulty in
finding a feasible design. Rather, he started

his design with an objective function
involving measures of the closeness of
frequencies to desirable frequencies.

Currently at the NASA Langley Research Center,
there 1is an effort to integrate several
technical disciplines in rotorcraft design.
The present paper is part of this effort and
deals with the dynamics aspect of design. The
scope of the present work 1is to find the
optimum mass and stiffness distributions which
minimize the weight of a rotor blade,
rectangular or tapered, undergoing coupled
flap-lag vibrations. Constraints are imposed

on the natural frequencies and the
autorotational inertia of the blade, The
present paper uses the same baseline blade as

Peters with weight as the objective function.
A first investigation in the effect of taper
of the structure on the optimum blade design
has been made and a study on the effect of the
prescribed autorotational inertia constraint
on the blade weight has been conducted.

Problem Statement, Test Problem, and Solution

The purpose of the present work is to
arrive at minimum weight designs of rotor
blades subject to constraints on the blade
natural frequencies and autorotational
inertia. The designs begin with an existing
adequate blade design which will be referred
to hereafter as the "reference blade." One
way of reducing the vibration 1level in the
blade is to design it such that the blade
natural frequencies are separated from the
driving frequencies (n per rev frequencies,
where n denotes the number of blades). Since
the frequencies of interest of the reference
blade were already away from these c¢ritical
values, it was decided to design the optimum
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blade for minimum weight while constraining
the desired frequencies to be within close
ranges (windows) of the corresponding
rafaerence blade frequencies. Another
important factor in rotor blade design is the
ability of the blade to autorotate.
Therefore, it was decided that the optimum
blade should have at least the same value of
rotary inertia as that of the reference blade.

Since the reference blade (Ref. 14) is an
articulated blade with a rigid hub, no
distinction is made between collective or
cyclic modes for flapping and in-plane
motions. The blade has a rectangular
planform, a pretwist and a root spring which
limits torsional motion. The blade data shown
in Figure 1 and Table 1 (from Ref. 14) has a
box beam with unequal vertical wall
thicknesses located inside the airfoil (Fig.
la). It is assumed that only the box beam
(Fig. 1lb) contributes to the blade stiffness,
i.e., contributions of the skin, honeycomb,
etc. to the blade stiffness are negligible.
The details of the box beam section property
calculations are presented in the Appendix.

Optimization Problem Formulation

The optimization problem is to minimize
the weight of the blade. The constraints are
upper and lower limits (windows) on the
frequencies of the first lead-lag dominated
mode and the first flapping dominated mode
along with a prescribed lower limit on the
autorotational 1inertia of the blade. The
design variables include box beam dimensions,
magnitudes of nonstructural weights and taper
ratio.

The weight of the blade, W, consists of
two components as follows:

W = wb + Wo (1)

where W, represents the structural weight of

the box beam and wo represents the

nonstructural weight of the blade plus the
weight of the tuning/lumped masses added to
the blade. The blade 1is discretized into
finite segments (Fig. 2) and the blade weight
in discretized form is given below:

N N

W - p.A L, + W (2)
Z: 373 2: Oj
j=1 =1

where N
segments.

represents the total number of

The autorotational 1inertia of the blade
is calculated as follows

N
2
A.I. 2:1 Wr§ (3)
J-

where wj is the total weight and rj is the
distance from the root to the center of the

jth segment. The frequency associated with

the first lead-lag dominated mode is denoted
fl and the frequency associated with the first

flapping dominated mode 1is denoted fz. The
optimization problem can now be mathematically
formulated as follows:

minimize W($)

where the weight W is given by equation (2)
and ¢ denotes the vector of design variables
subject to the normalized constraints

£
99 = 42— - 150 (4)
1y
o i< (5)
gr(9) = 1 -
2 Tl"'L'
£2
g3l9) = F=—-150 (6)
2y
£,
g4(¢) -1 - - €0 (7)
2y,
-A.I.
95(¢) - = +1 s 0 (8)
and side constraints
. S o S ¢, (9)
1 1y

In equations (4) and {(5) fl and f; denote
U L

the upper and lower bound respectively on
frequency fl and in equations (6) and (7) £y
0]

and fz denote the upper and lower bound
L

respectively on frequency f2' In equation (8)

o represents the minimum acceptable value of
the autorotational inertia and in equation (9)
¢i denotes the itP design variable. By
convention a constraint is satisfied when

gk(¢)50-

The design variables considered are
summarized in Table 3 for ten finite segments
(i.e., N = 10). Cases 1 and 2 refer to the
rectangular blade and cases 3 and 4 refer to
the tapered blade. 1In case 1l (thirty design
variables) the design variables are the wall
thicknesses ty » ty . and ty i=1,2,...,10

i i i

(Fig. 1b). 1In case 2 (forty design variables)
the segment nonstructural weights, Wo. s
i

i=1,2,...,10 are the ten additional design
variables. Minimum values are imposed on
ty, t2, and t3 to provide adequate strength

since stresses due to applied loads are not

calculated. For the segment weight M. the
i

lower bound is the "minimum nonstructural

segment weight" in Table 1. For the tapered

blade two new design variables aré included in

addition to those used in the rectangular



blade. They

direction (Fig. 4) and the box beam outer
dimension h (Fig. 1b). It is assumed that the
box beam heiqght h varies linearly along the
blade span as shown in Fig. 5. 1In case 3
(twelve design variables), the design
variables are h, kh' and W, , i=1,2,...,10,
i
where h is the box beam height at the blade

are the blade taper A, in the z

root. In case 4 (forty-two design variables),
an additional thirty design variables have
been used and they are t, , t, , and t, ,

li 2i 3i

i=-1,2,...,10.

Analysis

The modal analysis portion of the program
CAMRAD}5 which uses a modified Galerkin
approachls, has been used. According to Ref.
17, this approach is the preferred method for
computing mode shapes and frequencies of
structures having large radial variations in
bending stiffness.

The general purpose optimization program

CONMIle which uses the nonlinear programming

method of feasible directions has been used
for the optimization. In the search for the
optimum vector of new design variables, CONMIN
requires derivatives of the objective function
and constraints. The user has the option of
either allowing CONMIN to calculate
derivatives by using forward differences, or
by supplying those derivatives to CONMIN. In
this paper, the latter approach has been used.
Analytical expressions have been obtained for
the derivatives of the objective function and
the autorotational inertia constraint. A
central difference scheme has been used for
the derivatives of the frequency constraints.
The initial attempt using forward differences
gave highly inaccurate derivatives.

Technique - The
requires many

Approximate Reanalysis
sptimization process generally

evaluations of the objective function and the
constraints before an optimum design is
obtained. The process therefore can be very

expensive if exact analyses are made for each
evaluation. However, as Miura in Ref. 3
observed the optimization process primarily
uses analysis results to move in the direction
of the optimum design: therefore, a full
analysis 1is required only occasionally during
the design process and at the end to check the
final design. Thus, various approximation
techniques can be used during the optimization
process to reduce the analysis cost. In the
present paper, the objective function and
constraints are approximated using a piecewise
linear analysis based on first order Taylor
series expansions. The expansions provide the
changes in the objective function and
constraints in terms of changes in the design
variables and the derivatives obtained at the

previous iteration. Specifically, if the
nbjective function F, the constraint g, and
their respective derivatives are calculated

for the design wvariable ¢k using an exact

analysis, their values for an increment in the
design variable A¢k are as follows:

NDV
F=r+ S5 a0, (10)
k=1
and
~ Yy 3 '
g=9+* -3%- Ad (11)
where the quantities denoted (*) represent

approximate values and NDV denotes the number
of design variables. The assumption of
linearity 1is wvalid over small increments in
the design variable values and does not
introduce large errors if the increments are
small. A "move limit", defined as the maximum
fractional change of each design variable
value, has been imposed as wupper and lower
bounds on °k for each design variable. Errors

which may be introduced by use of the
piecewise linear approach are controlled with
the use of these move limits. In past
applications of this technique (e.g., Ref. 19)
and in the present work a move limit of 0.1
has been found to be satisfactory and has been
used for all calculations.

Implementation

A flow chart describing the
procedure 1is shown in Fig. 3.
procedure are as follows:

optimization
Steps in the

ITERATION SCHEME

Step Operation

1. Discretize the blade and initialize the
design variables.

2. Compute box beam properties and calculate

autorotational inertia of the blade based
on current set of design variables.

3. Perform blade modal analysis (frequencies
and mode shapes) using CAMRAD.
4. Calculate the objective function (weight)

and compute the constraints on frequency
and autorotational inertia.

5. Check for convergence of the objective
function (a change within a convergence

tolerance of 0.5 x 107° over
consecutive cycles).
to steps 6-8.

three
If not converged go

6. Calculate the derivatives of frequency
constraints. Perturb each design
variable by A@k. Repeat steps 2 and 3
for ¢k+A¢k. Repeat steps 2 and 3 for
¢k-A¢K' Use central differences for the
frequency derivatives, Evaluate
analytical expressions for the
autorotational inertia and the objective

function derivatives.

7. Update the design variables using CONMIN
and approximate analysis.

8. Repeat steps 2-7.
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Results and Discussion

has been discretized into ten
(Fig. 2) and details
data are presented in

the entry "minimum
weight" represents the
honeycomb, etc. of a
seqment and "total nonstructural segment
weight" denotes the weight of the skin,
honeycomb, etc. along with the lumped/tuning
weight of that segment. The rotor preassigned
parameters (the parameters that remain fixed
during the optimization process) are presented
in Table 2. A modal analyses of the reference
blade has been performed and the frequencies
of the first lead-lag dominated mode (fl) and
(£,)
been used to set up the frequency windows.
The windows are *1 percent of these calculated
values. Results are presented for a
rectangular as well as a tapered blade with
various combinations of design variables.
Several local minima have been found and the
best of these results are presented here. The
effect of different starting points on optimum
results has been investigated and is discussed
later,

The blade
seqments along the span
of the blade segment
Table 1. In Table 1
nonstructural segment
weight of the skin,

the first flapping dominated mode have

Rectangular Blade

The first part of the study considers a
rectangular blade with a rectangular box beam

(Fig. 1lb). The results for cases 1 and 2 are
presented in Table 4. Typically ten to
fifteen cycles have been necessary to arrive
at optimum designs. From Table 4 the
frequency fl (lead-lag dominated) 1is at its
upper bound after optimization and the
autorotational inertia constraint is active,

i.e., the value 1is equal to the prescribed
value, in all cases. The weight reductions
from the reference to the optimum blade
configurations have been between 8.5 percent

and 13.2 percent which are substantial. Figs.
6-12 depict the optimum versus the reference
blade design variable distributions along the
blade span. Figures 6-8 show the optimum
versus the reference blade design variable
distributions for the thirty design variable
case (case 1). Figures 6 and 7 demonstrate
that the optimization process reduces the wall
thicknesses tland t, (Fig. 1b) inboard and

increases them outboard. Figure 6 shows that
the wall thickness t3 (Fig. 1lb) is increased

in each segment by the optimization process.
Figures 9-12 represent the optimum versus the
reference blade design variable distributions
for the forty design variable case (case 2).
Figures 9 and 10 demonstrate a significant
redistribution of the wall thicknesses
ty and t2 with increase at the blade tip. The

wall t3 is increased by

the optimization process as shown in Fig. 11
and the trend 1is similar to that of case 1
(Fig. 8). A significant reduction in the
segment nonstructural weight distribution is
apparent from Fig. 12 with the lowest value
toward the blade root. Overall, the optimum
distributions (cases 1 and 2) demonstrate an
increase in blade weight towards the tip which
is caused by the inclusion of the

vertical thickness
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autorotational inertia constraint which

requires larger masses outboard.

Tapered Blade

The second part of the study considers a
blade where the taper ratio has been allowed
to be a design variable during optimization.
In essence, a change in the blade planform has
been allowed which would mean a change in the
blade aerodynamic performance. In other
words, instead of starting from an aerodynamic
design and modifying the structural parameters

for better dynamic performance, a new design
of the blade has been addressed from the
minimum weight and dynamics performance point
of view. The associated optimum design
problem can no longer be termed as a redesign
process.

In order to maintain the airfoil height

to chord ratio fixed, the h/b ratio has been
held constant throughout the blade span during
the optimization process. A value of h/b =
0.25 has been used which corresponds to the
reference blade value.

Optimum results have been obtained within
eight to ten cycles. The results are
summarized in Table 5. It is interesting to

note from Table 5 that the weight reduction
increases from 1.7 percent in the twelve
design variable case (case 3) to 14.3 percent

in the forty-two design variable case (case
4) . Also the taper ratio changes from a high
value of 2.44 in case 3 to a more realistic
value of 1.11 in case 4. The optimum versus
the reference blade design variable
distributions are shown in Figs. 13-17.
Figure 13 shows the segment nonstructural
weight distribution before and after
optimization for case 3 (twelve design
variables) . The optimization process
redistributes the weights, with a minimum
value at the third and the fourth segment.
The minimum value indicates that no additional

lumped weights are necessary at those two
segments. Figures 14-16 show significant
redistributions of the wall thickness
distributions after optimization for the
forty-two design variable case. The trends
are similar to that of the rectangular blade.
The optimization process reduces the

nonstructural segment weight as shown in Fig,
17, however, the values at each segment are
higher than the corresponding lower bounds
indicating the necessity of lumped weights at
each segment.

Autorotational Inertia Study

A study has been conducted on the
sensitivity of the optimum design variables
and objective function to changes in the value

of the prescribed autorotational inertia. The
results of this study for a rectangular blade
with forty design variables (case 2) are

presented in Table 6 where the increments in
the prescribed autorotational inertia are +5

percent of the nominal value (517.3 lb-inz).
The results indicate that increases in the
magnitude of the prescribed rotary inertia
value increases the weight of the optimum
blade. For example, a 5 percent increase in
the rotary inertia wvalue produces a 13.3
percent increase in the optimum blade weight.



5ome typical changes in the design variable
distributions are shown in Figs. 18 and 19.

Observations on the Optimization Process

Since optimum design problems are prone
to the existence of local minima, several sets
of starting designs have been used. Depending
upon the initial design, alternate optimum
designs have been obtained. For instance, for

the rectangular blade with thirty design
variables (case 1), the percentage weight
reduction increased from 6.3 to 8.5 with a
change in the starting design (Table 7). For

the case of the tapered blade there is also a
significant change in the blade weight
reduction with change in initial design (Table
8). Also the optimum value of the taper ratio
Xh changes considerably with the change in

Hence, it is worthwhile
investigating different starting designs to
obtain the better of the alternate designs
trom among the several relative optima. In
addition to trying several alternate starting
designs, attempts have also been made at
improving the optimum designs by scaling
design variables and changing several CONMIN
control parameters. No significant
improvement has been noticed by scaling the
drsign variables. Change of certain control
parameters in CONMIN (such as step sizes
and/or tolerances) improves the opt imum
results.

initial design.

Concluding Remarks

In this paper, the minimum weight design
of a helicopter rotor blade with constraints
on coupled flap~lag natural frequencies has
been studied. A minimum value constraint on
the autorotational inertia of the blade has
also been imposed in order to ensure
sufficient rotary inertia for the blade to
autorotate. The program CAMRAD has been used
to perform blade modal analysis and the
program CONMIN has been used for the
optimization. In addition, a linear
approximaticn technique involving Taylor
series expansion has been used. A sensitivity
analysis consisting of analytical expressions
for the derivatives of the objective function
and the autorotational inertia constraint and

central difference derivatives of the
frequency  constraints has  been performed.
Optimum design have been obtained for blades

with both rectangular and tapered planforns.
The design variables used are the box beam
dimensions, taper ratio and segment weights.

The following conclusions have been drawn

from the present study. In the frequency
derivative calculations use of forward
difference scheme led to numerical
difficulties which have been overcome by the
use of central differences. The optimization
program CONMIN along with the linear
approximations based on Taylor series
expansion has been very efficient and is

typically able to arrive at an optimum design
in eight to fifteen cycles. The results of
the optimization clearly indicate a
significant. amount of weight reduction from
the reference to the optimum blade while
satisfying all the imposed constraints. The

optimum design variable distributions indicate
a tendency of introducing larger wall
thicknesses towards the tip of the blade.
This is due to the presence of the
autorotational inertia constraint which
increases in magnitude with the increase in
the moment arm. Results of a study on the
effect of prescribed autorotational inertia
indicate a large effect on the optimum blade

weight as well as the design wvariable
distribution. For example, a 5 percent
increase in the prescribed autorotational
inertia value (from the nominal value)
increases the optimum blade weight by 13.3
percent. Therefore the study provides data
for a trade-off study between autorotational
inertia and weight. Finally due to the
existence of several local minima, starting

the optimum design process with different
initial sets of the design variables has been
found to produce better optima.

Appendix

Sectional Properties

A typical rotor blade section with a
nonuniform box beam is shown in Fig. 1. It is
assumed that the structural stiffness is

contributed by the box beam with unequal wall
thicknesses and that the beam material is
linearly elastic. The effects of shear
deformation due to transverse forces and the
effects of rotary inertia are assumed to be

negligible, however shear due to torsion is
considered. The overall cross sectional
properties are calculated as follows:
W= + W, (1)
I =1 + I (2)
ble bx oy
I =1 + 1 (3)
y o by oy
M, = M + M (4)
X bx bx
M, =M + M (5)
y by oy
and
Ie = MX + My_ (6)

The quantities with subscript ‘b’ denotes the
box beam contributions and subscript 'o’
refers to the contributions from the remainder
of the blade section.

Box Beam Properties

The cross sectional area 1is

(Fig. 1)

given as

A = bh - bh (7)

where

b=D5b - (t2 + t3)
and
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h=nh - 2t1

The location of the center of mass is given by

(8)

The expressions for the area moments of
inertia are

3 w3
bh bh
b =17 - 17 (9
and
3 =30
b~h b~h b 2

1 - > -1 * bh(x ~ x_ )+
Py 2" e (10)

bh(§ - x )2 BR(3 + t,- x,)?

The mass moments of inertia of the box beam

with respect to flapping and inplane, My and
X

My, respectively, are calculated as follows:
y

M, = pI (11)
b, b
My = pIy (12)

where p denotes the density of the box beam
material. The calculation for the torsional
rigidity 1is explained in detail in References
14 and 20.
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Table 1. Reference

Box beam height ‘h’
Box beam density ‘p’

Box beam width ’'b’
Young’s modulus ‘E’

blade data (Figs. 1 and 2)

0.117 ft
= 8.645 slugs/ft>
= 0.463 ft
9 2
= 2.304 x 10° 1b/ft

Seg- Length Box beam dimension (ft) Bending stiff- Tor Nonstructural Pre-
ment (£t} ness x 104 sional segment weight twist
Num- (1b - £t?) stiff- (lbs) (deg.)
ber nesz W,
x 10
(1b-£t2)
L tl ty ty EIx BIY GJ Total Min.
1 1.37 0.0116 0.0080 0.0280 7.349 78.58 11.111 6.718 0.89 1.745
2 2.2 0.0100 0.0100 0.0440 6.957 84.68 10.139 9.088 1.435 2.617
3 2.2 0.0075 0.0075 0.0325 5.548 66.55 7.778 1.978 1.435 5.594
4 2.2 0.0060 0.0050 0.0050 4.128 35.40 5.833 1.435 1.435 8.725
5 2.2 0.0050 0.0050 0.0045 3.537 31.20 5.000 2.352 1.435 6.805
6 2.2 0.0050 0.0050 0.0035 3.514 29.89 4.861 5.852 1.435 5.235
7 2.2 0.0050 0.0050 0.0040 3.526 30.55 4.931 6.342 1.435 3.49
8 2.2 0.0050 0.0050 0.0046 3.539 31.31 5.000 6.573 1.435 0.00
9 2.2 0.0050 0.0050 0.0035 3.514 29.89 4.861 6.372 1.435 -0.175
10 2.2 0.0050 0.0050 0.0021 3.481 27.91 2.778 5.962 1.435 -1.915
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Table 2.

Blade preassigned properties

ORIGINAL PAGE 15
OE POOR QUALITY,

weighta

Table 4. Optimization results for rectangular
box beam;
fl =12.162 Hz, fl =12.408 Hz,
L U
f, =15.936 Hz, f, =16.258 Hz
2 2
L U
Reference Optimum blade
blade Case 1 Case 2
f1 (hz) 12.285 12.408 12.408
f2 (Hz) 16.098 15.945 15.94
Autorotational 517.3 517.3 517.3
inertia (lb-ft?)
Blade weight 98.27 89.92 85.27
(1lb)
Percent reduc- :
tion in blade - 8.506 13.230

a - From reference blade

Number of blades 4
Blade radius 22 ft
Chord 1.3 ft
Flap hinge offset 0.833 ft
Inplane hinge offset 0.833 ft
Solidity (based on 0.0748
mean chord)
Precone angle 0 degree
Droop angle 0 degree
Tip sweep 0 degree
Pitch axis droop 0 degree
Pitch axis sweep 0 degree
Rotor speed 293 rpm
Table 3. Summary of design variables for
cases studied
Case Number of Planform Design
design variables?
variables
1 30 Rectangular t, ,t t
1072003
2 40 Rectangular t t t W
137725773370y
3 12 Tapered hr,lh,woi
4 42 . Tapered hr,kh,tli,tzi,
t W
3;" 70y
a - i=1,2,...,10

weighta

Table 5. Optimization results for tapered box
beam;
f1 =~12.162 Hz, fl =12.408 Hz,
L U
£, =15.936 Hz, f, =16.258 Hz
2 2y
Reference Optimum blade
blade Case 3 Case 4
kh 1.0 2.44 1.111
fl (Hz) 12,285 12.405 12.225
f2 (Hz) 16.098 15.99 15.822
Autorotational 517.3 517.3 517.3
inertia (lb-ftz) _
Blade weight 98.27 96.63 84.24
(1b)
Percent reduc-
tion in blade - 1.67 14.28

a - From Reference Blade



Effect of initial design on optimum

Table 8.
results for case 4, tapered blade;
£y =12.162 Kz, £, =12.408 Hz,
L 9]
fz =15.936 Hz, f2 =16.258 Hz
L U
Reference Optimum Optimum
blade blade? blade?
Ah 1.0 2.387 1.111
f1 (Hz) 12.285 12.409 12.225
f2 (Hz) 16.098 15.94 15.822
Autorotational 517.3 518.4 517.3
inertia (1b-ft?)
Blade weight 98.27 95.25 84.24
{1b)
Percent reduc-
tion in blade - 3.07 14.28

weight

Table 6. Sensitivity of optimum design with
respect to prescribed autorotational
inertia for Case 2 - rectangular
blade

prescribed Increment? Optimum blade Weight
A.1. in A.I. weight (1lb) change
value value from
2 nominal
(lb-£ft®) (%) (1b) (%)
465.6 ~10 75.69 -11.23
504.4 -5 80.42 -5.69
$17.3 -0 85.27 0
543.2 5 96.63 13.32
569.0 10 96.76 13.48
594.9 15 98.21 15.17
620.8 20 102.44 20.13
a - Relative to nominal value.

Table 7. Effect of initial design on optimum

results for the
case 1, rectangular blade;
£, =12.162 Hz, fl =12.408 Hz,

L U
£, =15.936 Hz, f, =16.258 Hz
L U
Reference Optimum Optimum
blade blade? blade?
£, (Hz) 12.285 12.406 12.408
£, (Hz) 16.098 15.947 15.945

Autorotational 517.3 517.3 517.3

inertia (l1b-ft?)

illade weight 98.27 92.06 89.92

(1lb)

Parcent reduc- - 6.320 8.506

tion in blade

weight

a - Refer to two alternate optimum designs

with two different initial designs

a - Refers to two alternate optimum designs
with two different initial designs

¢ Lumped mass

- Shear center
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b) Box beam cross section

Fig. 1 Rotor blade cross section
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Hinge off set

Fig. 2 Discretized rotor planform

Fig. 5 Tapered box beam
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Fig. 3 Flowchart of the optimization process )
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Fig. 6 Optimum versus reference blade t
distribution along blade span, cise 1
(30 design variables, rectangular)
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distribution along blade span, cgse 1
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distribution along blade span, cgse 2
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mass distribution along blade span,
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Fig. 13 Optimum versus reference blade segment
mass distribution along blade span,
case 3 (12 design variables, tapered)
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