
. A

NASA Contractor Report 178395

AN EXPERIMENT IN SOFTWARE RELIABILITY
ADDITIONAL ANALYSES USING DATA FROM
AUTOMATED REPLICATIONS

J. R. Dunham and L. A. Lauterbach

Research Triangle Institute
Research Triangle Park, North Carolina 27709-2194

Contract NAS1-17964
Task Assignment No. 1

January 1988

NASA
National Aeronautics and
Space Aaministration .

Langley Research Center
Hamplon. Virginia 23665-5225

[BASA-CR-178395) A N EXPERIMENT I13 SOF'!I.'UAEE
BELIABILITY: ADDITIONAL A N A L Y S E S U S I N t i DATA
FROM A U T O H A T E D REPLICATIONS (Research
Triangle I n s t .) 72 p CSCL 098

€488-200 17

Unclas
G3/61 0706517

Contents

1 INTRODUCTION 1

1.1.1 Software Reliability Research Goals 1
1.1.2 Software Error Experiments 2

1.2 DEFINITION OF TERMS 2
1.3 SUMMARY . 3
1.4 RELATED RESEARCH REPORTS 4

1.1 BACKGROUND . 1

2 EXPERIMENT OVERVIEW 5
2.1 THE CODE UNDER TEST 5

2.1.1 The Radar Tracking Problem 5
2.2 SOFTWARE DEVELOPMENT 5

2.2.1 Task Staffing and Management 5
2.2.2 Programmer Selection 6
2.2.3 Data Collection . 6

2.3 ERROR DETECTION METHOD 9
2.4 THE REPETITIVE RUN TECHNIQUE 11

2.4.1 Replicates . 11
2.4.2 Number and Length 11

2.5 THE AUTOSIM TOOL . 12

3 ERROR ANALYSIS 15
3.1 ERROR RATES OF DESIGN STAGES 15
3.2 ERROR RATES OF INDIVIDUAL FAULTS 19
3.3 DESIGN STATES . 22
3.4 INTERACTING FAULTS 25

1

4 CONCLUDING REMARKS

BIBLIOGRAPHY

APPENDIX. ERROR DATA

27

28

31

..
11

List of Figures

2.1 Subroutine COND7 . 10
2.2 The AUTOSIM Tool . 14

3.1

3.2

Logarithms of the Estimated Error Rates of the Design Stages

Logarithms of the Estimated Error Rates of the Design Stages
for Program One . 17

for Program Three . 18

...
111

List 'of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

Faults/Fix Descriptions . 8
Upper Limits for Replication Sample Sizes 12

Error Rates by Design Stage 16
Summarized Error Data for MLE Ratio Test 21

Program One Design State Failure Times 23
Program Three Design State Failure TIMES
Counts for Interacting Faults 26

Version Stat is tics . 22

24

iv

Chapter 1

INTRODUCTION

1.1

1.1.1

BACKGROUND
Software Reliability Research Goals

The so,,ware reliability research sponsored by NASA-Lang-iy Research
Center (NASA-LaRC) focuses on the development of a credible method
for predicting operational reliability - that is, predicting the improbability
that the system will fail due to residual faults remaining in the software
[l]. It is these residual faults, which surface infrequently, that cause the
rare event or extremely improbable failures. As evidenced by the first
well-publicized Space Shuttle software bug, the failure of the initialization
logic in J. Garman’s words resulted from a “very small, very improbable,
very intricate, and a very old mistake” [2]. This bug typifies the rare and
convoluted combination of events which causes carefully developed software
to fail.

Although considering all faults is important in reliability prediction, the
most probable faults are often eliminated using the software quality assur-
ance methods such as those described in the new DoD standards STD-2167
for software development [3], STD-2168 for software quality evaluation [4],
and in the certification guidelines described in [5] . In systems critical to
the flight of civil aircraft, safety requirements impose demanding reliabil-
ity requirements. Accordingly, the System Validation Methods Branch of
NASA-LaRC has used a value of as the maximum probability of sys-
tem failure for a ten-hour flight as an informal standard in the search for

1

a credible reliability prediction method for validating critical software [6].
To date no known software has been validated to that extent.

1.1.2 Software Error Experiments
As Phyllis Nagel wrote in the first report on the repetitive run experi-
ments for gathering software error data, “Little software reliability growth
modeling has been based on feedback gained from controlled experiments”
(7, page 21. The method of investigation, then, is to conduct a series of
controlled experiments which provides this feedback. These experiments
constitute one aspect of the NASA-LaRC software reliability program, viz,
the collection and analysis of software failure data of laboratory controlled
quality.

The Research Triangle Institute (RTI) has participated in this program
by conducting software error experiments using the computing facilities of
AIRLAB at NASA-LaRC. RTI has conducted two software error gather-
ing studies. Both studies were conducted in a controlled environment to
(i) emulate the production environment of a software engineer developing
life-critical software and (ii) as much as possible, hold constant the usu-
ally varying exogenous factors in actual development environments [8,9].
This report describes the first of these studies; specifically, a three-version
implementation of a radar tracking problem.

1.2 DEFINITION OF TERMS
The following lists defines the terms which are used throughout this report.

0 APPLICATION TASK - A software module being tested for reliabil-
ity, previously referred to as an AT,, or Application Task i.

0 DESIGN STAGE - One more than the number of corrections made
sequentially to the code under test during a replicate. A correction is
to be interpreted as “the set of all faults fixed at the same time.”

e DESIGN STATE or VERSION - An instantiation of an implemen-
tation of the code under test. During the software fault diagnosis-
correction process, the program fixes result in several design states or
versions of the code.

2

0 PROGRAM or IMPLEMENTATION - An independently coded ver-
sion of the same functional specification (i.e., one of the application
tasks).

0 REPLICATE, REPLICATION, or REPETITIVE RUN - A set of test
cases applied to the code under test. (See Section 2.4.1 for further
explanat ion.)

The use of the terms failure, error, fix, and fault in this report are
consistent with the definitions given below:

0 FAILURE - A program failure occurs when one or more observed
output value(s) disagree(s) with the correct output value(s).

0 ERROR - The incorrect element(s) of the observed output d u e (s)
at the time of failure.

0 FIX - The minimum code change required to correct an error.

0 FAULT - The conceptual flaw in the program which is corrected by
a fix.

1.3 SUMMARY
The software error data compiled and analyzed as a part of the NASA-LaRC
program of experimentation and documented in this report, were collected
with the following specific goals in mind:

0 determining if the error rates corresponding to the (sequentially gen-
crated) design stages of a program follow a log-linear pattern,

0 twtirig the hypothesis of equal error rates associated with each known
fault, and

0 providing additional insight into how software fails.

With respect to thc first goal, analysis of software error data yielded
an independent confirmation of the results of Nagel, et al. [7] in that the
wror rates of design stagcs were observed to follow a log-linear pattern, as
described in Section 3.1.

3

The testing of thc hypothesis of equal error rates associated with each
kiiowii fiiiilt, ;dso c*oi i f irr i ic -c l t,lw fiiidiiigs of N;igcl, (4, 111 (71 . This result,
renders suspect the assumption that the program’s failure rate is a constant
multiple of the number of residual bugs which underlies some of the current
software reliability growth models [lo].

In Section 3.4, the identification of interacting faults provides additional
insight into the software failure process. The authors suspect that less
reliance on black box modeling of software reliability growth may prove
useful for improving the predictive validity of models of software reliability
growth.

1.4 RELATED RESEARCH REPORTS
Additional information about the experiment can be found in NASA CR-
172553 [ll]. Additional information about the automated repetitive run
modeling tool, AUTOSIM, developed for the purpose of this study, can be
found in NASA-CR 177930 [12]. The related Boeing Computer Services’
study ki documented in NASA CR-165836 [13] and NASA CR-16481 [7].
N-version experimentation with the radar tracking problem can be found
in 1141 and [15,16] .

4

Chapter 2

EXPERIMENT OVERVIEW

2.1 THE CODE UNDER TEST

2.1.1 The Radar Tracking Problem
The modules from which error data were gathered were independently
codcd programs for a hypothetical radar tracking problem. Slightly dif-
fering specifications of the problem exist. The first use of the problem was
in a 1973 TRW study which dealt with the quantitative measurement of
software reliability and safety [17] . The problem (specification) was used
in 1979 in the repetitive run modeling study by Nagel et al. [13] that is
the forerunner of this study. The version of the specification from which
the modules used in this study were coded is contained in the recent RTI
contractor report [111 to NASA. A paraphrased version of the specification
used in this study has since been used by Knight et al. [15,16] in a study
of coincidental errors in dissimilar, functionally equivalent (i.e., N-Version)
soft, w arc.

2.2 SOFTWARE DEVELOPMENT

2.2.1 Task Staffing and Management
T1w functionally redundant software components developed as a part of this
study were coded at RTI by programmers (with 2 to 8 years of program-
ming experience) using a link to the computational facilities in the AIRLAB

5

at NASA’s Langley Research Center. Senior software engineers and soft-
ware analysts implemented the error detection algorithms and constructed
the test harness used. English language specifications were provided to
the programmers to develop the system components. The specification
provided was written by the senior systems analyst who also coded and ex-
tensively tested a comparison version to solve the radar tracking problem.
The comparison version was coded prior to providing the specifications to
the programmers and therefore served as a prototype used to debug the
test harness. The programming activity was managed in a conventional
fashion with the exception that the programmers were instructed not to
discuss their code with anyone other than their manager or the senior sys-
tems analyst who was responsible for answering all specification questions.
The programmers were instructed to optimize the reliability of their code.

2.2.2 Programmer Selection
The moderate to advanced skill level programmers were selected by con-
sidering the criteria reported by Moher and Schneider [18]. A form based
on this criteria was used to screen applicants and those considered were
exposed to a series of interviews by the project staff. A competitive salary
was paid to attract qualified programmers.

2.2.3 Data Collection
2.2.3.1 Secondary Data

Data were collected both manually and automatically during code develop-
ment and repair. These data are primarily descriptive of the development
process. Manual data collection was achieved through the use of project
notebooks and special forms. An instrumented data collection environment
[111 wits used to automatically collect data on programmer activity.

When a program fails during testing, the programmer is notified by
electronic mail that his or her program has failed. The mail message in-
dicates if an abend occurred or which outputs are in error. If an abend
occurred, the trace back message was provided. The input case which the
program failed to execute successfully was also provided. Changes made
by the programmer to the failed program were annotated in the code using

6

a standard syntax. These changes were also reported on a program change
report form.

2.2.3.2 Faults/Fixes Data

This data compilation augments a previous manual data collection activity
using the same radar tracking software implementations. The manual data
collection activity identified 11 faults in one program, 1 fault in a second
program, and 20 faults in a third program version. Table 2.1 describes
the faults observed for each program. These faults are defined by the fixes
required. Note that fixes 3 and 4 of the third program have been identified
as invalid fixes. These fixes are fixes for perceived faults that did not exist,
thus reducing the number of valid faults observed from 20 to 18. Fixes 3 and
4 have been kept in the table merely to keep the fix numbering consistent
with thc raw data files. A more complete documentation of this manual
data collection activity and the corresponding analyses can be found in
Dunham, et al. [ll].

The execution of the 100 automated replications resulted in no observa-
tions of an error requiring application of fix 7 to one of the independently
coded modules to correct the error. Since this fix was applied five times
during 25 earlier replications (See (11, page 561), this lack of observation
promptod the checking of its validity.

The logical condition bit CMM(7) is set to 1 if the following logical
condition as stated in the specifications is satisfied:

A t least one of any n consecutive data points lies a distance greater than €1

from the line joining the fird and last of these points.

Fix 7 corresponds to handling of degenerate conditions, i.e. when N > P,
whrrc P is the number of (2 , ~) coordinates provided to the subroutine
which tcsts the logical condition. Figure 2.1 depicts this subroutine, named
COND7, with and without fix 7 installed. As shown in this figure, fix 7
changes code in the COND7 subroutine so that the subroutine exits with
CMM(7)=O prior to the execution of a DO LOOP if the upper bound on
the DO LOOP is less than the lower bound. If the upper bound is less than
the lower bound in FORTRAN77 and fix 7 is not installed, then the DO
LOOP is not executed. The control flow bypasses the DO LOOP, executes

7

Table 2.1: Faults/Fix Descriptions

."
20

I 1 computes t h e arcco8ine.
6 I C M M (~) .pccifiod LT. on bound instead Of LE.

I ? I Function ANGLEA Idled to complete FIX DO 1 by not changing rll

,
is related to fix I?.
FUNCTION P m D I S . program abendcd when all 3 points were
the same

.~

variable names.
Function ANGLEA program abendcd d u e to an out-of-bound
argument when calling the FORTRAN library
routine which computer the arccosine.
CMM(1) - used wrong formula to compute t h e difference between

8

a

I
FC. I

f any
u Nl
e handling of computation 3 thru 6 CMM(1) through (. ,

7 th ru 15 CMM 7 thru CMM
when the No. of d a t a points is small.

15 inappropriale handling of
comD!t!tion when t a e Lo. of d a t a points is smdl. kIM(7) - the ?&! u er pLgra: oun ol abended a d o loo wPhen was tryi tncorrcctry so..

._dram abended due to a division by aero in F . M M (3 1 - Program returned wrong value from AGLCOS . Thls . fix

-
I ." ,

I *a I C

8

.
the statement CMM(7)=O and returns with CMM(7)=O. Thus, the result
is the SWAC with and without fix 7 installed.

Re-execution of the test cases for the manual replications during which
fix 7 was observed indicated that fix 7 was applied in conjunction with fix
16 and should not have been applied at all. For these failed cases, fix 16
corrected the error when applied by itself. Fix 7 did not correct the error
when applied by itself.

The above analyses resulted in the determination that fix 7 is an invalid
fix and should never have been applied. It is similar to fixes 3 and 4
which were applied to handle the same degenerate condition which was
observed in other subroutines as a result of errors in the CMM bits. It
is a fix for a perceived fault that was not there. These invalid fixes were
the results of a relaxed fault identification procedure used at the start of
the experiment; a procedure which permitted the programmer to correct
perceived but nonexistent faults. The procedure was later revised to reduce
the probability of such erroneous fixes.

The automated testing did not result in the observation of any new
faults, and in fact resulted in the consideration of fix 7 as an invalid fix,
thus further reducing the number of valid faults to 17. Fix 7 has also been
retained in the table to keep the fix numbering consistent with the raw data
files.

2.3 ERROR DETECTION METHOD
The independently coded modules were run for over 13 million input cases
in the test harness which relied on the technique of N-Version Programming
to detect program errors. Approximately 1 million of the cases generated
the error data that appear in the appendix to this report; the other 12
million cases were special, extra cases run to investigate the fault interaction
phenomenon described in Section 3.4 . The test harness is described in an
earlier contractor report for this study [ll] which also contains an appendix
with crror data generated from an earlier set of 2 million input cases.

N-Version programming involves a voting procedure on the outputs of
N software modules independent coded to a common specification and op-
erating upon the same input values [19] Intermediate and final program
outputs were compared, rather than voted, in this study. Whenever an

9

Figure 2.1: Subroutine COND7
(WITH FIX 7 INSTALLED) (WITHOUT FIX 7 INSTALLED)

c AT LEAST ONE OF A N Y N CONSECUTIVE
C DATA POINTS LIES A DISTANCE THAN
C EPSl FROM THE LINE JOINING
C THE FIRST AND LAST O F THESE POINTS

IMPLICIT NONE
INTEGER.4 NLIM,J,K,LOLIM,I
REAL.4 PERDIS,DIST
INCLUDE ‘LICCOM.FOR’

NLIM-NBIG
CMM(7)= I
LOLIM=P-NLIMtl
DO I=I.LOLIM

J=I+NBIG-l
K=I
IF(DIST(1. J).GT.O.O)THEN

C NOW INITIALIZE FOR A LOOP

DO WHILE(K.LT.J)
K = K + l
IF(PERDIS(l.J,K).GT.EPSl)RETURN

END no
C
C WHEN THE FIRST AND LAST O F
C N CONSECUTIVE DATA POINTS
C ARE IDENTICAL THE CALCULATED
C DISTANCE T O COMPARE WILL BE
C THE DISTANCE FROM THE COINCIDENT
C POINT T O ALL OTHERS O F
C THE N CONSECUTIVE POINTS

ELSE
DO WIIILE(K.LT.J)

K = K t I
IF(DIST(I.K).GT.EPSl)RETURN
END DO

END IF
END DO
C M M (7)=0
RETURN
END

C A T LEAST ONE O F ANY N CONSECUTIVE
C DATA POINTS LIES A DISTANCE THAN
C E P S l FROM T H E LINE JOINING
C T H E FIRST AND LAST OF THESE POINTS

IMPLICIT NONE
INTEGER.4 NLIM,J,K.LOLIM,I
REAL.4 PERDIS,DIST
INCLUDE ‘LICCOM.FOR’

C NOW INITIALIZE F O R A LOOP
NLIM=NBIG

C** FIX 7 changer next line from CMM(7)=1
CMM(7)=0
L O L I M I P - N L I Y t l

IF (LOLIM.LT.1)RETURN
CMM(7)- 1
DO Im1,LOLIM

C** FIX 7 d d s tbe next two lines

JeI+NBIG-1
K=I
IF(DIST(I,J).GT.O.O)THEN

DO WHILE(K.LT.J)
K r K t l
IF(PERDIS(I,J,K).GT.EPSl)RETURN

END DO
C
C WHEN T H E FIRST AND LAST OF
C N CONSECUTIVE DATA POINTS
C ARE IDENTICAL THE CALCULATED
C DISTANCE T O COMPARE WILL BE
C T H E DISTANCE FROM THE COINCIDENT
C POINT T O ALL OTHERS O F
C THE N CONSECUTIVE POINTS

ELSE
DO W HILEt K. LT. .I)

K r K t l
IF(DIST(I.K).GT.EPSl)RETURN
END DO

END I F
END DO
CMM(7)=0
RETURN
END

10

output inequality occurred, the testing was halted and the faulty mod-
ule(s) identified, analyzed, and corrected. This test method detected errors
except when all three modules and the extensively tested version failed
identically in the same output bit(s).

In addition to providing software error data for computing component
version reliability, the N-version test harness provided data on the effective-
ness of different strategies for selecting an answer from occasionally differing
outputs. Analysis of this data is reported elsewhere [14].

2.4 THE REP'ETITIVE RUN TECHNIQUE

2.4.1 Replicates
A repetitive run technique [13] is used for error rate estimation. This
approach provides better estimates of the program error rates as well as
estimates of the error rates associated with the individual faults. It involves
repetitively testing a software module from its pre-release version through
the detection and correction of m faults. The testing uses inputs generated
at random according to a pre-specified program usage distribution. During
the testing called the first replicate, the faults are identified and removed,
and the fixes corresponding to each fault are saved. Next, the software is
returned to its initial state and executed with a different set of randomly
generated inputs. As the errors due to a specific fault are again detected, the
corresponding fix is applied and the number of input cases to observation
of each output error is again recorded. This process is called the second
replication. By generating additional replicates (i.e. the repetitive run
technique) an estimate of the error rate can be determined by the program
design stage, by the specific fault, or by the program design state or version.

2.4.2 Number and Length
To determine the number of automated replications to be conducted, the
number of failures required to accurately estimate p , the probability that
the program will fail due to a specific fault on a given execution is deter-
mined using the same argument given in [ll]. This determination is based
on controlling the relative error, r, in the estimated failure probability, I ; for

11

Table 2.2: Upper Limits for Replication Sample Sizes

.998626

.999993

-
.25
44
62
87
164
232
324
400

-

-

r
.1
272
384
543

1,024
1,444
2,025
2,500

-
.01
27,200
38,400
54,300
102,400
144,400
202,500
250,000

the allowable risk (1-0) close to 1. That is we wish to determine k, the num-
ber of replicated observations required such that Pr(I f i - p J 2 rp) 5 (1 - a).
Table 2.2 shows the upper limits for the number of replicated observations
required for different values of (1 - a) and r assuming p is sufficiently close
to 0. Based on this table, we chose 100 replications for estimating p .

The length of a replication was set to 10,000 test cases which is the
same stopping rule selected for the manual data collection activity.

The crror data collected are in Tables 2 through 32 in the Appendix.

2.5 THE AUTOSIM TOOL
Figurc 2.2 portrays AUTOSIM (121, the automated error diagnosis and cor-
rection tool developed to expedite the software error data collection process
tinder thc repetitive run technique. This tool replaced a programmer with
one year of experience who was performing the time consuming and error
prone rcpetitive run testing task. The figure shows the quasi-static data
structurcs which remain relatively constant during testing and the dynamic
data striictures which are updated by either the AUTOSIM software or the
N-VERSION CONTROLLER software.

The contents of the quasi-static data structures depend on the code
under test and are updated only when a new fault is identified. The over-
write, ahend, and output error maps contain information on which code

12

fixes are associated with different types of faults. The code library contains
the version of the code after acceptance testing and the code fixes.

The dynamic structures include a trace describing which faults have
been diagnosed and corrected during each replication. The system state
includes the corrected versions of the code, the current replication number,
the test case number, the input and output for the current test case, and
synchronization information.

13

8
Y Ovawrite I

lo -
Figure 2.2: The AUTOSIM Tool

14

Chapter 3

ERROR ANALYSIS

3.1 ERROR RATES OF DESIGN STAGES
The (absolute value of the natural logarithm of the) maximum likelihood
estimate of a design stage’s error rate is tabulated in Table 3.1 . The
estimate includes the effect of censored samples and is, of course, based on
the assumption that a design stage of a software module has a constant
probability of error per input case. The statistic, for programs 1 and 3,
is plotted in Figures 3.1 and 3.2 . Also plotted are the natural logarithms
of the corresponding minimum and maximum times to error of the design
stages. The plots corroborate the observations of log linear trends that
were made in the Boeing study (7,131 . The raw error data are in Tables 2
through 8 in the Appendix.

15

Table 3.1: Error Rates by Design Stage

*

h (M I N (r i J 1)

0.00
0.00
0.00
0.00
0.00
2.30
1.39
4.45
7.29
0.00

I 0.00

0.00
0.00

I 0 00
0.69
2.40
4.62
7.13

I

~~ ~

PROGRAM I DESIGNSTAGE 1 k j lna (MAX(+i j))

0.60
4.13
4.80
6.38
$.e8
9.07
9.18
9.m
9.18
1.39
1.39

5.0s
8.M
8.85
9.20
9.20
9.13

4.95

100
5 100
6 99

T W O
THREE

7 91
8 45
9 3
1 100
1 100
2 100
3 100
4 100
5 100
6 72
7 27
8 5

185,929
439,878
288.225

139
123

1,418
2,590

25,073
76,918

288.440

182,417
~ 386,439

7.62
9.17

11.47
0.33
0.21

' 2.65
3.25
5.52
6.65
8.30
9.57

10.50

where:

i is the index of replications

j is the index of design stages

I C , is the number of replicates containing a j t h design stage in which an error was
observed by the time of the stopping case of the replicate

r,, is the time (i.e., number of cases) to observation of an error of the it* design
stage during the i*h replicate the time for the j t h design stage to reach
the stopping case of the z t h replicate - whichever occurred first. (Note that
~ ; j is measured from the start of the j t h design stage during the i"' replicate,
not from the start of the it" replicate; thus, r,j = 0 for replicates that end
Iwfore a j i h design stage is created.)

d e X j is the maximum likelihood estimate of the error rate associated with the
j t h design stage and is given by mfe A, = Ifn,(! - k j / E:z rij)].

16

Figure 3.1: Logarithms of the Estimated Error h t e s of the Design Stages
for Program One

I2
I In. mle A I E
Ine (entimate
of mean time
to error)

10

5

0

M A X

1 3 4 5 6 7 8 9 2

Dcrign Stage Number

C u r v e s Lahcllrd " M L E A " depict l I n e X J l

17

Figure 3.2: Logarithms of the Estimated Error Rates of the Design Stages
for Program Three

12

I fne m f e A I =
In. (estimate
of mean t ime
to error)

10

5

0

M A X J

MIN
& c

4 5

Design Stage Number

6 7 8 1 2 3

Curves labelled 'I M LE A " depict lfne A, I
18

3.2 ERROR RATES OF INDIVIDUAL FAULTS
On the assumption that individual faults give rise to independent error
processes, the hypothesis of equal error rates for the individual faults was
tested by use of the maximum likelihood ratio test described on pages 236-
239 in Cox and Lewis [20] . However, the expression for the test statistic
has been modified since the form derived in Cox and Lewis does not account
for censored data (and granulated time).

The modified test statistic is
J

H = 2 C[LjZn,(kj/K) - sjZne(sj/S)
j = 1

+ (sj - k j) z n e ((s j - k j) / (S - K))]

for

and
J

s = c s j .
j -1

where:

1. is thc: index of replications,

Ii is tiic total number of replications,

j is tlic index of perceived faults (or, more precisely, fixes),

J is tlic total number of uniquely identified fixes,

t,, is the time (counted from the start of replication i) of the first error
ascribed to perceived fault j (or uniquely identified fix j) during the
z t h replication the ending time of the replication if no error was
ascribed to perceived fault j during the it" replication,

19

. .

kj is the number of replications that contained an error ascribed to per-
ceived fault j

The test statistic has, asymptotically, a Chi-squared distribution with the
degrees-of-freedom parameter equal to one less than the number of uniquely
identified faults (or more correctly, fixes) considered; for the full error data
summarized in Table 3.2 , the degrees-of-freedom parameter is qua3 to J-
1. For the data in Table 3.2 , using the full data the test statistic equals
approximately 6975 and 7782 for programs 1 and 3, respectively; for the
partial data (that exclude from consideration faults for which fewer than
ten errors were observed) it equals approximately 3630 and 5220.

Clearly, the null hypothesis (of equal error rates for the individual faults)
is rejected for both programs at an extremely high level of significance. If
only the uncensored data are used, the null hypothesis is still rejected at
an extremely high level of significance for both programs. (Program 2 was
not considered, since only one fault was ever discovered in the program.)

20

,

O N E 1
2

where:

100 109
100 184

Table 3.2: Summarized Error Data for MLE Ratio Test

PARTIAL
FULL
THREE

11 2 990;641 - 795 382,966 - 807 3,324,920
1 100 126
2 78 221.559

100
100
100
100
100
95
9
1

PARTIAL
FULL

3,310
38,585
6,463

10,842
20,555

302,918
957,237
994.072

- 1,474 637,930
- 1,479 1,553,000

I 5
6
8
9
10
11
12

' 13
14
15
16
17
18

100
100
100
100
100
100
100
100
100
100
100
96

100

7,964
4,698

4,698

1,988

4,698

7,964

4,698
4,696

7,964

4,698
5.053

250,239
106.885

i is the index of replications,

j is tho index of perceived faults (or, more precisely, fixes),

I,, is thc time (counted from the start of replication i) of the first error ascribed
to perceived fault j (or uniquely identified fix j) during the i*h replication
- or the ending time of the replication if no error was ascribed to perceived
fault j during the i t h replication,

kj is tiw number of replications that contained an error ascribed to perceived fault
i .

21

NUMBER OF
FAILED

VERSIONS
43
34

3.3

PATTERNS FAILING
OBSERVED WITH

NUMBER O F NUMBER O F FOR A TEE SAME
SUCCESSFUL ERROR SINGLE ERROR

VERSIONS PATTERNS VFRSIQN PATTERN
2 33 13 10
2 38 14 I4

DESIGN STATES
The 100 automated replications of testing resulted in the observation of
45 versions out of a possible 4,095 versions for the &st program, and 36
versions out of a possible 131,071 versions for the third program as shown
in Table 3.3. Each of these unique versions constitutes a design state.
These small numbers of observed versions suggest that a (statistical) order
of precedence of fault detection and r e m o d exists among all faults.

Table 3.3 also gives the number of patterns of errors observed and the
16-bit output vector. These data indicate that (i) a version of the program
can produce several error patterns (e.g., in the extreme case for the third
program, one version produced 14 error patterns) and (ii) one error pattern
can be produced by several distinct versions (e.g., in the extreme case for
the first program, 20 versions produced the same pattern of errors). The
latter indicates the unsurprising result that different faults can provoke the
Sitme error manifestation.

Tables 9 through 32 in the appendix contain the times to failure of each
version or design state for the first and third programs respectively. These
data are summarized in Tables 3.4 and 3.5 which show the combinations of
faults present and the average life length of each of these design states.

PROGRAM
One

Three

Table 3.3: Version Statistics

I I ERROR

22

Table 3.4: Program One Design State Failure Times

' .

23

Table 3.5: Program Three Design State Failure Times

17, 19-20 47 133,183 2,833.68
20 484 24.20

18

6

8
7

5, 8, 13, 1 5 2 0
9
10 2, 1520

5, 8, 13, 17-20 33 2210 66.97
1,167 64.83

I. I

24

3.4 INTERACTING FAULTS
The data in Table 3.6 were generated by special versions of one of the tested
programs (specifically, faults 7 and 8 in program 1) operating upon identical
input to the versions. The first column of the table can be considered to
contain data from program 1 with - only fault 7 present; the second column,
program 1 with only - fault 8 present; the third column, program 1 with
both 7 and 8 but no others present. “S”s indicate successful operation;
“F”s indicate failure. Thus, the first row of the table indicates that for
1,714,177 randomly chosen cases, the three version agreed on the correct
output (the inputs to the three versions being the same in a case).

The phenomenon represented by these data has been called “fault in-
teraction”: to wit, two (or more) faults are said to be interacting faults
when the error set (the set of points, from the input space of the mod-
iile that translates into erroneous outputs) that exists when the faults are
jointly prcsent in the code differs from the set that is the union (in the
mathematical sense) of the error sets of the faults separately (or in other
combinations) present in the software.

Intcrncting faults were discovered serendipitously during this experi-
ment brcmse of a sometimes symptom of interacting faults. The symptom
is the occurrence of an erroneous output that can be corrected by the repair
of either of several seemingly unrelated faults - seemingly unrelated in the
sense that, they are logically unrelated from the perspective of their origins
or causes; obviously they have some relationship in their synergistic effect
on thc computation. In Table 3.6 this corresponds to the S/S/F event that
occurrcd 4990 times. A conventional debugging process is likely to miss
this symptom because, upon detecting an error in the module containing
both faults, a programmer will most likely correct just one fault (which
ever one he discovers first) and never know that he had a choice. But the
rcpctitivc run technique is well suited for observing the option. And be-
c a u w of this “either-or” symptom during the generation of the error data
that is collected in the appendix, several such interacting fault pairs were
wreiidipitously discovered - faults 7 and 8 of program 1, faults 2 and 13
o f prograin 3, and the triplet of faults 7 (later determined to not be a real
fault), 16, and 20 of program 3. (Fault 20 is not listed in Table 3.2 or in
the appendix because it did not cause an error and was not detected until
well after the generation of the data in the appendix was completed and 12

25

million special cases were being run to seek and to examine the interaction
phcnornenon among fault pairs.)

Table 3.6: Counts for Interacting Faults

Fault 7
present

S
S
S
S
F
F
F
F

Fault 8
present

S
S
F
F
S
S
F
F

Faults 7 & 8
present

S
F
S
F
S
F
S
F

Consider the following examples. It could happen that the error sets
for faults jointly present or separately present could be approximately the
same “size” but consist of different points (clearly the case for the value
4990 as opposed to the values 349, 473, and 1122 in Table 3.6) - so that
after the detection of an error and proper correction of one of the faults,
inputs that had previously tested out as not generating errors could be in
the resulting error set.

Or it could happen that the error set when two faults are jointly present
in code is much smaller than the error set of either fault taken separately
(eg., if the 4990 had been 10 in Table 3.6); in such a case, the faults
could be considered to he almost compensating or mutually masking -
so that upon the eventual detection of an error, if only one of the faults
were corrected (and properly corrected), the error rate of the code would
incrcase.

Although there are insufficient data to support statements about the
significance of the phenomenon in reliability modeling, it is clear that the
phenomenon is a mechanism that can give rise to insidious effects that
plague software testing theory by causing - any modification of software to
leave all previous testing suspect.

Number
of Cases
1,714,177

4,990
349

19
473

0
1,122

12

26

Chapter 4

CONCLUDING REMARKS

The report presents the results of an experiment in software reliability based
on program samples of a radar tracking problem, N-version programming
as an error detection mechanism, and automated fault identification and
correction.

Testing the software modules with over three million input cases (of
which two million are reported in the earlier report to this study [ll])
corroborated the findings of a previous study [7,13]: the log-linear pattern
of error rates of design stages and rejection of the hypothesis that all faults
ill a program have the same error rate.

Additional testing (approximately twelve million input cases) and anal-
ysis of the resulting error data indicated that there is a fault interaction
plienonieiion that complicates the estimation of the error rates to be associ-
ated with some faults. The frequency of interacting faults in software and,
therefm c, the importance of accounting for this complicating phenomenon
in the Illodeling of software reliability is not yet known.

27

Bibliography

[l] J. R. Dunham and G. E. Migneault. An experiment in software relia-
bility. Talk presented at Seventh Minnowbrook Workshop on Software
Performance Evaluation, July 1984.

[2] John R. Garman. The “bug” heard round the world. Software Engi-
neering Notes, 6:3-10, October 1981.

[3] Military Standard Defense System Software Development DOD-STD-
2167. Department of Defense, Washington, D.C., May 1985.

[4] Military Standard Defense Sys tem Software Quality Evaluation DOD-
STD-2168. Washington, D.C., April 1985.

[5] Software Considerations in Airborne Systems and Equipment Certifi-
cation. Technical Report DO - 178a, Radio Technical Commission for
Aeronautics Secretariat, Washington, D.C., March 1985.

[S] Production of Reliable Flight Crucial Software: Validation Methods Re-
search for Fault- Tolerant Avionics and Control Systems Sub- Working-
Group Meeting. Conference Publication 2222, NASA-Langley Re-
sciarcli Center, Hanipton, VA, 1982.

[7] P. M. Nagel, F. W’. Scholz, and J. A. Skrivan. Software Reliability:
Additional Investigations Into Modeling with Replicated Experiments.
Contractor Report, 16481, NASA-Langley Resarch Center, Hampton,
VA, June 1984.

[8] R. E. Brooks. Studying program behavior experimentally - the prob-
lems of proper methodology. Communications of the A C M , 23(4):207-
213, April 1980.

28

[9] B. A. Sheil. The psychological study of programming. A C M Comput-
ing Surveys, 13(1), March 1981.

[lo] B. Littlewood. Theories of software reliability: how good are they and
Transactions o n Software Engineering, how can they be improved?

SE6(5), September 1980.

(111 J. R. Dunham and J. L. Pierce. An Experiment In Software Reli-
ability. Contractor Report 172553, NASA-Langley Research Center,
Hampton, VA, March 1985.

[12] J. R. Dunham and S. E. McBride. A U T O S I M - An Automated Repet-
itive Run Software Test Tool. Contractor Report 177930, NASA-
Langley Research Center, Hampton, VA, September 1985.

[13] Phyllis M. Nagel and James A. Skrivan. Software Reliability: Repet-
itive R u n Experimentation and Modeling. Contractor Report 165836,
NASA-Langley Research Center, Hampton, VA, February 1982.

[14] J. R. Dunham and L. A. Lauterbach. Reliability analysis of a three-
version software system. In Proceedings of COMPSA C 86, IEEE Com-
puter Society Press, Silver Springs, MD, October 1986.

[15] J . C. Knight, N. G. Leveson, and L. D. St. Jean. An empirical study
of failure probabilities in multi-version software. In T h e 16th Inter-
national Conference on Fault- Tolerant Computing Digest of Papers,
pages 135-139, IEEE Computer Society Press, Silver Springs, MD,
J U I X 1986.

[16] J . C. Knight, N. G. Leveson, and L. D. St. Jean. A large scale experi-
m m t in n-version programming. In The 15th International Conference
on Fault- Tolerant Computing Digest of Papers, pages 135-139, IEEE
Computer Society Press, Silver Springs, MD, June 1985.

[IT] J . R. Brown and H. N. Buchanan. The Quantitative Measurement of
Software Safety and Reliability. Technical Report SDP 1776, TRW
Systems Group, Redondo Beach, California, 1973.

29

[18] Thomas Moher and G. Michael Schneider. Metho& for Improving
Controlled Ezperimentation an Software Engineering. Technical Re-
port 80-8, Computer Science Department, University of Minnesota,
February 1980.

[19] A. Avizienis. Fault tolerance: the survival attribute of digital systems.
Proceedings of the IEEE, 66(lo), October 1978.

[20] D.R. Cox and P.A.W. Lewis. The Statistical Analysis of Series of
Events. John Wiley and Sons, New York, 1966.

30

APPENDIX. ERROR DATA

31

1: Seeds

32

TABLE 1. Seeds Used with the Pseudo-Random Number Generator

1050554872
1765936978
2008687904
1348542162
207784072

33

,

2: Input Cases t o Failure

34

TABLE 2. PROGRAM:ONE, FAULTS:1-12, REPLICATIONS:140

35

TABLE 3. PROGRAMZONE, FAULTS:1-12, REPLICATIONS:41-80

DRIGE'JAL PAGE IS
&)OR QUALITY

36

TABLE 4. PROGRAMZONE, FAULTSzl-12, REPLICATIONS:81-100

37

TABLE 5. PROGRAMzTWO, FAULTSZl, REPLICATIONS:1-100

38

TABLE 6. PROGRAMzTHREE, FAULTSzl-20, REPLICATIONS:1-40

39

TABLE 7. PROGRAMzTHREE, FAULTS:1-20, F?EPLICATIONS:41-80

REP FIX

-
76 I 2 I 86 I 146 I 86 1 146 1 86 I 86 I 86 1 86 1 146 I 86 1 86 I 22 I 3352 I 3352 I - -
77 I l l - I 69 I 69 I 69 I 69 I 69 I 69 I 69

A
.. . 69 69 69 22 1 0
78 I I I 1 I 42 I 42 1 4 2 I 4 2 1 4 2 1 42 I 1 42 42 42 53 1 1E
79 I 2 [I2 I 149 I I6 I 149 I 16 1 16 I 16 [3 149 16 16 3 1 1
en I 9 I i I ink I ink I in6 I ink I inn I ins I I 108 106 106 I O I 11

40

TABLE 8. PROGRAMlTHREE, FAULTS:1-20, REPLICATIONS:81-100

41

3: Design State Failure Times

42

TABLE 9. PROGRAMZONE, VERSIONS:1-13, REPLICATIONS:1-25

43

TABLE 10. PROGRAMZONE, VERSIONS:1-13, REPLICATIONS:26-50
(Version 8 did not fail on replications 2, 24, and 99.)

ORIGINAL PAGE IS
OF POOR QUALIT%

44

TABLE 11. PROGRAM:ONE, VERSIONS:1-13, REPLICATIONS:51:75

45

TAB LE 1 2. PROGRAM : 0 NE, VERSIONS : 1- 13,
R,EPLICATIONS:76:100

46
OJWINaL PAGE IS
OF POOR Q U U W

TABLE 13. PROGRAM:ONE, VERSIONS:1426, REPLICATIONS:1-25

47

TABLE 14. PROGRAM:ONE, VERSIONS:14-26, REPLICATIONS:26-50
(Version 17 only failed on replications 4, 7, 14, 25, 33, 52, 53, and 89.)

48

TABLE 15. PROGRAMZONE, VERSIONS:14-26,
REPLICATIONS:51-75

49

TABLE 16. PROGRAM:ONE, VERSIONS:14-26,
REPLICATIONS:76-100

50

.

.

TABLE 17. PROGRAM:ONE, VERSIONS:27-39, REPLICATIONS:1-25

51

TAB LE 1 8. PROGRAM :ON E, VERSIONS 127-39, REPLICATIONS 125-50
(Version 33 failed on Replication 53 only.)

52

TABLE 19. PROGRAMZONE, VERSIONS:27-39,
REPLICATIONS:51-75

53

TABLE 20. PROGRAM:ONE, VERSIONS:27-39,
REPLICATIONS:76- 100

54

TABLE 21. PROGRAM:ONE, VERSIONS:40-45, REPLICATIONS:1-50
(Versions 42, 43, 44, and 45 never failed.)

55

TABLE 22. PROGRAM:ONE, VERSIONS:40-45,
REPLICATIONS:51,100

56

DRKJNAL PACE IS
QE POOR QUALITY

TABLE 23. PROGFUM:THREE, VERSIONS:1-13,
REPLICATIONS: 1-25

57

TABLE 24. PROGRAM:THREE, VERSIONS:1-13,
REPLICATIONS:26-50

(Version 7 did not fail on Replications 5, 24, 56, and 75.)

58

ORIGINAL PAGE IS
SX QOOR QUALITY

TABLE 25. PROGRAMzTHREE, VERSIONS:1-13,
REPLICATIONS:51-75

59

TABLE 26. PROGRAM:THREE, VERSIONS:1-13,
REPLICATIONS:76- 100

60

ORIGINAL PAGE IS
&%$ R W R QUALITY

TABLE 27. PROGRAMzTHREE, VERSIONS:14-26,
REPLICATIONS: 1-25

61

TABLE 28. PROGRAMzTHREE, VERSIONS:14-26,
REPLICATIONS:26-50

62

ORIGINAL PAGE IS
OF POOR QUmm

TABLE 29. PROGRAMzTHREE, VERSIONS:14-26,
REPLICATIONS:51-75

63

TABLE 30. PROGRAM:THREE, VERSIONS:14-26,
REPLICATIONS: 76- 100

64

TABLE 31. 'PROGRAM:THREE, VERSIONS:27-36,

(Version 27 failed on Replications 20, 33, 71, and 84 only,
Version 28 failed on Replication 25 only, and

Versions 35 and 36 did not fail.)

REPLICATIONS: 1-50

65

TABLE 32. PROGRAMzTHREE, VERSIONS:27-36,
REPLICATIONS:51-100

.

66

Standard Bibliograpgc Page

I

4. mue 8W.t subrltk
ANI?xPmwmINsoFlwARE-

1. RcporLNa
NASA CR- 178395

&-Dab -
Januarv 1988 . d - - - -

.a ~ktrrcr

softwarcrtliability
software trror rata
Fault tolerant software

