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Chapter 1 

INTRODUCTION 

1.1 

1.1.1 

BACKGROUND 
Software Reliability Research Goals 

The so,,ware reliability research sponsored by NASA-Lang-iy Research 
Center (NASA-LaRC) focuses on the development of a credible method 
for predicting operational reliability - that is, predicting the improbability 
that the system will fail due to residual faults remaining in the software 
[l]. It is these residual faults, which surface infrequently, that cause the 
rare event or extremely improbable failures. As evidenced by the first 
well-publicized Space Shuttle software bug, the failure of the initialization 
logic in J. Garman’s words resulted from a “very small, very improbable, 
very intricate, and a very old mistake” [2]. This bug typifies the rare and 
convoluted combination of events which causes carefully developed software 
to fail. 

Although considering all faults is important in reliability prediction, the 
most probable faults are often eliminated using the software quality assur- 
ance methods such as those described in the new DoD standards STD-2167 
for software development [3], STD-2168 for software quality evaluation [4], 
and in the certification guidelines described in [5] . In systems critical to 
the flight of civil aircraft, safety requirements impose demanding reliabil- 
ity requirements. Accordingly, the System Validation Methods Branch of 
NASA-LaRC has used a value of as the maximum probability of sys- 
tem failure for a ten-hour flight as an informal standard in the search for 
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a credible reliability prediction method for validating critical software [6]. 
To date no known software has been validated to that extent. 

1.1.2 Software Error Experiments 
As Phyllis Nagel wrote in the first report on the repetitive run experi- 
ments for gathering software error data, “Little software reliability growth 
modeling has been based on feedback gained from controlled experiments” 
(7, page 21. The method of investigation, then, is to conduct a series of 
controlled experiments which provides this feedback. These experiments 
constitute one aspect of the NASA-LaRC software reliability program, viz, 
the collection and analysis of software failure data of laboratory controlled 
quality. 

The Research Triangle Institute (RTI) has participated in this program 
by conducting software error experiments using the computing facilities of 
AIRLAB at NASA-LaRC. RTI has conducted two software error gather- 
ing studies. Both studies were conducted in a controlled environment to 
(i) emulate the production environment of a software engineer developing 
life-critical software and (ii) as much as possible, hold constant the usu- 
ally varying exogenous factors in actual development environments [8,9]. 
This report describes the first of these studies; specifically, a three-version 
implementation of a radar tracking problem. 

1.2 DEFINITION OF TERMS 
The following lists defines the terms which are used throughout this report. 

0 APPLICATION TASK - A software module being tested for reliabil- 
ity, previously referred to as an AT,, or Application Task i. 

0 DESIGN STAGE - One more than the number of corrections made 
sequentially to the code under test during a replicate. A correction is 
to be interpreted as “the set of all faults fixed at the same time.” 

e DESIGN STATE or VERSION - An instantiation of an implemen- 
tation of the code under test. During the software fault diagnosis- 
correction process, the program fixes result in several design states or 
versions of the code. 
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0 PROGRAM or IMPLEMENTATION - An independently coded ver- 
sion of the same functional specification (i.e., one of the application 
tasks). 

0 REPLICATE, REPLICATION, or REPETITIVE RUN - A set of test 
cases applied to the code under test. (See Section 2.4.1 for further 
explanat ion. ) 

The use of the terms failure, error, fix, and fault in this report are 
consistent with the definitions given below: 

0 FAILURE - A program failure occurs when one or more observed 
output value(s) disagree(s) with the correct output value(s). 

0 ERROR - The incorrect element(s) of the observed output d u e ( s )  
at the time of failure. 

0 FIX - The minimum code change required to correct an error. 

0 FAULT - The conceptual flaw in the program which is corrected by 
a fix. 

1.3 SUMMARY 
The software error data compiled and analyzed as a part of the NASA-LaRC 
program of experimentation and documented in this report, were collected 
with the following specific goals in mind: 

0 determining if the error rates corresponding to the (sequentially gen- 
crated) design stages of a program follow a log-linear pattern, 

0 twtirig the hypothesis of equal error rates associated with each known 
fault, and 

0 providing additional insight into how software fails. 

With respect to thc first goal, analysis of software error data yielded 
an independent confirmation of the results of Nagel, et al. [7] in that the 
wror rates of design stagcs were observed to follow a log-linear pattern, as 
described in Section 3.1. 
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The testing of thc hypothesis of equal error rates associated with each 
kiiowii fiiiilt,  ;dso c*oi i f irr i ic -c l  t,lw fiiidiiigs of N;igcl, (4, 111 (71 . This result, 
renders suspect the assumption that the program’s failure rate is a constant 
multiple of the number of residual bugs which underlies some of the current 
software reliability growth models [lo]. 

In Section 3.4, the identification of interacting faults provides additional 
insight into the software failure process. The authors suspect that less 
reliance on black box modeling of software reliability growth may prove 
useful for improving the predictive validity of models of software reliability 
growth. 

1.4 RELATED RESEARCH REPORTS 
Additional information about the experiment can be found in NASA CR- 
172553 [ll]. Additional information about the automated repetitive run 
modeling tool, AUTOSIM, developed for the purpose of this study, can be 
found in NASA-CR 177930 [12]. The related Boeing Computer Services’ 
study ki documented in NASA CR-165836 [13] and NASA CR-16481 [7]. 
N-version experimentation with the radar tracking problem can be found 
in 1141 and [15,16] . 

4 



Chapter 2 

EXPERIMENT OVERVIEW 

2.1 THE CODE UNDER TEST 

2.1.1 The Radar Tracking Problem 
The modules from which error data were gathered were independently 
codcd programs for a hypothetical radar tracking problem. Slightly dif- 
fering specifications of the problem exist. The first use of the problem was 
in a 1973 TRW study which dealt with the quantitative measurement of 
software reliability and safety [17] . The problem (specification) was used 
in 1979 in the repetitive run modeling study by Nagel et al. [13] that is 
the forerunner of this study. The version of the specification from which 
the modules used in this study were coded is contained in the recent RTI 
contractor report [ 111 to NASA. A paraphrased version of the specification 
used in this study has since been used by Knight et al. [15,16] in a study 
of  coincidental errors in dissimilar, functionally equivalent (i.e., N-Version) 
soft, w arc. 

2.2 SOFTWARE DEVELOPMENT 

2.2.1 Task Staffing and Management 
T1w functionally redundant software components developed as a part of this 
study were coded at RTI by programmers (with 2 to 8 years of program- 
ming experience) using a link to the computational facilities in the AIRLAB 
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at NASA’s Langley Research Center. Senior software engineers and soft- 
ware analysts implemented the error detection algorithms and constructed 
the test harness used. English language specifications were provided to 
the programmers to develop the system components. The specification 
provided was written by the senior systems analyst who also coded and ex- 
tensively tested a comparison version to solve the radar tracking problem. 
The comparison version was coded prior to providing the specifications to 
the programmers and therefore served as a prototype used to debug the 
test harness. The programming activity was managed in a conventional 
fashion with the exception that the programmers were instructed not to 
discuss their code with anyone other than their manager or the senior sys- 
tems analyst who was responsible for answering all specification questions. 
The programmers were instructed to optimize the reliability of their code. 

2.2.2 Programmer Selection 
The moderate to advanced skill level programmers were selected by con- 
sidering the criteria reported by Moher and Schneider [18]. A form based 
on this criteria was used to screen applicants and those considered were 
exposed to a series of interviews by the project staff. A competitive salary 
was paid to attract qualified programmers. 

2.2.3 Data Collection 
2.2.3.1 Secondary Data 

Data were collected both manually and automatically during code develop- 
ment and repair. These data are primarily descriptive of the development 
process. Manual data collection was achieved through the use of project 
notebooks and special forms. An instrumented data collection environment 
[ 111 wits used to automatically collect data on programmer activity. 

When a program fails during testing, the programmer is notified by 
electronic mail that his or her program has failed. The mail message in- 
dicates if an abend occurred or which outputs are in error. If an abend 
occurred, the trace back message was provided. The input case which the 
program failed to execute successfully was also provided. Changes made 
by the programmer to the failed program were annotated in the code using 
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a standard syntax. These changes were also reported on a program change 
report form. 

2.2.3.2 Faults/Fixes Data 

This data compilation augments a previous manual data collection activity 
using the same radar tracking software implementations. The manual data 
collection activity identified 11 faults in one program, 1 fault in a second 
program, and 20 faults in a third program version. Table 2.1 describes 
the faults observed for each program. These faults are defined by the fixes 
required. Note that fixes 3 and 4 of the third program have been identified 
as invalid fixes. These fixes are fixes for perceived faults that did not exist, 
thus reducing the number of valid faults observed from 20 to 18. Fixes 3 and 
4 have been kept in the table merely to keep the fix numbering consistent 
with thc raw data files. A more complete documentation of this manual 
data collection activity and the corresponding analyses can be found in 
Dunham, et al. [ll]. 

The execution of the 100 automated replications resulted in no observa- 
tions of an error requiring application of fix 7 to one of the independently 
coded modules to correct the error. Since this fix was applied five times 
during 25 earlier replications (See (11, page 561 ), this lack of observation 
promptod the checking of its validity. 

The logical condition bit CMM(7) is set to 1 if the following logical 
condition as stated in the specifications is satisfied: 

A t  least one of any n consecutive data points lies a distance greater than €1 

from the line joining the fird and last of these points. 

Fix 7 corresponds to handling of degenerate conditions, i.e. when N > P, 
whrrc P is the number of ( 2 , ~ )  coordinates provided to the subroutine 
which tcsts the logical condition. Figure 2.1 depicts this subroutine, named 
COND7, with and without fix 7 installed. As shown in this figure, fix 7 
changes code in the COND7 subroutine so that the subroutine exits with 
CMM(7)=O prior to the execution of a DO LOOP if the upper bound on 
the DO LOOP is less than the lower bound. If the upper bound is less than 
the lower bound in FORTRAN77 and fix 7 is not installed, then the DO 
LOOP is not executed. The control flow bypasses the DO LOOP, executes 
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Table 2.1: Faults/Fix Descriptions 

." 
20 

I 1 computes t h e  arcco8ine. 
6 I C M M ( ~ )  .pccifiod LT. on bound instead Of LE. 

I ? I Function ANGLEA Idled to complete FIX DO 1 by not changing rll 

, 
is related to fix I?. 
FUNCTION P m D I S  . program abendcd when all 3 points were 
the  same 

.~ 

variable names. 
Function ANGLEA program abendcd d u e  to an out-of-bound 
argument when calling the  FORTRAN library 
routine which computer the  arccosine. 
CMM(1)  - used wrong formula to compute  t h e  difference between 
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I 
FC.  I 

f any 
u Nl 
e handling of computation 3 thru 6 CMM( 1)  through ( . , 

7 th ru  15 CMM 7 thru CMM 
when the No. of d a t a  points is small. 

15 inappropriale handling of 
comD!t!tion when t a e  Lo. of d a t a  points is smdl. .. ... kIM(7) - the ?&! u er pLgra: oun ol abended a d o  loo wPhen was tryi tncorrcctry so.. 

._dram abended due to a division by aero in F . M M ( 3 1  - Program returned wrong value from AGLCOS . Thls  . fix 

- 
I ." , 

I *a I C  
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. 
the statement CMM(7)=O and returns with CMM(7)=O. Thus, the result 
is the SWAC with and without fix 7 installed. 

Re-execution of the test cases for the manual replications during which 
fix 7 was observed indicated that fix 7 was applied in conjunction with fix 
16 and should not have been applied at all. For these failed cases, fix 16 
corrected the error when applied by itself. Fix 7 did not correct the error 
when applied by itself. 

The above analyses resulted in the determination that fix 7 is an invalid 
fix and should never have been applied. It is similar to fixes 3 and 4 
which were applied to handle the same degenerate condition which was 
observed in other subroutines as a result of errors in the CMM bits. It 
is a fix for a perceived fault that was not there. These invalid fixes were 
the results of a relaxed fault identification procedure used at the start of 
the experiment; a procedure which permitted the programmer to correct 
perceived but nonexistent faults. The procedure was later revised to reduce 
the probability of such erroneous fixes. 

The automated testing did not result in the observation of any new 
faults, and in fact resulted in the consideration of fix 7 as an invalid fix, 
thus further reducing the number of valid faults to 17. Fix 7 has also been 
retained in the table to keep the fix numbering consistent with the raw data 
files. 

2.3 ERROR DETECTION METHOD 
The independently coded modules were run for over 13 million input cases 
in the test harness which relied on the technique of N-Version Programming 
to detect program errors. Approximately 1 million of the cases generated 
the error data that appear in the appendix to this report; the other 12 
million cases were special, extra cases run to investigate the fault interaction 
phenomenon described in Section 3.4 . The test harness is described in an 
earlier contractor report for this study [ll] which also contains an appendix 
with crror data generated from an earlier set of 2 million input cases. 

N-Version programming involves a voting procedure on the outputs of 
N software modules independent coded to a common specification and op- 
erating upon the same input values [19] Intermediate and final program 
outputs were compared, rather than voted, in this study. Whenever an 
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Figure 2.1: Subroutine COND7 
(WITH FIX 7 INSTALLED) (WITHOUT FIX 7 INSTALLED) 

c AT LEAST ONE OF A N Y  N CONSECUTIVE 
C DATA POINTS LIES A DISTANCE THAN 
C EPSl  FROM THE LINE JOINING 
C THE FIRST AND LAST O F  THESE POINTS 

IMPLICIT NONE 
INTEGER.4 NLIM,J,K,LOLIM,I 
REAL.4 PERDIS,DIST 
INCLUDE ‘LICCOM.FOR’ 

NLIM-NBIG 
CMM(7)= I 
LOLIM=P-NLIMtl  
DO I=I.LOLIM 

J=I+NBIG-l 
K=I 
IF( DIST( 1. J).GT.O.O)THEN 

C NOW INITIALIZE FOR A LOOP 

DO WHILE(K.LT.J) 
K = K + l  
IF( PERDIS(l.J,K).GT.EPSl)RETURN 

END no 
C 
C WHEN THE FIRST AND LAST O F  
C N CONSECUTIVE DATA POINTS 
C ARE IDENTICAL THE CALCULATED 
C DISTANCE T O  COMPARE WILL BE 
C THE DISTANCE FROM THE COINCIDENT 
C POINT T O  ALL OTHERS O F  
C THE N CONSECUTIVE POINTS 

ELSE 
DO WIIILE(K.LT.J) 

K = K t I  
IF( DIST(I.K).GT.EPSl)RETURN 
END DO 

END IF 
END DO 
C M M (  7)=0 
RETURN 
END 

C A T  LEAST ONE O F  ANY N CONSECUTIVE 
C DATA POINTS LIES A DISTANCE THAN 
C E P S l  FROM T H E  LINE JOINING 
C T H E  FIRST AND LAST OF THESE POINTS 

IMPLICIT NONE 
INTEGER.4 NLIM,J,K.LOLIM,I 
REAL.4 PERDIS,DIST 
INCLUDE ‘LICCOM.FOR’ 

C NOW INITIALIZE F O R  A LOOP 
NLIM=NBIG 

C** FIX 7 changer next line from CMM(7)=1 
CMM( 7)=0 
L O L I M I P - N L I Y t l  

IF (LOLIM.LT.1)RETURN 
CMM( 7)- 1 
DO Im1,LOLIM 

C** FIX 7 d d s  tbe next two lines 

JeI+NBIG-1 
K=I 
IF( DIST( I,J).GT.O.O)THEN 

DO WHILE(K.LT.J) 
K r K t l  
IF( PERDIS( I,J,K).GT.EPSl)RETURN 

END DO 
C 
C WHEN T H E  FIRST AND LAST OF 
C N CONSECUTIVE DATA POINTS 
C ARE IDENTICAL THE CALCULATED 
C DISTANCE T O  COMPARE WILL BE 
C T H E  DISTANCE FROM THE COINCIDENT 
C POINT T O  ALL OTHERS O F  
C THE N CONSECUTIVE POINTS 

ELSE 
DO W HILEt K. LT. .I) 

K r K t l  
IF( DIST( I.K).GT.EPSl)RETURN 
END DO 

END I F  
END DO 
CMM( 7)=0 
RETURN 
END 
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output inequality occurred, the testing was halted and the faulty mod- 
ule(s) identified, analyzed, and corrected. This test method detected errors 
except when all three modules and the extensively tested version failed 
identically in the same output bit(s). 

In addition to providing software error data for computing component 
version reliability, the N-version test harness provided data on the effective- 
ness of different strategies for selecting an answer from occasionally differing 
outputs. Analysis of this data is reported elsewhere [14]. 

2.4 THE REP'ETITIVE RUN TECHNIQUE 

2.4.1 Replicates 
A repetitive run technique [13] is used for error rate estimation. This 
approach provides better estimates of the program error rates as well as 
estimates of the error rates associated with the individual faults. It involves 
repetitively testing a software module from its pre-release version through 
the detection and correction of m faults. The testing uses inputs generated 
at random according to a pre-specified program usage distribution. During 
the testing called the first replicate, the faults are identified and removed, 
and the fixes corresponding to each fault are saved. Next, the software is 
returned to its initial state and executed with a different set of randomly 
generated inputs. As the errors due to a specific fault are again detected, the 
corresponding fix is applied and the number of input cases to observation 
of each output error is again recorded. This process is called the second 
replication. By generating additional replicates (i.e. the repetitive run 
technique) an estimate of the error rate can be determined by the program 
design stage, by the specific fault, or by the program design state or version. 

2.4.2 Number and Length 
To determine the number of automated replications to be conducted, the 
number of failures required to accurately estimate p ,  the probability that 
the program will fail due to a specific fault on a given execution is deter- 
mined using the same argument given in [ll]. This determination is based 
on controlling the relative error, r, in the estimated failure probability, I ;  for 
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Table 2.2: Upper Limits for Replication Sample Sizes 

.998626 

.999993 

- 
.25 
44 
62 
87 
164 
232 
324 
400 

- 

- 

r 
.1 
272 
384 
543 

1,024 
1,444 
2,025 
2,500 

- 
.01 
27,200 
38,400 
54,300 
102,400 
144,400 
202,500 
250,000 

the allowable risk (1-0) close to 1. That is we wish to determine k, the num- 
ber of replicated observations required such that Pr( I f i  - p J  2 rp )  5 (1 - a). 
Table 2.2 shows the upper limits for the number of replicated observations 
required for different values of (1 - a) and r assuming p is sufficiently close 
to 0. Based on this table, we chose 100 replications for estimating p .  

The length of a replication was set to 10,000 test cases which is the 
same stopping rule selected for the manual data collection activity. 

The crror data collected are in Tables 2 through 32 in the Appendix. 

2.5 THE AUTOSIM TOOL 
Figurc 2.2 portrays AUTOSIM (121, the automated error diagnosis and cor- 
rection tool developed to expedite the software error data collection process 
tinder thc repetitive run technique. This tool replaced a programmer with 
one year of experience who was performing the time consuming and error 
prone rcpetitive run testing task. The figure shows the quasi-static data 
structurcs which remain relatively constant during testing and the dynamic 
data striictures which are updated by either the AUTOSIM software or the 
N-VERSION CONTROLLER software. 

The contents of the quasi-static data structures depend on the code 
under test and are updated only when a new fault is identified. The over- 
write, ahend, and output error maps contain information on which code 
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fixes are associated with different types of faults. The code library contains 
the version of the code after acceptance testing and the code fixes. 

The dynamic structures include a trace describing which faults have 
been diagnosed and corrected during each replication. The system state 
includes the corrected versions of the code, the current replication number, 
the test case number, the input and output for the current test case, and 
synchronization information. 
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Figure 2.2: The AUTOSIM Tool 
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Chapter 3 

ERROR ANALYSIS 

3.1 ERROR RATES OF DESIGN STAGES 
The (absolute value of the natural logarithm of the) maximum likelihood 
estimate of a design stage’s error rate is tabulated in Table 3.1 . The 
estimate includes the effect of censored samples and is, of course, based on 
the assumption that a design stage of a software module has a constant 
probability of error per input case. The statistic, for programs 1 and 3, 
is plotted in Figures 3.1 and 3.2 . Also plotted are the natural logarithms 
of the corresponding minimum and maximum times to error of the design 
stages. The plots corroborate the observations of log linear trends that 
were made in the Boeing study (7,131 . The raw error data are in Tables 2 
through 8 in the Appendix. 
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Table 3.1: Error Rates by Design Stage 

* 

h ( M I N ( r i J  1) 

0.00 
0.00 
0.00 
0.00 
0.00 
2.30 
1.39 
4.45 
7.29 
0.00 

I 0.00 

0.00 
0.00 

I 0 00 
0.69 
2.40 
4.62 
7.13 

I 

~~ ~ 

PROGRAM I DESIGNSTAGE 1 k j  lna (MAX(+i j ) )  

0.60 
4.13 
4.80 
6.38 
$.e8 
9.07 
9.18 
9.m 
9.18 
1.39 
1.39 

5.0s 
8.M 
8.85 
9.20 
9.20 
9.13 

4.95 

100 
5 100 
6 99 

T W O  
THREE 

7 91 
8 45 
9 3 
1 100 
1 100 
2 100 
3 100 
4 100 
5 100 
6 72 
7 27 
8 5 

185,929 
439,878 
288.225 

139 
123 

1,418 
2,590 

25,073 
76,918 

288.440 

182,417 
~ 386,439 

7.62 
9.17 

11.47 
0.33 
0.21 

' 2.65 
3.25 
5.52 
6.65 
8.30 
9.57 

10.50 

where: 

i is the index of replications 

j is the index of design stages 

I C ,  is the number of replicates containing a j t h  design stage in which an error was 
observed by the time of the stopping case of the replicate 

r,, is the time (i.e., number of cases) to observation of an error of the it* design 
stage during the i*h replicate the time for the j t h  design stage to reach 
the stopping case of the z t h  replicate - whichever occurred first. (Note that 
~ ; j  is measured from the start of the j t h  design stage during the i"' replicate, 
not from the start of the it" replicate; thus, r,j = 0 for replicates that end 
Iwfore a j i h  design stage is created.) 

d e  X j  is the maximum likelihood estimate of the error rate associated with the 
j t h  design stage and is given by mfe A, = Ifn,(! - k j /  E:z rij)]. 
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Figure 3.1: Logarithms of the Estimated Error h t e s  of the Design Stages 
for Program One 
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Figure 3.2: Logarithms of the Estimated Error Rates of the Design Stages 
for Program Three 
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3.2 ERROR RATES OF INDIVIDUAL FAULTS 
On the assumption that individual faults give rise to independent error 
processes, the hypothesis of equal error rates for the individual faults was 
tested by use of the maximum likelihood ratio test described on pages 236- 
239 in Cox and Lewis [20] . However, the expression for the test statistic 
has been modified since the form derived in Cox and Lewis does not account 
for censored data (and granulated time). 

The modified test statistic is 
J 

H = 2 C[LjZn,(kj/K) - sjZne(sj/S) 
j = 1  

+ (sj - k j ) z n e ( ( s j  - k j ) / ( S  - K ) ) ]  

for 

and 
J 

s = c s j .  
j -1 

where: 

1. is thc: index of replications, 

Ii is tiic total number of replications, 

j is tlic index of perceived faults (or, more precisely, fixes), 

J is tlic total number of uniquely identified fixes, 

t,, is the time (counted from the start of replication i) of the first error 
ascribed to perceived fault j (or uniquely identified fix j )  during the 
z t h  replication the ending time of the replication if no error was 
ascribed to perceived fault j during the it" replication, 

19 



. .  

kj is the number of replications that contained an error ascribed to per- 
ceived fault j 

The test statistic has, asymptotically, a Chi-squared distribution with the 
degrees-of-freedom parameter equal to one less than the number of uniquely 
identified faults (or more correctly, fixes) considered; for the full error data 
summarized in Table 3.2 , the degrees-of-freedom parameter is qua3 to J- 
1. For the data in Table 3.2 , using the full data the test statistic equals 
approximately 6975 and 7782 for programs 1 and 3, respectively; for the 
partial data (that exclude from consideration faults for which fewer than 
ten errors were observed) it equals approximately 3630 and 5220. 

Clearly, the null hypothesis (of equal error rates for the individual faults) 
is rejected for both programs at an extremely high level of significance. If 
only the uncensored data are used, the null hypothesis is still rejected at 
an extremely high level of significance for both programs. (Program 2 was 
not considered, since only one fault was ever discovered in the program.) 
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, 

O N E  1 
2 

where: 

100 109 
100 184 

Table 3.2: Summarized Error Data for MLE Ratio Test 

PARTIAL 
FULL 
THREE 

11 2 990;641 - 795 382,966 - 807 3,324,920 
1 100 126 
2 78 221.559 

100 
100 
100 
100 
100 
95 
9 
1 

PARTIAL 
FULL 

3,310 
38,585 
6,463 

10,842 
20,555 

302,918 
957,237 
994.072 

- 1,474 637,930 
- 1,479 1,553,000 

I 5  
6 
8 
9 
10 
11 
12 

' 13 
14 
15 
16 
17 
18 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
96 

100 

7,964 
4,698 

4,698 

1,988 

4,698 

7,964 

4,698 
4,696 

7,964 

4,698 
5.053 

250,239 
106.885 

i is the index of replications, 

j is tho index of perceived faults (or, more precisely, fixes), 

I,, is thc time (counted from the start of replication i) of the first error ascribed 
to perceived fault j (or uniquely identified fix j )  during the i*h replication 
- or the ending time of the replication if no error was ascribed to perceived 
fault j during the i t h  replication, 

kj is tiw number of replications that contained an error ascribed to perceived fault 
i .  
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NUMBER OF 
FAILED 

VERSIONS 
43 
34 

3.3 

PATTERNS FAILING 
OBSERVED WITH 

NUMBER O F  NUMBER O F  FOR A TEE SAME 
SUCCESSFUL ERROR SINGLE ERROR 

VERSIONS PATTERNS VFRSIQN PATTERN 
2 33 13 10 
2 38 14 I4 

DESIGN STATES 
The 100 automated replications of testing resulted in the observation of 
45 versions out of a possible 4,095 versions for the &st program, and 36 
versions out of a possible 131,071 versions for the third program as shown 
in Table 3.3. Each of these unique versions constitutes a design state. 
These small numbers of observed versions suggest that a (statistical) order 
of precedence of fault detection and r e m o d  exists among all faults. 

Table 3.3 also gives the number of patterns of errors observed and the 
16-bit output vector. These data indicate that (i) a version of the program 
can produce several error patterns (e.g., in the extreme case for the third 
program, one version produced 14 error patterns) and (ii) one error pattern 
can be produced by several distinct versions (e.g., in the extreme case for 
the first program, 20 versions produced the same pattern of errors). The 
latter indicates the unsurprising result that different faults can provoke the 
Sitme error manifestation. 

Tables 9 through 32 in the appendix contain the times to failure of each 
version or design state for the first and third programs respectively. These 
data are summarized in Tables 3.4 and 3.5 which show the combinations of 
faults present and the average life length of each of these design states. 

PROGRAM 
One 

Three 

Table 3.3: Version Statistics 

I I ERROR 
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Table 3.4: Program One Design State Failure Times 

' .  
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Table 3.5: Program Three Design State Failure Times 

17, 19-20 47 133,183 2,833.68 
20 484 24.20 

18 

6 

8 
7 

5, 8, 13, 1 5 2 0  
9 
10 2, 1520 

5, 8,  13, 17-20 33 2210 66.97 
1,167 64.83 

I. I 
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3.4 INTERACTING FAULTS 
The data in Table 3.6 were generated by special versions of one of the tested 
programs (specifically, faults 7 and 8 in program 1) operating upon identical 
input to the versions. The first column of the table can be considered to 
contain data from program 1 with - only fault 7 present; the second column, 
program 1 with only - fault 8 present; the third column, program 1 with 
both 7 and 8 but no others present. “S”s indicate successful operation; 
“F”s indicate failure. Thus, the first row of the table indicates that for 
1,714,177 randomly chosen cases, the three version agreed on the correct 
output (the inputs to the three versions being the same in a case). 

The phenomenon represented by these data has been called “fault in- 
teraction”: to wit, two (or more) faults are said to be interacting faults 
when the error set (the set of points, from the input space of the mod- 
iile that translates into erroneous outputs) that exists when the faults are 
jointly prcsent in the code differs from the set that is the union (in the 
mathematical sense) of the error sets of the faults separately (or in other 
combinations) present in the software. 

Intcrncting faults were discovered serendipitously during this experi- 
ment brcmse of a sometimes symptom of interacting faults. The symptom 
is the occurrence of an erroneous output that can be corrected by the repair 
of either of several seemingly unrelated faults - seemingly unrelated in the 
sense that, they are logically unrelated from the perspective of their origins 
or causes; obviously they have some relationship in their synergistic effect 
on thc computation. In Table 3.6 this corresponds to the S/S/F event that 
occurrcd 4990 times. A conventional debugging process is likely to miss 
this symptom because, upon detecting an error in the module containing 
both faults, a programmer will most likely correct just one fault (which 
ever one he discovers first) and never know that he had a choice. But the 
rcpctitivc run technique is well suited for observing the option. And be- 
c a u w  of  this “either-or” symptom during the generation of the error data 
that is collected in the appendix, several such interacting fault pairs were 
wreiidipitously discovered - faults 7 and 8 of program 1, faults 2 and 13 
o f  prograin 3, and the triplet of faults 7 (later determined to not be a real 
fault), 16, and 20 of program 3. (Fault 20 is not listed in Table 3.2 or in 
the appendix because it  did not cause an error and was not detected until 
well after the generation of the data in the appendix was completed and 12 
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million special cases were being run to seek and to examine the interaction 
phcnornenon among fault pairs.) 

Table 3.6: Counts for Interacting Faults 

Fault 7 
present 

S 
S 
S 
S 
F 
F 
F 
F 

Fault 8 
present 

S 
S 
F 
F 
S 
S 
F 
F 

Faults 7 & 8 
present 

S 
F 
S 
F 
S 
F 
S 
F 

Consider the following examples. It could happen that the error sets 
for faults jointly present or separately present could be approximately the 
same “size” but consist of different points (clearly the case for the value 
4990 as opposed to the values 349, 473, and 1122 in Table 3.6 ) - so that 
after the detection of an error and proper correction of one of the faults, 
inputs that had previously tested out as not generating errors could be in 
the resulting error set. 

Or it could happen that the error set when two faults are jointly present 
in code is much smaller than the error set of either fault taken separately 
(eg., if the 4990 had been 10 in Table 3.6 ); in such a case, the faults 
could be considered to he almost compensating or mutually masking - 
so that upon the eventual detection of an error, if only one of the faults 
were corrected (and properly corrected), the error rate of the code would 
incrcase. 

Although there are insufficient data to support statements about the 
significance of the phenomenon in reliability modeling, it is clear that the 
phenomenon is a mechanism that can give rise to insidious effects that 
plague software testing theory by causing - any modification of software to 
leave all previous testing suspect. 

Number 
of Cases 
1,714,177 

4,990 
349 

19 
473 

0 
1,122 

12 
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Chapter 4 

CONCLUDING REMARKS 

The report presents the results of an experiment in software reliability based 
on program samples of a radar tracking problem, N-version programming 
as an error detection mechanism, and automated fault identification and 
correction. 

Testing the software modules with over three million input cases (of 
which two million are reported in the earlier report to this study [ll] ) 
corroborated the findings of a previous study [7,13]: the log-linear pattern 
of error rates of design stages and rejection of the hypothesis that all faults 
ill a program have the same error rate. 

Additional testing (approximately twelve million input cases) and anal- 
ysis of the resulting error data indicated that there is a fault interaction 
plienonieiion that complicates the estimation of the error rates to be associ- 
ated with some faults. The frequency of interacting faults in software and, 
therefm c, the importance of accounting for this complicating phenomenon 
in the Illodeling of software reliability is not yet known. 
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APPENDIX. ERROR DATA 
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1: Seeds 
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TABLE 1. Seeds Used with the Pseudo-Random Number Generator 

1050554872 
1765936978 
2008687904 
1348542162 
207784072 
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2: Input Cases t o  Failure 
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TABLE 2. PROGRAM:ONE, FAULTS:1-12, REPLICATIONS:140 
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TABLE 3. PROGRAMZONE, FAULTS:1-12, REPLICATIONS:41-80 

DRIGE'JAL PAGE IS 
&)OR QUALITY 
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TABLE 4. PROGRAMZONE, FAULTSzl-12, REPLICATIONS:81-100 
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TABLE 5. PROGRAMzTWO, FAULTSZl, REPLICATIONS:1-100 
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TABLE 6. PROGRAMzTHREE, FAULTSzl-20, REPLICATIONS:1-40 
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TABLE 7. PROGRAMzTHREE, FAULTS:1-20, F?EPLICATIONS:41-80 

REP FIX 

- 
76 I 2 I 86 I 146 I 86 1 146 1 86 I 86 I 86 1 86 1 146 I 86 1 86 I 22 I 3352 I 3352 I - -  
77 I l l - I  69 I 69 I 69 I 69 I 69 I 69 I 69 

A 
.. . 69 69 69 22 1 0 
78 I I I 1 I 42 I 42  1 4 2  I 4 2  1 4 2  1 42 I 1 42 42 42 53 1 1E 
79 I 2 [ I2 I 149 I I6 I 149 I 16 1 16 I 16 [ 3 149 16 16 3 1  1 
en I 9 I i I ink I ink I in6 I ink I inn I ins I I 108 106 106 I O  I 11 
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TABLE 8. PROGRAMlTHREE, FAULTS:1-20, REPLICATIONS:81-100 
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3: Design State Failure Times 
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TABLE 9. PROGRAMZONE, VERSIONS:1-13, REPLICATIONS:1-25 

43 



TABLE 10. PROGRAMZONE, VERSIONS:1-13, REPLICATIONS:26-50 
(Version 8 did not fail on replications 2, 24, and 99.) 

ORIGINAL PAGE IS 
OF POOR QUALIT% 
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TABLE 11. PROGRAM:ONE, VERSIONS:1-13, REPLICATIONS:51:75 
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TAB LE 1 2. PROGRAM : 0 NE, VERSIONS : 1- 13, 
R,EPLICATIONS:76:100 

46 
OJWINaL PAGE IS 
OF POOR Q U U W  



TABLE 13. PROGRAM:ONE, VERSIONS:1426, REPLICATIONS:1-25 
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TABLE 14. PROGRAM:ONE, VERSIONS:14-26, REPLICATIONS:26-50 
(Version 17 only failed on replications 4, 7, 14, 25, 33, 52, 53, and 89.) 
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TABLE 15. PROGRAMZONE, VERSIONS:14-26, 
REPLICATIONS:51-75 
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TABLE 16. PROGRAM:ONE, VERSIONS:14-26, 
REPLICATIONS:76-100 
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. 

. 

TABLE 17. PROGRAM:ONE, VERSIONS:27-39, REPLICATIONS:1-25 
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TAB LE 1 8. PROGRAM :ON E, VERSIONS 127-39, REPLICATIONS 125-50 
(Version 33 failed on Replication 53 only.) 
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TABLE 19. PROGRAMZONE, VERSIONS:27-39, 
REPLICATIONS:51-75 
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TABLE 20. PROGRAM:ONE, VERSIONS:27-39, 
REPLICATIONS:76- 100 
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TABLE 21. PROGRAM:ONE, VERSIONS:40-45, REPLICATIONS:1-50 
(Versions 42, 43, 44, and 45 never failed.) 
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TABLE 22. PROGRAM:ONE, VERSIONS:40-45, 
REPLICATIONS:51,100 
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DRKJNAL PACE IS 
QE POOR QUALITY 

TABLE 23. PROGFUM:THREE, VERSIONS:1-13, 
REPLICATIONS: 1-25 
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TABLE 24. PROGRAM:THREE, VERSIONS:1-13, 
REPLICATIONS:26-50 

(Version 7 did not fail on Replications 5, 24, 56, and 75.) 

58 



ORIGINAL PAGE IS 
SX QOOR QUALITY 

TABLE 25. PROGRAMzTHREE, VERSIONS:1-13, 
REPLICATIONS:51-75 
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TABLE 26. PROGRAM:THREE, VERSIONS:1-13, 
REPLICATIONS:76- 100 
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ORIGINAL PAGE IS 
&%$ R W R  QUALITY 

TABLE 27. PROGRAMzTHREE, VERSIONS:14-26, 
REPLICATIONS: 1-25 
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TABLE 28. PROGRAMzTHREE, VERSIONS:14-26, 
REPLICATIONS:26-50 
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ORIGINAL PAGE IS 
OF POOR QUmm 

TABLE 29. PROGRAMzTHREE, VERSIONS:14-26, 
REPLICATIONS:51-75 
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TABLE 30. PROGRAM:THREE, VERSIONS:14-26, 
REPLICATIONS: 76- 100 
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TABLE 31. 'PROGRAM:THREE, VERSIONS:27-36, 

(Version 27 failed on Replications 20, 33, 71, and 84 only, 
Version 28 failed on Replication 25 only, and 

Versions 35 and 36 did not fail.) 

REPLICATIONS: 1-50 
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TABLE 32. PROGRAMzTHREE, VERSIONS:27-36, 
REPLICATIONS:51-100 

. 
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