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A slip wvelocity method for two-dimensional incompressible turbulent
boundary layers was presented in reference l. The inner part of the boundary
layer was characterized by a law of the wall and law of the wake, and the
outer part was characterized by an arbitrary eddy viscosity model. In the
present study for compressible flows, only a law of the wall is considered.
The problem of two-dimensional compressible flow is treated first; then the
extension to three-dimensional flow is addressed.

Two-Dimensional Compressible Flow

Basic Equations

The governing equations for compressible boundary layer flow are
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where x and y are the normal and tangential coordinates, u and v are
the respective velocity components, p is the density, Po and U are the
density and fluid speed at the outer edge of the boundary layer, and u is the

dynamic viscosity. The sum of the dynamic viscosity and the turbulent eddy

viscosity e is defined as
: 3
wtuo o= K(x,y) poUS, (3)
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where K is a general nondimensional function of x and y, and Gi is the
incompressible displacement thickness.
In this treatment, the defect stream function of Clauser (ret. 2) is

used. This function is defined as
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where

The prime denotes differentiation with respect to n, and the shear stress

velocity u* is defined as
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where Ty and Py are the wall shear stress and density. The boundary layer

thickness parameter A is defined as

or
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Partial derivatives with respect to x and y are of the form
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where the dot denotes differentiation with respect to &£.

Law of the Wall

It is assumed that the flow is adiabatic, and the gas is calorically
perfect. The law of the wall for this flow is obtained with a treatment

similar to that of Van Driest (ref. 3) as
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where vy is the ratio of specific heats, x and B are the von Karman
constants, and a,, and M, are the adiabatic-wall speed of sound and dynamic
viscosity, respectively. The quantity r is the recovery factor, which is
typically evaluated as Prl/ 3 , where Pr is the Prandtl number. The equation

for the density for this flow is
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where Me is the edge Mach number. Since the ratio u /aaw is small, the

equation for u can be written as
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Note that the lowest order term in this equation is the same as the law of the

wall for incompressible flow.

The nondimensional shear stress velocity ratio is

(9)
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and where m(£) is defined as
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The Clauser pressure gradient parameter B is defined as
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where p is the pressure. The dot can be used to represent the gradient of
x as well as & since U 1is a function only of x =E.
An important relationship for the lowest order form of the stream
[ ]

function f(£,n) and its derivative f is obtained from the law of the

wall. Equation (8) can be written in terms of n and £ as
u=u" 1n (Re*n) +B} +0 (' /a_13) (12)
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where the Reynolds number based on the incompressible displacement thickness

*
Gi' the wall properties How and P, and the edge velocity U is
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The stream function £ can be expanded in terms of the small parameter Yy as
f = f0 + yf1+ e o o

With this expansion and equation (4), equation (12) can be written to lowest

order as
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This equation pertains throughout the inner region of the boundary layer.

Governing Equation for Qe

The governing equétion for fo is obtained from equation (2), the
tangential momentum equation. To establish the equation for fo' the mass flux
components pu and pv and the partial derivatives of u with respect to x and y
nust be expressed in terms of f,. With equations (4) and (7), the u component

of velocity and the density can he expressed to first order in y as
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With these equations the mass flux pu can be approximated as
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From equations (6) and (14) the derivative 3u/9x is obtained as
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The zero-order approximation for the mass flux component pv is obtained from
equations (1), (6), and (15) as
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Finally, the normal derivative of u is
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With equations (15), (16), (17), and (18), the tangential momentum equation

can be written as
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It should be noted that this stream function treatment is patterned after
that of Mellor and Gibson (ref. 4) for incompressible equilibrium boundary
layers. In particular, it is patterned after the lowest-order treatment of
Mellor and Gibson.

The three boundary conditions for £ _ involve the values of fo at the wall

o

and in the free stream and the value of the shear stress at the wall. Since



With boundary condition (22), this equation can be integrated across the

boundary layer to obtain
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With this value, the first integral of equation (19) for arbitrary n is

written as
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Note that no assumptions have been made which limit the arbitrariness of the
nondimensional viscosity coefficient K.

Match Point Location

The match point divides the outer and the inner reqions of the boundary
layer. In the outer part of the houndary layer the viscosity coefficient K is
arbitrary. In the inner reqion, the flow is governed by an empirical law
of the wall. There is one point, the match point, at which both the arbitrary
coefficient of viscosity and the law of the wall pertain. At this point the
stream function fJ and its first three derivatives with respect to n are
continuous. Note that in the parlance of asymptotic expansions, the "match
point" would be properly termed a "patch point."

It is assumed that the flow in the inner region and hence at the match

point is essentially in equilibrium. The quantities fg and fo

in the inner region are evaluated with the law of the wall as

"_ ___l_ = L l
o RN n{fo K



the mass flux comwponent pv must vanish at the wall, the defect stream

function f0 must also vanish at the wall:

Limit £ (&§,n) =0 (20)
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The free stream boundary condition is obtained from the definition of the

incompressible displacement thickness as
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With equations (4), (5), (9), and (18), the shear stress and shear stress at

the wall can be written as

From these equations, it is seen that the shear stress boundary condition is
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The governing equation for fo has a first inteqral. Equation (19) can be

written as
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Thus at the match point the governing equation (23) can be written as
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The governing equation is
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The solution for the match point is
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This solution depends strongly on the parameter

the function A:
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Shear Stress

The governing equation in the inner region can be written as
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If u and 3u/3y are known at some point y, the shear stress can be determined

as
1/2
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Edge Velocity Determination

If the total preséure at the edge of the boundary layer can be defined,

it can be used to determine the edge velocity U. The tangential momentum

equation at edge of the boundary layer is
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where P is the total pressure at the boundary layer edge.
A second approach is to define the boundary layer edge in terms of the
deviation of the total enthalpy from the freestream value.

Solution Algorithm

This solution process is for either an iterative solution of the
viscous-inviscid problem or a marching solution of the viscous problem with
the inviscid solution known. In either case, approximate values for the
solution u(x,y), v(x,¥), p(x,¥), and p(x,y) are known. Also, the parameter u*
is known. The six steps for one iteration are:

(1) From the turbulence model compute the edge velocity U and the product

*

(2) Calculate
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(4) Calculate
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(5) Compute the new solution u(x,y), v(x,y), p(x,y), and p(x,y)

using u and v, as boundary conditions.

(6) Calculate
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Note that the boundary conditions u and v, can be applied at the model
surface as a first approximation.

The main difficulty with the present method is the need to specify the
edge velocity U. For hypersonic flow and slender body flow U can be

replaced with u_ .

Cross-Flow Effects

Initially, at least, it will be assumed that a small crossflow approach
can be used. Cooke (ref. 5) has shown that the equation for the streamnwise
velocity component, measured relative to the velocity vector at the outer edge
of the boundary layer, for incompressible flow is independent of cross-flow
effects and hence is similar to the equation for two-dimensional flow. It

will be assumed that the same is true for compressible flow.
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In this treatment, it is assumed that the turning angle near the wall is
essentially linear with respect to distance fram the wall so that it can be
evaluated by extrapolation. The linear behavior of the turning angle near the
wall is supported by the data of Johnston (ref.6) and Van Den Berq, Elsenaar,
Lindhout, and Wesseling (ref. 7).

An additional arquement for linear extrapolation comes from the results
of Mellor (ref. 8) for two-dimensional, incompressible, high Reynolds number
flow and the three-dimensional extension of Goldberg and Reshotko(ret. 9).
Both of these treatments show that, to lowest order, the inner layer flow is
determined by viscous forces; pressure—gradient forces do not appear. Since
turning is the result of the interplay of pressure and viscous forces within
the boundary layer, it.: is reasonable to assume that turning is complete by the
time the inner region is reached and only viscous forces remain.

For purposes of illustration, let x,y, and z be Cartesian boundary layer
coordinates with y the normal coordinate. The respective velocity components
are u, v, and w. The turning angle ¢ and tangential velocity Ut an
are defined as
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let y, and y be the two locations immediately above the match point y .
1 2 m

The match point turning angle is
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and the law of the wall is expressed in terms of u as

tan
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The wvelocity components u and W which are needed as slip wvelocity boundary

conditions, are obtained from ¢m and u with the equations
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The equation for u is
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Implementation

Consider an x,y, 2z Cartesian coordinate system fixed to the three-
dimensional configuration with the x coordinate in the axial direction. Let

the unit normal to the surface be

> + x >
= + +
n 1nxjny knz

The flow angle ¢ Wwill be measured in the tangent plane (the plane normal
toh ). The angle ¢ will be measured from the line where a reference
plane intersects the tangent plane. The reference plane will be either the
x=y plane or the x-z plane, depending upon whether the projection of the unit

vector on the y-z plane is more closely aligned with the unit

L
n
*
J

vectors or E .

The unit wvector Ep in the direction of the projection ot n on the y-z

plane is
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Thus the direction cosines between ﬁp and the 3 and k axes are
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The conditions for choosing the reference planes are:
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x-y Plane as Reference
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The unit vector in the x-y plane normal to n is
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The wvelocity component in the x-y plane tangent to the surface is

Us x Ly 2 2,1/2 2 2,172 (2 2 ;/2
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where the velocity vector is
V=ul +vi+wk

The velocity camponent in the Ic direction tangent to the surface is

2 2
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The crossflow angle ¢ is defined as the angle in the tangent plane between

the velocity wvector and the intersection of the tangent plane with the x-~y

plane:
W -un.n_-wvnn_+ w(n2 + n2)
p=tan M} =tan T {—XE__¥E X ¥
s uny- vn,
Let n be the coordinate in the normal direction. The angqle ¢ at

m

the surface is obtained by linear extrapolation of the values % at n and ¢, at n, :

Now assume that the new "slip velocity" U ___, the angle ¢m’ and the

tan
"inner layer transpiration velocity" Vh have been determined. The values u,

v, and w are needed as boundary conditions:
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Uc= Utan cos 4’m' wc= Utansm *m

The wvelocity vector can be written as

+ > +
= + +
V 1 Uc n Vh lc“E

The Cartesian velocity components are

U n_n W
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x~z Plane as Reference

Now use the x-z plane for reference. A vector in the x-z plane normal

. . > .,
The unit vector in the x-z plane normal to n is

n n
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X Z nx z
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The velocity component in the x-z plane tangent to the surface is

U =t ? ) un, _ wn ) (unz- wnx)

s XZ 2 2,172 2 2,172 2 2,172

(nx * nz) (nx + nz) (nx + nz)
The velocity component in the IE direction tangent to the surface is
2 2
. . I- ) unxny- v(nx + nz) + wnzny
s c (n2 + n2)1/2
X z

The crosstlow angle ¢ is defined as the angle in the tangent plane bhetween

the velocity vector and the intersection of the tangent plane with the x~z

plane:

2 2
- + +w
un_n v(nx nz) n,n

Xy Y
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The value of ¢ at the surface is determined by extrapolation as hefore.

Now assume that ¢m and Utan are known. It follows that

=0 =0U i
Uc tan °° 4’m ! wc tan S0 ¢’m

Also the inner layer transpiration wvelocity Vi is known. The velocity vector

can be written as:

The Cartesian velocity components are:



2.

3.

5.

6.

7.

.1 = Z C_ +nv +XY¢C
2 2,1/2 X n 2 2,172
(nx + nz) (nx + nz)
. = _ 2 2,172
Vel n YV, (ng +n7) 7 W,
n U nnW
V . E = XC +n V + Z Y C
2 2,172 n 2 2,1/2
(nx + nz) (n_ + nz)
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