Finite Area Combustor Theoretical Rocket Performance

(NASA-TM-100785)FINITE AREA COMBUSTORN88-21252THEORETICAL ROCKET PERFORMANCE (Gordon
(Sanford))18 pCSCL 21HUnclas

G3/20 0140248

Sanford Gordon Sanford Gordon & Associates Cleveland, Ohio

and

د

Bonnie J. McBride Lewis Research Center Cleveland, Ohio

April 1988

NVSV

•

Finite Area Combustor Theoretical Rocket Performance

Sanford Gordon Sanford Gordon & Associates Cleveland, Ohio 44121

Bonnie J. McBride National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

Previous to this report, the computer program of NASA SP-273 and NASA TM-86885 was capable of calculating theoretical rocket performance based only on the assumption of an infinite area combustion chamber (IAC). An option has been added to this program which now also permits the calculation of rocket performance based on the assumption of a finite area combustion chamber (FAC). In the FAC model, the combustion process in the cylindrical chamber is assumed to be adiabatic, but nonisentropic. This results in a stagnation pressure drop from the injector face to the end of the chamber and a lower calculated performance for the FAC model than the IAC model.

INTRODUCTION

The calculation of theoretical rocket performance involves a number of assumptions. For the same propellant and operating conditions, theoretical performance can vary depending on which assumptions are used. Rocket performance calculated by the computer program of references 1 and 2 assumes adiabatic combustion in an infinite area combustion chamber (IAC) followed by isentropic expansion in the nozzle. In order to have a more realistic model, this supplement to references 1 and 2 presents an additional option for calculating rocket performance based on the assumption of adiabatic combustion in a finite area combustor (FAC) followed by isentropic expansion. Two input options are available for the FAC problem. Input option 1 is an assigned contraction ratio, while input option 2 is for an assigned mass flow per unit combustor area.

The addition of this new FAC option required changes in only two of the subroutines of the reference 1 program; namely, ROCKET and RKTOUT. A short description is given herein of the equations and iteration procedures. Three sample cases are given to facilitate the discussion of input options, output, and analysis of the effect on performance for the assumptions of FAC and IAC.

FINITE AREA COMBUSTION

Combustion in a rocket chamber is a nonisentropic, irreversible process. During the burning process, part of the energy released is used to raise the entropy, an undesirable form of energy inasmuch as it is unavailable to do work. This energy utilization loss is reflected in a total pressure drop as the gases are being accelerated from the beginning of the combustion process (at or near the injector face) to the end of the chamber. The combustion process may still be considered to be adiabatic; however, due to heat not being added at constant pressure during combustion, "the energy available for producing nozzle exit velocities is less than exists under ideal conditions of negligible chamber velocity." (ref. 3). Calculated rocket performance will therefore be less for the model of FAC than for the more commonly used ideal model of IAC.

A sketch of a rocket is given in figure 1. The positions in figure 1 are numbered in the same order as they appear in the performance output tables. The entrance to the finite chamber will be referred to as the injector face and will be indicated by 'inj' or '1' as subscript. The end of the finite chamber (nozzle entrance) will be indicated with the subscript '4' or 'c'. The infinite area position is indicated by subscript 'inf' or '2' while the throat is indicated by subscript 't' or '3'.

Equations

Unless otherwise stated, the International System of Units (SI Units) is used. The relationship of forces between points 1 and 4 for the nonisentropic process of combustion in a finite area is given by the following equation (ref. 3, p. 81)

$$\left(P + \frac{\dot{m} u}{A}\right)_{1} = \left(P + \frac{\dot{m} u}{A}\right)_{4} \tag{1}$$

where P is pressure, A is the combustor area, \dot{m} is the mass flow rate, and u is velocity. Equation (1) may be written as

$$(P + \rho u^2)_1 = (P + \rho u^2)_4 \tag{2}$$

by using the continuity relationship

$$\dot{m} = \rho A u \tag{3}$$

where ρ is density.

When velocity at the injector face is negligible, equations (1) and (2) reduce to

$$P_{1} = P_{inj} = \left(P + \frac{\dot{m} u}{A}\right)_{4} = (P + \rho u^{2})_{4}$$
(4)

Iteration Procedure

An iteration procedure is required to satisfy Eq. 4. Two input options are available for FAC. In option 1, the contraction ratio $\frac{A_c}{A_t}$ is assigned. In option 2, the mass flow rate per unit combustor area $\frac{\dot{m}}{A_c}$ is assigned. The iteration procedure for option 1 is simpler and therefore will be described first. All of the first four points shown in figure 1 are involved in the iteration procedure. Thermodynamic parameters at point 1 are obtained by a combustion calculation (HP problem in reference 1). Starting with an estimated value for P_2 , calculations are then made for points 2, 3, and 4 (the assigned contraction ratio) as would usually be done for infinite area combustion, throat, and an assigned area ratio as described in reference 1. A check is made to see if equation 4 is satisfied to within the following tolerance

$$\frac{|P_{inj} - (P + \rho u^2)_4|}{P_{inj}} \le 2 \times 10^{-5}$$
(5)

If Eq. 5 is satisfied, then the calculations for the finite area combustor are complete for points 1, 2, 3 and 4. Calculations are then continued if other values of pressure ratio and/or area ratio have been specified in the input dataset. If Eq. 5 is not satisfied, then an improved estimate for P_2 is obtained as described in a later section and the procedure for points 2, 3 and 4 is repeated until Eq. 5 is satisfied.

A similar procedure is used for option 2 as was described for option 1. However, the contraction ratio is not known for option 2. Therefore, the iteration procedure involves starting with an estimated value for $\frac{A_c}{A_t}$ as well as for P_2 and then obtaining improved estimates for both P_2 and $\frac{A_c}{A_t}$. Not surprisingly, more iterations are required for option 2 than for option 1 which requires improved estimates for P_2 only. As in the case of option 1, iteration is complete when Eq. 5 is satisfied.

Initial Estimates

A curve is given in figure 3-18 of reference 3 which relates $\frac{P_2}{P_{inj}}$ with $\frac{A_c}{A_t}$ for an assumed value of $\gamma = 1.2$. The following empirical equation was derived by fitting three selected points read from the curve:

$$P_2 = P_{inj} \left[\frac{1.0257 - 1.2318 \frac{A_c}{A_t}}{1 - 1.26505 \frac{A_c}{A_t}} \right]$$
(6)

Eq. 6 is used only to obtain an initial estimate for P_2 .

For option 1, the assigned value of $\frac{A_c}{A_t}$ is used in Eq. 6. For option 2, an initial estimate of $\frac{A_c}{A_t}$ is required (see Input Option Parameters section). This initial estimate is used in Eq. 6 to obtain a value for P_2 , which is then used in the following equation to obtain an improved initial estimate for $\frac{A_c}{A_t}$

$$\frac{A_c}{A_t} = \frac{P_2}{2350\frac{m}{A_c}}$$
(7)

Eq. 7 was derived by starting with the relationship for characteristic velocity $c^* = P_2 \frac{A_1}{m}$, multiplying both sides by A_c and using an arbitrary value of $c^* = 2350 \ m/s$. Somewhat better initial estimates for both P_2 and $\frac{A_c}{A_t}$ are obtained by repeating several times the sequence of substituting values of $\frac{A_c}{A_t}$ from Eq. 7 into Eq. 6 and values of P_2 from Eq. 6 into Eq. 7. If the input value of $\frac{m}{A_c}$ is so large that Eq. 7 calculates a value less than 1, the program will stop the calculations and print out the error message "INPUT VALUE OF MDOT/A = (value) IS TOO LARGE. GIVES CR ESTIMATE LESS THAN 1".

Improved Estimates

For option 1, an improved estimate for P_2 is obtained by assuming that the ratio of the assigned value of P_{inj} to the current value of P_{inj} (obtained by means of Eq. 4) is equal to the ratio of the final value of P_2 to the current value of P_2 . This assumption leads to the following equation

$$P_{2,new} = P_2 \frac{P_{inj,a}}{P_{inj}} \tag{8}$$

The use of Eq. 8 often gives such an excellent improved estimate for P_2 that it need be used only once to obtain convergence (Eq. 5).

For option 2, an improved estimate for $\frac{A_c}{A_t}$ is required in addition to the one for P_2 and is obtained from the following equation

$$\frac{A_c}{A_t} = \frac{\frac{m}{A_t}}{\frac{m}{A_c}} \tag{9}$$

Inasmuch as both P_2 and $\frac{A_c}{A_t}$ are changing, the iteration procedure is longer for option 2 than for option 1. For option 2, as well as for option 1, convergence is complete when Eq. 5 is satisfied.

Input Option Parameters

Two options are available for obtaining finite combustor area performance. In addition to the usual required input parameters described in ref. 1 for namelist &RKTINP, several additional parameters are required. For option 1 these are: FAC = T and ACAT = some assigned value for $\frac{A_c}{A_t}$. For option 2, the additional parameters are FAC = T and MA = some assigned value for $\frac{m}{A_c}$. Option 2 also requires an initial estimate of $\frac{A_c}{A_t}$. A default value of ACAT = 2 is provided in the program for this initial estimate. However, if desired, a different initial estimate for ACAT may be included in the &RKTINP data. Thus, for option 2, a value of MA is required in &RKTINP, whereas an estimated value for ACAT is optional.

In FAC, the PCP values $\frac{P_{inf}}{P_e}$ are relative to the injector face pressure, whereas in IAC, the PCP values $\frac{P_{inj}}{P_e}$ are relative to the infinite area chamber pressure. Due to this definition of PCP, the assigned values of PCP must be larger than $\frac{P_{inj}}{P_{inf}}$. Otherwise, this will give values of P_e larger than P_{inf} , which is an impossible condition. For example, in table III, the value of $\frac{P_{inj}}{P_{inf}} = 1.0848$. If a value of PCP less than this had been assigned, 1.05 for example, this would have given a value of $P_e = \frac{P_{inj}}{PCP} = \frac{5331700}{1.05} = 5077810$ Pa which is more than the value of $P_{inf} = 4914900$ Pa, an impossible condition. If impossible values of PCP are inadvertantly included in the input data set, these values will automatically be omitted by the program and the following error message printed: PRESSURE RATIO OF (value) GIVES PE GREATER THAN PINF. OMIT THIS POINT.

SAMPLE PROBLEMS

Three sample problems were selected, one for IAC (case 1) and two for FAC (cases 2 and 3), to illustrate some input and output features and to provide performance data for a comparison of results. The input datasets for these problems are given in table I and the output is given in tables II to IV. All sample problems are for the same propellant, o/f and chamber pressure. The propellant is $H_2(1)$ at 20.17K and $O_2(l)$ at 90.18K, o/f = 5.55157, and chamber pressure is 5331721 $\frac{N}{m^2}$ (52.62 atm). A number of assigned pressure ratios, PCP, and supersonic area ratios, SUPAR $\left(\frac{A_{x}}{A_{t}}\right)$ are common to all problems. The PCP values selected are 10, 100, and 1000. The SUPAR values are 25, 50 and 75. In addition, the FAC case 2 has as assigned contraction ratio $\frac{A_c}{A_t} = 1.58$ while the FAC case 3 has an assigned $\frac{\dot{m}}{A_c}$ = 1332.0. The value of $\frac{\dot{m}}{A_c}$ was calculated from the results of case 2 as follows: from table III, in the column for $\frac{A_c}{A_t} = 1.58$, $\rho = 2.0353$ and $u = I_{sp} = 654.5$. The product, $\rho u = 1332$, is equal to $\frac{\dot{m}}{A_c}$ from the continuity relationship (Eq. 3). Case 2, therefore, should reproduce the case 2 contraction ratio of 1.58, which indeed it does. Cases 2 and 3 both have FAC = T. For comparison purposes, the IAC problem includes an assigned subsonic area ratio SUBAR = 1.58. In the FAC cases, the output column for the contraction ratio appears before the assigned pressure ratios, while in IAC, the SUBAR column appears after the assigned pressure ratio columns.

Output Format

The output format previously used for IAC has been somewhat revised to accomodate FAC. These revisions are as follows:

- 1. The first line of the output headings are the same for both cases and now read as follows: THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION. The second line for IAC reads FROM AN INFINITE AREA COMBUSTOR, while for FAC it reads FROM A FINITE AREA COMBUSTOR.
- 2. The line following the heading which gives chamber pressure in units of psia has been changed from PC to PINJ for FAC and PINF for IAC.
- 3. An additional line has been added for FAC which gives either MDOT/AC = (value) if the input data set contains an assigned value for $\frac{\dot{m}}{A_c}$ or AC/AT = (value) if input contains an assigned value for contraction ratio $\frac{A_c}{A_t}$.
- 4. An additional row of output has been added for FAC; namely, PINJ/P (ratio of pressure at the injector face to exit pressure $\frac{P_{inj}}{P_{\epsilon}}$).
- 5. The next row gives the ratio of pressure at infinite chamber area to exit pressure. The label PC/P formerly used for IAC for this row has now been changed to PINF/P.

- 6. The first four columns for FAC are INJECTOR, INF CHAM, THROAT, and CN RATIO for conditions at the injector face, infinite area chamber, throat and contraction ratio. The columns for conditions at the injector face and contraction ratio are two additional columns which have been added for FAC and do not appear for IAC.
- 7. When more than 13 columns of data are required, the first two columns of data are repeated on the second sheet of output data for IAC as before, while the first three columns of data are repeated for FAC.
- 8. For IAC, the option remains, as before, of calculating rocket performance based on the assumption of either equilibrium composition, frozen composition or both during expansion. For FAC, only the equilibrium option is permitted.
- 9. An option is provided to print intermediate output pertaining to the convergence process for $\frac{A_c}{A_t}$ or $\frac{m}{A_c}$. This output is obtained by setting IDBUGF = 1 in namelist & RKTINP.

EFFECT ON PERFORMANCE

Table II presents rocket performance data for the infinite area combustor (case 1) while tables III and IV present similar data for the finite area combustor cases 2 and 3. As expected, the results in tables III and IV are identical (see discussion in SAMPLE PROBLEMS). Table V summarizes and compares some of the data in tables II and III. It may be noted in table V that for the same pressure ratios, the area ratios and specific impulse for the case of finite area combustor are less than for case of infinite area combustor. This is due to a loss in total pressure during the non-isentropic combustion from the injector face to the end of the finite combustor.

The term $1 - \frac{I_{inj}^2}{I_{inf}^2}$ represents the energy utilization loss due to this non-isentropic combustion. The energy utilization loss for this particular example (contraction ratio equal 1.58) is about 3.12% at a pressure ratio of 10 and about 0.62% at a pressure ratio of 1000. There are two general trends in energy utilization losses. The first trend, which was just illustrated, is that for the same contraction ratio, energy utilization losses decrease with increasing pressure ratios $\frac{P_{inf}}{P_e}$. The second trend, for which data are not given in this report, is that for the same pressure ratio $\frac{P_{inf}}{P_e}$, energy losses decrease with increasing contraction ratios.

The previous numerical comparisons of table V data are for the same pressure ratios for IAC and FAC. However, the area ratios are not the same. When the comparison in energy utilization loss is for the assumption of the same area ratios, the losses are negligible. For example, as may be seen in table V, for area ratios of 25, 50 and 75, the energy utilization loss is only 0.05% or less.

CONCLUDING REMARKS

Previous to this report, the computer program of ref. 1 permitted calculation of theoretical rocket performance based on combustion in an infinite area combustor. An option has now been added to this program that permits performance calculations based on the assumption of a finite area combustor. Calculations were made for a typical example $(H_2 - O_2 \text{ propellant}, \text{ contraction ratio of } 1.58)$ based on the two assumptions of finite and infinite area combustion chambers in order to assess the size of energy utilization losses due to the nonisentropic combustion process in the finite area combustor. The comparison of an energy utilization loss term involving specific impulse was made at several assigned pressure ratios and several assigned area ratios. The comparison showed energy utilization losses of 0.6% to 3.0% for assigned pressure ratios of 1000 to 10 respectively, whereas for assigned area ratios of 25 to 75, the energy utilization losses were trivial (0.05% or less).

Further information on the code can be obtained from the authors. Contact COSMIC, The University of Georgia, Athens, Ga. 30602, concerning the availability of this program.

ACKNOWLEDGEMENT

Klaus W. Gross of the NASA George C. Marshall Space Flight Center initiated and supported this project.

APPENDIX - SYMBOLS

.4	area, m^2	MA	symbol in program for ratio of mass flow rate to cham- ber area, $\frac{\dot{m}}{A_c}$, $\frac{kg}{sec}m^2$
ACAT	symbol in program for con- traction ratio	<i>m</i>	mass flow rate, $\frac{kg}{sec}$
$\frac{A_c}{A_t}$	contraction ratio (ratio of fi- nite chamber area to throat area)	Р	pressure, $\frac{N}{m^2}$
$\frac{A_{\epsilon}}{A_{i}}$	ratio of nozzle exit area to throat area	РСР	symbol in program for ratio of chamber pressure to exit pressure (For FAC, PCP = $\frac{P_{inj}}{P_e}$. For IAC, PCP = $\frac{P_{inf}}{P_e}$)
<i>c</i> *	characteristic velocity, $\frac{m}{sec}$	SUPAR	symbol in program for su- personic area ratio
FAC	finite area combustor	u	velocity, $\frac{m}{sec}$
ΗР	assigned enthalpy and pres- sure problem (combustion at constant pressure)	γ	ratio of specific heats
IAC	infinite area combustor	ρ	density, $\frac{kg}{m^3}$
Isp	specific impulse with exit and ambient pressures equal, $\frac{N}{kg/sec}$ or $\frac{m}{sec}$		

Subscripts

a	assigned	inf	infinite
с	combustor	inj	injector
e	exit	o/f	oxidant-to-fuel mass ratio
f	finite	t	throat
i	infinite or ideal		

.

REFERENCES

- Gordon, Sanford; and McBride, Bonnie J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. NASA SP-273, 1971, and SP-273, Interim Revision, 1976.
- Gordon, Sanford; McBride, Bonnie J.; and Zeleznik, Frank J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Supplement 1 – Transport Properties. NASA TM 86885, 1984.
- 3. Sutton, George P.: Rocket Propulsion Elements. Second ed., John Wiley & Sons, Inc., 1956.

TABLE I. - INPUT FOR SAMPLE CASES

Case 1 Input. - Infinite Area Combustor REACTANTS H 2. O 2. NAMELISTS & LINPT2 KASE=1,RKT=T,P=52.62,OF=T,MIX=5.55157, SIUNIT=T & EEND & ERKTINP SUBAR=1.58, PCP=10,100,1000,SUPAR=25,50,75 & EEND

Case 2 Input. - Finite Area Combustor, Option 1 REACTANTS H 2. O 2. NAMELISTS & EINPT2 KASE=2, RKT=T, P=52.62, OF=T, MIX=5.55157, SIUNIT=T & EEND & ERKTINP FAC=T, ACAT=1.58, PCP=10,100,1000, SUPAR=25,50,75 & EEND

Case 3 Input. - Finite Area Combustor, Option 2 REACTANTS H 2. O 2. NAMELISTS & EINPT2 KASE=3, RKT=T, P=52.62, OF=T, MIX=5.55157, SIUNIT=T & EEND & ERKTINP FAC=T, MA=1332.0, PCP=10,100,1000, SUPAR=25,50,75 & EEND

				FROF	TINIINI H	E AREA COI	MBUSTOR					
PINF = 773.3 CASE NO.	PSIA 1											
FUEL H 2.00 OXIDANT O 2.00	CAL FORMULA 1000 1000							FRACTION EE NOTE) 1.000000 1.000000	ENERGY : KJ/KG-MOL -9012.332 -12978.762	STATE L L	TEMP DEG K 20.17 90.18	
	0/F= 5.55	516 PEA	SCENT FUEL	= 15.263	35 EQUI	IVALENCE 1	RATIO= 1.4	4297 Pł	II= 1.4297			
PINF/P P: MPA T: DEG K RHO, KG/CU M H: KJ/KG G: KJ/KG G: KJ/KG S: KJ/(KG)(K)	CHAMBER 1.0000 35.3317 35.3317 35.3317 35.3325.7 35.3295 1.23295 1.3355 1.33555 1.33555 1.33555 1.33555 1.335555 1.335555 1.33555555555 1.335555555555	THROAT 1.4397 3.0647 3.0647 3.0647 3196.6 -3196.6 -4284.10 -42842.10 -42842.10 -181828.8 -6496	EXIT 10.001 0.55317 0.55317 2.5572.9 1.22707-1 1.22707-1 1.22707-1 1.22707-1 18.6496 18.6496	100:010 0.05332 0.05332 1756.6 4.8208-2 -9683.68 -9683.68 -18.6496	EXIT 1000:00 0.00533 1112:1 112:1 -16150-3 -11332:3 -31373.0 13.6496	EXIT 1.1020 4.8380 4.8380 2360.4 22043 0 -122043 0 -13435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3435.45 -3455.45 -4555	EXIT 262.17 0.02034 1461.6 2.2101-2 -52101-2 -10472.2 -10472.2 -10472.2 18.6496	E E E E E E E E E E E E E E E E E E E	EXIT 1131:38 0.00471 0.00471 1083:2 6.9103-3 6.9103-3 -11399.4 -30919.4 18.6496			
M, MOL WT (DLV/DLP)T (DLV/DLT)P CP, KJ/(KG)(K) GAMMA (S) SON VEL,M/SEC MACH NUMBER	-1.02061 1.3750 1.3750 8.3873 1.1453 1.1453 1595.3	-1.01.837 1.2906 1.2906 7.5061 1.1476 1541.5 1541.5	-1.00328 -1.00328 1.0761 4.8310 1.1745 1383.7 2.148	-1.0015 -1.0015 1.0017 3.4070 1.2276 1.2276 1.5276 3.335	-1.0000 1.0000 1.0000 2.9632 1.2698 1.2698 9.42.9	-1.01.730 1.01.730 1.03602 8.2381 1.1456 15856 15856 1.5856 1.456	-1.0000 1.0000 3.2096 1.2441 1.2441 1.2441 3.859	- 1.0000 1.0000 1.0000 3.0396 1.2612 981.6 4.394	-110000 1.0000 1.0000 2.9405 1.2724 4.726 4.726		ORIGINAL OF POOR (
PERFORMANCE PAR	AMETERS										PAC QUA	5
AE/AT CSTAR, M/SEC CF IVAC, M/SEC ISP, M/SEC ISP, M/SEC		1.0000 2337 2.5537 2884.6 1541.5	2.3469 23337 23337 23337 23337 23337 23520.9 2972.5	12.179 2337 2337 1.663 4170.9 3886.3	68.360 2337 2337 4542.9 4542.9 4383.2	1.5800 2337 0.283 40.580 655.3	25.000 2337 2337 4352.3 4129.4	50.000 2337 2337 41.846 4490.3 4313.1	75.000 2337 1.884 4557.5 4402.6		E IS LITY	
MOLE FRACTIONS												
H H22 H12 H120 0 0 0 02 02	0.03444 0.034457 0.234577 0.234577 0.03378 0.03326 0.03326 0.190	0.02728 0.00018 0.29401 0.55244 0.00131 0.00131 0.00131 0.00131 0.00131	0.00811 0.29697 0.699697 0.00000 0.000008 0.00008 0.00008 0.00008	000000000000000000000000000000000000000	0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.03316 0.03316 0.29441 0.63724 0.00000 0.00000 0.00100 0.03135	00000000000000000000000000000000000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000			
ADDITIONAL PROD	UCTS WHICH	WERE CON	SIDERED B	UT WHOSE	MOLE FRAC	STIONS WE	RE LESS TH	1AN 0.500	00E-05 FOR AL	LL ASSI	GNED CI	SNDITIONS
03	H20(S)		H20(L)									

TABLE II. - THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

ORIGINAL PAGE IS OF POOR QUALITY

			OI	RIGINAL PAG	e is		DITIONS
TEMP	DEG K 20.17 90.18		OI	g poor quai	LITY		IGNED CONI
STATE	нн 006		EXIT 225.05 1129.28 100435 100435 100435 10713.9 111396.6 111396.6 18.7029	$\begin{array}{c}13.207\\1.00000\\2.9415\\2.9415\\1.2723\\93220\\4.723\\4.723\end{array}$	75.000 1.2335 4556 4401.8	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	R ALL ASS.
ENERGY	KJ/KG-MO -9012.33 -12978.76	C= 1.4297	EXIT 714.18 658.35 0.00747 1214.9 9.1214.9 -10323.7 -11088.5 -33045.2 18.7029	-1.00000 - 1.00000 - 3.0406 1.2611 982.1 4.391	50.000 2335 1.846 4489.6 4312.2	0.0000000000000000000000000000000000000	00E-05 FO
FRACTION	NOTE) .000000 .000000	CHA 262	EXIT 283.87 261.68 261.68 1463.1 2647.12 -9547.12 -10468.6 -36911.2 18.7029	-1.207 -1.0000 3.2107 1.2440 1070.4	25.000 2335 1.768 4.35.768 4.35.768	00000 000000 0000000 0000000 0000000 0000	HAN 0.500
H TW		ATIO= 1.42	1000.00 921.82 0.00533 1132.3 7 1132.3 -11575.3 -11285.1 -31748.9 18.7029	-1.0000 -1.00000 2.9787 1.2680 1.2680 950.7 4.596	64.339 2335 2335 45.8335 45.832 45.835 4369.5	000000 0000000 00000000 000000000 000000	RE LESS TH
		ALENCE R	100 EXIT 92.182 92.182 0.05332 1784.2 4.7461-2 4.461-2 -9606.76 18.7029 18.7029	-1.0007 -1.0007 1.0021 1.2265 1.2265 1.73.6 1.173.6	11.482 2335 1.654 41.654 415.98 3861.9	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	CTIONS WE
		EQUIV	EXIT 10 EXIT 9.2182 9.2182 0.53317 5.256110 5.33555110 -535556 -535556 -535556 18.7029	$\begin{array}{c} 13.111\\ 13.511\\ 1.00372\\ 1.0860\\ 1.0860\\ 1.1717\\ 1390.2\\ 1390.2\\ 2.105\end{array}$	2.2253 2335 1.2355 3489.55 2925.8	0.00910 0.29661 0.29661 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	MOLE FRAG
~		15.2635	N RATIO 1.1025 4.4600 4.4600 3352.6 1245.26 -3431.63 -3431.63 -3431.63 -3431.63 -3431.63 -3431.63 -3431.63	-1.02.720 -1.02.003 1.3687 1.3687 1.1449 1.1449 1584.0 0.413	1.5800 2335 0.2880 4002.88 654.5	0.03387 0.03387 0.29428 0.65603 0.00012 0.02184 0.00183	SUT WHOSE
		CENT FUEL=	THROAT 1.8868 1.73958 1.73958 2.8258 2.8258 2.8256 2.3190.3 1.23566 2.23190.3 1.8779.62 18.7029	12.828 -1.01545 1.2982 7.6085 1.1469 1540.0 1.000	1.0000 2335 0.659 2882.7 1540.0	0.02733 0.02733 0.29387 0.00116 0.00136 0.0126 0.02123 0.02123	KSIDERED E H20(L)
		.6 PER(CHAM CHAM	12.696 -1.02105 1.3837 1.3837 1.3837 1.3837 1.1647 1.1647 1.593.6 0.000		0.0002 0.0002 0.00002 0.00022 0.00020 0.00233 0.00233 0.002233 0.002233 0.002233 0.002233 0.002233 0.00220 0.002233 0.002233 0.002233 0.00220 0.002233 0.00220 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00000 0.000000 0.00000000	H WERE COL
PSIA 2	AL FORMULA 000 000	0/F= 5.551	TNJECTOR I 1.0000 0.92182 5.3317 5.33517 5.339517 2.399502 -1026.10 -3248.13 -3248.13 -18.6496	- 1.02.7066 1.3750 8.3873 1.1453 1.1453 15.95.3 0.000	RAMETERS	0.0034420.00344200.00324572800.0002294572800.00022945728000000000000000000000000000000000000	DUCTS WHICH H20(S)
PINJ = 773.3 AC/AT = 1.5800 CASE NO.	FUEL H 2.00 OXIDANT 0 2.00		PINJ/P PINF/P P. MPA T, DEG K RHO, KG/CU M H, KJ/KG U, KJ/KG S, KJ/KG(K)	M, MOL WT (DLV/DLP)T (DLV/DLP)T (DLV/DLT)P (DLV(CG)(K) CP, KJ/(KG)(K) GAMMA (S) SON VEL,MYSEC MACH NUMBER	PERFORMANCE PAI AE/AT, M/SEC CF IVAC, M/SEC ISP, M/SEC	MOLE FRACTIONS H . H02 H2 H20 H20 H202 OH 0 OH	UC ADDITIONAL PRO 03

TABLE III. - THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

13

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

TABLE IV. - THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

FROM FINITE AREA COMBUSTOR

PINJ = 773.3 PSIA MDOT/AC = 1332.000 (KG/S)/M**2 CASE NO. 3

CHEMI FUEL H 2.0 OXIDANT O 2.0	CAL FORMULI 0000 0000	म						FRACTION SE NOTE) 000000	ENERGY KJ/KG-M -9012.3 -12978.7	STATE OL STATE 32 L 62 L	TEMP DEG K 20.17 90.18
	0/F= 5.55	516 PER	CENT FUEL-	= 15.263	5 EQUI	VALENCE R	ATIO= 1.4	1297 PH	I= 1.4297		
PINJYP PINJYP P, MPA T, DEG K RHO, KG/CU M H, KJ/KG G, KJ/KG S, KJ/KG(K)	HWJECTOR 1.0000 0.92182 5.3317 5.3317 3395.7 1.2355.7 1.1026510 1.1026510 1.3248.13 164354.45 18.6496	INF CHAM 1.0848 1.0048 4.9149 4.9149 2.3387.6 1.0265 1.022555 1.022555 1.0225555 1.02255555555555555555555555555555555555	THROAT (1.8868 1.7393 2.8258 2.8258 2.8258 1.7393 1.7393 1.7393 1.7394 1.7394 1.7394 1.87794 1.87794 1.877029	CN RATIO 1.1955 1.1955 1.1955 1.1955 1.1955 2355.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 23552.6 200 23552.6 200 200 200 200 200 200 200 200 200 20	EXIT 10.0000 9.2182 0.55317 0.55317 2.2352517 -5355564 -55355564 -55355564 18.7029	EXIT 100.000 92.182 0.05332 0.05332 0.05332 1784.2 -86431-2 -8643.37 -9606.75 -9606.75 -9606.75 18.7029	EXIT 1000533 921.82 921.82 1132.3 1132.3 1132.3 1132.3 -11285.1 -31748.9 18.7029	EXIT 285587 261.68 261.68 0.01878 1463.1 1463.1 -95491-2 -10468.6 -36911.2 18.7029	FXIT 714.187 658.35 658.35 0.00747 1214.9 1214.9 1214.9 1214.9 133045.2 13.7029	EXIT 1225.05 1129.28 0.00435 0.00435 0.00435 0.1084.4 -10713.9 -10713.9 -11395.8 -30995.8 18.7029	
M, MOL WT (DLV/DLP)T (DLV/DLP)T (DLV/DLT)P CP, KJ/(KG)(K) CP, KJ/(KG)(K) GAMMA (S) SON VEL,M/SEC MACH NUMBER	-1.02061 1.3750 1.3750 8.3873 1.1453 1.1453 1595.3 0.000	- 12.696 1.02105 1.3837 8.5031 1.1447 1593.6 1593.6	-1 12.828 1.015428 1.2982 7.6085 1.1469 1.540.0 1.000	$\begin{array}{c} 12.720\\ 1.02033\\ 1.02033\\ 1.35837\\ 8.35183\\ 1.55149\\ 1.55449\\ 1.55449\\ 1.55449\\ 1.55449\\ 1.55449\\ 1.55449\\ 1.556423\\ 1.$	$\begin{array}{c} 13.111\\ -1.00372\\ 1.0860\\ 4.9770\\ 1.1777\\ 1390.2\\ 1390.2\\ 2.105\end{array}$	-1.00007 1.0001 3.4295 1.260 1.260 1.2260 1.2260 3.291	13.207 11.0000 1.0000 1.29787 1.29787 1.29787 4.596	-1.00000 1.00000 3.2107 1.2440 107440 3.857	-1.0000 1.0000 3.0400 1.2611 1.5611 4.391	-1.00000 1.00000 2.9415 1.2723 932.0 4.723	
PERFORMANCE PA AE/AT CSTAR, M/SEC CF IVAC, M/SEC ISP, M/SEC ISP, M/SEC	RAMETERS		1.0000 2335 0.659 2882.7 1540.0	1.580 0.2330 400.2335 654.80 654.5	2.22353 1.23353 1.23353 2.8355 2.8355 2.8355 2.8555 2.8555 2.8555 2.8555 2.8555 2.8555 2.8555 2.8555 2.8555 2.8555 2.55555 2.55555 2.55555 2.55555 2.55555 2.55555 2.55555 2.55555 2.55555 2.55555 2.555555 2.55555 2.555555 2.555555 2.555555 2.555555 2.555555 2.5555555 2.55555555	11.482 2335 1.654 4152.8 3861.9	64,3394 23355 1.8315 4532.6 4369.5	25.000 23355 1.768 4351.4 4128.3	50.000 2335 1.8335 446 4489.6 4312.2	75.000 2335 1.2335 45556.9 4401.8	
H HOO	0.03442	0.03515	0.02793	0.03387	0.00910	0.00024	0.00000	0.0001	000000000000000000000000000000000000000	0.00000	

Ŧ	0.03442	0.03515	0.02793	0.03387	0.00910	0.00024	0.00000	0.0001	0.00000	0.0000	
H02	0.00002	0.00002	0.00001	0.00002	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
H2	0.29457	0.29444	0.29387	0.29428	0.29661	0.30041	0.30055	0.30054	0.30055	0.30055	
H2O	0.63378	0.63254	0.65140	0.63603	0.68910	0.69932	0.69945	0.69945	0.69945	0.69945	
H202	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
0	0.00225	0.00233	0.00136	0.00214	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	
НО	0.03306	0.03354	0.02423	0.03183	0.00501	0.00004	0.00000	0.00000	0.00000	0.00000	
02	0.00190	0.00197	0.00120	0.00182	0.00009	0.00000	0.0000	0.00000	0.0000	0.00000	
ADDITIONAL	PRODUCTS WHICH	WERE CON	SIDERED BI	JT WHOSE	MOLE FRAC	TIONS WER	E LESS THA	N 0.500	0E-05 FO	R ALL ASSIGNED CONDITIONS	
03	H20(S)		H20(L)								

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

-

TABLE V. COMPARISON OF SPECIFIC IMPULSE OBTAINED
UNDER ASSUMPTION OF EXPANSION FROM FINITE AND
INFINITE COMBUSTION CHAMBERS

Infinite	e chambe	r area	Finite	chamber	area	Energy Utilization loss due to finite chamber
$\frac{P_{inf}}{P_e}$	I_{sp} $\left(\frac{m}{sec}\right)$	Ac At	$\frac{P_{inj}}{P_e}$	I_{sp} $(\frac{m}{sec})$	<u>A</u> e At	$1 - \frac{I_{f}^{2}}{I_{i}^{2}}$
$10.00 \\ 100.00 \\ 1000.00$	2972.5 3886.3 4383.2	2.3469 12.179 68.360	$10.00 \\ 100.00 \\ 1000.00$	$2925.8 \\ 3861.9 \\ 4369.5$	$2.2253 \\11.482 \\64.394$	$\begin{array}{c} 0.0312 \\ 0.0125 \\ 0.0062 \end{array}$
262.17 659.57 1131.38	4129.4 4313.1 4402.6	25.50.	$283.25 \\714.18 \\1225.05$	4128.3 4312.2 4401.8	25.50.75.	$\begin{array}{c} 0.0005 \\ 0.0004 \\ 0.0004 \end{array}$

FIGURE 1. - THRUST CHAMBER SCHEMATIC WITH POSITIONS LABELED AS THEY APPEAR IN PROGRAM OUTPUT.

National Aeronautics and	Report Docume	ntation Page		
1. Report No. NASA TM-100785	2. Government Accession) No.	 Recipient's Catalog No. 	
4. Title and Subtitle	eoretical Rocket P	erformance	5. Report Date April 1988	
FINITE Area Compusitor in			6. Performing Organization	Code
7. Author(s) Sanford Gordon and Bonni	e J. McBride		B. Performing Organization E-3975	Report No.
		1	0. Work Unit No. 506–42–21	
9. Performing Organization Name and Address National Aeronautics and Lewis Research Center	Space Administrat	ion	1. Contract or Grant No.	
Cleveland, Ohio 44135-3	191	1	3. Type of Report and Perio	od Covered
2. Sponsoring Agency Name and Address			Technical Mem	orandum
National Aeronautics and Washington, D.C. 20546-	Space Administrat 0001		4. Sponsoring Agency Code	
Previous to this report, was capable of calculati assumption of an infinit added to this program wh ance based on the assump FAC model, the combustic adiabatic, but nonisent the injector face to the for the FAC model than t	the computer prog ng theoretical roc ic area combustion ich now also permi otion of a finite a on process in the c opic. This result e end of the chambe the IAC model.	ram of NASA SP ket performanc chamber (IAC). ts the calcula rea combustion ylindrical cha s in a stagnat r and a lower	-273 and NASA T e based only on An option has tion of rocket chamber (FAC). mber is assumed ion pressure dr calculated perf	M-86885 the perform- In the to be top from formance
7. Key Words (Suggested by Author(s)) Finite area combustion Rocket performance		18. Distribution Statemen Unclassified Subject Cate	– Unlimited gory 20	
19. Security Classif. (of this report)	20. Security Classif. (of this p	page) sified	21. No of pages	22. Price*

--