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Coherent Structures and Dynamical Systems

By JAVIER JIMENEZ!

Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen
as a dynamical system. For a turbulent flow, an upper bound to this number was given by Landau
& Lifshitz (1959) and scales as Re®/4, which is usually a rather large number. Lower bounds have
been computed for some particular turbulent flows, but also tend to be large. In this context,
we can think of a coherent structure as a lower dimensional manifold in whose neighborhood the
dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its
dimensionality is substantially lower than that of the full flow, it is conceivable that the flow could
be described in terms of the reduced set of degrees of freedom, and that such a description would
be simpler than one in which the existence of structure had not been recognized.

As a trivial example, consider a particular two-dimensional flow for which we can prove that,
after some time, most of the vorticity concentrates in a few compact vortices. Such a flow could
be described by a few differential equations, and, presumably, easily integrated. Homogeneous,
two- dimensional decaying turbulence seems to follow roughly this model (Benzi et al. 1987).

Other examples of the same type are transitional Taylor- Couette flow and Rayleigh-Benard
convection. After the initial loss of stability, both systems develop attractors, different from the
initial equilibrium, and that can be described in terms of structures (rolls or cells). Although the
initial bifurcate states of those flows can hardly be called turbulent, the secondary bifurcations
that grow from them can be analyzed, at least for a while, as small perturbations of the initial
structures, usually described in terms of their positions and intensities. Technically, we speak of a
projection on a central manifold (Demay & looss 1984); physically we are talking about describing
a turbulent flow in terms of a few degrees of freedom. Another recent example of the same situation
is the appearance of disordered states in two-dimensional Poiseuille flow, starting from bifurcations
of nonlinear trains of Tollmien Schlichting waves (Jimenez 1987).

The common feature of all these flows is the existence of stable attractors, whose dimensionality
is much lower than that of the full low, and towards which the flow tends after some time. Under
those conditions, the flow can be described, up to some level, by the properties of the attractor.
Most “attractors” found in nature, are, however, not stable, and cannot be really called attractors
at all. The system will approach them for a while, only to be repelled once it gets near the central
manifold.

The simplest example of this behavior is the linear differential equation y:¢ + siny = 0, which
represents a circular pendulum. If the system is given proper initial conditions it will approach
the position at which the pendulum is pointing “upwards,” spend some time near it, and fall back
to make a quick revolution across the lower part of its trajectory. Even in this case, the system
expends most of its time in the neighborhood of its top (unstable) equilibrium point, and can
be described approximately as a being in equilibrium at that position, together with some model
for the fast motion in the lower part of its orbit. Perhaps the best example of this situation, in
a flow, is the plane temporal mixing layer. Here the “attractor” is a uniform row of compact
vortices, and the flow quickly tends towardsit. But this solution is itself unstable (mainly through
pairing), and is eventually abandoned by the flow, only to converge to a different solution of the
same kind. Even so, a model of the flow as a uniform vortex row, with a suitable approximation
to the “sudden” pairing process, has been shown to give rough approximations to quantities such
as spreading rates (Jimenez 1980) and concentration distributions (Hernan & Jimenez 1982). A
more careful perturbation analysis on the lines outlined above has not been attempted, but might
be expected to give more accurate results.

Other turbulent flows have phase space structures which are presumably more complicated. The
next best plausible candidate for eduction of the complexity of a turbulent flow are the sublayer
ejections in wall-bounded turbulence. Recent observations (Jimenez et al. 1987) suggest that
the basic structure in that flow is a self-reproducing ejection, that could perhaps be described
as an unstable limit cycle. It is not clear, at present, how to treat a dynamical system in the
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neighborhood of such a manifold, but any identification of a low dimensional structure which
describes a sizeable fraction of the time evolution of a flow, opens the possibility that a local

analysis in its neighborhood might give results that capture the qualitative and perhaps even
some of the quantitative features of the complete flow.
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