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ABSTRACT

Results of an investigation of rotor acoustics using small scale
models conducted in the United Technologies Research Center (UTRC)
Acoustic Research Tunnel is presented here. Main rotor models of
approximately 1/20-scale for the S-76 and the UH-60 systems were
used to evaluate the extent to which small scale models can be
used to predict the noise characteristics of larger scale and
full-scale rotors. The effect of blade design parameters such as
twist and tip design (airfoil, planform, sweep and taper) were
studied. Operating parameters such as forward speed, rotor load-
ing, tip speed, and rotor tip path plane were systematically
varied to determine their effect on various rotor noise mecha-
nisms. In all, four rotors were tested under the contract
NAS2-11310 and three additional rotors were tested under the
Sikorsky IR&D funds. For the sake of completeness data from all
the seven rotors have been made available in this report.

Tests were conducted at low-speed (50-70 knots) and at higher
speeds. The results of the 1/20-scale model low-speed tests are
extensively compared with those of approximately 1/5-scale model
tests conducted in the NASA Langley Research Center's 4mx7m Wind
tunnel. Two microphone locations, one under the rotor disk and
one in the forward direction at approximately 30° below the tip
path plane are chosen for these comparisons. The high-speed test
results are only compared with full-scale rotor acoustic data
since the 1/5-scale model tests could not be conducted at high
tunnel speeds in the 4mx7m tunnel in an open throat configuration.

The results show that the Reynolds number effects significantly
alter the acoustic signature during Blade-Vortex Interaction (BVI)
conditions. This is observed as a single sided impulse rather
than a positive-negative impulse of high frequency content. In
the spectral domain, these effects appear as enhanced low fre-
gquency and subdued high frequency content. At higher advance
ratio conditions, in the absence of BVI, the 1/20-scale model
noise trends with rotational Mach number are similar to those of
the larger scale models. However, at high thrust and large ad-
vance ratio conditions, the 1/20-scale model acoustic trends
appear to indicate early stall.
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1.0 INTRODUCTION

The rotorcraft of today generate complex acoustic signatures.
Contributions from both the main and tail rotors arise from a
number of complex aerodynamic events. Main rotor wake inter-
actions with main and tail rotors, turbulence ingestion, volume
displacement, and tail rotor/pylon interaction effects are just a
part of the complex environment that the rotorcraft aero-~

acoustician must face. The apparent intractability of this
situation leads one to utilize a phenomenon-oriented approach to
understand the problem and propose solutions. In this way,

important steps may be taken to reduce the noise in spite of the
lack of a first principles, all-encompassing aerocacoustic theory.

One technique which is utilized to reduce the complexity of the
problem and provide direct control of the important parameters is
wind tunnel testing of isolated components. Many tests have been

conducted on various scales in various facilities. Acoustic
measurements of a full-scale rotor have been made in the NASA Ames
wind tunnel by M. Mosher[l]. Acoustic treatments to the tunnel

were not incorporated at the time of these tests. Four tip shapes
were studied, and the test identified a low noise configuration.
Schmitz, et al, [2] have conducted anechoic wind tunnel (DNW)
tests to compare model scale data with data acquired utilizing
their in-flight technique [3}].

Model scale testing in wind tunnels for explicit acoustic purposes
have taken place since 1966, when Leverton [4] conducted his
initial tests to study "Blade Slap" utilizing a small scale model.
Harris and his co-workers at Massachusetts Institute of Technology
have conducted a number of anechoic wind tunnel tests on a 1/10-th
scale model {4,5]. Although valuable insights into the rotor
noise problem were gained, the low Mach numbers together with the
low Reynold's numbers involved raise questions with respect to the

direct applicability of their results to full-scale rotors. It is
known that important aerodynamic factors such as the boundary
layer thickness and the vortex structure are sensitive to the
Reynold's number. Unfortunately, no definitive experiment has
been conducted to date which determines the critical transition
region for various aeroacoustic phenomena.

Because of the importance of the radiated acoustics to the mili-
tary detection and the community annoyance problems, it is ex-
pected that acoustic wind tunnel testing will be an important
component of future rotorcraft technology development. Although
anechoic wind tunnel facilities exist at the United Technologies
Research Center [6] and Massachusetts Institute of Technology, the
test section size limits the scale of models which can be tested.



It is therefore important to determine if any of the rotorcraft
noise mechanisms can be re-produced at these small scales.

This report provides an account of the series of small (0.76 meter
diameter) model rotors tested in the U.T.R.C. Acoustic Research
Tunnel (ART). The effects of several design and operating para-
meters on the noise characteristics are evaluated. Test condi-
tions representive of low speed descent are included to study the

blade/vortex interaction noise phenomenon. High speed noise 1is
evaluated for a number of level flight conditions up to high speed
cruise (140 kts, 71.4 m/sec). Overall noise and integrated

flight-scaled metrics are used to evaluate the noise level for all
conditions.

A cooperative program to study the main rotor/tail rotor inter-
action noise problem under the NASA contract NAS1-17146 is pre-
sently underway. Under this NASA/ARMY/SIKORSKY effort an isolated
1/5-scale main rotor wind tunnel test in the Langley 4 x 7 meter
wind tunnel was conducted in 1983 [7]. The results of those tests
are compared with the 1/20-th scale low speed acoustic data taken
in the U.T.R.C. (ART). 8Since it has been shown that blade-vortex
interaction noise may be successfully scaled [8] on a rotor of
approximately the same geometric scale (1/7-th scale model of the
AH-1G helicopter rotor) and that the 4 x 7 m tunnel can be used
for BVI acoustic investigations [9], the 4 x 7 meter tunnel
results are used as the benchmark by which the usefulness of the
1/20-th scale test is determined.



2.0 TEST FACILITIES, APPARATUS AND PROCEDURES

2.1 UTRC Acoustic Research Tunnel

The investigation was conducted in the UTRC Acoustic Research
Tunnel (ART). This anechoic wind tunnel has been extensively used
for various aeroacoustic research projects involving small scale

helicopter rotors [6], propellers, jet engine fans and exhaust
nozzles. A picture of the experimental model installed in the ART
is shown in figure 1. Fiberglass wedges cover all walls, the

ceiling, the floor, and the turntable mechanism supporting the
model rotor system. These wedges may also be seen in Figure 1.

The wind tunnel is an open-circuit, open-jet facility. A number
of (circular) nozzles of various geometries may be installed in
the tunnel. For this experiment the 1.27 m (50 inch) diameter
nozzle was used. This allows an upper limit of tunnel speed of 72
m/sec (140 kts). Figure 2 provides the dimensions of the ART and
the microphone locations used during the test. The background
noise at two in-flow microphones are provided in Appendix A.
Since the out-of-flow microphones have much lower ambient noise
levels, their background noise has not been shown.

2.2 Acoustic Test Rig

The experiment was conducted utilizing Sikorsky's Acoustic Test
Rig (ATR). A schematic of the ATR is shown in Figure 3. The
system consists of a rotor hub and swashplate assembly attached to
the front end of a variable frequency drive motor which is canti-
levered from the metric side of a six component strain gage
balance. The ground side of the balance is supported from the
upper end of the main vertical support strut. The lower end of the
support strut attaches to the turntable mechanism which provides
rotor shaft tilt capability. The motor housing was faired and the
vertical support strut remained outside of the flow for all test
conditions.

The rotor hub had blade flapping capability, but had no lead-lag
hinge. Blade flapping motion can be measured on one blade by
means of a flapping potentiometer mounted from a bracket on the
hub and a sector gear attached to the spindle. Collective pitch is
set remotely by movement of the swashplate assembly by a linear
actuator mounted to the drive motor. A potentiometer is provided
to calibrate swashplate travel and blade pitch. A support housing
is bolted to the front plate of the drive motor which acts as a
guide for movement of the swashplate and alsc houses a bearing



just below the rotor hub to support over hung loads developed by
the rotor system. The rotating element of the swashplate is
driven by two studs, acting as rotating scissors, which are
located at a 180 degree spacing on the unit. These studs extend
upwards and slide through two bushings in the rotor hub. The non-
rotating swashplate is restrained by the collective drive pinion.
The rotor system has no cyclic pitch capability.

The drive motor is a Task (subsidiary of Able Corporation) vari-
able frequency 4 pole motor rated at 20 horsepower at 12,000 RPM,
400 cycles and 1.2 volts/Hz. The motor is equipped with a hole
drilled through the length of the armature shaft to permit routing
of the instrumentation wiring. The rear of the armature shaft is
threaded to permit installation of the slip ring used for measure-
ments on the rotating components.

The motor with swashplate assembly and rotor is supported from a
Task Corporation six-component internal strain gage balance. The
raw balance signals are sent to the data acquisition/control unit.
A schematic of the system used for processing the balance data and
the other non-acoustic data is shown in Figure 4. The HP 3497A
Data Acguisition/Control wunit has a 20 channel multiplexer .with
thermocouple compensation and a 100 kHz reciprocal counter.
Acting as a digital volt meter, the units A-to-D converters relay
all balance and thermocouple signals to the HP86 desktop computer
system. The HP86 applies a calibration matrix to the signals to
obtain the relevant loads in engineering units. Control system
software then displays this information on the HP82913A monitor.
The pilot, interacting with this display, adjusts shaft tilt and
collective pitch to set the desired operating conditions. When
the conditions specified in the test plan have been reached, final
data acquision is begun. These data points are stored on floppy
disks within the HP 9130A disk drive, and a hard copy is produced
by the HP 82905B printer. A sample of this printout is shown in
Figure 5.

2.3 Acoustic Data Acquisition System

A schematic of the acoustic data acgquisition system is shown in
Figure 6. Six 0.635cm (0.25 in) B&K type 4135 condenser micro-
phones were used. Their location in the wind tunnel is shown in
Figure 2. The three microphones located in the flow (mics 2, 8
and 9) are fitted with B&K type UAO385 nose cones. B&K type 2633
preamplifiers are connected to B&K type 2807 power supplies.
These power supplies are connected via BNC cables to custom built
amplifiers/attenuators in the control room. The output of the
amp/attenuator system is then split. Each microphone signal is fed



directly to the EMI 9000 28-channel tape deck. Also the signals
for each microphone are sent to Krohn-Hite 3342 high pass filters,
where a 30 kHz high pass filter was applied. These filtered
channels were then amplified by NEFF model #124A amplifiers.
These filtered signals were then recorded on separate channels of
the EMI 9000 tape deck. The filtered signals provide an improved
signal to noise ratio for the higher frequencies present during
BVI conditions, where the lower frequencies are of very high
level. On-line monitoring of the acoustic measurements was
provided by a Nicolet 4094 digital oscilloscope (time histories)
and a Nicolet 444 spectrum analyzer (narrow-band spectra).
Selected time waveforms were stored with the Nicolet 4094 floppy
disk drive and plots were obtained on an HP 7074A digital plotter.
A 32-channel Scan-Scope #1810 was connected to the output of the
playback channels of the tape deck to verify that acceptable
signal levels were recorded for each test condition.

A once per revolution signal was recorded simultaneously with the

acoustic data. The once per revolution signal was generated as
follows. A 72 tooth gear was attached to the rotor shaft. One of
the teeth on this gear was removed. A magnetic pick=-up was

mounted in the fixed frame. The low-level signal generated by the
rotating gear was amplified and conditioned by a "missing pulse"
detector circuit. The missing pulse, which was generated by the
missing gear tooth, was recorded as the once per revolution timing
pulse. The missing tooth on the gear was aligned with the blade
which drove the flapping potentiometer. This permitted orienting
the flapping trace to blade azimuth. The flapping trace in con-
junction with shaft angles could then be used to determine blade
tip path plane angle.

To verify the adequacy of the acoustic data acquisition system
frequency response characteristics a "white noise" signal (2 Hz to
200 kHz bandwidth) was inserted into each channel. The resulting
spectra were flat from 2 Hz - 80 kHz, which was the frequency
range of interest for this test program. A B&K type 4220 piston-
phone was used to apply a 123.8 dB, 250 Hz calibration tone to
each microphone channel prior to and upon completion of acoustic
data acquisition for the day.

2.4 Data Reduction Techniques

The primary data reduction format used was a 1/12-th octave
spectrum, with the equipment required for this reduction technique
shown in Figure 7. The FM magnetic tape, which was recorded at
120 ips and IRIG wideband group I, was Ampex type 797. The test
condition selected is located on the tape and the relevant micro-



phone signal is sent to either a B&K 2131 Digital Frequency
Analyzer or a combination of a B&K 2134 Sound Intensity unit and a
B&K 4715 Display unit. There the data is digitized and digital
filters provide the 1/12-octave spectral components of the signal.
These 1/12-octave levels are then used to compute flight scaled
A-weighted, D-weighted and Overall Sound Pressure Levels (OASPL)
using a program developed at Sikorsky Aircraft. This flight
scaling is achieved by shifting the weighting functions by the
ratio of the model scale frequency to the full scale frequency.
These shifted weighting functions are then applied to the 1/12-
octave spectral components. Typically the data reduction is con-
ducted at 30 ips tape speed. Not only does this enhance the ac-
curacy by bringing the higher frequencies within the capability
of the analyzer, it also facilitates the comparison of the 1/20-th
scale model rotor data with data from the 1/5-th scale rotor. The
resulting spectrum and metrics are then plotted on an HP 9872A
4-pen digital plotter. A sample of the 1/12-th octave spectrum
and metrics is shown in Figure 8. Tunnel background noise spectra
(1/12-th octave bands) with model installed without rotor blades
are shown in Appendix A for various tunnel speeds.

Acoustic time histories and narrow band spectra were acquired for
selected test points to provide supplementary information for data
analysis. Narrow band spectra are shown in Appendix B. For the
acoustic time histories, a HP 5423 analyzer replaces the desktop
computer and the B&K frequency analyzers as shown in the schematic
of figure 7. The acoustic data is processed for instantaneous
time history. For acquisition of bandwidth adjustable narrow band
acoustic data an HP 5420 Spectral Analyzer is used. Once again
the HP 5420 replaces the desktop computer and B&K analyzer as
shown in the schematic of Figure 7. Average power spectral
density plots are obtained with "free run" sampling (without
synchronizing with rotor RPM) and using a Hanning window.

2.5 Model Rotor Blades

Table I summarizes the rotor configurations tested. Figure 9
shows the planforms of the seven (7) rotor systems tested, along
with the twist and airfoil information. Essentially two different
airfoils have been used in the tip region of various configura-
tions. The SC1095 airfoil, in use on many Sikorsky Aircraft
models, 1is called the standard airfoil. The SSC-A09 airfoil,
designed for higher Mach number operation, is called the advanced
or the new airfoil. The profiles of these two airfoils are shown
in figure 10. The rectangular tip rotor is a scaled version of
the UH-1H rotor with NACAOOl2 airfoil. As the rotor bearings were
showing signs of wear, the UH-1H rotor was not tested at high
tunnel speed.



The rotor blades have a .76 meter (30 inch) diameter and a 2.54 cm
(1.0 inch) chord. Configuration 7, representative of the UH-1H
rotor, has a 2.77 cm (1.09 inch) chord. The elastic axis and C.G.
of the blades are coincident at the quarter chord. The blades
were fabricated using fiberglass (skins), graphite (spar) and foam
in a two piece high temperature epoxy. The blades used are not
dynamically scaled since dynamic scaling at such a small geometric
scale is virtually impossible. Every attempt was made to maintain
a close tolerance during the manufacturing process to ensure
uniformity of blades.

The Reynolds number on various configurations varied significantly
due to the changes in the blade tip chord and rotational speed.
The Reynold number at two tunnel speeds for the 1/20-scale model
as well as for the 1/5-scale model and the full scale helicopter
rotor blades are provided in Table II.




TABLE 1

BLADE GEOMETRIC DESCRIPTION

CONF1G SWEEP AND

NUMBER TIP AIRFOIL TWIST | TAPER BEGINNING SWEEP TAPER

1 Baseline Tip SC1095 -16° .94R 20° .6C

2 §=76 Tip SC1095 -10° .95R 30° .6C

3 Large Swept New Airfoil* -16° .92R 33° .6C
Tapered Tip

4 Large Swept $C1095 -16° .92R 33° .6C
Tapered Tip

5 Rectangular NACA0012 -10° -—— No Sweep No Taper

6 Parabolic New Airfoilx* -16° .92R 30° .6C
Swept Tip

7 Baseline $C1095 -10° .94R 20° No Taper
Tip, Low Twist

* NEW AIRFOIL - SSCA09 TIP, SC1095 INBOARD




TABLE II

REYNOLDS NUMBER RANGE OF CONFIGURATIONS TESTED

Reynolds Number in Millions
CONF1G QR V=30.7 m/sec (60 kts) Vv=71.7 m/sec (140 kts)
SCALE # DESCRIPTION m/SEC @r=1.0R|@r=0.9R{ @r = 1.0R| @r = 0.9R
1 Baseline, -16°| 221 0.459 0.418 0.533 0.493
2 S-76 Tip, =-10°| 205 0.259 0.393 0.303 0.468
3 LSTT, New A/F,| 221 0.275 0.418 0.32 0.493
-16°
1/20
4 LSTT, std A/F,| 221 0.275 0.418 0.32 0.493
-16°
5 Rect. Tip 248 0.554 0.505 X X
(UH-1H)
6 PST, New A/F, 221 0.275 0.418 0.32 0.493
7 A | Baseline, -10°| 221 0.459 0.418 0.533 0.493
B | Baseline Tip 205 0.431 0.393 0.505 0.468
-10°
1 Baseline Tip, 221 1.652 1.505 1.919 1.77%
-16°
1/5
2 §-76 Tip,-10° 205 0.803 1.218 0.939 1.451
UH-60 221 9.5 8.653 11.033 10.205
FULL
$=-76 205 4.04 6.13 4.727 7.3




3.0 RESULTS AND DISCUSSION

The results of the test described in the preceding sections are
presented here. The effects of geometric scale on the acoustic
pressure time history, spectral characteristics and trends of
integrated noise metric with wvarious parameters are shown. In
addition, the noise trends with various flight and design vari-
ables are provided for both the BVI and high speed level flight
conditions.

Though the original intent was to develop noise trending relation-
ships with operational parameters for various rotor blade config-
urations, as shown in Reference 10 and also later in this section,
simulation of the larger scale model acoustic characteristics at
lower speeds could not be achieved with confidence. Even while
failing to achieve the larger scale representation, this research
program highlighted and revealed significant effect of viscosity
on various noise source mechanisms of a rotor.

The results are first presented for the low speed condition and
later for the high speed condition. The Microphone locations used
in these discussions are provided in Table III.

3.1 Low Speed Acoustics

Typically Blade Vortex Interaction (BVI) noise dominates acoustics
under descending conditions (positive tip path plane angles) in
the low speed flight regime. All the seven rotor configurations
shown in Figure 9 were tested at low speeds. Typical test matrix
used during these low speed tests is provided in Table IV. 1In
addition to the conditions provided in Table IV, rotational speed,
tunnel speed (at constant advance ratio) and thrust coefficient
were varied for some of the configurations to study their effect
on acoustic characteristics. Results of these tests are provided
in this chapter. Details of the narrow band spectra for selected
cases are provided in Appendix B and sample 1/12-octave band
spectra for both the 1/20 and 1/5-scale models are provided in
Appendix C.
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TABLE III
MICROPHONE LOCATIONS

1/20 Scale

1/5 Scale

Full Scale

FORWARD, DOWN:

MIC 2 (r/D=1.0,¥=155°,08=30°)

UNDER THE ROTOR

MIC 9 (r/D=0.25,¥=110°,0=35°)
ON-AXIS, ON THE WAKE SIDE

MIC 5 (r/D=1.6,¥=177°,06=23°)

MIC 1 (r/D=0.25,¥=110°,6=35°)

MIC 1 (r/D=1.5,
$=178°, 8=15°

MIC 7 (r/D = 3.0) - out of flow
MIC 8 (r/D = 0.5) - in flow
TABLE 1V
TYPICAL LOW SPEED TEST MATRIX
CONFIG CONFIG QR TUNNEL CT
# DESCRIPTION TWIST m/sec ft/sec| m/sec knots
1 BASELINE -16° 221 725 30. 60 0.007
3 LSTT, SSCAOQ9
4 LSTT, SC1095
6 PST, SSCA09
2 S-76 -10° 205.6 675 30. 60 0.007
7 BASELINE TIP
5 UH-1H -10° 248.1 814 35. 70 0.0056
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3.1.1 Effect of Geometric Scale:

The acoustic time history for the 1/20-scale model S-76 Configura-
tion (#2) rotor under typical BVI conditions is compared with that
of the 1/5-scale model (Ref 10) under similar conditions (with the
exception of the microphone location and minor difference in speed
of sound) in Figure 11. The 1/5~scale model data was acquired in
the NASA 4mx7m wind tunnel under the contract NAS1-17126 and
further details can be obtained in Reference 7. Additionally,
these data are compared with the acoustic time history of the S-76
helicopter in descent at 6° glide slope and 38 m/sec (74 knots).
Unfortunately this is a higher advance ratio condition than the
model test conditions. Further, the thrust coefficient of the
full-scale flight test is lower than that for the scale models and
the time history is obtained at an instance when the S-76 heli-
copter was estimated to be at a position where the microphone is
approximately 30° below the main rotor path plane. Consequently,
though one cannot make a direct comparison of the model scale
results with the full-scale results, the characteristics of their
BVI noise signature can be compared.

It can be seen in Figure 11 that the 1/20-scale model S$S-76 rotor
(config. 2) BVI acoustic time history does not adequately show the
multiple impulses of the larger scale rotors. However, the indi-
vidual blade interactions with the vortex are well defined. This
data in spectral domain is shown in Figure 12 together with that
of the 1/5-scale model. While the 1/5-scale model spectra shows
multiple lobes, the 1/20-scale model spectrum has no lobes. This
could be caused by either the reflections in the semi-anechoic
NASA 4x7m tunnel used for testing the 1/5-scale model or by the
lack of multiple inpulses in the 1/20~-scale model BVI acoustic
time history. Further, the spectral 1levels at mid-frequencies
relative to the first harmonic level are slightly smaller for the
1/20-scale model than the same for the 1/5-scale model.

While the data at advance ratio of 0.15 for the S-76 configuration
showed discrete and well defined BVI impulses, the data at other
advance ratio conditions have shown significant unsteadiness and
at times drastically different characteristics. Acoustic time
histories of the 1/20-scale S-76 configuration at various advance
ratios is shown in Figure 13. Though it would have been useful to
hold constant Mach number while changing the advance ratio, such a
variation was not done. However the BVI time histories at two
Mach numbers (0.69 and 0.746) and an advance ratio of 0.15 show
similar characteristics (Figure 11 and 13a) indicating that the
effect of Mach number on the character of the signature is neglig-
ible. Keeping this in mind, one can clearly see from Figure 13
that the advance ratio effects the BVI acoustic signature of the
1/20-scale model significantly.
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Acoustic characteristics of the baseline tip configuration 1 at an
advance ratio of 0.14 are provided for the 1/5 (mic 5) and 1/20-
scales in Figure 14. As in the case of the S-76 configuration 2
(mic 2), the 1/20-scale model BVI does not have the impulsivity
exhibited by the 1/5-scale model rotor. Further, the BVI impulse
appears as a very large 1low frequency positive impulse which
causes the first few harmonic noise levels to increase in the
spectral domain. In the mean time the mid frequency harmonic
levels are considerably lower than those for the 1/5-scale model
even though the microphone was placed nearer to the 1/20-scale
model (1.0 diameter) than the one used in the 1/5-scale model test
(1.6 diameter). Once again, the low frequency character does not
appreciably change with the Mach Number (Figure 15). It does not
appear to change at microphone 9 either (Figure 16).

Acoustic Characteristics similar to the Baseline configuration 1
was obtained for the LSTT with new airfoils (Config. 3) at identi-
cal conditions (Figure 17). However, the two bladed UH-1H con-
figuration 5 at an advance ratio of 0.145 yielded slightly more
impulsive signature (Figure 18) than the one shown in Figure 17
for the 1/20-scale model. Though the character of the acoustic
signature for this configuration is similar to the one obtained
for the S-~76 configuration at an advance ratio of 0.15 (Figure
11), BVI impulse is wider than that of the S-76 configuration 2.

From the discussion so far, it should be noted that all the 1/20-
scale models have lower frequency BVI signature and that the
signal character is very sensitive to the advance ratio. Since
the advance ratio determines which part of the trailed vortex the
blade interacts with, if certain sections of the small scale model
trailed vortex wake are in a very turbulent state (with mutual
interactions), one can explain why the BVI acoustic signature is
sensitive to the advance ratio. Further work is warranted to
study this phenomenon.

Even when the higher harmonic noise levels are suppressed by the
viscous effects at the 1/20~-scale, one can still see discrete
tones in the BVI noise spectra (Figures 12, 14 and 17). Appendix
B provides a sample of narrow band power spectral density plots
for each one of the seven configurations tested. From these it is
fairly clear that the BVI noise is a discrete frequency noise and
not a broadband noise phenomenon even at as low a Reynolds number
(@ 90%R) as 400,000.

3.1.2 Effect of Scale on Noise Trends:
The 1/20-scale model BVI noise trends with thrust coefficient and

advancing blade tip Mach number (at a constant advance ratio of
0.14) for the baseline rotor configuration 1 and the LSTT config-
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uration 3 are compared with the corresponding 1/5-scale model
rotor noise trends in Figures 19 and 20. The noise levels at
microphone 2 of the 1/20-scale model data are corrected to account
for the distance effect using the inverse square law. Similarly
the noise levels at various thrust conditions for the 1/5-scale
model are increased to account for the difference in the Mach
number between the two scales (due to test temperature differ-
ence). This Mach number correction was based on the noise trends
with advancing blade tip Mach number. From these two figures one
may see that the overall sound pressure level (OASPL) for the 1/20
scale model are 3 to 8 dB higher than the same for the 1/5-scale
model. On the other hand, "D" weighted noise levels (dBD) of the
1/20-scale model are lower for the baseline configuration and
almost identical for the LSTT configuration. Of course, this is
not totally surprising based on the discussions in the preceding
section. It may be recalled that the lower frequency levels were
enhanced at the 1/20-scale and the mid-frequency levels were
suppressed. OASPL, being an unweighted noise metric, is dominated
by the increased levels of lower freguency. On the other hand,
dBD being weighted higher at the mid to high fregquency region,
downplays the increase in the lower frequency levels. Fortuitous-
ly the increase in the lower harmonic noise levels and the reduc-
tion in the higher harmonic noise levels compensate each other in
the "D" weighting scheme, resulting in almost equal dBD levels for
the two scale models of the LSTT (#3) configurations (Fig. 20).
For the baseline configuration the suppression in mid-frequency
BVI noise level at the 1/20-scale is far too large and hence the
1/5-scale dBD levels are higher than those of the 1/20-scale
(Figure 19). Additionally, the 1l/5-scale model dBD noise levels
increase with the thrust coefficient at a higher rate than the
same for the 1/20-scale. Once again this is the manifestation of
the fact that the acoustic levels in the mid-fregquency region for
1/20-scale model are suppressed by viscous effects.

Tip path plane angle of the rotor with respect to the free stream
determines if the rotor blades encounter strong vortex interac-
tions. Consequently, it is an influential parameter which deter-
mines the BVI noise levels. Such noise trends for the baseline
tip configuration 1 are provided at two directivity locations for
both the 1/5-scale and 1/20-scale models in Figure 21. 1In these
comparisons 1/20-scale microphone 2 data has been corrected (using
inverse square law) to a reference distance of 1.6 rotor diameter
and the 1/5-scale model test data has been corrected to 15°C.
Since the 1/20-scale model test was conducted at approximately
15°C, no temperature correction was applied to it. From Figure 21
one can notice that the OASPL for the 1/20-scale model is higher
than the 1/5-scale model in the forward location (mics 2 and 5).
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However, the inverse is true under the rotor (mics 9 and 1). On
the other hand the weighted noise metrics (dBA and dBD), indica-
tive of the higher frequency BVI noise, remain lower than the 1/5
scale model throughout the test range. In addition, the 1/20
scale model dBA and dBD metrics are far less sensitive to the tip
path plane variations than the 1/5-scale model noise.

3.1.3 1/20 Scale Model BVI Noise Trends:

So far it has been shown that the 1/20-scale models do not ade-
quately reproduce the larger scale BVI noise trends. Conse-~
quently, additional noise trend data is presented sparingly for
BVI conditions. First of all the BVI noise trends with the thrust
coefficient at two tip path plane angles and two microphone loca-
tions are provided in Figures 22 and 23 for the baseline configur-
ation 1 and the LSTT with new airfoil configuration 3 (quietest in
1/5-scale tests). Very little difference in the BVI noise trends
with thrust may be seen from these figures. As discussed in the
earlier section, these trends are smaller than the trends obtained
at the 1/5th scale.

Another interesting comparison between the 2~bladed UH-1H config-
uration 5 and the baseline UH-60 configuration 1 is provided in
Figure 24. 1t should be noted that the rotational tip Mach number
and the advance ratio for the two tips are different. The intent
here is to illustrate the fact that the OASPL for the UH-60
configuration 1 with respect to their dBD and dBA levels are far
higher than the same for the UH~1H configuration 5. Once again,
this can be related to the acoustic time history characteristics
of 1/20-scale models shown in Figures 14 and 18.

3.1.4 Nearfield-Farfield Comparisons:

The relationship between the nearfield (0.5D) measurements and the
farfield (3.0D) measurements are shown in Figures 25 and 26 at two
on-axis microphones. These on-axis microphone locations are used
to minimize the shear layer diffraction effects. Except for the
baseline configuration 1, similar noise trends with the tip path
plane angles for the nearfield and farfield microphones can be
seen in these figures. Indeed difference between the near-field
and far-field microphone noise levels for the LSTT configuration 3
with new airfoils and LSTT configuration 4 with SC1095 airfoils is
approximately 11 dB in OASPL and 10 dB in dBD at all tip path
plane angles. If one were to assume that the BVI noise source is
at the hub this translates into (d) !°3 relationship for dBD and
(d)"1°% relationship for OASPL. Indeed the BVI noise source is
not at the hub and it is probably closer to the blade tip. If we
make such an assumption, the BVI noise relationship with distance
is approximately (d) !°® for dBD and (d) !°7 for OASPL.
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In the case of the baseline configuration 1, an anomalous behavior
in the D weighted noise level can be seen in Figure 25. The 1/12
octave spectra for the in-flow microphone 8 shows (Figure 27) an
unusually large "hump" in the near-field spectra. Such a "hump"
is not present in the case of the Large Swept Tapered Tip Con-
figuration 3 with new airfoils (Figure 28). For unknown reason,
the "humpy" spectra for configuration 1 at microphone 8 was seen
at all conditions tested and similar behavior was also present for
the lower twist baseline tip configuration 7 and the Parabolic
Swept Tip configuration 6. Other configurations did not show such
a behavior.

3.2 High Speed Acoustics

In the earlier section the BVI noise dominated low speed acoustic
characteristics of the 1/20-scale model main rotors were dis-
cussed. In this section the characteristics of these model rotors
at high-speed flight are discussed. Since approach and take-off
are seldom conducted at high speeds, only the level flight condi-
tions are simulated. The model was typically tested at increasing
nose down position (negative +tip path plane angles) with the
tunnel speed to simulate the propulsive force required to overcome
the system drag forces. The tip path plane schedule used with the
tunnel speed is shown in Figure 29.

The rotor bearings showed excessive wear during the high-speed
test runs of the UH-1lH configuration (#5) and hence it was decided
not to continue testing them. Consequently, high-speed noise data
on this configuration could not be obtained. Additionally, though
an in-plane microphone location on the advancing side would have
been ideal for high-speed noise measurements, due to the tunnel
and model sizes and for fear of flow distortions, decision was
made not to place any in-plane microphones. All the data is pre-
sented for the same microphone locations (Mics 2 and 9) as in the
previous section. Scale comparisons, while being sparse, are
typically conducted with the full-scale UH-60 and S-76 flight test
data available in the public domain.

3.2.1 Effect of Scale on High-Speed Noise

Unlike the 1low speed conditions, high-speed noise data on the
larger scale configurations of the 1/20-scale models tested are
sparse. While 40 x 80 ft wind tunnel (acoustically untreated)
test data for the full-scale S-76 rotor (Ref. 1) is available,
they are affected by tunnel reverberation and reflection. Indeed,
a good account of the effect of wind tunnel walls on discrete
frequency noise authored by the same author can be found in

16



References 13 and 14. Indications from these references are that
the measurements at a microphone placed in the forward direction
at approximately 1.5 diameter in the tunnel will probably be
higher than the same in the free field. Even so, the OASPL and
dBD levels for the 1/20, 1/5 and full-scale rotors are compared
over a range of Mach numbers for the standard S-76 configuration
in Figure 30.

Before drawing any conclusions on the agreement between the
various scales, one has to bear in mind a few differences between
the scale models tested. For example, the tip path plane schedule
used for the 1/20-scale model is shown in Figure 29. However, the
same for the full-scale rotor was a constant -5°. In the case of
the 1/5-scale model, the data for a tip path plane angle of =-2° is
used. Further, the microphone placements in the three cases are
different (Table III). In spite of these differences, a good
agreement between the scale models appears to emerge in terms of
OASPL. While the OASPL trends of 1/5 and 1/20-scale models are

identical, the full-scale trend appears to be different. The

noise levels for the full-scale model are far higher than the
other scales at lower speeds and at very high speeds. It is not
clear if the tunnel reverberation effects are the cause for this
difference in the OASPL trend.

The full-scaled D-weighted noise trends shown in the same figure
show significantly higher level for the full-scale model than
those for the smaller models. However, the dBD noise trends (not
the levels) with Mach number for the three scales become identical
at higher speeds. Indeed, the trends are identical for the 1/5
scale and 1/20-scale models even at lower Mach numbers.

As discussed earlier, the high-speed negative tip path plane angle
flight conditions represent non-BVI conditions. Though we have
concluded that the BVI conditions are not well represented at the
1/20~scale, the general agreement in the noise trends shown in
Figure 30 indicates that the non-BVI noise sources prevalent in
the high-speed flight conditions are at least qualitatively repre-
sented.

Further evidence of this is provided in Figure 31, where the
maximum "A" weighted noise trends at the centerline ground plane
microphone during the flight tests of the UH-60 and the S-76
helicopters (Ref. 15) are compared with the flight scaled "A"
weighted noise trends for the 1/20-scale model configurations 1
and 2. Absolute levels are not provided in these figures since
the instance at which the maximum "A" weighted noise levels
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occurred during the flight is not known. However, the trends were
plotted by normalizing all the flight test data to 4.5 diameters
over the microphone at the time of the helicopter's overhead
location. The "A" weighted noise trends shown in Figure 31 show a
good agreement between the 1/20-scale and the full-scale S-76
configuration considering the crudeness of the method of comparing
the two. The 1/20-scale UH-60 model configuration 1 shows trends
similar to the S-76 models, but the full~scale UH-60 noise trends
are much different.

3.2.2 Effect of Translational Speed on Noise

The effect of design changes on the noise for various advancing
blade tip Mach Numbers resulting from tunnel speed variations are
shown in Figure 32. Of these configurations, only the §S-76
configuration (#2) was operated at a tip speed of 205.7 m/sec (675
ft/sec) whereas the other configurations were operated at 221
m/sec (725 ft/sec). As can be seen, most of the configurations
operated at the higher tip speed show decrease in the noise level
from Mach 0.783 (90 knots) to 0.798 (100 knots). Indeed this is
not surprising since the advance ratio at an advancing blade tip
Mach number or 0.783 is only 0.21, which is still the region of
vortex interactions.

It can also be noted from Figure 32 that the large swept tapered
tip with the new airfoils is the quietest configuration tested.
This incidentally is also the quietest of the tips tested at 1/5
scale under BVI conditions.

3.2.3 Effect of Rotational Tip Speed on Noise Trends

The noise levels in terms of OASPL, dBA and dBD at microphones 2
and 9 for various rotational tip speeds and 71.4 m/sec (140 knot)
tunnel speed are discussed for various rotor configurations in
this section. These levels are plotted in Figures 33 to 38. 1In
these figures, both the baseline tip configurations 1 (Figure 33)
and 7 (Figure 38) show steady increase in noise levels with
rotational Mach number. On the other hand, the sensitivity of all
other configurations to rotational tip Mach number is either
fairly low or erratic, specifically at microphone 9 mounted under
the disk. On the other hand, such insensitivity to the Mach
number was not obvious in Figure 32 where the tunnel Mach number
was varied.

Typically, one expects to find similar noise trends with advancing
blade tip Mach number irrespective of whether the tunnel speed or
rotational speed was changed within a reasonable range. The
results shown here for all the rotors show a lower sensitivity to

18



Mach number when the rotational tip speed is varied and the tunnel
speed is held constant. One of the differences of achieving
particular Mach number through these means is the advance ratio.
The advance ratio influences a number of acoustic phenomena such
as the vortex interaction with the blade and retreating blade
stall. All the 1/20-scale models tested were operated at 1low
Reynold's numbers. Therefore, they are likely to stall at advance
ratios lower than those for the larger scale models and result in
increased noise levels. Such an increase appears to have caused
higher than normal noise levels at lower rotational tip speeds and
caused the models to have lower sensitivity to the tip speed
changes. The fact that the larger chord baseline tip configura-
tions 1 (Fig. 33) and 7 (Fig. 38) show a higher sensitivity to the
tip speed than the other configurations with smaller chord (2, 3,
4, and 6; see Figs. 34 to 37) provides additional credibility to
this hypothesis.

3.2.4 Effect of Rotor Lift Coefficient on Noise

Sound pressure levels in terms of OASPL, dBA and dBD are shown for
a rotational tip Mach number of 0.65 and advance ratio of 0.327 in
Figures 39 and 40 for a total of 5 configurations. The same for
two configurations at a rotational tip Mach number of 0.607 and an
advance ratio of 0.35 are shown in Figure 41. The sound pressure
levels are provided at microphones 2 and 9 in all these figures.
Though it would have been desirable to have data over a wide range
of 1lift coefficients, due to the flapping and stress constraints
on these small scale rotor models with no cyclic control, only
limited data could be obtained during the tests.

As can be seen in Figures 39 through 41, typically the swept
tapered tip configurations 2, 4, and 6, show less sensitivity to
lift coefficient variations than the constant chord configurations
1l and 7. Similar behavior of the swept tapered tips was described

in the earlier section when the rotational tip speed was varied.
Once again the early stall introduced at small Reynolds number is

believed to be the cause.

Though the trends obtained in Figures 39 through 41 cannot be
reliably applied to larger scale models, one could still quali-
tatively assess the effect of some of the configuration changes.
For example, Figure 39 shows that the higher twist rotor is
quieter than the lower twist rotor. Similar comparison among
swept tapered tips in Figure 40 shows that the large swept tapered
tips (configurations 3 and 4) are quieter than the parabolic swept
tip (config. 6).
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The S-~76 configuration 2 (-10° twist) and the baseline tip con-
figuration 7 with -10° twist operated at a rotational tip Mach
number of 0.607 show (Figure 41) that the swept tapered S-76 tip
produces less noise than the untapered swept configuration 7.
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4.0 CONCLUSIONS

The conclusions drawn from the present study are provided in this
chapter. Of the many conclusions listed below, the large effect
of viscosity on the acoustic characteristics of small scale models
is of primary importance. From the discussions in the previous
section on manifestations of viscous effects it can be concluded
that very small scale rotor models should not be used to quantify
the acoustic characteristics of larger rotors. It can also be
concluded that very small scale rotors do not adequately represent
the BVI noise characteristics of larger rotors and that only the
high speed noise trends with tunnel speed are similar to the
larger rotor trends. Much of these differences are believed to be
due to viscous effects and in the list of conclusions provided in
this chapter, the viscosity is believed to have influence on at
least the first six. These and other conclusions from the present
investigation are:

1. BVI noise of 1/20-scale model helicopter rotors do not
approach the impulsivity of larger scale model rotors.

2. BVI noise of small scale models have higher amplitude at low
frequency and smaller amplitude at higher frequency unlike
the larger scale models which show a substantial increase in
the mid-frequency and high frequency region.

3. The character of the BVI noise of 1/20-scale models change
significantly with advance ratio indicating a possibility of
significant interaction among the vortices in the wake.

4, 1/20-scale model BVI noise 1is 1less sensitive to tip path
plane angle and thrust variations than the larger scale
models.

5. The high-~speed level flight condition noise trends of the

1/20-scale model with the advancing blade tip Mach number are

fairly insensitive to the Mach number changes introduced by
the rotational tip speed changes, particularly for tapered

tip blade configurations.

6. The high-speed level flight condition noise of the 1/20-scale
models is not very sensitive to thrust variations.

7. The large swept tapered tip configuration 3 with advanced
airfoils was identified as the quietest of the 1/20-scale
model tips tested at high-speed 1level flight conditions.
Though this is the configuration identified as the quietest
under BVI conditions (l/5-scale tests, Reference 10), it is
technically not valid to utilize the 1/20-scale model data to
evaluate tips for BVI noise. Since any comparison we obtain
cannot be substantiated, such a comparison of tips is not
provided.
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The 1/20-scale model acoustic trends with Mach number are
similar to those of the larger scale models when the tunnel
speed is varied.

The acoustic pressure approximately decays as the inverse of
1.5 power of distance when measured between two on-axis
microphones stationed at 0.5 and 3.0 rotor diameters from the
hub.

BVI nolise is dominated by discrete harmonics even for the
1/20-scale model rotor with a Reynolds number of approxi=-
mately 400, 000.



5.0 RECOMMENDATIONS

This study has shown a few similarities and a number of differ-
ences between the acoustic characteristics of very small scale
(1/20-scale) and larger scale model helicopter rotors. In the
process, the effect of wviscosity on some of the rotor sound
generation mechanisms have been highlighted. Specifically, it has
been shown that the BVI noise is significantly altered and the
high-speed noise, under certain thrust and advance ratio condi-
tions, is altered. However, the thickness and high-speed impul-
sive noise mechanisms have not been addressed. Further, while
indicating differences between various scales, this study has
raised a number of fundamental questions with regard to the way
the viscous effects alter various noise sources. It is therefore
recommended that a series of experiments, preferably in a wvariable
density tunnel, be conducted to address the following issues:

l. The effect of scale on thickness and high-speed impulsive
noise. Specifically the effects on the following:

a. Noise levels

b. Boundary layer effects

c. Shock-boundary 1layer interaction at transonic speeds
2. The effect of Reynolds number on BVI noise. Specifically the

effects on the following:

a. Vortex structure, strength and stability

b. Mutual interaction between vortices at wvarious advance

ratio

c. Transient flow-field during vortex interaction

3. The effect of Reynolds number on unsteady loading noise.

Specifically the effects on the following:

a. Stall at high advance ratio
b. Stall at high lift coefficients
4. The smallest scale allowing adequate representation of

various noise source mechanisms.
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SSCA09 Airfoils
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APPENDIX A
TUNNEL BACKGROUND NOISE

The tunnel background noise 1/12-octave band spectra with the bare
hub turning are presented at two in-flow microphones (2 and 9).
All the spectra provided in this Appendix were obtained by operat-
ing the tape recorder at 1/4 the speed of data acquisition. This
procedure facilitates easier comparison of 1/l12-octave band
spectra for the 1/20-scale models with those for the 1/5-scale
models. :

The tunnel fundamental tone was at 30 Hz (7.5 Hz in the 1/12
octave plots obtained at 1/4 tape speed) and hence it is off the
1/12-octave plots provided here. The plots shown here start at
20X4 = 80Hz at which the higher harmonic tunnel tones appear to
have become unimportant. Tones appearing in the 1/12-octave
spectra are the harmonics of the rotor hub and they become less
pronounced at higher tunnel speeds due to the broadband wind
noise. Indeed one can see the classical V°® relationship in the
noise levels (printed on the right hand side in OASPL, dBA and
dBD), where V is the tunnel speed.

Comparison of these background noise levels with the rotor noise

levels provided in Appendix C show that the background noise
levels are far lower than the rotor noise levels.
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APPENDIX B
NARROWBAND POWER SPECTRAL DENSITY PLOTS

Sample power spectral density plots obtained for each of the rotor
models tested are provided here. These plots were obtained by
using 3.25 Hz constant band width filters and normalizing the
amplitude by the filter band width. Once again the tape was
played back at 1/4 the recording speed. All except the UH-1H
configuration (#5) were run at 30.6 m/sec (60 knots) while the
UH-1H configuration was run at 35.7 m/sec (70 knots) tunnel speed.
Similarly the tip path plane angle shown are 3° and 5° for con-
figuration 5 while the same for the other rotors is 4°. Essen-
tially all the configurations show discrete harmonic noise during
BVI although the large swept tapered tip configuration with SC1095
airfoil (#4) and the parabolic swept tip configuration (#6) show
significant sideband levels in addition to the harmonics. Ap-
parent increase in the broadband noise floor for configurations 4,
5 and 6 are believed to be caused by instrumentation noise floor.
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APPENDIX C
1/12 OCTAVE SPECTRA FOR 1/20 AND 1/5 SCALE MODEL ROTORS

1/12-octave spectral plots at 1/20 and 1/5-scales are provided for
the baseline (#1) and Large Swept Tapered Tip (#3) configurations
at various tip path plane angles. The tunnel speed used was 30.6
m/sec (60 knots) and the rotor tip speed was 221 m/sec (725
ft/sec). The spectral plots were obtained by operating the tape at
1/4 times the recording speed. The averaging time, over which the
spectrum was obtained, is printed on the left hand side top corner
of these figures. This is followed by the reference noise level
used in the 1/12-octave plots. The record number is of no speci-
fic significance since it is only a file code used in storing the
data during the data reduction. Finally, the scale is a factor by
which the 1/12-octaves are shifted during the computation of the
flight scaled A and D metrics. Indeed, at 1/4-tape speed, a scale
of say 5.4 means 21.6 (5.4x4). These weighted noise metrics and
OASPL are computed and printed on the right hand top guadrant of
these plots.

As an example, the first harmonic of the rotor blade passage is
plotted at approximately 90 Hz in Figure Cl. Since the data was
reduced at 1/4-tape speed, this corresponds to 90x4 Hz at 1/20-
scale and 90/5.4 at full-scale.
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