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Abstract 

Optimiration by dccornposition, complex system sen- 
sitivity analysis, and a rapid growth of disciplinary sen- 
sitivity analysis are some of the recent developments 
that hold promise of a quantum jump in the support 
cnpincers rcceive from computers in the quantitative 
aspccts of design. Revicw of the salient points of these 
tcchniqucs is given and illustrated by examples from 
aircraft dcsign viewed as a process that combines the 
bcst of liuman intellcct and computer power to 
manipul;rtc data. 

Introduction 

Dcvclapmcnt trends in advanced civil and military 
aircraft arc toward longer time separating major 
projects and toward greater capability increment of 
each next projcct ovcr its predecessor. Together with 
rapidly increasing vehicle complexity, this trend works 
toward rcducinp usefulness of the statistical informa- 
tiotl and design by prccedent, and toward increasing 
importance of computer-based, multidisciplinary 
analysis and formal synthesis (optimization) among the 
tlr\ipncr's tool\. 

Progrcss in multidi\ciplinary analysis and synthesis 
wi~s di\cusscd in thc contcxt of aircraft design in (I' 

lxcscntcd to the 14th ICAS in September 1984. The 
major points made in that reference were: 1. the cur- 
rcntly prevailing sequential manner of conducting 
tlcsipn proccss is likely to produce suboptimal results; 
2. the systems (vehiclcs) decomposable into top-down 
hierarchy of engineering disciplines and subsystems 
may bc optimized by multilevel procedure made up of 
sub-optimizations performed concurrently at each 
lcvcl of the hierarchy and linked by optimum sensitivity 
derivative information. 

Tlic I)UI wx ofthis  paper is to update the review 
givrli in ('I by referring to new information on a test 
of nlultilcvcl. multidisciplinary optimization based on a 
hicr;lrchrrl top-down dccornposition of the type postu- 
I;itcd in "I , and hy bringing into focus two new advan- 
ces: the cmcrgcncc of the engineering sensitivity 
an;rlysis in individuill disciplines and in analysis of 
complex, coupled systcms, and the adaptation of a for- 
mal system approach to aircraft design. Sensitivity 
anillyi\ offers a practical tool to answer the "what if' 
questions that SO oftcn arise in design, and the system 
approach cnablcs one to exploit interdisciplinary 

synergism while dividing the large design task into 
smaIIer, concurrently executable tasks, without being 
limited to formalism of the top-down, hierarchal 
decomposition reported in . 

Hierarchal Decomposition in Design 

To provide background for discussion of the recent 
developments the description of hierachal decomposi- 
tion given in b, is restated in abridged manner using 
generic terms. It is followed by a discussion of applica- 
tion experience available to date, including an applica- 
tion example. 

roceare For- 
An example of a hierarchal system is depicted in 

Fig.1. Each box in the figure stands for a mathematical 
model representing an aspect of the system behavior 
(an engineering discipline, e.g., aerodynamics), or a 
physical subsystem, e.g., propulsion plant, or both. 
Mathematically speaking, a typical box in the midst of 
the hierarchal system is a converter transforming an 
input received from its "parent" black box, or from out- 
side of the system, to an output transmitted to its 
"daughter" black box or to outside of the system. Con- 
sistent with the black box concept our attention here is 
on the input, output, and their transmission paths, but 
not on the details of the converter. 

The system levels are numbered from the top, and 
the system is regarded as hierarchal if j-th black box at 
i-th level is linked to only one parent in a level above 
and is linked to no other black box at the same hierar- 
chy level, although it may be connected to several 
black boxes below forming a cluster such as those indi- 
cated by dashed envelopes in Fig.1. In other words, 
there are no lateral transmission links in the system, 
and the output Oij from a black box is a function of an 
input from its parent and its own design variables 

Oij = f(Xij ,Iij ) (1)  
where the input 

Iij = O p r  (2) 
and 

r > i  (3) 
The output defined in eq.1 may include also the 

dcsign variables Xij, if they are needed as inputs elsc- 
where in the cluster below. 

As shown in , optimization of such a hierarchal 
system may be carried out by a procedure that begins 
with an initialization of all the constants and X's, fol- 
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lowcd by a top-down sweep of individual analyses in 
which each black box output is generated and trans- 
mitted to the appropriiitc boxes bclow. Boxes at the 
same hierarchy level may be analysed concurrently 
since they arc isolatccl from each othcr. 

Whcn the an;llysis sweep is complcted, a sweep of in- 
dividu;tl optiniizations performed in each black box 
proccccls from the hottom-up. An optimization 
prohleln solved in each black box except the top one is: 

min C; j (Xi jh j ) 
Xij 

subject to constraints (STOC) : 

Thc equality constraints in eq.4b restrict the changes 
to X's so as to conform to the inputs received from the 
parent black box. The upper and lower limits in eqAc 
includc thc physical bounds and the move limits tem- 
porarily imposed on thc design variables. 

Thc ohjcctivc function of the problem, eq.4a, is a 
cumulirtivc constraint reprcsenting inequality con- 
straints g in 130s ij and the cumulative constraints Cuv 
from its daughters. A typical inequality constraint 
function is formulated by comparing an output quan- 
tity with its allowable value in a dimensionless expres- 
sion constructed so that a positive constraint is a vio- 
lated constraint, negativc constraint is a satisfied con- 
straint, and a zero constraint is critical (active) 

Thc allowable quantity in the above expression may 
also he a function of dcsign variables 

Thc cu~nulativc constraint used in is a differenti- 
ahlc cnvclope of the constraint functions g taken in a 
form of thc Krcissclnieicr-Steinhauser function (KS 
function) Iron, (I' 

which has a property of 

wherc r is a user-controlled factor whose increase 

draws the KS closer to the maximum constraint, and m 
is a total number of constraints gij and CUV . 

Cumulative constraints Cuv in the formulation of thc 
cumulative constraint Cij are approximated as linear 
functions of Xij 

In the above, the derivative d & v l d ~ -  is an optimum 
sensitivity derivative in the sense of (3y or ") . A vec- 
tor of thkse derivatives is obtained by performing op- 
timum sensitivity analyses using algorithms described 
in (3) and (4) of the optimum found by solving the 
problem stated by eq.4 for black box uv - a daughter of 
box ij (see Fig.1). The optimum sensitivity derivatives 
are obtained with respect to each element of the out- 
put Oij transmitted from box ij to box uv. Thus, the op- 
timizations in the black boxes are recursively related 
throughout hierarchy, and the reason that their execu- 
tions have to begin at the bottom level is that the black 
boxes there have no daughters and, consequently, the 
Cuv constraints do not enter into the subotimizations 
at that level. 

The derivative dOij/dXij is a behavior sensitivity 
derivative obtained from behavior sensitivity analysis 
of box ij. It is assumed that such analysis is included in 
the top-down analysis sweep. 

The physical meaning of optimization defined by eq.4 
is that the black box design variables are manipulated 
so as to reduce as much as possible the constraint 
values (in other words, to achieve maximum feasibility) 
in the black box itself and in the entire cluster of the 
boxes related to it in the levels below, while conform- 
ing to constant inputs received from the parent black 
box. The system performance does not enter these op- 
timizations. It is solely accounted for in the black box 
on the top of the hierarchy for which the optimum 
problem is defined as 

minF(X11), STOC 

Cuw 5 0 ,  u v  E cluster 
(lea> 
(lob) 

Inequality constraints Cuv in eq.10b are ap- 
proximated as in eq.9 for the daughters that appear in 
level 2. Owing to the recursivity of the Cuv formulation 
in eq.4a, 7, and 9, these constraints have the effect of 
guarding against constraint violations in the entire 
hierarchy below the top level. Inequality constraints 
gii in eq.10~ represent the system level constraints, 
and eq.lOd is analogous to 4c. The objective function 
in eq.10a is a measure of the system performance for- 
mulated so that the performance is maximized when 
this function is minimized. 
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Sincc thc lincarization errors occur due to the use of 
ccl.0 in optimizations at all levels, the analytical data 
11;1vc to be updated after the optimi~ation sweep is 
complctcd. Hence, the procedure alternates the 
;inalysis and optimization sweeps until convergence is 
iitti~incd. 

'I'lic rncrit of optimi/;ltion by decomposition lies in its 
I~rcaking up of what would be a very large optimization 
problem, if all design variables were manipulated 
simultaneously, into a set of much smaller optimization 
problems many of which may be solved concurrently. It 
also subordinates all the lower level optimizations to 
the dominant goal of bettering the system performance 
while prcscrving the constraints of the entire system 
and thosc that are local to its parts. This automatically 
rcsolvcs thc trade-offs occuring among the disciplines 
and physica! subs)a!ems represe~tcc! by the black 
hoxcs in the hicrarchy. 

Sincc publiratir~n of ( I ) ,  the above decomposition 
mcthud was uscd in (5' to formulate optimization of 
structures by substructuring with unlimited number o f '  
Icvcls. Numerical results presented in that reference 
demonstrated satisfactory accuracy and convergence 
ch;~racteristics of the algorithm. 

As far as multidisciplinary applications are con- 
cerned, thc decomposition method was reported in ( 6 )  

as an cffcctivc tool for aerodynamics-structure-perfor- 
n1;tncc optimiration of a glider, and ('I gave a status 
report limited to a problem formulation for a similar 
application to a transport aircraft wing. Now, a report 
on the experience obtained from that application be- 

(7) camc available in . 
The ohjcct of the application was a transport aircraft 

dcpictcd in Fig.2a. The objective function was block 
Sucl consumption for an assumed typical commercial 
flight. A total of 1950 constraints were accounted for 
in thc aircraft performance (e.g., the take-off field 
length, and the rate of climb), in the aerodynamics of 
the wing. and in the wing structure. The latter included 
detail stress and local buckling constraints in each of 
316 individual wing cover panels. Optimization af- 
fcctcd the wing shape and structure cross-sectional 
siring only, while the remainder of the aircraft and its 
cnpincs remained unchanged. Aerodynamic analysis 
of thc wing pressure distribution was carried out by 
CFD panel code, and structural analysis was based on 
;r linitc clcmcnt model depicted in Fig.2b. 

A total of 1303 design variables were included rang- 
ing from thosc governing the airfoil shape to the 
dctnilcd dimensions of the wing cover panel skins and 
reinfurcin stringers. The optimization procedure out- 
lined in ') was organized in three levels shown in 
Fig.3 and defined in Table 1 which displays also the in- 

formation transmitted between the levels. Optimiza- 
tion in each black box employed a nonlinear mathe- 
matical programing (NLP) optimizer. 

. . . - 
re Pet%xm.ame rn A ~ r m  

The procedure pcrformancc reported in (7) was 
satisfactory as illustrated by the histograms for thc fuel 
objective and structural weight in Fig.4. It 
demonstrated that the decomposition approach makes 
it possible to perform a NLP type of optimization for a 
complex system including diverse disciplines and using 
a large number of design variables that would be far 
beyond practical limitations of a conventional single 
level procedure. It has also shown for the first time 
that a rigorous, mathematical link may be established 
from a design detail all the way up to system perfor- 
mance. 

The hierarchal, top-down nature of the system 
depicted in Fig.1 makes it difficult to apply the above 
decomposition scheme to systems with lateral links, 
and to those whose analysis requires iterating between 
parent-daughter black boxes. Such systems are known 
as networks and some problems in aircraft design fall 
into that category. For example, consider a flexible 
wing with active controls described in (*) and, to keep 
the discussion simple, limit thc active control in that 
case to just one function: load alleviation to reduce the 
root bending stress. Then, the information links 
among the black boxes of aerodynamics, structures, 
and active control form a system shown in Fig.5 in a 
graph-theoretic format. Indeed, the aerodynamic 
loads are input into structural analysis which outputs 
elastic deformations that affect the loads, a stress sig- 
nal from the wing root is transmitted to the active con- 
trol system whose actuators add hinge moments to the 
wing structure loads, the active control receives infor- 
mation (direct or indirect) about the wing pressure 
distribution it needs to decide how to move the control 
surfaces whose deflections are input into aerodynamic 
analysis. 

The wing may be considered as a system whose out- 
put consists of the data on aerodynamic pressure, 
structural deformations, and active control hinge mo- 
ments and deflection angles. This output is influenced 
by design variables of aerodynamic shape, structural 
sizing, and active control law coefficients (gains). Tha 
system is a non-hierarchal network in which there is no 
inherent mathematical reason (other then the histori- 
cally evolved practice of considering aerodynamics 
first, structure next, and active control last) to place 
one black box above another. Even without active con- 
trol the system would be a non-hierarchal one because 



of the two-way link between aerodynamics and struc- 
tures. Neglecting the elastic deformation feedback in 
that link made it possible to decompose the test case in 
('I into a pure top-down hierarchy. It was justified for 
a long range transport that spends most of its life in a 
cruise mode in which that feedback may be compen- 
s;~tcd for t ~ y  building the wing to a jig shape that offsets 
the elastic deformation effect on aerodynamics. 
Howc\cr, this assumption does not carry over to a 
multiniission aircraft such as a fighter. 

The need to optimize non-hierarchal systems was ad- 
dressed by dcvcloping a method for sensitivity analysis 
which may bc couplcd with judgmental and formal op- 
tinii7ation. That method to be introduced next is 
Incant to he an efficicnt substitute for the inaccurate 
and often cost-prohibitive, but currently prevailing, ap- 
proach of computing scnsitivity derivatives of complex, 
coupled systems by finite differencing that requires 
repetition of the entirc analysis of the system for every 
design variable perturbation. 

Non-Hierarchal Sensitivity Analysis and 
Optimization 

A method Tor solvinb the system sensitivity problem 
wils dcvclopcd in ( from the implicit function 
theorem, and initial experience with its use was 
rcported in (10,1') and also in and (I2)  in the 
pr;)grarn of this congress (ICAS-16). 

I'hc generic sensitivity analysis method from (9 )  is 
introduced here using as an example an actively con- 
trolled wing shown as a network system in Fig.5. For 
thc purposes of sensitivity analysis a network system is 
abstracted in a manner shown in Fig.6. The outer box 
represents the system made up of internal black boxes 
labclcd A, S, and C for aerodynamics, structures and 
controls, rcspcctively. As in the preceding section, 
cach black box is rcgardcd as a set of mathematical 
ol)crations that convcrt input listed in the inner paren- 
11icscr to output dcnotcd Y subscripted with the label 
of thc hox, c.g., YA Coupling of the inner black boxes 
illustrated ill Fig.5 by arrows is reflected in Fig$ by the 
out1)~114 I~cing fed to thc inputs, also illustrated by ar- 
rows. Thc design variables are denoted by X and un- 
like in thc dcfinition uwd in the preceding section they 
itre not included in thc outputs Y. In the general case, 
the cluiintitics Y and S are vectors. Usually, the data 
vcctors X and Y arc input selectively. For instance, the 
sutj\ct of YA entered into B may be different than the 
suhsct of YA cntercd into C, although the subsets may 
cwcrlap. This selectivity is tacitly understood but not 
rcllcrtcd in the notation in order to keep the 
nomcnclaturc simplc. 

In more precise mathematical terms, A, B, and C are 
vectors of functions of the arguments shown in the cor- 
responding parentheses, and setting them to zero 
forms the set of simultaneous equations that govern 
the system. The number of equations in each box is 
sufficient to solve for the unknown elements of its out- 
put vector Y. A set of vectors Y constitutes a solution 
of the system if the Y's substituted simultaneously in 
A, B, and C produce zeros on the right hand side. In 
many practical applications, such solution can only be 
found by iterating among the black boxes, as in the 
case of converging aerodynamic loads and elastic 
deformations of a wing using nonlinear aerodynamic 
analysis. 

Sensitivity analysis from (9) enables one to calculate 
the sensitivity derivatives of the system solution with 
respect to a design variable Xk from a set of simul- 
taneous equations, termed sensitivity equations 

Regardless of the mathematical nature of the govern- 
ing equations of the system and regardless whether 
they do or do not require iteration for solution, these 
sensitivity equations are always linear and algebraic. 

The sensitivity derivatives appear in eq.11 as the vec- 
tor of unknowns, the partial derivatives of outputs with 
respect to a particular design variable Xk form the 
right hand side vector, and the matrix of coefficients is 
independent of the design variables. The matrix is 
formed from identity submatrices along the diagonal 
and the matrices of partial derivatives of a black box 
output with respect to its input (the Jacobian matrices) 
positioned off the diagonal. These partial derivatives 
appear only where output from a particular black box 
is affected by input received from another black box, 
so that the matrix of coefficients reflects the system 
couplings. Consequently, this matrix needs only be 
formed and factored once for a given system, and then 
backsubstituted with as many right hand side vectors 
as there are design variables for which one wishes to 
obtain the sensitivity derivatives. 

Thc partial sensitivity derivatives entered in the 
matrix of coefficients and thc right hand side vectors 
are by definition computable from each black box 
treated in isolation from each other, and they may bc 
computed concurrently. Thus, it may be said that the 
system is being decomposed for the purposes of sen- 
sitivity analysis and, yet, the solution vector of eq.11 
produces the system sensitivity derivatives that fully ac- 
count for coupling among the black boxes. In this vein, 
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it may he instructive to observe that it is the presence 
of thc off-diagonal submatrices that makes the vcctor 
of unknowns in cq.11 different from the right hand 
side vcctor. In other words, in a system of uncoupled 
hlrrck boxes the systcm sensitivity is the same as that of 
each I~lack box dircctly iiffccted by a particular design 
vari;thlc, hul it is not so when the black boxes are 
coupled. 

To illustrate the physical meaning of partial deriva- 
tives in cq.11, consider the submatrix in the upper right 
hilnd corner of the matrix of coefficients, assuming 
that thc acrodynamic analysis outputs Na pressure 
cocfficicnts at discrete locations at the wing, and that 
the activc control system influences the wing by NC 
control surfaces and receives pressure data from Np 
sensors on the wing. A column in that submatrix con- 
tains Na partial deiivati:.es of the pressure coefficients 
with rcspcct to a particular control surface deflection 
anplc, so that there arc Nc columns in the submatrix. 

Thc opposite submatrix in the lower left corner con- 
tilins Np columns. each containing Nc partial deriva- 
tives of thc control surface deflections with respect to 
thc rcadir~p of a particular pressure sensor. The two 
submatrices are not mutually symmetric - a point to 
hear in mind when choosing an off-the-shelf program 
lo solve thc sensitivity equations. 

Lct us assume that the design variables of interest are 
the SH~CCI) angle and a composite laminate orientation 
angle in  the wing cover. Thc sweep angle directly af- 
fects the acrodynamics and structures, but not the ac- 
tive control. Hence, its right hand side vector will have 
a null pi~rtition corresponding to the active control as 
sccn in thc first term of eq.12: 

0 

(12) 
- - - - -  - - - - -  

The laminate orientation angle affects directly the 
stri~ctual deformations only, so that its right hand side 
vector will have null partitions corresponding to the 
acrodyniunics and activc control as in the second term 
of ccl.12. However, the system sensitivity derivatives 
obtained from eq.11 for two such design variables will, 
in gcncral, be nonzero for all Y's, that is, for the 
acrodynamic pressure coefficients, structural deforma- 
tions, control surface deflections, and for the hinge 
monlcnts. 

The ahovc introduction to system sensitivity analysis 
is 1~;rsetl for simplicity on an example of only three 
hli~ck boxes. Howevcr, it establishes a pattern that, as 
("I shows, extends readily to an unlimited number of 
hlirck boxes. The pattern is also a recursive one be- 

cause a black box may be regarded as a system within 
itself. Additional examples of the use of the systcm 
sensitivity analysis are given in (LL'YqlOqll) and (I2) . 

The partial dcrivatives needed to build the matrix of 
coefficients and the right hand sides of eq.11 may he 
generated, in order of preference, analytically, semi- 
analytically, and by finite differencing. Regarding the 
latter, one should emphasize that this finite differenc- 
ing is performed on an isolated black box, therefore, it 
is not nearly as computationally costly as the finite dif- 
ference performed on the entire system analysis and it 
should also be more accurate (see (9) for the cost and 
accuracy discussion). 

The fact that the partial derivatives are generated, by 
definition, within each black box separately is an im- 
portant advantage because it enables one to use spe- 
cialized sensitivity analysis methods whose develop- 
ment has recently been rapidly progressing in many 
engineering disciplines as evidenced by large number 
of papers collected in (I3) , and a survey in ( I4 )  . In 
structures, sensitivity analysis has become available in 
a major, production-level program, (I5) . In computa- 
tional aerodynamics, at least one production level 
program is now available, (I6) , and a generic sen- 
sitivity analysis method based on the implicit function 
theorem and proposed in (I7) has been built upon in 
('*) and (I9) . On the other hand, the rapidly increas- 
ing speed of computers makes it also viable to perform 
aerodynamic sensitivlt analysis by finite differencing 
as demonstrated in id and (I1) . Thus, the two dis- 
ciplines known for their relatively greatest demand put 
on the computer resources are moving toward making 
sensitivity analysis routinely available. It appears that 
other disciplines will follow that lead. 

Another important advantage of the black box for- 
mulation underlying eq.11 is that it accepts the partial 
sensitivity derivatives obtained experimentally, or from 
any other external source, e.g., statistics or judgment. 
That was not possible in a conventional finite dif- 
ferencing performed on the entire system. 

System Sensitivity Derivatives in 
Design Process 

F o r m  
The sensitivity analysis is sho\vn incorporated in a 

procedure for quantitative support to design process 
in a flowchart in Fig.7. The first task of the procedure 
is to obtain a converged (but not necessarily feasible) 
solution of a trial design of the system by any suitable 
method. The next set of separate tasks is to calculate 
partial sensitivity derivatives for each black box in the 



systcm - these tasks may be executed concurrently - 
and collecting thcse derivatives in equations such as 
cq. l 1. Once the system sensitivity derivatives are ob- 
tained. thcy may be used to guide the design toward 
iniprovenient, either by judgmental modifications, or 
hy cxccution of formal optimization, or both. 

Uscd judgmcntally. thc system sensitivity derivatives 
indici~tc by thcir relative magnitude which design vari- 
ahlc\ i\rc the most influcntial ones and whether their 
influence is positivic or negative. This is very useful in- 
formation for deciding how to modify the design. 
Without sensitivity analysis, that information tends to 
he ohscured in complex systems by conflicting trends 
and trade-ofls. 

In conjuction with formal optimization, the system 
sensitivity dcrivatives are used to establish an ap- 
proximate n~odel of the system. A linear extrapolation 
equations bascd on thcsc derivatives are the simplest 
example of such a model that may be attached to an 
optimization algorithm which will, then, modify the 
tlcsign t o \ ~ i ~ r d  improving its measure of performance 
(ol~jcctivc function) within constraints, and within 
mcwc limits which should be judiciously set by the user 
to avoid exccssivc extrapolation errors. Example of a 
~uiti~l>lc optimization algorithm is the usable-feasible 
directions mcthod from (20).  When the optimization 
alpnrithrn attilins its termination criteria, the system 
design vnriahlcs arc updated and its analysis and sen- 
sitivity analysis have to be repeated to refresh the ap- 
~woximatc model data before the next optimization 
may begin. 

-Based w e  

Effcctivcncss and efficiency of the above process is 
strongly infllrcnced by the move limits which in turn 
dcpend on the nonlinearity of the problem at hand. 
High nonlinearity forces narrow move limits and fre- 
qucnt updates of the system analysis. Therefore, 
rcsults reported in (21) are of interest here because 
thcy show that at least some of the physical 
phenomena cncountercd in aircraft design are only 
mildly nonlinear so that the derivative-based linear ex- 
trapol;~tions arc good approximation of the true be- 
havior within fairly widc move limits. For example, 
Fig.8 sllows ;In elastic wing trimn~ed angle of attack as 
a function of the wing sweep angle for a converged 
aerodynamic loads and structural displacements (it 
also shows how much the loads-displacements cou- 
pling irffccl th;~t function: its slope is actually reversed 
comparing to that of a rigid wing). The function slope 
is ;I derivative of the aerodynamic-structure coupled 
systcm that could have bccn calculated from sensitivity 
equations such as eq.11. The figure shows that the ex- 
~rapolation based on such derivative would be quite 

accurate over the sweep angle interval of about +- 
25% of the reference sweep angle. Examination of 
similar functions in aircraft design literature shows this 
to be a fairly typical situation, although exceptions do 
occur, therefore, it is important to keep human intel- 
ligence in the process. 

Recognizing the central role of human intellect in 
design, one can think of a design process organization 
in which the system sensitivity derivatives would be 
used as principal means of communication regarding 
the quantitative side of design among the disciplinary 
specialists, as shown in Fig.9. The scheme depicted in 
the figure is an adaptation of the flowchart from Fig.7 
to the workings of an engineering design organization. 
It calls upon the specialists to generate information in 
their disciplines, and to augment it with the partial sen- 
sitivity derivatives of their outputs with respect to in- 
puts and to the design variables. After the partial sen- 
sitivity derivatives are used in the system sensitivity 
equations to calculate the system sensitivity deriva- 
tives, the specialists are being called upon again to 
decide on the design modifications using system sen- 
sitivity derivatives with the aid of formal optimization 
and, or, judgmentally including due consideration to 
the non-quantitative aspects of design. 

Although experience with the use of the system sen- 
sitivity derivatives available to date and referenced 
above is limited to aircraft subsystems such as a wing, 
the concept is readily extendable to include entire 
aircraft considered as an engineering system. 

This may be shown by examining a typical textbook 
aircraft design procedure, for example the one from 
(22) illustrated in Fig.10. Consistent with the prevailing 
practice, this procedure is a sequential one, so that as 
implied by the module labeled "CHANGE WEIGHT, 
WING & ENGINE SIZE" in the upper right hand 
corner, it would be repeated for each design variable 
perturbation in order to assess the influence of that 
variable on design. 

Casting the set of modules in Fig.10 as a set of 
coupled black boxes results in a system shown in a 
graph-theoretic format in Fig.11 - analogous to Fig.5. 
Information transmitted between the boxes is repre- 
sented by vectors Yi - the subscript identifies the vec- 
tor source box. The figure shows also the design vari- 
ables X input into the black boxes. Examples of the 
content of the Y and X vectors are given for each 
black box in Table 2. Consistent with Fig.6, Fig.11 does 



not show that transmissions of the data from one box 
to anothcr and the X inputs are selective. 

The sensitivity equations for the system from Fig.11 
takc on this form 

in which, for compactness, Yij denotes the partial 
derivative of Yi with respect to Yj . In these equations 
thc matrix of cocfficicnts is block-sparse because the 
system in Fig.11 is not fully coupled. Solution of these 
equations yields a measurc of influence of thc design 
v;rria~~les Xk on design through the sensitivity deriva- 
tives of all the Y vectors with respect to these vari- 
aI)lcs, without finite differencing or performing 
paramctric studies implicd in Fig.10. 

sis vs. P- 

Since the sensitivity study approach is a prevailing in- 
dustry practice to achieve quantitative improvement of 
design, it should be useful to compare the information 
pcncrated hy such study with that produced by system 
sensitivity analysis coupled with optimization. As pic- 
tured hy an cxample in Fig.12 (from ( 22 )  ), a parametric 
studv dctermincs a function character over the entire 
range of intcrest and tclls whether extrema exist and 
whcrc arc they located, but it docs that for one vari- 
able a1 a tiltlc at thc price of solving the system at dis- 
crctc points within that range. A minimum of three 
diita points along one axis are needed to establish the 
simplest nonlinear function in this manner, hence, one 
need\ 3" points to do that for n design variables. Skill- 
I'ul cnpinccrs use intuition and judgment about relative 
inlportancc of thc design variables and combine vari- 
ahlcs into poups to kcep the number of data points re- 
quired within practical bounds, nevertheless, in ad- 
vanced prcjccts whcrc little guidance from the past ex- 
pcrience is available the pressure on that number to 
escalate beyond acceptable limits is relentless. 

7 

In contrast, sensitivity analysis provides the function 
slope information at a single point but may do it for all 
n design variables at hand while solving the system only 
once. Furthermore, that multivariable slope informa- 
tion may be translated by a single inespensive execu- 
tion of an optimization algorithm such the one from 
(") into a pointer in the design spacc of n variables 

showing how to modify the design in order to realize 
an improvement of its objective function within con- 
straints - an advantage which the human mind can 
hardly match for n greater than 2 or 3. Its drawback is 
that a piecewise linear path has to be traced toward 
optimum - a process during which it is easy to lose the 
physical insight and understanding of the reasons that 
drive the design changes. 

One may assert that tools are now available to evolve 
a compromise practice that will exploit the best 
characteristics of each approach. That is to use the 
sensitivity analysis coupled with optimization to 
navigate the design space toward improvement, and to 
rely on the parametric studies in conjunction with 
computer graphics to visualize the system perfor- 
mance, and the critical and near critical constraints, as 
functions of a limited number of dominant variables 
(selected on the basis of their sensitivity derivatives) in 
the vicinity of the improved design. That combined 
approach should be efficient computationally and 
would still provide the physical insight necessary for an 
engineer to develop confidence in the design he is 
evolving. 

Conclusions 

Several new tools have become available to designers 
of complex enginering systems of which aircraft is a 
prime example. The common problem addressed in 
developing these tools is the control of interactions 
that occur among disciplines and physical subsystems 
in order to improve the entire system performance. 

One such tool is optimization by decomposition il- 
lustrated by an example of a transport aircraft wing 
optimization for improved fuel economy. The method 
demonstrated the ability to handle in excess of a 
thousand design variables and to link the design detail 
with system performance, provided that the system 
may be decomposed into a strictly top-down hierarchy. 

That limitation may be removed by new method 
based on sensitivity analysis of a complex, coupled sys- 
tem which yields derivatives of the system behavior 
with respect to design variables fully accounting for the 
interactions among the parts of the systems and among 
the disciplines that govern its design. The sensitivity 
derivatives of the system are computed from the par- 
tial sensitivity derivatives of its parts. These partial 
derivatives may be generated by specialized discipli- 



nary sensitivity analysis methods currently undergoing 
vigorous dcvelopmcnt, and they may also be obtained 
expcrirncntally. This ncw system sensitikity analysis 
enables one to bypass the heretofore prevailing ap- 
proach of finitc differencing performed on the entire 
systcm analysis. 

The systcm sensitivity data may be used to determine 
how lo improve thc design, either by quantitatively 
supported judgmcnt, or by formal optimization, or 
both. They provide a numerically precise and com- 
prehcnsivc answer to the "what if' questions frequent 
in design proccss, and may be regarded as a com- 
munication device informing each specialist support- 
ing that process how his decisions will affect the other 
spcci;~lists' domains and the system as a whole. 
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TABLE 1. COUPLING DATA FOR SYSTEM IN FIG. 3 

TARLE 2. EXAMPLES OF COUPLING DATA FOR SYSTEM IN FIG. 11. 

Rox 
1 

Box 
2 

Box 
3 

Arrow 
1 

Arrow 
2 

Arrow 
3 

Arrow 
4 

Aircraft performance and aerodynamic analysis. Design 
variables: airfoil relative thickness. Objective funtion: fuel 
consumption. 

Structural finite element analysis. Design variables: wing cover 
equivalent skin thicknesses. 

Strength, buckling, and local buckling of the wing cover panel 
skin and reinforcing stringers for each of 316 panels. Design 
variables: detailed dimensions of of the cross-sections for each 
panel. 

Aerodynamic loads, flight parameters, load factors, configuration 
data. 

Edge forces, equivalent skin thicknesses including stringer 
material. 

Minimized cumulative constraint and its optimum sensitivity 
derivatives. Cumulative constraint represents strength and 
buckling constraints of the wing cover panel. 

Minimized cumulative constraint and its optimum sensitivity 
derivatives. Cumulative constraints represents the wing box 
constraints and the cumulative constraints of the individual panels, 

Vector Y 

1 

2 

3 

4 

5 

6 

7 

Con tent Examples 

See the box labeled INPUT. 

Wing area, aspect ratio, taper, sweep angle, airfoil geometry data. 
Engine thrust. 

Fuel tank locations and assumed volumes. 

Wing structural weight and internal volume. 

Take-om <;ross Weight. 

See box 6. 

Landing gear weight and location, in stowed and extended position. 
Take-off field length. 



Aircraft ( performance I o 

FIGURE I. Example of  a hierarchal system. 

Wing box @ m 
FIGURE 3. Hierarchal, three-level decomposition for 
aircraft wing optimization. 
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FIGURE 4. Histograms of  thrcc-level optimization of a 
FIGURE 2. A transport aircraft and ils finite element mnsport aircraft; cases 1 and 2: initial design 
model. infeasible and feasible, respectively. 



Loads Control surface deflections 

Pressure distr~bution 

Controls 

Hinge moment 

FIGURE 5. Graph representation of actively controlled, 
flcxiblc wing as an example of a coupled system. 

FIGURE 6. Govcming equations of the actively 
conuollcd. flcxiblc wing as an examplc of a coupled 
syswn. 
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/ 

FIGURE 8. Trimmcd anglc of attack as a function of 
the sweep angle for rigid and elastic wing. 

System - - - - - - - - - /A( ) -  0 - - - - - - - - - - 
B (  1 - 0  

FIGURE 9. System sensitivity analysis as means of 
interdisciplinary communica~ion in a design 
organization. 
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FIGURE 7. Flowchart of a proccdurc for quantitative 
support of design process incorporating systcm FIGURE 10. Aircraft design process arranged 
sensitivity analysis. sequentially. 

/ 
/ .  
/ 

5 
/ 
/ 
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Repeat 

: 
Solve 

' Compute the partials locally 
A B C - m e *  

Sys. sensitivity eq. --+ total 
' 

derivatives 

Use the total derivatives to 
redesign toward improvement 

Concurrent * 
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FIGURE 1 1 .  Aircraft design process rcarrangcd from a 
sc.qucntia1 proccdurc into a non-hierarchal 
clccomposiLion shown as  a graph amenable to sensitivity 
analys~s. 
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FIGURE 12. Typical parametric study results. 
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