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ABSTRACT 

In this paper we extend our earlier work on the efficient implementation of ENO (essentially 

non-oscillatory) shock capturing schemes. We provide a new simplified expression for the ENO con-

struction procedure based again on numerical fluxes rather than cell-averages. We also consider two 

improvements which we label ENO-LLF (local Lax-Friedrichs) and ENO-Roe, which yield sharper 

shock transitions, improved overall accuracy, and for lower computational cost than previous im-

plementation of the ENO schemes. Two methods of sharpening contact discontinuities-the subcell 

resolution idea of Harten and the artificial compression idea of Yang, which those authors originally 

used in the cell average framework-are supplied to the current ENO schemes using numerical fluxes 

and TVD Runge-Kutta time discretizations. The implementation for nonlinear systems and multi-

dimensions is given. Finally, many numerical examples, including a compressible shock turbulence 

interaction flow calculation, are presented. 
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1. INTRODUCTION 

In this paper we extend the construction we began in [12] of efficient imple

mentation of ENO (essentially non-oscillatory) schemes approximating systems of 

hyperbolic conservation laws of the type: 

d 

Ut + I: fi(U):c, = 0 (or = g(u,x, t), a forcing term) 
i=l 

u(x,O) = UO (x) 

(1.1a) 

(1.1b) 

where u = (ut, ... ,um)T, x = (x1,x2, ••• ,xd), and, for real e = (6, ... ,ed), 

the combination Et=l ei¥,t always has m real eigenvalues and a complete set of 

eigenvectors. We use the notations X.J = J·Ax, tn = nAt, and use u~ to denote 

the computed approximation to the exact solution u(x.J, t) of (1.1). We use bold 

face letters for vectors and plain letters for scalars. 

ENO schemes, constructed by Harten, Osher, Engquist, and Chakravarthy [2], 

[3], [4], [5], use a local adaptive stencil to obtain information automatically from 

regions of smoothness when the solution develops discontinuities. As a result, ap-

proximations using these methods can obtain uniformly high order accuracy right 

up to discontinuities, while keeping a sharp, essentially non-oscillatory shock tran-

sit ion. The original ENO schemes in [2], [3], [4], [5] used a cell-average framework 

which involved a reconstruction procedure to recover accurate point values from 

cell averages, and a Lax-Wendroff procedure (replacing time derivatives by space 

derivatives, using the PDE) for the time discretization. This can become a bit 

complicated for multi-dimensional problems [2]. Harten is currently investigating 

efficient and more local methods [7]. For ease of implementation we constructed [12] 

ENO schemes applying the adaptive stencil idea to the numerical fluxes and using 

a TVD Runge-Kutta type time discretizations. The ENO schemes in [12] skip the-
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reconstruction step and the Lax-Wendrofftime discretization procedure, hence they 

are simpler to program, especially for multi-space dimensional problems. We hope 

that [12] and this paper will encourage potential users to apply these high order 

methods to real physical computations for systems of conservation laws in several 

space dimensions. 

We shall use the same notation as in [12]: A± are the usual difference operators 

A±aj = ±(aj±1 -aj); the equation (l.la) is sometimes written in an abstract form: 

Ut = l(u) (1.2) 

The ENO spatial operator L(u) is supposed to approximate l(u) to r-th order: 

L(u) = l(u) + O(hr) (1.3) 

for smooth u, where h is the maximum mesh size, and the Euler forward version 

w = T(u) = (I + AtL)(u) (1.4) 

is assumed to be total variation stable, for scalar, 1D nonlinear problems, under a 

suitable CFL restriction 
At 

.A = - <'\0 Ax -
(1.5) 

where '\0 is usually inversely proportional to maxlf'{u)l. At present this stability 

cannot be proven for unmodified third order or higher ENO schemes. There is, 

however, strong theoretical and numerical evidence to indicate that the methods 

are indeed TV stable [3], [4], [5], [12]. 

An r-th order TVD Runge-Kutta time discretization is then applied: 

i-I 

U(i) = L [aileu(k) + ,8ikAtL(u(k)], i = 1, ... , f (1.6a) 
k=O 
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u(O} = UR, u(r} = U R+1 

TV(uR +1
) ~ TV(T(uR

)) 

At .\ = - < Cr • '\0, 
Ax -

(1.6b) 

(1.7a) 

(1.7b) 

We call Cr the CFL coefficient. We constructed schemes [12] for r ~ 4 with if = r 

and C2 = C3 = 1, C4 = ~. For r = 5 we needed if = 6 and Cs = 3~' For r ;::: 4 we 

also needed :L which approximate l in an "adjoint" equation Ut = -l(u) because 

some of the (3ik become negative. The details are presented in [12]. Some of the 

schemes used in Section 5 are listed in Table 1 at the end of this paper. 

We shall always use conservative schemes, i.e. for the scalar ID problem (1.1) 

we write: 
1 A A) 

L(u) 0= --(/°+ 1 - I,o_!. , Ax' ~ :l 
(1.8a) 

for a consistent numerical flux 

i;+t = i(u;-t., ... ,U;+k)i i(u, ... ,u) = I(u). (1.8b) 

We proved in [12] the existence of constants a2, a4,' .. such that 

A [~J a2k 
I;+t = I;+t + I: a2kAx2k(a 2k/);+t + O(Axr+l) (1.9) 

k=l x 

guarantees r-th order accuracy (1.3). For example, a2 = - 2~' a4 = 57~0' 

The use of the a2k may seem a bit unnatural. We need to evaluate all the even 

derivatives of the interpolating polynomials (except the last one if r is even), which 

increases the computational cost for large r. In Section 2 of this paper we provide 

a simplified (but equivalent) version of (1.9). We also consider in Section 2 two 
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improvements labelled ENO-LLF (local Lax-Friedrichs) and ENO-Roe, which yield 

sharper shock transitions, better overall accuracy, and lower computational costs 

than the methods described in [12]. 

Shocks have a self-sharpening mechanism due to converging characteristics. 

This is not true for contact discontinuities, which are usually smeared in shock 

capturing calculations. Recently, Harten [6] introduced the notion of sub cell reso

lution in .order to sharpen contact discontinuities. He did this in the context of cell 

average based ENO schemes. Although in [6] the fact that cell averages contain 

information leading to the location of the shock is strongly used, this information 

is actually contained in any conservative scheme (1.8). In Section 3 we translate 

Harten's sub cell resolution idea to the ENO schemes using fluxes and Runge-Kutta 

techniques. The result is simpler than [6] but less accurate in theoretical resolution. 

However the numerical results (in Section 5) are quite close to those presented in 

[6]. The main drawback of our extension of Harten's approach is that it is not clear 

how to generalize it effectively to several space dimensions. A naive generalization 

gave unsatisfactory results in our 2D numerical tests. Currently Harten is consid

ering truly 2D subcell resolution methods [7]. Also recently Yang [15] introduced a 

simple artificial compression technique applied to cell average based ENO schemes. 

He demonstrated that the technique preserves the TVD (or ENO) properties when 

applied to a TVD (or ENO) schemes. We translate his result to our present frame

work in Section 3. The numerical results presented in Section· 5 indicate that this 

adaptation works well both for lD and 2D problems. 

In Section 4 we extend the present implementation to nonlinear systems and to 

multi-space dimensions. Section 5 contains numerical experiments, including scalar, 

lD nonconvex Riemann problems; examples of sharpening contact discontinuities; 
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2D Riemann problems for Burgers' equation; 1D and 2D Euler equations of gas dy

namics including a compressible shock-turbulence interaction problem. Concluding 

remarks are presented in Section 6. 

II. SIMPLIFICATIONS AND ~ROVEMENTS 

We begin with the 1D scalar nonlinear problem, i.e. d = m = 1 in (1.1). 

To simplify (1-9) we use the following elementary result: 

LEMMA 2.1. If a function h(x) satisfies 

1 1Z+¥ f( u(x)) = "A h(e:)de, 
~X z-¥ 

(2.1) 

then f(u(x))z = h(z+¥)-h(z-¥) 
~z 

o 

The proof is trivial. 

Lemma 2.1 tells us that the numerical flux i j +! should approximate h(xi+!) 

to a high order. It is not easy to obtain h(x) directly from (2.1). However, the 

"reconstruction via primitive function" technique in [41 can be applied to obtain 

the primitive function of h(x) 

H(x) = [Zoo h(e)de (2.2) 

at xi+; by 

j Zj+ ~ i 1zH ~ i 
H(xi+t) = h(e)de = L h(e)de = ~X . L f(Uk) (2.3) 

-00 k=-oo ZA:_ ; k=-oo 

Notice that the lower limit -00 is irrelevant. It can be changed to any fixed 

grid point xio+t. 
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Given the values of H{xj+t), we can construct interpolating polynomials in 

an ENO fashion, i.e. by obtaining a locally "smoothest" stencil starting from one 

or two points, then adding one point to the stencil at each stage by comparing two 

divided differences and choosing the one which is smaller in absolute value, (see 

[4]), and then use its derivative at Xj+; as the numerical flux f j+;. We remark 
H(:.+ ~)-H(:. ~) 

here that by (2.3), we have J A: J- = I{uj), hence the {k + l)st order 

divided differences of H can be easily obtained from the k-th divided differences of 

I. Since we shall never need the O-th order divided differences, we do not perform 

the summation in (2.3). We simply use the divided difference tables for I. 

Lemma 2.1 also explains why the ENO schemes constructed here and in [12] 

are equivalent (for linear equations in one space dimension only) to the cell-average 

ENO schemes constructed in [4] via the primitive function for u. 

The starting point in the choice of stencil process is very important. "U p-

winding" is achieved by this initial choice, and this also is crucial for the evident 

stability of these methods. We have experimented with using Xj+l as the starting 

point in the choice of stencil process for evaluating fj +t , to solve Burgers' equation 

(i.e. upwinding in the wrong direction initially) with positive I'{u). We observed 

instability even if the stencil is chosen in an ENO fashion up to third order. In [12] 

I is decomposed into I = 1+ + 1- with (1+), 2: 0, (1-)' :5 0, then different start

ing points are assigned to I± according to the direction of the wind. This simple 

procedure may smear shocks and affect the overall accuracy (although the smearing 

is very mild comparing with lower order non-ENO schemes). It was also pointed 

out in [12], that instead of decompositing I into 1+ and 1- we could also use any 

E-flux h,.+ 1 [10], with d17+ 1 = Ij+l - h,.+ 1, dl-:+ 1 = h,.+ 1 - Ij to replace the first ,- ' '- ,-,,-,-
(undivided) differences IT+l - IT; we shall later refer to this procedure as ENO 

schemes with hj +t building blocks. However that procedure requires smoothness 
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of hj+t at sonic points to keep the high accuracy there. It is known that most E

ft.uxes are not smooth at sonic points, they are typically only Lipschitz continuous 

or perhaps C 1 there). Although we may modify any E-ft.ux to make it smooth at 

sonic points, this procedure is too complicated to be computationally pleasing. 

We now use a different approach to overcome this difficulty. We choose the 

first point in the stencil according to the local sign of f'(u) at Xj+t. We may use, 

e.g., the "Roe" speed 

aj+!- = f(uj+d - f(uj) 
Uj+l - U· 1 

to determine the sign of f'(uj+!-)' We then have the following algorithm: 

Algorithm 2.1. (ENO-Roe). 

(1) Compute the divided difference table of f; and identify 

H[Xt_!-, xl+!-] = f[u(xt)] 

H[Xt-t,Xl+t,···, Xl+k+t] 
k 

= -k-f[u(Xt)"",U(Xl+k)], k= 1,2, ... ,r +1 

(2) If a· 1 = f(uitd-[(u;) > 0 then 
1+~ Uj+I_"j -, 

else 

k(l) - . 
min -J 

k(l) - . 
min - J + 1. 

(3) Q(1)(x) = H[Xk(l.) _I ,Xk(l,l + I](X - Xk(l,l _~) 
mm ~ mm ~ mm 

(2.4) 

(2.5a) 

(2.5b) 

(2.6a) 

(2.6b) 
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(4) Inductively, if k~i;l) and Q(t-l) (x) are both defined, then let 

aCt) = B[x (t-I) I , ••• ,Xk(t-I)+t_~] . km~ -~ m~ 
(2.7a) 

bet) = B[x (t-I) 1 1."'" Xk(t-I) +t-l- t] 
kmln - -2 min 

(2.7b) 

and 

(i) if lal(t) 2: Ib(t)l, then 

c(t) = bet) k(t~ = k(t;-l) - 1 
'min min (2.8a) 

otherwise 

c(t) = aCt) k(t} . k(t;-l) 
'min min (2.8b) 

(ii) form 
k(t-I)+t_l 

min 

Q(t)(x) = Q(t-l)(x) + c(t) II (x - Xk_~) (2.9) 

(5) Qj+t(x) = Q(r+l) (x) 

(6) we then take 

k=k(t-I) 
min 

jj+t = :x Qj+t(x)I:=:j+!- (2.10) 

o 

REMARK 2.1. (a) Notice that unlike the ENO scheme which uses the Roe flux 

as a building block, Algorithm 2.1, gives a uniformly high order flux jj+~' even at 

sonic points. The scheme described above will be (r + l)st order accurate except 

perhaps at isolated zeros of derivatives of the flux /(u(x)) where it may degenerate 

to r-th order. 
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(b) Since x = x;+t is a node of Q;+t in (2.10), the evaluation of the derivative 

in (2.10) costs very little. 0 

Algorithm 2.1 yields a scheme admitting a stationary entropy-violating expan-

sion shock since it is based on the first order Roe scheme. However, the "entropy 

fix" in this framework turns out to be very simple. Before stating this remedy, let 

us present another algorithm: 

Algorithm 2.2. (ENO-LLF) 

(1) Compute the divided difference table of f and u, and identify 

H±:[Xt_!-, Xt+t] = ~(f[u(Xt)] ± Q;+tu[xt]), (2.11a) 

l = j - r, ... , j + r for H+ 

and t = j - r + 1, ... ,j + r + 1 for H-j 

H±:[Xt_ t,xt+!-,; •. , xt+Ic:+!-] (2.11b) 

k 1 
= k + 1 . 2(f[u(Xt), .•• , u(xt+Ic:)] ± Q;+tu[Xt, ... , Xt+k]) 

t = j - r, ... , j + r - k for H+ 

and t = j - r + 1, ... , j + r - k + 1 for H-, k = 1,2, ... , r 

where 

Q;+ 1 = max If'(u)l 
}' Uj<U<Uj+l 

(2.12) 

(2) For H+, k~lD = j, then repeat steps (3)-(4) in Algorithm 2.1 to get 

Q~+l)(X). Let Qj+t(x) = Q~+l)(x)j 
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(3) For H-, k~{I1 = j + 1, then repeat steps (3)-(4) in Algorithm 2.1 to get 

Q~+l)(x). Let Qi+t = Q~+l)(x); 

(4) We then take 

ij+~ = d~Qt+t(x)!z=zj+~ + d~Qi+t(x)lz=zj+~ (2.13) 

o 

REMARK 2.2. (a) When I is convex, I" 2:: 0, (2.12) simplifies to 

Qj+t = max(I/'(Uj)I, 1!,(uj+dD (2.14) 

(b) It can be verified that the local Lax-Friedrichs flux 

1 
h7~t = 2'[/(uj) + I(uj+d - Qj+~(Uj+l - Uj)] (2.15) 

where Qj+t is defined by (2.12), is a monotone flux (see [I] for definitions). We omit 

the details. However Algorithm 2.2 is not equivalent to the ENO scheme obtained 

by using h7~t as a building block [12]. The advantage of Algorithm 2.2 is again its 

uniformly high order of accuracy; 

(c) In terms of cost, Algorithm 2.2 is equivalent to ENO schemes using I± in 

[12] (we shall denote it by ENO-LF), i.e. evaluating two divided difference tables, 

while Algorithm 2.1 is half as expensive because it only needs one divided difference 

table; 

(d) Roughly speaking the viscosity ofENO-LF is larger than that ofENO-LLF, 

which is in turn larger than that of ENO-Roe. Hence in going from ENO-LF to 

ENO-LLF to ENO-Roe we can expect increasingly less shock smearing and better 

overall accuracy; this is verified by the numerical experiments of Section 5. 
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(e) As was true for the schemes described in [12], when r = 1 Algorithm 2.1 

yields a familiar TVD second order accurate scheme [9], when the minimum of 

absolute value function is changed to the minmod function: 

( ) _ 1<,<" 
{ 

8· mjn lail, if 8 = sign (a1) = ... = sign (an) 
m all •.. , a" - - -

0, otherwise 
(2.16) 

We omit the details of the derivation here. o 

Algorithm 2.3 (ENO-RF). Let i;+~ be defined by (2.10) if f'(u) does not change 

sign between Uj and Uj+1; otherwise, let f~+t be defined by (2.13). o 

REMARK 2.3. IT f is convex, fll(U) ~ 0, we can use (2.10) unless f'(Uj) < 

o < f'(Uj+1), i.e. we use (2.13) only in the cells which contain "expansion shocks". 

This is the case for, e.g. the Euler equations of fluid gas dynamics. See Section 5. 

o 

Notice that the cost of Algorithm 2.3 is very close to that of Algorithm 2.1 

because sonic points are isolated and the divided differences of U need only be 

computed locally near sonic points. 

We may associate Algorithm 2.3 with the following E-flux. 

{ 

f(uj), 
hl!-F\ = f(uj+d, 

J+J hLLF 
j+t' 

if f'(u) ~ 0 between Uj and Uj+1 

if f'(u) :5 0 between Uj and Uj+1 

otherwise 
(2.17) 

however, as mentioned above this algorithm is not equivalent to the ENO scheme 

obtained by using hl!-+F\ as a building block. 
J J 

Numerically we observe that Algorithm 2.3 always yields the correct entropy 

solution even for nonconvex f. See Section 5 for some examples. 
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ill. SHARPENING OF CONTACT DISCONTINUITIES 

We first consider the 'tD, scalar, linear version of (1.1), i.e. d = m = 1, 

f(u) = au. Discontinuous solutions to this problem (called contact discontinuities) 

are usually smeared more severely than shocks, when computed by shock capturing 

schemes. 

Recently Harten [6] introduced the concept of subcell resolution which he used 

to sharpen contact discontinuities. This notion uses the observation that the cell 

averages carry information about shock locations. In fact, this information is also 

contained in any conservative scheme (1.8), whether cell average or numerical flux 

based. We can thus translate Harten's subcell resolution techniques to our ENO 

schemes which u,se fluxes and Runge-Kutta time discretizations. Notice that for a 

linear, constant coefficient problem f( u) = au, ENO-LF, ENO-LLF and ENO-Roe 

are identical. We write out the following algorithm for the case a > 0. 

Algorithm 3.1. For a > 0, at the beginning of every Runge-Kutta cycle: 

(1) Let Sj = Im(.6.+uj, .6._uj) I where m is the minmod function (2.16). Define 

the "critical intervals" (intervals containing discontinuities) Ij = (Xj-t,Xj+t) 

by Sj 2: Sj+b Sj > Sj-l; 

(2) For any "critical interval" I", let 0,' = U;-U;_l or more accurately let 0,' be 
Ui+l-Ui-l 

the solution in [0,1] of the quadratic equation 

(Uj+l +Uj-l-Uj+2-Uj-2)0;+(3uj+2+3uj_I-5uj+l-Uj_2)Oj+(4uj+I-2uj+2-2uj) = 0 

we use xi-~ + OJ.6.x as an approximation to the discontinuity location inside 

the cell Ij; 
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We then perform each step of the Runge-Kutta cycl~ as follows: 

(3) Let i j + t be defined as usual (Algorithm 2.1) unless Ij or (for the second, 

third, etc. steps in the Runge-Kutta cycle) Ij-1 is a "critical interval". If Ij is 

a "critical interval" , we define 

i j +t = (1- ej)iJ~!~ + ejiJ:t with ej = min( (1 - OJ)~:r;, 1) 
:r a~t 

(3.1) 

where i~+L)l and i~+R~ are again computed by Algorithm 2.1 with the modi-
J ~ J ~ . 

fication on step (2) only i.e., the first step in the choice of stencil. We use 

k(l). "(L) (1). "(R) 
min = J - 1 for f '+ 1 and kmin = J + 1 for f '+ l' To be safe, for the second, 

J ~ J ~ 

third, etc. steps in the Runge-K utta cycle, we may choose k~ln = i + 2 for 

i~+R~ if ej < 1, and, when Ij-1 is a "critical interval" and ej-1 < 1, we should 
J ~ 

(1) • " choose K min = J + 1 to evaluate fj+t. 0 

REMARK 3.1. (a) The case a < 0 is easily obtained by symmetry. 

(b) The discontinuity detector in step (1) is somewhat different than that of [61. 

The purpose of our choice is to avoid identifying an interval containing a smooth 

extremum as "critical interval". 

(c) As in [61, the modification in (3.1) does not affect accuracy if tL happens to 

be smooth in Ij. 

(d) The whole procedure here is simpler than in [6], especially if the first 

expression for OJ is used in step (2). The price we pay is that it is less accurate 

in theoretical resolution, because it is based on piecewise constant (first choice of 

OJ) or piecewise linear (second choice of OJ) interpolants. Numerically we observe 

results very close to those found in [6]. See Section 5 for details. 
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(e) The naive generalization to 2D, namely writing U + tltLz U + tltLyu as 

Hu + 2tltLzu) + Hu + 2tltLyu) and applying the algorithm separately to the two 

parts, does not work satisfactorily, according to our numerical tests (see Section 

5). A truly 2D subcell resolution seems to be needed. Currently Harten [7] is 

investigating this within the cell average framework. 

(f) For details of the analysis of Algorithm 3.1, we refer the readers to [6]. Al

though the two algorithms are different, we have essentially borrowed the philosophy 

of [6] and applied it to the present case. o 

Another interesting method we can use to sharpen contact discontinuities is 

an artificial compression method introduced by Yang [151, again in a cell average 

context, i.e. for (MUSCL type schemes). Translated to our current framework, it 

gives the following algorithm (again for a > 0) 

• AlA A 

AlgorIthm 3.2. Let Ij+t = Ij+'!r + Cj+t where 

_ a A(R) A A(R) A A A(R) 
Cj+!- - m[ '2m (Jj+!- - Ij+!-, I j_!- - Ij-!-), Ij+l - Ij+!-' Ij-A-' - Ij-l] (3.2) 

Here, as in (3.1), !~+R~' corresponds to k~ln = j + 1 in (2.6), step (2) of Algorithm 
1 ~ 

2.1. m is again the minmod function (2.16). 0 

REMARK 3.2. (a) a in (3.2) is a positive parameter. It can be tuned for each 

individual problem to optimize the results. We usually use 2 $ a $ 5, but have not 

yet found a general rule for determining a. 

(b) The approximation for a < 0 is constructed symmetrically. 

(c) Other versions of (3.2) are possible. For example, we may use 

( )

p 
Iu '+1 - 2u ' + U '-II a-a 1 1 1 

- 0 IUj+! - ujl + IUj - Uj-ll 
(3.3) 
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in (3.2), where ao > 0 and P = integer;::: 0 are two parameters. The heuristic 

reason to use (3.3) is that a is then very small (- O(h.B))' except near a discontinuity 

in either u or its derivative, hence over-compression in smooth regions should be 

avoided. Computationally this improves the performance, especially with some 

tuning of p. We have not yet been able to find a general rule in choosing the 

optimal p. o 

Both algorithms in this section are easily generalizable to variable coefficient 

or nonlinear problems. However special caution is needed when one tries to sharpen 

a (nonlinear) shock, to avoid obtaining a nonphysical, entropy condition violating 

solution. In the computation for the Euler equations of compressible gas dynamics 

(Section 5), we only use the compression in the linearly degenerate fields. 

IV. IMPLEMENTATIONS IN MULTI-DIMENSIONS AND SYSTEMS 

A special advantage of ENO schemes using fluxes and Runge-Kutta methods is 

their relative simplicity in multi-dimensions. The algorithms in Section 2 are applied 

to each of the terms h(u)z, in (1.1a), keeping all other variables fixed. The Runge

Kutta method (1.6) is then applied. A typical CFL restriction ~! maxi JI (u)I $ AO 
u 

will be replaced by 6.t maxEt=l t:..~"lfHu)1 $ AO. 
u ' 

For nonlinear systems, we simply apply the algorithms in Section 2 in each 

(local) characteristic field. We take a ID system to exemplify this process." Let A j + t 

be some "average" Jacobian at x,"+!.. Examples include A,"+!. = aauf I _1 ( "+ " ) 
2 2 U-2" u, U,+l 

or, in the case of Euler equations of gas dynamics A,"+!. = aaf I _ (Roe) where 
2 u u-u l. 

;+ 'l" 

u~R+o:) = R(uj, Uj+tl is the Roe average of Uj and Uj+l [10]. We denote the 
, 2 

eigenvalues and left and right eigenvectors of Aj +!. by A ~p) 1, lp) 1, r~p) 1, P = 
2 '+2" '+2" '+2" 

1, ... , m, normalized so that lp+) 1 • r~q+) 1. = Dpq = 1 if p = q = 0 if p #- q. For any 
, 2" , 2 
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(p) - l(p) • a 
a - ;+! 

is the component of a in the p-th (local) characteristic field, because 

m 

a = L a(p)r;~t 
p=l 

Algorithm 2.1 now becomes: 

Algorithm 4.1. 

(1) Same as step (1) in algorithm 2.1, changing vectors to bold face letters; 

(4.1) 

(4.2) 

(2) For each j, compute H(p)[Xt-t"",xHk+t1 for l = j - '1, ... ,j + 1 and k = 

1,2, ... ,r, by (4.1). Here 1:::; p:::; m; 

(3) Apply steps (2)-(6) of algorithm 2.1 to H(p), using a
J
"+ 1 =.x ~P+) 1, to get i~+P)l ; 

:r J:r J:r 

(4) Use (4.2) to get i;+t o 

We may similarly generalize Algorithms 2.2 and 2.3. Notice that (2.12) be

comes, for the p-th field 

a~p) 1 = max 1.x(p)(u)1 
J+:r uEL(u;,u;+d 

(4.3) 

where L(uj, uj+d is some curve (e.g. a straight line) in phase space connecting 

Uj and U;+l' For Euler equations of gas dynamics, the fields are either genuinely 

nonlinear or linearly degenerate, hence we may use 

a;~t = max(I.x(p) (uj)l, l.x(p) (Uj+l)1), (4.4) 

which is similar to (2.14). 
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NUMERICAL RESULTS 

We use the notation ENO -X - (Y)r where X = Roe, LLF, RF or LF refers to 

Algorithms 2.1, 2.2, 2.3 or the /± version in [11]; Y = S or A refers to Algorithms 

3.1 or 3.2; r is the order of the scheme. For the TVD Runge-Kutta methods used 

please see Table 1. We have run most examples using second, third and fourth order 

schemes, but here we usually include only third order results as representatives. 

EXAMPLE 1. This is the Example 4 in [12, Section IV] revisited. We solve 

the scalar 1D Riemann problems of (1.1) with two nonconvex functions /. 

1 
/('1.1.) = 4('1.1.2 

- 1)('1.1.2 - 4) (5.1) 

/('1.1.) = 4'1.1.2 (5.2) 

ENO-RF-3 is used. The results are displayed in Figures 1,2, and 3. We observe 

considerable improvements in shock transition and overall resolution compared to 

the results shown in Figures 14, 18, and 22 in [12]. ENO-RF-3 and ENO-RF-4 were 

also tested on several other nonconvex problems. We always observed convergence 

to the correct entropy solution and a well resolved solution. When applied to 

Burgers' equation (Example 1 in [12, Section IV]) we observed improvements in 

accuracy and shock transition of ENO-RF over ENO-LF. We omit the details here. 

o 

EXAMPLE 2. This example uses the two contact-discontinuity-sharpening 

algorithms in Section 3 applied to scalar 1D linear problems. We solve the model 

equation 

Ut +u:z: = 0 -l::5x<l 

'1.1. (x, 0) = uO(x), uO(x) periodic with period 2 

(5.3a) 

(5.3b) 
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Notice that in this linear case all the three algorithms ENO-Roe, ENO-LLF 

and ENO-RF in Section 2 are identical. 

Four initial conditions uo(x) are used. The first three are used by Zalesak [16], 

using 100 equally spaced grid points in [-1, 1) with 

{
I _1 < x < 1 

uo(x) = ' 5 - • - 5, SOO time steps, eFL = 0.2 
0, otherwIse 

uo(x) = e-30oz2, 600 time steps, eFL = 0.1 

{
(I - (lQ,x)2) t Ixl < .!.. 

uo(x) = 3 ' I? ,600 time steps, eFL = 0.1 
0, otherwIse 

(5.4a) 

(5.4b) 

(5.4c) 

(since uo(x) is periodic we only give the definitions in [-1, 1)). The last is used by 

Harten et al [4], [6] 

-1<x<_l 
- 3 

{ 

-xsin(~ll'x2), 

uo(x + 0.5) = I sin (21l'x) I, Ixl < i t = 2 and t = S. (5.4d) 

2x = 1 - sin(31!'x)/6, i<x<1 

The results are displayed in Figures 4-1S. We observe apparent improvements 

of both algorithms in all cases. For comparisons we refer the readers to [6], [16]. 0 

EXAMPLE 3. We solve a Riemann problem for the 2D Burgers' equation 

of the type: 

u2 u2 

Ut + ( 2") z + ( 2") y = 0 

u(x, y, 0) = 

U17 x> 0, y> 0 

U2, 

U3, 

x < 0, y> 0 

x < 0, y < 0 

U4, x> 0, y < 0 

(5.5a) 

(5.5b) 

Depending on the orders of the Ui'S, there are eight essentially different solu

tion types. See [13] for details. We used ENO-RF and observed convergence to 

the correct entropy solution with good resolution for all cases. Some results are 



-I!) -

displayed in Figures 19-28. For one case we present the results of ENO-RF-3 for 

20 x 20 and 80 x 80 grid points, and the result using first order Engquist-Osher 

scheme for 80 x 80 grid points. We observe that ENO-RF -3 using 20 x 20 points has 

roughly the same resolution as does the first order montone scheme with 80 x 80 

points. For the remaining seven cases we only show the results of ENO-RF-3 with 

80 x 80 points. 

We also remark here that Yang's artificial compression Algorithm 3.2 improves 

the resolution in this example according to our numerical experiments. Since we 

are mainly interested in applying Algorithm 3.1 and 3.2 to linear problems, we omit 

the details here. o 

EXAMPLE 4. This example is· suggested by Professor D. Gottlieb (private 

communication). It simulates a 2D boundary layer problem. We solve the boundary 

value problem 

u2 

Ut + ( "2):Z: + u y = 0 

u(x, O,t) = ex + ,8 sin x, 

o :5 x < 21r, 0:5 y :5 1 

U is periodic in x with period 21r 

(5.6a) 

(5.6a) 

to steady state. In steady state it resembles the 1D Burgers' equation with ex+,8 sin x 

as "initial" condition, if y is identified as time t. Hence exact solution to the steady 

state can be obtained. This experiment simulates a 2D boundary layer problem 

because the shock "dissolves" near the boundary y = o. We can adjust the thickness 

of the boundary layer (i.e., the smooth region near y = 0) by adjucting,8. We 

used ENO-RF-3 to compute (5.6), running it to steady state, with initial condition 

u(x,y,O) = ex + psinx. We imposed periodic boundary conditions in x, enforced 

(5.6b) at y = 0, and imposed no boundary condition at the outflow boundary 

y = 1. (For a detailed discussion of th implementation of boundary conditions for 
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ENO sch~mes we refer the readers to [4]). Figures 29 and 30 contain the level curves 

for a = 0, (J = S and a = 2, (J = 5. 30 x 30 spatial points are used. o 

EXAMPLE S. This example was suggested by Professor R. Sanders (private 

communication), to study the smearing of contact discontinuities in different direc

tions when Dox =1= Doy. We solve 

Ut + U:c + u!I = 0, U is periodic in x and y with periods 1 

{
I if (x - 1)2 + (y _ 1)2 < 1 

u(x y 0) =' 2 2 - 8 
, , 0, otherwise in 0 $ x,y < 1 

(S.7a) 

(S.7b) 

with Doy = 2Dox = ie, and ran it for t = 2 (two periods). In the Figures 31-33 

the '+' signs are for the cross section y = !, and the ,*, signs are for the cross 

section x = !. We observe that ENO-Roe-3 does smear differently in the x and y 

directions with Dox '# Doy, but ENO-Roe-A-3 does much bettElr. On the other hand, 

ENO-Roe-S-2 (naive generalization to 2D) does not work well. It seems that some 

truly 2D subcell resolution techniques are needed. o 

EXAMPLE 6. We consider the Riemann problems for the Euler equations of 

gas dynamics for a polytropic gas, i.e. (1.1) with d = 1, m = 3, and 

U = (p,M,Ef, f(u) = qu + (O,p,qP)T 

where 

for the initial condition 

1 
P = b - 1)( E - 2" pq2), M = pq 

u(x,O) = {UL' 
UR, 

x<o 
x~O 

(S.8a) 

(5.8b) 

(S.8c) 

"y = 1.4 is used. For details of the Jacobian, its eigenvalues and eigenvectors, 

see [4], [11], or Example 9 below. 
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We use the same two sets of initial conditions as in [4]: 

(PL, qL, PL) = (1,0,1); (PR, qR, PR) = 0.125,0,0.10) 

(PL, qL, PL) = (0.445,0.698,3.528); 

(PR; qR, PR) = (0.5,0,0.571) 

(5.9a) 

(5.9b) 

The results are in Figures 34-39. Notice the improved treatment of contact 

discontinuities after using the two contact sharpening algorithms of Section 3. Also 

notice that the corners of rarefaction waves (discontinuities in derivatives) are not 

resolved as well. Currently this phenomenon is still under investigation. 0 

EXAMPLE 7. This is the same equation as in Example 6 with the initial 

condition 

where 

{

UL' 

u(x,O) = uM, 
UR, 

o ~ x < 0.1 

0.1 ~ x < 0.9 

0.9 ~ x < 1 

PL =PM = PR = 1 qL = qM = qR = 0, PL = 103
, 

PM = 10-2
, PR = 102

• 

(5.10a) 

(5.10b) 

A solid wall boundary condition is applied to both ends. See [4], [14] for details. 

The results at the final time t = 0.038 are in Figures 40-45. T~e solid lines 

are the numerical solutions using ENO-RF-S-3 with 800 points. It can be regarded 

as an exact solution. Notice that ENO-RF-3 has essentially converged for the 

velocity and the pressure, but not for the density, due to the smearing of contact 

discontinuities. Also notice that ENO-RF-S-3 and ENO-RF-A-3 with 200 points 

have better resolution for the density than does ENO-RF-3 with 400 points. 0 
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EXAMPLE 8. In the above problems we only show pictures for third order 

schemes. If we compare with second and fourth order schemes we see the expected 

improvements in resolution. These improvements are usually not very significant 

for problems lacking structure in smooth regions, as is the case for most of the above 

examples. This is particularly true when the two contact-discontinuity-sharpening 

algorithms in Section 3 are used. However, the advantage of higher order schemes 

becomes significant, when the problem involved has some structure. To exemplify 

this, we solve the Euler's equation in Example 6 with a moving Mach = 3 shock 

interacting with sine waves in density, i.e., initially 

{ p = 3.857143j q = 2.629369j P = 10.33333 when x < -4 

p = 1 + e sin 5xj q = OJ P = 1 when x ~ -4 

If e = 0, this is a pure Mach = 3 shock moving to the right. 

(5.11) 

We take e = 0.1. For a linearized analysis of this problem see [81. The results 

are in Figures 46-52. The solid lines are numerical solutions of ENO-RF-3 with 

1600 grid points. It can be regarded as the exact solution. We observe that the fine 

structure in the density profile makes the higher order schemes perform much better 

than the lower order methods. ENO-RF:'3 with 200 points has roughly the same 

resolution as the second order MUSCL type TVD scheme [91 with 800 points. On 

the other hand, the improvement of ENO-RF-3 over the second order TVD scheme 

is not so significant for the velocity and pressure profiles, because they both lack 

~ny detailed structure. o 

EXAMPLE 9. We apply ENO schemes to 2D Euler's equation of gas dynamics, 

i.e. (1.1) with d = 2, m = 4, and (we use f,g,x,y instead of f1,f2 , XI,X2): 

u =(p,M:;,My,E)T, f(u) = q:;u+ (O,P,O,q:;P), (5.12a) 

g(u) = qyu+ (O,O,P,qyP) 
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where 

1 
P = b - l)(E - 2'pq2), q2 = q; + q~, Mr. = pqr., My = pqy (5.12b) 

Also 

c2 = b _ l)(H _ ~ 2) _ E + P 2q , H--- (5.12c) 

For Mi, the eigenvalues are 

"'11 = qr. - C, .\2 = .\3 = qr., .\4 = qr. + c, (5.13a) 

the right eigenvectors are 

( 1) (0) (1) qr. - C ° qr. 
rl = ~y ,r2 = 1 ' r3 = lY2 ' 

H qr.C qy 2q 

_ ( qr. ~ C ) (5.13b) r4 - qy 

H + qr.C 

and the left eigenvectors are 

where: 

£1 = ~(b2 - qr., -~ - b1qr., -b1qy, bt), 
2 C C 

12 = (-qy,O,l,O), 13 = (1- b2, b1qr., b1qy, -b1), 

14 = ~(b2 _ qr. 
2 c ' 

1 
- - b1 qr., -b1 qy, btl 
C 

bl = "'1 - 1 
c2 

b 
1 2 

2 = -q b1 
2 

We can get the results for ~ by symmetry. 

(5.13c) 

(5.13d) , 

(5.13e) 

The test problem we choose is a moving shock interacting with compressible 

turbulence [17J, [18J. At t = 0, a Mach 8 shock at x = -1.0 is moving to the right 
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into a state with PR = 1, PR = 1 and q: = -*sinOR COS(XkR cos OR +ykR sinOR), 

qy = .p;cosORcos(xkRcoSOR +ykRsinOR) where kR = 21r, OR =~. We display 

the results at t = 0.20 in Figures 53-58. Notice that in [17], [18] similar results 

were obtained using a shock-fitting rather than a shock capturing method. This 

problem is difficult for shock capturing methods because both properties: high order 

accuracy (to resolve the fine structure) and an oscillation-free shock transition, are 

needed. A small-spurious oscillation will be enough to kill any resolution of the 

specified small fluctuations. This example shows that ENO schemes have excellent 

possibilities for shock-turbulence computations. o 

VI. CONCLUDING REMARKS 

ENO schemes based on fluxes and TVD Runge-Kutta type time discretizations 

seem to work very well in our numerical tests which include 1D and 2D scalar and 

systems problems. ENO-RF (Algorithm 2.3) seems preferred, since this .method is 

half as expensive as ENO-LLF or ENO-LF, gives better resolution and seems always 

to converge to the correct entropy solution. To sharpen contact discontinuities, Al

gorithm 3.1 (for 1D) or Algorithm 3.2 (for 1D or 2D) can be used. High order 

ENO schemes show their special advantages for problems which have both discon

tinuities and detailed fine structure in smooth regions e.g. Example 8 and Example 

9 in Section V. Among the practical things needing further investigation are the 

resolution of rarefaction corners (discontinuities in derivatives). Finally theoretical 

justification for the evident stability of these methods would be quite welcome. 
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Table 1: TVD Runge-Kutta Schemes (1.6) 

Order Qi Pi eFL coefficients 

2 1 1 1 

1 1 o 1 2" 2" 2 

1 1 

3 3 1 o 1 1 4 4 4 

1 0 ! 
3 3 o 0 ! 

3 

1 1 
2'" 

4 1 1 1 1 2 
2" 2" -4 2' a-
1 2 2 -~ -k 1 9' 9' a-
o 1 1 1 010 1 

3 a- a- 6 6 
---
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Concerning the figures: 

(1) In Figures 1-18 and 31-39, the solid lines are the exact solutions, and the circles 

or diamonds are the numerical solutions. 

(2) Figures 19-28 are the surfaces of the numerical solutions. 

(3) Figures 29-39 and 53-58 are the level curves of the numerical solutions. 

(4) In Figures 40-45, the solid lines are the numerical solution of ENO-RF-S-3 

with 800 points, and the diamonds are the numerical solutions explained in the 

legends. 

(5) In Figures 46-52, the solid lines are the numerical solution of ENO-RF -3 with 

1600 points, and the diamonds are the numerical solutions explained in the 

legends. 
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Figure legends 

ENO-RF-3, (5.1) with Ulef.t = 2, Uright = -2 

ENO-RF-3, (5.1) with Uleft = -3, Uright = 3 

ENO-RF-3, (5.2) with uO(x) = 1 in [-!, OJ, and 

uO(x) = ° elsewhere 

ENO-Roe-3, (5.3)-(5.4a) 

ENO-Roe-S-3, (5.3)-(5.4a) 

ENO-Roe-A-3, (5.3)-(5.4a) 

ENO-Roe-3, (5.3)-(5.4b) 

ENO-Roe-S-3, (5.3)-(5.4b) 

ENO-Roe-A-3, (5.3)-(5.4b) 

ENO-Roe-3, (5.3)-(5.4c) 

ENO-Roe-S-3, (5.3)-(5.4c) 

ENO-Roe-A-3, (5.3)-(5.4c) 

ENO-Roe-3, (5.3)-(5.4d), t = 2 

ENO-Roe-S-3, (5.3)-(5.4d), t = 2 

ENO-Roe-A-3, (5.3)-(5.4d), t = 2 

ENO-Roe-3, (5.3)-(5.4d), t = 8 

ENO-Roe-S-3, (5.3)-(5.4d), t = 8 

ENO-Roe-A-3, (5.3)-(5.4d), t = 8 

ENO-RF-3, (5.5) with (Ul,U2,U3,U4) = (-1~-0.2,0.5,0.8), 

t = 1, 20 x 20 points 

ENO-RF-3, (5.5) with (U17U2,U3,U4) = (-1,-0.2,0.5,0.8), 

t = 1, 80 x 80 points 

First order Engquist-Osher scheme, (5.5) with 

(UbU2,U3,U4) = (-1,-0.2,0.5,0.8), t = 1, 80 x 80 points 
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Figure 22: ENO-RF-3, (5.5) with (Ul,u2,ug,U4) = (-0.2,-1,0.5,0.8), 

t = 1, 80 x 80 points 

Figure 23: ENO-RF-3, (5.5) with (Ul,U2,Ug,U4) = (0.5,-1,-0.2,0.8), 

t = 1, 80 x 80 points 

Figure 24: ENO-RF-3, (5.5) with (Ul,u2,ug,U4) = (-1,0.5,-0.2,0.8), 

t = 1, 80 x 80 points 

Figure 25: ENO-RF-3, (5.5) with (UbU2,Ug,U4) = (-1,-0.2,0.8,0.5), 

t = 1, 80 x 80 points 

Figure 26: ENO-RF-3, (5.5) with (Ul,U2,Ug,U4) = (0.8,-1,-0.2,0.5), 

t = 1, 80 x 80 points 

Figure 27: ENO-RF-3, (5.5) with (Ul,u2,ug,U4) = (0.8,-1,0.5,-0.2), 

t = 1, 80 x 80 points 

Figure 28: ENO-RF-3, (5.5) with (Ul,U2,Ug,U4) = (0.8,-0.2,-1,0.5), 

t = 1 80 x 80 points 

Figure 29: ENO-RF-3, (5.6) with a = 0, f3 = 5, 30 x 30 points 

Figure 30: ENO-RF-3, (5.6) with a = 2, f3 = 5, 30 x 30 points 

Figure 31: ENO-Rce-3, (5.7), '+' for y = ~, ,*, for x = ~, t = 2 

Figure 32: ENO-Roe-A-3, (5.7), '+' for y = ~, ,*, for x = ~, t = 2 

Figure 33: ENO-Roe-S-2, (5.7), '+' for y = ~, ,*, for x = ~, t = 2 

Figure 34: ENO-RF-3, (5.8)-(5.9a), 100 grid points, t = 2, density 

Figure 35: ENO-RF-3, (5.8)-(5.9a), 100 grid points, t = 2, velocity 

Figure 36: ENO-RF-3, (5.8)-(5.9a), 100 grid points, t = 2, pressure 

Figure 37: ENO-RF-3, (5.8)-(5.9b), 100 grid points, t = 1.3, density 

Figure 38: ENO-RF-S-3, (5.8)-(S.9b), 100 grid points, t = 1.3, density 

Figure 39: ENO-RF -A-3, (5.8)-{5.9b), 100 grid points, t = 1.3, density 

Figure 40: ENO-RF-3, (5.8a,b)-(5.10), 200 points t = 0.038, density 

Figure 41: ENO-RF-3, (5.8a,b)-(5.10), 400 points, t = 0.038, density 



Figure 42: 

Figure 43: 

Figure 44: 

Figure 45: 

Figure 46: 

Figure 47: 

Figure 48: 

Figure 49: 

Figure 50: 

Figure 51: 

Figure 52: 

Figure 53: 

Figure 54: 

Figure 55: 

Figure 56: 

Figure 57: 

Figure 58: 
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ENO-RF-3, (5.8a,b)-(5.1O), 400 points, t = 0.038, velocity 

ENO-RF-3, (5.8a,b)-(5.10), 400 points, t = 0.038, pressure 
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Figure 1: ENO-RF-3, (5.1) with u1eft • 2, Uright - -2 
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Figure 5: ENO-Roe-S-3. (S.3)-(S.4a) 
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Figure 6: ENO-Roe-A-3, (S.3)-(S.4a) 
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Figure 7: ENO-Roe-3, (5.3)-(5.4b) 
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Figure 8: ENO-Roe-~-3, (5.3)-(5.4b) 
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Figure 9: ENO-Roe-A-3, (5.3)-(5.4b) 
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Figure 10: ENO-Roe-3~ (5.3)-(5.4c) 
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Figure 11: ENO-Roe-S-3, (S.3)-(S.4c) 
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Flgure 12: ENO-Roe-A-3, (S.3)-(S.4c) 
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Figure 13: ENO-Roe-3, (S.3)-(S.4d), t - 2 
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Figure 14: ENO-Roe-S-3, (S.3)-(5.4d), t - 2' 
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Figure 15: ENO-Roe-A-3, (5.3) - (5.4d), t=2 
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Figure 17: ENO-Roe-S-3, (5.3) - (5.4d), t=8 
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Figure 18: ENO-Roe-A-3, (5.3) - (5.4d), t=8 
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Figure 19: ENO-RF-3, (5.5) with (u1,u2,u3,u4)-(-l,-0.2,O.5,O.8), 
t - 1, 20 x 20 points 
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Figure 20: ENO-RF-3, (5.5) with (u1 ,u2,u3,u4)-(-l,-0.2,O.5,O.8), 
t - 1, 80 x 80 points. . 
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Figure 21: First Order Engquist-Osher Scheme, (5.5) with 
(u1,u2,u3,u4)-(-l,-0.2,O.5,O.8), tal, 80 x 80 points 
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Figure 23: ENO-RF-3, (5.5) with (u1,u2,u3,u4)-(O.5,-I,-O.2,O.e 
t • 1, aD x aD points 
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Figure 25: ENO-RF-3, (5.5) with (u1,u2,u3,u4)-(-1,-0.2,0.S,0.5), 
t - 1, SO x SO points 
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Figure 26: ENO-RF-3, (5.5) with (u 1,u2,u3,u4)a(0.S,-1,-0.2,0.5), 

t - 1, SO x SO points 
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Figure 27: ENO-RF-3, (5.5) with (u1,u2,u3,u4)-(O.8,-1,O.5,-O.2), 
t - 1, 80 x 80 points 
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Figure 28: ENO-RF-3, (5.5) with (u1,u2,u3,u4)=(O.8,-0.2,-2,0.5), 
t - 1, 80 x 80 points 
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Figure 29: ENO-RF-3, (S.6) with a-O, e-s, 30 x 30 points 
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Figure 30: ENO-RF-3, (S.6) with a-2, ~·S, 30 x 30 points 
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Figure 31: ENO-Roe-3, (5.7), '+' for y-~, '*' for xa~, t-2 
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Figure 33: ENO-Roe-S-2, (5.7), '+' for y-i, '*' for x-i, t-2 
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Figure 34: ENO-RF-3~ (5.8-(5.9a' 100 points, t-2, density 
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Figure 35: END-RF-3, (5.8)-(5.9a), 100 points, t s 2, velocity 
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Figure 36: ENO-RF-3, \5.8)-(5.9a), 100 points. t s 2, pressure 
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Figure 37: ENO-RF-3, (5.8)-(S.9b), 100 points, t a l.3, density 
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Figure 38: ENO-RF-S-3, (5.8)-(S.9b). 100 points, t-l.3, density 
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Figure 39: ENO-RF-A-3, (5.8)-(5.9b), 100 points, t-l.3, density 
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Figure 41: ENO-RF-3, (5.8a,b)-(5.10), 400 points, t=0.038, density 
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Figure 42: 'ENO-RF-3, (5.8a,b)-(S.10), 400 points, t-0.038, velocity 
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Figure 43: ENO-RF-3, (S.8a,b)-(S.10), 400 pOints, t-0.038, pressure 
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Figure 44: ENO-RF-S-3, (S.8a,b)-(S.10), 200 points, t-0.038, density 
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Figure 45: ENO-RF-A-3, (5.8a,b)-(5.10), 200 points, t s O.038, density 
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Figure 46: ENO-RF-3, (5.8a,b)-(5.11), 200 points,. t-1.8, density 
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Figure 47: ENO-RF-3, (S.8a,b)-(S.11), 400 points, t-l.8, density 
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Figure 48: Second Order MUSCL Type TVD Scheme, (S.8a,b)-(S.11), 800 points 
t"l.8, density 
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Figure 49: ENO-RF-3, ·(5.aa,b)-(5.11), 200 points, tal.a, velocity 
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Figure 51: ENO-RF-3, (5.Ba,b)-(5.ll), 200 points, t s 1.B, pressure 
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Figure 52: Second Order MUSCL Type TVD Sc~;...ne, (5. Ba, b)-(5.ll), 200 points, 

t=l. B, pressure 



-5ti-

0.8;~--------------------------~~ __ ri--~~ __ ~--r-~(i\'~--iT.t 

0.148 

0.00 

-0.148 

-0. 8., I \, '" \ \' \. }' 
- L. 14'7 -0.'714 0.00 0.'714 1.14'7 

Figure 53: ENO-RF-3, Example 9, 60 x 40 points, t-0.2, pressure 
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Figure 54: ENO-RF-3, Example 9, 60 x 40 points, t-0.2, vorticity 
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Figure 55: ENO-RF-3, Example 9, 60 x 40 points, t-0.2, entropy 
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Figure 56: ENO-RF-3, Example 9, 120 x 80 points, t-0.2, pr~~~ure 
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Figure 57: ENO-RF-3, Example 9, 120 x 80 points, t-0.2, vorticity 
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Figure 58: ENO-RF-3, Example 9, 120 x 80 points, ·t-0.2. entropy 
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