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Abstract

Generalized, or "power-law," inflation is shown to necessarily

exist for a simple, anisotropic, (Bianchi Type-I) cosmology in the

Binsten-Cartan gravitational theory with the Ray-Smalley improved

energy-momentum tensor with spin. Formal solution of the EC field

equations with the fluid equations of motion explicity shows inflation

caused by the US spin angular kinetic energy density.

(a) Also with Department of Physics, University of Alabama in

Huntsville, AL 35899.



INFLATION IN EINSTEIN-CARTAN THEORY WITH

IMPROVED ENERGY-MOMENTUM TENSOR WITH SPIN

by

A. J. Fennelly, James C. Bradas and Larry L. SmaHey

Introduction. The early universe is expected to undergo a

period of inflation (exponential expansion) due to the presence of bare

quantum fields which behave like a cosmological constant term in the

field equations. That period of accelerated expansion can also exist as

a state of "power-law inflation" in which the expansion scale factor is

a power-law function of the time.^ In either case, R - ê fc of R - t^,

inflation. is important because it may offer a simultaneous solution to

the cosmological problems of horizons, homogeneity, and flatness.^

Inflation may also provide a solution to the origin of the

presently observed large-scale isotropy of the university.3 Its

presence minus the acceleration which would be produced by a now zero

cosmological constant, which is quite effective in isotropizing the

universe.̂  There is, however, the not fully resolved question of whether

inflation occurs, and is effective in producing isotropy, if the initial

shear of spatial curvature of the universe is sufficiently large.^ One

would therefore like to find models with inflation, even power-law

inflation, that possess inevitable inflation no matter how large the

shear.



Power—law inflation has been invoked Co explain the structure of

inhomogeneity in the universe.3>6 it has been discussed as the result

of particle-creation processes in the early vacuum dominated universe,?

the result of evolution and compactification of certain models of

Kaluza-Klein cosmology,8 the consequence of the antisymmetric part of

the affine connection in the nonsymmetric theory of gravity of Moffat,^

and the effect of a root-mean square spin energy densitylO in the

Einstein-Cartan theory with the Ray-Smalley improved energy-momentum

tensor with spin.H In this paper, we show that a generalized (or

power-law) inflationary (and super-inflationary) epoch arises naturally

and inevitably in the early universe in a cosmological model in the

Einstein-Cartan gravitation theory with the improved energy-momentum

tensor with spin of Ray and Smalley.

Torsion, Spin Energy Density, and the Ray-Smalley Improved

Energy-Momentum Tensor With Spin. Spin is a Lorentz-invariant quantum

mechanical phenomenon. This means that it exists in flat space and as

such represents rotation with respect to nothing. It must ,therefore,

properly be included in the definition of internal energy of a

fluid.12 Furthermore, rotation itself can have a variety of forms, even

if we are considering only rotating coordinate systems and references

frames and not rotating matter with or without internal spin.13 The

former requries a reformulation of the fluid lagrangian and the first

law of thermodynamics to include the angular kinetic energy density of

spin in determination of the equations of motion and field equations.^

The latter requires that torsion be included in any apacetime

formulation of physics that includes an affine connection.^



- In a further convincing argument, Penrose has shown that torsion

naturally arises when the general class of conformal transformations of

metrics is allowed to include complex transformations.*** This occurs if

one wishes to preserve the Lorentz-invariant two - component spinor

calculus in as natural a form as possible. With a conformal

transformation gao » ft ft gao for complex ft, the torsion is generated as

Tabc • i <Vd log ft - Vd log fl> Eab
cd, where i = /~ and Eabc<* ij} the

four-dimensional alternating symbol.

Thus, we are directed to the Ray-Smalley formalism for the

Einstein-Cartan theory with improved energy-momentum tensor with spin.

The internal energy e of a fluid with spin is then given by

de = Tds - Pd(l/p) + j. w dsij
2 J

•here T,S,P, p, w^j and sLJ are the fluid's temperature, specific

entropy, pressure, density of inertia, spin angular velocity, and

• specific spin angular momentum. The spin angular velocity Wjj is

defined b y . . . . . .

where a^£, uk, and //^ are the tetrad vectors, four-velocity of the

fluid, and the covariant derivative. The spin density Sjj of the fluid

is given by

S.. = p< (a\ a2. - a1, a^) = ps. .



where < is a coupling constant. The two combine to form the spin

kinetic energy density T of the fluid:

T - 1 S.
2

One choice that can be made for the tetrad vectors is to identify one of

them with the fluid four velocity: U*- » â *-.

A lagrangian has been given for this model by Ray and Smalleyll

but is not necessary here. Appropriate variations lead to equations of

motion and field equations. First of these is the equation of motion

for the spin:

where D is the total convective derivative.. .The field equation is

G«

where the modified torsion tensor is

and the square brackets denote antisymmetrization. The perfect fluid

ikpart of the energy-momentum tensor T_ is:

- p(l + e + P/P) U1 0* + gikP (4)

and its intrinsic spin part T-1^ is:



..K)£ ,", ^ „_, r_¥Tuy,JJ .vC(i_K)-t + OUX~S"'̂ U nJ (5)

where the last two terms arise from the inclusion of spin as a

thermodynamic variable in the first law of thermodynamics. The torsion

is detemined from the spin density tensor by

where Sjjk is the canonical spin-density tensor of Halbwachs:^-^

S. .K a c..nKxj siju

The antisymmetric field equation is

and is mainly an expression for the conservation of angular momentum.

The above equations constitute the Einstein-Car tan theory with the Ray-

Smalley energy-momentum tensor.

A notable success of the theorty has been the solution for a

static cylinder with perfectly aligned spins of its constituent

particles, found by Tsoubelis.l? It is a significant improvement, in

that consistent exterior-interior matching conditions are fulfilled, and

that the exterior gravitational field possess off-diagonal terms in the



metric which cannot be transformed away. This indicates that a true

magnetic-trype gravitational field is generated by spin in the improved

EC with RS energy-mometum tensor with spin.

Cosmological Models in Gravitation Theories with Torsion. A

large number of cosmological models have been exhibited in Einatain-

Car tan theories. However, we shall mention only a representative few of

them, of direct relevance here. The most recent study of homogeneous

and isotropic cosmological models in torsion gravity theories with the

standard energy-momentum tensor has been given by Goenner and Muller—

Hoissen for lagrangian densities containing terms in T2 and R2, a more

general gravitational lagrangicis than what we consider later.̂

Contributions to the field equations arising from the T2 and R2 terms

will also drive an inflationary epoch, ̂ beyond the contribution of the

spin kinetic energy density terms shown here. •

Anisotropic cosmologies for EC theory with the standard

lagrangian and standard energy - momentum tensor have been studied in an

interesting manner by Tsoubelis and by Lorenz.̂ l~23 Those represent the

clearest treatment of anisotropic cosmologies with torsion for Bianchi

Types VI0 and VIIO,
20 Type V,20*2* Kantowski-Sachs geometries,22 and a

general class of Bianchi types with magnetic field.2*

There have been some recent limited studies of cosmological

models in EC theory with the improved RS energy-momentum tensor with

spin. These have mostly concentrated on the Godel solution or Godel-

like cosmologies.2 '̂2^ Their particular success has been in providing

reasonable perfect-fluid sources for the Godel models but with,

furthermore, causal behavior of the geodesies.



In expanding models, there have been very few investigations

published thus far using the RS energy-momentum tensor. One was a

consideration of the role of spin, with the energy-momentum tensor with

spin but not the improved energy-momentum tensor with spin. 26 While we

"do not completely agree with all the details of their calcuationa, we

believe their conclusion is accurate. Their computation shows that

internal spin drives expansion of a fluid positively.

Gasperini has demonstrated that the improved RS energy-momentum

tensor with spin may drive inflation. 10 It is proven approximately and

ad hoc for a flat Robertson-Walker (homogeneous and isotropic)

cosmological model. Much of the argument is unsatisfactory in that

lacks rigor, but the main conclusion has a certain validity. Our

'result, which confirms both that of Bedran and Vasconcellos-Vaidya^ and

that of Gasperini, 10 shows that such approximations are unnecessary to

demonstrate that inflation is inevitable if the universe is correctly

described by the EC theory with the improved RS energy-momentum tensor.

Inevitable Inflation in a Simple Anisotropic Einstein

Cartan/Ray-Smalley Cosmological Model. We will now examine a simple

anisotropic model to demonstrate our result. The spatial geometry is

Bianchi Type I, indicating we consider only the effects of shear

(dynamic anisotropy) and not of curvature (kinematic or static

anisotropy). The anisotropy is necessary so that global spin angular

kinetic energy effects can be examined without resorting to the

averaging arguments and approximations necessary in the Roberton-Walker

model.10



We choose Che metric Co have Che form first introduced by

Misner:27

d82 , _ dt2 + e2tx e2Bi dx1- dxJ, (6)

2a
where e • R (t) the scale factor, and BJJ is a 3 x 3 symmetric,

tracefree, matrix. We use the method of differential forms and so write

ds2 - ga8 W* W*

where we take g-jj to be the Lorentz metric and Wa to be a basis of

differential forms.28 We then have that W° = dt and W1 = ed e
B. dx-J.

To show more clearly how torsion is inserted in the connection forms, we

rewrite the first Car tan equation in the form

wx -

where WU are the connexion forms and d indicates the exterior

derivative operation on a form. The dual to the basis are the tetrad

vectors themselves and they obey the usual orthonormality relations

*u ^av * ̂ uv an(* ̂ i a^^ = Hij wnere Hij signifies the usual Lorentz

metric. Using tetrads consistent with the choice of Bianchi Type I, we

take the nonzero components of Sj4 to be

S12 " K(X)

where <(X) is some general function. The tracefree proper torsion
•fm

Kij is related to the spin density by KJJ 3 psij 0K.



Proceeding with the usual calculations, including use of the

second Cartan equation, we find the usual relativistic quantities and

equations: The affine connexion forms are

and

K Tjk » where ajfc an<* Tjk are c^e symmetric and

antisymmetric parts of

Jt

and the overdot indicates the time derivative. Keeping maximum simplic-

ity, we choose a comoving fluid with four-velocity ua
 3 nS >

ua * 5*. The Einstein-Cartan equations can be put into the form

G - 3a2 - 1 a,. a±j - p(l + e), (8a)
oo •=• ij

G* /* - 9a2 - 3 a.. aij - 3p + 2pr Sji,
K » 6a j ij iJ (8b)

and

- TiK° *j

(8c)

K - 1 T S1K
-j ij K -2 Kj

10



with GQ£ a To£ " o. It seems as though the Goo = Too equation has no

spin kinetic energy terms, but one should recall that the term e con-

tains spin kinetic energy terms via Eq. (1). Indeed we could approxi-

mately write : . . . >

e - TS - P/P + I W slj

2 J

under certain circumstances. But it is true that under most circum-

stances the term in p itself in the Too component will dominate.

Requirements of symmetry and consistency give that

° + 3° T° - 0

which solves to Ti2° * ̂ 12° (°) e ~̂ a» where Tj2 (°) " an integration

constant (initial value). We can absorb the (1 + e) term into p and

manipulate and combine the Einstein-Car tan equations to find

o - - 1 a., a J - i (P + P) + I PT s J
 (9)

1 ij 2 3 i3

• • * • • ry

Then substitution of a - R/R -. (R/R)

and a " R/R into Eq. (24) gives

- 1 P^-E-I+P-1!!3 (10)
3 CT 6 2 2 1J

We must now determine the way each term on the right hand side of Eq.

(10) scales with the volume expansion factor R. It is clear that while

the terms for shear energy density pa = % O^j a
xJ, inertia density a,

11



and pressure p are negative, the term for spin angular kinetic energy

density contributes positively to R. One must see if it ever dominates.

To examine that we need only establish the dominant scaling relation of

each energy density with R, formally and to leading order.

The contracted Bianchi identity and E-C field equations combine

to give the usual conservation equation for the inertia density, with

equation of state p » -yp : P/P * 3* (I4?) * o, with the solutions

p 3 P0 R~3(l*y). The shear evolution equations have the usual leading

order formal solution which gives the scaling law PQ * p<j R~6. The

tensor Tij is identically the rotation rate of the observer's Fermi-

transported reference triad2' and so equals v^j of Eq. (2). Dimensional

analysiŝ  shows that its evolution (from the EC equations) scales with

o —iproper time t as T£j • Tij t *.

The scaling relation between R and time t is given from the

G00
 3 Too field equation. Depending on which form of matter, or the

shear, dominates; R ** t̂ '3 for shear or stiff (scalar fields) matter

(q » 1), and R " t1/2 for radiation (y = -1/3), and R ~ t2/3 for dust or

low-pressure matter (y * 0). The scaling relation for the given density

comes from the equations of motion above. That gives Sjj t ~*. Com-

bining those results for density, spin density, and tetrad rotation, we

find that

Combining the above results into Eq. (11), we obtain the equations

P'2 2 p °R- 5+ 1 ° °
I CT T

-PoR'- 2 p ° R - + 1 p T sCT ° (12a)

12



for dust,

-3 o -5 ° c-° «R - -Po R - 2 P_° R + I P t.. S R
3~ 3 - 3 - -- -- (12b)

for radiation, and

0 -5 o °R-12

3" ° ° T ° 13 (12c)

for stiff matter or scalar fields. In each of Eqs. (12), for

sufficiently small values of R, the spin density term will dominate and

thus an early epoch cosmology will have its expansion accelerated by the

spin kinetic energy density of the fluid. The shear cannot effectively

damp the acceleration for sufficiently early epochs.

Conclusion. Note that the important term in the equations is of

the form Tfj S1J and so it doesn't matter what components of Tjj and S*-J

are nonzero. For'computational simplicity, we could choose only T^2 >* 0

and S*2 / Q, and then (312 is the only off-diagonal component of CTjj. We

do find an * 022 from this (axial symmetry) and the true fluid

vorticity then turns out to be Q^2 * ~ ^12 °̂ o- *n fcke future, we

will extend this work to other Bianchi types (for curvature anisotropy)

and magnetic and magnetohydrodynamic models (for matter anisotropies).

The computation presented here at least shows that the EC theory with RS

EMT provides us with cosmological models with inevitable inflation in

the early universe, exhibiting a simple and natural explanation for the

apparent inflationary epoch which may have occurred.

13
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