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- T - Abstract

Generalized, or "power-law," inflation is shown to necessarily
exist for a simple, anisotropic, (Bianchi Type-I) cosmology im the
Einsten-Cartan gravitational theory with the Ray-Smalley improved
energy-momentum tensor with spin. Formal solution of the EC field
equations with the fluid equations of motion explicity shows inflation

caused by the RS spin angular kinetic energy density.
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INFLATION IN EINSTEIN-CARTAN THEORY WITH

IMPROVED ENERGY-MOMENTUM TENSOR WITH SPIN
. ' - by

A. J. Fennelly, James C. Bradas and Larry L. Smalley

Introduction. The early universe is expected to wundergo a

period of inflation (exponential expansion) due to the presence of bare
quantum fields which behave like a cosmological constant term in the
field equations. That period of accelerated expansion can also exist as

"power~law inflation" in which the expansion scale factor is

a state of
.a power—law function of the time.2 In eitﬁer case, R ~ eKt  of R ~ tN,
inflation  is important because it may offer a simultaneous soLution to
the cosmological problems of horizoms, homogeneity, and flatness.2
Inflation méy also provide a solution to the origin of the
presently observed large-scale isotropy of the university.3 Its
presence minus the acceleration which would be produced by a now zero
cosmological constant, which is quite effective in isotropizing the
universe.4 There is, however, the not fully resolved question of whether
inflation occurs, and is effective in producing isotropy, if the initial
shear of spatial curvature of the umniverse is sufficiently large.’ One
would therefore like to find models with inflation, even power~law

inflation, that possess inevitable inflation no matter how large the

shear.




' Power-law inflation has been invoked to explain the structure.of
inhomogeneity in the universe.3;6 It has been discussed as the result
of particle~creation processes in the early vacuum dominated universe,’
the result of evolution and compactificatioa of certain models of
Kaluza-Klein cosmology,8 the consequence of the antisymmetric part of
the affine connection in the nonsymmetric theory of gravity of Moffat,9
and éhe effect of a root-mean square spin energy densityl0 in the
Einstein-Cartan theory with the Ray-Smalley improved energy-momentum
tensor with spin.ll In this paper, we show that a generalized (or
power—law) inflationary (and super—-inflationary) epoch arises naturally
and inevitably in the early univérse in a cosmological model in the
Einstein-Cartan gravitation theory with the improved energy—ﬁomentum
tensor with spin of Ray and Smalley.

Torsion, Spin Energy Demsity, and the Ray-Smalley Improved

Energy-Momentum Tensor With Spin. Spin is a Lorentz-invariant quantum
) .

-mechanical phenomenon. This means that it exists in flat space and as
such represents rotation with respect to nothing. It must ,therefore,
properly be included in the definition of internal energy of a
fluid.l2 Furthermore, rotation itself can have a va;iety of forms, even
if we are considering only rotating coordinate sysgems and references
frames and not rotating matter with or without internal spin.l3 The
former requries a reformulation of the fluid lagrangian and the first
law of thermodymamics to iqclude the angular kinetic energy density of
spin in determination of the equations of motion and field equations.l4
The latter requires that torsion be ' included in any spacetime

formulation of physics that includes an affine connection.l3



" In a further convincing argument, Penrose has shown that torsion
naturally arises when the general class of conformal transformations of
metrics is allowed to include complex ;ransformations.15 This occurs if
one wishes to preserve the Lorentz-invariant two - component spinor
calculus in as natural a form as possible. | With a conformal -
transformation gap = Q Q gab for complex Q, the torsion is generated as
Tab® = i (Vg log @ - V4 log Q) Eade, where i = /=1 and Egp®d ig the
four-dimensional alternating symbol.

Thus, we are directed to the Ray-Smalley formalism for the
Einstein-Cartan theory with improved energy-momentum tensor with spin.

The internal energy ¢ of a fluid with spin is then given by

de = Tds - Pd(1/p) f%wij ds™3 . | (1)

-here T,S,P, p, ‘wij ~and sil are the fluid's _temperature, specific
entropy, pressure, density of inertia, spin angular velocity, and
- gpecific spin "angular momentum. The spin angular velocity Wij is

defined by

UK

o =Y e Y
wij &y aYj aj ayi//K

where aVj, Yk, and /i are the tetrad vectors, four-velocity of the
fluid, and the covariant derivative. The spin density 5ij of the fluid

is given by



where ik is a coupling constant. The two combine to form the spin
kinetic energy density T of the fluid:

s, wid

T -.% 13
One choice that can be made for the tetrad vectors is to identify one of
them with the fluid four velocity: Ul = a4i,

A lagrangian has been given for this model by Ray and Smalleyll
but is not necessary here. Appropriate variations lead to equations of
motion and field equations. First of these is the equation of motion

for the spin:

S..¢
DS,y = W, (1 °J)

where D is the total convective derivative.. ..The field equation is . -

™ -7, T e Tfik + "rsik

. (2)
where the modified torsion temsor is
K X A ‘

and the square brackets denote antisymmetrization. The perfect fluid

part of the energy-momentum tensor TFik is:

T K a o1+ e+ 2/p) U 0N 4 TP (4)

and its intrinsic spin part Tslk is:




. .\ (1.X) i
Tsﬂc -5 U(i SK)L Uy + 93 [DU(K§)i]' _ pwl(isK)L + pU'"S ewijJ (5)
where the last two terms arise from the inclusion of spin as a
thermodynamic variable in the first law of thermodynamics. The torsion -

is detemined from the spin demsity tenmsor by

where Sjjk is the canonical spin-demsity tensor of Halbwachs:1l

Sin = SijUK

The antisymmetric field equation is

v, - rijj) Ste = 2Tpge]
and is mainly an expression for the conservation of angular momeﬁtum.
The above equations constitute the Einstein-Cartan theory with the Ray-
Smalley energy—momentum tensor.

A notable success of the theorty has been the solutiom for a
static cylinder with perfectly aligned spins of its constituent
particles, found by Tsoubelis.l? It is a significant improvement, in
that consistent exterior—interior matching conditions are fulfilled, and

that the exterior gravitational field possess off-diagonal terms in the




metric which cannot be transformed away. This indicates that a true
magnetic-trype gravitational field is generated by'spin in the improved
EC with RS energy-mometum tensor with spin.

Cosmological Models in Gravitation Theories with Torsionm. A

large number of cosmological models have been exhibited in Einstein-
Cartan theories. However, we shall mention only a representati.vé few of
them, of direct relevance here. The most recent study of homogeneous
and isotropic cosmological models in torsion gravity theories with the
standard energy-momentum tensor has been given by Goenner and Muller-
Hoissen for lagrang‘ian densities containing terms in T2 and R2, a more
general gravitational lagrangicis than what we consider later.18
Contributioﬁs to the field equations arising from the T2 and ﬁz terms
will also drive an inflationary epoch,19 beyond the contribution of the
..spin kinetic energy density terms shown here.

Anisotropic cosmologies for EC theory with the ‘standard
lagrangian and standard energy - mon;entum tensor have been studied in an
_interesting mat'u;erlbly Tsoubelis and by Lorenz.21-23  Those represent the
-clearest treatment of anisotropic cosmologies with torsion for Bianchi
Types VI, and \VII‘:,,20 Type V,2°’24 Rantowski-Sachs geometries,zz and  a
general class of Bianchi types with magnetic field.2l

There have been some recent limited studies of cosmological
models in EC theory with the improved RS energy-momentum tensor with
spin. These have mostly concentrated on the Godel solution or Godel-
like coamologies.24‘25 Their particular success has been in providing
reasonable perfect-fluid sources for the Godel models but with,

furthermore, causal behavior of the geodesics.



In" expanding models, there have been very few investigations
published thus far using the RS energy-momentum tensor. One was a

consideration of the role of spin, with the energy-momentum tensor with

‘spin but not the improved energy-momentum tensor with spin.26 While we
"do not completely agree with all the details of their calcuations, we
believe their conclusion 1is accurate. Their computation shows that
internal spin drives expansion of a fluid positively.

Gasperini has demonstrated that the improved RS energy-momentum
tensor with spin may drive inflation.l0 It is proven approximately and
ad hoc for a flat Robertson-Walker (homogeneous and 1isotropic)
cosmological model. Much of the argument is unsatisfactory in that
lacks rigor, but the main conclusion has a certain validity; Our
. ‘result, which confirms both that of Bedran and Vasconcellos-Vaidya26 and
that of Gasperini,lo shows that such approximations are unnecessary to
demonstrate that inflation is inevitable if the universe is correctly
"described by the EC theor.y with the improved RS energy-momentum tensor.

-

Inevitable Inflation in a Simple Anisotropic Einstein -

Cartan/Ray-Smalley Cosmological Model. We will now examine a simple

anisotropic model to demonstrate our result. The spatial geometry is
Bianchi Type I, indicating we consider ounly the effects of shear
(dynamic anisotropy) and not of curvature (kinematic or static
anisotropy). The anisotropy is necessary so that global spin angular
kinetic energy effects can be examined without resorting to the
averaging arguments and approximations necessary in the Roberton-Walker

model.10



We choose the metric to have the form "first introduced by

Misner:27
ds2 = - dt2 + ekx eznij dxi dxj, . _ (6)

2a ’
vwhere e = R (t) the scale factor, and Bjj is a 3 x 3 symmetric,
tracefree, matrix. We use the method of differential forms and so write
2 a
ds® =g o W WP
vhere we take g,p to be the Lorentz metric and W8 to be a basis of
differential forms.28 We then have that WO = dt and Wi = e egj axi.

To show more clearly how torsion is inserted in the connection forms, we

rewrite the first Cartan equation in the form
Woswy =in o Wt e -, | 7
Y A T ' B . .

where qu are the connexion forms and d indicates the exterior
derivative operation on a form. The dual to the basis are the tetrad
vectors themselves and they obey the usual orthonormality relations
a, laY = By and aj alj = njj where njj signifies the usual Lorentz

metric. Using tetrads consistent with the choice of Bianchi Type I, we

take the nonzero components of sij to be
S12 = (X)

where (X) 1is some general functionm. The tracefree proper torsion

T . . = K X
ij 1is related to the spin density by K;jj; = p8ij g,



Proceeding with the usual calculations, including use of the
second Cartan equation, we find the usual relativistic quantities and
equations: The affine connexion forms are

o N jk o
WO = (a b + o "'LTjk)WK

3 2
and

g = - 1

Wik Tjk 4t where gjk and tjkx are the symmetric and

antisymmetric parts of
(eB).j (e~B)g

and the overdot indicates the time derivative. Keeping maximum simplic-

o

ity, we choose a comoving £fluid with four-velocity ug = '-sa ’
ud = 5:. The Einstein-Cartan equations can be put into the form
G =3«2-10.013-p(1+e), (8a)
oo 3 ij _
K .o .2 ij ji '
G -934 -30g,, 07 =3p+ pt., S,
K = 6a 7 1 13 (8b)
and
G..-16,, G =g, + 3a - o K
1572 °%; %« Ogq + 30 04y + [O,T]ij % [Tij + 3aT,, ] %'rﬂ( T
(8¢c)

10



with Gyi = Toi = o. It seems as though the Gyo = Tyo equation has no
spin kinetic energy terms, but one should recall that the term € con-

tains spin kinetic energy terms via Eq. (1). Indeed we could approxi-

mately write

e =TS - P/p +1lW,s
, 2
under certain circumstances. But it 1is true that under most circum—

stances the term in p itself im the T,, component will dominate.

Requirements of symmetry and comsistency give that

(o] o =
T | +3a T, 0

which solves to Tj2° = T;3° (o) e ~33, where T;,°(0) is an integration
constant (initial value). We can absorb the (1 + €) term into p and

manipulate and combine the Einstein-Cartan equations Eo find
13 |
oij -1(p+P)+1p1t s . (9)
ij 5 i3
2 3
. . o . 8 ) L] 2
‘Then substitution of @ = R/R - (R/R)
and ¢ = R/R jneo Eq. (24) gives

p T, 8 (10)
2

We must now determine the way each term on the right hand side of Eq.
(10) scales with the volume expansion factor R. It is clear that while

the terms for shear energy demsity pg = % gij Oij, inertia density o,

11



and préssure p are negative, the term for spin angular kinetic energy
density contributes positively to R. One must see if it ever dominates.
To examine that we need only establish the dominant scaling relation of
each energy density with R, formally and to leading . order.

The contracted Bianchi identity and E-C field equations combine
to give the usual conservation equation for the inertia density, with
equation of state p = yp: 6/p + 2 (1+y) = o0, with the solutions
P = Po R-3(1+y), The shear evolution equations have the usual leading
order formal solution which gives the scaling law pg = pg R 8. The
tensor Tjj is identically the rotation rate of the observer's Fermi-
transported reference triad2? and so equals wvij of Eq. (2). Dimensional
analysis3° shows that its evolution (from the EC equations) scales with
proper time t as tij = t9; el
| The scaling relation between R and time t 'is given from the
Goo = Tgo field equation. Depending on which form of matter, or the
shear, dominates; R ~ t1/3 for shear or stiff (scalar fields) matter
(g=1), and R ~ t1/2 for radiation (y =1/3), and R ~ t2/3 for dust or
low-pressure matter (y = 0). The scaling relation for the given density
comes from the equations of motion above. That gives Sij ~ -l Com-
bining those results for density, spin density, and tetrad rotation, we

find that

oT g1 °o 113G+ Y) (11)

é.r. p R-Z -

-3_° .32. 5 3% % (12a)

12



for dust,

. =3 o . =5 . o o ,-10 -
R=-PoR ™" =-2p "R +1p T..S,.R
N 3 ° 3 ° 114 . (12b)
for radiation, and
o
. -5 o 0,~-12
R=-2G 4p, )R “+1lp 1, 8. R
3 ° ¢ 3 0 84 (12¢)
for stiff matter or scalar fields. In each of Eqs. (12), for

sufficiently small values of R, the spin density term will dominate and
thus an early epoch cosmology will have its expansion accelerated by the
spin kinetic energy density of the fluid. The shear cannot effectively
damp the acceleration for sufficiently early epochs.

Conclusion. Note that the important term in the equations is of
the form T;; sij and so it doesn't matter what components of T;; and sij
are nonzero. For computational simplicity, we could choose only T;3 # 0
and S12 # 0, and then g1 is the only off-diagonal component of Gij- We
do find s8]) = 097 from this (axial symmetry) and the true fluid
‘vorticity then turns out to be Q13 = = Tjs °U,. In the future, we
will extend this work to other Bianchi types (for curvature anisotropy)
and magnetic and magnetohydrodynamic models (for matter anisotropies).
The computation presented here at least shows that the EC theory with RS
EMT provides us with cosmological models with inevitable inflation in
the early universe, exhibiting a simple and natural explanation for the

apparent inflationary epoch which may have occurred.

13
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