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Abstract footing with respect to constraint imposition and the

This paper deals with approximating unsteady optimization algorithms employed and (2) to corn-
generalized aerodynamic forces in the equations of pare their performance.
motion of a flexible aircraft. Two methods of for- Currently there are three basic formulations used

in approximating unsteady generalized aerodynamic
mulating these approximations are extended to in-

forces for arbitrary motion using rational functions:
elude both the same flexibility in constraining the

approximations and the same methodology in op- 1. Least-squares (LS)--references 2 and 5
timizing nonlinear parameters as another currently 2. Modified matrix-Pad_ (MMP)--references 3,
used "extended least-squares" method. Optimal se- 4, 6, and 7
lection of "nonlinear parameters" is made in each 3. Minimum-state (MS)--reference 8
of the three methods by use of the same nonlinear,
nongradient optimizer. The objective of the non- For each of these rational function formulations,
linear optimization is to obtain rational approxi- "best" approximations are determined, in a least-
mations to the unsteady aerodynamic forces whose squares sense, to tabulated unsteady generalized
state-space realization is lower order than that re- aerodynamic force'data.
quired when the nonlinear terms are not optimized. An extended LS approach (ELS) was developed
The free "linear parameters" are determined us- (refs. 9-11) which includes the capability of enforc-
ing least-squares matrix techniques. Selected linear ing selected equality constraints on the RFA's and of
equality constraints are solved explicitly or included optimizing the denominator coefficients in the ratio-
implicitly, using a Lagrange multiplier formulation, nal functions with a nonlinear, nongradient optimizer
State-space mathematical models resulting from the (refs. 12-14). In this paper, the MMP approach
different approaches are described, and comparative of reference 6 and the MS approach of reference 8
evaluations are presented from application of each of are extended in a similar fashion. The extended
the extended methods to a numerical example. The approaches are referred to as "extended modified
results obtained for the example problem show that matrix-Pad_" (EMMP) and "extended minimum-
the number of differential equations used to repre- state" (EMS) approaches. The extensions bring
sent the unsteady aerodynamic forces in linear time- . them to the same level and flexibility in selecting con-
invariant equations of motion can be significantly re- straints as the ELS approach of reference 9 and allow
duced (up to 67 percent) from the number required comparative evaluation using the same nongradient
by a conventional method in which nonlinear terms optimization techniques. Specifically,

are not optimized. 1. The approach of reference 6 is generalized to
include the same constraint selection as employed in

1. Introduction reference 9.

The equations of motion of a flexible aircraft con- 2. The approach of reference 8 is generalized to
tain unsteady generalized aerodynamic force terms allow more flexibility in the selection of constraints.
which when expressed in the Laplace domain are 3. Both are altered so as to use the nongradient,
transcendental functions. The availability of effi- nonlinear optimizer used in reference 9 in the con-
cient linear systems algorithms for aeroservoelastie strained optimization of the free "nonlinear parame-
analysis and design has provided strong motivation ters" in each rational aerodynamic approximation.
to approximate the unsteady aerodynamic forces as 4. All three use the same overall measure of rel-

rational functions of the Laplace variable (refs. 1-5). ative error as a cost function for the nonlinear op-
Such rational function approximations (RFA's) allow timization; the necessity of normalizing the original
the aeroservoelastic equations of motion to be cast aerodynamic data is essentially eliminated.
in a linear time-invariant (LTI) state-space form, al-
though the size of the state vector increases due to The "linear parameters" are determined by solving
the RFA's. This increased number of states due to the equations of the least-squares problem with ma-
the RFA's is referred to as the aerodynamic dimen- trix techniques. Equality constraints are either in-
sion. There is always a trade-off between how well cluded by using a Lagrange multiplier formulation
the RFA's approximate the aerodynamic forces and of the equations or solved explicitly. Inequality con-
how small the aerodynamic dimension can be kept. straints are included in the nonlinear optimization

The RFA formulations in the literature (e.g., process.
refs. 1-11) have varying capabilities to perform The basic problems involved in approximating
such a trade-off. The purposes of this paper are unsteady aerodynamic forces and methods used to
(1) to place existing RFA approaches on an equal solve them are presented in this paper. State-space



mathematical models resulting from the different ap- to improve the reliability of the models in critical
proaches are described. Results obtained from appli- frequency regions.
cation of the three extended methods to a numerical

example are presented. Compared are the actual fits 2.1. Equations of Motion
obtained, frequency responses for the corresponding Unsteady aerodynamic effects as well as struc-
systems of equations, and the total approximation tural dynamics must be considered when modeling
error as a function of aerodynamic dimension. In ad- flexible aircraft. A commonly employed approach to
dition some of the difficulties incurred in optimizing formulating the equations of motion for an elastic ve-
for the approximation parameters are discussed, hicle is based on a chosen number of vehicle vibration

It is shown that all three extended approaches, modes and Lagrange energy equations. Only small
ELS, EMMP, and EMS, demonstrate marked im- perturbations from a level equilibrium flight condi-
provement over a baseline constrained, least-squares tion are considered herein. The perturbed aircraft is
case in which nonlinear terms are not optimized, then represented by a linearized system of equations
Furthermore, it is shown that both the EMMP and expressed in terms of generalized coordinates _i(t)
the EMS approximations compare favorably with the as explained in reference 16. Through separation of
ELS approximations but with significant reductions variables the elastic deformation of the wing z(x, y, t)
in aerodynamic dimension. The corresponding aero- can be represented by the sum of products of a finite
dynamic dimension of the EMMP approach is ap- set of shape functions zi(x ,y) called mode shapes,
proximately three-fourths that of the ELS approach, and the _i(t) as
and the dimension of the newer EMS approach is
approximately one-third that of ELS. However, the n_
example selected had only one more input creating z(x,y,t) = _ [zi(x,y ) _i(t)] (2.1)
the aerodynamic forces (namely, incremental angle of i=1
attack due to vertical gust) than the number of gener-
alized coordinates. For a case in which the difference The equations of motion (EOM) can then be formu-
between the number of inputs creating aerodynamic lated in the time domain as
forces and the number of generalized coordinates is
even larger (such as would occur for multiple control

M _(t) + G _(t) +K _(t)surfaces with irreversible actuators), the difference
in aerodynamic dimension between the EMMP and = q [F_(t) + Fg(t)] + Fs(t ) (2.2)
ELS formulations would not be as significant. The
basis for this statement is developed in the paper, where

The software implementation of these RFA meth- q dynamic pressure
ods was developed to enhance the aeroservoelastic
analysis capability of the ISAC (Interaction of Struc- M, K generalized mass and stiffness matrices
tures, Aerodynamics, and Controls) system of pro- G damping coefficient matrix where the
grams (ref. 15) and exists as an independent module structural damping is modeled as viscous

in that system. Papers which describe other modules F_ matrix of aerodynamic forces due tomay be found by employing ISAC as a key word in a
library search, aircraft and control surface motions

Fg vector of aerodynamic forces due to gusts

2. ApproximatingUnsteady Aerodynamic F5 vector of generalized forces due to the
Forces controls

=[  i  ], arti  ooe matr owith using tabular unsteady aerodynamic force data
in the study of stability and transient response char- aerodynamic forces
aeteristics and some methods used to solve them.

Section 2.1 is a review of the equations of mo- Equation (2.1) when transformed into the
tion. Section 2.2 discusses the unsteady generalized Laplace domain can be written as
aerodynamic forces and aeroelastie modeling. Sec-

tion 2.3 discusses the rational function form used [Ms2+ Gs + K- qQ_]_(s)to approximate the aerodynamic forces, and sec-
tion 2.4 presents a discussion of the constraints used = qQgag + FHMTHM (2.3)



where 2.2. Generalized Aerodynamic Forces and

Q_ matrix of aerodynamicforcecoeffi- AeroelasticModeling

cients due to aircraft and control sur- This section sets the stage for obtaining the
face motions, equal to [Qij (s)], for RFA's of the generalized aerodynamic forces by stat-
i -- 1, ..., n_ and j = 1, ..., n_ ing how the GAF's are currently generated, by indi-

Qg matrix of aerodynamic forces due cating the condition for which the GAF's are desired,

to gusts, equal to [Qij(s)], for i = and by introducing the approach that is employed to
approximate the desired representation.

1, ..., n_ and j : n_ . l, ..., n_ + ng

ag nondimensional gust velocities, 2.2.1. Oscillatory motion. Using such techniques

{wg/u vg/u} T as doublet-lattice or kernel function theories (refs. 17
and 18), programs currently available for genera-

FHM n_ X n5 matrix of modal coefficients tion of unsteady GAF's can compute the forces only
converting hinge-moment outputs to for purely oscillatory motion over a range of speci-
generalized forces fled values of reduced frequency. Consequently, the

GAF's are not defined as explicit functions of k, but
THM vector of hinge moments output by actu- are defined only as tabular functions and are tran-

ator (note that THM is typically a func- scendental. Using these tabular functions, iterative
tion of actuator characteristics, backup methods must necessarily be used to determine eigen-
structure stiffness, and control law feed- values of the flexible aircraft equations of motion.
back; for this paper, identification of the These iterative methods tend to be costly, and the
additional dynamics and interconnections solutions are exact only for purely oscillatory motion.
is suppressed) Most importantly, LTI methods cannot be used.

I 2.2.2. Arbitrary motion. In order to obtain so-

--i

Q = Q_ [ Qg , matrix of generalized aero- lutions in the Laplace domain for both growing andJ
decaying motion (s off the /w-axis), it is necessary

dynamic force coefficients to express the forces as functions of s for the en-
It is the matrix Q of force coefficients which is of tire complex a-plane, or equivalently for the non-

interest in this paper. Each element Qij of Q is dimensionalized complex p-plane. In lieu of develop-
defined as ing new aerodynamic theory, the concept of analytic

continuation is often used to justify extending these

/ functions_ which are defined only on the frequencyQij(s) : APj(x, y, 8) zi(x ' y) dS (2.4) axis (s = iw), to the entire complex plane by finding
S q analytic functions which agree with the aerodynamic

forcing functions at all values of frequency. However,
Here APj (x, y, s) is the pressure difference due to there are only a finite number of frequencies at which
motion in the jth generalized coordinate, tabular data are available; hence, this process is at

Rational function approximations (RFA) allow best an approximate analytic continuation into the
the aeroservoelastic equations of motion to be cast region near the portion of the axis containing the
in an LTI state-space form for which a large number tabular data. Since phenomena such as flutter occur
of efficient linear systems algorithms are available: for points in the complex a-plane which lie along the

iw-axis, approximations into the region near the axis
= AX + BU (2.5) are sufficient for most studies.

Figure 1 depicts the approximating process,
where where
X vector of states

k reduced frequency
U vector of inputs

A, B matrix multipliers p nondimensionalized Laplace variable

Thus there is strong motivation for approximat- Qij(ikn) reduced-frequency domain tabular data
ing the unsteady generalized aerodynamic forces (identified by the open circles)
(GAF's) as rational functions of the Laplace variable
(refs. 1-5). Subsequent sections describe the steps Qij(ik) approximating curve, Qij(p) for p = ik
required to obtain the RFA's. (corresponding to the solid line)

3



Qij(ikn) points along the approximating curve at aerodynamics (ref. 5). Because tabular data m'e
reduced frequencies kn corresponding to determined for specified values of reduced frequency

the tabular data (solid circles) kn the Qij are actually defined only for values of the
nondimensionalized Laplace variable p = ikn. Vari-

cij(ikn) approximation error between two corre- ations in the matrix form of the rational functions
sponding points (denoted by an arrow result in three currently used approaches, mentioned
between points) in the introduction, to approximating the unsteady

2.3. Rational Function Approximations to aerodynamic force coefficients.
Generalized Aerodynamic Forces

The most common form of the approximating 2.4. Constraints
functions used currently for each generalized force

coefficient Qij of Q is a rational function of the non- It is often desirable to impose constraints on the
dimensional Laplace variable p. Each can be ex- approximating functions. For instance, one might
pressed in the following partial fraction form, where wish that the approximating functions agree with
nL is the number of partial fractions (referred to the tabular data at the steady-state conditions (e.g.,

herein as the "order of fit"), which is equivalent to Q,ij = Qij at k -- 0). Without constraints imposed,
the order of the overall denominator polynomial: as depicted in figure 2(a), the fit at zero frequency can

be poor, although the overall shape of the approxi-

Qij(P) = (Ao)ij + (A1)ijP + (A2)ijP 2 mating curve may be good. Figures 2(a) and 2(b)
nL depict the "steady-state area" (within a shaded box)

+ y_(A_+2)ij P (2.6) where constraints might be imposed. In some in-
e=l P . be stances, agreement of the slopes of the curves at a

specified frequency might be necessary. For criti-
cal flutter modes, it might be desirable to impose

which can be rewritten as agreement between computed data and the approx-
imating functions near the flutter frequency. When

O'iJ(8) = (_40)ij + (_41)ij 8 + (_42)ij 82 constraints are imposed, there is a corresponding loss
nL in degrees of freedom for the least-squares solution.

+ _[](A/_+2)ij 8 (2.7) The possible change in the approximating curve due
g=l s + bg to this loss is also depicted in figure 2(b).

where Tile standard method of improving the fits, espe-
c cially when constraints have been imposed, is to in-

P = _u s crease the order of fit used in the approximation (i.e.,
make nn in eq. (2.7) larger) or to decrease the fre-
quency range of the approximations. In recent years,

2u methods have been developed to improve these RFA's
bg = -_-bg by optimally selecting certain nonlinear coefficients

via nonlinear programming techniques (refs. 6-9).

Ao = Ao These studies indicate the advantages of optimizing
the nonlinear coefficients not only to reduce the error
for a given order of fit, but also to provide a way of

c A reducing the order of fit required to achieve a speci-
Jt: = _uu : fled level of error. These concepts are explored and

extended in this paper.

(c 2A2 = _u/ A2
3. Matrix Formulations of Rational
Function Approximations and Their

A*+2 = A*+2 CorrespondingState-Space Equations
The partial fractions are commonly called lag terms
because each represents a transfer function in which There are several variations on the matrix form
the output "lags" the input and permits an ap- of the rational function approximations for the un-
proximation of the time delays inherent in unsteady steady aerodynamic force coefficients corresponding



to the LS, the MMP,and the MS formulations. Each 3.1. Least-Squares(Column-Independent)
matrix formulation results in different aerodynamic RFA Formulation
state vectors. The mathematical models for each
of the three main variations on the matrix form of Historically, Roger (ref. 2) and, later, Abel (ref. 5)

the rational functions and their corresponding state- formulated the rational function approximations so
space equations are defined in this section. Sec- as to use the same denominator coefficients for all
tion 3.1 presents the equations for the least-squares the elements Qij of the matrix Q in order to reduce
RFA formulation as developed by the authors and the number of aerodynamic states in an LTI form
used in the comparisons presented in this paper. Sec- of the equations of motion. In effect, therefore, the
tion 3.2 defines the equations for the modified matrix- formulation was "element-independent" with respect
Pad6 RFA formulation, and section 3.3 defines those to the denominator coefficients. It is, nevertheless,
for the minimum-state RFA formulation, referred to here as "column-independent" to distin-

guish it from the MMP approach of section 3.2.

The condition that each element Qij of Q has the same constant denominator coefficients, or lag coefficients,
b_, allows the "per element" expressions of equation (2.6) to be valid for the full matrix Q:

] nL P (3.1a)
(_(p) = Q_(p) IQg(p) = Ao+ Alp+ A2p 2 + _ Ag+2p+bt _g----1

which, when expressed in the Laplace s-domain, is:

] nL 8
Q(s) = Q_(s) IQg(s ) = ._k0 +/_kl8 + ._k2s2 + Z i_+2 (3.1b)

_=1 8 + b_

Each matrix in equations (3.1) is rectangular, with dimensions n_ × (n5 + ng). To develop a state-space
realization for equation (2.3), Q(s) is approximated by (_(s), as defined in equation (3.1b), giving

+ G8 + K - q (fit0) 5 + (._kl)_S + (./_k2)_82 + Z(2_ke+2)_ _(8)
g=l

= FHMTHM + q (-A-0)g+ (A1)gS + (As)gs 2 + _--_(2_e+2)g otg (3.2a)
t_=l

If the aerodynamic states are defined by

Xae= s-_b_s { _}C_g (Forg=l, ..., nL) (3.2b)

there would be (n_ +ng) × nL aerodynamic states in the LTI state-space form (eq. (2.5)).

3.1.1. LS RFA aerodynamic dimension reduction. An alternative formulation of the aerodynamic states
described below significantly reduces the number of aerodynamic states when ng is nonzero. This modification
uses a definition for the aerodynamic states which combines the elastic 'and gust modes.



Equation (3.2) is equivalent to

nL{E18{[M-q(A2)_]s2.[G-q(A'l)5]s+[K-q(A°)_l}_(s)-qE ('_g+2){l(A_+2)g _ agg=l I

= FHMTHM + q [(_-0)g + (!_l)gS + (-_.2)gS2] O_g (3.3a)

Hence, if the augmenting aerodynamic state vector Xa is defined by

Xa= [Xa 1 Xa2 ... XanL] T

where each

[ ] {}8 11 ,33b,Xae = (-_+2)_1(-_+2)g _ ag -- _ s + beI

and

(A_+2) Y (For g= 1, ..., nL)

then an LTI state-space realization for equations (3.3) is

sXae = -beIXae + Ir/_ (3.4)

or more explicitly

sXae = -biIXae -F (Xe+2)_ s_ + (-_-g+2)g sag (3.5)

Since A_+2 is of size n_ x (n_Wng), each 0_ is of size n_, so there are exactly n_ states for each g = 1, ..., n L.
This implies that the number of added aerodynamic states for state-space realization of equation (2.3) due to
the partial fractions (or lag terms) in equations (3.1) for this column-independent formulation is

na = n_nL (3.6)

The state equations for the aeroelastic system for Roger's RFA formulation are obtained by substituting
equation (3.3b) into equation (3.3a), converting to first order form, and then combining with equation (3.5).
The resulting set of LTI state-space equations are

6



o I I l o
-1 ._ ! _ ! _

s s_ ---- [ M_q(]_2)5 ] l (A3) 5 ] -/_1I s_I I 0 I J

xo I o 1 1 I Xa
I I f I

0 [ (-_nL+2){ [ 0... {)nLI J

I
0 I J 0 0I

-1

I 0 0 I

FHM q(JkO)g[ q(Jki)g q(Jk2)g[THM I

• / /_g
+ 0 M- q(h2)_ 0 0 0 (A3)a 0 Sag

82 0_g

0 0 I ! : : :

0 0 (A(nL+2))g 0
(3.7)

This formulation was used for most of the analyses reported in references 19-21.

3.1.2. LSRFAfor irreversible actuators. For the column-independent LS formulation, a significant reduction
in the aerodynamic dimension is possible if the actuators driving the control surfaces can be considered

irreversible. In this case, the n5, inputs associated with control deflections are approximated as not being
affected by aerodynamic and inertial cross-coupling hinge moments. Thus

6'= (3.s)
where

_flc n5, x 1 vector of commanded control inputs

T A(8) diagonal transfer matrix relating control deflections to commanded control
inputs

Under this approximation, only the first n_, equations of (2.3) are needed since

TA_fc_} (3.9)

and hence the rows defining the n 5, deflections can be deleted, and terms in the first n_, equations involving
5t can be expressed in terms of commanded inputs. Thus the aerodynamic dimension for this case, using the
LS formulation, is only

na = n_,nL (3.10)



3.2. Modified Matrix-Pad_ (Column-Dependent) RFA Formulation

In the MMP approach, the denominator coefficients be are fixed for all elements of a particular column, but
their number and values may vary between columns; that is, they may be "column-dependent." Thus, for the

MMP formulation, the per element expression (eq. (2.6)) holds only per column, not for the entire matrix Q
as in equation (3.1):

nLj

Qj(p) = (Ao)j + (hl)jP + (A2)jP 2 + E(A_+2)j P (3.11)
g=l p+ b_j

The Qj(p) are then combined as

1
... 0

Q(P) = Ao . A lp . A2p2 . [W I (p) ... Wn_+ng (P)] " "'. " p (3.12a)

0 1
"'" hn_+ng(P)

where

nLj nLj

wj(p)= 1-I (P+%) (3.12b)
g=l k=l

and

nLj

hi(P) = H (P + b_j) (For j = 1, ..., n_ . rig) (3.12c)
g=l

If the augmenting aerodynamic state vector,

Xa ---- [Xa 1 Xa 2 ... Xan_+ng] T

is defined by

01 0: : ".. :

sXaj = 0 0 ..- _1 Xaj + r/ (3.13a)

-hjl 0 .... hjnLj

= bIjXaj + _rjrl (For j = 1, ..., n5 + ng) (3.13b)

8



then the state-space equations for this column-dependent formulation are given by

0 I 0

-1

-[K- q(Ao)_] -[G- q(-&l)_] q['¢¢1 ... VVn_+ng]
I 0 0

s s_ = 0 M-q(!k2)_ 0 0 V1 ... 0 I:I1 ... 0 0 s_
• . . • • . • •

Xa ". ". Xa

_0 0 I.
• 0 ... Vn_ 0 ... I2In_ 0

0 0 ... 0 0 ... 0 Hn_+ng

I
0 I I 0 0

I
--1

I { THM

I 0 0 FHM ]q(A'O)g q(-_l)g q(A2)g
_g

I (3.14)+ 0 M
o o I o o o

.0 0 I. " " " " s2ag

0 0 Vg 0

where, again, _ is the vector of Laplace transformed generalized coordinates, and the bar over the Wj and Hj
denotes the corresponding matrices in terms of s; specifically,

Since each Hj is a square matrix of dimension nLj x nLj , the number of aerodynamic states for this column-
dependent MMP formulation is

n _ --}-ng

ha---- E nLj (3.15)
j: 1

If each nLj ----nL, then the number of augmenting aerodynamic states for the MMP formulation is ngnL
larger than the column-independent LS formulation. If n 5, actuators can,be considered irreversible, the number
of augmenting aerodynamic states for the MMP formulation is larger than the LS by an amount (ns_ . ng)nL.
This amount can be sizable. In every case, however, the MMP fits should be as good as or better than the LS
for a fixed n L because the denominator coefficients are optimized on a per column basis in the MMP approach.
The power of the MMP formulation for reduction in added aerodynamic states is maximized by allowing both

nLj and {b_j} to vary per column.

9



If the lag coefficients are the same (same values for {bgj} and nLj = _'_L) for all columns in the MMP
formulation, then the column-dependent state-space equations can be modified to have the same aerodynamic

dimension as the column-independent LS formulation as follows. Since each hi(p) = h(p), equation (3.12a)
can be rewritten as

_ . .°

Q(p)=Ao+Alp+A2p2+[Wl(p) ... W_+ng(p)] " "'. p (3.16a)

. ° .

= ho + Alp+ i2p 2+ h--_p)[W_(p) Wn_+ng(P)]p (3.16b)• • •

where h(p) is of order nL, and W(p) is of dimension n_ × (n_ + ng).
Since [1/h(p)]W(p)p can be expressed in partial fraction form as

1 nL

h(p)w(p>= Ae+2pg----1

equation (3.16b) is equivalent to equation (3.1a); hence, the aerodynamic dimension corresponding to the
state-space realization can be reduced as in section 3.1.1 to that of equation (3.6):

na = nsnL (3.6)

3.3. Minimum-State RFA Formulation

Karpel suggested in reference 8 that in order to find a minimal augmented state vector, the process of
finding aerodynamic approximations and then determining the state-space equations be reversed.

He suggested starting with the general form of the state-space equations defined by

s s_ = I] M-q(h2)5 ,I -(K-q(._0)_) -(G-q(.&l)5) ]qDI s_

Xa I 0 ] 0 "E_{ I tT_ XaI I I

-1
I

I I 0 0 0 I O 0

ag (3.17)
+ 0 ! M-q(A2)_ 0 FHM q(Ao)g q(!_k 1)g q(!_2)g 80_g

820¢g
I

.0 ] 0 I 0 I Eg 0

10



where

0]1_ = ".. " (3.18)

• • • --bN

is a diagonal matrix of aerodynamic roots b_of some order N necessary to accurately represent the aerodynamic
forces. This implies that the aerodynamic states can then be expressed as

which can be rewritten as

Xa = [sI - f:_]-i [E{ iEg] rI (3.20)

Since R is of dimension N x N, the aerodynamic dimension for this minimum-state formulation is

na = N (3.21)

This aerodynamic dimension N is a parameter which must be determined. Karpel (ref. 8) showed that
finding a minimal augmenting state vector satisfying equations (3.17)-(3.21) is equivalent to finding matrices
A0, A1, A2, R, D, and E so that the aerodynamic approximations have the form

0(8) : A0 "_"-_k18 -_- -_k282 -4-I)[sI - 1_]-1E8 (3.22)

which can be written in terms of p as

so that

Q(p) = Ao + Alp + A2p 2 + D[pI - R]-IEp (3.24)

where D is of size n_ × N, R is a diagonal matrix of size N, and E is of size N × (n_ +ng). An iteration method
is required to determine a converged solution for the matrices D, E, AO, A1, and A2 in equation (3.24)• A
higher level nonlinear optimization is designed to optimally select the R.

3.4. Comparison of Aerodynamic Dimension

Typically (but not necessarily), for a given level of total approximation error,

n_.ng

max{nL3. } < N < _ nLj < n_nL (3.25)

na j = 1 na
for MS na for LS

for MMP

The character of the matrix corresponding to the lag terms and the resulting aerodynamic dimension
required for state-space realization are summarized as follows:

11



Aerodynamic
Method Character of lag terms dimension

Extended Common lag coefficients in denominator of n_n L
least-squares each matrix element

n_+ng

Modified Different number of and values for lag nLj
matrix-Pad_ coefficients in each column of Q j=l

Minimum-state Elements of N

1 0
s+bl """

0 1
• . . 8_}__N _

Thus the MMP formulation gives more flexibility than the LS approach in the choice and number of lag
coefficients and allows them to be determined on a per column basis. In the MS approach, the fact that the

number of additional states is independent of n_ provides the potential for a large reduction in aerodynamic
dimension.

4. Extended RFA Formulations tion of Davidon's variable metric method (refs. 23-
24) and finite differences to approximate gradients

In most of the applications of aerodynamic ap- (ref. 25) are used in determining the elements be of
proximations in the literature, the denominator coef- matrix R in equation (3.24).
ficients be in equation (3.1) have been specified a pri-

In reference 9, the authors extended the least-ori over the range of desired frequencies based on
engineering judgment. An alternative approach is to squares approach (referred to as ELS) to include
optimize these nonlinear parameters to improve the some capabilities which can have advantages over the
approximations by improving their selection. Opti- modified matrix-Pad6 approach of reference 6 and
mization of these parameters has been included in the the minimum-state approach of reference 8. First,
studies by Dunn (refs. 6 and 7), Tiffany and Adams the flexibility in selection of the equality constraints
(ref. 9), and Karpel (ref. 8). of reference 11 was included in order to improve the

In reference 6, the modified matrix-Pad6 approx- fit to the tabular aerodynamic force data in critical
imation formulation (which differs slightly in form regions by imposing certain constraints, or to im-
from the MMP formulation included herein) is in- prove the fit overall by relaxing certain constraints.
directly constrained to nearly match certain data Second, it employed a numerically stable, non-
points by applying frequency-dependent weighting gradient, nonlinear optimizer to determine the b_ in
factors to the corresponding terms in the least- equation (3.1). This algorithm avoids some numer-

ical difficulties which may arise in the optimizationsquares solution for the linear coefficients. The non-
linear optimization method of feasible directions of process due to numerical computation of gradients
reference 22 is employed therein, using an analytical and due to nearly linear dependency of active con-
scheme to compute gradients, when determining the straints. Side constraints on the b_ could also be
nonlinear parameters, imposed to ensure system stability.

In reference 8, employing the minimum-state In order to comparatively evaluate the three RFA
formulation, three fixed equality constraints are matrix formulations, the MMP and MS formulations
imposed on all elements of Q. Explicit inclusion of are extended in this paper in a fashion similar to the
these constraints reduces the number of degrees of ELS formulation. These extensions include the same
freedom in the least-squares solution. A modifica- flexibility in selecting equality and side constraints
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and include the use of the same nonlinear optimizer. A rational approximation of the form of equa-
The extended formulations are referred to as the tion (2.6) is linear with respect to the coefficients
extended modified matrix-Pad(_ (EMMP) and the (Am)ij. If the coefficients (Am)ij are used as de-
extended minimum-state (EMS) methods, sign variables for a particular element of Q and equa-

In this section, the selectable constraint options tion (4.1a) satisfies the minimum condition that all
will be defined; a common measure of performance partials with respect to each design variable be 0,
of the RFA's will be specified; and the algorithms for that is,
determining the optimum values of the free parame-

ters will be specified. O_ij - 0 (For m = 1, ..., nL) (4.2)
For a given aerodynamic dimension, the opti- O(Am)ij

mization of the nonlinear parameters for the ELS,
the EMMP, and the EMS formulations results in a then the resulting system of equations is linear and an

smaller total approximation error for suitably con- algebraic solution for the coefficients (Am)ij is pos-
strained approximations than for the LS formulation, sible. Henceforth, this will be referred to as a linear
Alternatively, optimization of the nonlinear param- optimization. Even though the objective function is
eters can reduce the aerodynamic dimension for a quadratic, linear algebraic methods may be employed
specified level of total approximation error. For ELS to determine the optimum solution exactly.
and EMMP, the reduction is indirect since the aero-
dynamic dimension is a function of both nL and ei- 4.2. Constrained Linear Optimization
ther n_ or n_ + ng, respectively. The EMS form,

Several types of equality constraints are consid-however, is structured in such a way that the aero-
dynamic dimension equals the order of fit, thus allow- ered in references 9-11. Those which have been in-
ing for minimization of the aerodynamic dimension cluded here are listed in the next section.

directly. 4.2.1. Selectable linear equality constraints.
The types of linear equality constraints from which

4.1. Unconstrained Linear Optimization selection can be made (refer to appendix A in ref. 11)

To determine the linear parameters in the RFA's, are
a measure of error between the approximating curve 1. To constrain the values of the RFA's at

and the actual tabular data for each aerodynamic zero frequency to be the same as the
force element is used as an objective or cost func- values of the tabular data.
tion. This particular objective function essentially
eliminates the necessity of normalizing the original 2. To constrain the slopes of the approxi-
aerodynamic data. While not apparent in the linear mating functions at k = 0 to be specified

values or to satisfy a specified relationshipoptimization, normalization is essential in the non-
linear optimization (described later) in order for the 3. To null out specific coefficients in the
overall objective function, which is the sum of ele- approximations

ment errors (cij), to be insensitive to differences in 4. To constrain the values of the RFA's at
magnitudes of the aerodynamic force coefficients, specified nonzero frequency, for which

A square error function is defined by tabular data are interpolated if necessary.

Each constraint is imposed on the entire column j of
_n IQ,ij(ikn) - Qij(ikn)l 2 (4.1a) Q and can be expressed in terms of linear equations

Eij = Mi j
involving the design variables (Am)ij for a specified

where j as

Mij = mnaX{1, [Qij(ikn)[ 2} (4.1b)
o (For i = 1, ..., (4.3)CT {Am}ij = Cij n_)

and {kn} is a set of reduced frequencies for which
tabular data are available.

Each term in the sum in equation (4.1a) is a 4.2.2. Lagrangeformulation. Equality constraints
measure of relative error if the maximum magnitude of types 1 and 3 are included explicitly. The Lagrange
of Qij(ikn) is greater than 1, but is an absolute multiplier formulation for including constraints of
error for magnitudes less than 1. This error function types 2 and 4 is employed to redefine the fit error for
essentially normalizes the aerodynamic data prior to a given element of the aerodynamic force coefficient
the nonlinear optimization, matrix as
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Y_n IQij (ikn) - Qij (ikn)[2 in appendix A. This nongradient optimizer has been

Qcj = Mij found to be numerically stable and to possess good
convergence properties in the applications to which

+ 2AT. [Cy{Am }ij - CiO.] (4.4a) it has been applied (refs. 9 and21 ).
The nonlinear parameters are selected via the

nonlinear optimization algorithm to reduce the total

=sij+2A T. [CT{Am}ij-cOj] (4.4b) column approximation error,

where Mij is defined by equation (4.1b).

Thenumberofconstraintequationsncj varies per jj = _/} "w,3..ceij (For EMMP) (4.7a)
column. The corresponding gradient conditions Vi

O(Am)ij - 0 (For m = 0, ..., nL+2 (or nLj+2)) summed over all rows, or the total matrix approxi-mation error,
(4.5a)

and

j = _/_ j2 (For ELS and EMS) (4.7b)

t """""-

OQcJ -- 0 (For m = 1, ..., ncj ) (4.5b)o( m)ij
summed over all columns. The weighting factors wij

define a system of linear equations whose alge- are used to force some of the elements to have more
braic solution determines the numerator coefficients priority than others in determining the nonlinear

(Am)ij in equations (3.1), (3.11), and (3.24) and is a parameters so that the element error cicj might carry
least-squares error approximation which exactly sat- more weight in determining the total error J. These
isfies the imposed constraints. The Die and Ee3. in weighting factors could be used to normalize the
equation (3.24) are also determined in this process errors instead of using Mij , but it is easier to weight
since the importance of elements relative to one another if

they are already normalized.

Die = (Am)ij I (For m = g + 2; g -- 1, ... nL) The primary reason for the multilevel, nonlinearEej = (Am)ij _ ' optimization structure used in all the formulations
(4.6) being compared herein is to keep the aerodynamic

for alternate steps in the iteration process converging dimension as small as possible without adversely al-
to a solution for D and E (refer to section 4.3.3). fecting the overall system analyses. The next three

subsections present outlines of the optimization pro-
cesses used by each of the extended approaches. The

4.3. Multilevel Optimization: Linear and overall optimization methodology for each extendedNonlinear
approximation formulation is depicted in figure 3.

Improvements in the approximations can be made Differences in the actual approximation formulations
by increasing the number of lag terms. As shown in result in variations in the optimization process of
section 3, however, this increase in the order of fit ad- selected coefficients, but all three use similar tech-
versely affects aerodynamic dimension and increases niques. Each requires a multilevel optimization pro-
the number of equations required to define the aero- cess in the sense that each contains a closed-form lin-

elastic system. The fit can also be improved by re- ear least-squares solution for the free linear param-
ducing the frequency range over which the fits are eters, which is performed inside an iterative search
required, but this reduces the range of applicability for parameters that enter the problem in a non-
(or robustness)of the approximation. The additional linear fashion. Furthermore, each method requires
free parameters in all the approximations, namely the that the characteristic roots of the system matrix
be can be optimized to improve the approximations, corresponding to the aerodynamic states be stable.
Historically, these parameters, or their equivalent in This constraint is enforced during optimization of the
the matrix-Pad_ approximants, have not been in- nonlinear parameters in the aerodynamic model. The
eluded as design variables since the resulting gradient choice of method (ELS, EMMP, or EMS) for a par-
equations, unlike equations (4.5), are not linear. The ticular application depends on aspects such as the
technique employed herein to optimize these non- goodness of fit required, computer size and time
linear parameters is a nongradient method described available, and computer costs.
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The optimization of the nonlinear parameters has in the overall optimization process for the column-
been included in obtaining "best" approximations independent ELS approach of reference 8. In step 1,
using each of the extended L$, MMP, and MS the design variables for the linear and nonlinear
formulations of section 3. The order of fit (nL for optimization are separated by considering as design

ELS; nLj, j = 1, ..., n_ +ng, for EMMP; or N for parameters the nonlinear bg separately from the lin-
EMS) is initially selected a priori. Best fits are then ear coefficients (Am)ij in equation (3.1). Figure 3(a)
determined using this number. The order of fit is is the flow diagram of the optimization procedure for
then increased or decreased based upon the suitabil- this ELS approach.
ity of the current best fits, until more suitable ones

are obtained. Step 1: For a specified set {be : be > 0}, _orm
The optimization of the linear coefficients can be linear optimization.

considered a first level of optimization. Because of
the nature of the objective function and the form Step la:

of the approximating functions, the Qcj can be opti- Determine all the (Am)ij and Aij , for each Qij,
mized with respect to the linear coefficients in closed which minimize each constrained least-squares
form, eliminating the need for iterative solutions typ- error and satisfy specified constraints:
ical in nonlinear optimization. The optimization of
the nonlinear parameters may be considered a second

_-_n]Qij(ikn) - Qij(ikn)] 2

level of optimization. It is necessarily an iterative Qcj = Mijmethod which employs an algorithm to optimally se-

lect the nonlinear parameters. Each selection of non- + 2AT' [3[CT{Am}ij - CO..]linear parameters requires one linear optimization _3J

for ELS and EMMP, and more for EMS, to be per- where

formed to determine the optimum linear coefficients Mij = mnax{1, IQij (ikn)[ 2}corresponding to the particular selection of nonlinear
coefficients.

Figure 3(a) summarizes the overall optimization Q,ij(p) = (Ao)ij + (A1)ijp
processes for the ELS approach, which is column- nL

independent; figure 3(b) summarizes the EMMP ap- + (A2)ijP 2 + Z(Ag+2)ij P
proach, which is column-dependent; and figure 3(c) _=1 P . be
summarizes the EMS process, which incorporates

two linear iteration loops within the nonlinear opti- Step_lb:
mization. Initially, in all three approaches, the form

Calculate the total objective functionof the RFA to be used, the columns (or column) over
which the optimization is to be performed, conver-

gence criteria, etc., are identified. The process is then J w_3 Eij
started by selecting an initial set of lag coefficients

{be}0 (or {bey}0) and design weights {wij }. The vec-

tors of coefficients {Am}ij whichminimize the linear Step 2: Select new set {b_j : be > 0} usinq thec

equality-constrained objective functions cij are then nonlinear optimizer.
determined for each element in the desired column

or columns of the matrix Q. The nonlinear objective Repeat steps 1 and 2 until an optimum solution
function J for the ELS and EMS approaches or Jj for for J is reached.
the EMMP approach is evaluated and a new set of

values for the design variables is determined by the 4.3.2. Extended modified matrix-Pade (column-
nonlinear optimizer. The best set of (Am)ij's are dependent) optimization process. This section outlines
then recomputed using matrix techniques. For the the steps in the overall optimization process for the
EMS approach, the overall process to determine the column-dependent EMMP approach. Figure 3(b) de-
b_ is the same as for the ELS approach except for the picts the optimization procedure for this EMMP ap-
iteration loop to determine the D and E which de- proach. The distinguishing difference between this
fines a converged minimum value for J with respect optimization process and the column-independent
to the current nonlinear parameters, case of section 4.3.1 is that the b! are no longer the

4.3.1. Extendedleast-squares(column-independenO same for all elements in the aerodynamic force ma-
optimization process. This section outlines the steps trix Q. In this column-dependent case, they depend
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a given column and are necessarily the same only In the minimum-state formulation, the numerator co-
for the elements of that column, rather than for efficients of the lag terms are the product elemelits
all the columns. This difference in formulation is of D and E, namely,
accomplished simply by a redefinition of the non-

linear objective function, which is now a column (Ae+2)ij = DieEej (For t_= 1, ..., N) (4.9)
objective function identified as Jj. The optimization
is now performed as a sequence of linear problems

over a specified column for a fixed set of bej which Therefore, there are essentially two sets of linearcoefficients in each minimum-state approximation,
are optimally selected by the nonlinear optimizer, and the minimum-state optimization is necessarily

Step 1: For a spec(fied set nLj and a set {bej : bej > a three-step process. First, an initial set {be}0 of el-
0}, perform linear optimization, ements for R and design weights {Wij } are selected

and the matrix D is set equal to an initializing ma-

Step la: trix whose rank is the minimum of nL and n_ +ng.
Step la in the optimization process is a linear con-

Determine all the (Am)ij and Aij , for each ele- strained least-squares optimization which determines
ment in column j of Q, which minimize each con- the best E, given D. Using this E in step lb, an-
strained least-squares error and satisfy specified other linear constrained least-squares optimization is
constraints: performed to determine A0, A1, A2, and a new D.

cicj -_ _n [Qij(ikn) - Qij(ikn)l 2 Thus steps la and lb express the separation of the
Mi j design variables for the two linear steps in the overallprocess for the minimum-state optimization. Step lc

2AT. [CT{Am}ij - co] computes the total approximation error J for the re-+
L J _dj

sults of steps la and lb. Steps la to lc are repeated
where until the overall objective function J converges using

the current set of be or hits an alternative stopping
Mij = mnaX{1,IQij(ikn)l 2} criterion, such as a maximum number of iterations.

Step 2 then uses the nonlinear optimizer to select
a new set of be. The entire process continues until

Qij(p) = (Ao)ij + (A1)ijP an optimal value for the overall objective function is
nLj reached.

+(A2)i p2+ (Ae.2)ijp3%_
e=l Step 1: For a specified set {be : be > 0}, perform

linear optimization.

Step lb: Step la:

Calculate the column objective function For j = 1, ..., n_ + ng (using the initial
or previously determined D), determine all the

_/E (Am)ij, Eej, and Aij , which minimize the con-
JJ = Vi WijEcj strained least-squares error _icj simultaneously,

for all i = 1, ..., n_ where

Step 2: Select new set {bej : bgj > O} usinq the Qij(p) = (Ao)ij + (A1)ijP

nonlinear optimizer, nL ( Diep. (A2)ij p2 E Eej (4.10a)
Repeat steps 1 and 2 until an optimum solution and e=l \p + be]

nLj for column j have been found.

Repeat entire process for each column j = 1,...,
n_ -_-rig. Ste__ lb:

For i = 1, ..., n_ (using previously determined
4.3.3. Extended minimum-state optimization pro- E), determine all the (Am)ij, Die, and Aij , which

cess. This section outlines the steps in the overall op- minimize the constrained least-squares error Q_.
timization process for the EMS approach (fig. 3(c)). simultaneously, for all j = 1, ..., n_ + ng where
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Qij(p) = (Ao)ij + (A1)ijp + (A2)ijP 2 be - Ue -2 L e sin \_ze]( _:r . Le .2 Ue (4.12a)
nL ( Eejp _

. _ Die \P . be] (4.10b) wheree=l

-1 ___ze < 1 (4.125)

Step_lc: As can be observed, the constraint boundaries are

Compute the total objective function mapped onto z ----±1. This transformation ensures
that the side constraints are always satisfied. How-

j 13_. z_" .. c ever, therestricti°ns°ntheze, definedby thein-
: Wz3_ij equality (4.12b), are not strictly enforced by the non-

linear optimizer. Consequently, an occasional oscilla-
tion problem between successive values of the design

Repeat Steps la-lc until J converges, using the cur- parameters arises because of the multivalued charac-
rent {be}. teristic of the transformation. Various methods could

be applied to avoid this problem; since it rarely oc-

Step 2: Select new set {be : be > O} usinq the curs, however, a penalty function formulation of the
nonlinear optimizer which reduces the total obiective nonlinear objective function (refs. 13, 14, 27, and 28)
function, J. is employed to enforce the side constraints when it

does.

Repeat steps 1 and 2 until an optimum solution for Two examples of available penalty functions are a
J is reached, wall function and the extended-interior penalty func-

tion. By wall, we mean that the function essentially
Figure 3(c) summarizes the overall process which in- hits a wall when constraints are violated. This tech-
cludes the dual-level linear optimizations for E, D, nique is implemented by defining the objective rune-
and the Am. The additional shaded area in fig- tion as very large relative to its normal range of
ure 3(c) indicates the logic required by the minimum- values. This has extreme discontinuities which can
state optimization process, sometimes cause convergence problems and usually

requires that an optimization process start within the
4.4. Side Constraintsfor Nonlinear feasibledesignspace.
Optimization The second type of penalty function, proposed by

Haftka and Starnes (ref. 27), is an extended-interior
Since the be (or bej) are allowed to vary, it is formulation. It places no initial restrictions and does

necessary to impose side constraints on them. These not inject discontinuities into the convergence pro-
lag coefficients must be greater than 0 in order to cess. This is normally the preferred type of penalty
ensure system stability as a result of introducing the function if convergence problems do arise from the
related aerodynamic states into the state equations, constraint violations since convergence in this case is
Also, it is frequently desired to restrict the range of smoother. The sinusoidal transformation and both
variation to that in the neighborhood of the range the wall and the extended-interior penalty function
of frequencies over which tabular data are available; approaches to constrain the nonlinear parameters
that is, have been used in the optimizations presented here.

o <_Le < be< Ue (For_ = 1, ..., nL) (4.11a) 5. Numerical Application to the DAST
ARW-2

or, for column-dependent optimization
The three formulations described in this paper

0 _<Le3. < be_ < Ue_. (For j = 1, ..., n5 + ng, were all applied to a mathematical model of the
DAST (Drones for Aerodynamic and Structural Test-

g : 1, ..., nLj ) ing) ARW-2 (Aeroelastic Research Wing Number 2)
(4.11b) aircraft. The ARW-2 vehicle was designed to have

These side constraints are enforced in one of two a maximum gross weight of approximately 2500 lb
ways. The first is by way of an inverse sinusoidal and a wing with a supercritical airfoil having a span
transformation of the design space [Le, Ue]defined by of 18.98 ft, an aspect ratio of 10.3, and a sweep an-
equation (4.11a) onto the real line segment [-1, +1] gle of 25° at the quarter-chord. The wing was pur-
(ref. 26). The relationship between the two line posely designed to require flutter suppression, ma-
segments is neuver load alleviation, gust load alleviation, and
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static stability augmentation in some regions of its Baseline-1 (B1): No equality constraints imposed,
flight envelope, no nonlinear optimization

a. 1 lag coefficient (6 states)
5.1. Description of Mathematical Model b. 2 lag coefficients (12 states)
A modal characterization of the ARW-2 was em- c. 3 lag coefficients (18 states)

ployed which was obtained from a free-free vibra- d. 4 lag coefficients (24 states)

tion analysis of the ARW-2. Twelve modes were re- Figure 5(a) shows the approximations with 4, 3,
tained for the symmetric degrees of freedom. These 2, and 1 lag term for a single (typical) aerodynamic
are plunge, pitch, and 10 symmetric elastic modes, element (lift due to the fourth elastic mode) with lag
Table 1 lists the natural frequencies associated with coefficients evenly spread over the reduced-frequencyeach of the in-vacuum elastic modes. For the results

range. The open circles are the actual tabular values,
presented here, seven modes were employed. They and the solid circles are the corresponding values of
were composed of 5 of the original 12 modes (-plunge, the approximation at the same values of frequency.
pitch, and elastic modes 1, 4, and 6), a rigid control The fits deteriorate with a reduction in the order of

surface rotation mode (stabilizer), and a sinusoidal fit. Other aerodynamic elements (not shown) indi-
gust mode. The deleted modes had little effect on cate a similar trend. For each of these unconstrained
flutter or rigid body stability and response charac- cases, the total approximation error J for all aero-
teristics. The actuator driving the control mode was dynamic elements is shown in figure 6.considered reversible.

A doublet lattice method (refs. 17 and 18) that is 5.2.2. Total approximation errors for constrained,
contained in the ISAC system (ref. 15) was used to unoptimized approximations. The second baseline
obtain tabular values of the generalized aerodynamic case again uses the ELS formulation for different
force coefficients at a Mach number of 0.86 for the numbers of lag coefficients in the approximation, but
following set of reduced frequencies: with the following equality constraints imposed:

{kn} = {0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1. The steady-state values (at k -- 0) are con-

0.6, 0.8, 1.0} strained to agree for all the coefficients:

and Wn = (2u/c)kn where c = 1.956 ft and Qij(O) =Qij(O) (For i= 1, ..., n_
u = 874.75 ft/sec for the cases studied. The panel- and j = 1, ..., n_ + ng)
ing of the lifting surfaces is shown in figure 4(a). The (5.1)
circles indicate points at which mode shape data are 2. The steady-state slopes (at k : 0) are con-
defined, strained for the force coefficients due to -plunge

Frequency responses of pitch due to control sur- (mode 1) and pitch (mode 2):
face rotation and e.g. acceleration due to control sur-

face rotation were calculated using ISAC and are pre- OQ,il(p) [ _ Qi2 (0) (On _0100624865_

sented later in this section to illustrate the accuracy Op [ p=O bOn
of the modeling. Figure 4(b) depicts the locations of (5.2)
the control surface (stabilizer) and the sensors (pitch-

rate gyro and e.g. accelerometer) used in these fre- 0Qi2(P) - Im[Qi2(ik2)] (5.3)
quency response analyses. Op p=O k2

5.2. Baseline Comparisons where assumptions are that kl = 0 and k2 is small.
3. For the aerodynamic force coefficients due to

As a way of introducing the effects on the RFA's the flexible modes, control mode and gust velocity
of (1) the number of lag terms and (2) the presence are all constrained to agree with interpolated tabular

or absence of constraints, some baseline comparisons data at the reduced frequency (ky = 0.127) near
are presented using the ELS formulation, flutter:

5.2.1. Total approximation errorsfor unconstrained, Qij(ikf) = Qij(ikf) (For i = 1, ... n_unoptimized approximations. The first baseline case
uses the ELS form for approximating the unsteady and j = 3, ..., n_ + ng)
aerodynamic forces; different numbers of lag coeffi- (5.4)
cients are used in the approximation, and no con- The rationale for constraint 2 is discussed in refer-
straints are imposed: ence 10 and for convenience to the reader is included
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in appendix B. Thus the second baseline case is as the number of lag coefficients used in the approxima-
follows: tions can be a critical factor in the analyses for which

these approximations are being determined.

Baseline-2 (B2): Equality constraints imposed, Table 2 lists the total approximation error J
no nonlinear optimization with respect to the aerodynamic dimension for both

a. 1 lag coefficient, constrained (6 states) baseline cases. The approximation error increases
with the imposed constraints by almost a factor of 11

b. 2 lag coefficients, constrained (12 states)
c. 3 lag coefficients, constrained (18 states) for the 6-state case, and a factor of 1.4 for the 24-state

case. Figure 6 is a plot of the data in table 2
d. 4 lag coefficients, constrained (24 states) and indicates more clearly that optimization of the

nonlinear coefficients is indeed desirable, especially
Figure 5(b) shows a constrained approximation when constraints are imposed. It is less necessary as

for the same element of Q as shown in figure 5(a), the aerodynamic dimension is increased.
but with constraints described as for equation (B2).

In each case the fit at and near k = 0 is very good 5.3. Optimized Comparisons
and each of the approximating curves also crosses the

interpolated curve at kf. The optimizations of the nonlinear coefficients
using the three rational function formulations de-

5.2.3. Comparison of constrained and uncon- scribed in this paper were performed with the equal-
strained results. Comparing figure 5(a) with 5(b) ity constraints imposed as in the baseline-2 cases,
shows that there is a significant difference between resulting in the following optimized cases to be
the unconstrained and constrained fits for higher fre- compared:

quencies, and the fits deteriorate drastically for the ELS: Equality constraints (eqs. (5.1)-(5.4))
constrained cases as the order of fit decreases. Both imposed
parts of figure 5 demonstrate that the approximating
curve can be improved by increasing the number of EMMP: Equality constraints imposed, the same
b& Although not shown, the fit can also be improved order of fit assumed for each column

by reducing the frequency range over which the fits EMMP/v: Equality constraints imposed, the num-
are required, but this reduces the robustness of the ber of denominator coefficients varied
approximation. Reduction in frequency range for a
column may be desirable if physical considerations for each column

dictate that the mode has negligible effect outside EMS: Equality constraints imposed
some frequency band. Figure 5 also indicates that

Cases Compared

ELS EMMP EMMP/v EMS

6 states (1 lag) 7 states (1 lag) 7-28 states 4 states (4 lags)
12 states (2 lags) 14 states (2 lags) (varying number 6 states (6 lags)
18 states (3 lags) 21 states (3 lags) of lags per 7 states (7 lags)
24 states (4 lags) 28 states (4 lags) column) 8 states (8 lags)

9 states (9 lags)
10 states (10 lags)

5.3.1. Total approximation errors for constrained, the fits only over the frequency range pertinent to
optimized approximations. Table 3 and figure 7 the problem being analyzed. The weighting factors
compare the three extended approximation methods in the error function for this example, however, were
solely in terms of J defined by equations (4.7), for chosen to be '1.0, and the fits were done over the
each of the optimized, constrained cases as a func- entire frequency range for all elements.
tion of the aerodynamic dimension. Typically, when Note that there are two columns in table 3
optimizing this error function having weighting fac- and two curves in figure 7 that correspond to the

tors wij , one would weight important elements more EMMP formulation. For the column and curve
heavily relative to less important ones and perform labeled "EMMP," each column has the same
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number nLj of lag coefficients b_j, whereas for the total approximation errors, and the ELS-24 has an

column and curve labeled "EMMP/v," nLj differs error which is closest in value to the other two.

between columns. The EMMP/v case, which em- Cases where one aerodynamic element is difficult
ploys the full flexibility of the matrix-Pad_ approx- to fit but too important to weigh less than the others
imation approach, is superior to the EMMP case can occur. This can complicate the process of obtain-
where nLj is the same for all columns. As expected, ing satisfactory RFA's by disproportionally influenc-
the ELS method, which is required to have the same ing the selection of the nonlinear parameters, and for
be for each element, has larger approximation er- the minimum-state, even the linear parameters. This
ror, although slight in this case, than either of the is illustrated in the next section.
EMMP approaches for a given aerodynamic dimen-

5.3.2. Comparison of fits for selected GAF ele-sion, and the EMS approach achieves the lowest er-
ments. Figure 8 shows the lift and pitching momentror of all for a given aerodynamic dimension. One
due to each of the seven modes selected for these

can see by comparing figure 6 with figure 7 or by studies (-plunge, pitch, three elastic modes, controllooking at table 3 that for each formulation, the to-
surface rotation, and sinusoidal gust). In figure 8,

tal error is improved over the corresponding base-
the short-dashed lines are interpolated fits throughline case. Figure 7 also shows that for each for-

mulation, the errors decrease as the aerodynamic the tabular data, indicated by circles, and represent
dimension increases, but for sufficiently large aero- the "truth model." The other lines are the approxi-
dynamic dimension, the difference in error between mating rational functions, and the solid symbols cor-

respond to the values of the approximating functions
the approaches becomes insignificant. This is espe- at the same frequencies as the tabular data. As can
cially true of the ELS and EMMP approaches, be seen from these samples, some of the elements

Another result, which corroborates findings of are much harder to fit than others. Since the selec-
reference 7, can be seen by comparing, for each tion of the be is based on the approximation errors
formulation, the aerodynamic dimension required to for all elements, the ELS and EMS approaches are
achieve a given level of error. It is shown in figure 7 more sensitive to the hard-to-fit elements than the
and table 3 that the fit errors for the minimum- EMMP approach. The hard-to-fit elements affect the

state formulation for low aerodynamic dimensions selection of b_j only for a particular column in theare comparable to the fit errors for the EMMP and
ELS formulations at significantly higher aerodynamic EMMP approach. The EMS is the most sensitive
dimensions. For example, the 7-state EMS error since the numerator coefficients for the lag terms are
falls right between the 12-state ELS error and the coupled to all the columns through the matrices D
14-state EMMP error, and the 10-state EMS error and E. The driving element, shown in figure 8(n), for

the approximations being compared is the pitchingis approximately equal to the EMMP/v-17 error and
only about 12 percent higher than the 24-state ELS moment due to gust. For the set of constraints se-
error, lected, the EMS actually gives the best fit for this

element in the low frequency range, but in doing so,
The ranking from left to right of the four curves the fits for the other elements are severely degraded.

in order of total error for a given aerodynamic Table 4 also demonstrates this phenomenon. Bydimension seen in figure 7 will hold in general, but
the relative spacing between curves will be problem comparing the first three columns showing the col-

umn error Jj for each of these three cases (ELS-24,
dependent. In general, the ELS would tend to lie EMMP-21, and EMS-10), it can be seen that thefurther to the right of the EMMP curves. The total
approximation error, however, is only one measure of EMS-10 case actually obtains the least error for the
the goodness of the RFA's. The approximations for gust column (column 7), but it does so at the expense

of all the other columns. Results of the EMMP/v-17individual elements must also be examined. Three of
the optimized cases, namely, case (only one lag coefficient for column 2, two lag

coefficients for columns 3, 5, and 6, three lag coeffi-

ELS with 4 lag coefficients, 24 states (ELS-24) cients for columns 1 and 4, and four lag coefficients
for the gust column) are shown in the fourth col-

EMMP with 3 lag coefficients per column, umn of table 4 and in figure 9. Comparing these
21 states (EMMP-21) with the EMMP-21 case with three lags per column

EMS with 10 lag coefficients and 10 states shows slightly worse fits for the forces due to pitch
(EMS-10) and elastic modes 1 and 6 and the control mode,

which have fewer lag coefficients, the same for those
were selected for further comparisons since the due to plunge and elastic mode 4, which have the
EMMP-21 and the EMS-10 have nearly the same same lag coefficients, but are better for those due to
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gust, which has one more lag coefficient. The over- functions. Figure 11 shows the pitch frequency
all error is improved by 7 percent with a reduction response function and figure 12 shows the c.g. acceler-
in aerodynamic dimension of 19 percent. This can ation response due to control deflection for a selected
be explained by the fact that fewer lag coefficients flight condition. Shown on each figure are a baseline
are being used for the easier-to-fit elements in order case for which no aerodynamic force approximations
to reduce the aerodynamic dimension without signif- using rational functions are employed, ELS-24, which
icantly affecting the total approximation error. The had the least total error of the three p-plane approx-
additional lag used for the forces due to gust helps to imation cases, and EMMP-21 and EMS-10, both of
significantly reduce the error in fit for these with only which had nearly the same value for the total approx-
one additional state. Again, however, the gust col- imation error. There is good agreement between the
umn even in these cases (EMMP-21 and EMMP/v- frequency responses for all three cases, but the ELS
17) is driving the total approximation error. Note is not the best, contrary to what might be expected.

also the fits overall for the EMMP/v-17 are about There may be several solutions for the be which
as good as the EMS-10 fits as indicated by the fact will give similar total approximation errors. As
that the total errors (2.409 and 2.420, respectively, implied by the results in figures 11 and 12, it may be
in table 3) are nearly the same. desirable to consider other measures of how good the

By relaxing the constraints on the gust column approximations are than just the total approximation
so that the elements are not constrained to fit at the error itself. The accuracy of key frequency response
flutter frequency, the curves for the other elements functions for various fits is another way to assess the
can be improved considerably. Since the EMS-10 was adequacy of candidate p-plane approximations.
the most sensitive to this constraint, optimizations In summary, these results illustrate some of the
were performed for this approach with the flutter factors that should be considered and indicate that
constraint removed for the gust column as well as the considerable engineering judgment may be required
control column. The results are shown in figure 10. to obtain both sufficiently accurate RFA's and low
In general, the approximations shown are markedly aerodynamic dimension.
improved. Removal of the constraint to match gener-
alized aerodynamic forces at the flutter frequency for
these two columns is reasonable since the stabilizer 5.4. Hidden Costs and Related Problems

will be applied only to control low-frequency rigid
body motion; and for points removed from flutter, The advantage of optimizing the nonlinear coef-
loads due to gust have most of their power concen- ficients in each of the formulations presented in or-
trated within the rigid body frequency region. In der to reduce errors for a specified aerodynamic di-
fact, one could also reduce the frequency range of mension is clear. The ability to significantly reduce
interest, provided that at least as many equations the aerodynamic dimension itself using the formula-
are retained as there are independent variables. For tion of reference 8 is especially promising. However,
the higher order EMS cases, however, this reduction these advantages do not come without cost. A hidden
in frequency range adversely affects the least-squares cost here, of course, is the increased computer cost
linear solution, needed to perform the optimizations. The computer

costs in the cases compared here are approximately
5.3.3. Comparison of selected frequency responses, as follows:

Other measures of goodness of fit, such as frequency
responses, may also be used to demonstrate the ad- ELS = 20 times baseline cost
equacy of candidate p-plane approximations. To
illustrate the effects of the three RFA's on "final an- EMMP = 80 to 100 times baseline cost

swers" (i.e., solutions of the aeroelastic equations of
motion), each of the three RFA's were implemented EMMP/v = 700 to 1000 times baseline cost
in the aeroelastic equations of motion. Pitch and c.g.

EMS -- 2500 to 3000 times baseline costacceleration frequency response functions due to con-
trol deflection were computed for the following flight
condition: These costs may ultimately be Offset because the

resulting matrices used later in aeroelastic and aero-
Mach number -- 0.86 servoelastic analyses are smaller.
Velocity, u -- 874.75 ft/sec
Dynamic pressure, q -- 411.5 lb/ft 2 Another hidden cost, in the minimum-state opti-

mization process, is an increased likelihood of compu-
Figures 11 and 12 contain these frequency response tational limitations associated with the EMS due to
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the size of the constrained least-squares linear system motion in linear time-invariant form can be signif-
of equations to solve. These limitations can cause icantly reduced from the number required by the
convergence problems in the dual linear optimization conventional constrained least-squares approach. In
used to calculate the total error, which lead to prob- fact, the EMMP approach and the EMS approach
lems within the nonlinear optimization since the ap- resulted, respectively, in 24 percent and 67 percent
proximation error J has not converged. This did not fewer aerodynamic states than a corresponding base-
occur, however, for the cases presented, line constrained least-squares approach having a sim-

The desirability of enforcing constraints is based ilar total approximation error in which nonlinear pa-
on the physical aspects of the problem being consid- rameters were selected a priori. Increases in com-
ered. In most instances, flexibility in selecting con- puter costs as a result of the optimizations performed
straints results in more realistic models and more for ELS, EMMP, and EMS were approximately 20,
reliable analyses. Since the larger costs for the 700, and 2500 times the cost of the unoptimized base-
minimum-state formulations are due primarily to line approach. In summary, it has been shown that

the internal iterations in the dual linear optimiza- 1. Optimization of the nonlinear parameters
tions, fixing the constraints for all elements as Karpel improves the approximations in all three
(ref. 8) did would reduce some of these costs. He en- formulations.

forced the same three constraints for all columns, and 2. Use of the full flexibility in the modified matrix-
using these constraint equations, he solved for the Pad6 formulation (i.e., variable number of lag
matrices Ao, A1, and A2 explicitly, thereby reduc- terms per column) significantly reduces the aero-
ing the number of unknowns in the linear optimiza- dynamic dimension of the state-space equations
tion. Use of a similar technique on a per-column basis of motion from that required when each column
to include some of the selected equality constraints has the same number of lag terms.
provides a mechanism to reduce the number of un- 3. For similar total approximation errors, the aero-
knowns in the linear optimization while retaining the dynamic dimension for EMMP is less than that
advantages of being able to select desired constraints, for ELS. However, if control surface actuators can

6. ConcludingRemarks be approximated as irreversible rather than re-
versible, the aerodynamic dimension for ELS de-

Three currently used formulations (namely, a con- creases and the difference between the two is less.
ventional "least-squares" (LS), a modified matrix- 4. The minimum-state formulation shows great
Pad_ (MMP), and a "minimum-state" (MS)) for promise in allowing a signifcant reduction in the
approximating unsteady aerodynamic forces in the aerodynamic dimension of the state-space equa-
equations of motion of a flexible aircraft with rational tions of motion. The approximation errors for
functions in the Laplace domain are reviewed. Op- the minimum-state formulation for low aerody-
timization schemes have been applied to determine namic dimensions are comparable to those for the
the parameters in each formulation. Furthermore, other two formulations with higher aerodynamic
a number of selectable constraints on the approxi- dimension.

mating functions have been included. This paper ex- Regardless of the formulation used, to obtain suf-
tends the modified matrix-Pad_ and minimum-state ficiently accurate rational function approximations
approximation methods to the same level of con- with low aerodynamic dimension, optimization has to
straint selection and uses the same nonlinear op- be coupled with engineering judgment to determine
timization techniques as the extended least-squares the relative importance of individual aerodynamic
method previously developed by the authors. The elements, critical frequency ranges, and appropriate
three extended methods (ELS, EMMP, and EMS) constraints to impose.
were applied to an aeroservoelastic research model to

provide comparative evaluations. Results from the NASA Langley Research Center
applications show that the number of aerodynamic Hampton, Virginia 23665-5225
states employed in representing the equations of March 10, 1988
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Appendix A them do provide some measure, although somewhat

Nonlinear, Nongradient Optimizer obscure, of sensitivity at convergence. At this point,
the gradient could be computed if desired.

A.1. Sequential Simplex The basic mathematical justification of conver-
The algorithm used to perform the nonlinear op- gence for this algorithm is based only on the conver-

timization in all the RFA formulations presented gence of a monotonically decreasing series. Although
in this paper is a sequential simplex (or polytope) its order of convergence depends on the function be-
method developed by Nelder and Mead (refs. 12-14). ing optimized, it has been found to converge rapidly
It has been used in control system design for flex- in numerical applications.
ible aircraft with active controls (refs. 20 and 21),

along with gradient methods such as the CONMIN A.2. Description of Algorithm
feasible direction method (ref. 22), the Davidon-
Fletcher-Powell variable metric (refs. 23 and 24) , and Figure 13 depicts the algorithm for a two-
the newer Davidon optimally conditioned method dimensional design space. The algorithm starts with
(ref. 29). a simplex of points in the design space (AABC). The

The nongradient Nelder-Mead sequential simplex objective function is evaluated at each vertex in the
algorithm is reliable and efficient. The method is simplex and the highest valued point is identified (A).
simple to use and robust in its ability to handle the A line of projection through the centroid of the oppo-
nonlinear optimization problem to which it has been site side (namely, the other n vertices) is determined
applied. Its adaptive nature in moving away from and the objective function is then evaluated at the
"high" points requires minimal effort on the part of reflected point (E) on the projection line. Depend-
the user to "fine tune" the problem. It is a more sta- ing on the relative ,_alue of the function at this point
ble and robust algorithm, numerically, than some of and the other points in the simplex, a single exten-
the gradient-based algorithms to which it has been sion (F), a retention (E), an exterior contraction (H),
compared. Since computation of gradients using fi- or an interior contraction point (G) is then identified
nite differencing can be costly in large applications at which the objective function is evaluated and a
programs for which closed-form gradients are either new simplex is determined. The actual decision pro-
not available or not practical, this nongradient al- cess is detailed in references 12-14, although the code
gorithm has proven to be invaluable. It lacks the as listed (ref. 13) deviates from the decision process
initial sensitivities of gradient-based methods. But, as described in the reference with respect to those
the final two low values and the step size between steps taken when equalities hold.
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Appendix B Taking the Fourier transform,

Rigid Body Slope Constraint
Linear relationships exist between certain rune- zz(k') = 6(k'-k)

tions of some generalized force elements at steady zo(k' ) =-(x- Xcg)OnS(k'-k)

state (k = 0) which can be included as constraints W@(k') 5(k' k) (B4)on the rational function approximations;see refer- _ = -

ence 10. An example is illustrated here for the WO(kt) = zo(k _) -OnS(k _- k)-plunge and pitch modes. As indicated previously u
(eq. (2.4)) the generalized forces in the reduced-

frequency domain are Substituting these into equation (B2) yields the un-
steady aerodynamic forces in the reduced-frequency

Qij(s) =// APJ(x'y'S)zi(x,y ) dS (B1) domain:q
S

which can also be expressed as Qil(k)=/zi(x'Y)[/_-l(x'Y'x"Y"k)i--kbdS']dS

where _ is an influence function that defines the Oik

downwash at (x_,y_) due to a unit pressure distur-
bance at (x, y). The deflections (Zz, zo) and normal- Also,
ized downwash (Wz,Wo) for the -plunge and pitch
modes oscillating at frequency w, can be expressed f

in terms of the mode shapes (Zl, Z2) and their slopes, Qi2(k) = J zi(x, y)
respectively, as follows:

X [/E--I(x,y,x',Y',k) (_-_ff zo--On) dS'l dS

-plunge (mode 1)

Zz = zx_l = e(i_t) = e(iu/b)kt Hence,

u u = T zz Qi2(O) =-On zi(x,y) r:-l(x,y,x',y',O) dS' dS

pitch (mode 2) Therefore,
(B3)

zo = z252 = -(x - Xcgj_Onei_t OQil(k)oikk=O = bTnQi2(0)
= --(X -- Xcg)One (iu/b)kt

wo iWzo _ Ondi_t A similar relationship exists between lateral displace-
u - u ment and sideslip or yaw. Explicit enforcement of

ik these constraints improves the prediction of the low-
: b zO -- One(iu/b)kt frequency characteristic roots.
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Symbols Hj state-space matrix multiplier of states
in phase-canonical state-space real-

(Ao)ij, coefficients used in RFA for an ization of hi(P) which defines the cor-
(A1)ij, ... element of matrix Q (see eq. (2.6)) responding augmenting aerodynamic
A0, A1, ... matrix of coefficients used in RFA's for state vector Xaj (see eqs. (3.13))

matrix Q (see eq. (3.1)) I identity matrix whose dimension

{Am}ij column vector of coemcients depends on equation in which it
A0, A1, ... for the (i,j)th element of resides

Q (see eq. (4.3)) i complex variable,

be,bej constant coefficient in _th denominator J total approximation error in approxi-
of partial fraction expansion of RFA mations for all elements of Q; specif-

for element Qij(p), of matrix Q(p); ically, weighted sum of square errors
the partial fraction term in the RFA in approximations to elements of Q as
containing this coefficient is commonly a function of lag coefficients currently
referred to as an "aerodynamic lag" being used for approximations (see
term and the be as "aerodynamic lag" eq. (4.7b))
coeffÉcients or simply, "lag" coefficients
(see eqs. (2.6) and (3.11)) Jj total approximation error in approx-imations for all elements in jth col-

c mean aerodynamic chord; reference umn of Q; specifically, weighted sum
length is c/2 of square errors in approximations to

elements in jth column of Q as a func-
c.g. center of gravity tion of lag coefficients currently being

used for that column (see eq. (4.7a))
C T matrix multiplier of coeËficients used

in defining linear equality constraints k nondimensionalized reduced frequency,
for jth column of Q (see eq. (4.3)) wc/2u

0 matrix of constants used in defining kf reduced frequency corresponding toCij
linear equality constraints for column flutter

of Q (see eq. (4.3)) kn reduced frequency at which general-

D pre-multiplier numerator matrix ized forces are computed
for minimum-state formulation (see K generalized stiffness matrix used in
eqs. (3.17) and (3.24)) the Lagrangian formulation of the

equations of motion (see eqs. (2.2)
E post-multiplier numerator matrix

and (2.3))
for minimum-state formulation (see
eqs. (3.17) and (3.24)) M generalized mass matrix used in

the Lagrangian formulation of the
F matrix of generalized aerodynamic equations of motion (see eqs. (2.2)

forces due to aircraft and control and (2.3))
surface motions and due to gusts (see
eq. (2.2)) Mij factor used to normalize element

error for nonlinear optimization (see
FHM n_ X n5 matrix of modal coefficients eq. (4.1b))

converting hinge-moment outputs to
generalized forces (see eq. (2.3)) N number of lag terms and the aerody-namic dimension in the minimum-

G matrix of damping coeËficients used state formulation
in Lagrangian formulation of the
equations of motion (see eq. (2.2)) na aerodynamic dimension

ncj number of constraint equations for
hj (p) denominator polynomial for jth RFA of elements in jth column of Q

modified matrix-Pad_ rational function (see eq. (4.5b))
approximation (see eqs. (3.12))

ng number of gust modes retained in
him ruth coefficient of hi(P) (see eqs. (3.13)) equations of motion
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nL number of lag terms (equivalent to wij weight applied to the approximation
number of partial fractions and the error for the (i, j)th element of Q
order of the overall denominator in determining the total error J or

polynomial) in least-squares RFA (see column error Jj (see eqs. (4.7))

eqs. (2.6) and (3.1)) Wy matrix of polynomial coefficients as

nLj number of lag terms in matrix-Pad6 defined by equations (3.12), along with
RFA's for jth column of aerodynamic equation (3.14) used in matrix-Pad5
forces (see eq. (3.11)) RFA formulation corresponding to jth

column of Q
nS number of actuators

x x-coordinate in spacial coordinate
n6r number of irreversible actuators system

n_ number of modes retained in the
equations of motion to define the Xa aerodynamic state vector in aug-mented LTI state-space equations (see

motion of the vehicle, including eqs. (3.4), (3.13), and (3.20))control modes

n_ number of modes retained in the Y y-coordinate in spacial coordinate
equations of motion to define the system
motion of the vehicle, excluding z, z(x, y, t) z-coordinate in spacial coordinate
the control modes corresponding to system representing the deflection at
irreversible actuators a point (x, y) at a given time t (see

p nondimensionalized Laplace variable, eq. (2.1))
(c/2u)s zi, zi(x,y) time independent mode shape compo-

nent of deflection z (see eq. (2.1))
q dynamic pressure

Q matrix of generalized force coefficients ag nondimensional gust velocities,
in Laplace domain (see eq. (2.4)) [Wg/U Vg/U] T

(_ matrix of rational function approxima- APj(x, y, s) change in the lifting pressure dueto changes in the jth generalized
tions to elements of Q (see eq. (2.7)) coordinate at a point (x, y) on the

R diagonal matrix of denominator lifting surface (see eq. (2.4))
coefficients used in the minimum-
state formulation of the RFA's (see Qy(ikn) approximation error between thetabular value and the approximation
eqs. (3.17)-(3.24)) value of a generalized force at p -- ikn

s complex Laplace variable (see fig. 1)

S total lifting surface of the aircraft (see Eij unconstrained least-square error in
eq. (2.4)) fitting an element Qij of Q as given

t time variable by equation (4.1a)

THM vector of hinge moments output by the Qcy constrained approximation error (inthe Lagrangian formulation of the

actuator (see eq. (2.3)) error) for Qiy of Q as defined by
u refercnce velocity equation (4.4)

Vj state-space matrix multiplier of r/ vector of Laplace transformed time
inputs in phase-canonical state- derivatives of generalized coordi-
space realization of hi(P) which nates and gust inputs, as defined in
defines the corresponding augmenting equation (3.4)
aerodynamic state vector Xaj (see

eqs. (3.13)) _?_ vector of inputs in state-space realiza-tion of least-squares RFA formulation,

Wg,Vg vertical and lateral gust velocities as defined in equation (3.4)
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2ij vector of size ncj of Lagrangian mul- o initial value
tipliers in the Lagrangian formula- 5 related to controls
tion of the constrained objective func-
tion for the (i,j)th element of Q (see _ related to generalized coordinates
eqs. (4.4,))

Notation:
w frequency of oscillation

On normalizing angle in definition of rigid [.]T transpose of a matrix [.]
body pitch mode shape (see eq. (5.2) {.} column vector

and appendix B) - bar over a function or matrix indicates

_i(t) generalized coordinate representing that it corresponds to the dimensional
the amplitnde of the corresponding ith Laplace s, rather than the non-
component mode shape in the total dimensional p

deflection as a function of time (see Acronyms:

eq. (2.1)) ELS extended least-squares
_, _, _ vector of generalized coordinates and EMMP extended modified matrix-Pad_its first two time derivatives used in

Lagrangian formulation of equations of EMMP/v extended modified matrix-Pad_ with
motion (see eq. (2.2)) varying number of denominator

coefficients per column
_(s) vector of generalized coordinates in

Laplace domain (see eq. (2.3)) EMS extended minimum-state

GAF generalized aerodynamic force_P vector of generalized coordinates ex-
cluding control deflections correspond- ISAC interaction structures, aerodynamics,
ing to irreversible actuators and controls

Subscripts: LS least-squares

g related to gusts LTI linear time invariant

i ith row of matrix Q MMP modified matrix-Pad_

j jth column of matrix Q MS minimum-state

g gth partial fraction in RFA RFA rational function approximation
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Table 1. Natural Frequencies of Free-Free
Symmetric Elastic Modes for ARW-2

Elastic mode
number Frequency, Hz

1 7.85
2 14.21
3 21.72
4 30.27
5 33.28
6 41.10
7 47.01
8 63.06
9 67.22

10 78.24

Table 2. Baseline (Unoptimized) Approximation Errors
in Aerodynamic Approximations

Aerodynamic Baseline-I, Baseline-2,
dimension ju (a) j c(b) j c/ ju

6 4.75 51.88 10.92
12 3.54 7.36 2.08
18 2.58 5.90 2.29
24 1.87 2.59 1.39

aUnconstrained approximation error:

bConstrained approximation error:

with constraints given by equations (5.1) (steady state), (5.2) and (5.3) (rigid body
slopes), and (5.4) (elastic modes near flutter). Capability for explicit inclusion of
constraints was not utilized.
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Table 3. Optimized, Constrained Approximation Errors in Aerodynamic Approximations

Aerodynamic Baseline-2, ELS EMMP EMMP/v EMS
dimension jc (a ) jc jc jc jc

4 9.849
5
6 51.883 22.57 4.796
7 16.238 16.238 4.425
8 11.620 3.442
9 9.069 2.933

10 5.760 2.420
11 5.056
12 7.362 4.943 4.545
13 4.151
14 4.124 3.738
15 3.302
16 2.849
17 2.409
18 5.900 3.341 2.142
19 2.015
20 1.924
21 2.589 1.833
22 1.771
23 1.642
24 2.591 2.166 1.573
25 1.517
26 1.428
27 1.397
28 1.828 1.376

aConstrained approximation error:

with constraints given by equations (5.1) (steady state), (5.2) and (5.3) (rigid body slopes), and (5.4)
(elastic modes near flutter). Capability for explicit inclusion of constraints was not utilized.

Table 4. Column Error

Column ELS-24 EMMP-21 EMS-10 EMMP/v-17
-plunge 1 0.727 0.688 0.856 0.688
pitch 2 .385 .328 .415 .879
elastic mode 1 3 .204 .248 .398 .633
elastic mode 4 4 .504 .540 .641 .540
elastic mode 6 5 .348 .233 .399 .643
stabilizer 6 .970 .585 1.300 .932

gust 7 1.630 2.318 1.589 1.601
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kn Real Imaginary

Unsteady 0.0 ....
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-10 [ [ ] [ ] error

5 10 15 20 25 30 _ij(ikn )
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Figure 1. Approximation of aerodynamic data for oscillatory motion by function defined in complex Laplace
p-plane.
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(a) Unconstrained.

Figure 2. Approximation,with and withoutconstraints,of aerodynamicdata for oscillatorymotionbyfunction
definedin complex Laplace p-plane.
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(b) Constrained (at k = 0).

Figure 2. Concluded.

33



Set design ( Start )
specifications J_

• Order of fit _. •
• Convergence

criteria
• Constraints

+

Select initial I{b21o

.................. ..................

: : : ::::::: ..........................................................................................................................................
"^_^^^ ::: Constrained Nonlinear :_::
:^:^:^ Minimization ::::::: Minimization

_ _ ^ _

_^_^^z^^_^_'^_::_^_^_^^^^^_^^z Determine new

::: Determine all {b_}

(Am) ij

which meet
equality

constraints
Evaluate nonlinear

objective, jc

'...^ ..^ ..^.. ^_.^_.^ ^ ^_._ _^_ _._ ^ _^ _._ _.^... ,̂.^...^...^

Yes

Stop No

(a) Extended least-squares (ELS), column-independent formulation.

Figure 3. Flow of optimization procedures for extended approximation methods.
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(b) Extended modified matrix-Pad_ (EMMP), column-dependent formulation.

Figure 3. Continued.
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No

(c) Extended minimum-state (EMS) formulation.

Figure 3. Concluded.
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(a) Paneling of lifting surfaces for unsteady generalized aerodynamic force calculations.

c.g. accelerometer _ ///,7

ger

Pitch-rate gyro

(b) Location of sensors and control.

Figure 4. Aerodynamic paneling and locations of sensors and control for DAST ARW-2 used in frequency
response analyses.
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Figure 5. Unoptimized (baseline) least-squares approximations for lift due to fourth elastic mode using lag
coefficients chosen a priori.

88



6O

5O

4o(_

=
0

o1,._

E 30 • Unconstrained.p.._

[] Constrained

c_
20

0
[.-.

10

0
6 12 18 24

Aerodynamic dimension

Figure 6. Unoptimized (baseline) least-squares total approximation errors for unconstrained and constrained
approximations.
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Figure 8. RFA plots for selected, optimized ELS, EMMP, and EMS approximations.
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Figure 9. RFA plots for selected, optimized EMMP approximations for the 17-state case (EMMP/v-17).
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Figure 10. RFA plots for selected, optimized EMS approximations for the 10-state case in which flutter
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Figure 11. Comparison of pitch frequency response due to stabilizer defleetion.
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