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ABSTRACT

The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocap-
ture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance
algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty esti-
mates provided by the navigation system. The navigation system utilizes a Kalman filter for state
vector estimation, with useful Update information obtained through radar altimeter measurements
and density altitude "measurements" based on IMU-measured drag acceleration. A three-phase
guidance algorithm, featuring constant bank angle numeric predictor/corrector atmospheric cap-
ture and exit phases and an extended constant altitude cruise phase, is developed to provide con-
trolled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control.

Integrated navigation and guidance systems performance are analyzed using a four degree-of-
freedom computer simulation. The simulation environment includes an atmospheric density
model with spatially correlated perturbations to provide realistic variations over the vehicle trajec-
tory. Navigation fdter initial conditions for the analysis are based on planetary approach optical
navigation study results. Results from a selection of test cases are presented to give insight into
systems performance.

Thesis Supervisor: Dr. Richard H. Battin

Title: Adjunct Professor of Aeronautics and Astronautics

Technical Supervisor: Timothy J. Brand

Title: Division Leader, The Charles Stark Draper
Laboratory, Inc.



•_ ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to all those who have helped to

make this thesis possible and my graduate studies at M.I.T. and Draper Laboratory so rewarding.

To my technical supervisor, Tim Brand, for providing the opportunity for graduate work at

Draper and for his guidance of the research and writing of this thesis.

To my thesis advisor, Dr. Richard H. Battin, for his assistance in the preparation of this the-

sis and his teaching in the field of astrodynamics.

To Gene Muller, for his invaluable assistance in the design and interpretation of the naviga-
t

tion filter.

To the other members of the technical staff in the Guidance and Navigation Analysis Divi-

sion, especially John Higgins, Frank Kreimendahl, Kevin Mahar, Bill Robertson, and Ken Sprat-

lin, for their technical advice and support.

To my parents, whose unending love, support, and sacrifice have smoothed out many a

bumpy road along the way.

Finally, to Cindy, for the love, encouragement, and faith which she has so freely shared.



Thisreportwaspreparedat TheCharlesStarkDraperLaboratory,Inc. underNASACon-

tractNAS9-17560.

Publicationof this reportdoesnot constituteapprovalby the DraperLaboratoryor the

sponsoringagencyof the fmdingsor conclusionscontainedherein. It is publishedfor the

exchangeandstimulationof ideas.

I herebyassignmy copyrightof this thesisto TheCharlesStarkDraperLaboratory,Inc.,

Cambridge,Massachusetts.

ff5J_'2..,_./) r, ,_._ ,,...,1
f /

/

Douglas P. Fuhry/
/

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to the Massa-

chusetts Institute of Technology to reproduce any or all of this thesis.

4



TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION .................................................. 23

1.1 MARS ROVER SAMPLE RETURN MISSION ....................... 23

1.2 MOTIVATION ................................................ 24

1.2.1 NAVIGATION .............................................. 27

1.2.2 GUIDANCE ............................................... 28

1.2.2.1 INTRODUCTION ....................................... 28

1.2.2.2 PREVIOUS RESEARCH .................................. 29

1.2.2.3 PROPOSED ALGORITHM ................................ 30

1.3 THESIS OVERVIEW ........................................... 33

2. NAVIGATION SYSTEM DESIGN ..................................... 35

2.1 INTRODUCTION ............................................. 35

2.2 INERTIAL MEASUREMENT UNIT ............................... 35

2.3 RADAR ALTIMETER .......................................... 38

2.4 ESTIMATOR DESIGN .......................................... 39

2.4.1 KALMAN FILTER EQUATIONS .............................. 39

2.4.2 DYNAMICS MODELS ....................................... 42

2.4.2.1 STATE VECTOR PROPAGATION .......................... 42

2.4.2.2 COVARIANCE MATRIX PROPAGATION ................... 44

2.4.3 MEASUREMENT MODELS .................................. 47

2.4.3.1 DENSITY ALTITUDE MEASUREMENT ..................... 47

2.4.3.2 RADAR ALTIMETER MEASUREMENT ..................... 49

3. GUIDANCE DESIGN ............................................... 51

3.1 INTRODUCTION ............................................. 51



3.2 ATMOSPHERICCAPTUREPHASE ............................... 52

3.2.1 TARGETCRUISEALTITUDE ................................ 52

3.2.2 GUIDANCE DESCRIPTION .................................. 53

3.2.2.1 PREDICTION ALGORITHM .............................. 55

3.2.2.2 CORRECTION ALGORITHM .............................. 57

3.3 CONSTANT ALTITUDE CRUISE PHASE .......................... 59

3.4 EXIT PHASE ................................................. 61

3.4.1 GUIDANCE TARGET SELECTION ............................ 61

3.4.2 GUIDANCE DESCRIPTION ............................... .... 62

3.4.2.1 PREDICTION ALGORITHM .............................. 63

3.4.2.2 CORRECTION ALGORITHM .............................. 63

3.5 ORBIT PLANE CONTROL ...................................... 65

4. COMPUTER SIMULATION PROGRAM ................................ 69

4.1 INTRODUCTION ............................................. 69

4.2 SIMULATOR PROGRAM FUNCTIONAL DESCRIPTION ............. 69

4.3 ENVIRONMENT MODELS ...................................... 72

4.3.1 PLANET MODEL .......................................... 72

4.3.2 ATMOSPHERIC DENSITY MODEL ............................ 72

4.4 VEHICLE MODELS ............................................ 76

4.4.1 EQUATIONS OF MOTION ................................... 76

4.4.2 AERODYNAMIC HEATING .................................. 77

5. PERFORMANCE RESULTS .......................................... 79

5.1 INTRODUCTION ............................................. 79

5.2 NOMINAL AEROCAPTURE TRAJECTORY ........................ 79

5.3 NAVIGATION SYSTEM PERFORMANCE ......................... 81

5.3.1 ESTIMATOR INITIAL CONDITIONS .......................... 81



5.3.2 ERRORDEFINITIONAND INITIALIZATION ................... 90

5.3.3 NAVIGATIONTESTCASES.................................. 91

5.3.3.1 + 100%CONSTANTDENSITYBIASCASES.................. 91

5.3.3.2 DENSITYSHEARCASES................................ 113

5.4 COMBINEDGUIDANCEANDNAVIGATIONSYSTEMSPERFORM-

ANCE ......................................................... 138

5.4.1 INTRODUCTION ......................................... 138

5.4.2 PRESENTATIONOF RESULTS.............................. 138

5.4.3 CONSTANTDENSITYBIASCASES .......................... 140

5.4.3.1DETAILEDDESCRIPTION:CASE# 031000D,+ 100%DENSITY 141

5.4.4 DENSITYSHEARCASES ................................... 158

5.4.4.1DETAILEDDESCRIPTION:CASE# 288500D................ 159

6. CONCLUSION ................................................... 193

Appendix Page

A. DERIVATION OF DENSITY ALTITUDE MEASUREMENT EQUATIONS .... 197

B. DERIVATION OF ORBIT INSERTION AV EQUATIONS .................. 199

List of References ...................................................... 203



LISTOF ILLUSTRATIONS

Figure Page

1-1.

1-2.

3-1.

3-2.

3-3.

4-1.

4-2.

5-1.

5-2.

5-3.

5-4.

5-5.

5-6.

5-7.

5-8.

5-9.

5-10.

5-11.

5-12.

5-13.

5-14.

5-15.

5-16.

Nominal Aerocapture:

Nominal Aerocapture:

Nominal Aerocapture:

Nominal Aerocapture:

Nominal Aerocapture:

Nominal Aerocapture:

MRSR Mission Scenario ........................................... 25

Potential Biconic Aerocapture Vehicle Configuration ....................... 30

Bank Angle Control Defmition ....................................... 52

Aerocapture Altitude Corridor ........................................ 54

Velocity Error Control Corridor ...................................... 67

Simulator Program Functional Diagram ................................ 70

Nominal Density Model Comparison with Flight Data ...................... 75

Altitude History ................................ 82

Velocity History ................................ 83

Flight Path Angle History .......................... 84

Aerodynamic Load Factor Profile .................... 85

Bank Angle History .............................. 86

Normalized

Nominal Aerocapture: Orbit Plane

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ I00% Density:

+ 100% Density:

+ 100% Density:

Case # 031000RD, + 100% Density:

In-Plane Lift .......................... 87

Errors ............................... 88

Position Estimate Errors ................. 95

RMS Position Errors ................... 96

Velocity Estimate Errors ................. 97

RMS Velocity Errors ................... 98

Density Bias .......................... 99

Density, Bias Estimate Errors ............ 100

Orbital ? sis Estimate Errors ............ 101

0r, 0v Estimate Errors .................. 102

Position Estimate Errors ............... 105

PRECEDING PAGE BLANK NOT FILMED 9 g,g:,_[ _7 _,,:_,_,:':_'_,,,,,v_v I_Ll4frdf



5-17.

5-18.

5-19.

5-20.

5-21.

5-22.

5-23.

5-24.

5-25.

5-26.

5-27.

5-28.

5-29.

5-30.

5-31.

5-32.

5-33.

5-34.

5-35.

5-36.

5-37.

5-38.

5-39.

5-40.

5-41.

5-42.

5-43.

Case # 031000RD + 100% Density:

Case # 031000RD + 100% Density:

Case # 031000RD + 100% Density:

Case # 031000RD + 100% Density:

Case # 031000RD

Case # 031000RD

Case # 031000RD

Case # 288500D (Full Covariance):

Case # 288500D (Full Covariance):

Case # 288500D (Full Covariance):

Case # 288500D (Full Covariance):

Case # 288500D (Full Covariance):

Case # 288500D (Full Covariance):

Case # 288500D (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500RD (Full Covariance):

Case # 288500D (Diag. Covariance):

Case # 288500D (Diag. Covariance):

Case # 288500D (Diag. Covariance):

Case # 288500D (Diag. Covariance):

Case # 288500D (Diag. Covariance):

Case # 288500D (Diag. Covariance):

RMS Position Errors .................

Velocity Estimate Errors ...............

RMS Velocity Errors .................

Density Bias .......................

+ 100% Density: Density, Bias Estimate Errors ............

+ 100% Density: Orbital Apsis Estimate Errors ........ ....

+ 100% Density: 0r, 0v Estimate Errors ..................

Position Estimate Errors ................

RMS Position Errors ..................

Velocity Estimate Errors ................

RMS Velocity Errors ..................

Density Bias .........................

Orbital Apsis Est. Errors ................

0r, 0v Est. Errors ......................

Position Estimate Errors ..............

RMS Position Errors .................

Velocity Estimate Errors ..............

RMS Velocity Errors .................

Density Bias .......................

Orbital Apsis Est. Errors ..............

0r, 0_ Est. Errors ....................

Position Estimate Errors ...............

RMS Position Errors .................

Velocity Estimate Errors ...............

RMS Velocity Errors .................

Density Bias ........................

Orbital Apsis Est. Errors ...............

106

107

108

109

110

111

112

114

115

116

117

118

119

120

122

123

124

125

126

127

128

131

132

133

134

135

136

10



5-44.

5-45.

5-46.

5-47.

5-48.

5-49.

5-50.

5-51.

5-52.

5-53.

5-54.

5-55.

5-56.

5-57.

5-58.

5-59.

5-60.

5-61.

5-62.

5-63.

5-64.

5-65.

5-66.

5-67.

5-68.

5-69.

5-70.

Case # 288500D (Diag. Covariance):

Case # 031000D

Case # 031000D

Case # 031000D,

Case # 031000D.

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 031000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 281000D

Case # 030500D:

Case # 030500D:

Case # 030500D:

Case # 030500D:

Case # 030500D:

Case # 031000D:

0r, 0v Est. Errors

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

-50% Density:

-50% Density:

-50% Density:

-50% Density:

-50% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

+ 100% Density:

Bank Angle Control Response ............

Normalized In-Plane Lift ................

Altitude History ......................

Position Estimate Errors ................

Velocity Estimate Errors ................

Bank Angle Control Response ..............

Normalized In-Plane Lift ..................

Altitude History ........................

Position Estimate Errors ..................

Velocity Estimate Errors ..................

Bank Angle Control Response ............

Normalized In-Plane Lift ................

Altitude History ......................

Position Estimate Errors ................

Velocity Estimate Errors ................

-50% Density: Bank Angle Control Response ..............

-50% Density: Normalized In-Plane Lift ..................

-50% Density: Altitude History ........................

-50% Density: Position Estimate Errors ..................

-50% Density: Velocity Estimate Errors ..................

Bank Angle Control Response .........................

Normalized In-Plane Lift .............................

Altitude History ...................................

Position Estimate Errors .............................

Velocity Estimate Errors .............................

Bank Angle Control Response .........................

137

146

147

147

148

148

149

150

150

151

151

152

153

153

154

154

155

156

156

157

157

163

164

164

165

165

166

11



5-71.

5-72.

5-73.

5-74.

5-75.

5-76.

5-77.

5-78.

5-79.

5-80.

5-81.

5-82.

5-83.

5-84.

5-85.

5-86.

5-87.

5-88.

5-89.

5-90.

5-91.

5-92.

5-93.

5-94.

5-95.

5-96.

5-97.

Case# 031000D:

Case# 031000D:

Case# 031000D:

Case# 031000D:

Case# 031500D:

Case# 031500D:

Case# 031500D:

Case# 031500D:

Case# 031500D:

Case# 035000D:

Case# 035000D:

Case# 035000D:

Case# 035000D:

Case# 035000D:

Case# 038500D:

Case# 038500D:

Case# 038500D:

Case# 038500D:

Case# 038500D:

Case# 280500D:

Case# 280500D:

Case# 280500D:

Case# 280500D:

Case# 280500D:

Case# 281000D:

Case# 281000D:

Case# 281000D:

NormalizedIn-PlaneLift ............................. 167

AltitudeHistory ................................... 167

PositionEstimateErrols ............................. 168

VelocityEstimateErrors ............................. 168

BankAngleControlResponse......................... 169

NormalizedIn-PlaneLift ............................. 170

AltitudeHistory ................................... 170

PositionEstimateErrors ............................. 171

VelocityEstimateErrors ............... ............... 171

BankAngleControlResponse......................... 172

NormalizedIn-PlaneLift ............................. 173

AltitudeHistory ................................... 173

PositionEstimateErrors ............................. 174

VelocityEstimateErrors ............................. 174

BankAngleControlResponse......................... 175

NormalizedIn-PlaneLift ............................. 176

AltitudeHistory ................................... 176

PositionEstimateErrors ............................. 177

VelocityEstimateErrors ............................. 177

BankAngleControlResponse......................... 178

NormalizedIn-PlaneLift ............................. 179

Altitudetlistory ................................... 179

PositionEstimateErroxs ............................. 180

VelocityEstimateErrors ............................. 180

BankAngleControlResponse......................... 181

NormalizedIn-PlaneLift ............................. 182

AltitudeHistory ................................... 182

12



5-98.

5-99.

5-100.

5-101.

5-102.

5-103.

5-104.

5-105.

5-106.

5-107.

5-108.

5-109.

5-110.

5-111.

5-112.

5-113.

5-114.

Case# 281000D:

Case# 281000D:

Case# 281500D:

Case# 281500D:

Case# 281500D:

Case# 281500D:

Case# 281500D:

Case# 285000D:

Case# 285000D:

Case# 285000D:

Case# 285000D:

Case# 285000D:

Case# 288500D:

Case# 288500D:

Case# 288500D:

Case# 288500D:

Case# 288500D:

PositionEstimateErrors ............................. 183

VelocityEstimateErrois ............................. 183

BankAngle Control Response ........................ 184

Normalized In-Plane Lift ............................ 185

Altitude History ..................... •............. 185

Position Estimate Errors ............................ 186

Velocity Estimate Errors ............................ 186

Bank Angle Control Response ........................ 187

Normalized In-Plane Lift ............................ 188

Altitude History ................... ............... 188

Position Estimate Errors ............................ 189

Velocity Estimate ErroIs ............................ 189

Bank Angle Control Response ........................ 190

Normalized In-Plane Lift ............................ 191

Altitude History .................................. 191

Position Estimate Errors ............................ 192

Velocity Estimate Errors ............................ 192

13



LIST OF TABLES

Table Page

2-1.

2-2.

4-1.

5-I.

5-2.

5-3.

5-4.

5-5.

5-6.

5-7.

5-8.

5-9.

5-10.

H-750 LINS Error Parameters ........................................ 38

Density Model Parameters ........................................... 48

COSPAR Northern Summer Density Profde ............................. 74

Nominal Entry State Definition ....................................... 81

Input Filter Error Covariance Matrix ................................... 90

Aerocapture Performance Results (Constant Density Bias Cases) ............. 144

Guidance Errors (Constant Density Bias Cases) .......................... 144

Estimation Errors (Constant Density Bias Cases) ......................... 145

Vehicle and Trajectory Limits (Constant Density Bias Cases) ................ 145

Aerocapture Performance Results (Density Shear Cases) .................... 161

Guidance Errors (Density Shear Cases) ................................ 161

Estimation Errors (Density Shear Cases) ............................... 162

Vehicle and Trajectory Limits (Density Shear Cases) ...................... 162

PRECEDING PAGE BLANK NOT FILMED

15



SYMBOLS

a_

AFE

AOTV

b

c.

c_

co

co, c,, c_, c_

ea

_Kp

er

ev

E

F

g_

gaeto

G

h

h.

HS

non-gravitational specific force vector

Aeroassist Flight Experiment

aeroassisted orbital transfer vehicle

Kalman fdter measurement sensitivity vector

percentage deviation of true atmospheric density from nominal

vehicle ballistic coefficient

body-to-inertial transformation matrix

vehicle drag coefficient

density model scale height polynomial coefficients

vehicle aerodynamic drag vector

random acceleration error

filter model of Kp estimate error

position error induced by random acceleration error

velocity error induced by random acceleration error

Kalman fdter error covariance matrix

system dynamics matrix

gravitational acceleration vector

aerodynamic load factor

gravity gradient matrix

altitude

apoapsis altitude

exponential density model scale height

normal to current orbit plane

16



_a

IMU

Io

_L

LID

LINS

m

MRSR

n

NASA

q

Q

0

F

ri

rM1

R_

S

SHOR

s,,i

aVERT

t

u

normal to desired orbit plane

inertial measurement unit

n x n identity matrix

constant altitude cruise guidance altitude gain

constant altitude cruise guidance altitude rate gain

percentage error in fdter density

vehicle aerodynamic lift vector

vehicle lift-to-drag ratio

Laser Inertial Navigation System

vehicle mass

Mars Rover Sample Return

number of Kalman filter states

National Aeronautics and Space Administration

measurement value

dynamic pressure

total aerodynamic heat load

aerodynamic convective heating rate

vehicle position vector

Mars equatorial radius

local Mars surface radius

vehicle nose radius

Kalman filter process noise matrix

density perturbation horizontal scale distance

vehicle aerodynamic reference area

density perturbation vertical scale distance

time

scalar control variable

17



V

vh

W

.XX

vehicle velocity vector

horizontal velocity

Kalman falter optimal weighting vector

Kalman state vector

5 2

y

_BI

_SF

_GDR

6

Ad

Ah

At

AV

_ra

gr M

O,

O,

A

variance of measurement error

guidance prediction density scale factor

flight path angle

accelerometer bias vector

accelerometer scale factor vector

gyro drift vector

• wedge angle

horizontal distance covered between atmosphere subroutine calls

vertical distance covered between atmosphere subroutine calls

time increment

required propulsive yelocity change

increment to current bank command in guidance prediction

correction to current bank angle command

radar altimeter error

terrain height deviation from reference

constant altitude cruise guidance damping ratio

zero-mean normal random variable with unity standard deviation

out-of-plane angular position

out-of-plane angular velocity

environment acceleration cross-product matrix

18



#

/_ere v

P

P exp

_A BI

erAS F

_bp

ae a

aGDR

_M

- T M

4

q_

(-O1M

Mars gravitational parameter

covariance between er and e,

atmospheric density

atmospheric density from exponential filter model

accelerometer bias standard deviation

accelerometer scale factor standard deviation

standard deviation of atmospheric density perturbation

standard deviation of e,

standard deviation of e,

standard deviation of e_

Tyro drift standard deviation

filter Markov process standard deviation

filter Markov process time constant

current vehicle bank angle

Kalman filter state transition matrix

IMU misalignment vector

IMU misalignment matrix

Mars angular rotation rate

constant altitude cruise guidance natural frequency

SUPERSCRIPTS

B

I

body-fixed coordinate frame

inertial coordinate frame

19



A

m

+

first total derivative

second total derivative

estimated quantity

error in estimated quantity

old value

new value

SUBS CRIP TS

ave

c

cur

d

earth

¢rlv

f

h

m

nom

P

pole

ra

rel

0

average

commanded

current

drag

Earth-related quantity

environment

filter or final

altitude

measured or miss

nominal

predictor

in the direction of the north pole

radar altimeter

planet-relative

reference or initial

20



atmospheric density

21



CHAPTER I

INTRODUCTION

l.I MARS ROVER SAMPLE RETURN MISSION

The extraterrestrial study of the planet Mars has been of great interest to the scientific com-

munity for many years. The Mariner and Viking missions flown by NASA in the 1960"s and

1970"s were highly successful in facilitating our initial proximate observations of the planet and its

satellites. Information returned by the various flyby and orbital probes and the robot landers Vik-

hag I and II has greatly increased our knowledge of the planet over that gained by Earth-based

observation alone. It is widely accepted that the next step in our exploration of Mars should be

the return of surface samples to space station or Earth-based laboratories for fn'sthand analysis.

Such a mission would take us a step beyond the Viking missions, allowing the direct analysis of a

variety of surface samples taken from diverse sample sites. The sample return mission, in addition

to providing a wealth of scientific data on Martian surface composition, would also present tech-

nological challenges leading to advances in spacecraft and mission design and operations.

The Mars Rover Sample Return (MRSR) mission under preliminary study by NASA [1]

would have as its main objective the return of diverse surface samples from Mars. This mission is

also viewed as a precursor to a manned Mars mission, with science and technology returns pro-

viding valuable input for the planning of such a journey. One potential MRSR mission scenario

is illustrated in Figure 1-1 on page 25, reproduced from [2]. In this scenario, a single launch

vehicle/upper stage combination is used to inject the spacecraft into Mars transfer orbit. Orbit

insertion at Mars is accomplished by an aerocapture maneuver. After final landing site selection

and inspection from orbit, the ascent/rover/entry vehicle combination reenters the atmosphere for

landing, leaving the Mars orbiter and Earth return vehicles in orbit. A single rover with signif-

PRECEDLNG £AGE t3LANK NOT F_M.ED
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icantrangingcapabilitiesproceedsto collect, catalogue, and store samples for return to the ascent

vehicle. After transfer of the samples from the rover, the ascent vehicle is launched to achieve

rendezvous with the orbiter. The samples, once transferred from the ascent vehicle, are injected

into Earth return orbit by the return vehicle for eventual retrieval by the Space Shuttle or space

station in Earth orbit. For such a mission to be feasible, technological advancement would be

required in many areas, including semi-autonomous rover operations, autonomous navigation,

autonomous rendezvous, sample handling techniques, and planetary capture and landing tech-

niques. Current plans call for mission launch somewhere in the 1996 to 2000 time frame.

1.2 MOTIVATION

Since the return of a payload of samples to Earth is the main objective of the MRSR mis-

•sion, it is highly desirable to maximize the ratio of sample mass to spacecraft launch mass. The

efficient design of the vehicles and their systems will provide obvious benefits in terms of mass

reduction, but mission design will also play a significant role due to its effect on propellant load

requirements. The potential of large fuel (and, hence, mass) savings lies in the choice of the

method used to allow spacecraft capture by Mars on the outbound trajectory and by Earth on the

return trajectory. Historically, retropropulsion has been used for such maneuvers to decrease

orbital energy and allow capture by the planetary gravity field. Alternatively, studies have shown

that the necessary energy depletion can be achieved by aerodynamic deceleration during a close

pass through the planet's atmosphere. This process is called aerocapture. In addition to orbit

insertion accuracies comparable to all-propulsive scenarios, aerocapture into Mars can result in

mass savings exceeding 25% of the approach mass [3], thereby allowing a significant reduction in

launch mass for a given sample size.
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The aerocapture maneuver begins in much the same way as would a direct entry trajectory

for landing. The planetary approach hyperbola is targeted so that the vehicle enters the atmos-

phere with desired fright path conditions. After atmospheric capture, the vehicle is aerodyna-

rnically controlled to deplete excess orbital energy. The major difference between entry and

aerocapture is that the entry vehicle ultimately targets to a landing point on the surface of the

planet, whereas the aerocapture vehicle targets to exit the atmosphere into a desired orbit. After
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atmosphericexit,thepropulsionsystemmustbeusedto correct dispersions and insert the vehicle

into its final parking orbit.

The success or failure of the aerocapture maneuver can be measured in terms of post-exit

propulsive AV required for orbit insertion. This AV requirement is a function of the accuracy

with which the vehicle can hit the desired exit orbit, which in turn is indirectly affected through

the aerocapture guidance by uncertainties in vehicle mass and aerodynamic characteristics, errors

in position and velocity estimates, and dispersions in atmospheric conditions. Sensitivity of target

miss to these parameters requires a high degree of accuracy in onboard vehicle state estimates and

a highly adaptive guidance system to respond to off-nominal conditions. The use of external nav-

igation information and uplinked guidance commands during aerocapture is obviated by the pos-

sibility of blackout and the relatively short duration of the atmospheric pass, thereby requiring

autonomous onboard guidance, navigation, and control of the vehicle to meet these requirements.

The purpose of the research leading to this thesis was to perform integrated design and analy-

sis of the onboard navigation and guidance functions during aerocapture for a high lift-to-drag

(L/D) ratio vehicle on a given nominal entry trajectory. During the actual aerocapture maneuver,

guidance inputs, including current estimates of position and velocity and atmospheric dispersions,

will be provided by the onboard navigation system. Therefore, the performance of the guidance

system will be dependent to a certain extent on the performance of the navigation system. Previ-

ous aerocapture studies have focused almost entirely on either the navigation or the guidance

aspect of the problem without examining the interactions between the two. The more balanced

approach taken here was to base the guidance algorithm design and analysis on realistic inputs

from a navigation system designed to take advantage of useful measurement information along the

trajectory. This approach should increase confidence in guidance test results and provide a better

overall picture of Mars aerocapture performance capabilities.
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1.2.1 NA VIGA TION

As stated previously, the main function of the onboard navigation system during aerocapture

is to provide accurate estimates of vehicle position, velocity and aerodynamic control capability to

the guidance system for computation of trajectory control commands. This task is complicated

by the presence of initial condition errors in position and velocity estimates, uncertainties in vehi-

cle mass and aerodynamic characteristics, and unknown dispersions in atmospheric conditions.

The heart of the onboard navigation system will be an inertial measurement unit (IMU). The

IMU alone will provide accurate measurements of aerodynamic accelerations acting on the vehi-

cle, allowing accurate propagation of position and velocity estimates. However, reduction of a

priori state estimate errors and estimation of specific guidance parameters (e.g. atmospheric densi-

ty, ballistic coefficient, or L/D) requires further processing of IMU outputs and/or additional

measurement information from other sources.

The approach taken here is to add an onboard Kalman filter to the navigation system for

estimation of the vehicle position and velocity vectors and the deviation of the actual atmospheric

density from the onboard model. The choice of density uncertainty as an estimated quantity was

driven by the desire to provide the guidance with good knowledge of current aerodynamic control

capability and the ability to predict future control capability. Two types of measurements have

been examined to allow updating of initial state estimates and continuous estimation of density

errors for the duration of atmospheric flight. After aerodynamic accelerations become large

enough for measurement by the IMU, drag acceleration measurements are processed by the navi-

gation ftlter. These measurements are actually incorporated by the filter as density altitude meas-

urements by using an assumed atmospheric density model and estimated vehicle mass and

aerodynamic parameters. Drag acceleration measurements are used during entry on the Space

Shuttle [4], [-5] for vertical channel stabilizatk, l_ and to improve knowledge of drag parameters

used by the entry guidance. They have also been studied as an addition to the Aeroassist Flight
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Experimentnavigationsystem[6]. Thedensityaltitudemeasurementisusefulfor improvingthe

accuracyof the altitudeestimateto a leveldeterminedby the accuracyof theonboarddensity

modelandvehicleparameterestimates.In addition,errorsin theknowledgeof otherpositionand

velocitycomponentsmayalsobe reduceddueto correlationswithverticalpositioncontainedin

theinitial fdtercovariancematrix.Thismeasurementalsoallowscontinuousestimationof differ-

encesbetweentheassumeddensityusedbytheguidanceandtheactualdensityobservedthrough

measureddragacceleration.

The additionof radaraltimetermeasurementsprior to initiationof aerocapturecontrol

maneuveringhasalsobeenexaminedasameansto improvealtitudeknowledgebeforedragmeas-

urementprocessingbegins.Withaccurateenoughaltitudedetermination,theentiredragmeasure-

mentresidualcanbeattributedto densitymodelerrorsandcorrectionsto the estimatemade

accordingly.

1.2.2 GUIDANCE

!.2.2.1 _TRODUCTION

The aerocapture vehicle used in this study is a biconic lifting body with a high lift-to-drag

ratio (L/D= 1.5). A representative design configuration is shown in Figure 1-2 on page 30,

reproduced from [7]. While the final design may have independent angle of attack control, it was

assumed for this analysis that the vehicle will be designed to trim to a constant angle of attack.

The only control in this case is the vehicle bank angle, which is the angle through which the lift

vector is rotated about the atmosphere-relative velocity vector. Guidance becomes a question of

determining what bank angle is required to meet target conditions for the current trajectory phase

without violating vehicle or trajectory constraints. These constraints include terrain avoidance,

aerodynamic heating limits, and structural load limits. The guidance must also be capable of
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compensatingfor largetrajectorydispersionsdue to entry navigation errors while maintaining

control margin against future atmospheric density dispersions.

1.2.2.2 PREVIOUS RESEARCH

S.everal approaches to aerocapture and aerobraking guidance for bank angle controlled vehi-

cles have been suggested.

In [8] an atmospheric guidance algorithm for an aeroassisted orbital transfer vehicle (AOTV)

is presented. This algorithm divides the aerobraking trajectory into an equilibrium glide phase

and an exit phase. During the equilibrium glide phase, the guidance computes the bank angle

required to satisfy a biased equilibrium glide (zero altitude acceleration) condition based on refer-

ence dynamic pressure and altitude rate profdes. Exit phase control is achieved by computing the

altitude rate required to hit a target apoapsis altitude using an analytic predictor/corrector algo-

rithm. The required bank angle is again computed to achieve a biased equilibrium glide condi-

tion, this time based only on reference altitude rate.

Another AOTV guidance concept is presented in [9]. This algorithm computes the sensitiv-

ity of exit apoapsis to current commanded bank angle using numerical integration of vehicle

equations of motion to predict exit conditions. A correction algorithm utiliTes this sensitivity to

compute the increment to the current bank required to hit the apoapsis target.

Reference [ 10] presents an aeroassist guidance law which is based on an approximate analytic

solution to the atmospheric flight equations of motion. This solution is used to fred the bank

angle control, based on the current L/D command, required to fly the vehicle from the current

state to the final altitude achieving a given set of exit conditions. The algorithm is applied to the
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Figure 1-2. Potential Biconic Aerocapture Vehicle Configuration

MRSR aerocapture problem, commanding a constant altitude trajectory between unguided entry

and exit phases.

!.2.2.3 PROPOSED ALGORITHM

The proposed approach is to fly a constant altitude trajectory at a given geometric altitude.

Constant altitude flight is possible because of the control capability of the high L/D vehicle under
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study,andis desirablefor several reasons. Constraints on the allowable region of flight during

aerocapture may easily be given in terms of an altitude corridor. The lower bound of the corridor

is defined to satisfy terrain clearance constraints imposed due to large regions of high terrain pres-

ent on Mars. The upper bound of the corridor is defined by the altitude above which vehicle

control authority is insufficient to maintain constant altitude flight. Sustained constant altitude

flight will be possible anywhere within this corridor. In addition, navigation results using IMU

drag acceleration and radar altimeter measurements indicate that altitude errors should be small

enough to prevent inadvertent flight outside the corridor. Flight at constant altitude is also desira-

ble due to the trajectory uniformity provided. The effect is to desensitize the important atmo-

spheric exit phase to entry trajectory dispersions. If the constant altitude cruise condition can be

reached from the dispersed entry trajectory and flown until a given velocity has been reached, the

exit trajectory will vary only due to errors in the knowledge of altitude and velocity and the effects

of roll reversals.

The aerocapture trajectory has been divided into three phases:

1. atmospheric capture

2. constant-altitude cruise

3. exit

The three phases all have different targets and constraints and therefore can best be flown using

different guidance schemes.

The atmospheric capture guidance phase extends from the initiation of guid,mce cycling after

atmospheric entry until the vehicle reaches the target cruise altitude. The goal of this phase is to
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determinetheconstantbankanglecontrolrequiredto reachthetargetcruisealtitudewithzero

altituderate. A numericalpredictor/correctorguidancealgorithmhasbeenchosenfor thisphase.

Controlcorrectionsarecomputedbasedonnumericalpredictionof finalconditionsgiventhecur-

rentcommandedcontrolandestimatedvehiclestatevector. A keyadvantageof suchanalgo-

rithmis its lackof dependenceon knowledgeof a referencetrajectory.Thismakesit well-suited

to handlethewiderangeof off-nominalentrytrajectorydispersionspossibledueto approachnav-

igationaccuracylimits. If guidancecyclingbeginsafternavigationsystemcycling,statevectorand

densityerrorscanbereducedto levelsallowingveryaccuratenumericalpredictionof endcondi-

tionson thecurrenttrajectory,evenif theinitial stateerrorsplaceit faroff of thenominaltrajec-

tory.

A disadvantageof the numerical predictor/corrector is that it can be more computationaUy

intensive than an analytic algorithm. Although the entire aerocapture maneuver can be quite long

(500 to 1200 seconds), the capture phase is relatively short (less than 150 seconds). Therefore, if a

reasonable integration step size can be chosen for the guidance prediction, the computational

demands of numerical full-state prediction should not be overly excessive.

The constant altitude cruise phase is initiated when the vehicle reaches the target cruise alti-

tude and is terminated when the inertial velocity has been decreased to a given value. The goal of

this phase is simply to maintain level flight at the cruise altitude. This includes compensating for

density dispersions and perturbations due to roll reversals. An analytic control law which results

in altitude response analogous to a second-order spring/mass/damper system has been derived for

this phase. Altitude response can be modelled as desired by the choice of two control gains.

The exit phase is initiated immediately at the end of the cruise phase and is terminated when

measured aerodynamic acceleration drops below a set value. The goal of this phase is to compute

the constant bank angle command required to hit the target apoapsis altitude at atmospheric exit.
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Numericalpredictor/correctorguidancehasbeenchosenfor thisphasefor essentiallythesame

reasonsasfor thecapturephase.Theexitphaseguidancecanmakeuseof thesameprediction

subroutineasthecapturephaseguidance,andtheguidancesimilaritymakespossibletheuseof

thesamecorrectionequationsmodifiedsimplyfor thedifferenttargetquantity.

1.3 THESIS OVERVIEW

This thesis contains details and results of the design and testing of the navigation and guid-

ance algorithms described above.

"Chapter 2. NAVIGATION SYSTEM DESIGN" on page 35 presents details of the navi-

gation system design. The main components of the system are described, and computer models

derived. The estimator design is discussed in detail, including the basic Kalman filter equations

and measurement models used in the falter.

"Chapter 3. GUIDANCE DESIGN" on page 51 presents details of the guidance algorithm

design and implementation. The three guidance phases and their respective guidance philoso-

phies, targets, and constraints are discussed. The final section of the chapter addresses orbit plane

control and presents the algorithm used for this study.

"Chapter 4. COMPUTER SIMULATION PROGRAM" on page 69 describes the com-

puter simulation used in this research. Overall program flow is described, and environment and

vehicle models presented.

Pere'_,-mance results are presented in "Chapter 5. PERFORMANCE RESULTS" on page

79. The performance of both the navigation and gnidance algorithms is discussed for a number of
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cases. Results are presented for nominal and dispersed entry trajectories flown with constant den-

sity bias and density shear profiles. The effects of adding radar altimeter measurements are illus-

trated and discussed.

"Chapter 6. CONCLUSION" on page 193 discusses conclusions of this study and sug-

gestions for continuing analysis.
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CHAPTER 2

NAVIGATION SYSTEM DESIGN

2.1 INTRODUCTION

This chapter details the design and implementation of the proposed aerocapture navigation system

described in general in "1.2.1 NAVIGATION" on page 27. The presentation is segmented to

reflect the three main components of the system: the IMU, radar altimeter, and estimation algo-

rithm. Descriptions of the IMU and radar altimeter models implemented in the simulation envi-

ronment are presented. The estimation algorithm design is explained in detail, beginning with

presentation of the Kalman filter equations which form the heart of the algorithm. The filter state

vector is defined, and the falter models of the dynamics affecting its components are given. The

falter error covariance matrix is defined, and the state transition and process noise matrices used

for propagation of the covariance matrix are presented. Finally, models of the drag acceleration

and radar altimeter measurements implemented in the estimator are derived.

2.2 INERTIAL MEASUREMENT UNIT

The inertial measurement unit (IMU) provides a measure of the non-gravitational inertial specific

force acting on the vehicle. It consists of three accelerometers, which measure the specific force

components along orthogonal axes; three gyroscopes, which measure angular rates about these

axes; and a computer for processing instrument outputs. It has been assumed for this analysis

that the IMU outputs the three specific fo : components directly. It is also assumed that the

IMU is a strapdown system, so that the components of the specific force and angular rate vectors

are coordinatized in a body-fixed reference frame. The gyro outputs are used to maintain a trans-
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formationmatrixfromthebody-fixedIMU frameto theinertialframe,sothatthespecificforce

vectormaybetranstbrmedfor vehiclenavigationin theinertialframe.

Thesensedspecificforcecomponentsoutputby the IMU differ from the true specific force

components due to the many error sources present. These error sources include accelerometer

and gyro measurement inaccuracies and uncertain knowledge of the initial alignment of the IMU

axes with respect to inertial space. In the simplified IMU model used for this study, the measured

specific force is computed as

(2-1)

where _a_ is the measured specific force, aq__ , is the environment (true) specific force, C t is the body

to inertial transformation matrix, and ?_flBzand Y]SF are vectors containing accelerometer bias and

scale factor values, respectively. The superscript I indicates coordinatization in the inertial refer-

ence frame, and the superscript B.indicates coordinatization in the body-fixed IMU frame, which

is defmed to have reference axes parallel to the accelerometer and gyro input axes. The "inertial"

frame is defined to be Mars-centered with X and Y axes in the equatorial plane and the Z axis

parallel to the planet spin axis. The accelerometer bias and scale factor components are assumed

to be constants chosen from normal, zero-mean random distributions with standard deviations

aAs I and aASF, respectively. The matrix A is defmed as

001env x

A = a 8 0 (2-2)
envy

0 B
_env z
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where n a B and sa;..x.... , , a..,_ are the components of_.. in the body-fixed IMU reference frame. The

misalignrnent matrix, W, is defined as

E0_,'= -GO

G - 4,,

(2-3)

where fix, _by,and _b,are the rnisalignment angles of the IMU frame about inertial axes. The plat-

form misalignment is a function of both the initial misalignment and gyro drift rates. This func-

tional relationship is expressed by the vector differential equation

subject to the initial condition

__'(0) = 4'0

This equation is integrated numerically during the simulation to give the current platform misa-

lignment. The components of the gyro drift rate vector _CORare assumed to be constants chosen

from a normal, zero-mean random distribution with standard deviation ¢roo_.

The specific IMU chosen for this analysis is the Honeywell H-750 Laser Inertial Navigation

System (LINS). The H-750 LINS is a space-qualified strapdown IMU which is currently a strong

candidate for use as the primary navaid for the Aeroassist Flight Experiment (AFE) and the

aeroassisted orbital transfer vehicle (AOTV). The error parameters used in the simulator model

are listed in Table 2-1 on page 38 [ 11]. Random errors are computed using a random number

generator which outputs one sample of a normally-distributed random variable with a mean of
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Table 2-1. H-750 LINS Error Parameters.

Error Parameter Symbol la Value

Accelerometer Bias

Accelerometer Scale Factor

Gyro Bias Drift

Initial X-Axis Misalignment

Initial Y-Axis Misalignment

Initial Z-AXIs Misalignment

YAsl 17/_g

Y_sr 70 ppm

YGOR 0.01 deg/hr

_bx0 100 arcsec

_by0 100 arcsec

4'_o 100 arcsec

zero and standard deviation equal to the input. The initial misalignment angles were chosen as

conservative approximations of the accuracy obtained when aligning the space shuttle inertial plat-

form using an onboard star tracker [15].

2.3 RADAR ALTIMETER

The radar altimeter is a device which provides information on the altitude of the vehicle

above the local terrain. The measured altitude, h,,, can be expressed as

h,, = ( r,,,- rM,) + _,, (2-5)

where r,,, is the environment (true) distance from the center of Mars to the vehicle, r.vtt is the local

distance from the center to the surface of Mars, and e,, is the enor introduced by instrument inac-

curacies. The local planet radius can be written as
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rul = rM + _'M (2-6)

where e,u represents the variation of local terrain height about the reference radius rm. In this

study, it was assumed that radar altimeter measurements will be possible in a narrow altitude

band prior to commencement of vehicle bank maneuvers (see "2.4.3.2 RADAR ALTIMETER

MEASUREMENT" on page 49). The elapsed time between these altitudes on the inbound tra-

jectory is approximately 15 seconds. It is assumed that the terrain height variation over this inter-

val is small and that _ru can be modelled for simplicity as a constant bias chosen from a normal

random distribution with a mean of zero and a standard deviation of 1 kin. For this study, it is

assumed that _,, is an additive noise term modelled as a zero-mean normal random variable with a

standard deviation of 1 kin.

2.4 ESTIMATOR DESIGN

2.4.1 KAL_IAN FILTER EQUATIONS

The Kalman filter is a recursive algorithm designed to compute the minimum variance esti-

mate of an n x 1 vector of system states, denoted _x, using noisy measurement data. The filter is

derived under the assumption that the system is linear and that the system dynamics can be

described by means of a set of linear differential equations. The two main functions of the Kal-

man filter are the incorporation of measurements to update the current filter estimate of the state

vector and the propagation of the state vector estimate between measurement updates. The fiher

keeps track of its own performance during the estimation process by updating and propagating a

covariance matrix whose elements provide a statistical measure of the error in the estimate of the

state vector. The error covariance matrix is defined as
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e(t) = [ 7(OY_T(t)] (2-7)

where

__(t) = error in state vector estimate

= __(t) - x(t)

_x(t) = true state vector

__(t) = estimated state vector

and the overbar denotes the expected value of the bracketed quantity. The "hat" symbol (^) will

subsequently be used to denote an estimated quantity. It is seen that E is a symmetric matrix

whose diagonal elements are the variances of the errors in the state vector elements and whose

off-diagonal elements are a measure of the correlations between the errors in the state vector ele-

ments.

The dynamics of the system under analysis can be described by a nonlinear vector differential

equation of the general form

x_(t) = f_ (x(t), u(t), t) (2-8)

where u is the scalar control. The fdter state vector estimate is propagated between measurement

updates by numerical integration of the differential equation

A

__(t) = f_ (x_(t), u(t), t) (2-9)

using a fourth-order Runge-Kutta algorithm. The covariance matrix is propagated between

updates using
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E(t + At) = O(t)E(t)Dr(t) + S(t) (2-I0)

where _(t) is the state transition matrix, S(t) is the process noise matrix, and At is the propagation

time step size. The state transition matrix satisfies the matrix differential equation

+(t) = F(t) _(t) (2-11)

where F(t) is the system dynamics matrix corresponding to the linearized form of (2-8), namely

5c(t) = F(t) x_(t) (2-12)

The process noise matrix is included to compensate for unmodelled effects in the covariance

matrix propagation. These might include the effects of linearization, unmodeUed accelerations,

unmodelled IMU errors, and computer numerical inaccuracies. The elements of S(t) are func-

tions of the assumed statistical properties of these effects. Specific values of _ and S used in the

aerocapture navigation fdter are given in "2.4.2.2 COVARIANCE MATRIX PROPAGATION"

on page 44.

Given a measurement q, the state estimate is updated using

_+ = __-- + w(q -- _/) (2-13)

where

Eb T
w = bEbr + a2 (2-14)

A .

is the n x 1 optimal weighting vector, q is the estimate of the measurement q given the informa-

tion from all previously incorporated measurements, b is a 1 x n matrix expressing the sensitivity

of the measurement to the state vector, a2 is the assumed variance of the measurement error, and
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thesuperscriptplusandminussignsreferto statevectorestimatesafterandbeforeincorporation

of themeasurement,respectively.Thecovariancematrixisupdatedusing

E + = (I. - wb)E- (2-15)

where 1. is the n x n identity matrix.

The basic Kalman filter equations used in the navigation system have been presented above

for continuity and completeness. For more comprehensive discussions of recursive estimation and

Kalman faltering, the reader is referred to References [12], [13], and [14].

2.4.2 DYNA,_'IICS MODELS

2.4.2.1 STATE VECTOR PROPAGATION

The filter state vector is defined to be

(2-16)

where _H and _vz are the 3 x 1 inertial position and velocity vectors of the spacecraft. Kp is a bias

term which indicates the percentage deviation of the current actual atmospheric density from the

exponential falter model, so that

P"' 1 (2-17)
KP - P e,:p
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wherep .... is the true density at a given altitude and Pe_ is the density at the same altitude com-

puted using an exponential approximation to the nominal profde. The choice of Kp as an esti-

mated quantity, along with the implicit estimate of altitude contained in the position vector

estimate, allows very accurate determination of the current density in spite of the inability of the

filter to differentiate between a density error and an altitude error. This result is discussed further

in "5.3.3 NAVIGATION TEST CASES" on page 91.

Propagation of the state estimate requires determination of the function fin Eq. (2-9). The

equations governing the dynamics of the position and velocity vector estimates during atmospher-

ic flight are

d__' _ _, (2-18)
dt

d__1
at - _" + _ (2-19)

In Eq. (2-19), _ is the gravitational acceleration computed using the filter model and __a/ is the

IMU-measured nongravitational specific force given by Eq. (2-1). Assuming a spherical planet,

the gravitational acceleration can be modelled as

A

/a _r

_/= r_ r
^ (2-20)

where _ is the gravitational parameter of Mars and _ is the magnitude of the position vector esti-

mate. The density bias estimate is propagated as a constant; that is

dxp
- 0 (2-21)dt

Modelling of the density bias estimate as a constant, when coupled with the modelling of the

error in this estimate in the covariance matrix as a first-order Markov process, allows estimation

of a wide range of density error profdes without modification of fdter models.
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2.4.2.2 COVARIANCE MATRIX PROPAGATION

Propagation of the error covariance matrix between measurement updates requires determi-

nation of the state transition and process noise matrices in Eq. (2-10). These matrices are derived
A

here under the assumption that the dynamics of the error in Kp are independent of the dynamics

of the errors in __1and __1. In this case, the two matrices can be partitioned as

• = (2-22)

L OT OKp

and

S,, 0 I ('2-23)S = 0 r Sxp

and the nonzero partitions derived independently.

In the absence of aerodYnamic forces, the system dynamics matrix F,(t) of Eq. (2-12) corre-

sponding to the linearized position and velocity is 1"12]

EoI]F,_(t) = (2-24)
G(t) 03

where

/1
G = 7 (3-r-rr - r2 13) (2-25)
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is the 3 x 3 gravity gradient matrix, and 13 and 03 are the three-dimensional identity and zero

matrices, respectively. O,, can now be found by solution of Eq. (2-11).

is given in Reference [-4] as

O,,(t) = / 13+
Go,,( (At) 2/2)

L Go,, At I_ + G,,,( (At)_/2)J

An approximate solution

(2-26)

where

1 zd(,G°,, = -_ [ GG(t)) + + At))] (2-27)

Thus, G,,, is the average gravity gradient matrix over the current propagation interval.

The process noise affecting propagation of position and velocity estimate errors is assumed to

be due completely to a random acceleration error, denoted e,. Inclusion of this noise term helps

to compensate for covariance propagation errors due to the approximations made in deriving the

state transition matrix of Eq. (2-26). The acceleration noise is assumed to be normal with zero

mean and variance _r2,. The errors in position and velocity components induced by this acceler-

ation over one propagation step are

e, = eo At (2-28)

and

1 e_ (At) 2 (2-29)e, =_-

The variances of e, and e, and their covariance are therefore given by

_r2,_= _r_o(At) 2 (2-30)

45



¢r2 1 _2(At)4 (2-31)
er -- 4 ea

1 a2 (At) 3 (2-32)

Assuming that the variances of the errors in each component are the same, the partition of S cor-

responding to position and velocity is given by

= V_r_, Is !a.:.I31S,. (2-33)

A value of [ 10/_g] _ ( [9.8xlO-Sm/s2] 2 ) was chosen empirically for cry, for this analysis.

The error in the estimate of Kp is modelled in the covariance matrix as a first-order Markov

process. The error values are thus assumed to be exponentially correlated in time. In this model,

the error at the current time is defined as

eg(t) = aM eKp(t-- At) + aM.,/-f -- a_ _1
(2-34)

where

- Atlr m

aM= e

and aM and _M are the standard deviation and time constant defining the Markov process, r/ is a

normal random variable with mean zero and standard deviation one. Given this model of the

estimation error in Kp, the corresponding partition of • is

_Kp = aM (2-35)

and the process noise is

S_:p = a_ ( 1 - a_ ) (2-36)
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Theeffectof theprocessnoisein this case is to keep the filter actively estimating the continuously

changing density bias by maintaining a high variance in the covariance matrix. A standard devi-

ation of 1 and time constant of 100 seconds were found to provide good tracking of a variety of

dynamic density bias fluctuations.

2.4.3 iVIEASURE3/IENT MODELS

2.4.3.1 DENSITY ALTITUDE MEASUREMENT

The "measured" density altitude is actually computed using an IMU drag acceleration measure-

ment and an assumed model of the atmospheric density profile. An exponential density model of

the form

- (h - ho)lHS
Pe_ = P0 e (2-37)

is implemented in the estimator. The model scale height, HS, is computed using

HS = Co + C_h + C2h 2 + C3h 3 (2-38)

where the coefficients CO..... C3 are chosen so that the exponential model closely matches the

nominal Mars atmosphere data. Table 2-2 on page 48 lists the density model parameters corre-

sponding to the simulator environment model (see Table 4-1 on page 74).

Using this model, the density altitude corresponding to the measured drag acceleration adm is

I p°_'l ] (2-39)qhp = ho + HS In 2 CBaa,_

where
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Table2-2.DensityModelParameters.

Altitude Range Model Parameter Value

0 --, 50 km &

Po

Co

C_

Co

C_

0 km

O.Ol56 kg/m 3

10.8301848 km

0.079(_101

-0.0036160 km -t

0.0000347 km -2

50 ---, 100 krn &

Po

Co

c,

Co

G

50 km

0.000108 kg/m 3

10.5642821 km

-0.0506220

0.0001290 km -t

0.0000009 km -2

V__,/

A1 " . A
V_j,z _1= - _'m ( _t,o_.x _r9

(2-40)

(2-41)

m

Cs=
(2-42)
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and__a_is theIMU-measuredspecific force given by Eq. (2-1).

tude measurement is given by

A A A

% = h - HS t (l + Xp)

The estimate of the density alti-

(2-43)

A

where h is the current filter estimate of geometric altitude. Equations (2-39) and (2-43) are

derived in detail in "Appendix A. DERIVATION OF DENSITY ALTITUDE MEASURE-

MENT EQUATIONS" on page 197.

found to be

_P = I UNIT(_)' O, O, O,

From Eq. (2-43), the measurement sensitivity vector is

(2-44)

Density altitude measurements are incorporated by the estimator when the measured aero-

dynamic load factor exceeds 0.01 g's (0.098 m/s2). When the radar altimeter is used, incorporation

of density altitude measurements is delayed until altimeter measurements cease (see "2.4.3.2

RADAR ALTIMETER MEASUREMENT"). Estimator performance does not appear to be

significantly impacted by the density altitude measurement update frequency, so a frequency of 0.1

Hz was used to decrease computational requirements. The filter measurement variance was cho-

sen empirically to be (3 kin) 2.

2.4.3.2 RADAR ALTIMETER MEASUREMENT

The radar altimeter measurement to be incorporated by the estimator is given by

qr° = h,,, (2-45)

where h,, is given by Eq. (2-5). The estimate of this measurement is simply the filter altitude esti-

mate, or
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^ ^ (2-46)qro = r - ri

The reference planet radius rM is modelled as a constant equal to the equatorial radius (3397.2

kin.). The corresponding sensitivity vector is

_. = [ UNIT(_), O, O, O, 0 ] (2-47)

Because of antenna pointing constraints, use of the altimeter is feasible only during the por-

tions of atmospheric flight when the vehicle is not roiling to follow bank commands. This would

include the segments immediately after entry and before exit when aerodynamic forces are too

small for trajectory control to be possible. It is assumed that the altimeter will be used only prior

to aerocapture, and that it is effective at altitudes below 100 kin. Since vehicle maneuvering

begins soon after passing through 80 kin, this altitude is chosen as the minimum for altimeter

measurements. Measurements are taken at a frequency of 0.5 Hz while the measured altitude is in

this range. The filter measurement variance a_o is set to a constant value of (2 km) 2 for altimeter

measurement incorporation.
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CHAPTER 3

GUIDANCE DESIGN

3.1 INTRODUCTION

The aerocapture vehicle used in this study utilizes lift vector modulation about the relative

velocity vector for trajectory control. The direction of the lift vector is specified by the bank

angle, denoted _b, as shown in Figure 3-1 on page 52. By definition, positive bank implies a right

hand rotation about the relative velocity vector. Bank angle values can range from -180 ° to 180 °,

with _b = 0 ° implying lift vector "up" in the vertical plane. It has been assumed for this study

that the orbital energy control problem can be treated as independent from the orbit plane orien-

tation control problem. The choice of a bank angle command can thus be divided into two inde-

pendent parts: determination of the angle magnitude required to achieve the desired energy

control and choice of the sign of this angle to control the direction of rotation of the orbit plane.

In order to maintain at least a small perpendicular lift component for plane control at all times,

the magnitude of the bank angle command is constrained to lie between 15 ° and 165 ° .

This chapter contains details of the design of the guidance algorithm proposed for trajectory

control during aerocapture. The three guidance phases - capture, constant-altitude cruise, and exit

- are addressed. Discussions of guidance target selection and derivations of important guidance

equations are presented for each phase. The final section of the chapter contains a discussion of

the orbit plane control logic.
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O

Figure 3-1. Bank Angle Control Definition

3.2 ATMOSPHERIC CAPTURE PHASE

3.2.1 TARGET CRUISE ALTITUDE

The choice of the nominal cruise altitude is by no means unique. Figure 3-2 on page 54

illustrates the flyable altitude corridor for the vehicle and nominal entry trajectory examined in

this study. The minimum altitude of the corridor (27 krn) is fixed by terrain clearance constraints.

It is assumed that this altitude is set by the largest volcano, Olympus Mons, whose altitude above

the reference surface is 27 km [16]; however, since the planet-relative location of the aerocapture

trajectory will be known, this lower limit could be reduced if warranted. The maximum corridor

altitude (44 kin) is set by the limit of vehicle control capability, that is, this is the highest altitude
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at which the vehicle, entering on the nominal trajectory and with nominal atmospheric density,

can maintain constant altitude flight long enough for capture to occur. Constant altitude flight is

possible anywhere within the corridor. The nominal cruise altitude is chosen to provide margin

for hot days, when the actual atmospheric density is less than the nominal. For a 60% thin

atmosphere, the maximum altitude at which constant altitude flight is possible drops to approxi-

mately 34 kin. This is expected since the density at 34 km is now approximately equivalent to the

nominal density at 44 kin. Therefore, this is chosen as the cruise altitude to provide a large mar-

gin for thin atmospheric density dispersions. It should also be noted that a 7 km margin remains

with respect to the minimum corridor altitude. This margin will help to compensate for possible

undershoot of the target altitude in the capture phase and cruise altitude errors due to navigated

altitude uncertainties.

3.2.2 GUIDANCE DESCRIPTION

The purpose of the capture guidance phase is to compute bank angle commands to drive the

vehicle to reach the target cruising altitude (hc,u,s,) with zero altitude rate. Numerical

predictor/corrector guidance has been selected for this phase for the reasons stated in

"Chapter 1. INTRODUCTION" on page 23. Basically, the guidance corrects the current com-

manded bank angle based on prediction of the target miss given the current command. The nom-

inal guidance cycle is as follows:

1. Set predictor bank angle to current command (qbc)

2. Initialize predictor state vector to current navigation system estimated state

3. Predict tmal altitude (/_ = 0)
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(CONTROL LIMIT)

34KM.

(CRUISE ALTITUDE)

--- -- 27 Kalt.

(TERRAIN CLEARANCE)

Figure 3-2. Aerocapture Altitude Corridor

4. Set predictor bank angle to q_c+ Aft.

5. Repeat steps 2 and 3

6. Using results of steps 3 and 5, compute the sensitivity of minimum altitude to bank angle

7. Compute and limit correction to _bcto null target miss
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This cycle is repeated until the guidance is converged.

Guidance cycling is initiated when the measured aerodynamic load factor, g_ .... exceeds 0.05

g's. The load factor is computed as

I_a'.l
g_,,o = gOear,h (3-1)

where _a_ is the IMU-measured specific force vector and g0,a,_ is the sea-level gravitational acceler-

ation on Earth (9.81 re�s2). The commanded bank angle is initialized to a value of 90 °. Capture

phase guidance cycling is terminated when either the estimated altitude rate increases above -50

m/s or the estimated altitude drops below hcr_,s,.

Although there is no explicit control of aerodynamic heating rate or load factor, constraints

can be satisfied by correct choice of the nominal entry trajectory to control maximum penetration

depth.

3.2.2.1 PREDICTION ALGORITHM

The prediction process involves numerical integration of the vector equations of motion from

the current time (tc_r) to some given termination conditions given the current navigation system

state estimate and a specified constant bank angle. The vector equations of motion to be inte-

grated are

dr I
- v_ (3-2)dt

dF I

gZ + _ (3-3)-- _-_erodt

subject to the initial conditions
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AI_r'(t.,) = __(t.,)

A lv,(t.,) = _v(t.,)

The gravitational acceleration is given by

/.L _r I

?-2 ?"
(3-4)

The aerodynamic acceleration can be written in terms of the lift and drag components as

i -Di, + Liy_---_ero _I (3-5)

where

(3-6)

(3-7)

1
= -5- P"_'_" (3-8)

- (h - ho)IHS
pp = fl poe

(3-9)

_(t.,)

p e,q,(tc,,,)
(3-10)

i_x = UNIT(BI,) (3- l 1)

i, = UNIT(ix x r 9 (3-12)

iy = cos 4. (i. x i3 + sin 4,-/_ (3-13)
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and4'p is the bank angle used in the prediction. The factor fl is used to scale the exponential den-

sity to reflect the current deviation of the estimated density from this model. The equations of

motion are integrated numerically using a fourth-order Runge-Kutta algorithm with a time step of

2 seconds. The prediction is terminated when either the predicted altitude rate changes sign from

negative to positive or the predicted altitude becomes negative. In the event of the latter, two

courses of action are possible. If the bank angle used in the prediction was less than 95 ° , this

angle is decremented until the predicted minimum altitude becomes greater than zero. If the bank

angle used in the prediction was greater than 95 °, the bank command is set to 165 ° and the guid-

ance is exited. This action is warranted because a shallow entry is indicated and full lift-down will

help the vehicle to "dig in" and build up control effectiveness. This command is held until the

minimum predicted altitude achieved with 90 ° bank is less than hc,_,,,. This prevents guidance

convergence problems which can occur due to the high sensitivity of minimum altitude to bank

angle for bank angles greater than 90 ° .

3.2.2.2 CORRECTION ALGORITHM

The correction algorithm computes an increment to the current bank command to null the

predicted target altitude miss (h"`t). The altitude miss can be written in a Taylor series expansion

of the bank angle control as

Oh.. O_h.. (,X4)3_
Ah,,- 04_c A4_,+ 04_ 2! + ... (3-14)

Neglecting all but the first-order term, the bank angle increment resulting in a specified altitude

miss is given approximately by

'_4_ ~ _ Ohm, ]-_Ah,. (3-15)
= LO cj

Thus, the increment to the current bank command required to null the target miss is
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= r ]-'- L 3';bc h,., (3-16)

The sensitivity term in Eq. (3-16) is computed numerically from the results of the two predictions

using control values q_c and _bc + AqSp. If the resulting minimum altitudes are hit and his respec-

tively, then

Oh,. ... hi, - hi, (3-17)
O_o - A,_,,,

and

h_,I = hit - he,,,,, (3-18)

The control is corrected by

qS_ = _b7 + A_= (3-19)

Care must be taken to account for the assumption of linearity made in the above solution.

Because of the truncation of the series of Eq. (3-14) after the first-order term, it is assumed that

the sensitivity of the target miss to the control is the same over the entire control range.

Although the assumption of constant sensitivity is good in a small range about _b_', it breaks

down for larger deviations. The control correction has been limited to +/- 15° during the capture

phase in an attempt to prevent overcorrection due to nonlinearities.

The guidance is considered to be converged when the correction A_= is less than 1 degree or

the target altitude miss is less than 1 kin. Typically, the guidance converges in one or two iter-

ations after the initial cycle at the start of aerocapture.
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3.3 CONSTANT ALTITUDE CRUISE PHASE

The purpose of the constant altitude cruise phase guidance is to continually compute bank

angle commands to maintain flight at the target altitude, hcr_,, until the specified level of energy

depletion has been achieved. This requires compensation for off-nominal atmospheric density

fluctuations and damping of altitude rates induced by bank reversals. An analytic feedback con-

trol law which results in altitude response analogous to a second-order spring/mass/damper sys-

tem has been developed for this phase. The commanded bank angle is computed by

cos 4,c = cos 4'[ - Kj; /_ Kh
(h i

_,"=0 q - _ (3-20)I

where

cos ,=o- _ L/D r (3-21)

is the cosine of the bank angle required to maintain zero altitude acceleration.

equation of motion for vehicle altitude can be written as

The linearized

v,'_ = -g + "-'F" + _ cos4' (3-22)

Substituting the control of Eq. (3-20) into this equation shows the resulting linearized altitude

response to be

"_ + ( 1Ca DL )Kgh + ( 1C8 DL ) Kh(h-hc,,,is,) = 0 (3-23)

By analogy to a second-order spring/mass/damper system [17], expressions for the natural fre-

quency and damping ratio are given by

1 L

2_co_ = --_-_- K_ (3-24)
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1 L
_o_- CB O K_ (3-25)

Thus, for given vehicle characteristics (L/D, CB) and desired damping and natural frequency, the

appropriate control gains can be computed using

2 CB (3-26)
Ki- L/D _"

Kh- C8 co2 (3-27)
L/D

Damping ratio and natural frequency values of

= 1.50

co. = 0.06 radians/second

were chosen empirically for this study. For the biconic vehicle examined, the resulting control

gains are

Kh = 2.46

K_ = 123 •

These gains were found to provide good response to target altitude overshoot during the capture

phase and quick damping of bank reversal-induced altitude rates.

Cycling of the constant altitude cruise guidance is initiated immediately after termination of

capture guidance cycling and is terminated when the inertial velocity drops below 4400 m/s. The

guidance is cycled at a frequency of 1.0 Hz.
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3.4 EXIT PHASE

3.4.1 GUIDANCE TARGET SELECTION

The ultimate goal of the aerocapture maneuver is to control flight path conditions at atmo-

spheric exit such that the fuel required for propulsive insertion into the target orbit is as small as

possible. The target orbit is specified by its apoapsis and periapsis altitudes. Since only one con-

trol (_b) is available, the decision must be made as to whether apoapsis distance, periapsis dis-

tance, or some combination of both should be controlled during the exit phase. Several trade-offs

can be examined in making this decision:

1. For the target orbit used in this study (2000 kin by 350 kin), approximately 50% more

fuel is required to correct a periapsis error than an apoapsis error of the same magnitude.

2. Sensitivity of fmal apoapsis to bank angle is much greater than sensitivity of final periapsis

to bank angle.

3. For a cruise altitude of 34 km, the maximum possible exit periapsis altitude achievable is

approximately 56 km (with nominal atmospheric density conditions).

4. Lift-down (q_ > 90 °) is required to raise periapsis altitude during the exit phase.

While the first item suggests that periapsis control is more desirable, the second indicates that the

error in apoapsis induced by controlling only periapsis would overwhelm any potential fuel say-

hags. The third item suggests that very limited improvement in periapsis altitude is possible, even

with full lift-down commanded over the entire exit phase. Raising the periapsis oy 22 km during
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exit resultsin lessthan5 m/ssavingsin requiredpropulsiveAV for insertion, an amount which

would be negated by an apoapsis miss of only 35 kin.

Because of the possibility of unpredictable density fluctuations, it is desirable to fly the exit

phase with a bank angle of approximately 90 ° to maintain control margin. This constraint would

be violated by the fourth item if periapsis were controlled, since the tendency of the guidance

would be to command lift-down to raise periapsis. Based on these considerations, it was decided

to control only exit apoapsis altitude during the exit phase and to leave periapsis altitude uncon-

strained.

3.4.2 GUIDANCE DESCRIPTION

The purpose of the exit phase guidance is to compute bank angle commands to control the

vehicle to the desired target apoapsis at atmospheric exit. The exit guidance algorithm is very

similar to the capture phase guidance, with a numerical predictor/corrector algorithm used to

compute the constant bank angle required to hit the specified target. The nominal guidance cycle

is as follows:

1. Set predictor bank angle to current command (qbc)

2. Initialize predictor state vector to current navigation system estimated state

3. Predict atmospheric exit apoapsis altitude

4. Set predictor bank angle to _b_ + A_bp

5. Repeat steps 2 and 3
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6. Usingresultsof steps3 and 5, compute the sensitivity of exit apoapsis altitude to bank

angle

7. Compute and limit correction to _ to null target miss

The predictor/corrector cycle is repeated until guidance convergence criteria are met.

The exit phase is initiated immediately after termination of the constant altitude cruise phase.

Initially, full lift-up (1_,1 -- 15°) is commanded and held until the predicted bank angle required

to hit the apoapsis target becomes greater than 80 °. This is done to assure that the exit phase is

begun with nearly zero vertical lift to provide control margin for thick or thin density shifts which

might occur in the future. Exit phase guidance cycling is terminated when the measured aero-

dynamic load factor drops below 0.05 g's.

3.4.2.1 PREDICTION ALGORITHM

The exit phase predictor utilizes the same set of equations as the capture phase predictor (see

"3.2.2.1 PREDICTION ALGORITHM" on page 55). The prediction time step during this

phase has been increased to 8 seconds without affecting the accuracy of the solution. The predic-

tion is terminated when the predicted aerodynamic load factor drops below 0.01 g's or the altitude

becomes negative. In the latter event, the current predictor bank angle is decremented until the

predicted trajectory exits the atmosphere.

3.4.2.2 CORRECTION ALGORITHM

The exit phase correction _ogic is the same in principle as that of the capture phase; that is,

the control correction is based on a truncated Taylor series expansion of the target miss in terms
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of the control (see "3.2.2.2 CORRECTION ALGORITHM" on page 57). The Taylor series

expansion of Eq. (3-14) can be modified for the exit phase simply by replacing the cruise altitude

miss, h,,, by the target apoapsis miss, ho,. After truncation, the control correction to null the tar-

get miss is computed as

[ Oho" 1-' (3-28)A4,o= - a4,oJ ho.,

The sensitivity term in Eq. (3-28) is found using the results of two predictions using the current

control command and a perturbed control command. If the resulting exit apoapsis altitudes are

ho_and ho2respectively, then

Oh°,. ho_- hal
__ (3-29)

and

h.,,,l = h°t - ho,.._., (3-30)

The control is now corrected using Eq. (3-19).

As in the capture phase, care must be taken to account for the linear nature of the above sol-

ution. At the start of the exit phase, the control sensitivity is extremely high, but it rapidly falls

off as the vehicle nears atmospheric exit. It has been observed that large overcorrections and con-

vergence problems can result due to large control sensitivity early in the exit phase. This problem

lessens as the sensitivity decreases.

as foUows:

ah .
for

a4_c

Oh°,
for

a4_,

Therefore, the magnitude of the control correction is limited

_> 150 km/deg

< 150 km/deg
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The guidance convergence criteria also depend on the magnitude of the control sensitivity. The

guidance is considered to be converged if

0h,.
IA_b_l -< 0.1 ° for 0_b_ > 150km/deg

Oho.
[A_b¢ I _ 1.0 ° for O_b_ _ 150 km/deg

or ff the predicted target miss is less than 1 kin. The guidance typically converges in one or two

iterations after the initial guidance cycle.

3.5 ORBIT PLANE CONTROL

Control of the final orbit plane orientation is achieved by commanding bank angle sign

reversals in order to null the error between the current plane and the target plane. The target

plane is defined by a unit vector in the direction of the angular momentum vector, denoted /-h/d-

Since the position and velocity vectors will have no projections onto /_h/dif the vehicle is in the tar-

get plane, the current plane error can be viewed in terms of the projections of these vectors onto

_d and the plane control problem as one of driving these projections to zero. The position and

velocity errors can be viewed as angular errors if written as

y.g_
0, = r (3-31)

v / o t_a
Ov - vh (3-32)

where vh is the projection of the velocity vector onto the local horizontal plane.

Since the only plane control available is the sign of the bank angle, only one of the above

errors or a combination of the two can be controlled at a time. It has been decided to control
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only the velocity error 0_ over the entire aerocapture maneuver. As discussed in Reference [9],

little can be done to control the position error over the aerocapture trajectory. One particular

danger in controlling 0, is that a large out-of-plane velocity may be commanded to null the posi-

tion error, thereby resulting in a large final velocity error which will require much more fuel to

correct than will have been saved by the decrease in 0r. On the other hand, if 0, is controlled, the

amount and direction of _rowth in 0r are indirectly controlled since the position error is essentially

the integral of the velocity error. Thus, it is seen that 0r can at least be bounded by attempting to

"average out" the direction of 0, over the aerocapture trajectory.

Control of 0_ is achieved by constructing an error corridor which defmes the maximum

allowable error at each point along the trajectory. When 0, becomes larger than the corridor

width, a sign reversal is commandedto drive the error in the opposite direction. The width of the

corridor decreases along the trajectory to reflect decreasing trajectory control authority. The O,

control corridor is illustrated in Figure 3-3 on page 67. During the capture phase, the corridor is

held constant at a value of 4.16 °. In the constant altitude cruise and exit phases, the corridor

decreases linearly with velocity down to a minimum value of 0.16 °. The shallow slope during

cruise was chosen in an attempt to prevent unbalanced growth of 0r in either direction while still

reflecting the decreasing control authority with time. The slope is increased during exit due to the

more rapid decrease in control capability.

Although 0r is not explicitly controlled, the impact of an initial position error can be lessened

by choosing the sign of the initial bank command during the capture phase such that 0r is

decreased instead of increased. This implies that the sign of the initial bank command, which has

a magnitude of 90 °, should be chosen as

SIGN(cbco) = SIGN(Oro )

where 0,0 is the plane position error at the start of aerocapture guidance cycling.
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Figure 3-3. Velocity Error Control Corridor

The direction in which the vehicle rolls in executing a bank reversal is based on the magni-

tude of the current command. During the t'n'st two guidance phases, bank reversals are through

the shortest distance; that is, if [ q_cI < 90°, the vehicle rolls over the top, and if I_bcI > 90 °, the

vehicle rolls through lift-down. In the exit phase, the vehicle roils over the top if I_bc I < 110 ° in

order to offset the tendency of rolling through lift-down to drive the commanded bank to lift-up,

causing excessive periapsis altitude loss.
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CHAPTER 4

COMPUTER SIMULATION PROGRAM

4.1 INTRODUCTION

This chapter presents a description of the computer simulation program written for testing

and evaluation of the proposed navigation and guidance algorithms. The simulator is coded in

MAC, a computer language which allows straightforward programming of vector and matrix alge-

braic operations. (MAC was developed and is used exclusively at the Charles Stark Draper Labo-

ratory, Inc.). Overall program functional flow is described, including major inputs, outputs, and

functions of key subroutines. In addition, environment models of the planet Mars and the aero-

capture vehicle are presented.

4.2 SIMULATOR PROGRAM FUNCTIONAL DESCRIPTION

A functional diagram of the computer simulation program written for analysis and testing of

the navigation and guidance systems is presented in Figure 4-1 on page 70. The simulator is con-

structed as an executive program calling five major subroutines at different rates. The principle

subroutine inputs and outputs are also shown in Figure 4-1.

The executive program controls overall simulation cycling and sequencing. All data input

and program initialization functions are performed here, along with principle simulation output

and file data storage. This program also contains the simulation environmem, _vherein the vehicle

state is propagated based on force inputs from the environment models. The environment state is

considered to be "truth" against which the navigation system performance can be measured.
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Subroutine MARSATM contains the atmosphere model described in "4.3.2 ATMOSPHER-

IC DENSITY MODEL" on page 72, including the density perturbation equations. Based on the

input environment altitude, linear interpolation is used to determine the current nominal density.

If desired, the new density perturbation is computed based on the old value and input values of

the horizontal and vertical distances flown since the last subroutine call.

Subroutine IMU contains the IMU model described in "2.2 INERTIAL MEASUREMENT

UNIT" on page 35. The erroneous output specific force, _a/, is computed based on the true spe-

cific force _,, from the environment. Also included in this subroutine is the calculation of the

body-to-inertial transformation matrix, C_.

Subroutine NAVFILT contains all of the navigation system functions described in

"Chapter 2. NAVIGATION SYSTEM DESIGN" on page 35. The main input to the subrou-

tine is the measured specific force vector, which is used for state vector estimate propagation and

density altitude measurement incorporation. The main subroutine outputs are the estimated posi-

tion, velocity, and density bias.

Subroutine ACGUID contains the aerocapture guidance algorithm equations as described in

"Chapter 3. GUIDANCE DESIGN" on page 51. All guidance computations are based on the

position, velocity, and density estimates from the navigation subroutine.

Subroutine AUTOP is a roll autopilot designed to execute bank maneuvers given finite roll

rate and acceleration limits. Based on these limits, the autopilot computes the times of maximum

acceleration and deceleration required to achieve the desired bank angle in minimum time. The

direction in which the vehicle rolls is determined by the magnitudes of the current and desired

bank angles and, in the case of bank reversals for plane control, on the command from the gulct-
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anceto roll throughlift-upor lift-down. Themaximumroll rateandroll accelerationhavebeen

setto 20deg/sand5deg/s2,respectively,forthisstudy.

4.3 ENVIRONMENT MODELS

4.3.1 PLANET MODEL

The planet Mars has been modelled in the environment as a sphere of radius 3397.20 km.

The gravitational attraction is thus given by

/_ (4-1)
gm-- r2

where

= 42828.2804 km3/sec 2

is the gravitational parameter and r is the distance from the center of Mars to the center of mass

of the spacecraft. The planet is assumed to rotate about its North polar axis at a constant rate of

w1M = 7.088218127x 10 -s rad] sec

The above physical constants were obtained from Reference [18].

4.3.2 A TMOSPHERIC DENSITY MODEL

The COSPAR northern summer atmosphere model [19] was chosen as the nominal simu-

lation atmosphere. Table 4-1 on page 74 lists the density profde values given by the model and

Figure 4-2 on page 75 [19] shows a graphical comparison of this data with the density profdes

computed from Viking I and II and Soviet Mars 6 entry trajectory data. The nominal density
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profile is implemented in a table look-up subroutine with linear interpolation used to fmd density

values at altitudes between the table data points.

In reality, the actual atmospheric conditions encountered by the spacecraft during aerocapture

will never exactly match the nominal model. In order to include the effects of off-nominal density

conditions, the environment density is modelled as

p_=(1 + bp)poo. (4-2)

where p,o,= is the nominal density as described above and bp represents a percentage deviation of

the true density from the nominal. This perturbation has been modelled as a ftrst-order Markov

process followed by a low-pass falter for attenuation of high frequency variations. The density per-

turbation factor is computed as

b+ = bp- + 0.05(_ + - b_-) (4-3)

where

¢+ ¢- +
= abp _bp

abp = e

_/1 -- a_p _ (4-4)

(4-5)

(4-6)

In this model, _rbp is the standard deviation of the density perturbation and _/ is a normally dis-

tributed random variable with mean zero and standard deviation one. In the autocorrelation

function abp, Ad and Ah are the horizontal and vertical distances traversed since the last subrou-

tine call, and SHoR and SveRr are horizontal and vertical scale distances. The Markov process

model for density perturbations is similar to that used in the Global Reference Atmosphere
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Table 4-1. COSPAR Northern Summer Density Profile

Altitude Density Altitude Density
(km) (kg] n_) (km) (kg/ rnO)

0 1.56E-02 50 1.08E-04
2 1.30E-02 52 8.54E-05
4 1.08E-02 54 6.69E-05
6 9.07E-03 56 5.24E-05
8 7.65E-03 58 4.09E-05
10 6.47E-03 60 3.19E-05
12 5.45E-03 62 2.47E-05
14 4.57E-03 64 1.91E-05
16 3.81E-03 66 1.48E-05
18 3.17E-03 68 I. 14E-05
20 2.63E-03 70 8.75E-06
22 2.18E°03 72 6.70E-06
24 1.79E-03 74 5.12E-06
26 1.47E-03 76 3.92E-06
28 1.20E-03 78 3.00E-06
30 9.81E-04 80 2.29E-06
32 7.98E-04 82 1.75E-06
34 6.48E-04 84 1.34E-06
36 5.24E-04 86 1.03E-06
38 4.23E-04 88 7.87E-07
40 3.40E-04 90 6.03E-07
42 2.72E-04 92 4.62E-07
44 2.17E-04 94 3.54E-07
46 1.73E-04 96 2.7 IE-07
48 1.37E-04 98 2.08E-07

100 1.60E-07

(GRAM) [20]. A Markov process followed by low-pass filtering was used in [21] to generate

density shear profdes for use in Earth aerobraking studies. This model is intuitively satisfying

because it contains the decreasing correlations with distance moved which would be expected due

to the continuous nature of the fluid atmosphere mass.

The choice of the density perturbation model parameters is difficult due to the lack of global

Mars atmosphere data. The intention here is not to simulate a perfectly accurate model of the
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Figure 4-2. Nominal Density Model Comparison with Flight Data

Mars atmosphere, but to provide physically reasonable density variations to account for the

dynamic nature of the atmosphere for testing of the navigation and guidance systems. Thus,

parameter values were chosen to provide density variations of reasonable magnitude and duration.

A value of 25% was chosen for and it is assumed that this value is constant throughout the
abp,

atmosphere. It was also assumed, for lack of better information, that the horizontal and vertical

scale distances are the same as those used for the Earth atmosphere in the GRAM model. These

are computed as [20]
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SHoR = 900 + 6h (4-7)

SvERr = 5 + 0.05h (4-8)

where h is the current altitude.

4.4 VEHICLE MODELS

4.4.1 EQUATIONS OF MOTION

The aerocapture vehicle examined in this study is a biconic lifting body similar in design to

the con_figuration shown in Figure 1-2 on page 30. For the purpose of preliminary guidance and

navigation systems analysis, only the translational dynamics of the vehicle need be modelled in the

simulation. Therefore, the motion of the spacecraft is found completely by solution of the

equations of translational motion of the center of mass as given by

d_r1
- v I (4-9)

dt

d_l = gl + a_j_, (4-10)
dt

where

tz _rz (4-11)gt =
- r2 r

i Di, + Li_y (4-12)

D = _ (4-13)
C_
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L
L- D D (4-14)

1
= T p"" v;_, (4-15)

i_, = UNIT(v_._,) (4-16)

i_. = UNIT(ix x r9 (4-17)

_/y= cosf(LxL)+ sin_b_/, (4-18)

The vehicle lift-to-drag ratio and ballistic coefficient are assumed to be constant with values of

L
-- = 1.5
D

Cs = 1025 kg/m 2

for the vehicle examined. The environment equations of motion are integrated numerically using

a fourth-order Runge-Kutta algorithm with a step size of one second.

4.4.2 AERODYNA371C HEA TING

The convective heating rate during atmospheric fright can be computed from an empirical

formula given in [22]. The heating rate is given by

3.5

Q = _865"0 _( 10000v" ) (4-19)

in units of Btu[ft2/s. In this equation, R, is the vehicle nose radius in units of feet and PsLe is the

nominal sea-level atmospheric density on Earth. Value_ o[

R. = 1.640fi
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PsLe = 1.226kgl m3

were used for these parameters in the simulator.

heating is computed as

Q(t) = J_O_(rldr

The integrated heat load due to aerodynamic

(4-20)
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CHAPTER 5

PERFORMANCE RESULTS

5.1 INTRODUCTION

This chapter presents the results of a selection of cases illustrating the performance of the gui-

dance and navigation algorithms described in this thesis. The intent here is not to provide

exhaustive data coveting all possible dispersions, but to examine a limited number of strenuous

cases which lend insight into systems performance characteristics. The nominal aerocapture tra-

jectory is fn'st described and illustrated for reference. Next, the performance of the navigation sys-

tem alone is examined. Finally, combined guidance and navigation performance for a number of

cases of interest is discussed.

Individual test cases are identified by a six digit number followed by one or two letters. The

first two digits identify a specific vector of initial position and velocity errors chosen from a set of

I00 random samples. The final four digits are the initial seed for the random number generator

which is used for computing density variations, radar altimeter errors, and IMU errors. The let-

ters indicate which measurement types are incorporated by the navigation fdter: "D" indicates

density altitude measurements and "R" indicates radar altimeter measurements.

5.2 NOMINAL AEROCAPTURE TRAJECTORY

The nominal aerocapture trajectory is defined to be the atmospheric path flown with initial

conditions defined on the nominal Mars approach hyperbola and with no navigation errors or

atmospheric density dispersions. The nominal initial vehicle position and velocity vectors are
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constructedusingaltitude,speed,flightpathangle,andazimuthanglevaluesspecified at a given

latitude and longitude. Table 5-1 on page 81 lists the quantities which define the nominal vehicle

state initial conditions used in this analysis. The initial velocity was chosen as a typical value in

the range of possible Mars approach speeds [22]. The initial flight path angle corresponding to

this speed was selected to center the nominal trajectory in a corridor defined by tolerable known

trajectory dispersions; that is, with the given nominal flight path angle, equal levels of known pos-

itive and negative initial correlated altitude/flight path angle dispersions can be tolerated without

violating minimum or maximum aerocapture altitude limitations.

Major trajectory and control parameters for the nominal aerocapture trajectory are plotted in

Figures 5-1 through 5-7. Figures 5-I through 5-3 are graphs of the nominal altitude, velocity, and

inertial flight path angle time histories, respectively. Figure 5-4 shows the aerodynamic load fac-

tor experienced by the vehicle along the trajectory. The bank angle history for the nominal case

is shown in Figure 5-5. Figure 5-6 is a plot of the cosine of the commanded bank angle versus

time. This plot gives an indication of vehicle in-plane (vertical) lift capability required for trajec-

tory control, with values of plus and minus one implying the utilization of all available control

authority. Finally, Figure 5-7 on page 88 shows the time histories of 0r and 0_, the orbit plane

position and velocity angular errors defined in Equations (3-31) and (3-32) . The 0v control corri-

dor has also been plotted to illustrate the performance of the orbit plane control routine.
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Table5-1.NominalEntryStateDefinition

Parameter Value

Altitude 243.840 km

Velocity 5900 m/s

Inertial Flight Path Angle - 16.745 °

Azimuth Angle 0°

Latitude 0 °

Longitude 0°

5.3 NAVIGATION SYSTEM PERFORMANCE

5.3.1 ESTIh/IATOR INITIAL CONDITIONS

Prior to initiation of navigation system cycling, the estimator state vector and error covari-

ance matrix must be initialized. The seven-dimensional fdter state vector is initialized as

A

X. 0 =

LK, o]

3641040 m
0m
0m

-- 1699.86 m/s
0 m/s

5649.82 m/s

0

(5-1)
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using the nominal approach state parameters defined in Table 5-1. The construction of the initial

position and velocity estimates assumes that the Mars-centered inertial frame is initially aligned

with the vertical/crosstrack/downrange (V/CT/DR) coordinate frame with axes defmed as

iv = UNIT(r_9 (5-2)

i_cr = UNIT(v_' x r_9 (5-3)

JoR = gg x Jcr (5-4)

The fdter error covariance matrix elements can be initialized based on Mars approach naviga-

tion results. Radiometric and optical navigation techniques allow the estimation of vehicle state

parameters on the approach hyperbola, and the statistics of the state errors at the start of aerocap-

ture are determined by the accuracy, frequency, and quantity of measurements taken. The initial

error covariance matrix utilized in this study is given in Table 5-2 on page 90. The covariances

between state elements are shown above the main diagonal, while the correlation coefficients are

given below the main diagonal. The position and velocity terms in the matrix correspond to the

vector components in the V/CT/DR frame defined in Equations (5-2), (5-3) , and (5-4). The six-

dimensional position and velocity submatrix was found by linear propagation of the error covari-

ance matrix from 24 hours before periapsis on the inbound hyperbola until 1 hour before

periapsis with optical star angle measurements incorporated every hour. Initial conditions for this

propagation were taken from expected Deep Space Network (DSN) trac-ldng accuracies on the

interplanetary trajectory. It is seen that strong correlations exist between vertical position and

most other position and velocity components. This indicates that both density altitude and radar

altimeter measurements will cause updates to all state components even though they are essential-
...

,y only measurements of vertical position.
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Table5-2.InputFilterErrorCovarianceMatrix

V eos.

CT Pos.

DR Pos.

V Vel.

CT Vel.

DR Veil

V Pos.

7.746E8

0.9871

0.5835

0.9942

-0.9865

-0.9996

0.0

CT Pos.

6.148E8

5.010E8

0.5061

0.9908

-1.0000

-0.9840

0.0

DR Pos.

5.143E7

3.587E7

1.004E7

0.4923

-0.5021

-0.6058

0.0

V VeL

3.022E5

2.422E5

1.703E4

1.193E2

-0.9908

-0.9907

0.0

CT VeL

-3.734E5

-3.044E5

-2.163E4

- 1.472E2

1.851E2

0.9832

0.0

DR VeL

-3.499E5

-2.770E5

-2.413E4

-1.361E2

1.682E2

1.582E2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.09

5.3.2 ERROR DEFINITION AND h'VITIALIZA TION

Navigation system performance results can be expressed in terms of the differences between

estimated quantities or parameters calculated using these quantities and the true values as con-

tained in the simulation environment. The estimation errors presented here are formally defined

as the difference between the estimated and true quantities, that is

estimate error = estimated value - true value
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Theinitialvaluesof fdterstateestimateerrorsareincorporatedby offsettingtheenvironment

statefromtheestimator(nominal)stateatthestartof aerocapture.Theinitial errorsin thesix-

dimensionalposition/velocityvectorestimatearerandomsamplesgeneratedstatisticallybasedon

the inputcovariancematrixof Table5-2. Thus,the initial positionandvelocityerrorcompo-

nentsreflectthecorrelations contained in this matrix. The initial density bias error, bpo, is com-

puted simply as a sample of a normal, zero mean random variable with standard deviation .
_rbp

5.3.3 NAVIGATION TEST CASES

Two cases are discussed here in detail in order to illustrate basic concepts of navigation filter

performance. The first case examines system performance in the presence of a 100% thick (3a)

atmosphere (bp = 1.0), both with and without the inclusion of radar altimeter measurements.

The initial position and velocity errors for this case place the vehicle on a trajectory which is

lower and more steep than the nominal. The second case examines system performance .in the

presence of a variable density shear profde. The initial position and velocity errors for this case

place the vehicle on a trajectory which is higher and more shallow than the nominal. Results

using the full covariance matrix, with all covariance terms included, and a diagonal covariance

matrix, with all of the off-diagonal covariance terms deleted, are presented. All navigation system

performance runs were made with the orbit plane control logic inactive so that no bank reversals

were executed.

5.3.3.1 + 100% CONSTANT DENSITY BIAS CASES

5.3.3.1.1 FULL COVARIANCE (NO RADAR ALTIMETER): Performance of the navigation

algorithm with no radar altimeter measurements is shown in the graphs of Figures 5-8 on page 95

through 5-15 on page 102 for the 100% thick constant density bias case.
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Figure5-8onpage95showsthetruepositionerrorcomponentsin theV/CT/DRcoordinate

frame. It is seenthatcorrectionsaremadeto all threepositioncomponentsat the initiationof

densityaltitudemeasurementincorporationat approximatelyt= 100s dueto the initial corre-

lationsin the covariancematrix. Oneshouldnote,however,that the verticalpositionerror,

whichis essentiallyequivalentto thealtitudeerror,is initiallyreducedfrom22800m to alevelof

onlyapproximately-4000m andthatthiserrorremainsnearlyconstantthroughoutaerocapture.

This constant"altitude error can be explained by examining the problem of simultaneous esti-

mation of altitude and density bias using density altitude measurements. The corrections to verti-

cal position and density bias are a function of the measurement residual, which is the difference

between the actual and estimated values of the density altitude measurement (see Eq. (2-13)). By

reference to the density altitude measurement equations, Eq. (2-39) and (2-43) , it is seen that

either an altitude error or a density error will result in a nonzero residual, with the problem being

that the two are indistinguishable given the nature of the measurement. In other words, a given

residual could be the result of an altitude error, a density error, or a combination of both. The

task becomes one of choosing how to weight the initial altitude and bias corrections given the

uncertainty in the source of the residual. The amount of the residual attributed to each error

source is essentially determined by the respective variance values in the covariance matrix prior to

the update. For the case under examination, attributing the entire residual arising from an alti-

tude error of 22800 m and density bias of + 100% to just an altitude error would result in an

overcorrection of 5300 m, or an altitude estimate error of approximately -5300 m (using the expo-

nential density profde of Eq. (2-37) with an estimated altitude of 75 km at the time of the meas-

urement). This maximum error will increase with decreasing measurement altitude due to

increasing density model scale height. The covariance matrix loading used in this analysis was

chosen to attribute most, but not all, of the initial residual to altitude error since this appears to

be its main contributor. Figure 5-12 on page 99 shows the true and estimated values of the

atmospheric density bias. It is seen that, with the given covariance matrix loading, the filter esti-

mates the bias at only 22% after the ftrst measurement. This means that an altitude error cquiv-
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alentto a + 78% density bias (approximately -4400 m) should result to account for the entire

initial measurement residual. This agrees closely with the actual results in Figure 5-8.

Figure 5-9 on page 96 shows the rms values of the position error components for the

+ 100% density bias case. The rms error is simply the square root of the corresponding diagonal

element of the current filter error covariance matrix, and can be thought of as the level of estimate

accuracy the fdter "thinks" it has achieved. The rms vertical and crosstrack position errors are

very close to the actual error magnitudes, while the rms downrange error indicates that the ftlter is

sfightly optimistic in light of the actual error.

Figures 5-10 on page 97 and 5-11 on page 98 show the actual and rms velocity errors, respec-

tively. The initial correlations with vertical position result in reduction of the error magnitudes in

all three components below their initial values. The rms errors vary around approximately 4 m/s,

which means that the filter is slightly optimistic since the actual vertical and downrange velocity

errors approach -6 m/s and + 6 m/s, respectively, near atmospheric exit.

Figure 5-12 on page 99 shows the actual and estimated values of atmospheric density bias.

It is seen that the density bias estimate never exceeds 32%, and that small variations in the esti-

mate occur due to changing altitude. Again, this is due to the nature of the density altitude meas-

urement error and the nearly constant vertical position error established by the first measurement

update. An interesting phenomenon is illustrated in Figure 5-13 on page I00, which shows the

percentage errors in estimated density bias and calculated density. Despite errors in excess of

-70% in the estimated density bias, errors in the density (calculated using this estimate and the

estimated altitude) remain near zero for the duration of measurement incorporation. This can be

explained in light of the mechanics of the Kalman fdter. Essentially, the ftlter is attempting to

drive the measurement residual, ur the difference between the measured and estimated density alti-

tudes, to zero. This is equivalent to driving the difference between the the measured and esti-
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mateddensitiesto zero. Sincethefdteris estimatingaltitudeanddensitybias,thetwo major

errorsourcesin thecalculationof density,theestimatesof thesequantitieswiUbecorrelatedso

that theresidualis drivento zero. Thus,thecorrectionsto verticalpositionanddensitybias,

whicharecorrelatedthroughthecomponentsof themeasurementsensitivityvectorof Eq.(2-44),

aremadesuchthattheresultingerrorshaveacancellingeffectin thecalculationof theestimated

densityby Eq.(A-5). It is thereforeseenthattheaccuracyof theestimateddensity,whichis the

quantityof interestfor calculationof aerodynamiccontrolcapabilityin theguidance,canbekept

veryhighevenin thepresenceof largeerrorsin individualparametersusedin itscalculation,pro-

videdthattheseparametersareestimatedtogetherin thefdter.

Figure5-14onpage101isaplotof theerrorsinorbitalapoapsisaltitude,periapsisaltitude,

andsemi-majoraxis. Theerrorin apoapsisaltitudeis of concernbecauseof its effecton exit

phaseguidancetargeting.Thespikeat t = 200s indicatesthe pointat whichtheorbitalenergy

hasbeendecreasedto thelevelat whichtheMars-relativeorbit becomeselliptical.Theerrorsin

apoapsisandperiapsisaltitudesarereducedto approximately17km and-3 kin, respectively,by

theendof aerocapture.Theerrorin semi-majoraxisresultsfor themostpartfromtheerrorsin

verticalpositionanddownrangevelocity,whicharenearlyequivalentto theerrorsin altitudeand

velocitymagnitude,respectively.

Theerrorsin theestimatesof theout-of-planepositionandvelocity angles, 0, and 0,, are

plotted in Figure 5-15 on page 102. Our main concern is with 0,, which is the variable used in

orbit plane control. Accuracy in the estimate of 0, is important since fuel requirements for cor-

rection of plane errors after aerocapture are very high, and plane control performance, especially

during the exit phase, is very sensitive to the estimate accuracy. The error in 0, is reduced from

.12 ° to -.02 ° by the ftrst measurement update and remains fairly constant. Without this cor-

rection, the error would have been unacceptably large since it was on the order of the 0, control

corridor width during exit (0.16°).
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5.3.3.1.2 FULL COVARIANCE (WITH RADAR ALTIMETER): Figures 5-16 on page 105

through 5-23 on page 112 illustrate navigation performance for the + 100% density bias case with

radar altimeter measurements included prior to aerocapture.

The actual V/CT/DR position error components are shown in Figure 5-16 on page 105.

The In'st radar altimeter measurement is incorporated at t = 86 s, 17 s before the start of density

altitude measurements. Using the altimeter measurements, the vertical position error is brought

down to less than 500 m before density altitude measurements begin. The accuracy of the down-

range and crosstrack components is also improved over the previous case, where only density alti-

tude measurements were incorporated. The improved accuracy is realized due to the accuracy of

the altimeter measurements and the fact that the entire measurement residual can be attributed to

a vertical position error. The rms position errors axe graphed in Figure 5-17 on page 106.

Figures 5-18 on page 107 and 5-19 on page 108 are plots of the actual and rms velocity error

components, respectively. A general improvement in the accuracy of the estimates over the case

with no altimeter measurements is seen.

The actual and estimated density bias values are shown in Figure 5-20 on page 109. Since

the altitude error has been decreased to a small value by the time density altitude measurements

are initiated (as is indicated by the actual and rms vertical position errors), it can be safely

assumed that most of the measurement residual can now be attributed to density bias, and that

the measurements should be used to correct the density bias estimate and not the vertical position

estimate. It is seen in Figure 5-20 that the falter response is to do exactly this. The ftrst few mea-

surements bring the estimate within the range of the true bias, and the density bias estimate

remains much closer to the actual than in the case where altimeter measurements were not used.
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Comparisonof thenavigationperformancefor thecaseswith andwithoutthe inclusionof

radaraltimetermeasurementsshowsthat someimprovementis realizedthroughthe useof the

altimeter.However,it shouldberememberedthata + 100%constantdensitybiasisaworstcase

scenario,andthatrelativeimprovementof navigationresultsusingtheradaraltimeterwill dimin-

ishwithdecreasinginitial densitybias. Thiswill beseenin thedensityshearresultsin thenext

section.Also,theassumederrorcharacteristicsof thealtimeterusedin thisstudyprovideameas-

urementaccuracyof betterthan2km. It isseenfromthecasejustexaminedthattheadditionof

altimetermeasurementswill providelittle or no improvement in navigation performance over den-

sity altitude measurements alone if the altimeter measurement accuracy level is more than approx-

imately 5 km.
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5.3.3.2 DENSITY SHEAR CASES

5.3.3.2.1 FULL COVARIANCE (NO RADAR ALTIMETER): Figures 5-24 on page 114

through 5-30 on page 120 show navigation performance results for a case in which the atmospher-

ic density bias is no longer constant, but varies dynamically with position.

The actual and estimated density bias profiles are shown in Figure 5-28 on page 118. The

true density bias varies widely over the trajectory, with "shears" of up to 60% occurring. Density

altitude measurement incorporation is initiated at approximately t = 150 s. It is seen that the first

density bias correction is very large and is applied in the wrong direction. While a portion of this

miscorrecfion can be attributed directly to the vertical position error, it was found that most of it

is due to the error in the density model scale height induced by the large negative vertical position

error (see Eq. (2-38)). Figure 5-24 shows that the vertical position error is reduced to less than

1000 m by the first measurement, so that the error in the density model scale height will also be

greatly reduced for the second measurement. Referring again to Figure 5-28, it is seen that the

correction due to the second measurement is in the opposite direction Of the first correction, effec-

tively cancelling the scale height-induced error.

The density bias estimate plot shows that the filter actively tracks the dynamic density vari-

ations over the trajectory. It should be noted, however, that the estimated profile is offset from

the actual profde. This offset is due primarily to the vertical position estimate error which

remains after the first few measurement updates. It is also partially due to the fdter model of the

density bias. Although the filter noise level is kept high to keep it tracking the dynamic vari-

ations, tracking accuracy is affected by both the time constant of the Markov model and the mea-

surement update rate.
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5.3.3.2.2 FULL COVARIANCE (WITH RADAR ALTIMETER): Performance of the naviga-

tion system with radar altimeter measurements for the density shear case is illustrated by the plots

of Figures 5-31 on page 122 through 5-37 on page 128.

Again, the main contribution of the radar altimeter measurements is to increase the accuracy

of the vertical position estimate, thereby allowing better determination of the density bias. Since

the vertical position error is decreased, the offset of the estimated bias profile from the actual pro-

fde in Figure 5-35 on page 126 is also decreased. The improvement seen with the addition of

altimeter measurements in this case is not as dramatic as in the + 100% constant density bias case

because the actual density bias at the time of the first density altitude measurement is very small

and contributes little to the measurement residual.
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5.3.3.2.3 DIAGONAL COVARIANCE (NO RADAR ALTIMETER): The density shear case

under examination is now run with all but the diagonal elements of the input covariance matrix of

Table 5-2 on page 90 set equal to zero. The navigation performance results with no radar altime-

ter measurements are shown in Figures 5-38 on page 131 through 5-44 on page 137.

The deletion of the covariance terms in the input covariance matrix is a more conservative

approach to navigation system performance determination. For the actual flight, these terms

might not be available or their accuracy might be in question, so that it could be more harmful

than helpful to include them. The safest course in this event would be to only load the diagonal

variance terms and let the correlations build up with time. The obvious shortcoming to the

deletion of the covariance terms is that little or no improvement in the knowledge of state compo-

nents other than vertical position is provided by altitude measurements.

Figures 5-38 and 5-39 show the actual and rms position errors for this case. During the

approximately 150 s between the start of the simulation and the first density altitude measure-

ment, the correlation between vertical position and downrange position becomes nonzero so that

the downrange error is decreased by the measurement. However, since no correlation between

vertical and crosstrack position exists, there is no improvement in the crosstrack estimate. The

velocity error plots of Figures 5-40 and 5-41 indicate that correlations built up between vertical

position and vertical and downrange velocity allow small corrections of these two components,

while the crosstrack velocity estimate remains unaffected.

The impact of the increased errors in position and velocity estimates on key guidance param-

eters is shown in Figures 5-43 and 5-44. In Figure 5-43, it is seen that the error in estimated

apoapsis altitude, which is the guidance target parameter during the exit phase, is nearly 160 kin.

The increase in this error is due for the most part to the increased downrange velocity error,

which is nearly five times as large as in the case run with the full initial covariance matrix. This
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errorisunacceptablyhigh,andwillcausealargetargetmissand,hence,fuelpenalty.Figure5-44

showsthatnocorrectionsaremadeto theestimatesof 0r and 0,, again due to the lack of corre-

lation between vertical position and crosstrack position and velocity. The estimation error in 0_

remains unacceptably high, reaching almost twice the magnitude of the control corridor during

exit.

The results presented here indicate that, for the levels of initial position and velocity errors

examined, the estimation accuracy levels achieved using a diagonal initial filter covariance matrix

are unacceptable. While the accuracy level of the vertical position estimate remains comparable

to the full covariance matrix case, the lack of improvement in the estimates of other state compo-

nents causes errors which will have a large negative impact on guidance performance and could

conceivably result in mission failure.
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5.4 COMBINED GUIDANCE AND NAVIGATION SYSTEMS PERFORMANCE

5.4.1 INTRODUCTION

This section contains a discussion of combined navigation and guidance systems perform-

ance, with emphasis on guidance system response to navigation system-provided inputs. The test

cases presented can be divided under two headings: those with a constant percentage atmospheric

density bias and those with dynamically varying density bias (shear) profdes. Two constant densi-

"ty bias values, + 100% and -50%, were flown for the high/shallow and low/steep initial trajectory

errors used in the navigation test cases in the previous section. These bias values are considered

to be 3a thick and thin cases, respectively. The results of five aerocapture cases flown with differ-

ent density shear profdes axe presented for each of the two sets of initial trajectory errors. These

profdes range from mild variations having little impact on performance to severe variations caus-

ing large target miss values. All trajectories presented were flown without the inclusion of radar

altimeter measurements. Under each bias-type heading, one particular case is described in detail

to facilitate interpretation of the data presented.

5.4.2 PRESENTATION OF RESULTS

Important performance data for the cases included here axe summarized in a set of four tables

for each of the density bias types. The fn'st table sums up total aerocapture performance in terms

of post-aerocapture AV requirements for insertion into the target orbit. Included in this table axe

the values of parameters used in the calculation of these fuel requirements. The propulsive AV

required for insertion into the desired 2000 km by 350 km ellipse, A VoRBtr, is a function of the

apoapsis target miss and the exit periapsis altitude. The AV required to rotate the orbit plane into

its desired orientation, A VeLA_ E, is a function of the angular position and velocity plane errors, 0,
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andOr. The orbit plane orientation error may also be expressed as a single angle, the wedge angle,

which is defined as

6 = arccos(i_ • i_d) (5-5)

where t_ and _d are unit vectors in the direction of the angular momentum vectors of the actual

and desired orbits, respectively. All AV values are computed using the true values of the required

parameters, so that the orbit insertion fuel requirements given are for transfer from the actual

post-aerocapture orbit to the desired orbit. The equations used for calculation of AV require-

ments are derived in "Appendix B. DERIVATION OF ORBIT INSERTION AV

EQUATIONS" on page 199.

The second and third tables show the portions of the total errors in controlled parameters (

h,_ and 0,) which are attributable to guidance errors (the difference between estimated and target

values) and estimation errors (the difference between estimated and true values), respectively. The

third table also lists the estimation errors in the other parameters used for AV calculation.

The fourth table presents values of parameters which directly impact vehicle and trajectory

design constraints. These include the minimum altitude (/%i,, in units of kilometers), the maxi-

mum aerodynamic load factor (g.,_, expressed in Earth g's), the maximum convective heating rate

(Qm_,, in units of watts per square centimeter), and the total aerodynamic heat load (Q, in units of

joules per square centimeter). The values of the latter two parameters will help to dictate the type

and thickness of vehicle heat shielding material required.

In addition to the tabular data, five figures illustrating important guidance, navigation, and

trajectory quantities during aerocapture are included for each cas The first figure is a combina-

tion of density bias, orbit plane error, and bank angle time history plots. This combination

allows examination of the bank angle control response to density bias variations (if present) and
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planecontrolbankreversalcommands.Thesecondfigureis a plotof thecosineof thecurrent

bankanglecommand,whichcanbethoughtof asthefractionof totallift requiredin thevertical

directionfor orbitalenergycontrol.Thethirdfigureisaplotof theactualandestimatedaltitude

timehistories,andthelasttwoplotsshownavigationresultsin theformof positionandvelocity

estimationerrors.

5.4.3 CONSTANT DENSITY BIAS CASES

Performance data for the four constant density bias cases are presented in Tables 5-3 on page

144 through 5-6 on page 145 and Figures 5-45 on page 146 through 5-64 on page 157. Data for

thenominal case has also been included in the tables, and trajectory plots for the nominal case

were given previously in Figures 5-1 on page 82 through 5-7 on page 88.

The results of Table 5-3 indicate that the total AV required for post-aerocapture orbit cor-

rection varied from 65.7 m/s to 74.4 m/s (the minimum achievable AV (given nominal atmospher-

ic density conditions and no plane errors) is approximately 62 m/s, corresponding to a full

lift-down e,,dt phase which hits the apoapsis target while maximizing the final periapsis altitude).

It is seen in Table 5-5 that the maximum aerodynamic load experienced was 3.87 g's, a reason-

ably low value. The minimum altitude constraint was violated in one case (# 031000D, -50%

Density). The inability of the vehicle to pull up before reaching the minimum altitude in this case

is due to the unfavorable combination of a steep entry trajectory with an extremely thin atmos-

phere.

Within the control capabilities of the vehicle, a uniform atmospheric density bias will have

little effect on guidance performance. As explained inthe navigation results, the estimated density

will be very accurate even if density bias and altitude estimates are in error. Thus, vehicle aero-

dynamic control capability will be known very well and the guidance predictions of the capture
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andexitphaseswill beaccuratesincethepredicteddensitymultiplierof Eq. (3-9)is unchanging.

Apoapsistargetmissesin thenominalandall fourof theconstantdensitybiascasesaretheresult

of bankreversalsexecutedduringtheexitphasewhichperturbthetrajectorybeyondthecapabili-

tiesof thevehicleto correct.Thisisdiscussedfurtherfor aspecificcasein thenextsection.

5.4.3.1 DETAILED DESCRIPTION: CASE # 031000D, + 100% DENSITY

Figures 5-45 on page 146 through 5-49 on page 148 contain trajectory, control, and naviga-

tion plots for the low/steep entry trajectory case with a constant 100% thick atmosphere. The

navigation system performance for this case was examined in detail in "5.3.3.1.1 Full Covariance

(No Radar 'Altimeter)" on page 91. Figure 5-45 shows the actual vehicle bank angle response to

guidance system commands. Guidance cycling is initiated at t = 111 s and the initial command is

to roll full-lift up (_bc = 15 °) due to the steep entry trajectory. This command is held constant

throughout the capture guidance phase. The constant-altitude cruise phase is initiated at t = 147 s,

when the estimated altitude drops below the cruise altitude (34 kin). It is here that the effect of

the estimated altitude error discussed in "5.3.3.1.1 Full Covariance (No Radar Altimeter)" on

page 91 can most clearly be seen. While the guidance computes bank angle commands to drive

the estimated altitude to 34 krn, the vehicle is actually flying approximately 4 km higher, as seen

in Figure 5-47 on page 147. Since the velocity magnitude is well known, the cruise altitude error

will simply cause the exit phase, which is initiated when a given velocity depletion has been

achieved, to be started at a later time due to the reduced drag at the true cruise altitude. Thus,

the cruise altitude error resulting because of the uncertainty in the estimated altitude has no crit-

ical impact on the cruise phase guidance.

The effect of bank angle reversals during the cruise phase can be seen in Figures 5-45 and

5-46. The first bank reversal is commanded at t = 170 s, shortly after initiation ot this phase.

Since the current bank command at this time is greater than 90° , the vehicle is commanded to roll
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throughlift-down.Theeffectof thisreversalis to induceanegativealtituderatewhichdrivesthe

vehicleawayfromthecruisecondition.To compensate,it is seenthattheguidancecommands

lift-upaftercompletionof thereversalto drivebacktowardsthecruisealtitude.Thiscompensat-

ingcommandisseenasthe"spike"centeredat t = 184sin Figure5-46,andthevehicleresponse

to thiscommandisseenin thebankanglehistoryplot. Themagnitudeanddurationof thespike,

whichdeterminethetimeto recoverfrombankreversal-inducedeffects,arefunctionsof thecon-

stant-altitudeguidancegainsKh and K_ discussed in "3.3 CONSTANT ALTITUDE CRUISE

PHASE" on page 59.

The exit phase is initiated at t = 247 s when the inertial velocity drops below 4400 m/s. As

was discussed in "3.4 EXIT PHASE" on page 61, the initial exit guidance command is to roll full

lift-up until the required exit bank angle magnitude becomes greater than 80° . This command is

seen as another spike in Figure 5-46 on page 147. After one guidance cycle, the bank angle

required to hit the apoapsis target is computed as 83 °, so that full lift-up is no longer required.

Bank reversals are seen to be the dominant drivers of the bank command during the exit phase for

this case. As the altitude of the vehicle increases and atmospheric exit is approached, aerodyna-

mic control authority (i.e. available vertical lift) decreases rapidly. Therefore, larger and larger

bank angle command increments will be required to compensate for roll reversal-induced effects.

Two reversals are executed during the exit phase. The first, which commands a reversal through

lift-up at t = 256 s, causes a shift of approximately 5° in the commanded bank angle toward lift-

down. This is most clearly seen as a shift in required vertical lift in Figure 5-46. The second

reversal, which commands the vehicle to roll through lift-up at t = 304 s, has a much more signif-

icant effect. The bank command is driven to full lift-down by this reversal, leaving no control

margin for future dispersions and barely enough negative vertical lift to hit the apoapsis target.

In Table 5-3 on page 144, it is seen that the total apoapsis target miss for this case was 10.1

km. Tables 5-4 on page 144 and Table 5-5 on page 145 show that, while the guidance error was
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only3.9km, the error of-6.2 km in the apoapsis altitude estimate boosts the total error to 10.I

km. The lift-down commanded during most of the exit phase, while being undesirable in terms of

control margin, has a positive effect in that it keeps the periapsis altitude high and reduces orbit

correction fuel requirements. The AV required to correct the apoapsis and periapsis errors is 65.9

m/s. The total out-of-plane velocity error, 0_, is seen to be 0.045 °. This is a combination of guid-

ance and estimation errors of -0.021 ° and -0.066 °, respectively. The AV required to correct the

resulting plane orientation error is 6.19 m/s, bringing the total propulsive AV requirement to 72.1

m/s.
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Table 5-3. Aerocapture Performance Results (Constant Density Bias Cases)

ham hp Or 0 v 6

CASE

(km) (km) (deg) (deg) (deg)

Nominal -22.4 46.0 0.129 0.015 0.12

031000D I0.1 43.3 0.106 0.045 0.11
( + 100% p)

031000D -31.2 25.8 0.020 -0.062 0.06
(-50% p)

281000D 15.4 56.7 0.029 -0.021 0.03
(4 100% p)

281000D -17.2 3&6 -0.082 0.092 0.12
(-50% p)

A VORBI T

(m/s)

A VpL A NE

(m/s)

A VTO T

(re[s)

67.2 7.17 74.4

65.9 6.19 72.1

72.9 3.74 76.7

63.7 2.08 65.7

68.5 7.16 75.6

Table 5-4. Guidance Errors (Constant Density Bias Cases)

CASE

Nominal

031000D

(+ 100% p)

031000D

(-50% p)

281000D
(+ 100% p)

281000 D
(-50% p)

_Qerr OVert

(kin) (deg)

-22.4 0.015

3.9 -0.021

-21.4 -0.003

14.1 -0.168

-11.7 0.103
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Table 5-5. Estimation Errors (Constant Density Bias Cases)

CASE

Nominal

031000D

(+ 100% p)

031000 D

(-50% p)

281000D

(+ 100% p)

281000D

(- 50 °/o p)

(km) (kin) (deg)

-6.2 -3.6 0.010

9.8 6.3 -0.037

-1.3 -5.8 0.018

5.5 5.7 -0.007

Ov

(deg)

-0.066

0.059

-0.147

0.011

0

(deg)

0.01

-0.05

0.14

0.02

Table 5-6. Vehicle and Trajectory Limits (Constant Density Bias Cases)

CASE
hmin

(km)
gma.x

Oma.x

(W]cm 2)

Q

(J]cm 2)

Nominal 33.4 2.00 166.2 30493

031000 D
33.4 3.87 219.5 24110

(+ 100% p)

031000D
22.9 2.85 193.0 28111

(- 50°/o p)

281000D
39.7 1.90 156.1 31342

(+ 100% p)

281000D
27.7 1.75 149.3 33436

(- 500/o p)

145



1.0

0.8

_._ 0.4

o 0.2

c_ 0.0

"" -0.2
VJ

l= -0.4
0

-0.6

-0.8

-!.0

4

z
o I

w 0

R" -Z

-4

-5

2O0

150

100

C

_ -I00

-150

-200

I-1: ACTUAL

. . O: [$TI M.

............. -6 ....... 0....... "................ : ................ i................ i ................

200 400 $00 800 1000 .1.2

...........................................Tim_(s)...........::................:.............

................................................. . ................ _................ . ................

................................................. : ................ : ................ . ................

DO

t'1= #r

O: #',_

!!i! i!!iii!!i! i
> ....... !................ !................ i................ !................ o

0

Figure 5-45. Case # 031000D, + 100% Density: Bank Angle Control Response

146



"0 1.0 n • ....

............. ,., ................. - ................................. ; ................ .: ................

I

) 400 600 800 1000 12.............. ,.......................,: :.,,,,.m.0.._sj.............................................
................ ; ................................. _ ................ ;................ - ................

................ ; ................................ _ ................ ;.................................

_.___ • :

e-

E
E
0

v

e,-

I
e-

N

0

E
0

Z

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Figure 5-46. Case # 031000D, + 100% Density: Normalized In-Plane Lift

E
_e

v

125

100

75

5O

25

I"1= ACTUAL
O= ESTIM.

i!!!!!!!!!!!ii!!!iiii!iiiiii!ii!!!!!!!!

, , , i , i , I

o 2oo 400 6oo 800 lOOO
Time (s)

1200

Figure 5-47. Case # 031000D, + 100% Density: Altitude History

147



E

t,.

O
t,.
L_

I=_

1:
O

om
..el.
o_

1/)

O

30000

25000

20000

15000

1000O

5000

0

-5000

-10000

-15000

-20000

-25000

-30000

E3= VI:'RT
O= CT
A=DR

'-...... ........'i.°............'.°i,.°..........'.'
................ :................ .:. ................ : ................ :................ .: ...............

............... i................ i ................ i ................ :................ i ...............

............... i................ i................ :................ :................ :...............

............... i................ i ................ : ................ :................ i ...............

Figure 5-48. Case # 031000D, + 100% Density: Position Estimate Errors

E

O

I,,i.1

tm

u
O

ID

20

15

10

5

0

-5

-10

-15

-20

i-I= V£RT
O= CT
A=DR

................ . ................. ... ............... : ................ . .................................

, L=_0 '00 ,6_o _60 ,0o0 ,2
_I-'-_---__ ................

Figure 5-49. Case # 031000D, + 100% Density: Velocity Estimate Errors

148



[_=ACTUAL

1.0 _O=ESTIM.

0.8

E 0.6
0.4

o 0.2

;,r, o.0

-o.z o

-0,4

'_ -0.6

-0.8

-1.0

5
A

_ 4

2

1

0

-1

R" -2

_t

-5

I"1= Sr
O:Ov

)0

@

¢)

01,
C

I-

CD

200

150

100

50

0

-50

-100

-150

-200

)0

Figure 5-50. Case # 031000D, -50% Density: Bank Angle Control Response

149



-o 1.0

¢-
I7

E
E
O

v

_I,D

_J

(D
c-
O

IX.

I
e-

N
"..._--
0

E
t_

o
z

0.8

O G

0.4

0.2

O.O

-0.2

-0.4

-0.6

-0.8

-1.0

............... i................ ..,

630 80o lOOO 12

Figure 5-51. Case # 031000D, -50% Density: Normalized In-Plane Lift

125

100

I-I= ACTUAL
O= ESTI¼.

E
V

m

75

50

25

I

0

i

zoo 4oo 600 soo looo
Time (s)

Figure 5-52. Case # 031000D, -50% Density: Altitude History

1200

150



E
V

o
L_

t.__

ILl
c-
O

em

o_

o
Q.

30000

25000

20000

15000

10000

5000

0

-5000

-10000

-15000

-20000

-25000

-30000

r-I= VERT
O= CT

• . A= DR
................ i................ :................ •................ i................ i ................

_;i 0 0 OO i i /-_,_..._ , , , , , , , ,
2;o_.. 860 1o_oo ,2_o

.................................__m_ __ .....................:................i

................ :................ :................ i ................ :................ i ................

................ i................ i................ i ................ :................ _................

Figure 5-53. Case # 031000D, -50% Density: Position Estimate Errors

r-l= VERT
20 O= CT --

15

5

& o 2_o _ ,_,o _. 6oo 8oo lO_O 12
= " l" • "" • • _ ....... '_ ...... _ ...... .,e..14.m._. 4,s)..-.._. ..... :................. !................

G)

-5

-10

-15

-20

................ . ................. . ................ : ................ . ................. . ................

)0

Figure 5-54. Case # 031000D, -50% Density: Velocity Estimate Errors

151



f/)

130

,D
(n

c-

o

1.0

0.0

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.$

-0.8

-I.0

I-1: ACTUAL

:)0

5

3

•" z
o I

?: o
0 "!

E -2

U -4

<{
-5

I-I= Or

O=lev

............_ ...........i................i................:................i................

_0

A

IP

@

t--

C

O

¢'n

2O0

150

I 0"0

50

0

-50

-100

-150

-200

iiiiiiiiiiiiiiiiiiii.... :............ ! ............... i................ !...............

i !' 'i!i'i i1111ii iii i l i

................. _ ................ '................. - ...............

)0

Figure 5-55. Case # 281000D, + 100% Density: Bank Angle Control Response

152



"Io
c

E
E
o

v

...I

c

I

Q.
I
..E

N

E

o
Z

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

• " ' " i

• !
................................. i ................ _ ................ :................ .;................

................:................'................i................i................i................

............................... .g ................ _ ................ ;................ - ................

............................... n4m................ _ ................ :.................................

, , ._, , _ , i , i I

260 _pot''_ 660 860 lo_o 12

................::....,_ 'G:'JIII.._.....Tin__(ii)..........................i................
: ! i i : :

................ : ............... - ............... ; ................ :................ ; ................

................:...............:.................i................i................i................
i

)0

Figure 5-56. Case # 281000D, + 100% Density: Normalized In-Plane Lift

125
I-1= ACTUAL
O= [STIM.

100

E
.._ 75

v

q)

:D

•-- 50
m

25

I

o zc_ 400 600 800
Time (s)

1000

Figure 5-57. Case # 281000D, + 100% Density: Altitude History

"1
1200

153



E

h=,

o
tn
¢_

W

¢-

0

om

o_

o
O-

30000

25000

20000

15000

10000

5000

0

-5000

-tO000

-15000

-20000

-25000

-30000

ra= VERT
O= CT

! i ! i i LL= OR
.............. : ................ - ................ _ ................ ;................ - ................

i i i : :

""_, :, ,

,o o
........... _ ..... 0 ...... _,"-"I__,_:I Im.w Ls) ..... __'_i ......... "................
........... _ .... i................ : ................ : ................ :................ ". ...............

................ :................ i................ i ................ :................ :...............

iill il :iii i i
: • : •

Figure 5-58. Case # 281000D, + 100% Density: Position Estimate Errors

E

k,.

o
L_

L_
W

O

ZO

1S

10

5

0

-5

-10

-15

-ZO

0= V£RT
O= CT
A= DR

6 ......_.......o ......_............ _................
............. .................. • ........ ,¢ ....... ;, ....... _ ........ /, .... A .......... _.......................... _._ _, _, .= ,_ :

, i , i , i , i , J ,

__ 400 6oo 800 _o._o _2

_' i:.............._" ........"" - ""__..._,_,,.r=,.._..........:..........................i:..............................

Figure 5-59. Case # 281000D, + 100% Density: Velocity Estimate Errors

154



N-ACTUAL

!.0 O=(3TIM.

0,8

A 0.5

0.4
f_

o 0.2
°_

m 0.0

-- -0.2

e- -0.4
q:

r-, -0.6

-0.8

-!.0

............... : ................ : ................ : ................ : ................ - ...............

............... i ................ " ................ ; ................ : ................ ; ...............

........... ::................ _.......... "fim'i"('i) ........... i................ i...............
m

............... :................ : ................ : ................................. . ...............

r-i: er

5 __O:Pv

_ 3

_ 2

g o
o -I 0

_" -2

-5

200

A

O

O

,,o_.............i........ i i100 ................ :............... - ....

50 ................ :............... :,............................... :................ :,................
• I

e..

200 400 61 0 800 1000 12

o -100 ...........

-ISO ............... i:............... "............... : ................ i................ i ................

-200 : : :

)0

Figure 5-60. Case # 281000D, -50% Density: Bank Angle Control Response

155



"o 1.0

c 0.8

E o.6
E
o

_ 0.4

•,- 0.2
ot

..1

_ 0.0
c

_.. -0.2
t

_ -0.4

N -0.6
p_

_ -0.8
E

o -1.0
z

; i

................_............. i............. i................i................i................

800 10_30 12

.6o ,6_ -_ 6_g) ..........................i.................................... : ...... ,';._ .... -Tln_,:

)0

Figure 5-61. Case # 281000D, -50% Density: Normalized In-Plane Lift

125

100

E
7,5

V

_,_ 50

I I

o 2oo 400 600 600 ,ooo
Time (s)

1200

Figure 5-62. Case # 281000D, -50% Density: Altitude History

156



fi
V

O

t_

I.iJ

e"
O

em

O
Q.

50000

25000

20000

15000

10000

5000

0

-5000

-10000

-15000

-20000

-25000

-50000

.............. i................ i ................ i ................ i................ i ................

Figure 5-63. Case # 281000D, -50% Density: Position Estimate E:rors

E

O

I.iJ

o--

O

20

15

10

S

0

-5

-10

-15

-ZO

rl= V[RT
0= CT --
A=DR

:4_u _00 800 ^. 10_)0 12

............. _].'....... ._........ .."....... ._..T4.m.w.4,s) .......... :................. :...............

................ .................. , ................ z ................ . ................. . ...............

)0

Figure 5-64. Case # 281000D, -50% Density: Velocity Estimate Errors

157



5.4.4 DENSITY SHEAR CASES

Performance data for the ten variable density bias cases are presented in Tables 5-7 on page

161 through 5-10 on page 162 and Figures 5-65 on page 163 through 5-114 on page 192.

The total required propulsive AV for orbit correction, listed in Table 5-7, is seen to vary

from 67.6 m/s to 98.4 m/s for the cases examined. The large target apoapsis miss values seen in

several cases can be attributed mostly to combinations of density shears and bank reversals during

the exit phase which deplete control margin by forcing the bank command to full lift-up or full

lift.-down. Orbit plane control accuracy is also affected in these cases due to the decreased out-

of-plane lift component available. The results of Table 5-10 show that the maximum aerodyna-

mic load experienced was only 3.66 g's, and that one case (# 030500D) violated the minimum

altitude limit.

Exit phase guidance performance is greatly affected by the presence of unpredictable vari-

ations in atmospheric density. Density shears during the capture phase can cause the vehicle to

overshoot or undershoot the cruise altitude, but the constant-altitude cruise guidance can quickly

correct these errors. Density variations during cruise are immediately compensated for by the gui-

dance and are not a problem unless vehicle control capability is exceeded. Since the exit phase

guidance depends on prediction of future vehicle control capability, the presence of density shears,

which greatly change this control capability, can cause large target misses and fuel penalties. This

problem is compounded by bank reversals which, as seen in the constant density bias results, tend

to perturb the trajectory beyond the capability of the vehicle to compensate and reduce the con-

trol margin necessary to respond to density shifts. These effects can be seen in the density shear

results presented, where all but one of the cases (# 280500D) is driven to control saturation before

reaching atmospheric exit.
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5.4.4.1 DETAILED DESCRIPTION: CASE # 288500D

Figures 5-110 on page 190 through 5-114 on page 192 contain trajectory, control, and naviga-

tion plots for the high/shallow entry trajectory case corresponding to the final entry in the data

tables. The navigation system performance for this case was examined in "5.3.3.2.1 Full Covari-

ance (No Radar Altimeter)" on page 113. Cycling of the capture guidance algorithm begins at

t = 171 s, approximately 20 s after the initiation of density altitude measurement updates. The ini-

tial bank angle command has a magnitude of approximately 90 °, as seen in Figure 5-110. It is

seen that a bank reversal is commanded immediately after guidance cycling begins. This is due to

the negative initial value of 0, as seen in the plane error plot. The bank reversal causes 0, to ini-

tially be decreased instead of increased, effectively nulling a large part of the initial error.

The constant-altitude cruise phase is initiated at t = 261 s when the estimated altitude drops

below 34 kin. Full lift-up is commanded immediately since the vehicle overshoots the target

cruise altitude, and the cruise condition is reached approximately 25 s later. The impact of the

dynamic density bias profde during cruise can be seen by referring to Figures 5-110 and 5-111.

Decreasing density bias requires the vehicle to roll lift-down in order to maintain the vertical lift

necessary for constant-altitude flight. This effect is seen between t = 360 s and t = 450 s, where the

density bias decreases from -12% to -40%. The lift-down trend caused by the density decrease

here is sufficient to offset the natural tendency of the constant-altitude guidance command to drift

toward lift-up as aerodynamic control authority decreases, so that the bank command remains

nearly constant in this region. The opposite effect is seen between t = 470 s and t = 490 s, where

the density bias increases from -49% to -38%. In this case, the increasing density causes a

decrease in the magnitude of the bank angle command in order to maintain the necessary level of

vertical lift.
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Cycling of the exit phase guidance begins at t = 495 s. The most potential for harm from

density shears exists during the exit phase, since guidance predictions have no way of accounting

for future density variations. The combined effects of bank reversals and unfavorable density

shears can be seen over the time period from t = 570 s to t = 700 s. Over this interval, the density

bias decreases from 0 to -36%, thereby tending to drive the bank command to lift-down to com-

pensate for the decreasing lifting capability. At t = 588 s, a bank reversal through lift-up is com-

manded. As explained previously, this drives the vehicle closer to lift-down, compounding the

problem caused by decreasing density. It is seen that the bank command is finally driven to full

lift-down at t = 636 s, so that no control margin remains to deal with the still decreasing density.

The net effect of density and bank reversal dispersions during the exit phase is seen in the

performance results of Table 5-7 on page 161. The apoapsis target is missed by +47.6 kin, a

value which would have been even higher if not for the negative to positive density shear which

occurs after t = 700 s. Table 5-8 shows that the guidance error alone is 50.5 km. The full penalty

of the apoapsis error is offset somewhat by the high exit periapsis resulting from flying most of

the exit phase full lift-down. The total AV required to correct the apoapsis and periapsis errors is

seen to be 69.1 m/s.
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Table5-7.AerocapturePerformanceResults(DensityShearCases)

ha. , hp Or Ov 6
CASE

(kin) (km) (deg) (deg) (deg)

030500D 10.7 15.8 0.062 0.116 0.12

031000D -29.4 -33.0 -0.001 -0.190 0.19

031500D -41.4 -0.80 0.010 -0.234 0.23

035000D 100.4 45.5 0.139 0.144 0.19

038500D 176.9 45.2 0.128 0.145 0.18

280500D -8.80 42.3 -0.027 0.002 0.02

281000D 14.2 53.9 0.076 0.189 0.19

281500D 133.8 21.4 0.004 0.206 0.20

285000D 48.1 50.3 -0.022 0.009 0.02

288500D 47.6 51.4 0.133 0.041 0.13

A VORBI T

(m/s)

A VpL A NE

(m/s)

AVTo T

(m/s)

72.1 6.96 79.0

85.9 10.5

13.080.4

96.4

93.4

77.4 10.6 88.0

87.4 10.2 97.6

66.0 1.54 67.6

64.1 10.9 75.0

87.1 11.4 98.4

69.5 1.40 70.9

69. I 7.57 76.7

Table 5-8. Guidance Errors (Density Shear Cases)

ha,rr Ore,,
CASE

(km) (deg)

030500D 11.6 0.102

031000D -28.6 -0.204

031500D -39.8 -0.241

035000D 105.0 0.123

038500D 178.4 0.127

280500D -7.3 -0.078

281000D 17.6 0.098

281500D 134.5 0.133

285000D 54.1 -0.089

288500D 50.5 -0.061
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Table5-9.EstimationErrors(DensityShearCases)

CASE

030500D
031000D
031500D
035000D
038500D
280500D
281000D
281500D
285000D
288500D

(km) (kin) (deg) (deg) (deg)

0.9 0.7 -0.014 -0.014 -0.02

0.8 0.8 -0.015 -0.014 0.01

1.6 1.0 -0.017 -0.007 0.01

4.6 0.2 -0.013 -0.021 -0.03

1.5 0.3 -0.014 -0.018 -0.02

1.5 - 1.0 0.002 -0.080 0.06

3.4 - 1.7 -0.008 -0.091 -0.08

0.7 -0.3 0.018 -0.073 -0.07

6.0 -2.0 0.001 -0.098 0.07

2.9 -2.4 -0.006 -0.102 0.01

Table 5-10. Vehicle and Trajectory Limits (Density Shear Cases)

CASE
hmin

(km)

gma_

Q

(Jlcm 2)

030500D 26.8 2.74 187.6 27808

031000D 28.5 3.36 205.5 26157

031500D 27.2 3.50 210.0 24112

035000D 28.9 3.66 216.4 25609

038500D 28.8 3.28 200.9 25799

280500D 33.8 1.67 144.1 34307

281000D 34.3 1.21 131.2 35935

33.4

34.3

34.7

281500D 2.39

1.79

1.56

285000D

169.5

148.9

147.4288500D

28582

33596

35950
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CHAPTER 6

CONCLUSION

The goal of this thesis has been to present the results of a design study of navigation and gui-

dance of an interplanetary transfer vehicle during aerocapture into orbit about Mars. The naviga-

tion system presented utilizes a Kalman fdter for estimation of vehicle position and velocity

components and atmospheric density bias using density altitude information extracted from iner-

tial measurement unit specific force measurements. The addition of radar altimeter measurements

was studied in an attempt to allow the fdter to better distinguish between altitude estimation

errors and density errors. The aerocapture guidance algorithm steers the vehicle to a constant-

altitude trajectory for energy dissipation and utilizes bank reversals for control of orbit plane ori-

entation. For guidance purposes, the aerocapture trajectory is divided into three phases: capture,

constant-altitude cruise, and exit. The capture and exit phases utiliTe numerical

predictor/corrector guidance to compute constant bank angle commands required to hit specified

targets. The constant-altitude cruise guidance utiliTes an analytic control law to compute bank

commands to null altitude rates induced by dispersions and maintain flight at the desired altitude.

Selected test case results have been presented to provide insight into the functioning of the guid-

ance and navigation systems and illustrate their performance.

Navigation results indicate that improvement of pre-aerocapture altitude estimation accuracy

is possible using density altitude "measurements" constructed from the specific force measured by

the IMU. The difficulty with this measurement is that altitude errors and density errors are indis-

tinguishable; that is, a given measurement residual could be the result of an altitude estimate error,

an error between the actual atmospheric density and that predicted by the fdter model, or any one

of a multitude of combinations of both. However, the altitude error resulting from a 3a density

error of + 100% was seen to be limited to -5300 m at an estimated measurement altitude of 75

km, so that significant improvements in approach altitude errors (1_ = 28000 m) are still possible
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evenwithworst-casedensityerrors.In addition,the nature of the measurement and the mechan-

ics of the Kalman filter allow near perfect estimation of the atmospheric density (which is used

directly by the guidance to compute aerodynamic control capability) despite possibly large errors

in the estimates of altitude and density bias.

Improved altitude estimate accuracy was seen with the inclusion of radar altimeter measure-

ments prior to density altitude updates; however, the relative improvement will decrease with

decreasing radar altimeter measurement accuracy. The inclusion of radar altimeter measurements

also allowed the subsequent density altitude measurement residuals to be attributed almost entire-

ly. to density bias, allowing more accurate estimation and tracking of this quantity. Future studies

should examine possible radar altimeter flight hardware and Mars surface terrain height accuracy

knowledge in more detail in an effort to determine actual measurement accuracy levels which

might be possible and the potential usefulness of these measurements for filter state vector esti-

mate accuracy improvement.

Although the only measurement information incorporated was in the vertical position chan-

nel, improvement in the accuracy of crosstrack and downrange position along with all three com-

ponents of velocity is possible using the correlations between these components and vertical

position which exist due to planetary approach navigation. For the entry state error levels used in

this study, it was seen that position and velocity estimate accuracy levels attained without the

inclusion of these correlations were insufficient and resulted in large guidance target misses.

Combined navigation and guidance performance was examined for cases with constant and

variable atmospheric density bias profiles and large entry position and velocity dispersions. Over-

all performance of the guidance system (in terms of AV requirements for orbit correction after

atmospheric exit) was found to be good, with penalties ranging from 3.7 m/s to 36.4 m/s over the

ideally achievable minimum. The main problem seen in the guidance is sensitivity to dispersions
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during the exit phase. Unpredictable density shears during exit can overwhelm decreasing aero-

dynamic control capability, and bank reversals can reduce control margin and even perturb the

exit trajectory beyond the possibility of aerodynamic correction. Dispersions during the capture

and constant-altitude cruise phases have very little impact on the accuracy of the final post-

aerocapture orbit due to the uniformity and isolation provided by the constant-altitude phase.

Cruise altitude target misses caused by density shears during the capture phase are compensated

for by the cruise phase guidance, and the effects of perturbations induced by bank reversals and

density shears during cruise are immediately sensed and compensated for by the guidance. The

true cruise altitude was seen .to be offset from the nominal due to altitude estimation errors, but

this should not be critical unless the error is large enough to place the vehicle outside of the aero-

capture altitude corridor. Future guidance studies should carefully examine the interactions

between plane control and energy control since inopportune bank reversals can so greatly impact

orbit correction fuel requirements. Possible suggestions include modelling of bank reversal effects

in the current exit phase guidance trajectory prediction to allow compensating bank commands to

be issued before execution of the reversal or development of a guidance algorithm which com-

pletely integrates the energy and plane control functions during aerocapture.
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APPENDIX A

DERIVATION OF DENSITY ALTITUDE MEASUREMENT EQUATIONS

The drag acceleration is defined as

where p... is the current atmospheric density. Thus, given the measured drag acceleration of

equation (2-40), we have an indirect measurement of the true density given by

2G
p,.,- v_ ' a_= (a-2)

The density altitude, hp, given the onboard exponential density model in equation (2-37), can be

found by solution of

- (hp - ho)/HS
(A-3)

P_ = Po e

Equating (A-2) and (A-3) and solving gives the following expression for the "measured" density

Po_,, ] (A-4)q,p = ho + HS In 2 CBa,_,.

altitude:

The current estimate of the atmospheric density can be computed as

A

- (h - ho)lHS
^ ^ (A-5)
p = (1 + Kp)poe

PRECEDING PAGE BLANK NOT FILMED
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using equations (2-17) and (2-37). This estimate is written in terms of the current geometric alti-

tude estimate. In terms of density altitude, the estimated density is

- (hp - ho)lHS (A-6)
A

p =poe

Equating (A-5) and (A-6) and solving gives the following expression for the estimate of the densi-

ty altitude measurement:

A A A

qhp h HS ln(l + Kp) (A-7)
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APPENDIX B

DERIVATION OF ORBIT INSERTION AV EQUATIONS

Insertion into the desired orbit is accomplished using three maneuvers: a periapsis-raise

maneuver executed at the first apoapsis pass after aerocapture, an apoapsis-adjust maneuver exe-

cuted at the subsequent periapsis pass, and a plane-correction maneuver executed at the line of

intersection of the current and desired orbit planes. The AV requirements for the first two

maneuvers are computed using the well-known vis-viva integral [12]

v = # r a (B-l)

At apoapsis on the post-aerocapture orbit, the radius and semi-major axis are given by

r=r_

ro+r.
d --

2

where ro and rp are the current apoapsis and periapsis radii, respectively. When these are substi-

tuted into (B-1), the velocity at apoapsis is seen to be

N/ 2_rpva = - (B-2)

In a like manner, the desired velocity at apoapsis, which is the apoapsis velocity on an orbit with

apoapsis radius ro and periapsis radius rpa, is given by

_/ 2urpd (B-3)
v°d = "r_ + r. r,a

where rpd is the desired (target) periapsis radius. The AV requirement for the peria_ .s-raise

maneuver is therefore given by

',. j
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AVp,= lv_- v_d] (B-4)

The apoapsis-adjust maneuver AV requirement is computed in a similar fashion. The veloci-

ty at periapsis on the new orbit after the first maneuver (with apoapsis radius r, and periapsis radi-

us r,) is

Nf 2gr. (B-5)vp = r2 + ro rpa
Pd

The desired periapsis velocity, which is the periapsis velocity on an orbit with apoapsis radius rQd

and periapsis radius r.a, is given by

_/ 2gG_ (B-6)
vpa = r_ + radrp_

The second maneuver AV is seen to be

AV_o = Iv,- vpa[ (B-7)

The total AV required for the periapsis and apoapsis adjustment maneuvers is

a Voas_r = a V., + A G. (B-8)

The orbit plane orientation correction maneuver is assumed to be simply a rotation of the

velocity vector into the desired plane at the line of intersection between the current and desired

orbit planes. The angle between the actual and desired velocity vectors at this point is the wedge

angle, 6. Assuming that the actual and desired velocity magnitudes are the same, the required AV

is given (using the law of cosines) as

A_PLAN E = 112 -t" y2 __ 2 v_ cos 6 (B-9)
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where v. denotes the velocity magnitude.

AI_L_::E = 2 v.2(1 - cos 6)

Simplification of this equation gives

Using the trigonometric identity

1 - cos6 = 2 sin 26
2

gives the final expression for the plane-rotation AV as

A VeL,_ E = 2 v. sin 6
2

The total AV required to correct the post-aerocapture orbit is

AVroraL = AVoRstr + AVeL_E

(B- to)

(B-I1)

(B-12)

(
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