
NASA Technical Memorandum 101 000

Simulating Futures in Extended
Common LISP
Philip R. Nachtsheim

June 1988

National Aeronautics and
Space Administration

NASA Technical Memorandum 101 000

Simulating Futures in Extended
Common LISP
Philip R. Nachtsheim, Ames Research Center, Moffett Field, California

June 1988

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

SIMULATING FUTURES IN EXTENDED COMMON LISP

Philip R. Nachtsheim

SUMMARY

Stack-groups comprise the mechanism underlying implementation of multiproces-
sing in Extended Common LISP, i.e., running multiple quasi-simultaneous processes
within a single LISP address space. On the other hand, the future construct of
MULTILISP, an extension of the LISP dialect Scheme, deals with parallel execution.
The source of concurrency that future exploits is the overlap between computation of
a value and use of the value. This paper describes a simulation of the future con-
struct by an interpreter utilizing stack-group extensions to Common LISP.

INTRODUCTION

Multiprocessors have recently arrived in the marketplace with new program-
development systems that make parallel processing attractive. To better use the
capability inherent in multiprocessors, it is important to consider how a parallel
processing system is to be programmed. Also, new languages with concurrent tasking
must be developed that take advantage of existing architectures.

In some cases, compilers search for parallelism in sequential programs to free
the programmer from the job of parallelizing the code. High-performance numeric
computers have been designed to exploit various levels of concurrency. This has
been done with some success because numerical programs usually have a relatively
data-independent flow of control.

Symbolic computations, on the other hand, emphasize rearrangement of data.
Thus, highly symbolic programs tend to be written in languages such as LISP.
Because data dependency within operation sequences in symbolic programs is high,
compile-time analysis of these programs is rarely possible. So it is up to the
programmer to use multiprocessors efficiently when he or she takes advantage of
sources of concurrency.

MULTILISP is an extension of the LISP dialect Scheme with additional operators
and semantics that deal with parallel execution. MULTILISP is currently implemented
on Concert, an experimental processor under construction in the MIT Laboratory for
Computer Science. Concert is a shared-memory multiprocessor. MULTILISP is
described in reference 1 and Scheme is the programming language used in reference 2.

In MULTILISP, the "futurev construct is the only primitive available for creat-
ing a task. The construct, (future <form>), immediately returns a placeholder for
the value of <form>, and concurrently begins an evaluation of <form>. The source of
concurrency that the future exploits is the overlap between computation of a value

and use of the value. The future object returned serves as a placeholder (token)
for the ultimate value 3f <form> and may be manipulated as if it were an ordinary
LISP object even though <form> is not evaluated. It may be stored as the value of a
symbol, consed onto a list, passed as an argument to a function, etc. However, if
it is subjected to an operation that requires the value of <form>, as in normal LISP
evaluation, that operation will automatically be suspended until the value becomes
available. Once <form> is evaluated, its value will take the place of the future.
Future provides a formalism for the synchronization required between the producer
and consumer of a value which permits results of parallel evaluations to be manipu-
lated without explicit synchronization. Thus, MULTILISP programs tend to be quite
similar to their sequential counterparts.

This paper will show how the future construct can be simulated by an inter-
preter written in Extended Common LISP. Extended Common LISP has additional fea-
tures which are not part of the Common LISP Standard, which are similiar to the
features on the MIT LISP Machines. The interpreter is written in an extended ver-
sion of VAX Common LISP. The pertinent additional features were found in the system
package of the VAX Common LISP implementation.

To simulate true concurrency on a single-processor system, the interpreter must
allow for random evaluation of <form>. For eager evaluation, <form> would be evalu-
ated immediately after the future is created. For lazy evaluation, <form> would be
evaluated when the future is subjected to an operation that requires the value of
<form>. In between these extremes, the programmer could obtain the value of <form>
on demand. Note that if this random evaluation were not required, concurrent pro-
gramming would reduce to sequential evaluation of <form>, which may be trivially
implemented in LISP.

The interpreter is not very useful on a single processor machine. The only
advantage of the interpreter on a single processor machine is to implement lazy
evaluation. Even though the interpreter was developed on a VAX 8800 with two cen-
tral processing units (CPUs), the secondary CPU could not be invoked to evaluate
forms because there were no operating instructions to select it. Thus, a secondary
purpose of this paper is to demonstrate or show that even though the hardware exists
to perform concurrent processing on a VAX 8800, the operating system and the Common
LISP Standard prohibit it. Undoubtedly, the same situation exists on other
machines.

Concurrent Interpreter in Extended Common LISP

Delayed (or lazy) evaluation provides a way for MULTILISP to pass around the
"promise" of an expensive computation without actually doing the computation unless
the program decides it is necessary. Once the computation is performed, the value
is saved so that it will not have to be recomputed if requested again. By using
futures in MULTILISP, the delayed computation can be done concurrently with the
execution of the program that created the future.

In order to simulate concurrency on a single processor system, the interpreter
must have knowledge of the state of computation of each task. The state of computa-
tion of each task is defined by knowledge of all variable bindings and the current
evaluation state. The concurrent interpreter must remember the correct bindings for
each task independently. Also, as mentioned previously, in order to simulate con-
currency on a single processor system, the interpreter must have the ability to
randomly evaluate futures. The knowledge of the state of computation is provided by
a lexical closure containing the appropriate bindings.

In addition, the interpreter must represent each concurrent task by an object
which can be evaluated on demand, either immediately after the future is created, as
in eager evaluation, or later. Evaluation cannot be done whenever the program
decides it is necessary, as in lazy evaluation,

Stack-groups are the objects with the required properties. Stack-groups are
not a standard feature of Common LISP, and their use is not portable. Stack-groups
are functional objects with the attributes of a task. Stack-groups contain exactly
the information needed to implement a concurrent interpreter. It is possible to
initiate a stack-group, suspend it, and then resume it. However, these operations
are not required to implement futures in Extended Common LISP, nor are they desir-
able since they require explicit synchronization. Stack-groups and explicit syn-
chronization were employed in reference 3 to implement multitasking in Common
LISP. Procedures involving stack-groups are not part of the Common LISP Standard;
however, because of their generic nature, they are available as extensions to many
implementations.

Implementation of the interpreter requires four major procedures: an initiali-
zation procedure that creates the stack-groups and begins concurrent evaluation; a
delay procedure that creates the lexical closure (this is the classical delay proce-
dure of Scheme (ref. 2)); a force procedure that initiates evaluation and a proce-
dure that the user can invoke on demand to force evaluation of all outstanding
futures. These four procedures simulate concurrent processing in an extended ver-
sion of Common LISP. The procedures are included in Listing 1.

The argument of the initialization procedure, called "future" is a form. It
creates three objects: 1) it creates a lexical closure using delay; 2) it creates a
token which is the name of the future; and 3) it creates a stack-group in which the
form will be evaluated. Then it puts the closure and the stack-group on the prop-
erty list of the token. Finally, it may randomly initiate evaluation of the form.

The argument of the force procedure is a token. It evaluates the lexical
closure in the stack group of the token, provided that the form has not previously
been evaluated. If the form has already been evaluated, ltforcel' simply returns the
value.

The procedure that causes evaluation of all outstanding futures is called
force-all-futures. It is included in order to simulate concurrency, in that it
allows for random evaluation of the forms.

Examples

Undoubtedly, the sources of concurrency in a program are going to be
application-dependent. One application is searching the elements of a list for a
desired value in which the values are obtained only after an expensive calcula-
tion. For the purpose of demonstrating the potential of concurrent processing, a
list of seven numbers will be processed by the parallel-mapcar procedure shown in
Listing 1 (Appendix). The function applied to each element of the list is simply
the ratio of the factorial of the number to the factorial of one less than the
number. Thus, the list returned by parallel-mapcar is simply its second argument.
The factorial function provides the mechanism to obtain measurable times. An
interactive session is shown below which utilizes the time macro of Common LISP
(ref. 4) to record the time for sequential evaluation and for evaluation using
futures. The probability of a future being forced immediately after its creation is
very small for the following:

LISP> (setq list '(100 99 98 97 96 95 94)) ; the list to process
(100 99 98 97 96 95 94)

LISP> (time (parallel-mapcar #'ratio list)) ; create the futures
CPU Time: 0.13 sec
(TI T2 T3 T4 T5 T6 T7)

LISP> (time (force-all-futures)) ; force the futures
CPU Time: 1.07 sec
(TI T2 T3 T4 T5 T6 T7)

LISP> (time (mapcar #'force * I) ; display the result
CPU Time: 0.01 sec
(100 99 98 97 96 95 94

LISP> (time (mapcar #'ratio list)) ; sequential evaluation
CPU Time: 1.07 sec
(100 99 98 97 96 95 94)

Given that forcing is done concurrently before the values are examined; the
1.07 sec required for forcing all the values cannot be charged to parallel-mapcar,
and a gain in efficiency of 1.07/0.13 = 8 is obtained for this example. Note, also
for this example, that this does not imply 8 more processors are necessary. Another
noteworthy observation, obtained by comparing 1.21 sec which is the sum of the times
of the three processes to obtain the result using futures with 1.07 sec for sequen-
tial evaluation, is that the overhead imposed by employing lexical closures and
stack-groups is not overly excessive.

The above example was rerun allowing for random evaluation in order to demon-
strate that the interpreter does indeed simulate concurrency. Randomness is
achieved by increasing the probability that a future will be forced immediately
after its creation.

LISP> (time (parallel-mapcar #'ratio list)) ; create the futures
TASK TI FORCED
TASK T5 FORCED
TASK T6 FORCED
CPU Time: 0.64 sec
(TI T2 T3 T4 T5 T6 T7)

ISP> (time (mapcar #'force *)) ; display the futures
CPU Time: 0.60 sec
(100 99 98 97 96 95 94)

For the example above, three futures were forced at the time they were
created. The remaining four were forced when their value was required.

An example that is sometimes used to demonstrate concurrency is the calculation
of the Fibonacci numbers. This example was run, and the procedure is included in
Listing 1. This was done in order to illustrate an important feature of the inter-
preter. Note that future returns a token, hence in calculating a sum with It+" in
the Fibonacci procedure; unless care is taken, the form (+ TI T2) might appear. Of
course, this will cause an error. As in the implementation of delay and force in
Scheme (ref. 2) special procedures have to be written to force forms involving
futures and primitives like "+I1. The procedure for 'I+" is included in Listing 1.

It was noted when running this example that stack-groups created during the
calculation called other stack-groups. This is opposed to the first example where
all the stack-groups were called by the root Read-Eval-Print stack group.

CONCLUSIONS

The concurrent interpreter presented here utilizing stack-group extensions
provides a mechanism for simulating futures in an extended version of Common LISP.
Further work is required to enable true implementation of futures by modifying
current operating systems and LISP implementations.

REFERENCES

1. Halstead, R. H. Jr.: Implementation of MULTILISP; LISP on a Multiprocessor, ACM
Symposium on LISP and Functional Programming, Aug. 1984, pp. 9-17.

2. Abelson, H.; and Sussman, G. J.: Structure and Interpretation of Computer
Programs, The MIT Press, McGraw-Hill , 1985.

3. Bernat, A. P.: Multitasking for Common LISP, A1 Expert, Premier, edition 1986,
pp. 68-79.

4. Steele, G. L. : Common LISP: The Language, Digital Press, 1984.

APPENDIX

LISTING 1

(defmacro future (form &optional (processors 7))
'(let* ((promise (delay ,form))

(name (gentemp))
(sg (preset-stack-group

(make-s tack-group name)
C funcall
promise)))

(setf (get name 'promise) promise
(get name 'stack-group) sg)

(when (= 0 (random ,processors)) (format t "-$TASK 's FORCED" name)
(force name))

name

(defun force (name)
(let ((state (stack-group-state (get name 'stack-group))))
(if (eql state :exhausted)

(funcall (get name 'promise))
(call-stack-group (get name stack-group) nil))))

(defmacro delay (proc)
'(let ((already-run? nil)

(result nil))
#'(lambda ()

(unless already-run?
(setf result ,proc)
(setf already-run? t))

result)))

(defun parallel-mapcar (function list)
(if (null list)

nil
(cons (future (funcall function (car list)))

(parallel-mapcar function (cdr list)))))

(defun fibonacci (n)
(if (< n 2)

n
(force-+ (future (fibonacci (- n 1)))

(future (fibonacci (- n 2))))))

(defun force-+ (&rest x)
(apply # ' + (mapcar #'force x)))

Force-all-futures relies on the fact that the Read-Eval-Print stack-group is the
first element of the list returned by the procedure list-all-stack-groups. No
attempt is made to force this element since it is not a FUTURE.

(defun force-all-futures ()
(mapcar a ' (lambda (name) (let* ((sg (get name 'stack-group))

(state (stack-group-state sg)))
(if (eql state :exhausted)

nil
(progn (call-stack-group sg nil)

(list name)))))
(mapcar I ' stack-group-name

(cdr (list-all-stack-groups)))))

Nito\d k u r w l c s and
hre k3drmSl1alal

Report Documentation Page

Simulating Futures in Extended Common LISP

1. Report No.

NASA TM-101000
2. Government Accession No.

I Philip R. Nachtsheim 1 A-88176 I

4. Title and Subtitle

7. Author(s)

10. Work Unit No. 1

8. Performing Organization Report No.

Ames Research Center
Moffett Field, CA 94035

9. Performing Organization Name and Address

13. Type of Report and Period Covered I
549-03-31

11. Contract or Grant No.

National Aeronautics and Space Administration
Washington, DC 20546-0001 14. Sponsoring Agency Code I

I

15. Supplementary Notes

Point of Contact: Philip R. Nachtsheim, Ames Research Center, MS 244-7
Moffett Field, CA 94035 (415) 694-6526 or FTS 464-6526

16. Abstract

Stack-groups comprise the mechanism underlying implementation of multipro-
cessing in Extended Common LISP i.e., running multiple quasi-simultaneous pro-
cesses within a single LISP address space. On the.other hand, the future con-
struct of MULTILISP, an extension of the LISP dialect Scheme, deals with
execution. The source of concurrency that future exploits is the overlap between
computation of a value and use of the value. This paper describes a simulation
of the future construct by an interpreter utilizing stack-group extensions to
Common LISP.

I

19. Security Classif. (of this report) 1 20. Security Classif. (of this page) 121. No. of pages 122. Price

I

I Unclassified

17. Key Words (Suggested by Author(s))

Futures
Concurrency
Multiprocessing

I Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 61

I I I I 1

NASA FORM 1626 OCT 86 - -

