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ABSTRACT 

We develop an abstract framework and convergence theory for Galerkin approximation 

for inverse problems involving the identification of nonautonomous nonlinear distributed 

parameter systems. We provide a set of relatively easily verified conditions which are suffi­

cient to guarantee the existence of optimal solutions and their approximation by a sequence 

of solutions to a sequence of approximating finite dimensional identification problems. Our 

approach is based upon the theory of monotone operators in Banach spaces and is appli­

cable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and 

variational techniques are used to establish a fundamental convergence result. An example 

involving evolution systems with dynamics described by nonstationary quasi-linear elliptic 

operators along with some applications are presented and discussed. 
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1. Introduction 

In this paper we develop a general abstract approximation framework and convergence theory 

for Galerkin approximations for inverse problems involving nonautonomous nonlinear distributed 

parameter systems. We consider parameter estimation problems formulated as the minimization 

over a compact admissible parameter set, of a least-squares-like performance index subject to state 

constraints given by an inhomogeneous nonlin~ar distributed system. Our theory applies to 

systems whose dynamics can be described by non stationary strongly maximal monotone 

operators defined on a reflexive Banach space which is densely and continuously embedded in a 

Hilbert space. This class of operators represents a nonlinear analog of the class of regularly 

dissipative, or abstract parabolic, linear operators. Our treatment relies heavily on the general 

theory for nonlinear evolution equations in Banach space given by Barbu in [9]. More specifically, 

we make extensive use of his Theorem III. 4.2 which serves as the basis for an existence, 

uniqueness, and regularity result that we require and for the fundamental convergence result we 

prove in section 3 below. 

We employ standard Galerkin techniques to obtain a sequence of approximating identification 

problems, each of which involves finite dimensional state constraints. We demonstrate that if 

readily verifiable conditions on the system's dependence on the. unknown parameters are satisfied, 

and the usual assumptions necessary for the convergence of Galerkin approximations hold, then 

solutions to the finite dimensionally constrained problems exist and, in some sense, approximate a 

solution to the original infmite dimensional identification problem. 

Our treatment here and the approximation theory we develop generalizes and extends earlier 

results of ours and ~thers in some significant ways. First, the variational approach that we use to 

establish our fundamental convergence result generalizes the techniques that have been widely used 

for this purpose elsewhere in the parameter identification literature (see, for example, [3],[5],[8]). 

However, in each of these instances, the variational arguments were given strictly in the context of 

particular inverse problems involving the identification of rather specialized linear distributed 

parameter systems. Second, the results given here extend the abstract approximation theories for 

autonomous linear system identification, and for quasi-autonomous nonlinear system identification 

developed in [4] and [7], respectively, to inverse problems for systems whose dynamics are 

described by temporarily inhomogeneous nonlinear operators. We note that although we have 

extended the theories developed in [4] and [7], the approach we have taken here in achieving this 

end is significantly different. Indeed, in [4] and [7] convergence is argued via an application of an 

abstract approximation result for evolution systems in Banach space such as the Trotter Kato 

Theorem (see [15]) or its nonlinear analogs (see, for example, [10] and [11]). While the 

approximation results given in [10] and [11] could be applied in the non autonomous case, this 

would require that the resolvents of the time dependent system operators satisfy a Lipschitz-like 
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condition with respect to the time variable (see [7]). However, a condition on the resolvent is, in 

general, not easily verified for the infinite dimensional system and <?an be especially difficult to 

establish for the sequence of approximating finite dimensional systems. On the other hand, with 

the variational approach that we have taken here, a mildly restrictive, relatively easily verified, 

measurability condition on the temporarily varying system operator is the only assumption on the 

time dependence of the system that we require to establish existence of solutions and convergence. 

We provide a brief outline of the remainder of the paper. In section 2 we define the class of 

nonlinear evolution systems and identification problems on which we shall be focusing our 

attention and we establish an existence, uniqueness, and regularity result for solutions to 

nonautonomous nonlinear distributed systems. In section 3 we develop our approximation theory 

and prove the fundamental convergence result. In section 4 we present an example and discuss 

some applications. 

2. Inverse Problems for a Class of Nonautonomous Nonlinear Distributed Systems 

Let <t be a metric space with Q, known as the admissible parameter set, a compact subset of 

<to Let Z, which we shall refer to as the observation space, be a normed linear space with norm 

1·lz. Let H be a Hilbert space with inner product <.,> and corresponding induced norm 1·1, and 

let V be a reflexive Banach space with norm 11·11. We assume that V is densely and continuously 

embedded in H. The latter assumption implies that there exists a constant ~ > ° for which 

l<pl ::;; ~1I<p1l, for all <p EV. Let V* be the space of continuous linear functionals defined on V and 

denote the usual dual space norm on V* by 11·11*. Identifying H with its dual, we have V c H = 
H* c V* with H densely and continuously embedded in V*. It follows that IIcpll>l< ::;; ~lcpl, for all 

<p E H and that 1I<p1l* ::;; ~211<p1l, for all <p E V. For <p E V* and", E V we shall denote the duality 

pairing between <p and", by <<p, \jI>. Of course when <p E H, the pairing <<p, \jI> agrees with the 

usual H inner product of <p and ",. 

Let T > ° be fixed, and for each q e Q and almost every t E [O,T] let A(t;q) be a 
hemicontinuous (i.e. w-lim A(t;q)(<p + h'l') = A(t;q)<p for <p, 'I' E V) in general nonlinear, 

h~O 

operator defined on all of V with range in V*. In our discussions below, we shall require that the 

family of operators A(t;q), t E [O,T], q E Q, satisfy the following conditions. 

(A) (Continuity) For each <p e V the map q ~ A(t;q)<p is continuous from Q c <t into V* for 

almost every t e [0, T]. 

(B) (Equi-V-Monotonicity) There exist a constant ro and a positive constant a which do not 

depend upon q e Q or t E [O,T] such that 

<A(t;q)<p - A(t;q)'I', <p - \jI> + rol<p - '1'12 ~ all<p - 'I'liP 

for all <p,,,, e V, almost every t E [O,T] and some p with 2::;; p < 00 • 
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(C) (Equi-Boundedness) There exists a constant ~ > ° which does not depend upon q e Q or 

t e [0, T] such that 

IIA(t;q)<pIl* ::;; ~(II<pllp-l + 1) 

for all <p e V and almost every t e [0, T] . 

(D) (Measurability) For each q e Q the function A(t;q)u(t): [0, T] ~ V* is strongly measurable 

for every u e Lp(O,T;V). 

For each q e Q let uo(q) be an element in H and let f(· ;q) be a function in Lp' (O,T; V*) where 

p and p' are conjugate exponents (i.e. lip + lip' = 1). We assume that the mappings 

q ~ uO(q) and q ~ f(· ;q) are continuous from Q c <\ into H and Lp.(O,T; V*) respectively. 

For each z e Z, let <1>(. ;z) be a mapping defined on Lp(O,T;V) with range in the nonnegative real 

numbers and which is continuous when restricted to one or the other of the two spaces C(O,T;H) or 

Lp(O,T; V) endowed with their respective usual topologies. We consider the following abstract 

parameter identification problem. 

(ID) Given observations z e Z, find parameters q e Q which minimize the performance index 

J(q) = <1>(u(· ;q);z) 

where u(· ; q) is the solution to the initial value problem 

(2.1) u(t) + A(t;q)u(t) = f(t;q), a.e. t E [0, T] 

(2.2) u(O) = uo(q) 

corresponding to q e Q. 

The existence of a solution q e Q to problem (lD) will follow as a consequence of the 

approximation theory and results to be presented in the next section. However, the notion of a 

solution to the abstract initial value problem (2.1), (2.2) for each q e Q must be made precise, and 

its existence, uniqueness, and regularity properties must be demonstrated. We have the following 

theorem. 

Theorem 2,1 If condition (B) - (D) are satisfied, then for each q e Q there exists a unique 

function u(· ; q) which is V* -absolutely continuous on [O,T], and satisfies u(· ;q) e Lp(O,T; V) 

n C(O,T;H), il(· ;q) e Lp' (O,T;V*), the abstract differential equation (2.1) for almost every 

t e [0, T], and the initial condition (2.2). 
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Proof For each q E Q and almost every t E [O,T] define Aro(t; q) and fro(t; q) by Aro(t; q) = 

e-rot A(t;q) erot + col and fro(t; q) = e-rot f(t; q). Then for almost every t E [O,T] , Aro(t;q) is a 

nonlinear hemicontinuous operator from Y into Y* and fro(t;q) E Lp,(O,T;Y*). Also, condition (D) 

implies that for every u E Lp(O,T; V), the function of t, Aro(t;q)u(t) : [0, T] --) Y* is strongly 

measurable. Conditions (B) and (C), and straight forward calculations yield the existence of an aro 

> ° and a Pro > ° (both depending upon prfor which 

(i.e., that the operator Aco(t;q) is strongly monotone) and 

hold for all cp,'I' EY and almost every t E [O,T]. Finally, for all cp E Y we have 

< Aco(t;q)cp, cp> = < Aco(t;q)cp - Aco(t;q)8, cp - 8> + < Aco(t;q)8, cp> 

~ acollcp/iP - I < Aco(t;q)8, cp>1 

~ acollcp/iP -II Aco(t;q)811*lIcp/l 

~ aco/lcp/iP - Pco/lcp/l 
p' 

p Pco EP P 
~ aco IIcpli - --, - - IIcpli 

P'EP p 

= Yrollcp/iP + Oro 

where E> ° is chosen small enough so that Yro = aro - £P/p > 0, Oro = -pg /p'EP' and 8 denotes the 

zero vector in Y. Then an application of Theorem m. 4.2 in Barbu [9] yields the existence of a 

unique Y* -valued absolutely continous function uro(· ;q) defined on [0, T] which satisfies 

uco(-;q) E ~(O,T;Y) n C(O,T;H), uco(' ;q) E Lp,(O,T;Y*), 

for almost every t E [0, T] and uro(O;q) = uo(q). The conclusion of the theorem now follows 

immediately by setting u(t;q) = erot uro(t;q) for t E [O,T]. 

3. An Abstract Approximation Framework and Converl:ence Theory 

For each n = 1,2, ... let Hn be a finite dimensional subspace of H which is also contained in Y. 

Let P n : H --) Hn denote the orthogonal projection of H onto~. We shall require that the 
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following convergence condition is satisfied by the subspaces ~ and the corresponding 

projections P n' 

(E) For each <P e V, we have lim IIPn<p - <pll =0. 
n~oo 

Condition (E) and the Principle of Uniform Boundedness imply that there exists a constant v > 0, 

independent of <P E V and n, for which liP n<P - <PII :::; vll<pll. Note also that V densely and 

cl)ntinuously embedded in H, IP nl = 1, and condition (E) imply lim IP n<P - <pI = ° for all <P E H. , n~~ 

For each n = 1,2, ... , each q E Q and almost every t E [0, T], we define the operator An(t; q) : 

~ ---7 ~ to be the restriction of the operator A(t;q) to Hn with the image in V* of <Pn E ~, 
A(t;q)<Pn' considered to be a linear functional on~. Identifying Hn with its dual, for <Pn E ~ 

we obtain An(t;q)<Pn = 'lin where 'lin is that element in ~ which satisfies < A(t;q)<Pn' Xn> = 
<'i'n' Xn> for all Xn e Hn' 

For each n = 1,2, ... , and each q e Q we define uOn(q) e Hn by uon(q) = P nuO(q) and for 

almost every t e [0, T] we define fn(t;q) to be the restriction of f(t;q) e V* to~. Note that the 

Riesz representation theorem implies that fn(· ;q) E Lp,(O,T;Hn). We consider the following 

sequence of parameter identification problems. 

(!Dn) Given observations z e Z, find parameters <in e Q which minimize the performance index 

(3.1) 

where un(· ;q) is the solution to the initial value problem in Hn 

(3.3) 

corresponding to q E Q. 

The initial value problem (3.2), (3.3) in Hn is the standard Galerkin approximation to the initial 

value problem (2.1), (2.2). With appropriate minor modifications, Theorem 2.1 yields for each 

n = 1,2, ... and each q E Q the existence of a unique absolutely continuous function un(· ;q): 

[O,T] ---7 ~ which satisfies the finite dimensional ordinary differential equation (3.2) for almost 
every t E [O,T], and the initial conditions (3.3), with un(, ;q) E L/O,T;Hn). 

We would like to demonstrate that if the conditions (A) - (E) above are satisfied, then a 

solution to the inverse problem (IDn) exists for each n = 1,2~ ... , and that these solutions imply the 

existence of, and in some sense approximate, a solution to problem (ID). In Theorem 3.1 below 
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we show that the mapping q ~ un(- ;q) is continuous from Q c <\ into both C(O,T;H) and 
~(O,T;V) and that U~oo un(· ;qn) = u(· ;~) in both C(O,T;H) and ~(O,T;V) whenever 

{~} is a sequence in Q with lim ~ = qo. Theorem 3.1 is in fact sufficient to conclude 
n~oo 

that the desired existence and approximation results obtain. Indeed, the continuous dependence of 

un(· ; q) on q implies that for each n = 1,2, ... , In given by (3.1) is continuous on Q. Since Q 

was assumed to be a compact subset of the metric space <\, the existence of a solution qn to 

problem (IDn) follows immediately. Now {qn} c Q and Q compact imply the existence of a 
convergent subsequence {<in.} of the sequence {<in}. If ljm <in. = <i, then <i e Q and 

J ~oo J 

J(q) = <D(u(· ;q );z) = <D( Urn un.(· ;qn);z) 
J~OO J J 

= l.im <D(un.(· ;qn);z) = Urn In.(qn) 
J~OO J J J~OO J J 

~ ljm In.(q) = Urn <D(un.(· ;q);z) 
J~OO J J~OO J 

= <D( Urn un.(· ;q);z) = <D(u(· ;q);z) 
J~OO J 

= J(q) 

for every q e Q. Consequently q is a solution to problem (lD). We note that the limit of any 

convergent subsequence of {qn} is a solution to problem (lD). When problem (lD) admits a 

unique solution q, the sequence {qn} itself is convergent and its limit is q. 

Theorem 3.1 If conditions CA) - CE) are satisfied, then 

(i). lim un(· ;~) = u(· ;qo) in CCO,T;H) and Lp(O,T;V) whenever {qn} is a 
n~oo 

sequence in Q with lim ~ = qo' and 
n~oo 

(ii) for each fixed n = 1,2, ... , M~ unC· ;<Im) = un(· ;~) in C(O,T;H) and Lp(O,T;V) 

whenever {<Im} is a sequence in Q with lim <Im = 0._ • 
m~oo ~l{J 

Proof We shall prove (i) only; the proof of (ii) is analogous. We establish (i) with an argument 

in the spirit of those in [3], [8] set in an abstract framework similar to the one used by Barbu to 

prove his Theorem 111.4.2. in [9]. Fix t e [O,T] and define the Hilbert space % by % = L2(O,t;H) 

together with the inner product 

t 

(x,y) = f <x(s),y(s»ds 

o 
and corresponding induced norm Ixl% = ~ (x,x) . Define the reflexive Banach space 

V by V = LpCO,t;V) with norm 
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'. 

t 

J p IIp 
IIxliV = ( IIx(s)1I ds) 

o 
Then V* = Lp.(O,t;V*), the dual norm is given by 

t 

J . lip' 
IIxllv* = ( IIx(s)lf.ds) 

o 
and the dense and continuous embedding V c % c V* holds. 

For each q E Q, define the operator n(q) : Dom (n(q» c V -7 V* by n(q)v = V, for 
* v E Dom (n(q» = {u E V : iI E V ,u(O) = uo(q)} where the derivative in the above 

defmition is in a generalized or distributional sense (see Lions, [13]). It is shown in [9] that the 

operator n(q) is maximal monotone on V x '11* and that Dom (n(q» c C(O,t;H). For each 

* q E Q define the operator 5l(q): V -7 V by 

( 5l(q)x)(s) = A(s;q)x(s), x E V, a.e. s E [O,t]. 

Using the properties of the operators A(s;q), it is not difficult to argue that 5l(q) is hemicontinuous 

and satisfies 

(3.4) (5l(q)x - >I(q)y, x - y) + rolx - yl~ ~ a IIx - yll~ 

for all x,y E V. In light of our proof of Theorem 2.1, it is clear that we may, without loss of 

generality take ro in condition (B) and (3.4) above equal to zero. We shall do this in our 

discussions below. It follows (see [9]) that the operator ~(q): Dom (n(q» c V -7 '11* given 

by ~(q) = n(q) + 5l(q) is maximal monotone on V x V* and that '4\(~(q» = '11* . 

Consequently, the operator ~(q)-1 : '11* -7 Dom (n(q» is well defined. Henceforth denoting 

u(· ;qO) and f(· ;qO) by u and frespectively, we have f E V* , u E Dom (n(qo» and u = 
~(qotlf. 

For each n = 1,2, ... let V n denote the linear space Hn endowed with the V-topology. That 

is, V n is Hn considered as a subspace of V rather than H. Let %n = L2(0,t;Hn) and V n = 
~(O,t;V n)' Then, since Hn is finite dimensional, V: is Hn endowed with the V* -topology and 

* * * * V n = Lp.(O,t;V n)' Define the operators nn(q): Dom (nn(q» c V n -7 V n ,~(q): V n -7 V n 

* and a--n(q) : Dom (nn(q» c V n -7 V n by 

xn E V n' a.e. s E [O,t] , 
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and 

respectively. As was the case above we have that 'a'3n(q) is maximal monotone, ~(q) (actually, 

~(q) + 001) is strongly monotone on V n X V: and ~(~ n(q)) = V:. Denoting 

un(· ;qn) by un and fn(· ;qn) by fn we have that fn E V: and that un = ~ n(qnrlfn with 

un E Dom ('a'3n(qn))' 

Now for x E V and q E Q, condition (C) implies 
t 

J ' lip' 
(3.5) 115l(q)xll

v
• = ( IIA(s; q)x(s)lf.ds) 

o 
t 

~ (J ~P'(lIx(s)IIP-l + l/ds) lip' 

o 
t t ::; ~ {(J IIx(s)II(P-l)P'ds) IIp' + (J ds) IIp'} 

o 0 
p-l lip' 

::;~{lIxllv + T } 
_ p-l 

::; J3{lIxllv + I}. 

This estimate, which also holds for ~(q), in turn implies that there exists a constant M > 0, 

independent of t E [0, T] and n = 1,2, ... for which lIunll'\.f ::; M, n = 1,2, .... Indeed, using 8 to 

denote the zero vector in V and noting that (~(q)wn,vn) = (5l(q)wn,vn) for all wn,vn in V n' (3.5) 

can be used to argue 

The continuous dependence assumptions on f(· ; q) and uo(q), lim 'In = qo ' and the 
n~oo 

application of the familiar inequality 

p p p' 

ab ::; ~ + ~ , a, b ~ 0, E > ° 
P EPp' 

with E chosen sufficiently small, yields the desired uniform bound. 
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For XE%, define XnE%n by xn(s)=Pnx(s), a.e. SE[O, t]. Then for x E Dom(n(q», 

using the definition of generalized derivative, it is not difficult to argue that xn E Dom(nn(q» and 

that (nn(q)xn - n(q)x, vn ) = 0 for all vn E V n . 

It then follows that 

p 
allun - ullv =::;; (j(qn)un - j(qn)U' un - u) 

= (Yl(qn)un - Yl(qO)u, Un - un) + (Yl(qn)un - Yl(qo)u, un - u) 

+ (Yl(qn)un - Yl(qo)u, un - u) + (Yl(qo)u - Yl(qn)u, un - u) 
t 

=::;; IIfn - f1I v* lIun - unllv - i J ~s Illn(s) - un(s)12 ds 
o 

+ lIj(qn)un - 5I(~)uIlV* lIun - uliV + lIj(qO)u - j(~)uIlV* lIun - uliV ' 

Condition (E), the uniform bound on lIunll'tf ' (3.5), and the final estimate above imply 

With E> 0 chosen sufficiently small, we obtain 

(3.6) 
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Conditions (A), (C), and (E), and the continuous dependence assumption on uO(q) and f(· ;q) 

imply that the right hand side of the estimate (3.6) tends to zero as n ~ 00. Consequently the left 

hand side tends to zero as well. Moreover, by replacing any t dependence on the right hand side 
with T we fmd lim tIn(· ;CIn) = u(· ;0_) in Lp(O,T;V) and lim {un (· ;CIn) - un

(. ;qo)} = ° , n~oo -'{) n~oo 

in C(O,T;H). However 

for t E [0, T]. Therefore, condition (E) and u(· ; 0_) E C(O,T;H) imply that lim tIn(· ;CIn) = -'{) n~oo 

u(· ;qO) in C(O,T;H) and the theorem is proved. 

Remark In practice, it is frequently the case that the parameter space <t and the admissible 

parameter set Q are infinite dimensional with elements consisting of spatially and/or temporally 

varying functions. If this is the case, to actually solve the approximating identification problem 

(IDn), in addition to making the state discretization, the admissible parameter set Q must be 

discretized as well. Briefly, this can be carried out as follows. For each m = 1,2, ... let 

1m : Q c ct ~ <t be a continuous map with finite dimensional range and the property that 

lim m(q) = q, uniformly in q for q E Q. We set Qm = 1m(Q) (note that for each m, Qm is a 
m~ 

compact subset of ct) and consider the doubly indexed sequence of approximating identification 

problems (ID~) where (ID~) is the problem (lDn) with Q replaced by Qm. Each of the problems 
m. 

admits a solution ck E Qm and it can be argued that there exists a subsequence {qn J} C {q~} 
k 

m. 
for which .lim qn J = q, with q a solution to problem (ID). (A more detailed discussion of 

J.k~oo k 

the double discretization procedure outlined above can be found in [5].) Once bases for Hn and the 

range of 1m have been chosen, the problem (ID ~) becomes one involving the minimization of a 

continuous functional over a closed and bounded subset of Euclidean space subject to fmite 

dimensional (ODE) constraints. The resulting optimization problem is typically solved using an 

iterative search procedure, a variety of which have been implemented as a part of anyone of a 

number of standard readily available software packages (for example, IMSL, MINP ACK, etc.) 

(see [3]). 

4. An Example and Applications 

We present an example of a class of temporally inhomogeneous nonlinear operators and 

corresponding nonautonomous nonlinear evolution systems to which the general theory developed 

above applies. We also briefly outline a sampling of application areas which give rise to inverse 

problems involving both linear and nonlinear nonautonomous distributed systems of the type 
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discussed in our example. We treat here the relevant theory only; implementation questions will be 

discussed and numerical findings are and will be reported on elsewhere (see e.g. [1], [8]). 

Let T > 0 be fixed, let n be a bounded region in R.e. with smooth boundary an, and for 

a = (al,a2, ... ,a.e.) a multi-index of nonnegative integers let lal = a l + ~+ .. +a.e.' We 

denote the ath order generalized, or distributional, derivative of a measurable function u defined 

on n by Dcxu; that is 
a

l 
Dau(x) = ~ 

ax I 
I 

at a -a-u(x), 
ax t 

t 

a.e. XEn 

m . 

where a = (aI' a 2, ... , at)' Let m be a fixed nonnegative integer, set N = L i , and 
j=O 

for u measurable on n, let eu denote the N-vector valued function whose components are DIlu for 

all multi-indices a with 0 ~ lal ~ m. Define the metric space ~ by 

and let Q be a compact subset of <lo with the properties given in (1) and (2) below. 

The vector valued function q = {%, ~}, 0 ~ lal, I~I ~ m, is an element in Q if 

(1) The real valued mapping ~ -7 qa,~(t,x,~) defmed on RN is continuous for almost every 

(t,x) E [0, T] x n and all multi-indices a and ~ with 0 ~ lal, I~I ~ m. 

(2) There exists a positive constant A. which does not depend on q E Q for which 

L (~.~(t,x,~) ~~ - ~.~(t,x;T1)11~)(~a -11a) ~ A. L I~a -11aI
2 

O:5lal.I~I:5m O:5lal:5m 

for almost every (t, x) E [O,T] x n and all ~,11 ERN. 

We take H = ~(n) and let V be any closed linear subspace ofJIffi(n) which contains 

* Hw(n). Then V c H-m(n), and for each q = {qcx A} E Q and almost every t E [O,T] define the * .p 
operator A(t;q) : V -7 V by 

(4.1) <A(t;q)u,v> = L 
O:5lal.I~I:5m 

J ~ a 
qa.~(t,x, eu(x))D u(x)D v(x)dx 

n 
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for u,v e V. The notation <',> appearing in the defmition (4.1) above will be used to denote 

both the usual inner product on H = ~(n) and the d~ality pairing between V and V*. The 

operator A(t;q): V --7 V* is the distributional fonn of the fonnal differential operator 

A(t;q)u(x) = L 
Os;lal,I~IS;m 

~ a ~ 
(-1) D qa,~(t,x, ou(x))D u(x) 

for almost every (t,x) e [O,T] x n, and is said to be of quasi-linear elliptic type. It is not difficult 

to show that (1), (2) above imply that for each q e Q the operator A(t;q) given by (4.1) is 

hemicontinuous from V into V* and that conditions (A) - (D) are satisfied. We note that since V is 

separable, w,eak and strong measurability are equivalent (see [12]). Consequently condition (D) 

can be verified by showing that the real valued mapping t --7 <A(t;q)u,v>, u, v e V, is measurable 

in the usual sense on [0, T]. When V is chosen as either Hw(n) or Hffi (n), the abstract evolution 

equation (2.1) with A(t;q) V --7 V* given by (4.1) corresponds to the quasi-linear parabolic partial 

differential equation 

~~ (t,x) + L . lal a ~ 
(-1) D q R(t,x,ou(t,x))D u(t,x) = f(t,x;q), 

a,p a.e. X e n, t > 0 

OS;I al ,I ~1S;m 

together with the standard homogeneous Dirichlet or Neumann boundary conditions, respectively. 

We illustrate the applicability of the general theory which we have developed above with a brief 

description (along with appropriate references to more detailed treatments) of some inverse 

problems of the fonn of problem (ID) which have arisen in practice and have been documented 

elsewhere in the literature. 

4.1 Size Structured Population Dynamics 

We consider an application of the Fokker Planck theory to model size structured population 

dynamics (see [20]). With the spatial domain representing the size distribution of the species in 

question, and u(t,x) denoting its population density at time t and size X, the assumption that growth 

or aging is a Markov transition process and an argument based upon a Brownian motion paradigm 

(see [14]) leads to the equation 

au (t x) + at ' ! 
j=l 

where for j = 1,2, ... 

. 1 
(-1 )J+ ., J. 

aj 

-. (M.(t,x)u(t,x)) = 0 
a,( J 
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00 

MP,x) = !it~O It J (~- x)j <p(t,x; t + ~t, ~)d~. 
--00 

The kernel <p(t,x, t + ~t,~) is the probability density function for the transition from size x at time 

t to size ~ at time t + ~t, and the functions Mj can be interpreted as the moments of the time rate of 

increase in size or as the time rate of change of the moments of the growth process. If we make the 

usual assumption that MP,x) ~ 0 ,j ~ 3, and set ql (t,x) = MI (t,x) and qit,x) = i M2(t,x), 

we obtain the Fokker Planck equation 

au a
2 

a (4.2) -a (t,x) - -2 (qit,x)u(t,x)) + -a (ql(t,x)u(t,x)) + ~(t,x)u(t,x) = 0, Xo < x < Xl' t> 0 
t ax X 

where we have included a mortality term, 'lou, and taken Xo and X I to be respectively the minimum 

and maximum sizes of individuals in the population. 

Along with the linear partial differential equation (4.2), appropriate boundary conditions have 

to be specified. We shall impose a renewal type boundary condition at the minimum size, 

Xl 

(4.3) {ql(t,x)u(t,x) - aa
x 

(q2(t,x)u(t,x))}x=x
o 

= J q3(t,x)u(t,x)dx, t> 0 , 

Xo 

and a zero flux condition (Le. individuals can not grow beyond the maximum size) 

(4.4) a _ 
{ql(t,x)u(t,x) - ax (q2(t,x)u(t,x))}X=X

I 
- 0, t> 0 

at the maximum size. (A more detailed discussion of the modeling considerations implicit in this 

choice of boundary conditions can be found in [2] and [6].) We assume that the size dependent 

population distribution at time t = 0 is given by uo(x), Xo ~ x ~ Xl and set 

(4.5) u(O,x) = uo(x), Xo ~ x ~ Xl . 

In order to apply the model (4.2) - (4.5) effectively, one must be able to determine the 

moments ql and q2' the mortality rate qo and the fecundity kernel q3 with some degree of accuracy, 

and consistently with biological principles and experimental observation. In problems of practical 

interest to population ecologists, one can expect only limited success in determining these 

parameters directly from knowledge of the growth process. An alternative is to formulate an 

inverse problem wherein the parameters qo' ql' q2 and q3 would be determined from observations 

z(tj,x), Xo ~ x ~ Xl of the population density at times tj . 

13 



Let ~ = Loo([O,T] x [xO,XI]) x Loo([O,T] x [xO,xI]) x Loo(O,T; WI,OO(XO'XI» x Loo([O,T] x 

[xO,xI]) and let Q be a compact subset of ~ with the property that q = (qo, ql' q2' q3) E Q if and 

only if q2(t,x) ~ v> 0 for almost every t E [0, T] and every x E [xo, xl]' Let H = L2(xo,xl) with 

<.,.> denoting the usual L2 inner product on H and set V = Hl(xO,xl)' For each q = (qo, ql' 

* q2, q3) E Q and almost every t E [0, T] define the operator A(t;q) : V ~ V by 

(4.6) <A(t; q)cp,,!,> = - <ql(t; .)cp - 0(q2(t; ')cp), 0'1'> 
xl 

-'I'(xo) f q3(t,x)cp(x)dx + <qlt; ')cp,,!,> 

Xo 

for cp, 'I' E V. Relatively straight forward arguments can be used to show that conditions (A) - (0) 

are satisfied with p = 2 (see [1]). If we define the least squares perfonrtance index 

m Xl 

J(q) = <l>(u(· ;q); z) = ~ f (u(ti,x;q) - z(ti ,x»2 dx 
1=1 Xo 

where for each q E Q u(· ;q) E C(O,T;H) is the unique solution to the initial value problem (2.1), 

(2.2) with A(t;q) given by (4.6) and f = 0, and z = (z(tl, ·), ... ,z(1m, .» E Z = ? Llxo'xl ), 

then, with an appropriate choice of the Galerkin subspaces ~ (see [1] and below), our theory 

applies. 

4.2 Biological Mixing in Sea Sediment Cores 

The modeling of biological mixing in lake and sea sediment cores yields a second example of 

a temporally inhomogeneous linear distributed system with an associated inverse problem. Lake 

and deep sea sediment core samples play an important role in geophysical research by providing a 

record of the geological, oceanographic, climatic, and biological history of the earth. Unfortunately 

however, the stratigraphic records contained in these core samples are frequently corrupted by the 

mixing activities of benthic organisms near the sea-floor-sea interface. Through the use of tracers 

from dated events (e.g. radioactive fallout, volcanic eruptions, etc.) data can be obtained from 

which the identification of an appropriate model for the mixing process is possible. Note that with 

an appropriate model, the deconvolution of the corrupted signal becomes a possibility. 

One approach to modeling the mixing process is based upon the assumption that mixing 

occurs only to a fixed depth .e. from the seafloor/sea interface. Under this assumption, the mixed 

layer in the sediment is modeled as a one dimensional moving diffusion chamber. The linear partial . 

differential equation 

(4.7) ~~ (t,x) - tx {ql(x) tx u(t,x)} + q2(t) tx u(t,x) = 0, 0 ~ x ~.e., t > 0 

results where u(t,x) denotes the concentration of tracer at time t and depth x in the mixed layer, ql 
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is a depth dependent diffusion coefficient (it is hypothesized that mixing is most intense at the 

seafloor/sea interface and then decreases with depth), and q2 is a temporally varying sedimentation 

rate. If we assume that the concentration of tracer in the mixed layer at time t = ° is given by Uo(x), ° :::;; x :::;; .e, and that no other sources of tracer exist, we are led to the boundary and initial 

conditions given by 

(4.8) {- ql (x) ~~ (t,x) + q2(t)U(t,X)} x:::{) = 0, t> ° 

(4.9) {-ql(X)~~(t,X)} =0, t>O 
x=.t 

(4.10) u(O,x) = uO(x), 0:::;; x:::;; .e. 

The boundary condition (4.8) states that there is no tracer flux through the top of the mixed layer 

while the boundary condition (4.9) implies that the tracer at depth .e comes to rest in the stationary 

sediment layers below the mixed layer. (That is, as more sediment is deposited, since mixing is 

assumed to occur only to a fIxed depth, the diffusion chamber moves up, leaving the tracer at the 

bottom behind.) 

The data for an associated inverse problem will come from analysis of the core sample. Our 

observations, z(t), t > 0, therefore, are the concentration of tracer at a depth. x = .e in the mixed 

layer over some fIxed time period, [0, T]. For brevity, we assume that Uo and .e are known, or 

can be determined either experimentally or from the data, and consider the inverse problem of 

identifying the functional parameters ql and q2' (Other inverse problems associated with the model 

given by (4.7) - (4.10), and a more detailed discussion of the modeling process itself can be found 

in [8].) 

Let q, = Loo(O,.e) x Loo(O,T) and let Q be a compact subset of q, with the property that 

q = (ql' q2) £ Q if and only if ql(x) ~ v > ° for almost every x £ [O,.e]. We take H = ~ (O,.e) 

endowed with the standard ~ inner product, <',>, set V = HI (O,.e), and for q = (ql' q2) £ Q 

* and almost every t £ [O,T] we defme A(t; q) : V ~ V by 

for cp,,!, £ V. 

Using arguments similar to those given in [8], it is not difficult to show that conditions (~)­

(D) are satisfIed with p = 2. The appropriate performance index is given by 

T 

(4.12) J(q) = <1>(u(· ;q);z) = J (u(t,.e;q) - z(t»2dt 

o 
where u (.,q) £ ~(O, T;V) is the unique solution to the initial value problem (2.1), (2.2) with 
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A(t;q) given by (4.11) and f = 0, and Z e Z == ~(O,T). Note that cI>(. ;z) given by (4.12) is 

continuous on ~(O, T;V). Once again, with an appropriate choice of the Hn, our theory applies. 

4.3 Nonlinear Heat Conduction 

A well known model for nonlinear heat conduction or mass transfer provides still another 

opportunity for the application of our framework. The example we present now can be considered 

as a special case of the general class of nonlinear systems which were discussed earlier in this 

section. However, for simplicity in notation we define directly the relevent operators and spaces 

in this particular example. Let.Q be a bounded region in R ~ with smooth boundary, let 

<t = Loo«O,T ) x .Q x R ~) and let Q be a compact subset of <t with the property that q e Q if 

and only if 

(1) The mapping ~ --) q(t,x,~) is Cl for almost every (t,x) e [O,T] x.Q, and 

(2) There exists a constant A. > 0 which does not depend upon q e Q for which 

(4.13) 8. V rq(t,x,~) Ir 8·(~ -11) + q(t,x,8) (~. -11·) ~ A.(~. -11·), i = 1,2, ... ,.t 
1 ~ ~= 1 1 1 1 

for almost every (t,x) e [0, T] x .Q and all 8,~, 11 e R ~. (Note that when .t=I, the function q(t,x, 

~) = q( ~) = 1 - .5e- ~2 satisfies (4.13).) Then for q e Q, consider the nonautonomous, nonlinear 

model for heat conduction or mass transfer given by (see [17], [18]) 

(4.14) ~~ (t,x) - V . {q(t,x,Vu(t,x»Vu(t,x)} = 0, x e.Q, t > 0 

together with appropriate boundary conditions. 

We take H = ~(.Q) and take V to be an appropriately chosen closed subspace of Hl(.Q) 

which contains Hl(Q). The precise choice of V of course depends upon the boundary conditions 
o 

which accompany (4.14). For example with Dirichlet boundary conditions, we take V = Hl(.Q) 
o 

and when Neumann boundary conditions have been specified we take V = Hl(.Q). For each 

* q e Q and almost every t e [0, T], we define the operator A(t;q) : V --) V by 

<A(t; q)cp,'!'> = f q(t,x,vcp(x»Vcp(x)V'!'(x)dx 

n 
for cp,,!, e V. Once again, the hemicontinuity of the operator A(t ;q) and that conditions (A) - (0) 

are satisfied are not difficult to argue. 

Finally, we point out that it is usually not difficult to choose Galerkin subspaces Hn and 

corresponding orthogonal projections P n which satisfy condition (E). It is frequently the case that 

choosing the Hn as the span of appropriately modified Hermite or polynomial spline functions 
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(calling upon tensor products in higher dimensions) will suffice. For example, in one dimension, 

we suppose that H = ~(O, 1) and V = Hl(O,I) endowed with the usual inner products and norms. 

For each n = 1,2, .. let {cp~} J=O denote the usual linear spline (or "hat") functions (see [16]) 

defmed with respect to thb uniform mesh {O, l/n, 2/n, ... ,I} on the interval [0,1]. Set flo = span 

{ cP ~} f=o and let P n denote the orthogonal projection of H onto the n + 1 dimensional subspace Hn 

wilh respect to the L2 inner product. For In : V -7 Hn the interpolation operator defined by 

(lncp)U/n) = cpU/n), j = 0,1,2, ... ,n, for cp EV, one can obtain (see [19]) the estimates 

i = O, ... ,j, j = 1,2, where the kij are positive constants which do not depend on n or cp. It then 

follows that 

for cp eV, and by using the Schmidt inequality (see [16]) that 

(4.15) 

where v is a positive constant independent of nand cp e V. Similar arguments can be used to show 

that lim IIPncp - cpll = 0, for cp e H2(0, 1). This, together with density and (4.15), establishes 
n~oo 

condition (E). These ideas extend to higher order splines, other sets of boundary conditions (Le. 

other choices for V), and higher dimensions via tensor products. 

Schemes based on Galerkin spline approximations as outlined in the previous paragraph can 

be used in a number of important areas of application. In [1], [2], [8] the reader will find 

computational results involving linear nonautonomous systems for which the theory in this paper 

provides a sound theoretical foundation. In addition, we are currently carrying out computations 

for several nonlinear examples including heat conduction models such as the one outlined in section 

4.3. These findings will be reported in a subsequent paper on numerical and implementation· 

aspects of the ideas. 
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